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A B S T R A C T

Prompts play a crucial role in enhancing the control, adaptability, and scalable application of large language
models. In recent years, strategies involving prompts have also been applied to visual models. However, the
extent to which the fusion of multi-modal prompts (e.g., text or image prompts) can improve downstream task
performance in visual models has not been systematically investigated. To address this issue, this paper focuses
on adapting the design of prompts based on instruction tuning in a vision transformer model for visual tasks,
which we have named Instruction-ViT. The key idea involves implementing and fusing multi-modal prompts
(either text or image prompts) related to category information, guiding the fine-tuning of the model. Based on
the experiments conducted on several image understanding tasks, including classification, segmentation, image
captioning, and object detection, we observe consistently improved performance and domain adaptability. Our
work presents an innovative strategy for fusing multi-modal prompts, enhancing performance and adaptability
in visual models.
. Introduction

A long-standing goal of humanity has been to develop Artificial
eneral Intelligence (AGI) that exhibits human-level intelligence or

urpasses it. A key characteristic of human intelligence is its ability to
rocess information from multiple modalities, enabling individuals to
nderstand their surroundings through various information sources and
ommunicate effectively with others [1]. Similarly, AGI systems are
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also expected to efficiently handle, integrate, and utilize multimodal
data to solve real-world problems. Recent breakthroughs in Large Lan-
guage Models (LLMs) have provided new insights toward realizing this
goal. Prompt tuning and instruction tuning were initially introduced
in the field of Natural Language Processing (NLP) to address a variety
of complex tasks. Subsequently, LLMs have demonstrated remarkable
capabilities in both learning and reasoning. Unlike traditional language
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models, generative LLMs employ a novel prompt methodology that
enables pre-trained models to facilitate downstream tasks without the
need for further model fine-tuning. Through flexible prompt and in-
struction designs, as illustrated in Fig. 1(a–b), these models can be
pre-trained on vast amounts of raw text and perform few-shot or even
zero-shot learning. This enables them to adapt to new scenarios with
minimal or no labeled data [2]. For instance, the in-context learning
capabilities demonstrated by GPT-3 [3] and ChatGPT [4] enable these
models to produce ideal results for previously unseen tasks without the
need to update any parameters [5].

While large-scale uni-modal (images or texts) models have demon-
strated impressive performance in a variety of tasks [3,6], the complex-
ity and diversity of many real-world problems in artificial intelligence
often require the integration of information from multiple modalities,
such as text, image, and audio. Multi-modal models employ various
methods to integrate data from different modalities. These methods are
typically categorized as early (feature) fusion, late (decision) fusion, or
intermediate (hybrid) fusion, depending on the stage in the network at
which representations are combined [7]. However, the choice of the
fusion method remains highly dependent on the specific domain, data,
and task, and there are currently no universal fusion rules. Multi-modal
models have demonstrated much potential in improving performance
across a variety of tasks, such as speaker diarization [8], text-to-image
generation [9], and image description [10]. However, they fall short in
their capabilities for some specific tasks, such as segmentation [6].

Recently, several studies have focused on introducing prompts into
vision and multi-modal models [11]. For example, as demonstrated
in Fig. 1(c), using a pair of input–output images as visual prompts,
the model can automatically generate an output image consistent with
these examples for any new input image [12], and it can perform
multiple tasks, such as segmentation. The Segment Anything Model
(SAM) demonstrates its impressive segmentation capabilities across nu-
merous tasks by incorporating segmentation prompts including points,
boxes, text, and masks [6,13,14]. Additionally, the Context Optimiza-
tion (CoOp) approach [15] has improved the CLIP model [16], aligning
the image and text more effectively, as shown in Fig. 1(d), by adding
an additional learnable context prompt to enhance zero-shot learning
capabilities. In our study, we propose the Instruction-ViT model, as
shown in Fig. 1(e). This model fuses multi-/single-modal prompts with
input images and employs distinct task modules to accomplish a variety
of downstream tasks.

Our contributions and main findings are summarized as follows:
(1) We have successfully incorporated instruction tuning into the

vision transformer model. This approach allows the use of both images
and text as instruction prompts to guide the tuning process.

(2) In conducting experiments on various image captioning tasks,
our Instruction-ViT model demonstrated improved performance and
stronger adaptability.

2. Related work

2.1. Large-scale multi-modal Models

Large-scale multi-modal Models (LMMs) are developed using exten-
sive datasets, enabling them to effectively process multiple modalities,
especially in visual-language downstream tasks. For example, UNITER
achieves state-of-the-art performance on various downstream tasks by
jointly encoding textual and visual information in a shared represen-
tation space [17]. CLIP utilizes different encoders for images and text,
matching them in the latent space to achieve a powerful multi-modal
encoder model [16]. ALIGN also uses a dual-encoder architecture to
align visual and language representations by training image–text pairs
without manual annotations [18]. BLIP pre-trains a multi-modal mix-
ture of encoder–decoder model to tackle both understanding-based and
generation-based tasks [19]. Flamingo is a family of visual language
models trained on large-scale multi-modal web corpora, and can easily
2

adapt to both classification and generation tasks [20]. GPT-4, the latest
version of GPT models, is a large-scale multi-modal model that is
expected to be able to process multiple types of data, including texts,
images, audio, and video [10]. The use of these LMMs’ pre-trained
visual-language models has become increasingly significant. In contrast
to the common practice of directly aligning text and images in existing
models, our method uniquely focuses on utilizing multi-modal prompts,
aiming to significantly enhance the performance of visual tasks.

2.2. Multi-modal prompt tuning

Prompt tuning, a technique initially utilized in NLP, is designed
to improve the performance of language models [21]. This method
involves fine-tuning a pre-trained language model for a specific task by
using a set of relevant prompts or examples [22]. Unlike conventional
fine-tuning, which often requires modifying the weights or parameters
of the pre-trained model, prompt tuning does not necessitate any alter-
ations to these pre-existing model weights. Moreover, prompt tuning
shows competitive advantages, especially at larger scales, in an era
where models with billions of parameters are becoming increasingly
common.

Visual Prompt Tuning [23] introduces the prompts to vision models,
which only trains very few parameters to achieve higher classifica-
tion accuracy than the full fine-tuning method. The ViPT uses other
tracking modal images to improve the performance of object track-
ing tasks based on RPG modal data [24]. While these approaches
achieve better results compared to a single visual modal, the text
modal is ignored. The VPTG fuses the visual modal data to the text
modal and obtains superior performance than the text-only model
in the visual dialogue task [25]. Similarly, the V2P uses the Swin
Transformer based image encoder to generate the attributes of the
image as the prompt [26]. These attribute prompts are utilized to
complete summary generation tasks resulting in better performance.
While these works demonstrate that methods utilizing visual data as
prompts achieve better performances than those merely using single-
modal data, the existing methods do not consider the situation using
multi-modal prompts. The NewsMEP based on concatenated multi-
modal prompts achieves better results in image captioning task [27].
For vision-language models, CoOp adds an additional learnable context
prompt to the input of the text encoder to enhance the zero-shot
learning capability [15]. To further improve the class shift robustness of
CoOp, the CoCoOp embeds the instance-conditional token on the image
encoder features from the basis of the context token [28]. However,
these methods only use multi-modal prompts for a single downstream
task or only generate a single-modal prompt.

2.3. Instruction tuning

Instruction fine-tuning, also known as instruction tuning, is a fine-
tuning technique initially introduced for LLMs [29]. Rather than fine-
tuning on a specific downstream task as in BERT-based [30] model
tuning, instruction tuning employs data comprising concise instruc-
tions and corresponding outputs across a diverse range of tasks and
domains. In the field of Natural Language Processing (NLP), Ouyang
et al. [31] built upon GPT-3 [3] and utilized instruction tuning with
Reinforcement Learning from Human Feedback (RLHF) [32] to de-
velop InstructGPT. This model better aligns its responses with user
intent and minimizes the output of untruthful and toxic content. Fur-
ther application of instruction tuning led OpenAI to introduce Chat-
GPT and GPT-4 [10], representing significant advancements towards
AGI models [1] and potential applications in various fields such as
computer-aided diagnosis in medical imaging [33,34]. Another recently
released instruction-tuned model, Alpaca, leveraged GPT-3.5 to gen-
erate a 52k instruction-following dataset [35], which was then used
to fine-tune LLaMA 7b [36]. This approach achieves comparable per-
formance to GPT-3.5 on a smaller scale and with fewer computational

resources [37].
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Fig. 1. Comparison of our method with other established methods includes: (a) A common method of prompt learning in Natural Language Processing (NLP). (b) A typical approach
to instruction learning in NLP. (c) An application of visual prompts in computer vision (CV), utilizing an image inpainting model to generate missing parts of images and unify
multiple CV tasks. (d) The pipeline of the CLIP model for aligning information from text and image. (e) Our proposed Instruction-ViT model, which fuses multi-/single-modal
prompts with the input image and adopts different task modules to achieve various downstream tasks.
Beyond NLP, recent work has expanded the use of instruction
tuning to multi-modal model fine-tuning. Liu et al. [38] leveraged
GPT-4 to generate instruction-following data [39] based on images
and the corresponding captions. In addition, the GPT-4V demonstrates
amazing visual reasoning ability under the guidance of text instruction
in both the natural and medical image domains [40,41]. The resulting
LLaVA model demonstrates competitive results with GPT-4 on visual
and language understanding tasks. By simply modifying the module
of LLaVA, LLaVA-1.5 [42] achieved improved performance on various
tasks. Similar to the approach described above, our work utilizes in-
struction tuning to fine-tune our model for specific visual tasks and to
emphasize the adaptability and efficacy of multi-modal prompts.

3. Methods

We propose Instruction-ViT, a unified framework that aligns the
input of images and prompts. In this section, we will first introduce
the proposed method for creating prompt tokens, outline the backbone
of the model, and discuss how we perform various downstream tasks.
Then, we will introduce our strategy for selecting prompts and for
interpretability analysis.

3.1. Prompt

We construct the prompt as shown in the bottom right of Fig. 2. In
our work, we use the text of the class name, the corresponding image
in the training dataset, as well as the combination of text and image
as our prompts, respectively. For the text prompt, we use 80 sentence
templates with the form like 𝑎 𝑝ℎ𝑜𝑡𝑜 𝑜𝑓 𝑎 {𝐶𝑙𝑎𝑠𝑠 𝑁𝑎𝑚𝑒} in the same
way as OpenCLIP [43]. After that, we use the pre-trained CLIP text
3

𝑥

encoder as our prompt encoder, the 80 constructed text prompts as
input, and obtain the average result as the prompt token of text 𝑥𝑝𝑡
as shown in the formula:

𝑥𝑝𝑡 =
∑80

𝑘=1 𝑥𝑝𝑡𝑘
80

(1)

where 𝑥𝑝𝑡𝑘 represents the prompt generated from 𝑘th text template.
CLIP’s pre-trained image encoder is used as the Prompt Encoder for
generating image prompt tokens 𝑥𝑝𝑖. Specifically, we randomly select
an image from the training set as the prompt image and embed the
image to tokens by the encoder. By averaging the text and image
prompt tokens together [44], we obtain the mixed prompt tokens 𝑥𝑝𝑚
for each class, as shown in the formula:

𝑥𝑝𝑚 =
𝑥𝑝𝑖 + 𝑥𝑝𝑡

2
(2)

For comparison, we also use BERT as the Prompt Encoder [30] with the
same process as constructing the text prompt tokens, and end up with
the prompt tokens 𝑥𝑝𝐵 . Finally, we generate four types of prompts, and
the input prompt tokens are represented as 𝑥𝑝 = {𝑥 ∣ 𝑥 ∈ 𝑥𝑝𝑡 𝑜𝑟 𝑥 ∈
𝑥𝑝𝑖 𝑜𝑟 𝑥 ∈ 𝑥𝑝𝑚 𝑜𝑟 𝑥 ∈ 𝑥𝑝𝐵} in this work.

3.2. Instruction prompt in vision transformer

As shown in Fig. 2, we adopt ViT as the backbone of our model [45].
For the input of the transformer module, we create a learnable [CLS]
token 𝑥𝑐𝑙𝑠 to represent global image features and to extract prompt
features. The input image, which is divided into patches and encoded
into a sequence of patch embeddings 𝑥𝑖𝑚 by the Embed module, forms
the other part. Additionally, we add positional embeddings to 𝑥𝑐𝑙𝑠 and

to retain positional information. The final part is the instruction
𝑖𝑚
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Fig. 2. The overall framework of Instruction-ViT for classification. For each image input, the corresponding latent text or visual features are considered as prompts. We utilize
the Transformer’s attention mechanism to combine the features of the input image and prompts. The CLS token is used to complete the downstream classification task, and the
similarity scores computed by the CLS and prompt tokens are used to assist in the fine-tuning of the model. During the training stage, the pink module is fine-tuned while the
navy blue module remains frozen.
Algorithm 1 The pseudo code of Instruction-ViT for classification
Input: Images, Prompt
Output: SimScore, Pred
if Prompt not suitable to Images then

PromptEmb ← ResetPrompt(Prompt);
end
for each Im in Images do

ImPatchs ← ImageToPatch(Im);
ClsToken ← Zeros(SameEmbSize(ImPatchs));
x ← Concate(ClsToken, ImPatchs, PromptEmb);
x ← Transformer(x);
ClsToken, ImPatchs, PromptEmb ← x;
Pred ← ClassificationHead(ClsToken);
SimScore ← Distance(ClsToken, PromptEmb);

end

prompt 𝑥𝑝. Therefore, we can represent the input of our Transformer
module as:

𝑥𝑖𝑛 =
[

𝑥𝑐𝑙𝑠 𝑥𝑖𝑚 𝑥𝑝
]

(3)

where 𝑥𝑐𝑙𝑠, 𝑥𝑖𝑚, and 𝑥𝑝 represent the [CLS] token, input image patch
embeddings, and prompt tokens, respectively. The input 𝑥𝑖𝑛 is then fed
into the Transformer module and uses the self-attention mechanism so
that the [CLS] token can utilize features from both 𝑥𝑖𝑚 and 𝑥𝑝. We
demonstrate the core implementation of our work in Algorithm 1.
4

3.3. Downstream task and loss construction

Our model is built upon the ViT-based backbone, enabling it to
effectively perform various tasks including classification, segmentation,
image captioning, and object detection via using different function
heads. In our work, we have successfully implemented and accom-
plished these tasks using our model, demonstrating its flexibility and
adaptability.

3.3.1. Classification
In our work, we add a classification head after the CLS token to

accomplish the classification task. For the predicted result 𝑦𝑝𝑟𝑒𝑑 , we
use the cross-entropy loss as the loss function in the classification task,
which is defined as:

𝑙𝑜𝑠𝑠𝑝𝑟𝑒𝑑 = 𝐶𝐸𝐿𝑜𝑠𝑠(𝑦𝑝𝑟𝑒𝑑 , 𝑡𝑎𝑟𝑔𝑒𝑡) (4)

where 𝑡𝑎𝑟𝑔𝑒𝑡 is the ground truth, and 𝐶𝐸𝐿𝑜𝑠𝑠 is the function to
calculate cross-entropy loss.

Similarly to VPT [23], we evaluate the overall performance of our
model by fine-tuning only a subset of parameters. Specifically, in line
with VPT, we fine-tune the head function and the prompt part in our
model solely. Furthermore, considering the specific context in which
VPT is employed, we also train our model using only a small number
of samples from each class for training.

Furthermore, we conduct additional comparisons by replacing our
backbone with DeiT [46] as well as using a BERT-generated
prompt [30]. In the case of backbone replacement, the structure of
DeiT closely resembles ViT except for the distillation token, result-
ing in seamlessly replacement of ViT backbone with DeiT. Similarly,
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we directly replace the prompt with the one from BERT with same
dimension.

3.3.2. Segmentation
We perform the segmentation task by replacing the function head

with a segmentation head. Specifically, our head function is composed
of two CNN layers and one interpolation layer, which can predict patch
embedding to a segmentation result with the original image size. For
the segmentation task, we use DiceLoss as the loss function which is
represented as:

𝑙𝑜𝑠𝑠𝑝𝑟𝑒𝑑 = 𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠(𝑦𝑠𝑒𝑔 , 𝑡𝑎𝑟𝑔𝑒𝑡𝑠) (5)

here 𝑦𝑠𝑒𝑔 is the predicted segmentation result and 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 is the ground
ruth of segmentation.

.3.3. Image captioning
To perform the image captioning task, we employ LSTM as our

ecoder, which is a widely adopted choice to effectively generate
aptions for the input images [47]. For the training process, we utilize
he cross-entropy function CELoss as our loss function:

𝑜𝑠𝑠𝐼𝐶 = 𝐶𝐸𝐿𝑜𝑠𝑠(𝑦𝐼𝐶 , 𝑡𝑎𝑟𝑔𝑒𝑡𝑠) (6)

here 𝑦𝐼𝐶 is the prediction score of image captioning, and 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 is
he score of ground truth.

.3.4. Object detection
To perform the object detection task, we follow a previously es-

ablished method [48] that utilizes ViT as the backbone for object
etection. We simply switch out the backbone with our Instruction-ViT
o effectively detect and identify targets in the given input image.

.3.5. Loss construction
To optimize the participation of different modal prompts in the clas-

ification process, we calculate the cosine similarity score [45] between
he output [CLS] token and prompt tokens to improve the alignment
nd uniformity, which are the important properties in contrastive
earning [49]. The similarity score is calculated as:

𝑐𝑜𝑟𝑒 = 𝑦𝑐𝑙𝑠 ⋅ 𝑦
𝑇
𝑝 (7)

here 𝑦𝑐𝑙𝑠 represents the output of [CLS] token, and 𝑦𝑝 represents the
utput of prompt tokens. Both 𝑦𝑐𝑙𝑠 and 𝑦𝑝 are L2 regularized. For image

segmentation, the similarity score is calculated as:

𝑆𝑐𝑜𝑟𝑒 = 𝑦𝑝𝑎𝑡𝑐ℎ ⋅ 𝑦
𝑇
𝑝 (8)

where 𝑦𝑝𝑎𝑡𝑐ℎ is the patch embedding of the output of Transformer with
L2 regularization. Since the class having the largest similarity score
with the CLS token is the targeted class, we use the similarity score
as part of the loss which is defined as:

𝑙𝑜𝑠𝑠𝑠𝑐𝑜𝑟𝑒 = − log
exp (𝑧+)
∑

exp (𝑧𝑖)
(9)

here 𝑧+ represents the similarity score of the target sample and 𝑧𝑖
epresents each similarity score. The final loss is then represented as:

𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑝𝑟𝑒𝑑 + 𝑙𝑜𝑠𝑠𝑠𝑐𝑜𝑟𝑒 (10)

.4. Prompt selection

To ensure that the input image remains the main focus and to im-
rove computational efficiency, we limit the number of input prompts
uring validation. We carry out an initial filtering of potential classes
nd illustrate the overall framework of prompt selection in Fig. 3.
pecifically, we extract features from both the input image 𝐼𝑖𝑚 and text
5

emplates 𝐼𝑡𝑒𝑥𝑡 using the pre-trained CLIP image encoder 𝐸𝑁𝐶𝑖𝑚𝑎𝑔𝑒 and
ext encoder 𝐸𝑁𝐶𝑡𝑒𝑥𝑡 respectively, and calculate their similarity score,
hich is represented as follows:

𝑖𝑚𝑎𝑔𝑒 = 𝐿2(𝐸𝑁𝐶𝑖𝑚𝑎𝑔𝑒(𝐼𝑖𝑚)) (11)

𝐹𝑡𝑒𝑥𝑡 = 𝐿2(𝐸𝑁𝐶𝑡𝑒𝑥𝑡(𝐼𝑡𝑒𝑥𝑡)) (12)

𝑆𝑐𝑜𝑟𝑒 = 𝐹𝑖𝑚𝑎𝑔𝑒 ⋅ 𝐹
𝑇
𝑡𝑒𝑥𝑡 (13)

here 𝐿2 represents the L2-regularization, 𝐹𝑡𝑒𝑥𝑡 ∈ R𝑁×𝐷𝑖𝑚 represents
he extracted text features and 𝐹𝑖𝑚𝑎𝑔𝑒 ∈ R1×𝐷𝑖𝑚 represents the extracted

image features. We then select K prompts with the highest similarity as
the input prompts to the next module. For the other N-K prompt tokens,
we calculate their average value and utilize it as an additional input
prompt. By selecting K+1 prompt token, we can effectively reduce the
omputational time.

.5. Interpretability analysis

We use the Grad-CAM method to generate visual explanations from
ur model [50]. Specifically, we extract the forward propagation pa-
ameters 𝑃𝑓𝑜𝑟 and backward propagation parameters 𝑃𝑏𝑎𝑐𝑘 of the last
ttention layer of Transformer [45]. The visual explanations result 𝐿 is
epresented as:

= 𝐹𝑢𝑛𝑐𝑖(𝑅𝑒𝐿𝑈 (
𝑛
∑

ℎ𝑒𝑎𝑑=1
(𝑃𝑓𝑜𝑟 ⊙ 𝑃𝑏𝑎𝑐𝑘)∕𝑛)) (14)

here 𝐹𝑢𝑛𝑐𝑖 is the bilinear interpolate function, ReLU is the rectified
inear unit, 𝑛 is the number of heads in the last layer, and ⊙ is the
lement-wise operation. We further employ three quantitative metrics
ncluding Accuracy Drop, Average Drop of Confidence, and Increase in
onfidence to evaluate the model interpretability between our model
nd the ViT model [51]. Specifically, the visualization results generated
rom the proposed Instruction-ViT and ViT are input into CLIP as
he discriminative model, and the evaluation metrics based on CLIP’s
utput is calculated. The Accuracy Drop is defined as:

𝑒𝑡𝑟𝑖𝑐 =
𝑁
∑

𝑖=1
(𝐴𝐶𝐶𝑂𝑟𝑖𝑔 − 𝐴𝐶𝐶𝑉 𝑖𝑠)∕𝑁 (15)

here 𝐴𝐶𝐶𝑂𝑟𝑖𝑔 and 𝐴𝐶𝐶𝑉 𝑖𝑠 represent the accuracy of original input
nd visualized input, respectively, and 𝑁 represents the Validate set
ize. The Confidence Drop is defined as:

𝑒𝑡𝑟𝑖𝑐 = 100 ∗ (
𝑁
∑

𝑖=1
(𝑚𝑎𝑥(0, 𝑂𝑖 − 𝑉𝑖)∕𝑂𝑖)) (16)

here 𝑂𝑖 and 𝑉𝑖 represent the output of original input and visualized
nput, respectively. The Increase in Confidence is defined as:

𝑒𝑡𝑟𝑖𝑐 = 100 ∗ (
𝑁
∑

𝑖=1
𝑙𝑜𝑔𝑖𝑐(𝑂𝑖 < 𝑉𝑖)∕𝑁) (17)

where 𝑙𝑜𝑔𝑖𝑐(𝑂𝑖 < 𝑉𝑖) is to set to 1 if the input 𝑂𝑖 and 𝑉𝑖 meet the
condition 𝑂𝑖 < 𝑉𝑖.

4. Experiments

4.1. Datasets

We use 4 image classification datasets from different domains
including Caltech-101 [52], Oxford-III Pets [53], AgriNet [54] and
Oxford Flowers 102 [55]. We also use the data from PASCAL
VOC2012 [56], Microsoft COCO 2014 [57] and Microsoft COCO
2017 [57] for the segmentation, image captioning, and object detection

tasks, respectively.
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Fig. 3. The overall framework of prompt selection in validation studies. For an input image from the validation set, feature extraction is performed using the zero-shot CLIP model
for the potentially possible class and the image. Then, a similarity score is calculated, in which the K prompt tokens with the highest similarity, along with the average value of
the remaining N-K prompt tokens, are selected for the next module.
4.2. Experiments settings

4.2.1. Model setup
In our work, we follow the previous study [45] and adopt a net-

work architecture consisting of 12-layer Transformer blocks with 768
hidden sizes and 12 attention heads. Additionally, the input image is
partitioned into 196 patches with a patch size of 16. For the DeiT
backbone experiment [46], we use the same network structure as ViT
with a distillation head. For the creation of prompt tokens, we adopt the
image and text encoders from the pre-trained parameters of CLIP [16]
and a text encoder from BERT model [30]. In the segmentation, image
captioning, and object detection tasks, we employ our Instruction-
ViT as the backbone and leverage distinct decoders for each specific
task. Specifically, the segmentation task is facilitated by a two-layer
CNN, the image captioning task utilizes an LSTM [47], and the object
detection task follows established methodologies as described in prior
research [48].

4.2.2. Training setup
During the training stage in classification, the model is trained with

a batch size of 256 and 20 epochs using a server equipped with 8
NVIDIA GeForce RTX 3090 GPUs. We use the Adam optimizer [58] with
a learning rate of 1e-4. The foot learning rate is set to 1e-5, incorporat-
ing a linear warm-up over the first 5 epochs as part of the cosine decay
strategy. For data augmentation, we adopt the RandAugment [59] and
Mixup methods [60]. For few-shot learning, the maximum epoch is
set to 100 for 2/4/8/16 shots and 60 for 1 shot by a single NVIDIA
3090 GPU, while other parameters remain the same. For the image
captioning and object detection tasks, we fine-tune the models for 20
epochs and 10 epochs with a single NVIDIA 3090 GPU, respectively.

4.3. Result

4.3.1. Fine-tuning result in classification
As reported in Table 1, we compare our model with other models

in the classification task, including ViT [45], DeiT [46], CaiT [61],
PiT [62], ResNet [63] and EfficientNet [64]. The comparisons of model
parameter size, GFLOPs, and FPS for different models are shown in
Fig. 4. Additionally, we conduct an ablation study to compare the
performance of our approach when utilizing the DeiT as backbone [46]
and replacing prompts generated by BERT [30]. As a general observa-
tion, the average accuracy of our proposed model outperforms other
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Table 1
Comparison of the fine-tuning classification performance of our model with other
models in 4 datasets. The best values are highlighted in bold.

Model Caltech101 Pets AgriNet Flowers Average

ResNet-50 95.55 92.47 97.73 82.93 92.17
ResNet-101 96.72 93.18 97.91 85.76 93.39
ResNet-152 97.08 93.04 97.92 88.64 94.17
EfficientNet-B0 88.74 86.41 96.78 68.98 85.23
EfficientNet-B1 91.59 87.99 96.40 75.28 87.82
EfficientNet-B2 93.48 89.17 96.66 78.11 89.36
EfficientNet-B3 97.59 88.43 96.67 80.08 90.69
EfficientNet-B4 94.21 89.52 96.69 81.18 90.40
EfficientNet-B5 91.37 84.50 96.10 78.26 87.56
EfficientNet-B6 93.19 88.78 96.53 82.71 90.30
EfficientNet-B7 88.67 76.23 96.02 79.02 84.99
EfficientNet-B8 88.94 72.41 96.10 78.68 84.03
CaiT-S-24 96.56 94.27 98.55 96.43 96.45
PiT-B 96.73 95.29 98.98 97.25 97.06
ViT-B 97.61 94.19 99.06 99.58 97.61
DeiT-B 96.87 94.71 98.93 96.28 96.70
Ours(BERT prompt) 97.54 94.24 98.86 99.53 97.54
Ours(DeiT backbone) 96.96 94.73 98.88 96.52 96.77
Ours(CLIP prompt) 97.68 94.39 99.06 99.58 97.68
Ours(prompt select) 97.68 94.49 99.07 99.58 97.71

models including both ViT-based models and CNN-based models in
fine-tuning performance. Experimental results demonstrate the ability
of our method to improve the classification accuracy by introducing
features from the text. In addition, our method with ViT and DeiT
as backbone achieves better results when using CLIP as the prompt
generator compared to ViT and DeiT. Our method with BERT prompts
yields a higher accuracy value compared to using the DeiT backbone,
while the ViT backbone with selected CLIP prompts obtains the highest
accuracy of 97.71%. The results demonstrate that the prompt em-
bedding generated by the CLIP model, which specializes in aligning
text and images, exhibits superior performance compared to the BERT
model which focuses more on NLP. Moreover, employing DeiT as the
backbone model performs better on the Oxford-III Pets dataset owing to
the distillation token, while failing to outperform on the other datasets.
In conclusion, the experimental results demonstrate the effectiveness
and superiority of our method when fine-tuning the global parameters.

4.3.2. Visual prompt tuning result in classification
We additionally compare the model performance between our train-

ing method and the VPT method based on ViT [23]. We keep most of
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Fig. 4. Comparison of model size, GFLOPs, and FPS for different models.
Fig. 5. The results of few-shot learning on the 4 datasets. Overall, our method effectively improves the accuracy compared with the VPT method, regardless of which prompt is
used.
Table 2
Comparison of the fine-tuning classification performance between our method and ViT
using the VPT training strategy in 4 datasets. The best values are highlighted in bold.

Model Caltech101 Pets AgriNet Flowers Average

VPT(ViT-B) 73.83 81.69 91.25 58.76 76.38
Ours (text prompt) 79.81 84.74 92.57 63.20 80.08
Ours (image prompt) 80.85 84.58 92.71 60.42 79.64
Ours (mix prompt) 79.78 84.39 92.56 61.10 79.46
Ours (Bert prompt) 83.05 84.77 93.16 55.53 79.13
Ours (DeiT backbone) 62.50 90.75 91.44 54.98 74.92

the model parameters frozen and only fine-tune part of the parame-
ters. Specifically, we fine-tune the classification heads and the prompt
embedding layer, while the VPT method fine-tunes the head and visual
prompt. As reported in Table 2, our proposed method achieves superior
performance compared to VPT. The experimental results demonstrate
the feasibility of our proposed method in generating special prompts
and also prove that the other modal prompts such as text prompts
can improve the performance of visual tasks based on our method.
Furthermore, we conduct a comparative analysis to assess the disparity
among the three proposed modal prompts. In the four datasets of our
experiments, the three modal prompts have their own advantages. In
Oxford-III Pets and Oxford Flowers 102, the text prompt yields the
7

highest accuracy of 84.74% and 63.20%, respectively. In the Caltech-
101 and AgriNet datasets, the image prompt achieves the optimal
accuracy of 80.85% and 92.71%. Although the highest classification
accuracy is not achieved by using the mix prompt, the effect of the
mix prompt which only represents the values of simple images and
text prompts is better than that of merely using the image prompt in
the AgriNet dataset, suggesting the importance of using multi-modal
prompts in different scenarios. We also compare the model performance
when using BERT output as prompts and using DeiT as the backbone.
The results show that the method using the BERT output as prompt
achieves superior performance than VPT as well as best performance
on Caltech-101 and AgriNet datasets. In addition, the method using
DeiT as the backbone achieves the highest accuracy on the Oxford-
III Pets dataset, despite its underperformance on the other datasets.
In conclusion, our method based on ViT backbone achieves superior
performances compared to VPT when fine-tuning a small part of the
parameters.

4.3.3. Visual prompt tuning result in few-shot learning
The overall performance of few-shot learning with only some fine-

tuned parameters is shown in Fig. 5. We present a comparative analysis
of the performance between our proposed method and the VPT method
on four different datasets. Our method consistently outperforms the
VPT method in terms of mean accuracy across individual datasets as



Information Fusion 104 (2024) 102204Z. Xiao et al.
Fig. 6. Visual explanations generated by Grad-CAM. The visualization results for each of the five classes within a dataset are provided in ViT and Instruction-ViT, respectively.
The areas where the model pays more attention are highlighted by warmer color, and vice versa.
well as the average results. In each dataset and each shot, we train our
model five times with the randomly selected images and compare the
performance of our method and VPT by the independent samples t-test.
In the Caltech-101 dataset, our method exhibits significantly superior
performance in the range of 1-shot to 16-shot compared to the VPT
method. In both Oxford-III Pets and Oxford Flowers 102 datasets, our
method shows a significantly superior performance over other methods
from 2-shot to 16-shot. In the AgriNet dataset, our method shows su-
perior mean performance compared to the VPT method. However, the
significant results are only observed in the 4-shot, potentially due to the
non-uniform distribution of the dataset. In summary, we demonstrate
the effectiveness of our method in tackling the challenges of few-shot
learning.
8

4.3.4. Results of downstream tasks
We conduct a comparative analysis between our method and the

ViT model as the backbone for different tasks including segmentation,
image captioning, and object detection. As reported in Table 3, our
model achieves a higher mean Dice score of 56.12% and mean IoU
of 45.41% in the segmentation task while ViT achieves a mean Dice
score of 54.93% and mean IoU of 43.70%. The experimental results
show that our proposed method can optimize the current ViT-based
approach by introducing additional information in prompts. In the
image captioning task, our method obtains 46.84% top 1 accuracy and
71.12% top 5 accuracy, which are higher than 46.34% and 70.56%
of the ViT-based model, respectively. In the object detection task, our
method and ViT-based method achieve approximate performance with
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Table 3
Comparison of the fine-tuning performance in segmentation, image captioning, and object detection tasks. The best
values are highlighted in bold.

Task Segmentation Image captioning Object detection

metrics mean Dice mean IoU TOP-1 ACC TOP-5 ACC bbox mAP

ViT-B 54.93 43.70 46.34 70.56 15.7
Ours 56.12 45.41 46.84 71.12 16.2
Table 4
Comparison of our method with the YOLO framework models in the object detection task. The mAP means the average precision (AP) at
IoU ∈ [0.5, 0.95], AP50 means the AP at IoU = 0.5, AP75 means the AP at IoU = 0.75. APsmall, APmedium and APlarge mean the AP for small,
medium, and large objects. The best values are highlighted in bold.

Model mAP AP50 AP75 APsmall APmedium APlarge
YOLOv3 9.5 23.5 5.9 1.4 9.1 16.5
YOLOX-S 7.0 14.4 6.0 0.8 7.0 13.2
YOLOX-X 10.8 20.6 10.5 1.3 10.7 21.5
ViT 15.7 27.9 15.7 2.5 16.6 28.9
Ours 16.2 28.8 16.4 2.3 17.1 29.1
Table 5
Comparison of model interpretability of our model with ViT in each dataset.

Metric Method Caltech101 Pets AgriNet Flowers Average

Accuracy drop↓ ViT 40.32 65.49 30.23 57.49 48.38
ours 27.86 74.08 28.79 57.08 46.95

Average Drop of Confidence↓ ViT 47.03 61.98 32.82 51.79 48.40
ours 33.83 68.43 32.95 51.66 46.72

Increase in Confidence↑ ViT 11.45 3.95 20.41 11.45 11.60
ours 19.78 3.65 22.45 19.78 14.20
r
&
S

bbox mAP of 16.2% and 15.7%, respectively. We further compare the
object detection ability between our model and representative YOLO
framework models, i.e., the YOLOv3 [65] and the YOLOX [66], under
the same training conditions. Our method consistently outperforms the
two YOLO framework models as reported in Table 4. We also find that
in our experimental conditions, i.e., using images with size of 224*224
as input and only 10 epochs of training, the overall performance of the
model is different from the results reported in previous studies [48,
65,66]. It is worth noting that the improvement of our model does
not intentionally focus on the key module of the object detection task,
which may lead to comparable performances between ours and ViT-
based model in the object detection task. Overall, our approach still
exhibits superior performance in most of different downstream tasks.

4.3.5. Interpretability analysis result
We present visual explanations results in Fig. 6 using Grad-CAM.

For each dataset, we display the visualization results from both ViT
and Instruction-ViT across five different classes. We see that our model
tends to focus on a broader area of the target subject, while ViT con-
centrates more on the subject’s local information across most classes.
In well-defined and common classes (e.g., classes in Caltech-101),
Instruction-ViT can precisely focus more on the entire target subject,
while in more fine-grained classification tasks such as classes in Oxford-
III Pets, Instruction-ViT’s attention centers more on local features.
Quantitatively, as reported in Table 5, our model outperforms ViT in
terms of the three metrics in Caltech-101 and Oxford Flowers 102
datasets. In the AgriNet dataset, our method performs better in the
metrics of Increase in Confidence and Accuracy Drop, while ViT yields
superior results in the Oxford Pet dataset. Overall, the average metrics
of Instruction-ViT still surpass those of ViT in both qualitative and
quantitative analyses.

5. Conclusion

In this work, we introduce Instruction-ViT, a simple and effective
approach that aligns the input and prompts across distinct modalities.
It leverages the pre-trained parameters from ViT-B as the backbone,
and combines them with CLIP encoders as well as a flexible head
9

module to complete various downstream tasks including image classifi-
cation, segmentation, image captioning, and object detection. We show
that Instruction-ViT can effectively use uni-modal prompts (e.g., im-
ages or texts) as well as multi-modal prompts (e.g., combined image
and text features). Experimental results demonstrate that Instruction-
ViT enhances the performance of the ViT-based model by incorporat-
ing prompts in different modalities, which can further improve the
effectiveness of model with fewer parameter training requirements.

The current study has several limitations which can be categorized
into two aspects: (1) Our work solely utilizes image and text data,
neglecting continuous modal data such as audio and video. (2) The
employed method to generate multi-modal prompts (text and image)
relies on a basic weighted average of embedding generated by different
modality encoders. Moving forward, we aim to refine the proposed
Instruction-ViT from several perspectives of prompts. Considering the
flexibility of our proposed prompt approach, we intend to further
investigate how to design prompts that yield better results within our
proposed framework. We plan to test different types of prompts such
as using image descriptions as text prompts or employing prompts
from other modalities like audio. Furthermore, we will investigate the
optimal method for multi-modal prompt fusion in our framework.
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