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Abstract

Graph representation learning (GRL) is a fundamental task in machine learning,
aiming to encode high-dimensional graph-structured data into low-dimensional
vectors. Self-supervised learning (SSL) methods are widely used in GRL because
they can avoid expensive human annotation. In this work, we propose a novel
Subgraph Gaussian Embedding Contrast (SGEC) method. Our approach introduces
a subgraph Gaussian embedding module, which adaptively maps subgraphs to
a structured Gaussian space, ensuring the preservation of graph characteristics
while controlling the distribution of generated subgraphs. We employ optimal
transport distances, including Wasserstein and Gromov-Wasserstein distances, to
effectively measure the similarity between subgraphs, enhancing the robustness of
the contrastive learning process. Extensive experiments across multiple benchmarks
demonstrate that SGEC outperforms or presents competitive performance against
state-of-the-art approaches. Our findings provide insights into the design of SSL
methods for GRL, emphasizing the importance of the distribution of the generated
contrastive pairs1.

1 Introduction

Graph representation learning (GRL) aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has been widely
studied in a range of fields, including machine learning and data mining [Ju et al., 2024].

Self-supervised learning (SSL) offers a promising approach to GRL by mitigating the need for exten-
sive human annotation [Jaiswal et al., 2020]. Particularly, contrastive learning is a prominent approach
in SSL that leverages the similarities and differences between data samples or data embeddings to
learn representations. In this context, positive sample pairs are typically two augmented views of
the same data point that should be close in the representation space, while negative sample pairs are
original and augmented views of different data samples [Chen et al., 2020]. Current graph-based
contrastive learning methods primarily generate positive and negative sample pairs through perturba-
tions [Zhu et al., 2020a]2. However, t-SNE visualizations of current graph-based contrastive learning
methods, like GCA [Zhu et al., 2021] and GSC [Han et al., 2022], reveal uneven node distributions
within the same graph, with sharp boundaries and erroneous node clusters as illustrated in Figure 1.
We observe that those characteristics of previous models penalize their performance in GRL tasks.

In this paper, we propose the Subgraph Gaussian Embedding Contrast (SGEC) model. In our
method, a subgraph Gaussian embedding (SGE) module is proposed to generate the features of
the subgraphs. The SGE maps input subgraphs to a structured Gaussian space, where the features
of the output subgraphs tend towards a Gaussian distribution by using the Kullback–Leibler (KL)
divergence. SGE is a learnable mapping that controls the distribution of the embeddings. The

1Our code is provided at https://github.com/ShifengXIE/SGEC
2A complete review of the related work can be found in Appendix A.

NeurIPS 2024 Workshop: Self-Supervised Learning– Theory and Practice.

https://github.com/ShifengXIE/SGEC
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Figure 1: T-SNE visualizations of the graph contrastive learning method GCA [Zhu et al., 2021], GSC
[Han et al., 2022], and our method SGEC on the Cora dataset [McCallum et al., 2000]. Each point in
the visualization corresponds to a node embedding, with colors indicating classes. SGEC maps the
node representations into a dense, uniform, and more linearly separable space.

embedded subgraphs, paired with the original subgraphs to form positive and negative pairs, then
conduct contrastive learning with optimal transport measurements to obtain the graph representation.
The embedded subgraphs offer diversity to prevent mode collapse (also called positive collapse [Jing
et al., 2022]) where the embeddings shrink into a low-dimensional subspace, by controlling the
embedding distribution.

For our contributions, firstly, we propose the Subgraph Gaussian Embedding Contrast (SGEC) model
that demonstrates its advantages across eight distinct benchmarks. We also provide insights into
the importance of the distribution of subgraphs generated for contrastive positive and negative pairs.
Finally, we provide different validation and ablation studies to assess the effectiveness of each design
choice in SGEC.

2 Subgraph Gaussian Embedding Contrast (SGEC) Method

Mathematical Notation. Consider an undirected graph G = (V, E) with vertex set V and edge set
E . The feature matrix X = [x1, . . . ,xN ]⊤ ∈ RN×C contains node features xi ∈ RC , where N is
the number of nodes and C is the feature dimension. The adjacency matrix A ∈ RN×N represents
the graph topology, and D is the diagonal degree matrix. For some node i, let Hi = (Vi, E i) be
its induced breadth-first search (BFS) subgraph with k nodes, adjacency matrix Ai ∈ Rk×k, and
feature matrix Xi ∈ Rk×C . Our method embeds this subgraph into a structured space, yielding the
embedded subgraph H̃i = (Vi, Ẽ i) with adjacency matrix Ai and feature matrix X̃i. We provide the
definitions of KL divergence, Wasserstein, and Gromov-Wasserstein distances in Appendix B.

Overview of the Proposed Method. Figure 2 shows an overview of our methodology, where our
process begins with an encoder of the input graph. Subsequently, we obtain subgraphs utilizing
BFS-based sampling. The node representations and topology information within these subgraphs are
adaptively embedded into a latent space tending towards a Gaussian distribution, which is enforced
by the KL divergence regularization. Finally, we use the Wasserstein and the Gromov-Wasserstein
distance to measure dissimilarities in the subgraphs for contrastive learning.

Graph Encoder. We begin by employing a graph encoder to preprocess the graph data [Kingma and
Welling, 2014, Han et al., 2022]. The graph encoder comprises some graph convolutions layers and
activation functions σ(·). We use two graph convolution layers [Kipf and Welling, 2017] in SGEC.
Further details on the implementation of these layers are provided in the Appendix B.3.

Subgraph Gaussian Embedding (SGE). The SGE module comprises GraphSAGE [Liu et al., 2020]
and GAT (graph attention) [Veličković et al., 2018] layers. Appendix B.4 provides further details
about GraphSAGE. We first randomly sample a set of nodes S and get their BFS-induced subgraphs,
where |S| is a hyperparameter of SGEC. We then apply the combination of GraphSAGE and GAT
layers on these subgraphs. The latent means and variances are encoded by separate GAT networks as
follows:

µi = GATConvµ(hi), logσ2
i = GATConvσ(hi), x̃i = µi + exp(log(σi))⊙ ϵ,
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Figure 2: Overview of the Subgraph Gaussian Embedding Contrast (SGEC) method. The SGEC
method begins with a graph encoder to generate embeddings and employs a breadth-first search to
sample subgraphs for some set of nodes S . A Gaussian embedding module then produces contrastive
samples in a Gaussian space of these subgraphs. Positive pairs consist of subgraphs with the same
central node, while negative pairs have different central nodes. SGEC introduces the Wasserstein and
Gromov-Wasserstein distances to compute distances between subgraphs for contrastive learning.

where ϵ ∼ N (0, I) represents Gaussian noise drawn from the standard normal distribution, hi

represents the output of the last GraphSAGE layer, x̃i denote the embedded features of node i. Note
that i is some node in the set of |S| induced subgraphs. In this configuration, µi and logσ2

i are
derived through separate GAT layers. SGE effectively capture both the node attributes and the graph
topology. In our method, we preserve the original graph topology, so the embedded subgraphs have
the same adjacency matrices as the original subgraphs.

Regularization in the Subgraph Gaussian Embedding. In our approach, we introduce a regu-
larization constraint to the SGE module to guide the embedded subgraph node features towards a
Gaussian distribution. For the motivation of introducing the Gaussian regularization, please see the
Appendix C. This regularization is implemented using the Kullback-Leibler divergence, denoted as
KL(q(·)∥p(·)), between the embedding distribution q(·) and a predefined Gaussian prior. The prior
p(X̃) is taken as a product of independent Gaussian distributions for each latent variable x̃i, given by
p(x̃i) = N (x̃i|0, I). The expression for the KL divergence then simplifies to:

KL
(
q(X̃ | X,A) ∥ p(X̃)

)
=

1

|P|
∑
i∈P

C̃∑
j=1

(
µ2

ij + σ2
ij − 1− 2 logσij

)
,

where µ and σ2 are the latent mean and latent variance of the ith embedded node, respectively, and
P is the set of nodes in the |S| induced subgraphs. C̃ is the dimension of the latent features.

Optimal Transport Contrastive Loss. Our contrastive loss function integrates the Wasserstein
and Gromov-Wasserstein distances into the InfoNCE loss formulation [van den Oord et al., 2018],
addressing the complexities of graph-based data. The Wasserstein distance, W (Xi, X̃i), captures
feature distribution representation within subgraphs, whereas the Gromov-Wasserstein distance,
GW (Ai,Xi,Ai, X̃i), captures structural discrepancies, providing a topology-aware similarity mea-
sure. The complete contrastive loss Lcontrast is the sum of LW and LGW provided as follows:

LW = α

(
−
∑

i∈S log exp(−W (Xi,X̃i)/τ)∑N
j∈S,j ̸=i(exp(−W (Xi,X̃j)/τ)+exp(−W (Xi,Xj)/τ)))

)
,

LGW = (1− α)

(
−
∑

i∈S log exp(−GW (Ai,Xi,Ai,X̃i)/τ)∑N
j∈S,j ̸=i(exp(−GW (Ai,Xi,Aj ,X̃j)/τ)+exp(−GW (Ai,Xi,Aj ,Xj)/τ))

)
,

where α is a hyperparameter that balances the emphasis on feature distribution and structural fidelity,
and τ is a temperature hyperparameter. The final loss L of our model incorporates both contrastive and
regularization components balanced by a hyperparameter β as follows: L = Lcontrast + βKL(q(X̃ |
X,A)∥p(X̃)).
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Table 1: Comparison (accuracy %) of SGEC against state-of-the-art SSL method for graphs.

Method Cora Citeseer Pubmed Coauthor Squirrel Chameleon Cornell Texas
MUSE 69.90±0.41 66.35±0.40 79.95±0.59 90.75±0.39 40.15±3.04 55.59±2.21 83.78±3.42 83.78±2.79

GREET 84.40±0.77 74.10±0.44 80.29±0.24 94.65±0.18 39.76±0.75 60.57±1.03 78.36±3.77 78.03±3.94

GRACE 83.30±0.74 72.10±0.60 86.70±0.16 92.78±0.04 52.10±0.94 52.29±1.49 60.66±11.32 75.74±2.95

GSC 82.80±0.10 71.00±0.10 85.60±0.20 91.88±0.11 51.32±0.21 64.02±0.29 93.56±1.73 88.64±1.21

DGI 81.99±0.95 71.76±0.80 77.16±0.24 92.15±0.63 38.80±0.76 58.00±0.70 70.82±7.21 81.48±2.79

GCA 78.13±0.85 67.81±0.75 80.63±0.31 93.10±0.20 47.13±0.61 56.54±1.07 53.11±9.34 81.02±2.30

GraphMAE 84.20±0.40 73.40±0.40 81.10±0.40 80.63±0.15 48.26±1.21 71.05±0.36 61.93±4.59 67.80±3.37

SGEC (Ours) 83.60±0.10 73.14±0.14 84.60±0.10 92.34±0.04 56.39±0.57 69.14±1.12 94.58±2.13 92.38±0.81

Table 2: Validation and ablation studies on different modules of SGEC.

Methodology Cora Citeseer Pubmed Coauthor Squirrel Chameleon Cornell Texas
W.O. Regularization 83.00±0.07 71.88±0.07 85.46±0.04 91.96±0.09 42.99±0.17 64.25±0.21 94.58±0.22 75.72±0.40

With Decoder 82.80±0.07 73.00±0.08 80.26±0.37 92.03±0.13 35.47±0.21 60.30±0.21 93.56±0.64 88.98±0.52

With reconstruction 81.60±0.99 79.60±0.10 67.54±0.35 87.03±0.65 30.52±0.48 43.26±0.66 53.29±0.13 63.45±0.48

Dropout 79.00±0.21 70.60±3.52 80.84±0.05 91.52±0.37 44.24±0.50 58.94±0.72 85.76±0.24 87.98±0.15

SGEC (Ours) 83.60±0.10 73.14±0.14 84.60±0.10 92.34±0.04 56.39±0.57 69.14±1.12 94.57±2.13 92.38±0.81

3 Experimental Evaluation

Comparison of Classification Performance. We compare our model against state-of-the-art SSL
for node classification methods: GREET [Liu et al., 2023], GRACE [Zhu et al., 2020a], GSC [Han
et al., 2022], and MUSE [Yuan et al., 2023]. Additionally, we include classic SSL baselines for a
comprehensive comparison: DGI [Veličković et al., 2019], GCA [Zhu et al., 2021], and GraphMAE
[Hou et al., 2022]. We test SGEC on standard benchmark datasets for node classification Cora,
Citeseer, Pubmed, Coauthor, Squirrel, Chameleon, Cornell, and Texas [Giraldo et al., 2023]. Please
see the Appendix D for more information about the datasets and experimental setup. The evaluation
results for these eight datasets are summarized in Table 1. We observe that SGEC achieves the highest
accuracies on the Squirrel, Cornell, and Texas datasets, outperforming existing state-of-the-art SSL
methods. While not always leading on other datasets, SGEC consistently demonstrates competitive
performance, highlighting its robustness and effectiveness in GRL.

Validation and Ablation Studies. We design four network configurations for validation and ablation
studies of SGEC in Table 2. The first, termed “W.O. Regularization", omits the KL divergence
component, retaining the original network structure but mapping node features into an unstructured
space. This ablation demonstrates the efficacy of the added regularization term encouraging a
Gaussian distribution. The second study, “with decoder", incorporates a decoder of two fully
connected layers. This allows the contrastive learning loss to substitute for the reconstruction loss and
effectively models the network as a Variational Autoencoder (VAE) generating contrastive pairs. This
study illustrates that SGEC is not merely a combination of a VAE model with contrastive learning.
The third study, “with reconstruction", includes an ℓ1 reconstruction loss calculated as the norm of
the difference between input and output features, adding a constraint to enforce similarity between
them. The fourth study, “Dropout", replaces the KL divergence with dropout as the regularization
technique. Our method outperforms dropout, validating its superiority in SSL tasks for GRL.

4 Conclusion

We introduced SGEC, which embeds subgraphs into a Gaussian space to enhance self-supervised
graph representation learning. By controlling embedding distributions and utilizing optimal transport
distances, SGEC achieves superior or competitive performance. Our results emphasize the importance
of distribution control in generating contrastive pairs.

Future work will involve integrating spectral-based contrastive learning methods [Chen et al., 2024]
to further validate and enhance our proposed approach. Additionally, we intend to explore the
applicability of our framework to other modalities, extending beyond graph data. This would involve
validating our underlying ideas in different contexts, potentially broadening the impact and utility of
our approach in various domains of representation learning.
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Appendix

In the appendix, we provide supplementary material that includes a concise review of related
work on graph representation learning and self-supervised learning on graphs. We also present
essential mathematical preliminaries for our approach and discuss the motivation for introducing
KL regularization into our method. Finally, we offer detailed experimental evaluations and dataset
descriptions, implementation details, and sensitivity analyses of the regularization constraint and
subgraph size.

A Related Work

Graph Neural Networks.

Graph Neural Networks (GNNs) play a crucial role in learning representations that effectively capture
both node features and graph topology [Wu et al., 2021]. Among various architectures, Graph
Convolutional Networks (GCNs), pioneered by Kipf and Welling [2017], utilize a special approach
inspired by spectral graph convolutions. GraphSAGE, introduced by Hamilton et al. [2017], employs
multiple aggregator functions and enables inductive learning on graphs. Veličković et al. [2018]
proposed Graph Attention Networks (GAT), which incorporate attention mechanisms to dynamically
weigh the significance of neighboring nodes.

Self-Supervised Learning on Graphs. Self-supervised learning (SSL) on graphs can be categorized
into four main frameworks [Liu et al., 2022]: generation-based [Kingma and Welling, 2014, Wang
et al., 2017], auxiliary property-based [Zhu et al., 2020b], contrastive-based [Perozzi et al., 2014,
Grover and Leskovec, 2016], and hybrid methods [Hu et al., 2020], each utilizing distinct pretext
tasks and objective functions. Generation-based methods like Graph Autoencoders (GAEs) [Kingma
and Welling, 2014] use node attributes and graph structure for learning representations. In auxiliary
property-based SSL [Zhu et al., 2020b], properties such as node roles are predicted to facilitate
learning, while contrastive methods like Deep Graph Infomax (DGI) [Veličković et al., 2019]
maximize mutual information between different graph patches. Hybrid approaches combine these
strategies to enhance model robustness and adaptability [Liu et al., 2022].

Generative Self-supervised Learning on Graphs. Graph data requires additional processing
compared to standard vector-based data due to the interrelationship of edge and node features.
Generative SSL methods often take full graphs or subgraphs as input, aiming to reconstruct either
node features or the graph’s topology. This splits into feature generation focusing on node or edge
features [You et al., 2020, Sun et al., 2020] and structure generation [Pothen, 1997, Roth et al., 2003,
Gailhard et al., 2024] targeting the graph’s topological aspects, thus deepening the understanding of
graph properties crucial for downstream tasks.

Augmented Contrastive Learning. Innovative methodologies in augmented contrastive learning
for graphs have included: 1) graph augmentations that generate diverse graph instances [Xiao et al.,
2024]; 2) various contrastive pretext tasks designed for non-Euclidean spaces [Han et al., 2022]; and
3) mutual information estimation techniques that underpin learning objectives alongside specific
pretext tasks [Veličković et al., 2019, Zhu et al., 2021]. These approaches leverage the structural
nuances of graphs to improve the quality and utility of the learned representations.

Positioning of SGEC. Our approach integrates subgraph feature generation with optimal transport
measurement to perform subgraph-wise contrastive learning. In our approach, the features of the sam-
pled subgraphs are generated by SGE, compared with generative SSL methods, we adopt contrastive
learning as the training paradigm. Furthermore, we use the Wasserstein and Gromov-Wasserstein
distances to measure the distance between subgraphs. To the best of our knowledge, the most
similar approach to ours is GSC [Han et al., 2022], focusing on the distribution of generated features,
our method aims to avoid the sparse of generated node vector features, achieving superior graph
representations. This methodology not only captures the intrinsic properties of nodes and topological
information but also maintains a distribution that enhances generalizability and effectiveness in
downstream applications.
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B Preliminaries

B.1 Optimal Transport Distance

The Wasserstein distance [Rüschendorf, 1985], commonly used in optimal transport theory, serves as
a robust metric for comparing probability distributions defined over metric spaces. For subgraphs Hi

and Hj , their corresponding feature matrices are denoted as Xi ∈ Rki×C and Xj ∈ Rkj×C , where
ki and kj represent the number of nodes in the respective subgraphs, and C is the feature dimension.
The Wasserstein distance between the feature distributions of these subgraphs is defined as:

W (Xi,Xj) = min
T∈π(u,v)

ki∑
p=1

kj∑
q=1

Tpqc(X
i
p,X

j
q),

where T ∈ π(u,v) represents the set of all possible transport plans with marginals u and v, which
are the node feature distributions in subgraphs Hi and Hj , respectively. Tpq is the transportation plan

between nodes p and q, and c(Xi
p,X

j
q) represents the cost function, often defined as exp

(
− ⟨Xi

p,X
j
q⟩

τ

)
,

where ⟨·, ·⟩ denotes the cosine similarity between node features, and τ is a temperature parameter.
This distance captures the minimal cost of transforming one subgraph’s node feature distribution into
another.

Similarly, the Gromov-Wasserstein distance [Arya et al., 2024] extends this idea to compare graph-
structured data, where the internal distances between nodes are taken into account. For two subgraphs
Hi and Hj with adjacency matrices Ai ∈ Rki×ki

and Aj ∈ Rkj×kj

, and feature matrices Xi and
Xj , the Gromov-Wasserstein distance is defined as:

GW (Ai,Aj ,Xi,Xj) = min
T∈π(u,v)

∑
p,p̃,q,q̃

TpqTp̃q̃

∣∣∣dAi(Xi
p,X

i
p̃)− dAj (Xj

q,X
j
q̃)
∣∣∣ ,

where dAi(Xi
p,X

i
p̃) and dAj (Xj

q,X
j
q̃) represent the shortest path distances between node pairs (p, p̃)

in subgraph Hi, and (q, q̃) in subgraph Hj , respectively. The matrix T ∈ π(u,v) is the optimal
transport plan that matches node pairs from the two subgraphs. This metric assesses the discrepancy
between the internal node pair distances of the two subgraphs, aligning their intrinsic geometric
structures.

B.2 The Kullback-Leibler (KL) Divergence

The Kullback-Leibler (KL) divergence is an asymmetry measure between two probability distributions
[Van Erven and Harremos, 2014], P and Q. It quantifies the amount of information lost when Q is
used to approximate P . In mathematical terms, the KL divergence is defined as:

DKL(P∥Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
,

where P (x) and Q(x) are the probability masses of P and Q at each point x in the sample space X .

B.3 Graph Convolutional Network

The graph encoder uses two graph convolution layers, which are mathematically represented as
follows:

H1 = σ
(
(D− 1

2 (A+ I)D− 1
2XW1

)
, H2 = σ

(
D− 1

2 (A+ I)D− 1
2H1W2

)
.

B.4 GraphSAGE Layer

For GraphSAGE, we present expressions:

x(l+1)
v = σ

(
W(l) · MEAN

(
x(l)
v , {x(l)

u | u ∈ N (v)}
)
+ b(l)

)
,

where x(l)
v is the feature vector of node v at layer l, W(l) is the weight matrix at layer l, N (v) denotes

the set of neighbors of node v.
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Table 3: Overview of selected datasets used in the study.

Dataset # Nodes # Edges # Features Avg. # degree # Classes

Cora [McCallum et al., 2000] 2,708 5,429 1,433 4.0 7
Citeseer [Giles et al., 1998] 3,312 4,732 3,703 2.9 6
Pubmed [Sen et al., 2008] 19,717 44,338 500 4.5 3
Coauthor.CS [Shchur et al., 2018] 18,333 163,788 6,805 17.9 15
Squirrel [Rozemberczki et al., 2021] 5,201 217,073 2,089 83.5 5
Chameleon [Pei et al.] 2,277 36,101 2,325 31.7 5
Cornell [Craven et al., 1998] 183 298 1,703 3.3 5
Texas [Craven et al., 1998] 183 325 1,703 3.6 5

C Motivation of Introducing Regularization

Our method involves forming positive and negative pairs from both the structured feature representa-
tions and the original input features for contrastive learning. This pairing strategy offers multiple
advantages: it enriches the combination of features, reduces the risk of overfitting, and smooths and
linearizes the feature distribution.

We incorporate a Gaussian structure into the embeddings by enforcing the embedded subgraph node
features to approximate a Gaussian distribution. This is regulated using the Kullback-Leibler (KL)
divergence from the distribution q(X̃ | X,A) of the embeddings to a standard Gaussian prior p(x̃),
given by:

− log p(x̃ | x,A) =
(x− x̃)2

2σ2
+ const,

where "const" denotes a normalization constant, irrelevant to our optimization process. p(x̃) is
assumed to be a Gaussian distribution, and the formula represents the negative log-likelihood. This
term is precisely what we need when calculating the KL divergence, as it evaluates the log-likelihood
of the observation x̃ relative to the assumed distribution p(x̃). This formulation allows us to evaluate
the expectation of the KL divergence as follows:

Eq(X̃|X,A)

[
(x− x̃)2

2σ2

]
.

To compute this expectation, we assume that the embedding distribution q(X̃ | X,A) centers around
X with variance σ2, reflecting how X̃ is encoded from X. In our Optimal Transport Contrastive Loss
section, the Wasserstein distance W (Xi, X̃i) plays a crucial role in measuring the cost of transporting
one probability distribution to another, enhancing the model’s sensitivity to the geometrical structure
of the data:

W (Xi, X̃i) = min
T∈π(u,v)

ki∑
p=1

ki∑
q=1

Tpqc(X
i
p, X̃

i
q) = inf

γ∈Γ(µXi ,µX̃i )

∫
∥x− x̃∥dγ(x, x̃).

Γ(µXi , µX̃i) denotes the set of all joint distributions that relate the distributions µXi and µX̃i . These
distributions represent the probabilistic distributions of two different random variables, Xi and X̃i,
respectively. This Wasserstein distance provides a robust measure of the discrepancy between the
embedding distribution and the Gaussian prior, effectively guiding the embeddings to conform to the
desired Gaussian structure.

D Experimental Evaluation

Datasets. In this study, we have selected several widely used datasets for graph node classification to
conduct a comprehensive evaluation of our proposed method. These datasets encompass various types
of networks including academic citation networks, collaboration networks, and web page networks,
providing a diverse set of challenges and characteristics. Table 3 summarizes the basic statistics of
these datasets:
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Figure 3: Sensitivity analysis of hyperparameter beta with standard deviation.

Implementation Details. The model’s architecture leverages the strengths of well-established
libraries such as PyTorch, PyTorch Geometric, and Optuna. It is optimized for execution on
contemporary GPU architectures, including the RTX 3060 and A40, ensuring broad applicability. Our
approach adopts a self-supervised scheme evaluated via linear probing. The model is trained using the
official training subsets of the referenced datasets. Hyperparameter tuning involves a random search
on the validation set to determine optimal values for learning rate, alpha, and beta. The identified best
configuration is subsequently employed for tests on the dataset. Loss minimization is performed using
the Adam optimizer, which produces a series of node embeddings. These embeddings are crucial for
the downstream task of node classification, demonstrating the model’s efficacy and adaptability to
diverse hardware and data scenarios.

Hyperparameter Random Search. Informed by the findings of Gasteiger et al. [2019], Topping
et al. [2022], Giraldo et al. [2023], which indicate the sensitivity of graph neural networks to
hyperparameter settings, we undertake an extensive random search to optimize our model. The
training proceeds on the official splits of the train datasets, with the random search conducted on
the validation dataset to pinpoint the best configurations. These settings are then implemented to
evaluate the model on the test dataset, thereby confirming the robustness of our model under optimal
hyperparameter settings. The ranges of the hyperparameters explored and the code implementation
of our approach will be made publicly available to facilitate replication and further research.

D.1 Sensitivity Analysis of the Regularization Constraint

To investigate the impact of the regularization constraint on our method, experiments were conducted
on the Cora dataset. The influence of regularization within the loss function was controlled by varying
the hyperparameter Beta, which ranged from 10−6 to 102. The results, as illustrated in Figure 3,
indicate significant sensitivity to changes in Beta. Specifically, it was observed that values of Beta
greater than or equal to 10−5 had a pronounced effect on model performance. Optimal results on the
Cora dataset were achieved when Beta was set within the magnitude of 10−3. This analysis highlights
that Beta critically balances the strength of regularization and the intensity of contrastive learning,
ensuring an optimal trade-off that enhances model performance without compromising generalization
capabilities.

D.2 Sensitivity Analysis of the Subgraph Size

To assess the impact of subgraph size on the performance of our SGEC model, we conducted a
sensitivity analysis using the Cora dataset with subgraph sizes k = 5, 15, 25, and 35. These results,
summarized in Figure 4, indicate that a moderate subgraph size (k = 15) yields the highest accuracy
and lowest variability, suggesting that it effectively captures essential structural information without
introducing excessive noise. Larger subgraphs might include redundant or irrelevant information,
leading to slight decreases in performance. Therefore, selecting an appropriate subgraph size is
crucial for optimizing the representation learning capability of SGEC.
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Figure 4: Sensitivity analysis of subgraph size k on the Cora dataset. The plot shows the mean test
accuracy (dark blue line) with error bars representing the mean ± 3 standard deviations (light blue
dashed lines) for different subgraph sizes.
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