
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Hunting in the Dark Forest: A Pre-trained Model for On-chain
Attack Transaction Detection in Web3

Anonymous Author(s)∗

Abstract
In recent years, a large number of on-chain attacks have emerged
in the blockchain empowered Web3 ecosystem. In the year of 2023
alone, on-chain attacks have caused losses of over $585 million.
Attackers use blockchain transactions to carry out on-chain at-
tacks, for example, exploiting vulnerabilities or business logic flaws
in Web3 applications. A wealth of efforts have been devoted to
detecting on-chain attack transactions through expert patterns
and machine learning techniques. However, in this ever-evolving
ecosystem, the performance of current methods is limited in detect-
ing new on-chain attacks, due to the obsoleting of attack recognition
patterns or the reliance on on-chain attack samples. In this paper,
we propose a universal approach for detecting on-chain attacks
even when there are few or even no new on-chain attack samples.
Specifically, an in-depth analysis of the transaction characteristics
is conducted, and we propose a new insight to train a generic attack
transaction detecting model, i.e., transaction reconstruction. Partic-
ularly, to overcome the over-fitting in the transaction reconstruction
task, we use the web-scale function comments related to transac-
tions as supervision information, rather than expert-confirmed la-
bels. Experimental results demonstrate that the proposed approach
surpasses the supervised state-of-the-art by 13% in AUC, with just
30 known on-chain attack samples. Moreover, without any known
attack samples, our method can still detect new on-chain attacks in
the wild (with a precision of 61.83%). Among attacks detected in
the wild, we confirm 1,692 address poisoning attacks, a new type
of on-chain attack targeting token holders. Our code is available at:
https://anonymous.4open.science/r/6F40.

CCS Concepts
• Security and privacy→Web application security; • Applied
computing → Digital cash.

Keywords
Attack detection, Blockchain transaction analysis, Web3

ACM Reference Format:
Anonymous Author(s). 2025. Hunting in the Dark Forest: A Pre-trained
Model for On-chain Attack Transaction Detection in Web3. In Proceedings
of Proceedings of the ACM Web Conference 2025 (WWW ’25). ACM, New
York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’25, 28 April - 2 May 2025, Sydney, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

2022
2023

2024
Quarter

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Flashloans
Insufficient validation
Access Control
Price Manipulation
Business Logic Flaw
Reentrancy
Precision Loss

Figure 1: The changes in the proportions among several on-
chain attack types over time.

1 Introduction
Web3, conceived a distributed Internet of value without a reliable
third party, has received extensive attention from industry and
academia [12]. Massive Web3 applications are built atop blockchain
trading systems [2, 36, 42]. Users can activateWeb3 application busi-
ness logic by initiating blockchain transactions. The business logic
of Web3 applications is usually implemented through smart con-
tracts, which are Turing-complete programs on the blockchain [42].
Consequently, the transaction information carried by blockchain
transactions goes far beyond “money transfer” in transactions in
traditional financial systems.

Transactions can be utilized to carry out on-chain attacks, re-
sulting in significant financial losses, and these attacks can be quite
covert. For example, by carrying out blockchain transactions, at-
tackers exploit the smart contract vulnerabilities or Web3 business
logic flaws to profit. According to a report [4], the monetary detri-
ment resulting from on-chain attacks surpassed $585 million in just
2023. In traditional financial systems (e.g., banks), users engaging
in transaction activities are required to furnish authentic identity
information, aka the Know-Your-Customer (KYC) process. Utiliz-
ing authentic identity information, financial industry experts are
capable of deducing the intent of transactions. However, due to
the pseudonymity of blockchain accounts, users are not required
to disclose their identities in order to engage in transactions. As
a consequence, traditional technologies encounter challenges in
scaling up to Web3 and blockchain ecosystems.

To ensure prompt reactions to the risks presented by on-chain
attacks, some techniques [1, 19, 28, 38, 43, 48, 49, 51] have been
proposed to autonomously detect attack transactions. However,
new on-chain attacks continue to emerge, and existing methods are
limited in identifying new types of on-chain attacks. We collect the
on-chain attack reports from DeFiHackLab [35], and plot Figure 1,
which illustrates the emergence of new attack types over time, e.g.,
price manipulation and precision loss. Moreover, in 2023, 23 of the
73 on-chain attacks did not fall in common established on-chain

1

https://anonymous.4open.science/r/6F40
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, 28 April - 2 May 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

attack taxonomies [6, 26, 50], and these attacks resulted in losses,
accounting for 52.5% of the total for the year [4]. According to an-
other recent survey, only about 50% of new types of attacks [50] can
be detected by current tools. On the one hand, existing techniques
that rely on particular expert patterns may experience a gradual
decline in effectiveness, as the attack vector continues to evolve.
Especially when a new attack pattern appears, existing patterns
may not be able to cover new attacks. On the other hand, while
current learning-based approaches can extract attack knowledge
automatically, their efficacy is contingent upon well-defined opti-
mization goals, which usually depend on a substantial volume of
labelled data or a clear attack taxonomy. Yet labeled on-chain attack
samples and clear attack taxonomy are frequently absent for new
attacks, which hinders the efficacy of learning-based methods.

In the Web3 ecosystem with diverse and rapidly evolving on-
chain attacks, it is an imperative but challenging task to design a
universal on-chain attack transaction detection model. First, it is
difficult to completely enumerate the patterns of on-chain attack
transactions. Blockchain transactions contain heterogeneous data,
e.g., traces, logs, and receipts, and attack patterns are reflected in
the combination of these heterogeneous data [33, 38, 43]. Given that
transaction data encompass a variety of attributes and categories,
their combinations correspond to a space that is impossible to
traverse within a limited time. Second, labeled on-chain attack
samples and a clear attack taxonomy are frequently absent for new
on-chain attacks. While some work establishes taxonomies and
labels samples for new attacks [47, 50], these efforts are frequently
implemented subsequent to the occurrence of attacks. Prior to
the occurrence of new attacks, it is exceedingly challenging for
condensing attack features that have not yet materialized. And thus
learning-basedmethods also struggle to learn generalizable decision
boundaries for on-chain attack transaction detection directly.

This paper aims to address the aforementioned issues by propos-
ing a generic, learning-based method for detecting on-chain attack
transactions. First, we collect on-chain attack transactions from
2023 and earlier. Our analysis and prior work reveal that, at any
given time, attack transactions exhibit some features (e.g., token
leakage [32, 45], price slippage [43, 46]) that significantly distin-
guish them from non-attack transactions. And these features rarely
appear in non-attack transactions. Based on the observation, we
offer a new insight for designing on-chain attack transaction de-
tection models: implementing pre-training to learn the features of
reconstructing non-attack transactions. The pre-trained model can
identify attack transactions using reconstruction error, without the
need to pre-defined specific attack patterns to be detected. More-
over, we find that the generalizability of the pre-trained model can
be limited by the potential parameter over-fitting, resulting from
the reconstruction task. To prevent the over-fitting, the comment
corresponding to functions triggered during transaction execution
is used as supervision. This allows the model to learn meaningful
embeddings in the reconstruction task. In this way, a generaliz-
able on-chain attack transaction detection model can be developed,
without any labeled attack transactions.

We prototype the proposed method on several EVM-compatible
blockchains, e.g., Ethereum [42], BNBChain [2], and Polygon [36].
The conducted experiments evaluate the effectiveness and efficiency
of our method. Firstly, for the attacks with known samples, e.g.,

reentrancy [33, 48], the proposed approach outperforms state-of-
the-art full supervised methods by 13% in AUC, even if only 30-shot
known attack samples are utilized. Secondly, without any known
attack samples for training, the proposed method detect 1,707 real
attacks in the wild. Especially, the detection results of the wild
experiments reveal a new type of attack, i.e., address poisoning [31].

In summary, the major contributions are as follows:
• Problem insights. Despite differences in attack patterns,

attack transactions often contain features that rarely ap-
pear in non-attack transactions. The observation inspires a
new class of solutions: learning to reconstruct non-attack
transactions and using reconstruction error to detect attack
transactions, without the need to pre-define attack patterns
or collect attack samples.

• A pre-trained model. We develop a pre-trained model
capable of identifying attack transactions in the absence
of known samples. During the pre-training, function com-
ments corresponding to transactions are used as supervi-
sion, enhancing the model generalizability in the attack
transaction detection.

• Experimental verification. The proposed method out-
performs the supervised state-of-the-art by 13% in AUC,
although there are only 30 known on-chain attack samples.
And we confirm that our method is efficient enough to de-
ploy and monitor the real-time transaction flow. Moreover,
without any known attack samples, the proposed method
detects 1,707 on-chain attacks in the wild. Among detected
attacks, 1,692 are confirmed as address poisoning attacks, a
new type of on-chain attack.

2 Background and Related Work
In this section, we introduce some necessary concepts and related
work of on-chain attack transaction detection task.

2.1 Terminology of Blockchains
EVM-compatible blockchain. Ethereum, one of the representa-
tives of blockchain, is a blockchain trading system that enables
developers to deploy Web3 applications. Ethereum Virtual Ma-
chine (EVM) [42] is a software environment that executes Web3
applications on Ethereum. The vast ecosystem of Ethereum drives
multiple blockchain platforms, e.g., BNBChain, Polygon, to design
compatible technologies for EVM, allowing deployment of the same
applications as Ethereum without significant code modifications.
Accounts. Accounts can participate in transactions. Specifically,
there are two kinds of accounts [42], i.e., externally owned ac-
counts (aka. EOAs) and smart contracts. Externally owned accounts
are controlled by users, while smart contract are controlled by
on-chain program, supporting the logic of Web3 applications, e.g.,
issuing tokens. All accounts have a unique address as an identifier.
Transaction. Transactions are initiated by externally owned ac-
counts. Every few seconds to minutes, new transactions are pack-
aged into a block by the blockchain system and made publicly
accessible. Transactions can be use to transfer native token (e.g.,
Ether in Ethereum) of a blockchain system from one account to an-
other. Additionally, transactions can carry code or data that triggers
the execution of on-chain programs.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Hunting in the Dark Forest: A Pre-trained Model for On-chain Attack Transaction Detection in Web3 WWW ’25, 28 April - 2 May 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2.2 On-chain Attack Detection
In order to carry out attack detection, existing methods focus on
designing specific expert patterns and deep learning models.

2.2.1 Pattern-based Detection. In recent years, some researchers
aim to design specific patterns to detect on-chain attack transac-
tions [37, 39, 43, 46, 48, 51]. TXSPECTOR [48] constructs triggered
the operation code into a graph, and uses the domain specific lan-
guage to detect reentrancy, unchecked call, and suicidal attacks in
transacitons. Zhou et al. [51] modeled the transaction execution as
a graph, and defined six types of graph patterns to discover attack
transactions, e.g., reentrancy, honeypot, etc. Wang et al. [39] sum-
marized a flashloan pattern for each provider to identify flashloan
transactions. Torres et al. [37] measured the three different types
of frontrunning attacks: displacement, insertion, and suppression,
based on their proposed heuristics. However, due to their design
for specific tasks, pattern-based methods may lack generalizability
and thus be difficult to scale to newly emerging attacks.

2.2.2 Learning-based Detection. Some learning-based methods [1,
19, 24, 33, 38, 44, 47] also attempted to extract transaction features
and discover attack behaviors in transactions. DeFiScanner [38] de-
signed a neural network to fuse features from external transactions
and emitted events, which was then used to detect on-chain attacks.
DEFIER [33] modeled the transaction execution process as a graph,
and used graph embedding models and sequence embedding mod-
els to classify multi-stage attack transactions. Recent work [1, 19]
has been devoted to extracting MEV (maximal extractable value)
actions in transactions through deep learning methods. However,
learning-based methods usually require a well-labelled dataset or
the clear attack taxonomy for model training. Thus, it is difficult for
existing learning-based methods to handle the new attack outside
of the training data.

3 Problem Analysis
This section conducts an analysis of the on-chain attack transaction
task. Specifically, we explore the characteristics of attack and non-
attack transactions, and provide new insights for designing a genic
detection model.

3.1 Transaction Characteristics
In practice, existing technologies often model heterogeneous trans-
action data as transaction graphs [43, 44, 48, 51], allowing for mod-
eling the associations between different data. Transaction graphs
containmany high-order structures, which are subgraphs composed
of multiple nodes that correspond to accounts and triggered pro-
gram segments. These high-order structures can reflect the intent
of transactions [43, 44, 51].

Some studies suggest that in non-attack transactions, the high-
order structures reflecting complex intent are composed of a small
number of high-order structure combinations [44]. One reason
for this phenomenon may be the code reuse [34], where devel-
opers tend to use packaged code for constructing new programs.
Additionally, due to the large volume of non-attack transactions,
learning-based models can effectively learn the features of non-
attack transactions [38, 44].

Frequency

#P
ro

gr
am

 se
gm

en
ts Non-attack

Attack

Figure 2: The frequency distribution of program segments.
The coordinate axis is on a logarithmic scale.

Human experts are able to identify and report new attacks. In fact,
the high-order structures corresponding to attacks rarely appear
in non-attack transactions (e.g., token leakage [32, 45], price slip-
page [43, 46]). We conduct an empirical analysis using the DAppFL
dataset [45], which collects both attack and non-attack transactions
from 2023 and earlier. This dataset also indicates all triggered pro-
gram segments in attack transactions and non-attack transactions.
These program segments can be represented as subgraphs (also
high-order structures), and the frequency distribution of different
subgraphs is shown in Figure 2. It is evident that the high-order
structures associated with attacks are less frequent and have a
smaller number, displaying the traits of anomalous data.

Finding I: In the transaction graph, high-order structures
reflect transaction intent, and attack-related high-order struc-
tures are rare and infrequent.

3.2 Insights of Model Design
Drawing inspiration from Auto-Encoder [23] and the aforemen-
tioned observations, we can create a reconstruction task to train
a model for detecting attack transactions. To be more precise, a
vast number of non-attack transactions are used to teach the model
how to encode and decode transaction features. When the model
comes across an attack transaction, there can be a large reconstruc-
tion error, because the attack transaction includes rare high-order
structures that contradict the data the model has learned. In this
way, we can use the reconstruction error to filter out non-attack
transactions and then detect attack transactions.

Note that just designing a reconstruction task is not enough.
Prior work [52] suggests that the model may be over-fitting and
fail to encode meaningful embeddings in the reconstruction task.
This issue can result in the trained model lacking generalizability,
making it difficult to distinguish between attack and non-attack
transactions. To address this potential problem, we can use the
comments corresponding to transaction-triggered functions as ad-
ditional supervision, guiding the model to differentiate between
different transactions, and thereby learn higher-quality embeddings.
In fact, to facilitate users in checking the on-chain program secu-
rity, some developers open source code and provide corresponding
comments. In 98% of cases, these comments can accurately describe

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, 28 April - 2 May 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 3: The pre-training framework. Two tasks, i.e., transac-
tion reconstruction (TXR) and transaction-comment contrast
(TCC), are designed to train the model jointly.

Figure 4: The framework of PreTS.

the true intent of a program [14]. However, not all on-chain pro-
grams involved in transactions have comments. More specifically,
we random sampled over 10 million blocks from Ethereum, and
only 14.54% of transactions trigger on-chain programs with com-
ments. This is why we chose to use comments as the supervisory
information rather than directly extracting transaction features
from comments.

Finding II: Reconstruction error shows promise in detecting
attack transactions; however, to prevent over-fitting during
training, extra supervision, e.g., comments, is required.

4 Proposed Approach
Based on aforementioned findings, we discuss the proposed ap-
proach in detail. Firstly, we conduct a transaction reconstruction
task to pre-train the on-chain attack transaction detection model.
The pre-trained model is also supervised by the comments for im-
proved generalizability. Then, we demonstrate how to detect attack
transactions using the pre-trained model.

4.1 Model Pre-training
Figure 3 illustrates the overall framework of the pre-training. The
transaction data are modeled as heterogeneous graphs, whose fea-
tures are extracted using a graph neural network (GNN) [30]. And
we leverage a parameter-freezed language model to extract com-
ment embeddings. Furthermore, we design two training tasks, i.e.,
transaction reconstruction (TXR) and transaction-comment
contrast (TCC), to jointly train the model parameters. Specifically,

let L denotes the loss of the pre-training,

L = L𝑇𝑋𝑅 + L𝑇𝐶𝐶 , (1)

whereL𝑇𝑋𝑅 means the transaction reconstruction error, andL𝑇𝐶𝐶

is the loss in the transaction-comment contrast.

4.1.1 Transaction Reconstruction. Before conducting transaction
reconstruction in the pre-training, we model the transaction data
as graphs. Specifically, each transaction is modeled as a transaction
graph, which is a heterogeneous graph. In the transaction graph,
nodes represent accounts, contracts, basic blocks (i.e., executed pro-
gram snippets), or logs, while edges represent various relationships
between nodes, e.g., function calls, token transfers, log emissions,
and more. Additionally, each type of node and edge has correspond-
ing features. Appendix A.1 provides a detailed explanation of the
transaction graph modeling.

Furthermore, we extract transaction features from the transac-
tion graph. Prior studies [30] have demonstrated that the graph
transformer can effectively extract information from graph data;
therefore, we select it to extract features from transaction graphs.
Note that [30] proposes a generic method for simple graphs. In this
paper, the graph transformer is adapted to the scenarios discussed
by considering the heterogeneous transaction data. Figure 4 illus-
trates the detail design of our GNN. Firstly, the different dimensions
of nodes and edge features in the transaction graph make it difficult
to combine different types of information. Therefore, we designed
projections that maps the all node features and edge features to the
same dimension. Then, the graph transformer propagates node fea-
tures and edge features, aiding in capturing high-order structures
information hidden in the transaction graph. In the end, the pooling
layer is used for reducing the whole graph as a vector, resulting in
the feature representation for a given transaction:

(1) Dimension projection: Consider the node type set Γ𝑛 , the
edge type set Γ𝑒 in the transaction graph, the type set is
defined as:

Γ = Γ𝑛 ∪ Γ𝑒 . (2)

Let a type 𝑡 ∈ Γ has 𝑁𝑡 corresponding elements and 𝑑𝑡
demension features. Given the projection dimension 𝑑 ∈
N+, the projection is:

H𝑡 = W𝑡X𝑡 + b𝑡 , (3)

where H𝑡 ∈ R𝑑×𝑁𝑡 denotes the projected features, W𝑡 ∈
R𝑑×𝑑𝑡 denotes a learnable type-specific transformation ma-
trix for the type 𝑡 , X𝑡 ∈ R𝑑𝑡×𝑁𝑡 denotes the features of
elements with type 𝑡 , and b𝑡 ∈ R𝑑×1 denotes the bias for
the type 𝑡 .

(2) Feature propagation: We design 𝑙 ∈ N+ graph trans-
former blocks for feature propagation. Let 𝐺 (·;𝜃 (𝑖)𝑔) de-
notes 𝑖-th graph transformer layer parameterized by 𝜃 (𝑖)𝑔 .
The output of the graph transformer in the 𝑖-th graph trans-
former block is:

Ĥ(𝑖+1)
𝑛 = 𝐺 (H(𝑖)

𝑛 ,H𝑒 , E;𝜃 (𝑖)𝑔), (4)

where E is a set of edges in the transaction graph, H(𝑖)
𝑛

is the input node features in 𝑖-th graph transformer, and
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Hunting in the Dark Forest: A Pre-trained Model for On-chain Attack Transaction Detection in Web3 WWW ’25, 28 April - 2 May 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

H𝑒 = {⋃𝑡 H𝑡 |𝑡 ∈ Γ𝑒 } is edge features. Especially, for the
1-th graph transformer, the input node features are:

H(1)
𝑛 =

{⋃
𝑡

H𝑡 |𝑡 ∈ Γ𝑛

}
. (5)

Additional, the batch normalization [17], ReLU activation [13],
and skip connection [15] are conducted to avoid the over-
smooth [18]. In this way, the output of the 𝑖-th graph trans-
former block is:

H(𝑖+1)
𝑛 = 𝑅𝑒𝑙𝑢 (𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(Ĥ(𝑖+1)

𝑛)) + H(𝑖)
𝑛 . (6)

(3) Pooling: We perform the average, mean, and max pooling
operation on H(𝑙+1)

𝑛 . Moreover, we concatenate all pooling
output as the transaction features z𝑡𝑥 , i.e.,

z𝑡𝑥 = 𝐴𝑣𝑔(H(𝑙+1)
𝑛)∥𝑆𝑢𝑚(H(𝑙+1)

𝑛)∥𝑀𝑎𝑥 (H(𝑙+1)
𝑛), (7)

where ∥ means concatenation, 𝐴𝑣𝑔, 𝑆𝑢𝑚, and𝑀𝑎𝑥 denote
the operation for calculating the average, mean, and maxi-
mum of all dimensions in H(𝑙+1)

𝑛 , respectively.
Transaction reconstruction encodes and then decodes transac-

tion features, comparing differences between features before and
after reconstruction, and minimizing reconstruction error to the
greatest extent possible. In this paper, we use multi-layer percep-
tron as the encoder and decoder, following the practices of Auto-
Encoder [23]. Let 𝐸 (·;𝜃𝑒) and 𝐷 (·;𝜃𝑑) are the encoder and decoder,
respectively parameterized by 𝜃𝑒 and 𝜃𝑑 ; the reconstructed trans-
action features ẑ𝑡𝑥 is:

ẑ𝑡𝑥 = 𝐷 (𝐸 (z𝑡𝑥 ;𝜃𝑒);𝜃𝑑) . (8)

In this way, the transaction reconstruction error is:

L𝑇𝑋𝑅 = | |ẑ𝑡𝑥 − z𝑡𝑥 | |2 . (9)

4.1.2 Transaction-Comment Contrast. This task contrasts the en-
coded transaction embeddings with comment features, ensuring
that paired transactions and comments are close together, while
unpaired ones are farther apart. Contrastive learning drives the
model to generate meaningful embeddings under the supervision
of comments, rather than over-fitting to the training data. Consider
an 𝑘-pair batch, the loss of the transaction-comment contrast is:

L𝑇𝐶𝐶 = (L𝑇 2𝐶 + L𝐶2𝑇)/2, (10)

where L𝑇 2𝐶 denotes the contrastive loss from transactions to com-
ments, and L𝐶2𝑇 denotes the contrastive loss from comments to
transactions.

Let 𝑇𝑖 = 𝐸 (z𝑖𝑡𝑥 ;𝜃𝑒) denotes the embedding for the 𝑖-th transac-
tion features z𝑖𝑡𝑥 , and 𝐷𝑖 means the embedding for the 𝑖-th com-
ment. Note that we use a parameter-freezed language model, i.e.,
CodeBERT [10], to embed the comment, for it contains a wealth of
pre-training knowledge that aids in understanding comments. The
goal of L𝑇 2𝐶 is to make the transaction embedding closer to the
corresponding comment embedding, i.e.:

L𝑇 2𝐶 = − 1
𝑘

𝑘∑︁
𝑖=1

log

(
exp(𝑠𝑖𝑚(𝑇𝑖 ,𝐶𝑖)/𝜏)∑𝑘
𝑗=1 exp(𝑠𝑖𝑚(𝑇𝑖 ,𝐶 𝑗)/𝜏)

)
, (11)

where 𝑠𝑖𝑚(𝑇𝑖 , 𝐷 𝑗) means the cosine similarity between 𝑖-th trans-
action embedding 𝑇𝑖 and 𝑗-th comment embedding 𝐷 𝑗 . And L𝐷2𝑇

(a) Detection with known samples (b) Detection without known samples

Figure 5: Use the pre-trained transaction representation
learning model, to perform on-chain attack detection with
or without known attack samples.

makes the document embedding closer to the corresponding trans-
action embedding, i.e.:

L𝐷2𝑇 = − 1
𝑘

𝑘∑︁
𝑖=1

log

(
exp(𝑠𝑖𝑚(𝐷𝑖 ,𝑇𝑖)/𝜏)∑𝑘
𝑗=1 exp(𝑠𝑖𝑚(𝐷𝑖 ,𝑇𝑗)/𝜏)

)
, (12)

in which 𝑠𝑖𝑚(𝐷𝑖 ,𝑇𝑗) denotes the cosine similarity between the com-
ment embedding 𝐷 𝑗 and the transaction embedding𝑇𝑖 . A learnable
temperature parameter 𝜏 ∈ R is also provided in Equation 11 and
Equation 12, to control the range of the logits.

Note that two or more transactions in a batch may involve the
same comment, when the transaction-comment pair is randomly
sampled. Consequently, employing the aforementioned loss func-
tions could potentially impede the convergence of the optimization.
Therefore, we incorporate constraints for each batch throughout the
training procedure to guarantee the absence of duplicate comments.

4.2 On-chain Attack Transaction Detection
After the pre-training, the pre-trained model can be used to de-
tect on-chain attack transactions. In practice, the detection can be
separated into two scenarios: detection when some of the attack
samples are known and detection in the absence of attack samples.

4.2.1 Detection with Known Attack Samples. When it comes to
some of the attack samples are known, the transaction embeddings
can be utilized for supervised learning, leading to the development
of an attack detection classifier. For instance, some well-studied
attack patterns have been labeled with attack samples [38, 51]. Con-
sequently, we can opt for classic classifiers, e.g., random forest [5],
to conduct training on the known attack samples derived from well-
studied attack patterns. Then the trained classifier can be applied
to on-chain attack detection tasks. Figure 5(a) demonstrates how
to detect on-chain attack transactions with known attack samples.

4.2.2 Detection without Known Attack Samples. In some cases,
there are no available known samples for detecting attack trans-
action, especially when detecting the ones with newly emerging
attack patterns. Nevertheless, based on aforementioned findings, we
can still use the reconstruction error to detect attack transactions in
the absence of known samples. Specifically, by leveraging the pre-
trained model, every transaction can be assigned a reconstruction
error. And a outlier detection method [21] can identify transactions
with a large of reconstruction error. These identified transactions

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, 28 April - 2 May 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

may be related to on-chain attacks. For further verification, experts
are notified of these identified transactions, and assess whether
on-chain attacks are involved.

5 Experiments
In this section, we evaluate the proposed method. Specifically, the
experiments are designed to answer the following questions:

(Q1) Is the proposed method outperform existing approaches?
(Q2) Does the pre-training contribute to the performance im-

provement in on-chain attack detection?
(Q3) Can the proposed method be deployed in the wild and

detect newly emerging attack transactions, even in the absence of
known attack samples?

5.1 Experimental Settings
5.1.1 Data Collection. We randomly sample 1 million transactions
from 18 million Ethereum blocks for the pre-training. Note that
all sampled transaction trigger functions and the corresponding
comments are publicly available on Etherscan. For each transaction,
we use the comment corresponding to the first function it triggers
as supervisory information. Since the first triggered function is
specified by the user, it often provides higher-level semantic infor-
mation [44]. In order to facilitate the comparison of the proposed
method with existing approaches, we integrate the on-chain attack
transactions dataset from current research [51], on-chain attack
reports of DeFiHackLabs [35], and BlockSec [4]. Additionally, we
use BlockchainSpider1, an RPC-based transaction data collection
toolkit, to collect the heterogeneous transaction data.

5.1.2 Compared Methods. We select state-of-the-art approaches,
i.e., DeFiScanner [38], DEFIER [33], MoTS [44], and MetaSuites [3],
for comparison experiments. Note that all these selected methods
require a supervised training. Specifically, DeFiScanner fuses the
global and local features of a transaction and then processes the
fused features with LSTM [16] to train the model. DEFIER uses ver-
tex embedding to work on the nodes in the transaction graph and
graph embedding methods to work on the transaction graph itself.
It then combines these two features and uses LSTM towork on them.
MoTS calculates the network motifs contained in the transaction
graph and uses the counting vector as the transaction represen-
tation. Additionally, a Web3 transaction analysis tool, MetaSuites,
are taken into consideration. Based on ChatGPT, MetaSuites parses
transaction intent using data from blockchain browsers, e.g., Ether-
scan2, without requiring training samples. Note that the recent
proposed BlockGPT [11] has demonstrated its ability of detecting
on-chain attacks. Nevertheless, due to its under-review status and
the absence of reproducible details, BlockGPT is not utilized as a
comparative method in this paper.

5.1.3 Parameter Settings. In the experiment, referring to the prior
work [30], we use 6 graph transformer blocks and 384 projected
dimensions in GNN. In addition, the pre-training has 10 epoch,
employs the 64-pair batch, and applies AdamW [22] for optimiza-
tion. All experiments are repeated 10 times and report the average

1https://github.com/wuzhy1ng/BlockchainSpider
2https://etherscan.io

(a) Macro precision and shots (b) Macro recall and shots

Figure 6: The variation of macro precision and macro recall
with different shots in on-chain attack detection. The solid
line represents the average metrics of repeated experiments.

metrics, excluding the evaluation in the wild. Moreover, our exper-
iments are conducted on a workstation with 512 GB of RAM, an
Intel(R) Xeon(R) Gold 6148 CPU@ 2.40 GHz, and a GPU of NVIDIA
GeForce RTX 3090 running on Ubuntu 20.04.1.

5.2 Comparative Experiment
In this section, we conduct experiments to answerQ1. Most existing
methods are used to detect well-studied on-chain attacks with
known samples. Therefore, in the comparative experiment, we
selected five well-studied attack categories from the collected attack
transactions, including reentrancy, honeypot, flashloan, integer
overflow, and call injection. For the fairness of the comparative
experiment, we follow the dataset construction strategy in prior
work [38], that is, mix on-chain attack transactions into randomly
selected non-attack transactions, guaranteeing that the proportion
of attack transactions is lower than 5%. In the case of methods that
necessitate supervised training, the dataset is arbitrarily partitioned
into training and testing sets in a ratio of 8:2. In the case of methods
that do not undergo supervised training, testing is conducted on
the whole dataset. In particular, to demonstrate that the proposed
method can also detect attack transactions in few known samples,
we try to provide few-shot known attack transactions on each
attack category for training a random forest (see Figure 5(a)) and
perform testing on the remaining dataset.

Table 1 shows the result of our comparative experiments. The
proposed method outperforms all compared methods in terms of
AUC metrics, both under full supervision and with only 30-shot
known attack samples. Note that the precision and recall of all meth-
ods except our method in detecting honeypot attacks are 0. Hon-
eypot [33] means using bait with no real paybacks to get someone
to send some assets and then take part. And honeypot is typically
implemented by on-chain program (i.e., smart contracts). There-
fore, detecting honeypot attacks has to utilize program features to
make a precise determination; the majority of the aforementioned
methods do not. Moreover, because MetaSuites has not recognize
honeypot, integer overflow, and call injection attacks, we mark the
corresponding metrics as 0.

We further explore the impact of the known sample quantity
on the performance of the proposed model. Figure 6(a) (resp. Fig-
ure 6(b)) illustrates the variations in macro precision (resp. macro
recall) in on-chain attack detection tasks as the number of shots

6

https://github.com/wuzhy1ng/BlockchainSpider

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Hunting in the Dark Forest: A Pre-trained Model for On-chain Attack Transaction Detection in Web3 WWW ’25, 28 April - 2 May 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Results of on-chain attack detection. P and R denote precision and recall, respectively. 𝐾-shot means that there are 𝐾
known samples for each kind of transaction semantics. In the same supervision groups, the highest score is bolded, and the
second highest score is underlined.

Supervised Reentrancy Honeypot Flashloan Integer overflow Call injectionMethod P R P R P R P R P R AUC

DeFiScanner 1.00 0.83 0.00 0.00 0.85 0.32 1.00 0.65 0.67 1.00 0.78
DEFIER 0.00 0.00 0.00 0.00 1.00 0.03 0.36 0.45 1.00 0.05 0.54
MoTS 0.99 0.70 0.00 0.00 0.50 0.40 0.83 0.11 0.00 0.00 0.64Full

Ours 1.00 0.95 0.74 0.35 0.85 0.36 0.98 0.70 0.95 0.70 0.94

ChatGPT (MetaSuites) 0.00 0.00 0.00 0.00 1.00 0.15 0.00 0.00 0.00 0.00 0.515
Ours (10-shot) 1.00 0.66 0.79 0.07 0.51 0.16 0.99 0.29 0.99 0.37 0.74Few/Zero-shot
Ours (30-shot) 1.00 0.84 0.73 0.38 0.39 0.25 0.99 0.30 0.95 0.85 0.91

Table 2: Variations in the efficacy of the proposed method as
transaction reconstruction (TXR) or transaction-comment
contrast (TCC) are eliminated. ΔF1-Score↓ indicates the de-
crease in macro F1 score.

Method Precision Recall F1-Score ΔF1-Score↓
Ours 0.93±0.03 0.81±0.01 0.85±0.02 -
w/o TXR 0.91±0.03 0.70±0.03 0.77±0.03 -9.1%
w/o TCC 0.46±0.07 0.23±0.01 0.33±0.02 -61.4%

changes. For the proposed model, macro precision and macro recall
significantly improve as the number of shots rises. Furthermore,
we annotate the best results from the comparative methods with
red dashed lines. Despite some fluctuations in the performance of
the proposed method with few known on-chain attack samples, at
10-shot, both macro precision and macro recall are competitive the
best results from the comparative methods.

5.3 Ablation Study
In this section, we conduct experiments to answer Q2. Our method
design focuses on enhancing the efficacy of on-chain attack detec-
tion through the utilization of two pre-training tasks, i.e., transac-
tion reconstruction and transaction-comment contrast. Therefore,
we attempt to remove the key components proposed separately and
observe the changes in metrics. Note that for the purposes of anal-
ysis, the dataset from the comparative experiment is still utilized
in the ablation study. Then we use macro metrics to summarize the
performance of the model in detecting on-chain attacks.

Table 2 shows the result of ablation study. Whether removing
transaction reconstruction or transaction-comment contrast, the
performance of the proposed method decreases. Therefore, the pre-
training does contribute to the efficacy of the proposed model in
on-chain attack detection. Note that when without transaction-
comment contrast, the macro F1 score of the proposed method
significantly decreases. For more explanation, we calculate the
distribution of reconstruction error for attack and non-attack trans-
actions. Figure 7(a) shows that when the transaction-comment con-
trast is used, the reconstruction error for the majority of non-attack
transactions is smaller than that for attack transactions. However,

0.00 0.05 0.10 0.15
Reconstruction error

0

5

10

15

20

Pr
op

or
tio

n
(%

)

non-attack
attack

(a) Use TCC

0.50 0.25 0.00 0.25 0.50
Reconstruction error

0

5

10

15

20

25

Pr
op

or
tio

n
(%

)

non-attack
attack

(b) Remove TCC

Figure 7: The distribution of the reconstruction error when
use/remove ransaction-comment contrast (TCC).

(a) Transaction graph modeling (b) Model inferring

Figure 8: Two time-consuming stages of the proposedmethod.
The solid line represents the average time cost of repeated
experiments, while the area around the solid line represents
the fluctuation range of time cost.

when the transaction-comment contrast is removed, there is almost
no difference in reconstruction error between attack and non-attack
transactions (Figure 7(b)). This also confirms the aforementioned
insight that an over-fitting lies in pre-trained models, if there is no
extra supervision in the transaction reconstruction task.

5.4 Detection in the Wild
Next, we conduct experiments to answer Q3. For the detection in
the wild, the time required for detection should be shorter than the
time taken for block generation. Otherwise, the deployed method
can not be able to detect potential attacks in the latest transactions.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, 28 April - 2 May 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Manual estimation of the on-chain attack detection
result in the wild.

Category Is attack? # Transaction (%)

Address poisoning ✓ 1,692 61.28%
Rug pull ✓ 13 0.47%
Exploiting ✓ 2 0.07%

Batch transfer ✗ 550 19.92%
Mining ✗ 407 14.74%
Arbitrage ✗ 15 0.54%
Airdrop ✗ 6 0.22%
Others ✗ 76 2.75%

Total - 2,761 100%

Therefore, we evaluated the efficiency of the proposed method. As
shown in Figure 8(a) and 8(b), when using 16 CPU cores, the two
most time-consuming operations can be completed in a total of 1.62
seconds, which is shorter than the block generation time for two
well-known blockchains, Ethereum (12s) and BNBChain (3s). Thus,
the proposed method is efficient enough.

Then we perform a detection in the wild as depicted in Fig-
ure 5(b). The classical outlier detector, isolation forest, is used to
identify the outliers with a large reconstruction error. Specifically,
we conduct a continuous 31-day on-chain attack transaction detec-
tion on the Ethereum in January 2024. 2,761 suspected transactions
are identified. And we have convened 3 non-author domain experts
to evaluate suspicious transactions. Domain experts are allowed
to use any method to evaluate suspicious transactions, including
search engines, existing on-chain attack detection tools, blockchain
browsers, etc. Three experts assess each transaction to determine if
it is subject to an on-chain attack. The decision is made based on a
majority vote. Note that when experts determine that a transaction
is not associated with an attack, it is imperative to analyze the
genuine purpose of the transaction and document the outcomes
of the analysis. In this way, experts spend approximately 60 hours
reviewing all suspicious transactions.

Table 3 demonstrates the result of manual analysis of on-chain
attack detection in the wild. Among suspicious transactions, 1,707
transactions are confirmed as on-chain attacks, with an precision
of 61.83%. Out of the confirmed on-chain attacks, 0.07% are exploit-
ing contract vulnerabilities, 0.47% are rug-pulls, and 61.28% are
instances of address poisoning. To be clarify, two detected attacks,
involving exploiting contract vulnerability, have been confirmed
by security organization [4, 35]. For example, there is one attack3
targeting the bussiness logic flaw in Socket project4, where the
hacker profited approximately $2.5 million in an on-chain attack
transaction. Furthermore, current research has demonstrated the
emergence of rug-pull as a new form of on-chain attack in recent
years, resulting in financial losses surpassing $2.8 billion [20]. The
proposedmethod also detects a large number of undisclosed address
poisoning attacks (61.28%), which is a new kind of attack towards

3Developers of Socket confirmed this attack. See https://twitter.com/SocketDotTech/
status/1747349422730813525.
4https://twitter.com/SocketDotTech

blockchain users [31]. Further analysis on the experiment in the
wild can be found in Appendix A.2. To summarize, the confirmed
on-chain attacks demonstrate that the proposed method is capable
of detecting new attacks, even when no known attack samples are
available in the training.

6 Conclusion
In this work, we proposed a universal approach for detecting on-
chain attack transactions in Web3. We first analyzed characteristics
of transactions, and then introduced a general purpose pre-trained
model to detect on-chain attack transactions. The proposed pre-
trained model can be applied to newly emerging on-chain attacks
and is independent of expert patterns and known attack samples.
Specifically, the pre-training consists of two tasks, i.e., transaction
reconstruction and transaction-comment contrast. In terms of the
transaction reconstruction, we leveraged the graph neural network
to extract transaction features and trained the model parameters
in reconstructing transaction features. To prevent the over-fitting
in the transaction reconstruction, we utilized the comment cor-
responding to functions triggered during transaction execution
as supervision, i.e., transaction-comment contrast. Experiments
demonstrated that the proposed model is effective and efficient.
When there are only 30 known on-chain attack samples, the pro-
posed method can still outperform current methods. And we found
that the proposed method is fast enough to be deployed. Without
known attack samples, the proposed method also detected attacks
in the wild, with a precision of 61.83%. Especially, 1,692 of the
expert-confirmed attacks in the wild are address poisoning attacks,
which is a new type of attack. Note that this paper have not discuss
the model hyperparameter selection, because it is orthogonal to
our main contributions. Therefore, we will further delve into these
aspects in future work. In summary, this paper explores a new ap-
proach to designing on-chain attack detection models, with the aim
of providing new insights for enhancing Web3 security.

A Appendix
A.1 Transaction Graph Modeling
The transaction execution process contains two types of data, i.e.,
execution logic and execution results [51]. The execution logic,
e.g., function calls and execution instructions, is manifested in the
instruction sequence or source code triggered during the transac-
tion execution process. The execution logic determines the com-
putations that the business logic corresponding to the transaction
needs to accomplish. In addition, the execution results are typically
reflected in receipts and event logs triggered by the transaction.
Inspired by the prior work [25], we introduce a graph modeling
for transaction, which incorporates the transaction execution logic
and execution results.

Figure 9 demonstrates an toy model of the transaction graph.
Note that the heterogeneous transaction data related to the transac-
tion execution, including execution logic and execution results, can
be obtained from RPC interfaces (i.e., 𝑑𝑒𝑏𝑢𝑔_𝑡𝑟𝑎𝑐𝑒𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 and
𝑒𝑡ℎ_𝑔𝑒𝑡𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑐𝑒𝑖𝑝𝑡) provided by blockchain clients. We in-
troduce how these data are manifested in the transaction graph as
follows:

8

https://twitter.com/SocketDotTech/status/1747349422730813525
https://twitter.com/SocketDotTech/status/1747349422730813525
https://twitter.com/SocketDotTech

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Hunting in the Dark Forest: A Pre-trained Model for On-chain Attack Transaction Detection in Web3 WWW ’25, 28 April - 2 May 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Figure 9: A toy model of the transaction graph.

Execution logic. In the transaction graph, the execution logic is
modeled as a dynamic control flow. Classical code modeling meth-
ods, e.g., Abstract Syntax Trees (AST) and Control Flow Graphs
(CFG), are designed for static program analysis and encompass both
executed and unexecuted execution logic. Consequently, these clas-
sical code modelling approaches may introduce noise in accurately
understanding transaction execution logic due to the inclusion of a
multitude of unexecuted instructions. To address this issue, we ex-
clusively consider the instructions executed during the transaction
execution. And we construct executed instructions into a dynamic
control flow [25]. We design two types of nodes for dynamic control
flow in the transaction graph, i.e., Block and Contract:

• Block: a basic block [29] in the transaction execution, each
containing a set of executed instructions that terminate in
a program branch.

• Contract: smart contracts that initiate function calls or are
called during transaction execution.

Note that we use jump instructions (i.e., JUMP and JUMPI) and func-
tion call instructions (CALL, CALLCODE, STATICALL, DELEGATECALL,
CREATE, CREATE2, and SELFDESTRUCT) to split the triggered instruc-
tion sequence into blocks. Moreover, we also design edges in the
transaction graph for dynamic control flow:

• Control jump: the edge from Block to Block, denotes the
control flow jumping between blocks.

• Contract call: the edge from Contract to Contract, de-
notes the program calling relationship between contracts.

• Function select: the edge from Contract to Block, de-
notes a specific block related to the smart contract function
entry is selected.

Execution result. The execution result is also modeled in the
transaction graph. Existing methods for modeling execution results,
e.g., money transfer graphs [44], log sequences [38], etc., focus on
modeling the relationship between execution results. However, cur-
rent modeling approaches fail to establish contextual associations
between execution logic and execution results. For instance, log
sequences fail to provide insights into what instructions emit event
logs during transaction execution. As the motivating example, the
connection between event logs and code is crucial for the detection

of on-chain attacks. As a result, we incorporate transaction execu-
tion results and dynamic control flow into the same transaction
graph. Specifically, in the transaction graph, two types of nodes are
related to execution results, i.e., EOA and Log:

• EOA: an externally owned account.
• Log: an event log emitted by the smart contract during the

transaction execution.
And there are some edges related to transaction execution results:

• Money transfer: the edge between accounts (i.e., EOA and
Contract), denotes the money transfer action defined by
smart contract protocols (e.g., ERC20 [9], ERC721 [40],
ERC1155 [41]) or blockchain systems.

• Token approve: the edge between accounts (including EOA
and Contract), denotes the token approve action defined by
smart contract protocols (e.g., ERC20, ERC721, ERC1155).

• Log emit: the edge from Block to Log, denotes the corre-
sponding executed block emitting an event log.

Moreover, In the transaction graph, every node and edge has
features. Prior research has demonstrated that conducting fine-
grained feature modeling of blockchain transactions contributes to
enhancing the effectiveness of learning-based models [38]. In this
paper, the features within the transaction graph can be categorized
into three types, i.e., manual features, instruction features, and
textual features.

Manual features. In the transaction graph, manual features are
extracted from raw transaction data through manually designed
rules. For all nodes, manual features encompass both the out-degree
and in-degree of the respective nodes. As for all edges, manual fea-
tures include the index, i.e., the appearance order of the edge during
transaction execution. And the index can be uniquely determined by
the collected instruction sequence. Additionally, all data extracted
from RPC interfaces that can be directly quantified is transformed
into manual features.

Instruction features. The instruction feature exclusively man-
ifest within Block. In fact, instructions in a Block cannot be di-
rectly quantified. To solve this problem, we employ the 1-gram
technique [8], modeling the information contained in a set of in-
structions into features.

Textual features. Furthermore, we extract features from the
text appearing in transactions. Specifically, text information within
transactions primarily originates from log name, called function
names, and asset names. Log names and function names can be
reverse-engineered using topics and function signatures [7], re-
spectively. We utilize reverse APIs provided by 4byte.directory5
to decode log names and function signatures from raw transac-
tion data into text. Additionally, asset names can be directly ob-
tained through RPC interfaces, i.e., 𝑒𝑡ℎ_𝑐𝑎𝑙𝑙 . Note that a transaction
may include a lot of text, as multiple functions and event logs are
triggered. And the majority of raw text in transactions is short
phrases, e.g., “setApprove” and “transfer”. Therefore, in order to
trade off the efficiency and effectiveness of extracting text features,
we adopted the classic text feature extraction method, i.e., the word
average model [27]. Specifically, we tokenize phrases, followed by
the extraction of word vectors for each word using pre-trained

5https://www.4byte.directory/

9

https://www.4byte.directory/

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, 28 April - 2 May 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

(a) The Socket attack transaction. (b) A batch transfer transaction.

Figure 10: Comparison of token transfers between the Socket
attack transaction and a non-attack transaction.

word embeddings [10]. After obtaining embeddings for each word,
we average the word embeddings for all words in a given phrase,
thereby generating a feature representing the phrase. The text fea-
tures extracted from phrases are correspondingly added to the node
and edge features in the transaction graph.

A.2 Discussion of Experiments in the Wild
A.2.1 Quality of Manual Verification. We use Fleiss’ Kappa to eval-
uate the quality of manual verification. Fleiss’ Kappa is a coefficient
to measure inter-rater reliability for qualitative data [51]. For the
result of our expert verification, the value of Fleiss’ Kappa is large
than 0.9. In general, a Fleiss’ Kappa value greater than 0.8 indicates a
high level of consistency in qualitative data. Therefore, the result of
Fleiss’ Kappa implies that the aforementioned manual verification
results are consistent.

A.2.2 False Positive Analysis. Among the identified suspicious
transactions, 1,054 non-attack transactions are included. Specif-
ically, confirmed non-attack transactions include four categories,
i.e., batch transfer (19.92%), mining (14.74%), arbitrage (0.54%), air-
drop (0.22%), and others (2.75%). Batch transfer is the act of trans-
ferring multiple existing tokens in a single transaction, supporting
by the batch transfer application, e.g., Cointool6, disperse.app7, etc.
Mining distributes profits from a mining pool or token project to
multiple accounts in a transaction. Arbitrage is commonly linked to
MEV bots [37, 50], which aim to exploit profit opportunities in var-
ious token swap services. And airdrop aims to distribute tokens to
early project participants. Note that some non-attack transactions
are difficult to fit into aforementioned categories. For example, one
involves revenue management business, while performing com-
plex operations, e.g., token deposit and token swap. Therefore, we
classify this type of non-attack transaction as others.

For a deep-in analysis, we found that the proposed method may
not be able to differentiate between attack transactions and non-
attack transactions without training samples, as they share similar
characteristics. For the sake of demonstration, we illustrate token
transfers in the Socket attack (Figure 10(a)) and a batch transfer

6https://cointool.app
7https://disperse.app/

transaction (Figure 10(b)). Both consist of a hub account that acts
as a token recipient and repeatedly participates in token transfers.

A.2.3 Defenses. In practice, to address the issue of false positives,
we propose some suggestion for defenses:

(1) Increasing the size of the pre-training dataset. As discussed
in the experimental section, randomly sampling transac-
tions may miss some non-attack transactions with specific
purposes, such as batch transfers. Therefore, one possible
improvement is to expand the range of pre-training data,
ensuring that the model learns a sufficiently diverse set of
non-attack transactions, during the pre-training phase.

(2) Providing a small number of labeled samples. In the experi-
ments corresponding to Q1, we find that just a few known
samples can significantly improve transaction classification
performance. Thus, by extracting a small number of FP sam-
ples and conducting attack transaction detection similar
to Figure 5(a), it is also possible to effectively reduce the
number of FPs.

References
[1] Kushal Babel, Mojan Javaheripi, Yan Ji, Mahimna Kelkar, Farinaz Koushanfar, and

Ari Juels. 2023. Lanturn: Measuring economic security of smart contracts through
adaptive learning. In Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security. ACM, Copenhagen, Denmark, 1212–1226.

[2] Binance. 2020. BNB Chain, Build Web3 dApps on the Most Popular Blockchain.
Retrieved October 12, 2023 from https://www.bnbchain.org/

[3] BlockSec. 2024. MetaSuites, The Swiss Army Knife for Builders. https://blocksec.
com/metasuites.

[4] Blocksec. 2024. Phalcon: Security Incidents. https://phalcon.blocksec.com/
explorer/security-incidents.

[5] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[6] Chainalysis. 2024. The Chainalysis 2024 Crypto Crime Report: Crypto Hacking

Stolen Funds. https://www.chainalysis.com/blog/crypto-hacking-stolen-funds-
2024.

[7] Ting Chen, Zihao Li, Xiapu Luo, Xiaofeng Wang, Ting Wang, Zheyuan He,
Kezhao Fang, Yufei Zhang, Hang Zhu, Hongwei Li, et al. 2021. SigRec: Automatic
recovery of function signatures in smart contracts. IEEE Transactions on Software
Engineering 48, 8 (2021), 3066–3086.

[8] Weili Chen, Zibin Zheng, Jiahui Cui, Edith Ngai, Peilin Zheng, and Yuren Zhou.
2018. Detecting ponzi schemes on ethereum: Towards healthier blockchain
technology. In Proceedings of the 2018 world wide web conference. International
World Wide Web Conferences Steering Committee, Republic and Canton of
Geneva, CHE, 1409–1418.

[9] Vogelsteller Fabian and Buterin Vitalik. 2015. ERC20: Token Standard. https:
//github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md.

[10] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP. Association for Computational
Linguistics, Online, 1536–1547.

[11] Yu Gai, Liyi Zhou, Kaihua Qin, Dawn Song, and Arthur Gervais. 2023. Blockchain
large language models. arXiv preprint arXiv:2304.12749 (2023).

[12] Sam Gilbert. 2022. Crypto, web3, and the Metaverse. Retrieved July 8,
2022 from https://www.bennettinstitute.cam.ac.uk/wp-content/uploads/2022/03/
Policy-brief-Crypto-web3-and-the-metaverse.pdf

[13] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier
neural networks. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics. JMLR, Fort Lauderdale, FL, USA, 315–323.

[14] Sicheng Hao, Yuhong Nan, Zibin Zheng, and Xiaohui Liu. 2023. SmartCoCo:
Checking Comment-Code Inconsistency in Smart Contracts via Constraint Propa-
gation and Binding. In IEEE/ACM International Conference on Automated Software
Engineering (ASE). 294–306. https://doi.org/10.1109/ASE56229.2023.00142

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. IEEE, Las Vegas, NV, USA, 770–778.

[16] SeppHochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[17] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International conference

10

https://cointool.app
https://disperse.app/
https://www.bnbchain.org/
https://blocksec.com/metasuites
https://blocksec.com/metasuites
https://phalcon.blocksec.com/explorer/security-incidents
https://phalcon.blocksec.com/explorer/security-incidents
https://www.chainalysis.com/blog/crypto-hacking-stolen-funds-2024
https://www.chainalysis.com/blog/crypto-hacking-stolen-funds-2024
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://www.bennettinstitute.cam.ac.uk/wp-content/uploads/2022/03/Policy-brief-Crypto-web3-and-the-metaverse.pdf
https://www.bennettinstitute.cam.ac.uk/wp-content/uploads/2022/03/Policy-brief-Crypto-web3-and-the-metaverse.pdf
https://doi.org/10.1109/ASE56229.2023.00142

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Hunting in the Dark Forest: A Pre-trained Model for On-chain Attack Transaction Detection in Web3 WWW ’25, 28 April - 2 May 2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

on machine learning. ACM, Lille, France, 448–456.
[18] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. 2019. Deepgcns:

Can gcns go as deep as cnns?. In Proceedings of the IEEE/CVF international
conference on computer vision. IEEE, Montreal, BC, Canada, 9267–9276.

[19] Zihao Li, Jianfeng Li, Zheyuan He, Xiapu Luo, Ting Wang, Xiaoze Ni, Wenwu
Yang, Xi Chen, and Ting Chen. 2023. Demystifying DeFi MEV Activities in
Flashbots Bundle. In Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security. ACM, Copenhagen, Denmark, 165–179.

[20] Zewei Lin, Jiachi Chen, Zibin Zheng, Jiajing Wu, Weizhe Zhang, and Yongjuan
Wang. 2024. CRPWarner: Warning the Risk of Contract-related Rug Pull in DeFi
Smart Contracts. arXiv preprint arXiv:2403.01425 (2024).

[21] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In IEEE
international conference on data mining. IEEE, Pisa, Italy, 413–422.

[22] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[23] Umberto Michelucci. 2022. An introduction to autoencoders. arXiv preprint
arXiv:2201.03898 (2022).

[24] Peng Qian, Jianting He, Lingling Lu, Siwei Wu, Zhipeng Lu, Lei Wu, Yajin Zhou,
and Qinming He. 2023. Demystifying Random Number in Ethereum Smart
Contract: Taxonomy, Vulnerability Identification, and Attack Detection. IEEE
Transactions on Software Engineering 49, 7 (2023), 3793–3810.

[25] Kaihua Qin, Zhe Ye, Zhun Wang, Weilin Li, Liyi Zhou, Chao Zhang, Dawn
Song, and Arthur Gervais. 2023. Towards automated security analysis of smart
contracts based on execution property graph. arXiv preprint arXiv:2305.14046
(2023).

[26] SWC Registry. 2020. Smart Contract Weakness Classification (SWC). https:
//swcregistry.io/.

[27] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

[28] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. 2019. Sereum:
Protecting Existing Smart Contracts Against Re-Entrancy Attacks. In Annual
Network and Distributed System Security Symposium. The Internet Society, San
Diego, California, USA.

[29] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. 2021.
{EVMPatch}: Timely and automated patching of ethereum smart contracts.
In USENIX Security Symposium. USENIX Association, Vancouver, B.C., Canada,
1289–1306.

[30] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and
Yu Sun. 2021. Masked Label Prediction: Unified Message Passing Model for
Semi-Supervised Classification. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21. International Joint Conferences on
Artificial Intelligence Organization, Montreal-themed virtual reality, 1548–1554.

[31] Guan Shixuan and Li Kai. 2024. Characterizing Ethereum Address Poisoning
Attack. In Proceedings of the ACM SIGSAC Conference on Computer and Commu-
nications Security.

[32] Jianzhong Su, Xingwei Lin, Zhiyuan Fang, Zhirong Zhu, Jiachi Chen, Zibin
Zheng, Wei Lv, and Jiashui Wang. 2023. DeFiWarder: Protecting DeFi Apps from
Token Leaking Vulnerabilities. In 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 1664–1675.

[33] Liya Su, Xinyue Shen, Xiangyu Du, Xiaojing Liao, XiaoFeng Wang, Luyi Xing,
and Baoxu Liu. 2021. Evil under the sun: understanding and discovering attacks
on Ethereum decentralized applications. In USENIX Security Symposium. USENIX
Association, Vancouver, B.C., Canada, 1307–1324.

[34] Kairan Sun, Zhengzi Xu, Chengwei Liu, Kaixuan Li, and Yang Liu. 2023. De-
mystifying the Composition and Code Reuse in Solidity Smart Contracts. In
Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (San Francisco, CA,
USA). Association for Computing Machinery, New York, NY, USA, 796–807.
https://doi.org/10.1145/3611643.3616270

[35] SunWeb3Sec. 2023. DeFi Hacks Reproduce - Foundry. https://github.com/
SunWeb3Sec/DeFiHackLabs.

[36] Polygon Team. 2019. Bring the World to Ethereum, Polygon. Retrieved October
12, 2023 from https://polygon.technology/

[37] Christof Ferreira Torres, Ramiro Camino, et al. 2021. Frontrunner jones and the
raiders of the dark forest: An empirical study of frontrunning on the ethereum
blockchain. In USENIX Security Symposium. USENIX Association, Vancouver,
B.C., Canada, 1343–1359.

[38] Bin Wang, Xiaohan Yuan, Li Duan, Hongliang Ma, Chunhua Su, and Wei Wang.
2024. DeFiScanner: Spotting DeFi Attacks Exploiting Logic Vulnerabilities on
Blockchain. IEEE Transactions on Computational Social Systems 11, 2 (2024),
1577–1588.

[39] Dabao Wang, Siwei Wu, Ziling Lin, Lei Wu, Xingliang Yuan, Yajin Zhou, Haoyu
Wang, and Kui Ren. 2021. Towards a first step to unimpderstand flash loan and its
applications in defi ecosystem. In Proceedings of the Ninth International Workshop
on Security in Blockchain and Cloud Computing. Association for Computing
Machinery, New York, NY, USA, 23–28.

[40] EntrikenWilliam, Shirley Dieter, Evans Jacob, and Sachs Nastassia. 2018. ERC721:
Non-Fungible Token Standard. https://github.com/ethereum/EIPs/blob/master/

EIPS/eip-721.md.
[41] Radomski Witek, Cooke Andrew, Castonguay Philippe, Therien James, Binet

Eric, and Sandford Ronan. 2018. ERC1155: Multi Token Standard. https://github.
com/ethereum/EIPs/blob/master/EIPS/eip-1155.md.

[42] G Wood. 2019. Ethereum Yellow Paper: a formal specification of Ethereum, a
programmable blockchain. Accessed on: Mar 6 (2019).

[43] Siwei Wu, Zhou Yu, Dabao Wang, Yajin Zhou, Lei Wu, Haoyu Wang, and
Xingliang Yuan. 2023. DeFiRanger: Detecting DeFi Price Manipulation Attacks.
IEEE Transactions on Dependable and Secure Computing (2023).

[44] Zhiying Wu, Jieli Liu, Jiajing Wu, Zibin Zheng, Xiapu Luo, and Ting Chen.
2023. Know Your Transactions: Real-time and Generic Transaction Semantic
Representation on Blockchain & Web3 Ecosystem. In Proceedings of the ACM
Web Conference. Association for Computing Machinery, New York, NY, USA,
1918–1927.

[45] Zhiying Wu, Jiajing Wu, Hui Zhang, Ziwei Li, Jiachi Chen, Zibin Zheng, Qing
Xia, Gang Fan, and Yi Zhen. 2024. DAppFL: Just-in-Time Fault Localization for
Decentralized Applications in Web3. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis. Vienna, Austria, 137–
148.

[46] Maoyi Xie, Ming Hu, Ziqiao Kong, Cen Zhang, Yebo Feng, Haijun Wang, Yue
Xue, Hao Zhang, Ye Liu, and Yang Liu. 2024. DeFort: Automatic Detection and
Analysis of Price Manipulation Attacks in DeFi Applications. In Proceedings of
the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis.
Vienna, Austria, 402–414.

[47] Jiashuo Zhang, Jianbo Gao, Yue Li, Ziming Chen, Zhi Guan, and Zhong Chen.
2022. Xscope: Hunting for cross-chain bridge attacks. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering. ACM,
Rochester, MI, USA, 1–4.

[48] Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin. 2020.
{TXSPECTOR}: Uncovering attacks in ethereum from transactions. In USENIX
Security Symposium. USENIX Association, Boston, USA, 2775–2792.

[49] Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur Gervais.
2021. On the just-in-time discovery of profit-generating transactions in defi
protocols. In IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco,
CA, USA, 919–936.

[50] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang, Ye
Wang, Kaihua Qin, Roger Wattenhofer, Dawn Song, and Arthur Gervais. 2023.
Sok: Decentralized finance (defi) attacks. In IEEE Symposium on Security and
Privacy. IEEE, San Francisco, CA, USA, 2444–2461.

[51] Shunfan Zhou, Malte Möser, Zhemin Yang, Ben Adida, Thorsten Holz, Jie Xiang,
Steven Goldfeder, Yinzhi Cao, Martin Plattner, Xiaojun Qin, et al. 2020. An
ever-evolving game: Evaluation of real-world attacks and defenses in ethereum
ecosystem. In USENIX Security Symposium. USENIX Association, Boston, USA,
2793–2810.

[52] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki
Cho, and Haifeng Chen. 2018. Deep autoencoding gaussian mixture model
for unsupervised anomaly detection. In International conference on learning
representations.

11

https://swcregistry.io/
https://swcregistry.io/
https://doi.org/10.1145/3611643.3616270
https://github.com/SunWeb3Sec/DeFiHackLabs
https://github.com/SunWeb3Sec/DeFiHackLabs
https://polygon.technology/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1155.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1155.md

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Terminology of Blockchains
	2.2 On-chain Attack Detection

	3 Problem Analysis
	3.1 Transaction Characteristics
	3.2 Insights of Model Design

	4 Proposed Approach
	4.1 Model Pre-training
	4.2 On-chain Attack Transaction Detection

	5 Experiments
	5.1 Experimental Settings
	5.2 Comparative Experiment
	5.3 Ablation Study
	5.4 Detection in the Wild

	6 Conclusion
	A Appendix
	A.1 Transaction Graph Modeling
	A.2 Discussion of Experiments in the Wild

	References

