10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Under review as submission to TMLR

Design Criteria for SGD Preconditioners: Local Conditioning,
Noise Floors, and Basin Stability

Anonymous authors
Paper under double-blind review

Abstract

Stochastic Gradient Descent (SGD) often slows in the late stage of training due to anisotropic
curvature and gradient noise. We analyze preconditioned SGD in the geometry induced
by a symmetric positive definite matrix M. Our bounds make explicit how both the
convergence rate and the stochastic noise floor depend on M. For nonconvex objectives, we
establish a basin-stability guarantee in a local M-metric neighborhood around a minimizer
set: under local smoothness and a local PL condition, we give an explicit lower bound on the
probability that the iterates remain in the basin up to a time horizon. This perspective is
particularly relevant in Scientific Machine Learning (SciML), where reaching small training
losses under stochastic updates is closely tied to physical fidelity, numerical stability, and
constraint satisfaction. Our framework covers both diagonal/adaptive and curvature-aware
preconditioners and yields a practical criterion: choose M to improve local conditioning
while attenuating noise in the M~'-norm. Experiments on a quadratic diagnostic and three
SciML benchmarks support the predicted rate—floor behavior.

1 Introduction

Stochastic Gradient Descent (SGD) has long been the workhorse of large-scale machine learning. Since
its early application to multilayer perceptrons in the 1960s (Amari, [1967)), its simplicity, scalability, and
low per-iteration cost have made it a popular optimizer for deep learning models (Bottou et al., |2018)).
Classical convergence theory for SGD under noisy gradients typically guarantees a sublinear rate of O(1/k)
under convexity and smoothness assumptions (Robbins & Monro, [1951; Bluml, [1954). The theory for SGD
convergence under various combinations of conditions is well studied and documented in |Garrigos & Gower

(2024); Khaled & Richtarik| (2023), and |[Francis Bach| (2024).

Recent theoretical developments have established linear convergence for SGD under stronger conditions, such
as strong convexity, smoothness, and bounded noise (Bottou et al., [2018). When the loss F' is c¢-strongly
convex, has L-Lipschitz gradients, and the learning rate « satisfies o« < u/(LK¢), the iterates wy satisfy

(1)

E[F(wg) — Fi] < (1-— acu)k_l (F(Wl) R aLK) N aLK

2cu 2cu '

where p, K, and Kg are constants associated with the stochastic gradients (defined in Assumptions [9| ,
and let w* denote the unique minimizer and F, := F(w*) the optimal value. Eq. highlights two late-stage
drivers: a linear contraction factor 1 — acp and a stochastic error floor

al K o

2ep 2

)

where k := % is the (Euclidean) condition number associated with curvature. For any admissible «, the floor
scales with x and K, while the contraction depends on the product acpu.

Many successful optimizers can be viewed as preconditioned variants of SGD. Adaptive methods such as
Adagrad (Duchi et al. 2011), Adam (Kingma & Baj [2017), and RMSProp (Hinton, 2014)), structured

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

Under review as submission to TMLR

econd-order approaches including Shampoo (Gupta et al., [2018), K-FAC (Martens & Grossel [2015; Ishikawa

& Karakidal, [2024)), and Sophia (Liu et al., 2024), as well as quasi-Newton methods like L-BFGS (Liu &

Nocedal, 1989; |Chen et all 2014), all apply a linear transformation to the gradient that reshapes both

curvature and gradient noise. From this perspective, their empirical effectiveness indicates that late-stage
optimization is influenced not only by the choice of learning rates, but also by how the preconditioning alters
local conditioning and the geometry of stochastic noise. Despite their widespread use, however, there is still
no unified theoretical framework that identifies which properties of a preconditioner determine the late-stage
convergence rate and the attainable noise floor.

Motivated by this perspective, we study the preconditioned SGD update in the following form
Wil = Wi — oM™ g(wi, €, (2)

where M > 0 is a symmetric positive definite (SPD) matrix that defines the geometry in which both curvature
and noise are measured, g(wg, &) = V,, F,(w) is the stochastic gradient, ay, is the learning rate, &, is an i.i.d.
sample drawn at iteration k. The standard (vanilla) SGD update is recovered when M = I. Our goal is not
to propose a new optimizer, but to provide a principled framework to analyze and compare preconditioners
in the late stage of training.

Main contributions We investigate how preconditioning influences the late-stage behavior of SGD within
a well-behaved basin of the loss surface. By analyzing preconditioned SGD in the M-induced geometry, we
show how rescaling the gradient affects both the convergence rate and the attainable noise floor, and we
derive criteria that clarify which properties of a preconditioner matter in the late stage of training.

1. Preconditioned SGD in the strongly convex baseline. We extend the classical “linear rate
+ noise floor” theory for SGD to updates preconditioned by a fixed SPD matrix M. The resulting
bounds show that late-stage behavior is controlled by (i) an effective conditioning in the M-geometry
and (ii) the preconditioned gradient-noise level; the attainable error floor scales with their product.
Since admissible constant stepsizes are limited by M-smoothness, improved conditioning allows larger
stepsizes and hence faster contraction. With diminishing stepsizes, we obtain an O(1/k) rate.

2. Local nonconvex regime with basin stability. Under a local M-PL condition and local
smoothness, we establish late-stage convergence guarantees inside a well-behaved basin around a
minimizer set, again with an explicit rate—floor structure. In addition, we provide a basin-stability
bound that lower-bounds the probability of remaining in the basin up to a horizon.

3. Design criteria and empirical evidence. Our theory yields a simple design principle: choose M
to improve local conditioning while attenuating noise in the M~!-norm; the attainable late-stage
floor tracks their product. We validate this mechanism on (i) a quadratic diagnostic where the
relevant constants can be computed in closed form, and (ii) three SciML benchmarks where late-stage
behavior is strongly tied to final accuracy.

While late-stage convergence is broadly relevant, it is especially important in SciML. Here, training losses
encode physically meaningful quantities (e.g., PDE residuals, boundary conditions, stability). Unlike standard
ML tasks where moderate error may still be acceptable, small reductions in the final loss can determine whether
solutions conserve invariants, remain stable over long horizons, or meet scientific accuracy requirements. In
this setting, the optimizer’s asymptotic behavior—and particularly the final noise floor—directly governs
physical fidelity (Zhang et al., 2024).

2 Related work

Recent work has advanced the theoretical understanding of preconditioned and adaptive variants of SGD
under various structural and noise assumptions. [Koren et al.| (2022)) showed that preconditioned SGD
achieves a rate of O(1/Vk) for general stochastic convex optimization, though convergence can stagnate in
the presence of persistent gradient noise. [Faw et al| (2022)) further established that adaptive SGD attains

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

o4

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Under review as submission to TMLR

an order-optimal O(1/v/k) rate for nonconvex smooth objectives under affine variance conditions, without
requiring bounded gradients or finely tuned learning rates. More recently, |Attia & Koren| (2023) derived
high-probability guarantees of O(1/k 4 o¢/v/k) for adaptive methods in both convex and nonconvex settings,
relaxing the need for strong smoothness or prior parameter knowledge.

These results primarily address global convergence behavior across general problem classes. In contrast, our
analysis focuses on the asymptotic regime—the late stage of training where iterates lie within a well-behaved
basin around a local minimizer and optimization progress is limited by curvature anisotropy and gradient
noise. In this regime, we show that both the convergence rate and the noise floor of the preconditioned SGD
are determined by curvature and variance quantities measured in the preconditioned geometry. This local,
geometry-aware viewpoint clarifies why curvature-informed preconditioners and adaptive algorithms yield
faster and more stable late-stage convergence.

Other techniques such as batch normalization (Lange et al., [2022) and weight decay (Loshchilov & Hutter,
2017: Barrett & Dherinl 2020) can also be interpreted as implicit forms of preconditioning, though they operate
through different regularization mechanisms. For comprehensive surveys of explicit preconditioned SGD and
related adaptive methods, we refer the reader to [Ye| (2024). Beyond convergence rates, preconditioning has
also been studied as an implicit regularization that may affect generalization (ichi Amari et al.,|2021]).

3 Preconditioned SGD convergence analysis

We first analyze the globally strongly convex case as a baseline to make the role of the preconditioned geometry
explicit. Although this setting is rarely realized in deep learning, it reveals the essential mechanism through
which preconditioning affects convergence. The analysis shows how curvature and noise floor transform
under a change of metric, providing a principled way to compare different choices of M. This also lays the
groundwork for the local nonconvex analysis in Section [3.2] where M influences both basin size and stability.

3.1 Convergence in the globally strongly convex setting

We establish convergence guarantees for preconditioned SGD when the objective is globally strongly convex.
This simplified setting allows for a transparent analysis of how a preconditioner reshapes both the effective
curvature and the gradient noise. While the derivations parallel the Euclidean case, expressing them in the
M-induced geometry makes the dependence on the preconditioner explicit and lays the groundwork for the
more general nonconvex results to follow.

Curvature assumptions. Preconditioning redefines smoothness and strong convexity through effective
constants (L, ¢) measured in the M—-induced norm.

Assumption 1 (M-strong convexity). F: R?—R is M-strongly convex: there exists ¢ > 0 such that
F(W) > F(w)+VEW) (W—w)+1¢|w—wl}, Vw,weR%
Assumption 2 (M-Lipschitz gradient). VF is M-Lipschitz with constant L>o:
IVE(W) = VEW)ll1 < LW - wla, VW, w e R

These conditions are direct analogues of the Euclidean definitions. Writing M~! = PP T gives the spectral
characterization:

Lemma 3.1. Let F' be twice differentiable and M_l =PP". Then: (i) VF is M-Lipschitz with constant
L < all eigenvalues of PTV2F(w)P are < L; (ii) F is M-strongly convex with constant ¢ <= all
eigenvalues of PTV2F(w)P are > ¢.

Hence, preconditioning improves the effective condition number whenever L Jé < Lje.

Noise assumptions. We measure the first and second moments of the stochastic gradient in the M ~!-norm.
Specifically, holding wy, fixed, we define the variance with respect to the sampling of &, by

Ve [g(wi, £, 11 [na-1] = Be, [lo(wi, €0)lI31] — | Be, [o(wi €]l g 3)

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

Under review as submission to TMLR

Assumption 3 (Moment bounds in M~1). For the iterates of , there exist constants ug>u>0, K >0,
and Ky >0 such that, for all k,

(VE(w), Ee, [9(Wr, &))m-1 = ul[VE (W) [¥g-, (4)
[Ee, [9(wi, E)llIM—1 < pa [IVE(Wi) v, (5)
Ve [9(Wi, &), || - Im1] < K + Ky [[VF(w)|[3g-1- (6)

We call K the preconditioned noise level because the variance in the M~!-norm satisfies

Velg(w. &), [Im-1] = t(M™'S(w)),

where X(w) := Cov(g(w,€) | w). In the stationary case X(w) = X, we have the fixed tr(M~!X). More
generally, on a region containing the iterates it is natural to choose K > sup, tr(M~13(w)), so K is a
uniform baseline for the preconditioned noise.

Under these assumptions we obtain the usual linear and sublinear rates, but with constants that depend
explicitly on the preconditioned geometry.

Theorem 3.2. Under Assumptions ﬁ (with Funin = Fi), suppose uses a fized learning rate i = @ with

O<a < A'u where ngKV—f—,uéZ,uQ>O.

LKg

Then, for all k € N,
alK
2¢p

E[F(wy) — F.] < (7)

LK w alLK
+(1—a@0“1<ﬂwu—Fl— u) koo, 2

a
2¢ 2ep

Theorem shows that, with a fixed learning rate @, preconditioned SGD contracts linearly with factor
1 —@ép and converges to an asymptotic floor

alK a (ﬁ)
206 2u \é
Thus, the floor factorizes into an effective condition number ﬁ/é and a preconditioned noise level K. In the
late stage of training, we have F(wy) — Fy, = O(a@K) and |[VF(wy)[3;-: = O(@K). Substituting into the
variance bound @ gives
Ve, [9(wi, &), || - Im-1] < K +O(@@K),

so for small & the variance is dominated by the baseline K term.

Moreover, since Ve[g(w, &), || - [|lm-1] = tr(M~'2(w)), we may view K as an upper baseline for the precondi-
tioned noise tr(M~13(w)) along the late-stage trajectory. Preconditioning reduces this baseline through its

effect on tr(M~13(w)); choosing M to attenuate high-variance directions lowers this trace and thus lowers
the effective noise floor.

Theorem 3.3. Under Assumptions (with Fnin = F.), suppose uses a = B/(v+ k) with 8 > 61u
and y > 0 chosen so that ay < p/(LK¢). Then, for all k € N,

v LK
E[F(wy) — Fi] < IR Vz_max{ﬂgé;;—l)’ (’erl)(F(wl)F*)}. (8)
With diminishing learning rates, the noise floor vanishes and Theorem shows that preconditioned SGD
attains the optimal O(1/k) rate. Preconditioning no longer changes the rate itself—it always decays like
1/k—but it directly influences the leading constant v which has the same structure as the fixed-learning-rate
floor: an effective condition number ﬁ/é multiplied by the preconditioned noise level K. Thus even when
the noise floor disappears, late—stage performance is still governed by the same metric-dependent quantities
(L, K). Consequently, effective preconditioners must again balance curvature alignment (to reduce L /¢)
with noise attenuation (to reduce K), improving both the asymptotic constants in the O(1/k) regime.

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

Under review as submission to TMLR

3.2 Local convergence in the nonconvex setting

The empirical loss F'(w) over network parameters is typically nonconvez, and its local geometry near
minimizers is rarely strictly convex. Empirical studies show that trained models often converge to regions
that are flat in many directions and exhibit highly degenerate curvature—manifested as a cluster of very
small or near-zero eigenvalues in the Hessian—arising from overparameterization, symmetries, and parameter
non-identifiability (Sagun et al. |2018; |Ghorbani et al,, |2019). Despite this degeneracy, the optimization
dynamics remain structured: iterates contract along directions with significant curvature while the loss
changes little along flat directions. To describe this late-stage regime without assuming strong convexity, we
impose a local Polyak-Lojasiewicz (PL) condition (Chanl 1979} Karimi et al.| 2016)) in the M—geometry, which
enforces gradient domination only in informative directions and tolerates flat or weakly curved subspaces.
This flat-tolerant formulation provides a natural framework to study how preconditioning reshapes local
curvature and noise, governing contraction rates, asymptotic error floors, and stability during the final phase
of optimization.

Additional local assumptions. Fix an SPD matrix M and an open neighborhood & C R?. Assume the
local minimizer set

S = argmigF(w) # &, F, = HliIz/llF(W) = F(s) foranyseS.
we we

Write ||2||nm := (z 7 Mxz)Y/? and distyg(w, S) := infges ||w — s||m. For radii 0 < 7 < r, define the M-metric
neighborhoods

N, = {w: distpm(w,S) <r}, N,

= {w e distm(w,S) <} CU.

We assume the following conditions hold on N, (for the iterates) and on A, (for the exit bound).
Assumption 4 (Local M-PL on N,.). There exists fipr, > 0 such that, for all w € N,
Yien (F(w) — F.) < [VF(w)[3g 1.

Assumption 5 (Local M-Lipschitz gradient on a convex neighborhood of NV,.,). There exists an open convex
set V with N,., CV CU and a constant L > 0 such that, for all w,w €V,

IVE(W) = VEW)|m < LW - w|wm

Assumption 6 (Local stochastic gradient conditions on N,.). Let (F) denote the natural filtration and set
gk := g(wg, €). There exist constants p € (0,1], Kg > 0, and K > 0 such that, for every k with wi € N,

(VE(wWr), Elgr | Fil)pgr 2 wlIVEWE)Rg-s ElllgelRa— | Fe] < Ko IVE(WR)[Rg- + K.
Assumption 7 (Local quadratic growth (QG) on N,). There exists agg > 0 such that, for all w € N, _,

F(w)—F, > 29 distm(w,S)>.

Assumption 8 (Controlled one-step overshoot on N,.). Fiz radii 0 < r < ry and a horizon T > 1, and set
A =1, —r. There exist deterministic numbers (3x);_; with &), € [0,1) such that for every k < T — 1,

Liweenyy O ElllgrllRe— [Fi] < 6:A% s

Lemma [34] gives the one-step containment probability implied by Assumption [§]

Lemma 3.4 (Containment probability implied by Assumption . Under Assumption@ for every k <T —1,

w, €N, = P(Wk+1 S ./\/‘7-+ |]:k-) > 1— 6.

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

Under review as submission to TMLR

These local assumptions are the basin-restricted analogue of the global conditions in Section [3.1} The local
M-PL condition replaces global strong convexity by a gradient—-domination inequality in the M—metric: it
enforces curvature only in directions that drive descent while permitting flat or weakly curved directions.
The local M-Lipschitz gradient assumption on a convex neighborhood V D N,.. provides a quadratic upper
model along any update segment that stays in V:

F(W) < F(w)+VF(w) (W —-w) + L [|% - w3

In our finite-horizon analysis, this condition is invoked only on trajectories for which the iterates (and hence
the corresponding update segments, by convexity) remain inside V up to time 7.

The local stochastic gradient condition (Assumption @ mirrors the global moment bounds in Assumption
but is only required to hold when wy € N,. It imposes a first-moment alignment condition and a second-
moment bound in the M~!-norm, which is the natural scale for preconditioned updates. The local QG
condition ensures that the objective grows at least quadratically with distag(w, S) near the basin boundary—a
property that holds, for example, when curvature is positive in normal directions—and it supplies the barrier
needed in the optional-stopping/exit-time argument.

Assumption [§] controls rare one-step overshoots from the inner basin N, to outside the enlarged neighborhood
N, I When wy, € N,., the preconditioned update moves a distance

[Wit1 — willm = ak [|grllv-1-

Since distyg (Wi, S) < 7 on N, the triangle inequality implies that w1 ¢ N,., can occur only if o ||gx|[n-1 >
A with A := r; —r. Assumption [§] bounds the conditional second moment of ||gx||ns-1 relative to A; therefore,
by Markov’s inequality,

P(wWir1 € Ny, | Fie) < 0y, whenever wy, € N,..

Together, these assumptions describe a local regime that accommodates moderate nonconvexity and flatness
while still providing sufficient structure for quantitative finite-horizon convergence and stability guarantees
under stochastic gradients.

Theorem 3.5 (Convergence in a local basin up to a finite horizon). Fiz radii 0 < r < r4 and a horizon
T > 1, and let
T:=inf{k >1:wy ¢ N}, Qr :={r>T}

Assume: (i) Assumptions and@ hold on N; (ii) Assumption@ holds on a convex set V with N,, CV CU;
(i) Assumptionlj holds on N, ; (iv) Assumptionlg holds with horizon T and failure probabilities ()i} ;
and (v) the conditional-moment version of Assumption@ holds on Qr (i.e., the first/second-moment bounds
are valid when conditioning on (Fi,Qr) for k <T —1).

Suppose w1 € N,. and use a constant stepsize oy, = & such that

1
0<a< -t (fKg>0), and O<a<
LK¢g BUPL
Define
alK
p:=ajpyp € (0,1), C .= aA , B .= 296 2,
Q/.LPL/.L 2

Foralll <k<T,
E[F(wy) — F. |7 >T] < C+(1—p)* 1 (F(w1) — F. - C).

The probability of remaining in N, up to time T satisfies

F(w) - F.+ Lk (T-1) X
P(r>T) > |1- 3 —;5;@ :
= +

where [z]4 := max{0,z}.

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

Under review as submission to TMLR

Theorem 3.6 (Diminishing learning rate in a local basin up to a finite horizon). Fiz radii 0 < r <r; and a
horizon T > 1, and let

T:=inf{k >1:wy ¢ N;}, Qp :={r>T}.
Assume: (i) Assumptz'ons andﬁ hold on N; (ii) Assumptionﬁ holds on a convex set V with N,, CV CU;
(i) Assumptionlj holds on N, ; (iv) Assumptionla holds with horizon T and failure probabilities ()i _} ;
and (v) the conditional-moment version of Assumption [6 holds on Qr.

Suppose w1 € N,. and use harmonic stepsizes

o = %7 v >0,
with
0<a; = L < = H (if Kg > 0), and 8> Al (equivalently a := Bufipy, > 1).
v+1 LK¢ pitpL
Define

N AK aQG 2 Cﬂ2
m = pfPL, ¢i= B := e, vi= max{ﬁm_l, (v+1)[F(w1) = F] ¢

Foralll <k<ZT,
v

ElF — L, T < .
(Fw) = F|7>T) < L

The probability of remaining in N, up to time T satisfies

)

+

F(wl)fF*qLcZZ;llai !
P(r>T) > [1- 3 —;&C

where [z]4+ := max{0,z}.

Theorem (fixed stepsize) and Theorem (harmonic stepsizes) characterize late-stage optimization after
the iterates have entered a well-behaved local basin A,.. Both results are stated on the finite-horizon survival
event
Qp ={r>T}, Ti=inf{k >1:w, ¢ N},

so that along Qp the local M—smoothness and local M-PL inequalities apply to the entire trajectory up
to time T" and yield explicit descent recursions. With a constant stepsize @, Theorem [3-5 gives conditional
geometric contraction to the noise floor C' = iﬁ 5‘ , whereas with harmonic stepsizes a, = /(v + k),
Theorem [3.6] yields the conditional O(1/k) rate. In both cases, the constants are local and expressed in
the M-geometry. Unlike global strongly convex analyses, no global curvature or global variance control is
required; the bounds depend only on the basin actually explored by the iterates.

The basin-stability guarantees are also local, and they make two distinct failure mechanisms explicit. The
first is an objective barrier controlled by the local QG constant aqgg and the basin radius r through

QG 2
B:=—=1r"
2

which quantifies the minimum objective increase needed to reach the boundary N, \ N,. The second is one-
step overshoot: Assumption [§] allows rare updates that jump from N, to outside the enlarged neighborhood
N, ., with conditional failure probabilities d,. Here, 25;11 0 quantifies the accumulated overshoot risk: if
the tails/second moments are large, or if the basin margin A = r, — r is small, then §; may be large, and
the stability bound becomes conservative.

Because all constants in the local bounds are M—dependent, a well-chosen preconditioner M can improve late-
stage behavior by: (i) enhancing local conditioning (increasing fipr, and/or decreasing L, thereby strengthening
contraction); (ii) reducing the preconditioned noise level K; and (iii) improving stability by reducing the
overshoot probabilities d; (e.g., via smaller E[||g|3;-:] and/or a larger margin A = r; —) and, when
aligned with normal-space curvature, by increasing the barrier parameter B = “g<r?.

235

236

237

238

239

240

241

242

243

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

Under review as submission to TMLR

3.3 Practical preconditioners for SGD

A wide range of preconditioning strategies are used in modern machine learning. On the first—order side,
adaptive methods such as Adam (Kingma & Ba) 2017), AMSGrad (Reddi et al. 2018), PAdam
2020)), and Yogi (Zaheer et al., 2018) implicitly apply diagonal preconditioners by rescaling gradients
with running estimates of coordinatewise second moments. On the second—order side, curvature-aware
preconditioners exploit Hessian or Fisher Information Matrix (FIM) structure, including the empirical
FIM (Schraudolphl 2002)), full or mini-batch Hessians (Fletcher, 2013 |Garg et al.) 2024)), mini-batch
quasi-Newton updates (Griffin et al., 2022), and Kronecker-factored FIM (K-FAC) (Martens & Grosse} 2015).
Classical schemes such as L-BFGS (Liu & Nocedal, [1989; (Chen et al., 2014]) can also be viewed as low-rank,
history-based preconditioners. Appendix [B.2] summarizes these approaches and their computational trade-offs.

The convergence analysis in Sections [3.1H3.2] suggests two practical mechanisms through which preconditioners
shape late-stage behavior:

e Local conditioning. Curvature-aware preconditioners (e.g., Fisher, Gauss—Newton, Hessian, K-FAC)
tend to reduce the metric-smoothness constant L and can increase the local PL constant fpr. In our
bounds, this improves the effective local condition number ﬁ/ [ipL, permits larger admissible fixed
learning rates o < u/(LK¢), and reduces the leading constant under diminishing learning rates.

e Noise attenuation. Preconditioners aligned with the gradient-noise structure reduce the preconditioned
noise level K in the late-stage regime. Together with improved conditioning (smaller L /¢ or L /ipL),
this lowers the noise floor, which scales with their product. Fisher-based and related methods are
especially effective because they explicitly incorporate gradient statistics.

These two mechanisms—improved conditioning and reduced preconditioned noise—match the behavior
observed in Section@ Curvature-matched preconditioners (Fisher, Gauss—Newton, K-FAC, Hessian) typically
yield faster late-stage contraction by reducing L and, in some cases, increasing fipy,, while their use of gradient
second-moment information tends to reduce K. Adaptive/diagonal methods likewise lower K by damping
high-variance coordinates, though their alignment with curvature is typically weaker. Recent theory further
suggests that in anisotropic settings, Kronecker-structured preconditioning can be statistically necessary for
efficient feature learning, whereas entry-wise/diagonal scaling offers only partial improvements

2025).

4 Numerical results

Many machine-learning benchmarks illustrate the benefits of preconditioned SGD (e.g., [Schmidt et al.| (2021));
[Schneider et al| (2019)), but our emphasis is on SciML, where driving the loss to very small values is tightly
linked to physical fidelity, numerical stability, and constraint satisfaction (Kaplan et al.| 2020; [Swersky et al.|
. We therefore structure the experiments in two parts.

First, we analyze a diagnostic quadratic model in which all the quantities in our theory—ﬁ, iipL, and the
preconditioned noise level K—admit closed forms. This allows us to directly compute the geometry— and
noise-dependent metrics from Sections [3.1H3.2 and verify their influence on rate and floor.

Second, we examine three representative SciML problems: noisy Franke surface regression (Franke) , a
Poisson-type PINN, and Green’s—function learning for diffusion and convection—diffusion (Zhang et all [2024;
[Rathore et all [2024} [Hao et all [2024} [Xu et al [2025)), to see how the theoretical mechanisms are reflected in
practical settings.

4.1 Diagnostic quadratic model
To isolate the effects predicted by the theory, we consider the quadratic objective

F(w)=g(w-w) H(w-w)+F, Hx0,

N|—

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

Under review as submission to TMLR

here H specifies curvature. We test two simple, analytically tractable choices: Euclidean SGD (M = I)
and a low-rank curvature-aware preconditioner M = I + U, (A, — I)U/, where U, contains the top (or
bottom) s eigenvectors of H and Ay is a diagonal matrix. This model captures the essential effect of curvature

information. We used a fixed learning rate.

Instead of forming a dataset, we synthesize unbiased mini—batch gradients
1
gr = VF(w) + i, E[¢] =0, Cov(¢k) = B

To match the second-order statistics of least-squares problems near w*, we set ¥ = o?H, giving K =
"75 tr(M~'H). We choose d = 100 and construct H = UAU" with A log-uniform grid on [10~2,102] and
U Haar-distributed. We set w* = 0, F, = 0, and initialize w; ~ N(0,107*I), and report averages over 30
runs. To illustrate how individual eigenvalues affect constants (]i, fip,, K), we design three groups of tests
targeting different part of the spectrum of H.

Top-s eigenvalues to 1.0 Top-20 eigenvalues to targets Bottom-s eigenvalues to 1.0

— top_s=1(experiment) — top_s=25 (experiment) — val=10 (experiment) — val=5.0 (experiment) — bot_s=1(experiment) —— bot_s=25 (experiment)

riment) —— top_s=50 (experiment) val=2.0 (experiment) —— val=10.0 (experiment) —— bot_s=5 (experiment) —— bot_s=50 (experiment)
eeeeee t) — val=3.0 (experiment) — bot_s=10 (experiment)

E[F(we) —F+]

nnnnn

w000 5000 w000 5000 750 w0 1230
Iteration k Iteration k Iteration k

Figure 1: Convergence behavior under different deflation-based preconditioners. Left: deflating the
largest s eigenvalues (s € {1,5,10,25,50}). Middle: deflating the top 20 eigenvalues to target values
1.0,2.0,3.0,5.0,10.0]. Right: deflating the smallest s eigenvalues (s € {1,5,10,25,50}).

Figure [I] shows how deflating different parts of the spectrum of H affects the key theoretical constants.
Denote the eigenpairs of H as (A;, u;), and let Uy contain the selected eigenvectors. We construct a spectral

preconditioner of the form M =1+ U, (Ks —~T)U/, where A, = diag(1,...,7s) assigns a target value 7;
to the i-th chosen eigendirection. Deflating the largest s eigenvalues (left panel)—i.e., setting 7, = A; so
that these preconditioned eigenvalues become 1—reduces the smoothness constant L and the noise level

K= "T;tr(M_lH) while leaving fipr, unchanged, yielding a lower noise floor.

To isolate the effect of the noise term, the middle panel fixes fipr,. It deflates the top 20 eigenvalues into a
common value v lying between A9y and A4 by setting 7, = A; /v, so that L and fipr, remain unchanged while
K varies. The resulting steady-state losses track this change in K, in line with the predicted noise-floor
scaling. Deflating the smallest s eigenvalues (right panel)—that is, selecting the bottom eigenvectors and
assigning target values 7; equal to these smallest eigenvalues so that the preconditioned eigenvalues \;/7;
move to 1—does increase fipy,, but it simultaneously enlarges K. The two effects counterbalance each other,
yielding only modest overall gains, consistent with the predicted noise-floor behavior.

4.2 SciML problems

We then briefly summarize the three SciML tasks used to evaluate late—stage optimization behavior under
different preconditioners.

Noisy Franke surface regression. The Franke function is a classical multiscale benchmark consisting
of several Gaussian peaks with heterogeneous length scales. We sample 256 points uniformly in [0, 1]?
and corrupt the values with Gaussian noise € ~ A'(0,107%). The combination of multiscale structure and
observational noise yields a loss landscape with varying curvature, making it well suited for evaluating how
preconditioning affects convergence in practice. The target surface is

22 o2 212 o - 32
f(z,y) — 07pe RN | g g O - | (g 5 SOOI g o —(92-4)"— (9y-T)*

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

Under review as submission to TMLR

Epoch vs Relative Training Loss Time vs Relative Training Loss True Franke Function
— Adam "'1 — Adam

SGD

—— CG-Hessian

—— SGD-Momentum —— SGD-Momentum
—— CG-GGN \\

— L-BFGS

Relative Loss
Relative Loss

Epoch ; * Optimization Time (s)

Figure 2: Franke-function regression (mean over 5 runs). Left: training loss vs. epochs with the switch to
Phase II at epoch 500. Center: training loss vs. wall-clock time. Right: Franke surface.

Physics—informed neural networks (PINNs). We train a PINN to solve the 2D Poisson problem

—Au = f(z,y) = 8n? sin(27rx) sin(27y) in (0,1)?, u =0 on 9[0,1)?,

whose exact solution is u(z, y) = sin(27x) sin(27y). The training set includes 1,000 interior residual points
and 200 boundary points. The weighted loss (PDE residual weight 1.0, boundary weight 100.0) produces a
challenging composite landscape known to stress first-order methods (Krishnapriyan et all [2021]). The right
panel of Fig. |3| visualizes the source term f(x,y).

Green’s—function learning. We learn Green’s functions for the 1D convection—diffusion operator
Lu = —vu" + Bu, u(0) = u(1) =0,

under two regimes: (i) diffusion-dominated (v = 1.0, 8 = 0) and (ii) convection-dominated (v = 0.1, 5 = 1.0).
The Green’s function satisfies LG (z,y) = d(z — y), where we approximate the delta distribution by a narrow
Gaussian with width o = 0.01. Training uses: (a) 1,000 uniformly sampled (z,y) pairs for PDE residuals, (b)
500 near-diagonal samples (|x — y| small) to capture the near-singularity, and (c) 200 boundary samples. This
produces a highly multiscale and stiffness—dominated optimization problem, ideal for testing curvature-aware
preconditioners.

Baselines and protocol. Across all SciML tasks, we compare vanilla SGD, momentum, Adam, L-BFGS,
and curvature-aware preconditioners (CG-Hessian and CG-GGN/Fisher). Matrix—free CG with a fixed
iteration budget is used to apply Hessian or Gauss—Newton/Fisher updates. Following standard SciML
practice, we adopt a two—phase schedule: Phase I uses Adam to reach a comparable basin; Phase II switches
to the target optimizer to isolate late—stage behavior. We report loss vs. epochs and wall-clock time, with all

architectural and implementation details in Appendix @ All implementations use JAX (Bradbury et al.|
2018)); code and data are available in the supplemental material.

4.3 Noisy data regression

After the Adam warm start (Phase I), Phase II separates the methods (Fig. : Adam, L-BFGS, CG-
GGN, and CG-Hessian descend faster than SGD and SGD+Momentum. The two curvature-aware variants,
CG-Hessian and CG-GGN, track one another closely—showing similar contraction and reaching essentially
the same loss floor. The similar performance of CG-Hessian and CG-GGN suggests that both methods
provide comparable normal-space curvature and covariance matrix structure approximation. Adam’s diagonal
rescaling and L-BFGS’s low-rank curvature information also mitigate anisotropy and stabilize noisy directions,
which explains their advantage over SGD. In wall-clock time, the faster descent of curvature-aware methods
compensates for their higher per-step cost.

4.4 Physics—informed neural networks (PINNs)

With the same two-phase protocol, Phase II shows a consistent ranking (Fig. [3)). At the bottom, Adam
and SGD/SGD+Momentum lack explicit curvature information and progress slowly. L-BFGS achieves

10

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Under review as submission to TMLR

Epoch vs Relative Training Loss Time vs Relative Training Loss Source Function
— Adam ww — Adam

—— SGD —— SGD
—— SGD-Momentum —— SGD-Momentum
—— CG-Hessian —— CG-Hessian
—— CG-GGN

—— LBFGS

Relative Loss
Relative Loss

" Epoch ' Optimization Time (s)

Figure 3: PINN for a Poisson-type PDE (mean over 5 runs). Left: training loss vs. epochs with Phase I —
Phase II at epoch 1,000. Center: training loss vs. wall-clock time. Right: source term.

intermediate performance: it captures limited curvature through its low-rank approximation and line search,
but the memory constraint prevents it from matching the full curvature captured by the two CG methods.
At the top tier, CG-GGN and CG-Hessian both achieve better performance as curvature-aware methods,
with CG-GGN showing a slight advantage.

For PINNs, which minimize weighted least-squares residuals, the Gauss-Newton approximation J'J is
naturally aligned with the gradient covariance structure and thus provides more effective noise attenua-
tion—consistent with our theory, where the preconditioned noise level is governed by tr(M~!X(w)) in the late
stage. The Hessian approximation, by contrast, can introduce negative curvature and additional anisotropy.
In wall—clock time, CG-GGN achieves the best accuracy within a comparable time budget, despite its higher
per-step cost.

4.5 Green’s function learning

After Phase I, Phase II again shows a clear separation of methods (Figs. . In both the diffusion- and
convection—dominated cases, CG-GGN continues to drive the loss down, whereas CG-Hessian, L-BFGS,
Adam, SGD, and SGD+Momentum quickly form a tight cluster and improve only marginally. Compared with
the earlier PINNs experiment, the Green’s—function tasks are more near-singular due to the smoothed-delta
forcing, leading to a more challenging, highly anisotropic optimization problem.

Although we did not directly measure the local constants (f/, fip,, K) on this run, the observed advantage
of CG-GGN is consistent with the structure of PINN objectives. First, for squared-residual losses, the
Gauss—Newton/Fisher matrix is positive semidefinite, avoiding the negative-curvature directions introduced
by second-derivative terms in the exact Hessian. This makes the preconditioner more stable and better
suited to CG. Second, Fisher-type preconditioners are built from gradient second moments and therefore tend
to whiten gradient noise, reducing the preconditioned noise level K. In contrast, a Hessian preconditioner
includes second-order terms that are often misaligned with the gradient-noise covariance, and the damping
needed to handle indefiniteness diminishes curvature gains while weakening noise attenuation.

These two effects—better alignment with useful curvature and more effective noise whitening—explain why
CG-GGN reaches lower losses within comparable wall-clock time, despite its higher per-step cost.

Epoch vs Relative Training Loss B ___Time vs Relative Training Loss Learned Green's Functions

— G(x,0.25)
w0 —— Adam | — Adam .
SGD SGD \
SGD-Momentum SGD-Momentum N
.| — CG-Hessian 1| — CG-Hessian e
CG-GGN | CG-GGN e
—— LBFGS — LBFGS A

S G(x0.75)

Glx.y)

x

G)9G.
—Vig + B

Relative Loss
Relative Loss

Operator Output
< <<
il
%)
SN
FE

—— G(x,0.50)
Y oEpocn T ' " optimization Time (s)) Yo

Figure 4: Laplacian Green’s function learning (mean over 5 runs). Left: loss vs. epochs with Phase I —
Phase II at epoch 2,000. Center: loss vs. wall-clock time. Right: learned G(x,y) for three source locations
and operator checks.

11

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

Under review as submission to TMLR

Epoch vs Relative Training Loss Time vs Relative Training Loss Learned Green's Functions
— Adam — G(x,0.25) —

SGD - G(x,0.50)

~—— SGD-Momentum G(x,0.75)

—— CG-Hessian
—— CG-GGN
— LBFGS -~

4

Relative Loss
Relative Loss

.| — Adam \

SGD
—— SGD-Momentum
—— CG-Hessian

w CG-GGN
—— LBFGS

Epoch ’ - “ Optimization Time (s)

Figure 5: Convection—diffusion Green’s function learning (mean over 5 runs). Left: loss vs. epochs with
Phase I — Phase II at epoch 2,500. Center: loss vs. wall-clock time. Right: learned G(z,y) for three source
locations and operator checks.

The right panels of Figs. @ and [5| display the learned Green’s functions G(x,y) at three representative source
locations y together with simple operator and boundary checks for CG-GGN. The kernels are localized
around the source locations and decay toward the Dirichlet boundaries, and the corresponding operator
evaluations produce narrow spikes at x = y, in line with the smoothed—delta forcing used in the training
loss. This suggests that the lower training losses achieved by CG-GGN reflect a reasonable Green’s-function
approximation rather than a purely numerical artifact.

We conclude the numerical experiments by connecting the CG-GGN preconditioner to the theoretical
convergence framework developed in this paper. We empirically examine the quantities L and K that govern
the convergence of preconditioned SGD for the PINNs problem and two Green’s function learning problems.
Because a CG-based preconditioner with only a few iterations typically does not significantly alter the
cluster of near-zero eigenvalues, we treat the M-PL constant as unchanged and attribute the quality of the
preconditioner primarily to its effect on L and K. For these three problems, we fix the random seed to 42
and analyze the network parameters at epoch 250 in Phase II. After preconditioning, the L value reduced by
factors of 78x, 3710x, and 1923x, respectively. We additionally quantify the impact of preconditioning on the
noise level K. Using the same network parameters w, we sample 100 independent mini-batches, construct the
preconditioner M~! from the first batch, and observe that after preconditioning the estimated trace of the
gradient-noise covariance matrix is reduced by factors of 12x, 1505x, and 203x, respectively. This substantial
reduction demonstrates that the CG-GGN preconditioner effectively attenuates gradient noise. Consistent
with our theory, the combined improvements in conditioning and noise reduction yield both faster linear
convergence and a significantly lower asymptotic noise floor.

5 Conclusion

We developed a local, geometry-aware theory for preconditioned SGD that makes two effects explicit: (1) the
rate inside a basin is controlled by a preconditioner-dependent condition number in the M—metric, and (2)
the noise floor is governed by the preconditioned noise. We additionally obtained a basin-stability guarantee,
giving an explicit probability that iterates remain in a region where these local properties hold. Together,
the results motivate a simple rule: choose M to improve local conditioning while suppressing noise in the
M~!-norm.

A key next direction is covariance-aware preconditioning. Our bounds suggest that effective design should
jointly target conditioning and noise attenuation, motivating structured covariance models and adaptive
schemes that update curvature and noise statistics simultaneously. Extending basin-stability guarantees
to nonstationary noise and developing online diagnostics for the local constants would move toward fully
adaptive, geometry- and noise-aware SGD.

12

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Under review as submission to TMLR

References

Shunichi Amari. A theory of adaptive pattern classifiers. IEEE Transactions on Electronic Computers, EC-16
(3):299-307, 1967. ISSN 0367-7508. doi: 10.1109/PGEC.1967.264666. URL https://ieeexplore.ieee!
org/document/4039068. Conference Name: IEEE Transactions on Electronic Computers.

Amit Attia and Tomer Koren. Sgd with adagrad stepsizes: Full adaptivity with high probability to unknown
parameters, unbounded gradients and affine variance. In International Conference on Machine Learning,

pp. 1147-1171. PMLR, 2023.

David GT Barrett and Benoit Dherin. Implicit gradient regularization. arXiv preprint arXiv:2009.11162,
2020.

Albert S. Berahas, Jorge Nocedal, and Martin Taka¢. A multi-batch 1-bfgs method for machine learning,
2016. URL https://arxiv.org/abs/1605.06049.

Julius R. Blum. Approximation methods which converge with probability one. The Annals of Mathematical
Statistics, 25(2):382-386, 1954. ISSN 0003-4851, 2168-8990. doi: 10.1214/aoms/1177728794. URL
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-25/issue-2/
Approximation-Methods-which-Converge-with-Probability-one/10.1214/aoms/1177728794.fulll
Publisher: Institute of Mathematical Statistics.

Raghu Bollapragada, Dheevatsa Mudigere, Jorge Nocedal, Hao-Jun Michael Shi, and Ping Tak Peter Tang. A
progressive batching I-bfgs method for machine learning, 2018. URL https://arxiv.org/abs/1802.05374.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learn-
ing. SIAM Review, 60(2):223-311, 2018. doi: 10.1137/16M1080173. URL https://doi.org/10.1137/
16M1080173.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. URL http://github.com/jax-ml/jaxl

Han Chan. Some methods of unconstrained minimization. USSR Computational Mathematics and Mathe-
matical Physics, 19(2):31-44, 1979. ISSN 0041-5553. doi: https://doi.org/10.1016/0041-5553(79)90004-1.
URL https://www.sciencedirect.com/science/article/pii/0041555379900041.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the generalization
gap of adaptive gradient methods in training deep neural networks. In Christian Bessiere (ed.), Proceedings
of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 3267-3275.
International Joint Conferences on Artificial Intelligence Organization, 7 2020. doi: 10.24963/ijcai.2020/452.
URL https://doi.org/10.24963/ijcai.2020/452. Main track.

Weizhu Chen, Zhenghao Wang, and Jingren Zhou. Large-scale l-bfgs using mapreduce. In Proceedings of
the 28th International Conference on Neural Information Processing Systems - Volume 1, NIPS’14, pp.
1332-1340, Cambridge, MA, USA, 2014. MIT Press.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121-2159, 2011.

Matthew Faw, Isidoros Tziotis, Constantine Caramanis, Aryan Mokhtari, Sanjay Shakkottai, and Rachel
Ward. The power of adaptivity in sgd: Self-tuning step sizes with unbounded gradients and affine variance.
In Conference on Learning Theory, pp. 313-355. PMLR, 2022.

R. Fletcher. Practical Methods of Optimization. Wiley, 2013. ISBN 978-1-118-72318-0. URL https:
//books.google.com/books?id=_WuAvIxOEE4C.

Francis Bach. Learning Theory from First Principles. Adaptive computation and machine learning series.
MIT Press, 2 edition, 2024. ISBN 978-0-262-04944-3.

13

https://ieeexplore.ieee.org/document/4039068
https://ieeexplore.ieee.org/document/4039068
https://ieeexplore.ieee.org/document/4039068
https://arxiv.org/abs/1605.06049
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-25/issue-2/Approximation-Methods-which-Converge-with-Probability-one/10.1214/aoms/1177728794.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-25/issue-2/Approximation-Methods-which-Converge-with-Probability-one/10.1214/aoms/1177728794.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-25/issue-2/Approximation-Methods-which-Converge-with-Probability-one/10.1214/aoms/1177728794.full
https://arxiv.org/abs/1802.05374
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173
http://github.com/jax-ml/jax
https://www.sciencedirect.com/science/article/pii/0041555379900041
https://doi.org/10.24963/ijcai.2020/452
https://books.google.com/books?id=_WuAvIx0EE4C
https://books.google.com/books?id=_WuAvIx0EE4C
https://books.google.com/books?id=_WuAvIx0EE4C

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

Under review as submission to TMLR

Richard Franke. A Critical Comparison of Some Methods for Interpolation of Scattered Data. Technical
report, Graduate School of Operational and Information Sciences (GSOIS), 1979. URL https://apps|
dtic.mil/sti/citations/ADA081688.

Sachin Garg, Albert S. Berahas, and Michal Derezinski. Second-order information promotes mini-batch
robustness in variance-reduced gradients, 2024. URL https://arxiv.org/abs/2404.14758.

Guillaume Garrigos and Robert M. Gower. Handbook of convergence theorems for (stochastic) gradient
methods, 2024. URL http://arxiv.org/abs/2301.11235,

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization via
hessian eigenvalue density. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
2232-2241. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.press/v97/ghorbanil9b.html|

Joshua D Griffin, Majid Jahani, Martin Takac¢, Seyedalireza Yektamaram, and Wenwen Zhou. A minibatch
stochastic Quasi-Newton method adapted for nonconvex deep learning problems. Optimization Online,
2022.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimization.
In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 1842-1850. PMLR, 10-15 Jul 2018.
URL https://proceedings.mlr.press/v80/guptal8a.htmll

Wenrui Hao, Rui Peng Li, Yuanzhe Xi, Tianshi Xu, and Yahong Yang. Multiscale neural networks for
approximating green’s functions, 2024. URL https://arxiv.org/abs/2410.18439.

Geoffrey Hinton. Neural networks for machine learning lecture 6e: rmsprop: Divide the gradient by a running
average of its recent magnitude, 2014. URL https://www.cs.toronto.edu/~tijmen/csc321/slides/
lecture_slides_lec6.pdf.

Shun ichi Amari, Jimmy Ba, Roger Baker Grosse, Xuechen Li, Atsushi Nitanda, Taiji Suzuki, Denny Wu, and
Ji Xu. When does preconditioning help or hurt generalization? In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=S72404_WB3.

Satoki Ishikawa and Ryo Karakida. On the parameterization of second-order optimization effective towards
the infinite width. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=g8sGBSQjYk.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020. URL
https://arxiv.org/abs/2001.08361.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient
methods under the polyak-tojasiewicz condition. In Paolo Frasconi, Niels Landwehr, Giuseppe Manco, and
Jilles Vreeken (eds.), Machine Learning and Knowledge Discovery in Databases, pp. 795-811, Cham, 2016.
Springer International Publishing. ISBN 978-3-319-46128-1.

Ahmed Khaled and Peter Richtarik. Better theory for SGD in the nonconvex world. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=AU4qHN2VkS. Survey
Certification.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL http:
//arxiv.org/abs/1412.6980.

Tomer Koren, Roi Livni, Yishay Mansour, and Uri Sherman. Benign underfitting of stochastic gradient
descent. Advances in Neural Information Processing Systems, 35:19605-19617, 2022.

14

https://apps.dtic.mil/sti/citations/ADA081688
https://apps.dtic.mil/sti/citations/ADA081688
https://apps.dtic.mil/sti/citations/ADA081688
https://arxiv.org/abs/2404.14758
http://arxiv.org/abs/2301.11235
https://proceedings.mlr.press/v97/ghorbani19b.html
https://proceedings.mlr.press/v80/gupta18a.html
https://arxiv.org/abs/2410.18439
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://openreview.net/forum?id=S724o4_WB3
https://openreview.net/forum?id=g8sGBSQjYk
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=AU4qHN2VkS
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

484

485

486

487

488

489

490

491

492

493

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

Under review as submission to TMLR

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Characterizing
possible failure modes in physics-informed neural networks. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34,
pp. 26548-26560. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/df438e5206£31600e6ae4af72f2725f 1-Paper . pdf.

Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of the empirical fisher approximation
for natural gradient descent. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems, Red Hook, NY, USA, 2019. Curran Associates Inc.

Susanna Lange, Kyle Helfrich, and Qiang Ye. Batch normalization preconditioning for neural network training.
Journal of Machine Learning Research, 23(72):1-41, 2022.

Xi-Lin Li. Preconditioned stochastic gradient descent. IEEE Transactions on Neural Networks and Learning
Systems, 29(5):1454-1466, 2018. doi: 10.1109/TNNLS.2017.2672978.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45(1):503-528, August 1989. ISSN 1436-4646. doi: 10.1007/BF01589116. URL
https://doi.org/10.1007/BF01589116

Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=3xHDeA8Noil

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine Learning
Research, 21(146):1-76, 2020. URL http://jmlr.org/papers/v21/17-678.html.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate curvature.
In Proceedings of the 32nd International Conference on International Conference on Machine Learning -
Volume 37, ICML’15, pp. 2408-2417. JMLR.org, 2015.

Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in training pinns:
a loss landscape perspective. In Proceedings of the 41st International Conference on Machine Learning,
ICML’24. JMLR.org, 2024.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=ryQu7f-RZ.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Math-
ematical Statistics, 22(3):400-407, 1951. ISSN 0003-4851, 2168-8990. doi: 10.1214/aoms/
1177729586. URL https://projecteuclid.org/journals/annals-of-mathematical-statistics/
volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full. Pub-
lisher: Institute of Mathematical Statistics.

Levent Sagun, Utku Evci, V. Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the hessian
of over-parametrized neural networks, 2018. URL https://openreview.net/forum?id=rJrTwxbCb.

Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley - benchmarking
deep learning optimizers. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 9367-9376.
PMLR, 18-24 Jul 2021. URL https://proceedings.mlr.press/v139/schmidt2la.html.

Frank Schneider, Lukas Balles, and Philipp Hennig. DeepOBS: A deep learning optimizer benchmark suite.
In International Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=rJgbssC5Y7.

15

https://proceedings.neurips.cc/paper_files/paper/2021/file/df438e5206f31600e6ae4af72f2725f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/df438e5206f31600e6ae4af72f2725f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/df438e5206f31600e6ae4af72f2725f1-Paper.pdf
https://doi.org/10.1007/BF01589116
https://openreview.net/forum?id=3xHDeA8Noi
http://jmlr.org/papers/v21/17-678.html
https://openreview.net/forum?id=ryQu7f-RZ
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://openreview.net/forum?id=rJrTwxbCb
https://proceedings.mlr.press/v139/schmidt21a.html
https://openreview.net/forum?id=rJg6ssC5Y7
https://openreview.net/forum?id=rJg6ssC5Y7
https://openreview.net/forum?id=rJg6ssC5Y7

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Under review as submission to TMLR

Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural
Computation, 14(7):1723-1738, 2002. ISSN 0899-7667, 1530-888X. doi: 10.1162/08997660260028683. URL
https://direct.mit.edu/neco/article/14/7/1723-1738/6626.

Kevin Swersky, Marc’ Aurelio Ranzato, David Buchman, Benjamin Marlin, and Nando Freitas. On autoencoders
and score matching for energy based models. In Lise Getoor and Tobias Scheffer (eds.), Proceedings of the
28th International Conference on Machine Learning (ICML-11), ICML ’11, pp. 1201-1208, New York, NY,
USA, June 2011. ACM. ISBN 978-1-4503-0619-5. URL http://mldiscuss.appspot.com/venue/ICML/
2011/article/622/.

Tianshi Xu, Rui Peng Li, and Yuanzhe Xi. Neural approximate inverse preconditioners, 2025. URL
https://arxiv.org/abs/2510.13034.

Qiang Ye. Preconditioning for accelerated gradient descent optimization and regularization, 2024. URL
https://arxiv.org/abs/2410.00232.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive meth-
ods for nonconvex optimization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
90365351ccc7437a1309dc64e4db32a3-Paper . pdf.

Handi Zhang, Langchen Liu, and Lu Lu. Federated scientific machine learning for approximating functions and
solving differential equations with data heterogeneity, 2024. URL https://arxiv.org/abs/2410.13141,

Thomas TCK Zhang, Behrad Moniri, Ansh Nagwekar, Faraz Rahman, Anton Xue, Hamed Hassani, and
Nikolai Matni. On the concurrence of layer-wise preconditioning methods and provable feature learning.
In Forty-second International Conference on Machine Learning, 2025. URL https://openreview.net/
forum?id=aRUUFFycNh.

16

https://direct.mit.edu/neco/article/14/7/1723-1738/6626
http://mldiscuss.appspot.com/venue/ICML/2011/article/622/
http://mldiscuss.appspot.com/venue/ICML/2011/article/622/
http://mldiscuss.appspot.com/venue/ICML/2011/article/622/
https://arxiv.org/abs/2510.13034
https://arxiv.org/abs/2410.00232
https://proceedings.neurips.cc/paper_files/paper/2018/file/90365351ccc7437a1309dc64e4db32a3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/90365351ccc7437a1309dc64e4db32a3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/90365351ccc7437a1309dc64e4db32a3-Paper.pdf
https://arxiv.org/abs/2410.13141
https://openreview.net/forum?id=aRUUFFycNh
https://openreview.net/forum?id=aRUUFFycNh
https://openreview.net/forum?id=aRUUFFycNh

551

552

553

554

555

556

557

558

559

560

561

562

Under review as submission to TMLR

Appendix

A Notation used in paper

In general, capital bold letters are matrices (A), lower case bold letters are vectors (v), and lower case Greek
or Latin letters are constants (v, c). Moreover, there are some notation that is used consistently throughout
the paper. A reference table for these symbols is given in Table

Table 1: Reference for recurring notation in the paper.
| Symbol | Definition

k iteration counter
w Model parameters
F(w) Objective function at point w
F, := F(w*) | minimum function value at minimizer
Q learning rate
Qg learning rate scheduler/ learning rate at epoch k
@ fixed learning rate
¢, L strong convexity, Lipschitz constant for ||-||, = ||-|I;
e, L strong convexity, Lipschitz constant for preconditioned case: |||y,
ApL PL constant for preconditioned case: |||y,
B mini-batch of the dataset
M generic preconditioner where M ™! is applied to a vector
g(+,) gradient vector
k(M) Condition number of M (always based on |[|-||5)
Wy e lower and upper bound constants on the first moment of the gradient
K, Ky constant and scaling values of the affine bound on the gradient’s variance
Kg Constant needed for learning rate upper bound, dependent on Ky + u% > 0.
Ee, Ve Expectation and Variance of gradient with random realization &
B, constants affecting the lower and upper bound on «y, for diminishing learning rate proofs
v convergence constant in O((y + k)™!)
r radius of convex basin around local minimum
Npy Ny local neighborhood around minimizer, slightly larger local neighborhood for containment
T smallest iteration number where wy, ¢ N..
C The stochastic noise floor defined @L K /(2é1)
Nu(w) instantaneous preconditioned noise tr(M~13(w))
K uniform baseline for My(w) on the analysis region (noise floor constant)
aqe quadratic growth constant of locally convex basin a distance from the minimizer

B Mathematical preliminaries

B.1 Preconditioning

The condition number from a linear equation Ax = b bounds the accuracy of the solution x, and is defined as

r(A) = || All[|A7],

where if not stated ||-|| = ||-||,. If A is ill-conditioned, i.e. has a large condition number, then a small
perturbation in b can result in a large perturbation of the solution x. In addition to the accuracy of the
VA1

solution, the convergence rate of iterative methods, such as conjugate gradient, depends on r = NGISE

It is easy to see that r < 1, but if K > 1, then convergence will be extremely slow as 7 — 1. This motivates
the need for ways to reduce the condition number, through a technique called preconditioning. Throughout

17

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

Under review as submission to TMLR

this paper, we assume that M is the preconditioner, and we only have access to the action of M~! onto a
vector. More technically, we say M is an efficient preconditioner to the matrix A such that

K(M™'A) < K(A).

For clarity, even though we call M the preconditioner, we don’t explicitly form it. Additionally, we don’t
form M~ either but just observe the action of the preconditioner on a vector, M~ 'v.

There are different ways we can utilize the preconditioner M. First, assume M™! exists, then the left
preconditioned system is

M (Ax —b) =0.

Both the original linear system and the left-preconditioned system give the same solution. Additionally, we
could solve the right preconditioned system

AM™! (Mx) = b.

This requires us to solve AM ™'y = b for y, and then to recover the original solution, we would need to do
another linear system solve Mx =y for x.

These two techniques can be combined to perform split preconditioning. If we employ M as the right
preconditioner, and N as the left preconditioner, we compute

NAM ! (Mx) = Nb.

This is beneficial if one would like to scale the rows and columns of A differently. Additionally, observe that
if A is symmetric and NT = M~!, then NAM™! is also symmetric.

In the preconditioned version of CG (PCG), one solves the equivalent system M~'Ax = M~!b using a similar
three-term recurrence, but applied to the transformed system. The key requirement is that the preconditioner
M be symmetric positive definite and chosen so that M~!A has a significantly smaller condition number
than A itself. For practical purposes, PCG is used in matrix-free settings where only the action M~'v is
required, not the explicit matrix M1,

B.2 Preconditioners for SGD

In this section, we briefly review several preconditioners commonly used in the ML literature. First, if we
define gy, to be the sum of the squared gradients up until iteration k, we arrive at AdaGrad (Duchi et al.|
2011))

M adacrad = diag (v/gr + €) -

The issues with this is the gradient squared will only increase, leading to premature stopping. To coun-
teract that, exponentially moving weighted averages are widely used in diagonal preconditioners such as
Adam (Kingma & Bay, [2017) and its momentum-less counterpart RMSProp (Hinton) 2014):

MAdam = dlag (\/5 + 5))

where here s is an exponential moving average of squared gradients, and & > 0 is a small constant added for
numerical stability. While computationally efficient and robust to scaling, such diagonal preconditioners fail
to capture cross-parameter curvature, which may lead to suboptimal convergence in ill-conditioned problems.

The Hessian matrix of the loss function,
H(w) = V2L(w),

18

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

Under review as submission to TMLR

captures the exact second-order structure of the problem and provides the most complete curvature information.
However, computing or storing the full Hessian is typically infeasible in high-dimensional neural network
(NN) models. Moreover, it is not guaranteed to be positive definite in nonconvex settings, which complicates
its direct use as a preconditioner.

To reduce computational cost, one can approximate the Hessian using a single mini-batch, B:
Hp(w) = V2Li(w).

This matrix is cheaper to compute and can be updated online, but suffers from high variance and may not
preserve important curvature directions observed over the full dataset. While the Newton and quasi-Newton
methods work well for deterministic optimization, many have provided a distinction between these and other
methods for designing preconditioners in the stochastic setting (Li, |2018; Bottou et al., |2018]).

As opposed to constructing the Hessian, an alternative is the Gauss-Newton Hessian approximation, which
assumes the difference between the model and label is small in a least-squares norm. This idea was further
generalized to loss functions of the form ¢(6) = >, a, (b, (#)) in [Schraudolph| (2002). This generalized
Gauss-Newton matrix (GGN), which ignores second order information of b,, is SPD when a,, is convex even
when the true Hessian is indefinite.

Another alternate method is the FIM defined as
F(w) =E., [Vwlogpw(y | 2)Vwlogpw(y |) "],

which is guaranteed to be SPD under mild regularity conditions. For models trained with exponential-family
losses, the FIM coincides with the GGN (Martens, [2020; [Schraudolphl, 2002). Its structure allows for stable
and curvature-aware preconditioning.

The empirical FIM estimates the expectation in the FIM using a finite mini-batch:
1
=5 > Vwlogpw(y | z)Vwlogpw(y |)T
(=,y)EB

It is symmetric and positive semidefinite, and is often used in practice due to its lower computational overhead
compared to the full FIM. However, it may introduce bias depending on the mini-batch size and model
quality (Kunstner et al., [2019).

Femp (w)

Finally, the L-BFGS algorithm is a popular quasi-Newton method that builds a low-rank approximation
to the inverse Hessian using a history of gradients and iterates. It is well-suited to medium-scale problems
and has seen empirical success in ML (Bottou et al. 2018). Additional variants of L-BFGS have also been
proposed (Berahas et al.| [2016} |Bollapragada et al., 2018). While not traditionally framed as a preconditioner,
L-BFGS can be interpreted as implicitly applying a data-driven curvature approximation.

C Assumptions and proofs of theorems

C.1 Assumptions

Assumption 9 (Strong Convexity). The objective function F': R? — R is strongly conver in that there exists
a constant ¢ > 0 such that

1
F(W) 2 F(w) + VE(W) (W = w) + 5[—w|[3, ¥ (W,w) € R xR

From elementary optimization, this assumption is equivalent to F having a unique minimizer w* € R%. We
define F, := F(w™*).
Assumption 10 (Lipschitz continuity of gradient). The objective function F: RY — R is continuously
differentiable and the gradient function of F, VF: R% — RY, is Lipschitz continuous with Lipschitz constant
L>0, e

IVF(w) = VEW)||2 < L||w — W]l2

for all {w,w} C R<.

19

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

Under review as submission to TMLR

Remark 1. If F' is continuously twice differentiable, then VF is Lipschitz continuous with Lipschitz constant
L if and only if the eigenvalues of the matriz V2F(w) are bounded above by L for all w. F is strongly convex
with constant c if and only if the eigenvalues of the matriz V2 F(w) is bounded below by c for all w. Therefore,
L/c is an upper bound of the condition number of V2F(w).

Lipschitz continuity of gradient is an assumption made in nearly all convergence analyses of gradient-based
methods (Khaled & Richtarik} 2023)).

Assumption 11 (Bounds on First and Second Moments of Gradient). Assume

1. There exist scalars ug > > 0 such that, for all k € N,

VF(wi) Ee, [g(wr, &)] > pl| VE(w)][3 9)
|[Ee, [9(wi, E)lll2 < ncl[VF(Wi)]|2 (10)

2. There exist scalars K > 0 and Ky > 0 such that, for all k € N,
Ve, [9(wi, &) < K + Kv||[VF(wi)|l3 (11)

where Ve, [g(Wi, §5)] = Ee, [[lg(wi, €,)I[3] — |[Ee, [g(wi, €)]I13-

Theorem C.1 (Strongly convex objective function, fixed learning rate (Bottou et al. [2018)). Under
Assumptions [77] suppose that the SGD algorithm is run with fized learning rates, oy, = @ for all k € N
where

- H
D<a< IRa and Kg:= Ky +p% > u? > 0.
Then, the expected optimality gap satisfies the following for all k € N:

E[F(wy) — F.] < % + (1 = @ep)t! (F(wl) P

— (12)

alK\ koo aLK
2ep 2cp
Note that it follows from and that B¢, [||g(wi, &)|[3] < K+ Kg||[VF(wy)||3 with K¢ := Ky +pg >
2

we>0.

Theorem C.2 (Strongly convex objective function, diminishing learning rates (Bottou et al. 2018)). Under
the same assumptions as Theorem suppose that the SGD algorithm is run with a learning rate sequence
such that, for all k € N,

1
ap = %forsomeﬁ> @ and v > 0 such that oy < ﬁ
Then, the expected optimality gap satisfies the following for all k € N:
v

E|F —F < 13
(F(we) — P < (13)

where B LK
= _ 1H(F — F, 14
= { L () - 1) (1)

Under the assumption of strong convexity, the optimality gap can be bounded at any point by the 2-norm
squared of the gradient of the objective function at that particular point. That is,

2¢(F(w) — F,) < ||[VF(w)||3 for all w € R?

As before, F' has a unique minimizer, denoted as w* € R? with F, := F(w*).

Previously, the optimality gap was bounded by the 2-norm of the gradient of the objective function squared.
Here, however, the optimality gap is bounded by the M-norm of the gradient of the objective function squared.
That is,

28(F(w) — F(w.)) < |[VF(w)|[{g-

This result is used several times in the upcoming proofs. We repeat Lemma [3.1] here for convenience below:

20

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

Under review as submission to TMLR

Lemma C.3. Let F be twice differentiable and M_l =PPT. Then: (i) VF is M-Lipschitz with constant
L < all eigenvalues of PTV2F(w)P are < L; (ii) F is M-strongly convex with constant ¢ <= all
eigenvalues of PTV2F(w)P are > ¢.

Proof. We consider a change of parameter as used in preconditioning. Let w = Pz and W = Pz. Then
w — W = P(z — Z) which gives P~!(w — W) = z — Z. Define f(z) = F(Pz). Then V,f(z) = P'VF(w) and
V2f(z) = PTV2 F(w)P. Hence

IVf(2) = V[(@)|]2 = [P VwF(w) = PTVWF(W)|2 = [VwF(W) = Vw F(W)|m-1.
Therefore, the M-Lipschitz continuity of the gradient for F' is equivalent to the Lipschitz continuity of the

gradient for f, which is equivalent to that V2 f(z), i.e. PTV2 F(w)P, has eigenvalues bounded above by L.
Similarly, the statement on M-strong convexity follows from

F(w) + VE(w) T (% — w) + Sél% — wliis = f(e) + ¥/ (2) (5~) + ell7 — ol
O

We may assume L and ¢é are respectively the maximum and the minimum of the eigenvalues of PTV2F (w)P

for all w. So £ plays the role of the condition number of the preconditioned matrix PTV2F(w)P. If we

é
assume M~! = PP is such that % is smaller than —i, it basically reduces the condition number. We will
demonstrate that this accelerates the speed of convergence.

An important lemma comes directly from this assumption.

Lemma C.4. Under the assumption of M-Lipschitz continuity of gradient,
1.
F(w) < F(W)+VF(W) (w-w)+ §L||wa||%v[(15)
Proof. Consider the following,
1
F(w) = F(w) + / (VE(W + t(w —)T PP~ (w — w)dt
0
1
= F(W)+ VF(W) (w—Ww)+ / (VF(W+t(w —W)) — VF(W)) PP~ (w —w)dt
0
1
< F(W) + VE(W) ' (w — W) +/ Lllt(w — W)l ml[w — Wl[n di
0
which gives us our consequence that was to be shown. O

Notice that combining the variance definition (Eq. [3) with Assumption [3] we have the following

Ee, [ll9(Wi, &)l 31-1] < Kl VF(wi)|[3-1 + K with K¢ := Ky + pg > p* >0 (16)

The proof for the two theorems relies on the following lemmas.

Lemma C.5. Under Assumption[d] the iterates of Eq. [3 satisfy the following inequality for all k € N:
1 54
B¢, [F(Wii1)] — F(wi) < —x VF(wy) "Ee, [9(wWr, €;)] + 5O LEe, [llg(wk, &) [[Ra-1] (17)
Proof. Let w = wg 1 and W = wy. Then, by Assumption

1.
F(wis1) = F(wg) < VE(wi) T (Wii1 — wy) + 5 LWkt — Wil [Rg

21

676

677

678

679

680

681

682

683

Under review as submission to TMLR

Recalling that Eq. [2| gives wi 1 = wi — ap, M~ 1g(wy, €;), we then have,
F(wit1) — F(wi) < VF(wi) " (—axM ™ g(wy, &) + %ﬁH — M g(wi, €)1Ra
< — g VF(w) M g(wi €) + ad LM g(wi €)1 e
<~ VF(wi) "M g(wi, &) + 0 Ellg(we, €0l

2
Take the expectation of both sides

Ee¢, [F(Wii1)] — F(Wi) < = VF(wi) "M Ee, [9(Wi, &;,)] + %aiﬁEsk[Hg(Wmﬁk)H%/[—l]

Thus, the desired result is achieved. O
Lemma C.6. Under Assumptions[l] and[3, the iterates of Eq. 3 satisfy the following inequalities for all
k e N:
1 5.
Be, [F(wie1)] = F(wi) < —pail[VE(we)l[jg-1 + 505 LB, [[l9(wi, &) lRa-1] (18)
1 . 1 5.
< —(p— iakLKG)akHVF(wk)wa_l + iaiLK (19)

Proof. By Lemma and Assumption [2] it follows that

1 .
Ee, [F(Wit1)] — F(wWi) < —appl|[VE(wWi)|[3-1 + 502 LEe, [|lg(Wi, €0)l1R1-1]

2
2 L 5 2
< —appl | VE(We)|ljg-1 + 500l (Kol [VE (W) |[jg-1 + K)
1 . 1 5.
< — (,u — 2akLKG> Ozk||VF(Wk)||%/[71 + iaﬁLK
Hence, we have the desired inequalities. O

The final lemma necessary is as follows.

Lemma C.7. Under assumptz'ons @ and@ (with F. being the minimum of F'), suppose Eq. @ is run with

a learning rate sequence such that for all k € N, assume oy < U“(. (Note that ay, could be constant for all
G

k € N). Then the following inequality holds

E[F(Wgi1) — Fi] < (1 — agéu)E[F(wy) — Fi] + %aﬁﬁK (20)

Proof. Given the assumptions and using Lemma we have E¢, [F(Wiq1)] — F(wi) < —Capp(F (W) —

F,)+ %aiﬁK . Subtract F, from both sides and take the total expectation. We denote this total expectation
as E[-], which represents the expected value taken with respect to all random variables. That is, E[F(wy)] =
E&E& e Eékq [F(Wk)]

E[Ee, [F(wii1)] — F(wy) — B < E |—éagu(F(wi) — F.) + %aiﬁK R
E[Ee, [F(Wii1)] — Fi] < E[—éapp(F(wy) — F.) — F(wy) — Fu] + %aiﬁK
< E[—éappF(wy) + éoappuFy + F(wy) — Fu] + %a%ﬁ[(
< (1 = éopp)E[F(wi) — Fi] + %aiﬁK

which is our desired inequality (20)). 0O

22

684

685

686

687

688

689

690

691

692

693

694

Under review as submission to TMLR

C.2 Proofs of main theorems

C.2.1 Proof of Theorem
Proof. Using Lemma [C.6] we have for all k¥ € N:

1 . 1 ..
B, [F(wis1)] = F(wi) < —(4 = s0LKG)al VF(w)| Ry 1 + 50° LK

< - (u — % (LKG> LKG> al|VF(wi)|[3g-1 + @’ LK
= Ll [VE(wi) [+ + %a?ﬁK

< —SAUI2E(Fwy) — F(w.))] + 50° LK

< —aeu(F(wy) — F,) + %a%K

Now, subtract the constant % from both sides of inequality (Eq.)

BIF(wi) = P = G2 < (1 = aewBlF(w) = P+ 5alK - 52 o)
= (1 —acp) <JE[F(wk) ~-F,]- O;ifj) (22)

We must now notice the following chain of inequalities.

5,2

0<acp < H
LK
This inequality holds by the theorem assumption that 0 < @ < 7 ; .
G
ot e ¢
LKg = Lp? L

This inequality holds by (16| .) from Assumption E

Now, note that since ¢ < L it follows that < 1. The result thus follows by applying repeatedly through
iteration k£ € N. O

Corollary C.7.1. If g(wy, &) s an unbiased estimate of VF (wy), and the variance of g(wk,ﬁk) is bounded
by a constant K independent of VF(wy,), Then for a fived learning rate bounded by £ [F(wy) — Fi]

LK’

decreases to below O‘LK at the rate of ¢,

C.2.2 Proof of Theorem 3.3

Proof. Since the learning rates are diminishing and by the theorem statement, we have arLKg < a1LKg < I
for all k € N. By Lemma and Assumption

1 - 1 N
Ee, [F(Wit1)] — F(wi) < —(n — LK) ow|[VF (wi)|[34-1 + §aﬁLK

2
1) 1,
< —(n - §u)ak|\VF(Wk)IIM—1 + 5% LK

IN

—appé(F(wy) — Fo) + akLK

23

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

Under review as submission to TMLR

By Lemma using 7 we have

BLF (i) — 1] < (1~ axemB[F(we) — B + Lo} LK

Now, we prove the convergence result via induction. Consider the base case, k = 1.

Since v > (4 + 1)(F(w1) - F.) and v > 5 2L it follows that E[F(w) — F.] < 2.

Now, we assume that holds for some k£ > 1. Thus

N L 55
E[F (Wri1) — Fi] < (1 — apép)B[F(wy) — F.] + iaﬁLK
14

1 “
< (1 —apép)—— + —a2LK
<(akcu)’erk + 2ak

) e ()
=(1- —— - —+—) LK
('y+kcu ’y+k+2 v+ k
A 27
:(1_W)e+ﬁ%f(
k k 2k2
(1%—1) (ﬂéu—1> B2LK
= = vV — = v+ =
k2 k2 2k2

7 Béu—1 _ B’LK . B2LK
where k := v + k. Note that (=) v— S = 0sincev > S Fe=T)"

Thus,

E[F(Wii1) — Fi] < <k~_l>y_<5é/]£2—1>y+/3LKi v

where (1) follows since k2 > (k+ 1)(k — 1).

C.2.3 Proof of Lemma[3.4]

Proof. Fix k < T — 1 and assume wy, € N,, ie. distap(wg, S) <. If wiyy € N, then distyr(Wigr,S) >

ry =r + A. By the triangle inequality,

distpm(Weg1,S) < distm(We, S) + |[Wrgr — Willm <7+ [[We1 — Wi,

hence ||[wgi1 — wi|lm > A. Using Wiy — Wi = —ax M~ 1g, we have ||wyy1 — willm = axllgkllne-1, so

P(Wit1 ¢ Noy | Fi) < Plawllgrllva-—r > A | Fi).

Markov’s inequality and Assumption [§] yield

2 2
aj Elllgrllpg [Fr]
> < 5.

Plakllgrllv-+ > A Fi) <
C.2.4 Proof of Theorem
Proof. Fix ay, =@ and let F, := 0 (&,...,&,_1). Write g := g(wg, &) and define
Ti=inf{k>1: wip ¢ N,.}, Qr :={r>T}

Fix k < T — 1 and work on Q7. Then wi,wiy1 € N C N, C V. By convexity of V, the segment

[Wg, Wra1] C V, and by Assumption [5| (local M—smoothness),

A

_ L_
F(wi1) < F(wi) =G VF(wy) "M lge + 20 gillRgr - on Qr.

24

710

711

712

713

715

716

717

718

719

720

721

722

723

724

Under review as submission to TMLR

Taking conditional expectation given (Fy,27) and using the conditional-moment version of Assumption |§| on

Qr yields

Using @ < pu/(LK¢) gives o — 76 Kg >

On Qr we have wy € N, so Assumption implies ||[VF(wg)|[3-1 > 2fpL(F(wi) —

gives

with p := @pLp € (0,

E[F(wy)

E[F(WkJrl) -

E[F(Wi+1) —

E[F(Wt1) — Fu | Fi, Qr] < (1= p) (F(wy)

F,

Tterating gives, for all 1 < k < T,

Fo| Fie, Qr] < (F(wi) — Fu) —ap|[VE(W) [}

i
+ 5 (Kol VF(wi) |31 + K).

£a, hence

L
| Fier] < (F(wy) = F) = 0 [VE(wi) [}y + 507K,

2[1pL, 1t

— F. | Qr] yields for k < T —1,

Tpe1 < (1= p)ay + pC.

z, < C+ (1= p)" 1 (F(wy) — F. - 0),

which is the desired conditional geometric bound.

Define overshoot events

and the no-overshoot event & := f:_ll A¢. By Lemma m P(Ag) < Ok, hence by the union bound

Ay = A{wgp € Ny Wi €N} k=1,...

T-1
k=1

9

—F*)+PC»

1) and C := alK Taking expectations under P(- | Qr) and defining xy, :

T-1

9

Let 0 :=7AT. On Ep N{7r < T} we have w, € N, \ NV;, hence by Assumptionm

Since w, = w, on {7 < T},

Taking expectations gives

We upper bound the RHS of . Foreach k=1,...,

F(w,)—F.> B:= O“SG r2.

B 1{T§T}15T S (F(WU) - F*) 1gT.

BP(r <T,&r) <E[(F(w,) — Fi)leg,].

k
Ery1 = n Af,

Jj=1

T — 1, define the prefix no-overshoot event

(24)

F.,). Substituting into

(25)

(26)

so that &y1 € Fry1 and Ep C Exyr. On &y N{k < 7} we have wy € N, and wi1 € N, CV, so by
smoothness,

F(wii1) —

F(Wk

) <

A

_ L_
—aVF(wy) Mg + §a2||9k||12vrl

25

on 1 N{k <7}

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

Under review as submission to TMLR

Taking conditional expectation given Fj and using Assumption |§| (valid on {k < 7} since then wy € N.)
yields

L L
E[F(wWii1) = F(wi) [Fi] < —apllVE(wWi)lR1 + 58 (Kl VE (W) R + K) < Sa°K,
where the last inequality uses that the first term is nonpositive and we drop it.
Now note that F(w,) — F(wy) = f:_ll (F(Wit1) — F(Wi))1{k<ry and that on & we have Er C Epqa,
hence the above bound applies on &y N {k < 7} for every k < T — 1. Therefore,
T—1
E[(F(wo) = F(wi))le,] =) E[(F(Wis1) = F(Wi))le, 1ikary]
k=1
T—1
=) E[lerihanyE[F (Wip1) — F(wi) | Fi]]
k=1
T—1 2 A
L L
<Y Z@*K = —a’K (T - 1),
2 2
k=1
which implies
L
B[(F(wo) ~ F2)le,] < (F(wy) = E.) + 50K (T - 1) (27)
Combining and yields
F(wy) — F, + La?K (T -1
P(r <T,&p) < L) “Fo t KT 1)
B
Finally, using ,
F(wy) - F+La?k (T-1) =
P(r < T) < B(r < T,&r) + P(£5) < o) 5 =0y
k=1
and rearranging gives the stated lower bound on P(7 > T) (with truncation at 0). O

C.2.5 Proof of Theorem

Proof. Let Fy := o(&q,...,&,_1), set ap = B/(y + k), and write g := g(W, ;). Define 7 := inf{k > 1:
Wi ¢ NT}, QT = {7‘ > T}, and Sk = F(Wk) — F..

Fix k < T — 1 and work on Q7. Then wy, wi1 € N, C N, C V. Since V is convex, [wy, Wy41] C V and
Assumption [5| implies the M—smoothness inequality:

_ L
F(wi41) < F(wyg) —ap VE(wg) TM™ g + SollgrllRe-1 on Q.

Take conditional expectation given Fj and using Assumption |§| (valid on {k < 7} since then wy, € N;.) yields:

~

L
E[Sks1 | Fi,] < St — anpt [VE (w31 + 50 (K VE (w31 + K).

Because ay < oy = /(v +1) < p/(LK¢), we have pay, — %aiKG > Lay, hence

~

L
E[Si+1 | i, 1] < Si = Sanl|VE(wi) 31 + 5 oK.
On Q7 we have wj, € N, so Assumption [yields ||[VF(wy)|[3;-1 > 2/fipr,Sk. Therefore, with m := pfipr, and
¢:=LK/2,
E[Skr1 | Fr, Q1] < (1 — mag)Sy + caj.

26

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

Under review as submission to TMLR

Now take expectation under P(- | Q) and define xy := E[Sy | Qr]. Then for all k <T —1,
rp1 < (1 —mayg)zy + cai.
Substituting ay = 8/(y + k) gives

b

CEwOEA a:=pfm, b:=cp

o < (1= o+

a
v+ k

Since 8 > 2/(fipLu), we have a > 1. Let

,(7‘1‘1)371}7 1 = F(wy) — F..

V= max{ b
o a—1

We prove by induction that z; < v/(y+ k) for 1 < k < T. The base case holds because x; < v/(y+ 1) by
definition of v. Assuming zy < v/(y + k), we obtain

a) v b v b—av

<(1- + = + .
P ST R T R R (k)
Using v > b/(a — 1) implies b — av < —v, hence

v v v v

v
— < - = .
Y+k (v+k)?2 T y+k (v+k)(+k+1) y+k+1

Tpe1 <

Thus z <v/(y+k) forall 1 <k <T,ie.

v
E[F(wy) — F. | Q7] < . 1<k<T
[F(wg) | T]_WJFIC <k<
Define overshoot events Ay := {wy, € N, w1 ¢ N, } for k =1,...., T — 1 and &p := Z:_ll Af. By

Lemma [3.4] P(Ay) < 6y, hence
T-1
P(&r) < Z Ok
k=1
Let 0 :=7AT. On Er N {7 < T} we have w, € N, \ N, so Assumptionmyields

F(w;)—F., > B:= Q%TQ.

Since w, = w, on {7 < T}, it follows that
B 1{TST}15T S (F(Wg) — F*)]_gT.

Taking expectations gives
BP(r <T,&r) <E[(F(w,) — Fi)lg,].

We upper bound the right-hand side by telescoping. For k =1,...,T—1, define the prefix event &, := ﬂ;:ll Af
(so & € F and Ep C &). On & N{k < 7} we have w; € N, and wy41 € N, C V, so the smoothness
inequality and Assumption [6] imply

E[F(Wii1) — F(wg) | Fi] < cas on & N{k < 7},

using again ay < u/ (ﬁKg) to drop the (nonpositive) gradient-dependent part. Multiplying by 1g, 1{x<r}
and taking expectations yields

E[(F(wi+1) — F(wi)) Lep Lineny] < cai.

27

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

785

786

787

788

789

790

791

Under review as submission to TMLR

Summing over k =1,...,T — 1 and using F(w,) — F(w;) = Zf;f(F(wkH) — F(wp))1ip<ry gives

T-1
E[(F(w,) ~ F(wi)le,] <e Y of.
k=1
hence
T-1
E[(F(wy) — Fu)le,] < (F(wy) — Fi) + CZ oF
k=1
Therefore,
— T-1 2
P(r <T,&r) < Flwi) = Fited g op
B
Finally,
F . F* T—-1 2 T-1
Pr>T)>1-P(r <T,&r)—P(EF) >1— (w1) ;_CZkzl O Z Sk
k=1
and truncation gives the max{0, -} form. O

D Numerical experiments

D.1 Implementation details

The algorithms in this paper were implemented in Python using jax (version 0.5.0), flax (version 0.10.0),
and optax (version 0.2.4). All timing results reported in Section Were measured on a consistent hardware
platform running Ubuntu 24.04.2 LTS, equipped with an Intel(R) Core(TM) i7-12700K CPU (8 Performance-
cores @ 3.60 GHz and 4 Efficient-cores @ 2.70 GHz), and 64 GB of system memory. All experiments were
executed in double precision arithmetic to ensure numerical stability for the challenging SciML problems.

D.2 Baseline methods and experimental setting

Our experiments evaluated several optimization algorithms to validate our theoretical analysis of precon-
ditioning effects. We implemented vanilla SGD, SGD with momentum (5 = 0.9), and the preconditioned
methods using GGN and Hessian approximations. The preconditioned methods employ conjugate gradient to
efficiently approximate matrix-vector products with the inverse preconditioner, avoiding the prohibitive cost
of explicitly forming and inverting the full matrices. This approach provides a computationally tractable way
to incorporate curvature information into the optimization process. For Adam (with 51 = 0.9, S = 0.999)
and L-BFGS (with memory size 100 and maximum line search of 100 steps), we utilized the implementations
available in the optax library.

Our experimental protocol employed a structured two-phase optimization strategy. Phase I utilized Adam
with a learning rate of 0.001 until convergence slowed significantly. This established a common starting
point in the optimization landscape and helped navigate past initial high-gradient regions. In Phase II, we
transitioned to the respective optimization methods for direct performance comparison. The specific duration
of each phase varied by task complexity and is detailed in the respective experimental sections.

We individually optimized learning rates for each method-task combination through grid search, deliberately
omitting learning rate schedulers to isolate the inherent convergence properties of each optimizer. For
Adam, we searched within the range {0.001,0.0005, 0.0002, 0.0001, ...,0.00001}. The preconditioned methods
required different learning rate ranges due to their curvature properties: CG-Hessian and CG-GGN used
{1.0,0.5,...,0.001}. This difference reflects our theoretical analysis that effective preconditioning can support
larger learning rates when operating near local minima. For vanilla SGD and momentum SGD, we initially
explored the same ranges as Adam and expanded to wider intervals when necessary to ensure optimal
performance. This methodology ensured a fair comparison by allowing each optimizer to operate at its most
effective learning rate for each specific task.

28

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

Under review as submission to TMLR

To ensure robust experimental results, we conducted each experiment five times using different random
seeds (42 to 46 for Phase I and 43 to 47 for Phase II). This approach accounts for the inherent stochasticity
in neural network training processes and allows us to report mean performance metrics. For our timing
analysis, we implemented a precise measurement protocol that isolates the computational efficiency of the
optimization methods themselves. Specifically, we excluded all data generation and preprocessing overhead,
capturing only the cumulative duration of the actual training iterations on identical hardware configurations.
This methodology provides an equitable assessment of computational efficiency, particularly important
when comparing methods with substantially different per-iteration costs, such as first-order methods versus
preconditioned approaches that require conjugate gradient iterations.

D.3 Noisy data regression

For the Franke function regression experiment, we used a neural network with two hidden layers of 50 neurons
each and ReLU activation functions. We resampled the dataset every epoch, generating 256 points with
additive Gaussian noise as described in Appendix and illustrated in the left panel of Figure[6] For the
preconditioned methods, we employed 5 conjugate gradient iterations. The right panel of Figure [6] extends
our main results by displaying not only the mean performance across 5 independent runs but also the variance
bands for each optimization method.

Epoch vs Relative Training Loss
Franke Function Dataset Samples — Adam
SGD
—— SGD-Momentum
—— CG-Hessian
—— CG-GGN

— L-BFGS

Relative Loss

o 1000 1250
Epoch

Figure 6: Left: Visualization of the Franke function dataset sampling. Right: Franke function regression
performance averaged over 5 independent runs. Left: Training loss versus epochs with Phase I transitioning
to Phase II at epoch 500 with variance.

D.4 Physics-informed neural networks

For solving the Poisson equation with PINNs, we used a neural network with two hidden layers of 50 neurons
each and tanh activation functions. We resampled the dataset every epoch, generating 1,000 points within
the domain and 200 points on the boundary, as described in Appendix and illustrated in the left panel of
Figure[7] For the preconditioned methods, we employed 20 conjugate gradient iterations. The right panel of
Figure[7] shows that the mean loss trajectory is accompanied by a tight variance envelope across 5 independent
runs.

D.5 Green’s function learning

For both cases in the Green’s function experiments, we used a neural network with five hidden layers of
20 neurons each and tanh activation functions. We resampled the dataset every epoch, generating 1,000
points within the domain, 500 points such that x is close to y, and 200 points on the boundary. For the
preconditioned methods, we employed 20 conjugate gradient iterations. Figure [9] extends our main results by
displaying not only the mean performance across 5 independent runs but also the variance bands for each
optimization method.

29

Under review as submission to TMLR

Epoch vs Relative Training Loss

—— Adam
SGD
SGD-Momentum
CG-Hessian
CG-GGN

Dataset: points

1000 interior points, 200 boundar:

.

g

Interior points
Boundary points .

Relative Loss

1500 0 2000

Figure 7: Left: Visualization of the sampling strategy for the 2D Poisson equation PINNs. The plot shows
the distribution of 1,000 collocation points within the domain (blue) and 200 points along the boundary
(red) used for enforcing the PDE and boundary conditions respectively. Right: Poisson equation PINNs
performance averaged over 5 independent runs. Training loss versus epochs with Phase I transitioning to

Phase II at epoch 1,000 with variance.

Green's Function Dataset Points Visualization

Random Interior (1000 points)
Close (x,y) Interior (500 points)
Boundary (200 points)
- x=y line

(0-=0,0100)

Figure 8: Visualization of the sampling strategy for Green’s function learning. The plot shows three categories
of training points: randomly distributed interior points (blue, 1,000 points), points concentrated near the
diagonal where z is close to y (green, 500 points) to capture the near-singularity behavior characteristic of
Green’s functions, and boundary points (red, 200 points) used to enforce homogeneous Dirichlet boundary

conditions.

Epoch vs Relative Training Loss Epoch vs Relative Training Loss

Relative Loss

Adam

Relative Loss

Adam

SGD
SGD-Momentum
CG-Hessian
CG-GGN

L-BFGS

T

SGD
SGD-Momentum
CG-Hessian
CG-GGN

L-BFGS

T

Epoch

Epoch

Figure 9: Green’s function learning performance averaged over 5 independent runs. Left: Training loss versus
epochs with Phase I transitioning to Phase IT at epoch 2,000 with variance for Laplacian. Right: Training loss
versus epochs with Phase 1 transitioning to Phase II at epoch 2,500 with variance for convection-diffusion.

30

	Introduction
	Related work
	Preconditioned SGD convergence analysis
	Convergence in the globally strongly convex setting
	Local convergence in the nonconvex setting
	Practical preconditioners for SGD

	Numerical results
	Diagnostic quadratic model
	SciML problems
	Noisy data regression
	Physics–informed neural networks (PINNs)
	Green’s function learning

	Conclusion
	Notation used in paper
	Mathematical preliminaries
	Preconditioning
	Preconditioners for SGD

	Assumptions and proofs of theorems
	Assumptions
	Proofs of main theorems
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Lemma 3.4
	Proof of Theorem 3.5
	Proof of Theorem 3.6

	Numerical experiments
	Implementation details
	Baseline methods and experimental setting
	Noisy data regression
	Physics-informed neural networks
	Green's function learning

