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Abstract

Stochastic Gradient Descent (SGD) often slows in the late stage of training due to anisotropic1

curvature and gradient noise. We analyze preconditioned SGD in the geometry induced2

by a symmetric positive definite matrix M. Our bounds make explicit how both the3

convergence rate and the stochastic noise floor depend on M. For nonconvex objectives, we4

establish a basin-stability guarantee in a local M-metric neighborhood around a minimizer5

set: under local smoothness and a local PL condition, we give an explicit lower bound on the6

probability that the iterates remain in the basin up to a time horizon. This perspective is7

particularly relevant in Scientific Machine Learning (SciML), where reaching small training8

losses under stochastic updates is closely tied to physical fidelity, numerical stability, and9

constraint satisfaction. Our framework covers both diagonal/adaptive and curvature-aware10

preconditioners and yields a practical criterion: choose M to improve local conditioning11

while attenuating noise in the M−1-norm. Experiments on a quadratic diagnostic and three12

SciML benchmarks support the predicted rate–floor behavior.13

1 Introduction14

Stochastic Gradient Descent (SGD) has long been the workhorse of large-scale machine learning. Since15

its early application to multilayer perceptrons in the 1960s (Amari, 1967), its simplicity, scalability, and16

low per-iteration cost have made it a popular optimizer for deep learning models (Bottou et al., 2018).17

Classical convergence theory for SGD under noisy gradients typically guarantees a sublinear rate of O(1/k)18

under convexity and smoothness assumptions (Robbins & Monro, 1951; Blum, 1954). The theory for SGD19

convergence under various combinations of conditions is well studied and documented in Garrigos & Gower20

(2024); Khaled & Richtárik (2023), and Francis Bach (2024).21

Recent theoretical developments have established linear convergence for SGD under stronger conditions, such22

as strong convexity, smoothness, and bounded noise (Bottou et al., 2018). When the loss F is c-strongly23

convex, has L-Lipschitz gradients, and the learning rate α satisfies α ≤ µ/(LKG), the iterates wk satisfy24

E[F (wk) − F∗] ≤ (1 − αcµ)k−1
(

F (w1) − F∗ − αLK

2cµ

)
+ αLK

2cµ
, (1)

where µ, K, and KG are constants associated with the stochastic gradients (defined in Assumptions 9–11),25

and let w∗ denote the unique minimizer and F∗ := F (w∗) the optimal value. Eq. (1) highlights two late-stage26

drivers: a linear contraction factor 1 − αcµ and a stochastic error floor27

αLK

2cµ
= α

2µ
κ K,

where κ := L
c is the (Euclidean) condition number associated with curvature. For any admissible α, the floor28

scales with κ and K, while the contraction depends on the product αcµ.29

Many successful optimizers can be viewed as preconditioned variants of SGD. Adaptive methods such as30

Adagrad (Duchi et al., 2011), Adam (Kingma & Ba, 2017), and RMSProp (Hinton, 2014), structured31
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second-order approaches including Shampoo (Gupta et al., 2018), K-FAC (Martens & Grosse, 2015; Ishikawa32

& Karakida, 2024), and Sophia (Liu et al., 2024), as well as quasi-Newton methods like L-BFGS (Liu &33

Nocedal, 1989; Chen et al., 2014), all apply a linear transformation to the gradient that reshapes both34

curvature and gradient noise. From this perspective, their empirical effectiveness indicates that late-stage35

optimization is influenced not only by the choice of learning rates, but also by how the preconditioning alters36

local conditioning and the geometry of stochastic noise. Despite their widespread use, however, there is still37

no unified theoretical framework that identifies which properties of a preconditioner determine the late-stage38

convergence rate and the attainable noise floor.39

Motivated by this perspective, we study the preconditioned SGD update in the following form

wk+1 = wk − αkM−1g(wk, ξk), (2)

where M ≻ 0 is a symmetric positive definite (SPD) matrix that defines the geometry in which both curvature40

and noise are measured, g(wk, ξk) = ∇wFk(w) is the stochastic gradient, αk is the learning rate, ξk is an i.i.d.41

sample drawn at iteration k. The standard (vanilla) SGD update is recovered when M = I. Our goal is not42

to propose a new optimizer, but to provide a principled framework to analyze and compare preconditioners43

in the late stage of training.44

Main contributions We investigate how preconditioning influences the late-stage behavior of SGD within45

a well-behaved basin of the loss surface. By analyzing preconditioned SGD in the M-induced geometry, we46

show how rescaling the gradient affects both the convergence rate and the attainable noise floor, and we47

derive criteria that clarify which properties of a preconditioner matter in the late stage of training.48

1. Preconditioned SGD in the strongly convex baseline. We extend the classical “linear rate49

+ noise floor” theory for SGD to updates preconditioned by a fixed SPD matrix M. The resulting50

bounds show that late-stage behavior is controlled by (i) an effective conditioning in the M-geometry51

and (ii) the preconditioned gradient-noise level; the attainable error floor scales with their product.52

Since admissible constant stepsizes are limited by M-smoothness, improved conditioning allows larger53

stepsizes and hence faster contraction. With diminishing stepsizes, we obtain an O(1/k) rate.54

2. Local nonconvex regime with basin stability. Under a local M–PL condition and local55

smoothness, we establish late-stage convergence guarantees inside a well-behaved basin around a56

minimizer set, again with an explicit rate–floor structure. In addition, we provide a basin-stability57

bound that lower-bounds the probability of remaining in the basin up to a horizon.58

3. Design criteria and empirical evidence. Our theory yields a simple design principle: choose M59

to improve local conditioning while attenuating noise in the M−1-norm; the attainable late-stage60

floor tracks their product. We validate this mechanism on (i) a quadratic diagnostic where the61

relevant constants can be computed in closed form, and (ii) three SciML benchmarks where late-stage62

behavior is strongly tied to final accuracy.63

While late-stage convergence is broadly relevant, it is especially important in SciML. Here, training losses64

encode physically meaningful quantities (e.g., PDE residuals, boundary conditions, stability). Unlike standard65

ML tasks where moderate error may still be acceptable, small reductions in the final loss can determine whether66

solutions conserve invariants, remain stable over long horizons, or meet scientific accuracy requirements. In67

this setting, the optimizer’s asymptotic behavior—and particularly the final noise floor—directly governs68

physical fidelity (Zhang et al., 2024).69

2 Related work70

Recent work has advanced the theoretical understanding of preconditioned and adaptive variants of SGD71

under various structural and noise assumptions. Koren et al. (2022) showed that preconditioned SGD72

achieves a rate of O(1/
√

k) for general stochastic convex optimization, though convergence can stagnate in73

the presence of persistent gradient noise. Faw et al. (2022) further established that adaptive SGD attains74
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an order-optimal Õ(1/
√

k) rate for nonconvex smooth objectives under affine variance conditions, without75

requiring bounded gradients or finely tuned learning rates. More recently, Attia & Koren (2023) derived76

high-probability guarantees of Õ(1/k + σ0/
√

k) for adaptive methods in both convex and nonconvex settings,77

relaxing the need for strong smoothness or prior parameter knowledge.78

These results primarily address global convergence behavior across general problem classes. In contrast, our79

analysis focuses on the asymptotic regime—the late stage of training where iterates lie within a well-behaved80

basin around a local minimizer and optimization progress is limited by curvature anisotropy and gradient81

noise. In this regime, we show that both the convergence rate and the noise floor of the preconditioned SGD82

are determined by curvature and variance quantities measured in the preconditioned geometry. This local,83

geometry-aware viewpoint clarifies why curvature-informed preconditioners and adaptive algorithms yield84

faster and more stable late-stage convergence.85

Other techniques such as batch normalization (Lange et al., 2022) and weight decay (Loshchilov & Hutter,86

2017; Barrett & Dherin, 2020) can also be interpreted as implicit forms of preconditioning, though they operate87

through different regularization mechanisms. For comprehensive surveys of explicit preconditioned SGD and88

related adaptive methods, we refer the reader to Ye (2024). Beyond convergence rates, preconditioning has89

also been studied as an implicit regularization that may affect generalization (ichi Amari et al., 2021).90

3 Preconditioned SGD convergence analysis91

We first analyze the globally strongly convex case as a baseline to make the role of the preconditioned geometry92

explicit. Although this setting is rarely realized in deep learning, it reveals the essential mechanism through93

which preconditioning affects convergence. The analysis shows how curvature and noise floor transform94

under a change of metric, providing a principled way to compare different choices of M. This also lays the95

groundwork for the local nonconvex analysis in Section 3.2, where M influences both basin size and stability.96

3.1 Convergence in the globally strongly convex setting97

We establish convergence guarantees for preconditioned SGD when the objective is globally strongly convex.98

This simplified setting allows for a transparent analysis of how a preconditioner reshapes both the effective99

curvature and the gradient noise. While the derivations parallel the Euclidean case, expressing them in the100

M-induced geometry makes the dependence on the preconditioner explicit and lays the groundwork for the101

more general nonconvex results to follow.102

Curvature assumptions. Preconditioning redefines smoothness and strong convexity through effective103

constants (L̂, ĉ) measured in the M–induced norm.104

Assumption 1 (M-strong convexity). F : Rd →R is M-strongly convex: there exists ĉ > 0 such that105

F (w) ≥ F (w) + ∇F (w)⊤(w − w) + 1
2 ĉ ∥w − w∥2

M, ∀ w, w ∈ Rd.

Assumption 2 (M-Lipschitz gradient). ∇F is M-Lipschitz with constant L̂ > 0:106

∥∇F (w) − ∇F (w)∥M−1 ≤ L̂ ∥w − w∥M, ∀ w, w ∈ Rd.

These conditions are direct analogues of the Euclidean definitions. Writing M−1 = PP⊤ gives the spectral107

characterization:108

Lemma 3.1. Let F be twice differentiable and M−1 = PP⊤. Then: (i) ∇F is M-Lipschitz with constant109

L̂ ⇐⇒ all eigenvalues of P⊤∇2F (w)P are ≤ L̂; (ii) F is M-strongly convex with constant ĉ ⇐⇒ all110

eigenvalues of P⊤∇2F (w)P are ≥ ĉ.111

Hence, preconditioning improves the effective condition number whenever L̂/ĉ < L/c.112

Noise assumptions. We measure the first and second moments of the stochastic gradient in the M−1–norm.113

Specifically, holding wk fixed, we define the variance with respect to the sampling of ξk by114

Vξk

[
g(wk, ξk), ∥ · ∥M−1

]
:= Eξk

[
∥g(wk, ξk)∥2

M−1

]
−
∥∥Eξk

[g(wk, ξk)]
∥∥2

M−1 . (3)
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Assumption 3 (Moment bounds in M−1). For the iterates of (2), there exist constants µG ≥µ>0, K ≥0,
and KV ≥0 such that, for all k,

⟨∇F (wk), Eξk
[g(wk, ξk)]⟩M−1 ≥ µ ∥∇F (wk)∥2

M−1 , (4)
∥Eξk

[g(wk, ξk)]∥M−1 ≤ µG ∥∇F (wk)∥M−1 , (5)
Vξk

[
g(wk, ξk), ∥ · ∥M−1

]
≤ K + KV ∥∇F (wk)∥2

M−1 . (6)

We call K the preconditioned noise level because the variance in the M−1–norm satisfies115

Vξ

[
g(w, ξ), ∥ · ∥M−1

]
= tr

(
M−1Σ(w)

)
,

where Σ(w) := Cov(g(w, ξ) | w). In the stationary case Σ(w) ≡ Σ, we have the fixed tr(M−1Σ). More116

generally, on a region containing the iterates it is natural to choose K ≥ supw tr(M−1Σ(w)), so K is a117

uniform baseline for the preconditioned noise.118

Under these assumptions we obtain the usual linear and sublinear rates, but with constants that depend119

explicitly on the preconditioned geometry.120

Theorem 3.2. Under Assumptions 1–3 (with Fmin = F∗), suppose (2) uses a fixed learning rate αk = α with121

0 < α ≤ µ

L̂ KG

where KG = KV + µ2
G ≥ µ2 > 0.

Then, for all k ∈ N,

E[F (wk) − F∗] ≤ α L̂ K

2 ĉ µ
+ (1 − α ĉ µ)k−1

(
F (w1) − F∗ − α L̂ K

2 ĉ µ

)
k→∞−−−−→ α L̂ K

2 ĉ µ
. (7)

Theorem 3.2 shows that, with a fixed learning rate α, preconditioned SGD contracts linearly with factor122

1 − α ĉ µ and converges to an asymptotic floor123

α L̂ K

2 ĉ µ
= α

2µ

( L̂

ĉ

)
K.

Thus, the floor factorizes into an effective condition number L̂/ĉ and a preconditioned noise level K. In the124

late stage of training, we have F (wk) − F∗ = O(αK) and ∥∇F (wk)∥2
M−1 = O(αK). Substituting into the125

variance bound (6) gives126

Vξk

[
g(wk, ξk), ∥ · ∥M−1

]
≤ K + O(αK),

so for small α the variance is dominated by the baseline K term.127

Moreover, since Vξ[g(w, ξ), ∥ · ∥M−1 ] = tr(M−1Σ(w)), we may view K as an upper baseline for the precondi-128

tioned noise tr(M−1Σ(w)) along the late–stage trajectory. Preconditioning reduces this baseline through its129

effect on tr(M−1Σ(w)); choosing M to attenuate high–variance directions lowers this trace and thus lowers130

the effective noise floor.131

Theorem 3.3. Under Assumptions 1–3 (with Fmin = F∗), suppose (2) uses αk = β/(γ + k) with β > 1
ĉ µ132

and γ > 0 chosen so that α1 ≤ µ/(L̂KG). Then, for all k ∈ N,133

E[F (wk) − F∗] ≤ ν

γ + k
, ν := max

{
β2L̂K

2(βĉµ − 1) , (γ + 1)
(
F (w1) − F∗

)}
. (8)

With diminishing learning rates, the noise floor vanishes and Theorem 3.3 shows that preconditioned SGD134

attains the optimal O(1/k) rate. Preconditioning no longer changes the rate itself—it always decays like135

1/k—but it directly influences the leading constant ν which has the same structure as the fixed-learning-rate136

floor: an effective condition number L̂/ĉ multiplied by the preconditioned noise level K. Thus even when137

the noise floor disappears, late–stage performance is still governed by the same metric–dependent quantities138

(L̂, ĉ, K). Consequently, effective preconditioners must again balance curvature alignment (to reduce L̂/ĉ)139

with noise attenuation (to reduce K), improving both the asymptotic constants in the O(1/k) regime.140
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3.2 Local convergence in the nonconvex setting141

The empirical loss F (w) over network parameters is typically nonconvex, and its local geometry near142

minimizers is rarely strictly convex. Empirical studies show that trained models often converge to regions143

that are flat in many directions and exhibit highly degenerate curvature—manifested as a cluster of very144

small or near-zero eigenvalues in the Hessian—arising from overparameterization, symmetries, and parameter145

non-identifiability (Sagun et al., 2018; Ghorbani et al., 2019). Despite this degeneracy, the optimization146

dynamics remain structured: iterates contract along directions with significant curvature while the loss147

changes little along flat directions. To describe this late-stage regime without assuming strong convexity, we148

impose a local Polyak–Łojasiewicz (PL) condition (Chan, 1979; Karimi et al., 2016) in the M–geometry, which149

enforces gradient domination only in informative directions and tolerates flat or weakly curved subspaces.150

This flat-tolerant formulation provides a natural framework to study how preconditioning reshapes local151

curvature and noise, governing contraction rates, asymptotic error floors, and stability during the final phase152

of optimization.153

Additional local assumptions. Fix an SPD matrix M and an open neighborhood U ⊂ Rd. Assume the154

local minimizer set155

S := arg min
w∈U

F (w) ̸= ∅, F∗ := min
w∈U

F (w) = F (s) for any s ∈ S.

Write ∥x∥M := (x⊤Mx)1/2 and distM(w, S) := infs∈S ∥w − s∥M. For radii 0 < r < r+, define the M–metric156

neighborhoods157

Nr := {w : distM(w, S) ≤ r}, Nr+ := {w : distM(w, S) ≤ r+} ⊆ U .

We assume the following conditions hold on Nr (for the iterates) and on Nr+ (for the exit bound).158

Assumption 4 (Local M–PL on Nr). There exists µ̂PL > 0 such that, for all w ∈ Nr,159

2µ̂PL
(
F (w) − F∗

)
≤ ∥∇F (w)∥2

M−1 .

Assumption 5 (Local M–Lipschitz gradient on a convex neighborhood of Nr+). There exists an open convex160

set V with Nr+ ⊂ V ⊆ U and a constant L̂ > 0 such that, for all w, w ∈ V,161

∥∇F (w) − ∇F (w)∥M−1 ≤ L̂ ∥w − w∥M.

Assumption 6 (Local stochastic gradient conditions on Nr). Let (Fk) denote the natural filtration and set162

gk := g(wk, ξk). There exist constants µ ∈ (0, 1], KG ≥ 0, and K ≥ 0 such that, for every k with wk ∈ Nr,163 〈
∇F (wk), E[gk | Fk]

〉
M−1 ≥ µ ∥∇F (wk)∥2

M−1 , E
[
∥gk∥2

M−1 | Fk

]
≤ KG ∥∇F (wk)∥2

M−1 + K.

Assumption 7 (Local quadratic growth (QG) on Nr+). There exists αQG > 0 such that, for all w ∈ Nr+ ,164

F (w) − F∗ ≥ αQG
2 distM(w, S)2.

165

Assumption 8 (Controlled one-step overshoot on Nr). Fix radii 0 < r < r+ and a horizon T ≥ 1, and set166

∆ := r+ − r. There exist deterministic numbers (δk)T −1
k=1 with δk ∈ [0, 1) such that for every k ≤ T − 1,167

1{wk∈Nr} α2
k E
[
∥gk∥2

M−1 | Fk

]
≤ δk ∆2 a.s.

Lemma 3.4 gives the one-step containment probability implied by Assumption 8.168

169

Lemma 3.4 (Containment probability implied by Assumption 8). Under Assumption 8, for every k ≤ T − 1,170

wk ∈ Nr =⇒ P
(
wk+1 ∈ Nr+ | Fk

)
≥ 1 − δk.
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These local assumptions are the basin–restricted analogue of the global conditions in Section 3.1. The local171

M–PL condition replaces global strong convexity by a gradient–domination inequality in the M–metric: it172

enforces curvature only in directions that drive descent while permitting flat or weakly curved directions.173

The local M–Lipschitz gradient assumption on a convex neighborhood V ⊃ Nr+ provides a quadratic upper174

model along any update segment that stays in V:175

F (w) ≤ F (w) + ∇F (w)⊤(w − w) + L̂
2 ∥w − w∥2

M.

In our finite-horizon analysis, this condition is invoked only on trajectories for which the iterates (and hence176

the corresponding update segments, by convexity) remain inside V up to time T .177

The local stochastic gradient condition (Assumption 6) mirrors the global moment bounds in Assumption 3,178

but is only required to hold when wk ∈ Nr. It imposes a first-moment alignment condition and a second-179

moment bound in the M−1–norm, which is the natural scale for preconditioned updates. The local QG180

condition ensures that the objective grows at least quadratically with distM(w, S) near the basin boundary—a181

property that holds, for example, when curvature is positive in normal directions—and it supplies the barrier182

needed in the optional-stopping/exit-time argument.183

Assumption 8 controls rare one-step overshoots from the inner basin Nr to outside the enlarged neighborhood184

Nr+ . When wk ∈ Nr, the preconditioned update moves a distance185

∥wk+1 − wk∥M = αk ∥gk∥M−1 .

Since distM(wk, S) ≤ r on Nr, the triangle inequality implies that wk+1 /∈ Nr+ can occur only if αk∥gk∥M−1 >186

∆ with ∆ := r+ −r. Assumption 8 bounds the conditional second moment of ∥gk∥M−1 relative to ∆; therefore,187

by Markov’s inequality,188

P(wk+1 /∈ Nr+ | Fk) ≤ δk whenever wk ∈ Nr.

Together, these assumptions describe a local regime that accommodates moderate nonconvexity and flatness189

while still providing sufficient structure for quantitative finite-horizon convergence and stability guarantees190

under stochastic gradients.191

Theorem 3.5 (Convergence in a local basin up to a finite horizon). Fix radii 0 < r < r+ and a horizon192

T ≥ 1, and let193

τ := inf{k ≥ 1 : wk /∈ Nr}, ΩT := {τ > T}.

Assume: (i) Assumptions 4 and 6 hold on Nr; (ii) Assumption 5 holds on a convex set V with Nr+ ⊂ V ⊆ U ;194

(iii) Assumption 7 holds on Nr+ ; (iv) Assumption 8 holds with horizon T and failure probabilities (δk)T −1
k=1 ;195

and (v) the conditional-moment version of Assumption 6 holds on ΩT (i.e., the first/second-moment bounds196

are valid when conditioning on (Fk, ΩT ) for k ≤ T − 1).197

Suppose w1 ∈ Nr and use a constant stepsize αk = α such that198

0 < α ≤ µ

L̂KG

(if KG > 0), and 0 < α <
1

µµ̂PL
.

Define199

ρ := α µ̂PL µ ∈ (0, 1), C := α L̂ K

2 µ̂PL µ
, B := αQG

2 r2.

For all 1 ≤ k ≤ T ,200

E[F (wk) − F∗ | τ > T ] ≤ C + (1 − ρ)k−1(F (w1) − F∗ − C
)
.

The probability of remaining in Nr up to time T satisfies201

P(τ > T ) ≥

[
1 −

F (w1) − F∗ + L̂
2 α2K (T − 1)

B
−

T −1∑
k=1

δk

]
+

,

where [x]+ := max{0, x}.202
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Theorem 3.6 (Diminishing learning rate in a local basin up to a finite horizon). Fix radii 0 < r < r+ and a203

horizon T ≥ 1, and let204

τ := inf{k ≥ 1 : wk /∈ Nr}, ΩT := {τ > T}.

Assume: (i) Assumptions 4 and 6 hold on Nr; (ii) Assumption 5 holds on a convex set V with Nr+ ⊂ V ⊆ U ;205

(iii) Assumption 7 holds on Nr+ ; (iv) Assumption 8 holds with horizon T and failure probabilities (δk)T −1
k=1 ;206

and (v) the conditional-moment version of Assumption 6 holds on ΩT .207

Suppose w1 ∈ Nr and use harmonic stepsizes208

αk = β

γ + k
, γ > 0,

with209

0 < α1 = β

γ + 1 ≤ µ

L̂KG

(if KG > 0), and β >
1

µµ̂PL
(equivalently a := βµµ̂PL > 1).

Define210

m := µµ̂PL, c := L̂K

2 , B := αQG

2 r2, ν := max
{

cβ2

βm − 1 , (γ + 1)
[
F (w1) − F∗

]}
.

For all 1 ≤ k ≤ T ,211

E[F (wk) − F∗ | τ > T ] ≤ ν

γ + k
.

The probability of remaining in Nr up to time T satisfies212

P(τ > T ) ≥

[
1 −

F (w1) − F∗ + c
∑T −1

k=1 α2
k

B
−

T −1∑
k=1

δk

]
+

,

where [x]+ := max{0, x}.213

Theorem 3.5 (fixed stepsize) and Theorem 3.6 (harmonic stepsizes) characterize late-stage optimization after214

the iterates have entered a well-behaved local basin Nr. Both results are stated on the finite-horizon survival215

event216

ΩT := {τ > T}, τ := inf{k ≥ 1 : wk /∈ Nr},

so that along ΩT the local M–smoothness and local M–PL inequalities apply to the entire trajectory up217

to time T and yield explicit descent recursions. With a constant stepsize α, Theorem 3.5 gives conditional218

geometric contraction to the noise floor C = α L̂ K
2µ̂PLµ , whereas with harmonic stepsizes αk = β/(γ + k),219

Theorem 3.6 yields the conditional O(1/k) rate. In both cases, the constants are local and expressed in220

the M–geometry. Unlike global strongly convex analyses, no global curvature or global variance control is221

required; the bounds depend only on the basin actually explored by the iterates.222

The basin-stability guarantees are also local, and they make two distinct failure mechanisms explicit. The223

first is an objective barrier controlled by the local QG constant αQG and the basin radius r through224

B := αQG

2 r2,

which quantifies the minimum objective increase needed to reach the boundary Nr+ \ Nr. The second is one-225

step overshoot: Assumption 8 allows rare updates that jump from Nr to outside the enlarged neighborhood226

Nr+ , with conditional failure probabilities δk. Here,
∑T −1

k=1 δk quantifies the accumulated overshoot risk: if227

the tails/second moments are large, or if the basin margin ∆ = r+ − r is small, then δk may be large, and228

the stability bound becomes conservative.229

Because all constants in the local bounds are M–dependent, a well-chosen preconditioner M can improve late-230

stage behavior by: (i) enhancing local conditioning (increasing µ̂PL and/or decreasing L̂, thereby strengthening231

contraction); (ii) reducing the preconditioned noise level K; and (iii) improving stability by reducing the232

overshoot probabilities δk (e.g., via smaller E[∥gk∥2
M−1 ] and/or a larger margin ∆ = r+ − r) and, when233

aligned with normal-space curvature, by increasing the barrier parameter B = αQG
2 r2.234
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3.3 Practical preconditioners for SGD235

A wide range of preconditioning strategies are used in modern machine learning. On the first–order side,236

adaptive methods such as Adam (Kingma & Ba, 2017), AMSGrad (Reddi et al., 2018), PAdam (Chen237

et al., 2020), and Yogi (Zaheer et al., 2018) implicitly apply diagonal preconditioners by rescaling gradients238

with running estimates of coordinatewise second moments. On the second–order side, curvature-aware239

preconditioners exploit Hessian or Fisher Information Matrix (FIM) structure, including the empirical240

FIM (Schraudolph, 2002), full or mini-batch Hessians (Fletcher, 2013; Garg et al., 2024), mini-batch241

quasi-Newton updates (Griffin et al., 2022), and Kronecker-factored FIM (K-FAC) (Martens & Grosse, 2015).242

Classical schemes such as L-BFGS (Liu & Nocedal, 1989; Chen et al., 2014) can also be viewed as low-rank,243

history-based preconditioners. Appendix B.2 summarizes these approaches and their computational trade-offs.244

The convergence analysis in Sections 3.1–3.2 suggests two practical mechanisms through which preconditioners245

shape late-stage behavior:246

• Local conditioning. Curvature-aware preconditioners (e.g., Fisher, Gauss–Newton, Hessian, K-FAC)247

tend to reduce the metric–smoothness constant L̂ and can increase the local PL constant µ̂PL. In our248

bounds, this improves the effective local condition number L̂/µ̂PL, permits larger admissible fixed249

learning rates α ≤ µ/(L̂KG), and reduces the leading constant under diminishing learning rates.250

• Noise attenuation. Preconditioners aligned with the gradient-noise structure reduce the preconditioned251

noise level K in the late-stage regime. Together with improved conditioning (smaller L̂/ĉ or L̂/µ̂PL),252

this lowers the noise floor, which scales with their product. Fisher-based and related methods are253

especially effective because they explicitly incorporate gradient statistics.254

These two mechanisms—improved conditioning and reduced preconditioned noise—match the behavior255

observed in Section 4. Curvature-matched preconditioners (Fisher, Gauss–Newton, K-FAC, Hessian) typically256

yield faster late-stage contraction by reducing L̂ and, in some cases, increasing µ̂PL, while their use of gradient257

second-moment information tends to reduce K. Adaptive/diagonal methods likewise lower K by damping258

high-variance coordinates, though their alignment with curvature is typically weaker. Recent theory further259

suggests that in anisotropic settings, Kronecker-structured preconditioning can be statistically necessary for260

efficient feature learning, whereas entry-wise/diagonal scaling offers only partial improvements (Zhang et al.,261

2025).262

4 Numerical results263

Many machine-learning benchmarks illustrate the benefits of preconditioned SGD (e.g., Schmidt et al. (2021);264

Schneider et al. (2019)), but our emphasis is on SciML, where driving the loss to very small values is tightly265

linked to physical fidelity, numerical stability, and constraint satisfaction (Kaplan et al., 2020; Swersky et al.,266

2011). We therefore structure the experiments in two parts.267

First, we analyze a diagnostic quadratic model in which all the quantities in our theory—L̂, µ̂PL, and the268

preconditioned noise level K—admit closed forms. This allows us to directly compute the geometry– and269

noise–dependent metrics from Sections 3.1–3.2 and verify their influence on rate and floor.270

Second, we examine three representative SciML problems: noisy Franke surface regression (Franke, 1979), a271

Poisson–type PINN, and Green’s–function learning for diffusion and convection–diffusion (Zhang et al., 2024;272

Rathore et al., 2024; Hao et al., 2024; Xu et al., 2025), to see how the theoretical mechanisms are reflected in273

practical settings.274

4.1 Diagnostic quadratic model275

To isolate the effects predicted by the theory, we consider the quadratic objective276

F (w) = 1
2 (w − w∗)⊤H (w − w∗) + F∗, H ⪰ 0,
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here H specifies curvature. We test two simple, analytically tractable choices: Euclidean SGD (M = I)277

and a low-rank curvature-aware preconditioner M = I + Us(Λ̃s − I)U⊤
s , where Us contains the top (or278

bottom) s eigenvectors of H and Λ̃s is a diagonal matrix. This model captures the essential effect of curvature279

information. We used a fixed learning rate.280

Instead of forming a dataset, we synthesize unbiased mini–batch gradients281

gk = ∇F (wk) + ζk, E[ζk] = 0, Cov(ζk) = 1
B

Σ.

To match the second-order statistics of least-squares problems near w∗, we set Σ = σ2H, giving K =282

σ2

B tr(M−1H). We choose d = 100 and construct H = UΛU⊤ with Λ log-uniform grid on [10−2, 102] and283

U Haar-distributed. We set w∗ = 0, F∗ = 0, and initialize w1 ∼ N (0, 10−4I), and report averages over 30284

runs. To illustrate how individual eigenvalues affect constants (L̂, µ̂PL, K), we design three groups of tests285

targeting different part of the spectrum of H.286

Figure 1: Convergence behavior under different deflation-based preconditioners. Left: deflating the
largest s eigenvalues (s ∈ {1, 5, 10, 25, 50}). Middle: deflating the top 20 eigenvalues to target values
1.0, 2.0, 3.0, 5.0, 10.0]. Right: deflating the smallest s eigenvalues (s ∈ {1, 5, 10, 25, 50}).

Figure 1 shows how deflating different parts of the spectrum of H affects the key theoretical constants.287

Denote the eigenpairs of H as (λi, ui), and let Us contain the selected eigenvectors. We construct a spectral288

preconditioner of the form M = I + Us(Λ̃s − I)U⊤
s , where Λ̃s = diag(τ1, . . . , τs) assigns a target value τi289

to the i-th chosen eigendirection. Deflating the largest s eigenvalues (left panel)—i.e., setting τi = λi so290

that these preconditioned eigenvalues become 1—reduces the smoothness constant L̂ and the noise level291

K = σ2

B tr(M−1H) while leaving µ̂PL unchanged, yielding a lower noise floor.292

To isolate the effect of the noise term, the middle panel fixes µ̂PL. It deflates the top 20 eigenvalues into a293

common value v lying between λ21 and λd by setting τi = λi/v, so that L̂ and µ̂PL remain unchanged while294

K varies. The resulting steady-state losses track this change in K, in line with the predicted noise-floor295

scaling. Deflating the smallest s eigenvalues (right panel)—that is, selecting the bottom eigenvectors and296

assigning target values τi equal to these smallest eigenvalues so that the preconditioned eigenvalues λi/τi297

move to 1—does increase µ̂PL, but it simultaneously enlarges K. The two effects counterbalance each other,298

yielding only modest overall gains, consistent with the predicted noise-floor behavior.299

4.2 SciML problems300

We then briefly summarize the three SciML tasks used to evaluate late–stage optimization behavior under301

different preconditioners.302

Noisy Franke surface regression. The Franke function is a classical multiscale benchmark consisting303

of several Gaussian peaks with heterogeneous length scales. We sample 256 points uniformly in [0, 1]2304

and corrupt the values with Gaussian noise ε ∼ N (0, 10−4). The combination of multiscale structure and305

observational noise yields a loss landscape with varying curvature, making it well suited for evaluating how306

preconditioning affects convergence in practice. The target surface is307

f(x, y) = 0.75e− (9x−2)2+(9y−2)2
4 + 0.75e− (9x+1)2

49 − 9y+1
10 + 0.5e− (9x−7)2+(9y−3)2

4 − 0.2e−(9x−4)2−(9y−7)2
.

9
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Figure 2: Franke-function regression (mean over 5 runs). Left: training loss vs. epochs with the switch to
Phase II at epoch 500. Center: training loss vs. wall–clock time. Right: Franke surface.

Physics–informed neural networks (PINNs). We train a PINN to solve the 2D Poisson problem308

−∆u = f(x, y) = 8π2 sin(2πx) sin(2πy) in (0, 1)2, u = 0 on ∂[0, 1]2,

whose exact solution is u(x, y) = sin(2πx) sin(2πy). The training set includes 1,000 interior residual points309

and 200 boundary points. The weighted loss (PDE residual weight 1.0, boundary weight 100.0) produces a310

challenging composite landscape known to stress first–order methods (Krishnapriyan et al., 2021). The right311

panel of Fig. 3 visualizes the source term f(x, y).312

Green’s–function learning. We learn Green’s functions for the 1D convection–diffusion operator313

Lu := −νu′′ + βu′, u(0) = u(1) = 0,

under two regimes: (i) diffusion-dominated (ν = 1.0, β = 0) and (ii) convection-dominated (ν = 0.1, β = 1.0).314

The Green’s function satisfies LG(x, y) = δ(x − y), where we approximate the delta distribution by a narrow315

Gaussian with width σ = 0.01. Training uses: (a) 1,000 uniformly sampled (x, y) pairs for PDE residuals, (b)316

500 near-diagonal samples (|x − y| small) to capture the near-singularity, and (c) 200 boundary samples. This317

produces a highly multiscale and stiffness–dominated optimization problem, ideal for testing curvature-aware318

preconditioners.319

Baselines and protocol. Across all SciML tasks, we compare vanilla SGD, momentum, Adam, L–BFGS,320

and curvature-aware preconditioners (CG–Hessian and CG–GGN/Fisher). Matrix–free CG with a fixed321

iteration budget is used to apply Hessian or Gauss–Newton/Fisher updates. Following standard SciML322

practice, we adopt a two–phase schedule: Phase I uses Adam to reach a comparable basin; Phase II switches323

to the target optimizer to isolate late–stage behavior. We report loss vs. epochs and wall–clock time, with all324

architectural and implementation details in Appendix D. All implementations use JAX (Bradbury et al.,325

2018); code and data are available in the supplemental material.326

4.3 Noisy data regression327

After the Adam warm start (Phase I), Phase II separates the methods (Fig. 2): Adam, L–BFGS, CG–328

GGN, and CG–Hessian descend faster than SGD and SGD+Momentum. The two curvature-aware variants,329

CG–Hessian and CG–GGN, track one another closely–showing similar contraction and reaching essentially330

the same loss floor. The similar performance of CG-Hessian and CG-GGN suggests that both methods331

provide comparable normal-space curvature and covariance matrix structure approximation. Adam’s diagonal332

rescaling and L–BFGS ’s low-rank curvature information also mitigate anisotropy and stabilize noisy directions,333

which explains their advantage over SGD. In wall–clock time, the faster descent of curvature-aware methods334

compensates for their higher per-step cost.335

4.4 Physics–informed neural networks (PINNs)336

With the same two-phase protocol, Phase II shows a consistent ranking (Fig. 3). At the bottom, Adam337

and SGD/SGD+Momentum lack explicit curvature information and progress slowly. L-BFGS achieves338
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Figure 3: PINN for a Poisson-type PDE (mean over 5 runs). Left: training loss vs. epochs with Phase I →
Phase II at epoch 1,000. Center: training loss vs. wall–clock time. Right: source term.

intermediate performance: it captures limited curvature through its low-rank approximation and line search,339

but the memory constraint prevents it from matching the full curvature captured by the two CG methods.340

At the top tier, CG–GGN and CG–Hessian both achieve better performance as curvature-aware methods,341

with CG–GGN showing a slight advantage.342

For PINNs, which minimize weighted least-squares residuals, the Gauss–Newton approximation J⊤J is343

naturally aligned with the gradient covariance structure and thus provides more effective noise attenua-344

tion—consistent with our theory, where the preconditioned noise level is governed by tr(M−1Σ(w)) in the late345

stage. The Hessian approximation, by contrast, can introduce negative curvature and additional anisotropy.346

In wall–clock time, CG–GGN achieves the best accuracy within a comparable time budget, despite its higher347

per-step cost.348

4.5 Green’s function learning349

After Phase I, Phase II again shows a clear separation of methods (Figs. 4–5). In both the diffusion- and350

convection–dominated cases, CG–GGN continues to drive the loss down, whereas CG–Hessian, L–BFGS,351

Adam, SGD, and SGD+Momentum quickly form a tight cluster and improve only marginally. Compared with352

the earlier PINNs experiment, the Green’s–function tasks are more near-singular due to the smoothed-delta353

forcing, leading to a more challenging, highly anisotropic optimization problem.354

Although we did not directly measure the local constants (L̂, µ̂PL, K) on this run, the observed advantage355

of CG–GGN is consistent with the structure of PINN objectives. First, for squared-residual losses, the356

Gauss–Newton/Fisher matrix is positive semidefinite, avoiding the negative-curvature directions introduced357

by second-derivative terms in the exact Hessian. This makes the preconditioner more stable and better358

suited to CG. Second, Fisher-type preconditioners are built from gradient second moments and therefore tend359

to whiten gradient noise, reducing the preconditioned noise level K. In contrast, a Hessian preconditioner360

includes second-order terms that are often misaligned with the gradient-noise covariance, and the damping361

needed to handle indefiniteness diminishes curvature gains while weakening noise attenuation.362

These two effects—better alignment with useful curvature and more effective noise whitening—explain why363

CG–GGN reaches lower losses within comparable wall-clock time, despite its higher per-step cost.364

Figure 4: Laplacian Green’s function learning (mean over 5 runs). Left: loss vs. epochs with Phase I →
Phase II at epoch 2,000. Center: loss vs. wall–clock time. Right: learned G(x, y) for three source locations
and operator checks.
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Figure 5: Convection–diffusion Green’s function learning (mean over 5 runs). Left: loss vs. epochs with
Phase I → Phase II at epoch 2,500. Center: loss vs. wall–clock time. Right: learned G(x, y) for three source
locations and operator checks.

The right panels of Figs. 4 and 5 display the learned Green’s functions G(x, y) at three representative source365

locations y together with simple operator and boundary checks for CG–GGN. The kernels are localized366

around the source locations and decay toward the Dirichlet boundaries, and the corresponding operator367

evaluations produce narrow spikes at x = y, in line with the smoothed–delta forcing used in the training368

loss. This suggests that the lower training losses achieved by CG–GGN reflect a reasonable Green’s-function369

approximation rather than a purely numerical artifact.370

We conclude the numerical experiments by connecting the CG–GGN preconditioner to the theoretical371

convergence framework developed in this paper. We empirically examine the quantities L and K that govern372

the convergence of preconditioned SGD for the PINNs problem and two Green’s function learning problems.373

Because a CG-based preconditioner with only a few iterations typically does not significantly alter the374

cluster of near-zero eigenvalues, we treat the M–PL constant as unchanged and attribute the quality of the375

preconditioner primarily to its effect on L and K. For these three problems, we fix the random seed to 42376

and analyze the network parameters at epoch 250 in Phase II. After preconditioning, the L value reduced by377

factors of 78x, 3710x, and 1923x, respectively. We additionally quantify the impact of preconditioning on the378

noise level K. Using the same network parameters w, we sample 100 independent mini-batches, construct the379

preconditioner M−1 from the first batch, and observe that after preconditioning the estimated trace of the380

gradient-noise covariance matrix is reduced by factors of 12x, 1505x, and 203x, respectively. This substantial381

reduction demonstrates that the CG–GGN preconditioner effectively attenuates gradient noise. Consistent382

with our theory, the combined improvements in conditioning and noise reduction yield both faster linear383

convergence and a significantly lower asymptotic noise floor.384

5 Conclusion385

We developed a local, geometry-aware theory for preconditioned SGD that makes two effects explicit: (1) the386

rate inside a basin is controlled by a preconditioner-dependent condition number in the M–metric, and (2)387

the noise floor is governed by the preconditioned noise. We additionally obtained a basin-stability guarantee,388

giving an explicit probability that iterates remain in a region where these local properties hold. Together,389

the results motivate a simple rule: choose M to improve local conditioning while suppressing noise in the390

M−1–norm.391

A key next direction is covariance-aware preconditioning. Our bounds suggest that effective design should392

jointly target conditioning and noise attenuation, motivating structured covariance models and adaptive393

schemes that update curvature and noise statistics simultaneously. Extending basin-stability guarantees394

to nonstationary noise and developing online diagnostics for the local constants would move toward fully395

adaptive, geometry- and noise-aware SGD.396
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Appendix551

A Notation used in paper552

In general, capital bold letters are matrices (A), lower case bold letters are vectors (v), and lower case Greek553

or Latin letters are constants (ν, c). Moreover, there are some notation that is used consistently throughout554

the paper. A reference table for these symbols is given in Table 1.555

Table 1: Reference for recurring notation in the paper.
Symbol Definition

k iteration counter
w Model parameters

F (w) Objective function at point w
F∗ := F (w∗) minimum function value at minimizer

α learning rate
αk learning rate scheduler/ learning rate at epoch k
α fixed learning rate

c, L strong convexity, Lipschitz constant for ∥·∥2 = ∥·∥I
ĉ, L̂ strong convexity, Lipschitz constant for preconditioned case: ∥·∥M
µ̂P L PL constant for preconditioned case: ∥·∥M

B mini-batch of the dataset
M generic preconditioner where M−1 is applied to a vector

g(·, ·) gradient vector
κ(M) Condition number of M (always based on ∥·∥2)
µ, µG lower and upper bound constants on the first moment of the gradient
K, KV constant and scaling values of the affine bound on the gradient’s variance

KG Constant needed for learning rate upper bound, dependent on KV + µ2
G > 0.

Eξ,Vξ Expectation and Variance of gradient with random realization ξ
β, γ constants affecting the lower and upper bound on αk for diminishing learning rate proofs
ν convergence constant in O

(
(γ + k)−1)

r radius of convex basin around local minimum
Nr, Nr+ local neighborhood around minimizer, slightly larger local neighborhood for containment

τ smallest iteration number where wk /∈ Nr.
C The stochastic noise floor defined αL̂K/(2ĉµ)

NM(w) instantaneous preconditioned noise tr(M−1Σ(w))
K uniform baseline for NM(w) on the analysis region (noise floor constant)

αQG quadratic growth constant of locally convex basin a distance from the minimizer

B Mathematical preliminaries556

B.1 Preconditioning557

The condition number from a linear equation Ax = b bounds the accuracy of the solution x, and is defined as

κ(A) = ∥A∥
∥∥A−1∥∥,

where if not stated ∥·∥ = ∥·∥2. If A is ill-conditioned, i.e. has a large condition number, then a small558

perturbation in b can result in a large perturbation of the solution x. In addition to the accuracy of the559

solution, the convergence rate of iterative methods, such as conjugate gradient, depends on r =
√

κ−1√
κ+1 .560

It is easy to see that r < 1, but if κ ≫ 1, then convergence will be extremely slow as r → 1. This motivates561

the need for ways to reduce the condition number, through a technique called preconditioning. Throughout562
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this paper, we assume that M is the preconditioner, and we only have access to the action of M−1 onto a563

vector. More technically, we say M is an efficient preconditioner to the matrix A such that564

κ(M−1A) < κ(A).

For clarity, even though we call M the preconditioner, we don’t explicitly form it. Additionally, we don’t565

form M−1 either but just observe the action of the preconditioner on a vector, M−1v.566

There are different ways we can utilize the preconditioner M. First, assume M−1 exists, then the left
preconditioned system is

M−1 (Ax − b) = 0.

Both the original linear system and the left-preconditioned system give the same solution. Additionally, we
could solve the right preconditioned system

AM−1 (Mx) = b.

This requires us to solve AM−1y = b for y, and then to recover the original solution, we would need to do567

another linear system solve Mx = y for x.568

These two techniques can be combined to perform split preconditioning. If we employ M as the right569

preconditioner, and N as the left preconditioner, we compute570

NAM−1 (Mx) = Nb.

This is beneficial if one would like to scale the rows and columns of A differently. Additionally, observe that571

if A is symmetric and N⊤ = M−1, then NAM−1 is also symmetric.572

In the preconditioned version of CG (PCG), one solves the equivalent system M−1Ax = M−1b using a similar573

three-term recurrence, but applied to the transformed system. The key requirement is that the preconditioner574

M be symmetric positive definite and chosen so that M−1A has a significantly smaller condition number575

than A itself. For practical purposes, PCG is used in matrix-free settings where only the action M−1v is576

required, not the explicit matrix M−1.577

B.2 Preconditioners for SGD578

In this section, we briefly review several preconditioners commonly used in the ML literature. First, if we579

define gk to be the sum of the squared gradients up until iteration k, we arrive at AdaGrad (Duchi et al.,580

2011)581

MAdaGrad = diag (√gk + ε) .

The issues with this is the gradient squared will only increase, leading to premature stopping. To coun-582

teract that, exponentially moving weighted averages are widely used in diagonal preconditioners such as583

Adam (Kingma & Ba, 2017) and its momentum-less counterpart RMSProp (Hinton, 2014):584

MAdam = diag (√sk + ε) ,

where here sk is an exponential moving average of squared gradients, and ε > 0 is a small constant added for585

numerical stability. While computationally efficient and robust to scaling, such diagonal preconditioners fail586

to capture cross-parameter curvature, which may lead to suboptimal convergence in ill-conditioned problems.587

The Hessian matrix of the loss function,588

H(w) = ∇2L(w),
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captures the exact second-order structure of the problem and provides the most complete curvature information.589

However, computing or storing the full Hessian is typically infeasible in high-dimensional neural network590

(NN) models. Moreover, it is not guaranteed to be positive definite in nonconvex settings, which complicates591

its direct use as a preconditioner.592

To reduce computational cost, one can approximate the Hessian using a single mini-batch, B:593

HB(w) = ∇2LB(w).

This matrix is cheaper to compute and can be updated online, but suffers from high variance and may not594

preserve important curvature directions observed over the full dataset. While the Newton and quasi-Newton595

methods work well for deterministic optimization, many have provided a distinction between these and other596

methods for designing preconditioners in the stochastic setting (Li, 2018; Bottou et al., 2018).597

As opposed to constructing the Hessian, an alternative is the Gauss-Newton Hessian approximation, which598

assumes the difference between the model and label is small in a least-squares norm. This idea was further599

generalized to loss functions of the form ℓ(θ) =
∑

n an (bn (θ)) in Schraudolph (2002). This generalized600

Gauss-Newton matrix (GGN), which ignores second order information of bn, is SPD when an is convex even601

when the true Hessian is indefinite.602

Another alternate method is the FIM defined as603

F(w) = Ex,y

[
∇w log pw(y | x)∇w log pw(y | x)⊤] ,

which is guaranteed to be SPD under mild regularity conditions. For models trained with exponential-family604

losses, the FIM coincides with the GGN (Martens, 2020; Schraudolph, 2002). Its structure allows for stable605

and curvature-aware preconditioning.606

The empirical FIM estimates the expectation in the FIM using a finite mini-batch:607

Femp(w) = 1
|B|

∑
(x,y)∈B

∇w log pw(y | x)∇w log pw(y | x)⊤.

It is symmetric and positive semidefinite, and is often used in practice due to its lower computational overhead608

compared to the full FIM. However, it may introduce bias depending on the mini-batch size and model609

quality (Kunstner et al., 2019).610

Finally, the L-BFGS algorithm is a popular quasi-Newton method that builds a low-rank approximation611

to the inverse Hessian using a history of gradients and iterates. It is well-suited to medium-scale problems612

and has seen empirical success in ML (Bottou et al., 2018). Additional variants of L-BFGS have also been613

proposed (Berahas et al., 2016; Bollapragada et al., 2018). While not traditionally framed as a preconditioner,614

L-BFGS can be interpreted as implicitly applying a data-driven curvature approximation.615

C Assumptions and proofs of theorems616

C.1 Assumptions617

Assumption 9 (Strong Convexity). The objective function F : Rd → R is strongly convex in that there exists618

a constant c > 0 such that619

F (w) ≥ F (w) + ∇F (w)⊤(w − w) + 1
2c||w − w||22, ∀ (w, w) ∈ Rd × Rd

From elementary optimization, this assumption is equivalent to F having a unique minimizer w∗ ∈ Rd. We620

define F∗ := F (w∗).621

Assumption 10 (Lipschitz continuity of gradient). The objective function F : Rd → R is continuously622

differentiable and the gradient function of F , ∇F : Rd → Rd, is Lipschitz continuous with Lipschitz constant623

L > 0, i.e.624

||∇F (w) − ∇F (w)||2 ≤ L||w − w||2
for all {w, w} ⊂ Rd.625
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Remark 1. If F is continuously twice differentiable, then ∇F is Lipschitz continuous with Lipschitz constant626

L if and only if the eigenvalues of the matrix ∇2F (w) are bounded above by L for all w. F is strongly convex627

with constant c if and only if the eigenvalues of the matrix ∇2F (w) is bounded below by c for all w. Therefore,628

L/c is an upper bound of the condition number of ∇2F (w).629

Lipschitz continuity of gradient is an assumption made in nearly all convergence analyses of gradient-based630

methods (Khaled & Richtárik, 2023).631

Assumption 11 (Bounds on First and Second Moments of Gradient). Assume632

1. There exist scalars µG ≥ µ > 0 such that, for all k ∈ N,633

∇F (wk)⊤Eξk
[g(wk, ξk)] ≥ µ||∇F (wk)||22 (9)

634
||Eξk

[g(wk, ξk)]||2 ≤ µG||∇F (wk)||2 (10)

2. There exist scalars K ≥ 0 and KV ≥ 0 such that, for all k ∈ N,635

Vξk
[g(wk, ξk)] ≤ K + KV ||∇F (wk)||22 (11)

where Vξk
[g(wk, ξk)] := Eξk

[||g(wk, ξk)||22] − ||Eξk
[g(wk, ξk)]||22.636

Theorem C.1 (Strongly convex objective function, fixed learning rate (Bottou et al., 2018)). Under637

Assumptions 9,10, 11, suppose that the SGD algorithm is run with fixed learning rates, αk = α for all k ∈ N638

where639

0 < α ≤ µ

LKG
and KG := KV + µ2

G ≥ µ2 > 0.

Then, the expected optimality gap satisfies the following for all k ∈ N:640

E[F (wk) − F∗] ≤ αLK

2cµ
+ (1 − αcµ)k−1

(
F (w1) − F∗ − αLK

2cµ

)
k→∞−→ αLK

2cµ
(12)

Note that it follows from (10) and (11) that Eξk
[||g(wk, ξk)||22] ≤ K +KG||∇F (wk)||22 with KG := KV +µ2

G ≥641

µ2 > 0.642

Theorem C.2 (Strongly convex objective function, diminishing learning rates (Bottou et al., 2018)). Under643

the same assumptions as Theorem C.1, suppose that the SGD algorithm is run with a learning rate sequence644

such that, for all k ∈ N,645

αk = β

γ + k
for some β >

1
cµ

and γ > 0 such that α1 ≤ µ

LKG

Then, the expected optimality gap satisfies the following for all k ∈ N:646

E[F (wk) − F∗] ≤ ν

γ + k
(13)

where647

ν := max
{

β2LK

2(βcµ − 1) , (γ + 1)(F (w1) − F∗)
}

(14)

Under the assumption of strong convexity, the optimality gap can be bounded at any point by the 2-norm648

squared of the gradient of the objective function at that particular point. That is,649

2c(F (w) − F∗) ≤ ||∇F (w)||22 for all w ∈ Rd

As before, F has a unique minimizer, denoted as w∗ ∈ Rd with F∗ := F (w∗).650

Previously, the optimality gap was bounded by the 2-norm of the gradient of the objective function squared.651

Here, however, the optimality gap is bounded by the M-norm of the gradient of the objective function squared.652

That is,653

2ĉ(F (w) − F (w∗)) ≤ ||∇F (w)||2M−1

This result is used several times in the upcoming proofs. We repeat Lemma 3.1 here for convenience below:654
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Lemma C.3. Let F be twice differentiable and M−1 = PP⊤. Then: (i) ∇F is M-Lipschitz with constant655

L̂ ⇐⇒ all eigenvalues of P⊤∇2F (w)P are ≤ L̂; (ii) F is M-strongly convex with constant ĉ ⇐⇒ all656

eigenvalues of P⊤∇2F (w)P are ≥ ĉ.657

Proof. We consider a change of parameter as used in preconditioning. Let w = Pz and w = Pz. Then658

w − w = P(z − z) which gives P−1(w − w) = z − z. Define f(z) = F (Pz). Then ∇zf(z) = P⊤∇wF (w) and659

∇2
zf(z) = P⊤∇2

wF (w)P. Hence660

||∇f(z) − ∇f(z)||2 = ∥P⊤∇wF (w) − P⊤∇wF (w)∥2 = ∥∇wF (w) − ∇wF (w)∥M−1 .

Therefore, the M-Lipschitz continuity of the gradient for F is equivalent to the Lipschitz continuity of the661

gradient for f , which is equivalent to that ∇2
zf(z), i.e. P⊤∇2

wF (w)P, has eigenvalues bounded above by L̂.662

Similarly, the statement on M-strong convexity follows from663

F (w) + ∇F (w)⊤(w − w) + 1
2 ĉ||w − w||2M = f(z) + ∇zf(z)⊤(z − z) + 1

2 ĉ||z − z||22.

664

We may assume L̂ and ĉ are respectively the maximum and the minimum of the eigenvalues of P⊤∇2F (w)P665

for all w. So L̂
ĉ plays the role of the condition number of the preconditioned matrix P⊤∇2F (w)P. If we666

assume M−1 = PP⊤ is such that L̂
ĉ is smaller than L

c , it basically reduces the condition number. We will667

demonstrate that this accelerates the speed of convergence.668

An important lemma comes directly from this assumption.669

Lemma C.4. Under the assumption of M-Lipschitz continuity of gradient,670

F (w) ≤ F (w) + ∇F (w)⊤(w − w) + 1
2 L̂||w − w||2M (15)

Proof. Consider the following,

F (w) = F (w) +
∫ 1

0
(∇F (w + t(w − w))⊤ PP−1(w − w) dt

= F (w) + ∇F (w)⊤(w − w) +
∫ 1

0
(∇F (w + t(w − w)) − ∇F (w))⊤ PP−1(w − w) dt

≤ F (w) + ∇F (w)⊤(w − w) +
∫ 1

0
L̂||t(w − w)||M||w − w||M dt

which gives us our consequence that was to be shown.671

Notice that combining the variance definition (Eq. 3) with Assumption 3, we have the following672

Eξk
[||g(wk, ξk)||2M−1 ] ≤ KG||∇F (wk)||2M−1 + K with KG := KV + µ2

G ≥ µ2 > 0 (16)

The proof for the two theorems relies on the following lemmas.673

Lemma C.5. Under Assumption 1, the iterates of Eq. 2 satisfy the following inequality for all k ∈ N:674

Eξk
[F (wk+1)] − F (wk) ≤ −αk∇F (wk)⊤Eξk

[g(wk, ξk)] + 1
2α2

kL̂Eξk
[||g(wk, ξk)||2M−1 ] (17)

Proof. Let w = wk+1 and w = wk. Then, by Assumption 1,675

F (wk+1) − F (wk) ≤ ∇F (wk)⊤(wk+1 − wk) + 1
2 L̂||wk+1 − wk||2M
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Recalling that Eq. 2 gives wk+1 = wk − αkM−1g(wk, ξk), we then have,

F (wk+1) − F (wk) ≤ ∇F (wk)⊤(−αkM−1g(wk, ξk)) + 1
2 L̂|| − αkM−1g(wk, ξk)||2M

≤ −αk∇F (wk)⊤M−1g(wk, ξk) + 1
2α2

kL̂||M−1g(wk, ξk)||2M

≤ −αk∇F (wk)⊤M−1g(wk, ξk) + 1
2α2

kL̂||g(wk, ξk)||2M−1

Take the expectation of both sides676

Eξk
[F (wk+1)] − F (wk) ≤ −αk∇F (wk)⊤M−1Eξk

[g(wk, ξk)] + 1
2α2

kL̂Eξk
[||g(wk, ξk)||2M−1 ]

Thus, the desired result is achieved.677

Lemma C.6. Under Assumptions 1 and 2, the iterates of Eq. 2 satisfy the following inequalities for all
k ∈ N:

Eξk
[F (wk+1)] − F (wk) ≤ −µαk||∇F (wk)||2M−1 + 1

2α2
kL̂Eξk

[
||g(wk, ξk)||2M−1

]
(18)

≤ −(µ − 1
2αkL̂KG)αk||∇F (wk)||2M−1 + 1

2α2
kL̂K (19)

Proof. By Lemma C.5 and Assumption 2, it follows that

Eξk
[F (wk+1)] − F (wk) ≤ −αkµ||∇F (wk)||2M−1 + 1

2α2
kL̂Eξk

[
||g(wk, ξk)||2M−1

]
≤ −αkµ||∇F (wk)||2M−1 + 1

2α2
kL̂
(
KG||∇F (wk)||2M−1 + K

)
≤ −

(
µ − 1

2αkL̂KG

)
αk||∇F (wk)||2M−1 + 1

2α2
kL̂K

Hence, we have the desired inequalities.678

The final lemma necessary is as follows.679

Lemma C.7. Under assumptions 1, 2, and 3 (with F∗ being the minimum of F ), suppose Eq. 2 is run with680

a learning rate sequence such that for all k ∈ N, assume αk ≤ µ

L̂KG
. (Note that αk could be constant for all681

k ∈ N). Then the following inequality holds682

E[F (wk+1) − F∗] ≤ (1 − αk ĉµ)E[F (wk) − F∗] + 1
2α2

kL̂K (20)

Proof. Given the assumptions and using Lemma C.6, we have Eξk
[F (wk+1)] − F (wk) ≤ −ĉαkµ(F (wk) −

F∗) + 1
2 α2

kL̂K. Subtract F∗ from both sides and take the total expectation. We denote this total expectation
as E[·], which represents the expected value taken with respect to all random variables. That is, E[F (wk)] =
Eξ1Eξ2 . . .Eξk−1 [F (wk)].

E[Eξk
[F (wk+1)] − F (wk) − F∗] ≤ E

[
−ĉαkµ(F (wk) − F∗) + 1

2α2
kL̂K − F∗

]
E[Eξk

[F (wk+1)] − F∗] ≤ E [−ĉαkµ(F (wk) − F∗) − F (wk) − F∗] + 1
2α2

kL̂K

≤ E [−ĉαkµF (wk) + ĉαkµF∗ + F (wk) − F∗] + 1
2α2

kL̂K

≤ (1 − ĉαkµ)E[F (wk) − F∗] + 1
2α2

kL̂K

which is our desired inequality (20).683
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C.2 Proofs of main theorems684

C.2.1 Proof of Theorem 3.2685

Proof. Using Lemma C.6, we have for all k ∈ N:

Eξk
[F (wk+1)] − F (wk) ≤ −(µ − 1

2αL̂KG)α||∇F (wk)||2M−1 + 1
2α2L̂K

≤ −
(

µ − 1
2

(
µ

L̂KG

)
L̂KG

)
α||∇F (wk)||2M−1 + 1

2α2L̂K

= −1
2αµ||∇F (wk)||2M−1 + 1

2α2L̂K

≤ −1
2αµ[2ĉ(F (wk) − F (w∗))] + 1

2α2L̂K

≤ −αĉµ(F (wk) − F∗) + 1
2α2L̂K

Now, subtract the constant αL̂K
2ĉµ from both sides of inequality (Eq. 20)

E[F (wk+1) − F∗] − αL̂K

2ĉµ
≤ (1 − αĉµ)E[F (wk) − F∗] + 1

2αL̂K − αL̂K

2ĉµ
(21)

= (1 − αĉµ)
(
E[F (wk) − F∗] − αL̂K

2ĉµ

)
(22)

We must now notice the following chain of inequalities.686

0 < αĉµ ≤ ĉµ2

L̂KG

This inequality holds by the theorem assumption that 0 < α ≤ µ

L̂KG
.687

ĉµ2

L̂KG

≤ ĉµ2

L̂µ2
= ĉ

L̂

This inequality holds by (16) from Assumption 3.688

Now, note that since ĉ ≤ L̂, it follows that ĉ
L̂

≤ 1. The result thus follows by applying C.6 repeatedly through689

iteration k ∈ N.690

Corollary C.7.1. If g(wk, ξk) is an unbiased estimate of ∇F (wk), and the variance of g(wk, ξk) is bounded691

by a constant K independent of ∇F (wk), Then for a fixed learning rate bounded by KG

L̂KG
, E[F (wk) − F∗]692

decreases to below αL̂K
2ĉµ at the rate of ĉ

L̂
.693

C.2.2 Proof of Theorem 3.3694

Proof. Since the learning rates are diminishing and by the theorem statement, we have αkL̂KG ≤ α1L̂KG ≤ µ
for all k ∈ N. By Lemma C.6 and Assumption 3,

Eξk
[F (wk+1)] − F (wk) ≤ −(µ − 1

2αkL̂KG)αk||∇F (wk)||2M−1 + 1
2α2

kL̂K

≤ −(µ − 1
2µ)αk||∇F (wk)||2M−1 + 1

2α2
kL̂K

≤ −αkµĉ(F (wk) − F∗) + 1
2α2

kL̂K
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By Lemma C.7, using (20), we have

E[F (wk+1) − F∗] ≤ (1 − αk ĉµ)E[F (wk) − F∗] + 1
2α2

kL̂K

Now, we prove the convergence result via induction. Consider the base case, k = 1.695

Since ν ≥ (γ + 1)(F (w1) − F∗) and ν ≥ β2L̂K
2(βĉµ−1) , it follows that E[F (w1) − F∗] ≤ ν

γ+1 .696

Now, we assume that (8) holds for some k ≥ 1. Thus

E[F (wk+1) − F∗] ≤ (1 − αk ĉµ)E[F (wk) − F∗] + 1
2α2

kL̂K

≤ (1 − αk ĉµ) ν

γ + k
+ 1

2α2
kL̂K

=
(

1 − β

γ + k
ĉµ

)
ν

γ + k
+ 1

2

(
β

γ + k

)2
L̂K

=
(

1 − βĉµ

k̃

)
ν

k̃
+ β2L̂K

2k̃2

=
(

k̃ − 1
k̃2

)
ν −

(
βĉµ − 1

k̃2

)
ν + β2L̂K

2k̃2

where k̃ := γ + k. Note that
(

βĉµ−1
k̃2

)
ν − β2L̂K

2k̃2 ≥ 0 since ν ≥ β2L̂K
2(βĉµ−1) .697

Thus,698

E[F (wk+1) − F∗] ≤
(

k̃ − 1
k̃2

)
ν −

(
βĉµ − 1

k̃2

)
ν + βL̂K

2k̃2

†
≤ ν

k̃ + 1
where (†) follows since k̃2 ≥ (k̃ + 1)(k̃ − 1).699

C.2.3 Proof of Lemma 3.4700

Proof. Fix k ≤ T − 1 and assume wk ∈ Nr, i.e. distM(wk, S) ≤ r. If wk+1 /∈ Nr+ then distM(wk+1, S) >701

r+ = r + ∆. By the triangle inequality,702

distM(wk+1, S) ≤ distM(wk, S) + ∥wk+1 − wk∥M ≤ r + ∥wk+1 − wk∥M,

hence ∥wk+1 − wk∥M > ∆. Using wk+1 − wk = −αkM−1gk we have ∥wk+1 − wk∥M = αk∥gk∥M−1 , so703

P(wk+1 /∈ Nr+ | Fk) ≤ P(αk∥gk∥M−1 > ∆ | Fk).

Markov’s inequality and Assumption 8 yield704

P(αk∥gk∥M−1 > ∆ | Fk) ≤
α2

k E[∥gk∥2
M−1 | Fk]

∆2 ≤ δk.

705

C.2.4 Proof of Theorem 3.5706

Proof. Fix αk = α and let Fk := σ(ξ1, . . . , ξk−1). Write gk := g(wk, ξk) and define707

τ := inf{k ≥ 1 : wk /∈ Nr}, ΩT := {τ > T}.

Fix k ≤ T − 1 and work on ΩT . Then wk, wk+1 ∈ Nr ⊂ Nr+ ⊂ V. By convexity of V, the segment708

[wk, wk+1] ⊂ V, and by Assumption 5 (local M–smoothness),709

F (wk+1) ≤ F (wk) − α ∇F (wk)⊤M−1gk + L̂

2 α2∥gk∥2
M−1 on ΩT . (23)
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Taking conditional expectation given (Fk, ΩT ) and using the conditional-moment version of Assumption 6 on
ΩT yields

E[F (wk+1) − F∗ | Fk, ΩT ] ≤ (F (wk) − F∗) − α µ ∥∇F (wk)∥2
M−1

+ L̂

2 α2
(

KG∥∇F (wk)∥2
M−1 + K

)
.

Using α ≤ µ/(L̂KG) gives αµ − L̂
2 α2KG ≥ µ

2 α, hence710

E[F (wk+1) − F∗ | Fk, ΩT ] ≤ (F (wk) − F∗) − µ
2 α ∥∇F (wk)∥2

M−1 + L̂

2 α2K. (24)

On ΩT we have wk ∈ Nr, so Assumption 4 implies ∥∇F (wk)∥2
M−1 ≥ 2µ̂PL(F (wk) − F∗). Substituting into711

(24) gives712

E[F (wk+1) − F∗ | Fk, ΩT ] ≤ (1 − ρ) (F (wk) − F∗) + ρC,

with ρ := αµ̂PLµ ∈ (0, 1) and C := αL̂K
2µ̂PLµ . Taking expectations under P(· | ΩT ) and defining xk :=713

E[F (wk) − F∗ | ΩT ] yields for k ≤ T − 1,714

xk+1 ≤ (1 − ρ)xk + ρC.

Iterating gives, for all 1 ≤ k ≤ T ,715

xk ≤ C + (1 − ρ)k−1(F (w1) − F∗ − C
)
,

which is the desired conditional geometric bound.716

Define overshoot events717

Ak := {wk ∈ Nr, wk+1 /∈ Nr+}, k = 1, . . . , T − 1,

and the no-overshoot event ET :=
⋂T −1

k=1 Ac
k. By Lemma 3.4, P(Ak) ≤ δk, hence by the union bound718

P(Ec
T ) ≤

T −1∑
k=1

δk. (25)

Let σ := τ ∧ T . On ET ∩ {τ ≤ T} we have wτ ∈ Nr+ \ Nr, hence by Assumption 7,719

F (wτ ) − F∗ ≥ B := αQG

2 r2.

Since wσ = wτ on {τ ≤ T},720

B 1{τ≤T }1ET
≤ (F (wσ) − F∗) 1ET

.

Taking expectations gives721

B P(τ ≤ T, ET ) ≤ E[(F (wσ) − F∗)1ET
] . (26)

We upper bound the RHS of (26). For each k = 1, . . . , T − 1, define the prefix no-overshoot event722

Ek+1 :=
k⋂

j=1
Ac

j ,

so that Ek+1 ∈ Fk+1 and ET ⊆ Ek+1. On Ek+1 ∩ {k < τ} we have wk ∈ Nr and wk+1 ∈ Nr+ ⊂ V, so by723

smoothness,724

F (wk+1) − F (wk) ≤ −α ∇F (wk)⊤M−1gk + L̂

2 α2∥gk∥2
M−1 on Ek+1 ∩ {k < τ}.
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Taking conditional expectation given Fk and using Assumption 6 (valid on {k < τ} since then wk ∈ Nr)725

yields726

E[F (wk+1) − F (wk) | Fk] ≤ −αµ∥∇F (wk)∥2
M−1 + L̂

2 α2(KG∥∇F (wk)∥2
M−1 + K

)
≤ L̂

2 α2K,

where the last inequality uses that the first term is nonpositive and we drop it.727

Now note that F (wσ) − F (w1) =
∑T −1

k=1
(
F (wk+1) − F (wk)

)
1{k<τ} and that on ET we have ET ⊆ Ek+1,

hence the above bound applies on ET ∩ {k < τ} for every k ≤ T − 1. Therefore,

E[(F (wσ) − F (w1))1ET
] =

T −1∑
k=1

E
[
(F (wk+1) − F (wk))1ET

1{k<τ}
]

=
T −1∑
k=1

E
[
1ET

1{k<τ}E[F (wk+1) − F (wk) | Fk]
]

≤
T −1∑
k=1

L̂

2 α2K = L̂

2 α2K (T − 1),

which implies728

E[(F (wσ) − F∗)1ET
] ≤ (F (w1) − F∗) + L̂

2 α2K (T − 1). (27)

Combining (26) and (27) yields729

P(τ ≤ T, ET ) ≤
F (w1) − F∗ + L̂

2 α2K (T − 1)
B

.

Finally, using (25),730

P(τ ≤ T ) ≤ P(τ ≤ T, ET ) + P(Ec
T ) ≤

F (w1) − F∗ + L̂
2 α2K (T − 1)

B
+

T −1∑
k=1

δk,

and rearranging gives the stated lower bound on P(τ > T ) (with truncation at 0).731

C.2.5 Proof of Theorem 3.6732

Proof. Let Fk := σ(ξ1, . . . , ξk−1), set αk = β/(γ + k), and write gk := g(wk, ξk). Define τ := inf{k ≥ 1 :733

wk /∈ Nr}, ΩT := {τ > T}, and Sk := F (wk) − F∗.734

Fix k ≤ T − 1 and work on ΩT . Then wk, wk+1 ∈ Nr ⊂ Nr+ ⊂ V. Since V is convex, [wk, wk+1] ⊂ V and735

Assumption 5 implies the M–smoothness inequality:736

F (wk+1) ≤ F (wk) − αk ∇F (wk)⊤M−1gk + L̂

2 α2
k∥gk∥2

M−1 on ΩT .

Take conditional expectation given Fk and using Assumption 6 (valid on {k < τ} since then wk ∈ Nr) yields:

E[Sk+1 | Fk, ΩT ] ≤ Sk − αkµ ∥∇F (wk)∥2
M−1 + L̂

2 α2
k

(
KG∥∇F (wk)∥2

M−1 + K
)

.

Because αk ≤ α1 = β/(γ + 1) ≤ µ/(L̂KG), we have µαk − L̂
2 α2

kKG ≥ µ
2 αk, hence737

E[Sk+1 | Fk, ΩT ] ≤ Sk − µ

2 αk∥∇F (wk)∥2
M−1 + L̂

2 α2
kK.

On ΩT we have wk ∈ Nr, so Assumption 4 yields ∥∇F (wk)∥2
M−1 ≥ 2µ̂PLSk. Therefore, with m := µµ̂PL and738

c := L̂K/2,739

E[Sk+1 | Fk, ΩT ] ≤ (1 − mαk)Sk + cα2
k.
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Now take expectation under P(· | ΩT ) and define xk := E[Sk | ΩT ]. Then for all k ≤ T − 1,740

xk+1 ≤ (1 − mαk)xk + cα2
k.

Substituting αk = β/(γ + k) gives741

xk+1 ≤
(

1 − a

γ + k

)
xk + b

(γ + k)2 , a := βm, b := cβ2.

Since β > 2/(µ̂PLµ), we have a > 1. Let742

ν := max
{ b

a − 1 , (γ + 1)x1

}
, x1 = F (w1) − F∗.

We prove by induction that xk ≤ ν/(γ + k) for 1 ≤ k ≤ T . The base case holds because x1 ≤ ν/(γ + 1) by743

definition of ν. Assuming xk ≤ ν/(γ + k), we obtain744

xk+1 ≤
(

1 − a

γ + k

) ν

γ + k
+ b

(γ + k)2 = ν

γ + k
+ b − aν

(γ + k)2 .

Using ν ≥ b/(a − 1) implies b − aν ≤ −ν, hence745

xk+1 ≤ ν

γ + k
− ν

(γ + k)2 ≤ ν

γ + k
− ν

(γ + k)(γ + k + 1) = ν

γ + k + 1 .

Thus xk ≤ ν/(γ + k) for all 1 ≤ k ≤ T , i.e.746

E[F (wk) − F∗ | ΩT ] ≤ ν

γ + k
, 1 ≤ k ≤ T.

Define overshoot events Ak := {wk ∈ Nr, wk+1 /∈ Nr+} for k = 1, . . . , T − 1 and ET :=
⋂T −1

k=1 Ac
k. By747

Lemma 3.4, P(Ak) ≤ δk, hence748

P(Ec
T ) ≤

T −1∑
k=1

δk.

Let σ := τ ∧ T . On ET ∩ {τ ≤ T} we have wτ ∈ Nr+ \ Nr, so Assumption 7 yields749

F (wτ ) − F∗ ≥ B := αQG

2 r2.

Since wσ = wτ on {τ ≤ T}, it follows that750

B 1{τ≤T }1ET
≤ (F (wσ) − F∗)1ET

.

Taking expectations gives751

B P(τ ≤ T, ET ) ≤ E[(F (wσ) − F∗)1ET
].

We upper bound the right-hand side by telescoping. For k = 1, . . . , T −1, define the prefix event Ek :=
⋂k−1

j=1 Ac
j752

(so Ek ∈ Fk and ET ⊆ Ek). On Ek ∩ {k < τ} we have wk ∈ Nr and wk+1 ∈ Nr+ ⊂ V, so the smoothness753

inequality and Assumption 6 imply754

E[F (wk+1) − F (wk) | Fk] ≤ c α2
k on Ek ∩ {k < τ},

using again αk ≤ µ/(L̂KG) to drop the (nonpositive) gradient-dependent part. Multiplying by 1ET
1{k<τ}755

and taking expectations yields756

E[(F (wk+1) − F (wk)) 1ET
1{k<τ}] ≤ c α2

k.
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Summing over k = 1, . . . , T − 1 and using F (wσ) − F (w1) =
∑T −1

k=1 (F (wk+1) − F (wk))1{k<τ} gives757

E[(F (wσ) − F (w1))1ET
] ≤ c

T −1∑
k=1

α2
k,

hence758

E[(F (wσ) − F∗)1ET
] ≤ (F (w1) − F∗) + c

T −1∑
k=1

α2
k.

Therefore,759

P(τ ≤ T, ET ) ≤
F (w1) − F∗ + c

∑T −1
k=1 α2

k

B
.

Finally,760

P(τ > T ) ≥ 1 − P(τ ≤ T, ET ) − P(Ec
T ) ≥ 1 −

F (w1) − F∗ + c
∑T −1

k=1 α2
k

B
−

T −1∑
k=1

δk,

and truncation gives the max{0, ·} form.761

D Numerical experiments762

D.1 Implementation details763

The algorithms in this paper were implemented in Python using jax (version 0.5.0), flax (version 0.10.0),764

and optax (version 0.2.4). All timing results reported in Section 4 were measured on a consistent hardware765

platform running Ubuntu 24.04.2 LTS, equipped with an Intel(R) Core(TM) i7-12700K CPU (8 Performance-766

cores @ 3.60 GHz and 4 Efficient-cores @ 2.70 GHz), and 64 GB of system memory. All experiments were767

executed in double precision arithmetic to ensure numerical stability for the challenging SciML problems.768

D.2 Baseline methods and experimental setting769

Our experiments evaluated several optimization algorithms to validate our theoretical analysis of precon-770

ditioning effects. We implemented vanilla SGD, SGD with momentum (β = 0.9), and the preconditioned771

methods using GGN and Hessian approximations. The preconditioned methods employ conjugate gradient to772

efficiently approximate matrix-vector products with the inverse preconditioner, avoiding the prohibitive cost773

of explicitly forming and inverting the full matrices. This approach provides a computationally tractable way774

to incorporate curvature information into the optimization process. For Adam (with β1 = 0.9, β2 = 0.999)775

and L-BFGS (with memory size 100 and maximum line search of 100 steps), we utilized the implementations776

available in the optax library.777

Our experimental protocol employed a structured two-phase optimization strategy. Phase I utilized Adam778

with a learning rate of 0.001 until convergence slowed significantly. This established a common starting779

point in the optimization landscape and helped navigate past initial high-gradient regions. In Phase II, we780

transitioned to the respective optimization methods for direct performance comparison. The specific duration781

of each phase varied by task complexity and is detailed in the respective experimental sections.782

We individually optimized learning rates for each method-task combination through grid search, deliberately783

omitting learning rate schedulers to isolate the inherent convergence properties of each optimizer. For784

Adam, we searched within the range {0.001, 0.0005, 0.0002, 0.0001, . . . , 0.00001}. The preconditioned methods785

required different learning rate ranges due to their curvature properties: CG-Hessian and CG-GGN used786

{1.0, 0.5, . . . , 0.001}. This difference reflects our theoretical analysis that effective preconditioning can support787

larger learning rates when operating near local minima. For vanilla SGD and momentum SGD, we initially788

explored the same ranges as Adam and expanded to wider intervals when necessary to ensure optimal789

performance. This methodology ensured a fair comparison by allowing each optimizer to operate at its most790

effective learning rate for each specific task.791
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To ensure robust experimental results, we conducted each experiment five times using different random792

seeds (42 to 46 for Phase I and 43 to 47 for Phase II). This approach accounts for the inherent stochasticity793

in neural network training processes and allows us to report mean performance metrics. For our timing794

analysis, we implemented a precise measurement protocol that isolates the computational efficiency of the795

optimization methods themselves. Specifically, we excluded all data generation and preprocessing overhead,796

capturing only the cumulative duration of the actual training iterations on identical hardware configurations.797

This methodology provides an equitable assessment of computational efficiency, particularly important798

when comparing methods with substantially different per-iteration costs, such as first-order methods versus799

preconditioned approaches that require conjugate gradient iterations.800

D.3 Noisy data regression801

For the Franke function regression experiment, we used a neural network with two hidden layers of 50 neurons802

each and ReLU activation functions. We resampled the dataset every epoch, generating 256 points with803

additive Gaussian noise as described in Appendix 4.2 and illustrated in the left panel of Figure 6. For the804

preconditioned methods, we employed 5 conjugate gradient iterations. The right panel of Figure 6 extends805

our main results by displaying not only the mean performance across 5 independent runs but also the variance806

bands for each optimization method.807

Figure 6: Left: Visualization of the Franke function dataset sampling. Right: Franke function regression
performance averaged over 5 independent runs. Left: Training loss versus epochs with Phase I transitioning
to Phase II at epoch 500 with variance.

D.4 Physics-informed neural networks808

For solving the Poisson equation with PINNs, we used a neural network with two hidden layers of 50 neurons809

each and tanh activation functions. We resampled the dataset every epoch, generating 1, 000 points within810

the domain and 200 points on the boundary, as described in Appendix 4.2 and illustrated in the left panel of811

Figure 7. For the preconditioned methods, we employed 20 conjugate gradient iterations. The right panel of812

Figure 7 shows that the mean loss trajectory is accompanied by a tight variance envelope across 5 independent813

runs.814

D.5 Green’s function learning815

For both cases in the Green’s function experiments, we used a neural network with five hidden layers of816

20 neurons each and tanh activation functions. We resampled the dataset every epoch, generating 1, 000817

points within the domain, 500 points such that x is close to y, and 200 points on the boundary. For the818

preconditioned methods, we employed 20 conjugate gradient iterations. Figure 9 extends our main results by819

displaying not only the mean performance across 5 independent runs but also the variance bands for each820

optimization method.821
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Figure 7: Left: Visualization of the sampling strategy for the 2D Poisson equation PINNs. The plot shows
the distribution of 1, 000 collocation points within the domain (blue) and 200 points along the boundary
(red) used for enforcing the PDE and boundary conditions respectively. Right: Poisson equation PINNs
performance averaged over 5 independent runs. Training loss versus epochs with Phase I transitioning to
Phase II at epoch 1, 000 with variance.

Figure 8: Visualization of the sampling strategy for Green’s function learning. The plot shows three categories
of training points: randomly distributed interior points (blue, 1, 000 points), points concentrated near the
diagonal where x is close to y (green, 500 points) to capture the near-singularity behavior characteristic of
Green’s functions, and boundary points (red, 200 points) used to enforce homogeneous Dirichlet boundary
conditions.

Figure 9: Green’s function learning performance averaged over 5 independent runs. Left: Training loss versus
epochs with Phase I transitioning to Phase II at epoch 2, 000 with variance for Laplacian. Right: Training loss
versus epochs with Phase I transitioning to Phase II at epoch 2, 500 with variance for convection-diffusion.
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