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ABSTRACT

Multimodal large language models (LLMs) have achieved significant advances
through serial test-time scaling, which involves generating longer reasoning traces
at test-time, yet this approach encounters performance bottlenecks. Consequently,
parallel test-time scaling becomes as an alternative approach, which generates
multiple candidate solutions in parallel and selects the best one. However, existing
methods either focus solely on training generators or verifiers, which limits per-
formance improvements. We propose ADPO, Advantage-Decoupled Preference
Optimization, an RL framework that trains a unified policy to generate answers
and self-verify via preference reward and decoupled advantages. To enhance the
model’s verification ability, we introduce preference reward using discrete group-
adaptive ranking for binary outcomes and margin-based pairwise comparisons
for continuous signals, yielding more stable learning and better calibrated self-
verification scores. To address the gradient interference problem in joint training
of generation and verification tasks, we introduce decoupled optimization with
separate advantages and cross-task loss masking, effectively improving both gen-
eration and verification capabilities. Ablation studies show +0.03 average im-
provement in verification AUC/AP metrics. ADPO achieves superior performance
on multimodal math reasoning, image grounding and mobile agent tasks, with im-
provements of +2.8%/+1.4% on MathVista/MMMU, +1.9% cIoU on ReasonSeg,
+1.7%/+1.0% step success rate on AndroidControl/GUIOdyssey.

1 INTRODUCTION

The reliability and trustworthiness of multimodal LLMs ensure accurate and consistent outputs
across text, images, and audio, which is crucial for stable real-world deployments. High trustworthi-
ness builds user confidence, promoting widespread adoption and safe operation of multimodal tech-
nologies in deployment environments. Test-time scaling serves as an effective method to enhance
reliability by allocating additional computational resources during inference to improve output qual-
ity and consistency.

DeepSeek-R1 (Guo et al., 2025) and OpenAI-o1 (OpenAI, 2024) demonstrate that reasoning models
achieve improved performance through serial test-time scaling by increasing the number of think-
ing tokens during inference in mathematics and coding domains. However, when transferring to
multimodal domains, recent work has found that reasoning provides only limited performance im-
provements on image clssification, video understanding and visual spatial understanding (Li et al.,
2025; Liao et al., 2025).These observations highlight the limitations of token-level scaling alone and
motivate the development of alternative principles for parallel test-time scaling that more effectively
support robust and efficient multimodal reasoning.

Repeated sampling combined with best-of-N selection is another approach to test-time scaling.
Existing methods often exclusively improve either the model’s generation or verification capabilities.
Training a generator and then majority voting at test-time (Wang et al., 2022), as well as training
a dedicated multimodal verifier and using a base model as the generator at test-time (Sun et al.,
2025), both approaches show limited performance improvements(see table 2). We propose a RL-
based framework to train a unified policy model that learns to both generate and self-verify.
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Figure 1: Overview of ADPO. Our advantage-decoupled preference optimization jointly trains con-
tent generation and self-verification via separate advantage computation and mutual loss masking,
enabling reliable test-time scaling through best-of-N selection across multimodal tasks. The unified
verifier provides reliable scoring that enables effective test-time scaling via best-of-N selection, sig-
nificantly improving performance across multimodal tasks.
To train a unified policy for generation and verification, binary rewards are problematic: they are
sparse and threshold-sensitive, amplify class-imbalance in self-sampled data (often leading to model
predictions collapsing to entirely 0 or entirely 1 outputs), and discard magnitude cues about answer
quality. We instead use preference reward that enforce within-group ranking between scores and
true quality. For discrete tasks, we split samples by answer reward into positive/negative sets and
compute group-adaptive thresholds s+ and s−, encouraging positives s > s− and negatives s <
s+. For continuous tasks, we apply margin-γ pairwise comparisons to yield a smooth win-rate
signal. This replaces brittle absolute thresholds with relative signals robust to imbalance, provides
denser and more stable supervision, avoids hard-threshold information collapse, and improves score
calibration and best-of-N selection—well suited for unified multimodal policy training.

As generation and verification are coupled, training suffers from two pitfalls: gradient interfer-
ence—verification errors tug the generator (and vice versa), encouraging “reward hacking” that
inflates scores instead of improving answers—and class imbalance in self-sampled data, where bi-
nary supervision drives the scoring head to 0/1 collapse, harming stability and calibration. We
address this with dual-advantage optimization under a GRPO objective: compute separate advan-
tages for generation and verification from content and preference reward, and apply mutual loss
masking so each segment backpropagates only through its own tokens. Concretely, a single pol-
icy first outputs an answer and then a self-verification score; the generation segment uses verifiable
answer rewards, while the verification segment uses preference reward positive/negative grouping
with adaptive thresholds for discrete tasks, and margin-based pairwise comparisons for continuous
tasks—to align scores with true quality. This decoupling suppresses reward hacking and gradient
contamination, mitigates collapse under imbalance, stabilizes training, and yields better-calibrated,
more discriminative scores, improving area under the ROC curve (AUC), average precision (AP)
and best-of-N selection—delivering reliable test-time gains with only 10% extra training cost over
a GRPO-only generator.

Our contributions are summarized as follows:

1. Unified Preference reward. We develop unified preference reward that maintain informativeness
under severe class imbalance that improve calibration and are robust to class imbalance.

2.Decoupled advantage optimization. We introduce a principled approach to disentangle content
generation and verification learning within a unified GRPO framework.

3. Comprehensive validation. Our method significantly improves task performance and verifi-
cation quality: best-of-8 selection achieves +2.8/+1.4 accuracy gains on MathVista/MMMU, +1.9
cIoU on ReasonSeg, and +1.7/+1.0 step success rates on AndroidControl/GUIOdyssey.

2 RELATED WORK

Reasoning and Test-Time Scaling. Recent work scales reasoning at test time via longer thinking
tokens and majority voting for LLMs (Guo et al., 2025; OpenAI, 2024; Wang et al., 2022; Shao
et al., 2024). Multimodal variants adapt this paradigm with R1-style objectives and structured CoT
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for VLMs (Liu et al., 2025b; Peng et al., 2025; Liu et al., 2025c; Shen et al., 2025; Huang et al.,
2025a; Zhang et al., 2025a; Yang et al., 2025). In agentic settings, GUI agents adopt RL with explicit
reasoning traces (Lu et al., 2025; Liu et al., 2025a; Qin et al., 2025; Huang et al., 2025b; Zhang et al.,
2025c; Gu et al., 2025). However, recent “no-think” results suggest that more internal tokens do not
always translate to better multimodal reasoning (Li et al., 2025; Liao et al., 2025). We instead couple
solution generation with a learned self-verification signal, enabling reliable performance scaling
through best-of-N selection without fragile dependence on longer chains.

Multimodal Reward Modeling and Generative Verifiers. Another line studies reward modeling
for multimodal alignment, including RLHF-style pipelines and chain-of-thought verification (Zhang
et al., 2025b; Sun et al., 2025). Process or scalar reward models provide step-level or outcome
supervision for reasoning (Du et al., 2025; Cao et al., 2025; Wang et al., 2025). Generative verifiers
and LLM-as-judge train models to both solve and judge (Zhang et al., 2024; Zheng et al., 2023). In
contrast, we use reinforcement learning to train a single policy for answer and calibrated confidence
with separate advantages and mutual masking, and we do not finely control the positive/negative
ratio in training data; instead, we employ preference reward rather than binary reward, enabling
dependable best-of-N across multimodal tasks.

3 METHOD

We propose ADPO (Advantage-Decoupled Preference Optimization) (see fig. 1), a framework
that intergrates unified preference reward and advantage-decoupled optimization for reliable self-
verification. Given a multi-modal query, our method first produces an answer and then outputs a
self-verification score. At test time, we perform batch decoding to produce multiple candidate an-
swers and select the answer with the highest self-verification score as the final output. This unified
generation and verification paradigm achieves reliable self-verification without additional reward
models.

3.1 PRELIMINARY

GRPO. For each question q, the behavior policy πθold samples a group of G responses {oi}Gi=1,
where each response oi=(oi,1, . . . , oi,|oi|) is a token sequence of length |oi| and assigned a
sequence-level reward Ri. GRPO estimates advantages by normalizing rewards within each group
and optimizes the current policy πθ with a PPO-style clipped objective:

JGRPO(θ) = E

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ri,t(θ)Âi,t, clip(ri,t(θ), 1−ε, 1+ε)Âi,t

)
− βDKL(πθ∥πref)

), (1)

where ri,t(θ)=
πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

is the likelihood ratio, Âi,t=
Ri−mean({Ri}G

i=1)

std({Ri}G
i=1)

is the group-
normalized advantage, ε is the clipping parameter, β is the KL coefficient, DKL is the KL regu-
larization, and πref is the reference policy.

3.2 UNIFIED PREFERENCE REWARD

As shown in fig. 2, we propose a unified preference reward framework that brings heterogeneous
tasks—discrete and continuous—under a single supervision scheme. UPO couples (i) an answer-
level reward that standardizes task feedback and (ii) a verifier-driven preference signal that improves
discriminative ability and generalizes to continuous metrics.

Answer Reward. We unify answer rewards across heterogeneous tasks by factorizing them into
correctness and quality components. For task t with answer y and ground truth y∗, we define the
answer reward as:

Ra(y, y∗) = Xt(y, y
∗) · Gt(y, y

∗), (2)

where Xt ∈ {0, 1} denotes binary correctness and Gt ∈ [0, 1] represents quality credit. For dis-
crete tasks such as mathematical reasoning and agent navigation, we set quality credit to unity and
determine correctness through rule-based matching:

Xmath/agent(y, y
∗) = match(y, y∗), Gmath/agent(y, y

∗) = 1, (3)
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Figure 2: The framework of ADPO. Given an input, the policy model produces an answer and
a self-verification score used to rank candidates. ADPO optimizes two complementary objectives:
answer generation and self-verification. For answer generation, we introduce verifiable answer re-
wards that guide the model toward producing correct solutions. For self-verification, we design
preference rewards that align the model’s self-verification scores with ground-truth correctness. To
prevent reward hacking and reduce coupling effects between the two processes, we employ separate
advantage estimators and mutual loss masking under a GRPO objective.

Table 1: Prompt for ADPO training.

{Question} Output the thinking process in <think></think> and final answer
choice(number) in <answer></answer> tags.
After outputting the answer, you will act as a correctness evaluation assistant and assign a
score between 0 and 1 to indicate how accurate the answer is. If you believe the answer is
correct, the score should be close to 1; otherwise, it should be close to 0.
For example:
<think>reasoning process here</think>
<answer>answer here</answer>
<score>score number here</score>.

where match(·, ·) implements task-specific equivalence checking. For continuous tasks like visual
grounding, we treat all predictions as eligible and grade them by task-specific metrics:

Xgrounding(y, y
∗) = 1, Ggrounding(y, y

∗) = IoU(y, y∗), (4)

where IoU measures the spatial overlap between predicted and ground truth bounding boxes.

Binary Reward. To enable self-verification, we prompt the model to produce confidence estimate
using dedicated instruction (see table 1). After generating the answer in <answer></answer>,
the model outputs a confidence score s ∈ [0, 1] in <score></score> indicating predicted cor-
rectness. We introduce a binary reward Rb to calibrate model confidence against ground truth:

Rb(y, y∗) = 1{(s > τ) = Xt(y, y
∗)}, (5)

where τ is the binarization threshold. Thus, Rb=1 when the predicted score agrees with the ground-
truth label and Rb=0 otherwise. Despite its simplicity, this consistency reward has three key limi-
tations: (i) the binary score lacks sufficient discriminative capability for effective answer selection;
(ii) the prevalent correct predictions (see fig. 3a) creates a pronounced class imbalance, incentivizing
degeneration of always predicting s=1; (iii) it only applies to discrete tasks, as continuous tasks lack
a well-defined binary correctness signal Xt.

Preference Reward. To address these limitations, we introduce a preference-based reward that pro-
vides contrastive supervision and naturally extends to continuous tasks. Intuitively, a positive sample
should be rewarded when its verification score exceeds the average of its negative counterparts, and
vice versa. The core idea is to adaptively partition samples into positive and negative groups and
maximize their margin to enhance discriminative capability. For the i-th sample with answer yi,

4
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(b) Discrete preference reward. Within each group, we compute the average
verification score of the positive set and the negative set and use these as data-
driven boundaries. A positive sample receives a reward of 1 if its score is
higher than the negatives’ average; a negative sample receives a reward of 1
if its score is lower than the positives’ average; otherwise the reward is 0.
This preserves relative score magnitudes, avoids hard-threshold collapse, and
improves calibration for best-of-N selection.

ground truth y∗i , and verification score si, we define the preference reward Rp
i as:

Rp
i (yi, y

∗
i , si) = 1{(si > µi) = Xt(yi, y

∗
i )}, (6)

µi is the mean verification score of the contrasting group:

µi = Ej∈{1,...,G}[ sj | φt(yi, yj)] , (7)

The function φt(yi, yj) defines task-specific criteria for sample partitioning. For discrete tasks (e.g.,
math reasoning, agent navigation), we partition samples based on answer correctness:

φmath/agent(yi, yj) = 1{Xmath/agent(yi, y
∗
i ) ̸= Xmath/agent(yj , y

∗
j )}. (8)

For continuous tasks (e.g., visual grounding), we regard samples with similar quality as positves and
others as contrastive negatives. We impose a margin γ > 0 on quality differences:

φgrounding(yi, yj) = 1{|Gt(yi, y
∗
i )− Gt(yj , y

∗
j )| > γ}. (9)

This preference reward provides dense, contrastive supervision that maximizes quality-dependent
score margins while accommodating both discrete correctness and continuous paradigms.

Unified Objective. We optimize a unified objective that aggregates answer and preference rewards:

Rtotal = Ra(y, y∗) +Rp(y, y∗, s). (10)

3.3 ADVANTAGE-DECOUPLED OPTIMIZATION

During experimentation, we observed that joint optimization of generation and verification objec-
tives creates conflicting gradients that degrade model performance. Answer rewards favor samples
with higher response quality, while preference rewards favor samples with well-calibrated verifica-
tion scores. To address this conflict, we decouple the advantage group with disjoint token masks.
We compute separate advantages within each reward group: Âa from answer rewards and Âp from
preference rewards. We then apply task-specific token masks to isolate gradients: Ma covers answer
generation tokens (including reasoning when present), while Mp covers only verification score to-
kens. This prevents gradient interference between generation and verification objectives. The unified
training objective becomes:

J (θ) = Ma · JGRPO(Â
(a)) +Mp · LGRPO(Â

(p)
i,t ). (11)

4 EXPERIMENTS

We evaluate ADPO across three diverse multimodal domains: mathematical reasoning, visual
grounding, and GUI agent tasks. Our experiments demonstrate that the ADPO consistently im-
proves both task performance and self-verification reliability compared to existing methods.
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4.1 EXPERIMENTAL SETUP

Datasets. We evaluate on representative benchmarks across three domains: (1) Multimodal math
reasoning: We train on multimodal-open-r1-8k-verified dataset (LMMs-Lab, 2025) and evaluate on
MathVista (Lu et al., 2023) for in-domain performance and MMMU (Yue et al., 2024) for OOD gen-
eralization, focusing on the model’s ability to perform math reasoning in visually grounded contexts
with accuracy as the evaluation metric. (2) Visual grounding: We train on RefCOCO (Yu et al.,
2016) and evaluate on ReasonSeg (Lai et al., 2024), focusing on referring expression comprehen-
sion with cIoU metrics. (3) Mobile agent: We train separately on AndroidControl (Li et al., 2024)
and GUIOdyssey (Lu et al., 2024) training sets and evaluate on their respective test sets for mobile
interface navigation, assessing step success rates(SR).

Baselines. We benchmark our method against three primary baselines: GRPO, GRPO with majority
voting, and GRPO with LLM-as-judge verification. For the verification-based baseline, we evaluate
three distinct LLM judges: the base model, the GRPO-trained model, and our ADPO-trained model.
To specifically assess performance on mathematical tasks, we introduce an additional baseline using
a reward model finetuned on specialized mathematical data.

Implementation details. All models are trained with a consistent set of hyperparameters: a learning
rate of 1 × 10−6, a batch size of 128, a group size G = 8, a GRPO clipping parameter ε = 0.2,
and a KL divergence coefficient β = 0.01. For the Multimodal Math Reasoning task, we fine-
tune Qwen2-VL-7B (Wang et al., 2024) for 1200 steps. For Visual Grounding and Mobile Agent,
we use Qwen2.5-VL-7B (Bai et al., 2025) as the base model, training for 1200 and 8000 steps,
respectively. During training rollout, we decode with temperature T = 1.0 and top-p = 0.99; at
evaluation, we use T = 0.2 and top-p = 0.99.

4.2 MAIN RESULTS

We evaluate three generators: the base model, the GRPO-finetuned model, and the ADPO-finetuned
model, each paired with four verification strategies: majority voting, Qwen-as-judge, GRPO-as-
judge, and ADPO-as-judge. We report pass@1 and best-of-N for N ∈ {4, 8, 12}. Across all do-
mains, using ADPO as a unified generator and verifier yields the best performance under the same
sampling budget, while preserving pass@1 generation quality comparable to GRPO.

ADPO enables effective self-verification with superior generation quality. Under equal sampling
budgets (N=8 and N=12), ADPO delivers the strongest best-of-N on all three domains. At N=8, its
improvement over the next best approach are at least +1.0 on MathVista, +0.1 on ReasonSeg, and
+1.3 on AndroidControl; at N=12, the gains are at least +0.7, +0.3, and +1.4, respectively. These
results show that ADPO adds robust verification while preserving single-sample quality.

ADPO delivers stronger best-of-N performance. When used as both generator and verifier, it consis-
tently surpasses GRPO and majority/LLM-as-judge baselines across sample budgets. On MathVista,
ADPO climbs from 64.8 at N=4 to 65.3 at N=12, exceeding GRPO by 1.4-2.1 points and Base by
4.6-6.6 points across N . On ReasonSeg (overall cIoU), it improves from 61.1 to 61.6, maintaining
0.1-0.3 point gains over GRPO and 3.3-3.8 over Base. On AndroidControl (success rate), ADPO
stays around 72.7-72.9, leading GRPO by 1.3-1.5 and Base by 8.0-12.0 points. These consistent
margins over N ∈ {4, 8, 12} show that ADPO yields more sample-efficient selection and higher
best-of-N returns than competing generator-verifier pairings.

ADPO equips the model with robust, cross-generator verification. Our judges remain strong even
on outputs from weaker generators: on MMMU with N = 8 from the baseline generator, the ADPO
judge reaches 51.2%, outperforming all baselines by +1.8-+6.2 points. On ReasonSeg, ADPO’s
judge improves from 60.9% to 61.6% as N increases from 4 to 12, exceeding the GRPO judge at
every budget by +0.9-+2.0 points. For GUI agents, ADPO judges lead on both AndroidControl and
GUI Odyssey at N ∈ {4, 12}, with consistent gains of roughly +0.4-+0.7 points over GRPO. Cali-
bration metrics align with these trends: ADPO yields higher AUC/AP across domains—for example,
+1.8/+3.5 points on Math, +0.031/+0.030 on ReasonSeg, and +0.185/+0.126 on GUI—confirming
superior verification quality.

Performance scales with the sampling budget N . With ADPO finetuned model as the generator, best-
of-N improves monotonically, and pairing it with ADPO finetuned model as the verifier matches
or exceeds the strongest alternatives. On MMMU, performance increases 50.8 → 52.1 → 52.3,

6
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Table 2: Evaluation results on multi-modal math reasoning benchmarks. Rows correspond
to generators and columns correspond to verifiers. We use Qwen2-VL-7B as the base model, with
GRPO and ADPO representing the finetuned models. Majority voting serves as the verifier baseline.
Models are trained on multimodal-open-r1-8k-verified (LMMs-Lab, 2025) dataset and tested on
MathVista (Lu et al., 2023) for in-domain performance and MMMU (Yue et al., 2024) for OOD
generalization. MM-Verify is a fine-tuned reward model used to select the best answer from multiple
samples generated by the Qwen base model. See Appendix table 6 for detailed results.

Generator
Verifier MathVista (In-domain) MMMU (OOD)

Major Base GRPO ADPO Major Base GRPO ADPO

Sample 1

MM-RLHF 61.6 -
R1-VL-7B 63.5 -

Base 57.9 47.1
GRPO 62.2 48.7
ADPO 62.4 47.7

Sample 4

MM-Verify 59.8 -
Base 58.2 55.7 55.5 56.4 48.6 45.2 45.8 49.9

GRPO 63.4 62.4 62.1 62.0 49.4 49.3 49.9 50.1
ADPO 63.3 61.5 62.1 64.8 50.7 48.3 49.1 50.8

Sample 8

MM-Verify 62.5 -
Base 60.1 57.0 56.4 56.5 49.4 45.0 46.6 51.2

GRPO 62.9 60.7 60.8 60.5 51.1 49.7 49.3 49.8
ADPO 64.0 62.3 62.3 65.0 51.8 51.6 51.2 52.1

Sample 12

MM-Verify 64.1 -
Base 60.7 56.9 56.3 55.0 50.7 45.8 45.2 50.6

GRPO 63.4 62.5 62.5 61.8 51.7 51.2 50.8 51.3
ADPO 64.6 63.0 63.5 65.3 51.2 52.0 52.6 52.3

Table 3: Evaluation results on image grounding benchmarks. Rows correspond to generators and
columns correspond to verifiers. We use Qwen2-VL-7B as the base model, with GRPO and ADPO
representing the finetuned models. Majority voting serves as the verifier baseline. Models are trained
on RefCOCO (Yu et al., 2016) and tested on ReasonSeg (Lai et al., 2024) (out-of-domain). We report
cIoU (%) on ReasonSeg for all methods. See Appendix table 7 for detailed results.

Generator
Verifier Short query Long query Overall

Major Base GRPO ADPO Major Base GRPO ADPO Major Base GRPO ADPO

Sample 1

LISA-7B 48.5 48.9 48.8
SegLLM - 54.2 48.4

Seg-Zero-7B - - 52.0
Base 51.8 57.0 56.7

GRPO 55.5 59.7 59.5
ADPO 55.7 60.2 59.9

Sample 4

Base 52.0 51.4 53.2 53.5 57.9 57.5 57.9 57.9 57.2 57.1 57.7 57.7
GRPO 57.0 57.5 56.4 57.8 59.5 60.3 59.7 61.1 59.4 60.2 59.5 60.9
ADPO 51.4 54.1 54.3 55.1 59.5 59.9 60.7 61.5 59.0 59.6 60.3 61.1

Sample 8

Base 51.4 51.4 50.5 50.9 57.8 57.2 57.5 58.4 57.4 56.9 57.0 57.9
GRPO 55.6 55.0 55.3 57.2 59.9 60.7 60.7 61.3 59.6 60.4 60.4 61.1
ADPO 55.2 55.4 57.8 55.9 58.2 60.2 60.6 61.5 58.0 59.9 60.5 61.2

Sample 12

Base 53.7 53.3 53.1 52.6 57.9 57.6 57.9 58.2 57.6 57.4 57.6 57.8
GRPO 58.1 52.4 55.8 56.7 59.5 60.2 59.9 61.6 59.4 59.7 59.6 61.3
ADPO 55.3 57.4 56.5 56.2 60.0 60.9 61.0 62.0 59.8 60.7 60.7 61.6

competitive with the GRPO judge (52.6 at N = 12). For ReasonSeg, the ADPO verifier achieves
61.1 → 61.2 → 61.6, exceeding the next best (60.3/60.5/60.7). Overall, under the same generator,
ADPO yields consistent improvements in best-of-N as N increases.

OOD results show ADPO’s strong generalization. On MMMU, ADPO (gen+judge) reaches 52.1%
at N=8, surpassing the best GRPO pairing (51.1%, majority) and the strongest baseline (51.2%,
ADPO judge). Across N, it stays ahead: 50.8 at N=4 (+0.7-0.9%) and, with a GRPO judge, peaks
at 52.6 at N=12. As a judge, ADPO also boosts weak Base generators (51.2% vs. 45.0-46.6%). On
ReasonSeg, ADPO yields 61.1-61.6 cIoU (N=4/8/12), topping GRPO by +0.1-0.3% and baselines by
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Figure 4: Ablation of Preference reward. We compare Binary reward with Preference reward
across three domains: Math, Grounding, and GUI Agent. (a) Preference reward achieves superior
generation quality (relative to Binary pass@1) while consistently improving best@8. (b-c) Prefer-
ence reward yields higher AP and AUC for self-verification, indicating better calibration of verifi-
cation scores to correctness. Numbers above markers denote absolute values; error bars omitted for
clarity. See Appendix table 9 for full results.
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Figure 5: Ablation on decoupled advantages. Across math, grounding, and mobile agent, decou-
pled advantages policy optimization achieves superior generation quality (pass@1) while yielding
higher best@8 (a). It also improves the calibration of self-verification, reflected by higher AP (b)
and AUC (c). See Appendix table 10 for full results.

+3.3-3.8%. Overall, unified training improves generator robustness and verifier calibration, enabling
effective best-of-N selection under shift.

4.3 ABLATION STUDIES

We conduct comprehensive ablation studies to analyze the key components of our decoupled advan-
tage preference optimization framework.

Effect of preference reward. Figure 4 shows the impact of preference reward compared to binary
reward across all three domains. The preference formulation consistently improves both task perfor-
mance and self-verification quality. For mathematical reasoning, we observe +1.6% improvement in
best@8 performance and +1.3% improvement in average precision (AP). The benefits are even more
pronounced for self-verification metrics, with AUC improvements of +1.3%, +3.6%, and +11.8%
for math, grounding, and agent tasks respectively. This demonstrates that preference reward provide
more stable training signals and better calibrated confidence scores, particularly important under the
naturally imbalanced positive/negative distributions in self-verification learning.

Effect of decoupled advantages. Figure 5 illustrates the contribution of our decoupled advantage
computation with mutual loss masking compared to simple reward aggregation. Decoupled advan-
tages consistently outperform entangled advantages across all domains, with particularly significant
improvements in self-verification quality. For GUI agent tasks, decoupled advantages achieve +2.8%
improvement in best@8 performance and substantial gains in AUC +18.5 This validates our hypoth-
esis that separating gradient flows between content generation and self-judgment prevents reward
hacking and enables more effective optimization of both objectives.
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Table 4: Evaluation results on mobile agent benchmarks. Rows correspond to generators and
columns correspond to verifiers. We use Qwen2-VL-7B as the base model, with GRPO and ADPO
representing the finetuned models. Majority voting serves as the verifier baseline. Models are
separately trained on AndroidControl (Li et al., 2024) and GUIOdyssey (Lu et al., 2024) training
sets and tested on respective test sets. We report step surpassing rate (%) on AndroidControl and
GUIOdyssey for all methods. See Appendix table 8 for detailed results.

Generator
Verifier AndroidControl (SR) GUI Odyssey (SR)

Major Base GRPO ADPO Major Base GRPO ADPO

Sample 1

UI-TARS-7B 72.5 67.9
SpiritSight-8B 68.1 75.8

AgentCPM-GUI-8B 69.2 75.0
Base 61.3 52.8

GRPO 71.0 79.8
ADPO 70.9 79.7

Sample 4

Base 56.0 52.5 57.7 60.7 46.5 45.2 45.3 45.6
GRPO 71.0 71.0 70.8 71.2 81.3 81.0 80.7 81.4
ADPO 71.6 71.0 72.0 72.7 79.8 81.2 81.1 81.6

Sample 8

Base 58.3 54.3 61.0 64.7 46.6 44.9 44.5 44.6
GRPO 70.8 71.0 70.9 71.4 81.5 80.7 80.6 81.2
ADPO 71.3 70.8 71.4 72.7 80.9 81.6 81.4 81.7

Sample 12

Base 58.3 53.6 60.7 64.5 46.9 44.6 44.0 43.6
GRPO 71.1 71.4 70.9 71.5 81.1 79.9 79.7 80.3
ADPO 71.9 71.6 71.9 72.9 80.5 81.5 81.1 81.4

Table 5: Ablation on the margin γ for continuous preference rewards. We evaluate different
margin values on ReasonSeg. γ = 0.100 yields the bset overall gIoU(60.4) and cIoU(61.2).

γ
Short query Long query Overall

gIoU cIoU ACC gIoU cIoU ACC gIoU cIoU ACC

0.025 53.7 56.5 69.9 58.1 58.9 71.3 57.8 58.8 71.1
0.050 52.6 54.4 63.1 60.2 61.0 73.3 59.8 60.5 72.7
0.100 53.2 56.0 67.0 60.9 61.5 73.7 60.4 61.2 73.5
0.200 53.2 55.7 66.0 59.9 60.7 72.7 59.6 60.4 72.3
0.250 53.7 56.8 68.9 59.7 60.4 72.5 59.3 60.2 72.3

Margin parameter analysis. Table 5 analyzes the effect of margin parameter γ in continuous
preference reward computation for visual grounding tasks. We find that γ = 0.1 provides the
optimal balance, achieving 73.5% overall accuracy. Too small margins (γ = 0.025) may not provide
sufficient discrimination between similar quality outputs, while too large margins (γ ≥ 0.2) may be
overly restrictive and reduce the density of preference signals. This hyperparameter study confirms
the importance of carefully tuning the preference threshold for optimal performance.

5 CONCLUSION

We introduce ADPO (Advantage-Decoupled Preference Optimization), a unified reinforcement
learning framework that trains a single policy to both generate solutions and perform self-
verification. ADPO addresses three key challenges in test-time scaling: (i) it enables reliable paral-
lel best-of-N selection through unified generator-verifier training; (ii) it replaces binary supervision
with relative, batch-adaptive preference reward that improve calibration across both discrete and
continuous tasks; and (iii) it employs decoupled advantages to separate gradient flows for generation
and verification, thereby mitigating reward hacking and gradient interference. Extensive evaluation
across five benchmarks spanning three domains: MathVista, MMMU, ReasonSeg, AndroidControl,
and GUI Odyssey, which demonstrates that ADPO achieves superior pass@1 performance while
consistently improving best-of-N selection and delivering superior self-verification calibration.
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This work adheres to the ICLR Code of Ethics. The study relies solely on publicly available datasets
under their original licenses; no personally identifiable information is processed beyond what is
already public, and all datasets were used in accordance with their terms. No new human-subject
experiments were conducted; when third-party annotations are involved, they were collected by the
dataset providers under their respective ethics approvals. We assessed potential risks of misuse (e.g.,
generating harmful or deceptive content) and release only evaluation scripts and models consistent
with responsible-use guidelines. We report known failure cases and distributional limitations, and
we caution against deploying our method in safety-critical settings without additional safeguards.

REPRODUCIBILITY STATEMENT

Due to company policy, the complete training code cannot be released at submission time. We will
release the training code, inference and evaluation code upon approval.

Models and hyperparameters. All models are trained with a consistent set of hyperparameters:
learning rate 1 × 10−6, batch size 128, group size G = 8, GRPO clipping parameter ε = 0.2, and
KL coefficient β = 0.01. For Multimodal Math Reasoning, we fine-tune Qwen2-VL-7B (Wang
et al., 2024) for 1200 steps. For Visual Grounding and Mobile Agent, we finetune Qwen2.5-VL-
7B (Bai et al., 2025) for 1200 and 8000 steps, respectively.

Training data. We use only publicly available training sets for each domain: multimodal-open-r1-
8k-verified (LMMs-Lab, 2025) (math), RefCOCO (Yu et al., 2016) (grounding), AndroidControl (Li
et al., 2024), and GUI Odyssey (Lu et al., 2024) (mobile agents). No proprietary or sensitive data
are used.
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A APPENDIX

LLM USAGE DISCLOSURE

We used large language models (LLMs) to assist (i) software engineering tasks (code scaffolding,
refactoring, and boilerplate generation) and (ii) academic writing (grammar polishing, tone adjust-
ment, and minor phrasing improvements). All research ideas, algorithmic designs, experimental
setups, and final claims are authored and verified by the human authors.

LLMs were not used to generate results, annotations, or proofs; they did not perform data labeling,
hyperparameter selection, or evaluation. All code produced with LLM assistance was reviewed
and unit-tested by the authors. For writing, we preserved factual accuracy, checked references, and
rewrote any ambiguous outputs. We screened for potential plagiarism and license contamination and
ensured that all cited text and code are properly attributed.
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Table 6: Evaluation results on multi-modal math reasoning benchmarks. Rows correspond
to generators and columns correspond to verifiers. We use Qwen2-VL-7B as the base model, with
GRPO and ADPO representing the finetuned models. Majority voting serves as the verifier baseline.
Values are accuracy (%). GVQA: General VQA; MVQA: Math Target VQA; ARD: Art & Design;
BUS: Business; HEM: Health & Medicine; HSS: Human & Social Science; SCI: Science; TEN:
Technology & Engineering.

Generator Verifier MathVista (In-domain) MMMU (OOD)
GVQA MVQA ALL ARD BUS HEM HSS SCI TEN ALL

Sample 1

Base ✗ 68.9 48.5 57.9 67.5 39.1 49.3 69.0 33.9 36.7 47.1
GRPO ✗ 69.8 55.7 62.2 65.0 45.9 48.2 68.2 35.9 39.8 48.7
ADPO ✗ 68.7 57.0 62.4 63.1 46.2 50.2 71.1 33.3 35.3 47.7

Sample 4

Base

Major 65.7 51.9 58.2 66.7 47.3 50.7 65.8 34.0 38.1 48.6
Base 63.9 48.7 55.7 60.0 44.0 50.7 60.8 32.7 33.8 45.2

GRPO 63.3 48.9 55.5 61.7 43.3 50.0 63.3 30.0 36.7 45.8
ADPO 63.3 50.6 56.4 66.7 49.3 53.3 70.8 34.0 37.6 49.9

GRPO

Major 69.8 58.0 63.4 65.8 44.7 50.0 70.0 42.0 36.7 49.4
Base 70.2 55.7 62.4 62.5 44.0 50.0 70.8 40.0 39.5 49.3

GRPO 69.6 55.7 62.1 62.5 44.0 50.0 70.8 40.0 39.5 49.9
ADPO 69.6 55.6 62.0 64.2 46.7 50.7 71.7 39.3 39.5 50.1

ADPO

Major 71.7 56.1 63.3 66.7 48.0 52.7 70.0 39.3 39.0 50.7
Base 68.5 55.6 61.5 64.2 44.0 52.7 67.5 36.7 36.7 48.3

GRPO 68.3 56.9 62.1 65.0 44.0 52.0 68.3 40.7 36.7 49.1
ADPO 71.3 59.3 64.8 68.3 48.0 52.0 69.2 39.3 39.5 50.8

Sample 8

Base

Major 68.0 53.3 60.1 68.3 50.0 53.3 68.3 32.7 36.7 49.4
Base 63.0 51.9 57.0 65.0 40.7 48.0 65.0 32.0 32.4 45.0

GRPO 62.8 50.9 56.4 65.8 40.0 49.3 65.8 32.7 37.1 46.6
ADPO 63.5 50.6 56.5 67.5 48.7 54.0 71.7 36.0 41.0 51.2

GRPO

Major 70.4 56.5 62.9 66.7 48.7 51.3 74.2 42.7 36.7 51.1
Base 67.6 55.0 60.7 62.5 47.3 51.3 72.5 38.7 37.6 49.7

GRPO 67.6 55.0 60.8 62.5 46.7 50.0 70.0 39.3 38.6 49.3
ADPO 67.6 54.4 60.5 63.3 46.7 53.3 68.3 38.7 39.0 49.8

ADPO

Major 71.1 58.0 64.0 65.0 49.3 56.7 71.7 38.7 40.5 51.8
Base 70.0 55.7 62.3 63.3 52.0 53.3 66.7 42.7 41.0 51.6

GRPO 69.8 55.9 62.3 63.3 52.7 54.7 65.8 42.0 39.0 51.2
ADPO 72.2 58.9 65.0 65.8 54.0 54.7 66.7 40.7 41.0 52.1

Sample 12

Base

Major 67.4 55.0 60.7 69.2 52.0 50.7 70.8 38.0 36.7 50.7
Base 63.7 51.1 56.9 59.2 47.3 51.3 64.2 30.0 33.8 45.8

GRPO 62.4 51.1 56.3 58.3 45.3 49.3 63.3 30.0 35.2 45.2
ADPO 62.6 48.5 55.0 65.0 52.7 53.3 70.0 40.0 35.2 50.6

GRPO

Major 70.7 57.2 63.4 64.2 50.0 51.3 73.3 43.3 39.5 51.7
Base 70.0 56.3 62.6 63.3 48.0 54.0 68.3 42.7 41.0 51.2

GRPO 69.3 56.7 62.5 63.3 48.7 52.7 67.5 42.0 40.5 50.8
ADPO 69.6 55.2 61.8 64.2 48.0 52.7 69.2 43.3 41.0 51.3

ADPO

Major 72.0 58.3 64.6 65.8 50.0 53.3 75.0 36.7 39.0 51.2
Base 70.7 56.5 63.0 62.5 52.0 54.7 70.0 41.3 41.4 52.0

GRPO 71.3 56.9 63.5 63.3 53.3 52.7 70.8 41.3 43.3 52.6
ADPO 71.7 59.8 65.3 67.5 53.3 54.0 71.7 38.7 40.5 52.3
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Table 7: Evaluation results on image grounding benchmarks. Rows correspond to generators
and columns correspond to verifiers. We use Qwen2-VL-7B as the base model, with GRPO and
ADPO representing the finetuned models. Majority voting serves as the verifier baseline. Models
are trained on RefCOCO training set and tested on ReasonSeg (out-of-domain).

Generator Verifier Short query Long query Overall
gIoU cIoU ACC gIoU cIoU ACC gIoU cIoU ACC

Sample 1

Base ✗ 49.5 53.0 67.0 56.8 57.5 68.5 56.3 57.2 68.4
GRPO ✗ 51.8 55.5 67.9 59.1 59.7 71.3 58.6 59.5 71.1
ADPO ✗ 51.7 54.8 68.0 60.2 59.4 71.9 58.1 59.1 71.7

Sample 4

Base

Major 47.8 52.0 66.0 57.3 57.9 69.3 56.7 57.5 69.1
Base 47.2 51.4 66.0 56.9 57.5 68.6 56.3 57.1 68.4

GRPO 49.6 53.2 67.0 57.4 57.9 68.7 56.9 57.7 68.6
ADPO 50.4 53.5 68.0 57.3 57.9 69.1 56.9 57.7 69.1

GRPO

Major 54.5 57.0 68.0 58.8 59.5 72.1 58.5 59.4 71.8
Base 55.2 57.5 68.0 59.7 60.3 72.9 59.4 60.2 72.6

GRPO 53.4 56.4 68.9 59.1 59.7 72.0 58.8 59.5 71.8
ADPO 55.1 57.8 68.0 60.5 61.1 73.4 60.2 60.9 73.1

ADPO

Major 52.7 55.3 67.0 60.1 60.5 72.0 59.6 60.2 71.7
Base 51.2 54.1 66.0 59.3 59.9 71.7 58.8 59.6 71.4

GRPO 51.0 54.3 67.0 60.0 60.7 72.7 59.4 60.3 72.4
ADPO 52.2 55.1 67.0 61.0 61.5 73.3 60.5 61.1 72.9

Sample 8

Base

Major 47.8 51.4 63.1 57.2 57.8 69.2 56.6 57.4 68.8
Base 47.9 51.4 62.1 56.6 57.2 68.1 56.1 56.9 67.7

GRPO 47.1 50.5 62.1 56.8 57.5 68.4 56.2 57.0 68.0
ADPO 47.4 50.9 61.2 57.7 58.4 69.4 57.1 57.9 68.9

GRPO

Major 52.0 55.6 68.0 59.2 59.9 72.0 58.7 59.6 71.7
Base 51.7 55.0 67.0 60.1 60.7 72.4 59.6 60.4 72.1

GRPO 51.5 55.3 68.0 60.0 60.7 72.4 59.5 60.4 72.1
ADPO 54.4 57.2 67.0 60.6 61.3 73.8 60.2 61.1 73.3

ADPO

Major 53.2 56.1 67.0 58.8 59.4 71.3 58.5 59.2 71.0
Base 52.9 55.4 67.0 59.6 60.2 72.0 59.2 59.9 71.7

GRPO 55.6 57.8 68.9 59.9 60.6 72.9 59.6 60.5 72.7
ADPO 53.2 56.0 67.0 60.9 61.5 73.7 60.4 61.2 73.5

Sample 12

Base

Major 50.2 53.7 66.0 57.2 57.8 69.3 56.8 57.6 69.1
Base 49.5 53.3 68.0 56.9 57.6 68.9 56.5 57.4 68.8

GRPO 50.0 53.1 66.0 57.1 57.9 69.1 56.7 57.6 68.9
ADPO 49.8 52.6 65.1 57.6 58.2 69.2 57.1 57.8 68.9

GRPO

Major 55.6 58.1 69.9 58.8 59.5 72.2 58.6 59.4 72.0
Base 48.8 52.4 65.1 59.6 60.2 72.5 58.9 59.7 72.1

GRPO 53.2 55.8 68.0 59.1 59.9 71.9 58.8 59.6 71.7
ADPO 54.1 56.7 68.9 60.9 61.6 74.0 60.5 61.3 73.7

ADPO

Major 53.3 55.3 66.0 59.3 60.0 71.8 58.9 59.8 71.5
Base 55.0 57.4 68.9 60.2 60.9 72.1 59.9 60.7 71.9

GRPO 53.8 56.5 68.9 60.3 61.0 72.4 59.9 60.7 72.1
ADPO 53.9 56.2 67.0 61.3 62.0 73.6 60.9 61.6 73.2
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Table 8: Evaluation results on mobile agent benchmarks. Rows correspond to generators and
columns correspond to verifiers. We use Qwen2-VL-7B as the base model, with GRPO and ADPO
representing the finetuned models. Majority voting serves as the verifier baseline. Models are
separately trained on AndroidControl and GUI Odyssey training sets and tested on respective test
sets.

Generator Verifier AndroidControl GUI Odyssey
Type Grounding SR Type Grounding SR

Sample 1

Base ✗ 82.2 73.6 61.3 81.1 61.4 52.8
GRPO ✗ 86.0 76.9 71.0 93.1 83.9 79.8
ADPO ✗ 85.8 76.2 70.9 94.2 82.5 79.7

Sample 4

Base

Major 76.3 68.1 56.0 76.9 55.3 46.5
Base 72.1 67.8 52.5 75.3 55.6 45.2

GRPO 74.9 71.4 57.7 75.3 55.2 45.3
ADPO 76.4 74.5 60.7 75.1 55.7 45.6

GRPO

Major 85.5 77.2 71.0 94.7 83.9 81.3
Base 85.4 77.2 71.0 94.3 83.8 81.0

GRPO 85.4 77.3 70.8 94.4 83.7 80.7
ADPO 85.6 77.7 71.2 94.5 84.0 81.4

ADPO

Major 86.6 77.1 71.6 93.9 83.5 79.8
Base 86.4 76.4 71.0 94.7 84.2 81.2

GRPO 86.4 77.9 72.0 94.7 84.2 81.1
ADPO 86.3 79.5 72.7 94.7 84.5 81.6

Sample 8

Base

Major 78.7 68.8 58.3 76.7 55.4 46.6
Base 73.9 68.4 54.3 75.1 55.2 44.9

GRPO 77.3 73.4 61.0 74.4 54.3 44.5
ADPO 79.7 76.5 64.7 73.9 54.6 44.6

GRPO

Major 85.6 76.9 70.8 94.6 84.4 81.5
Base 85.6 77.1 71.0 93.7 84.4 80.7

GRPO 85.4 77.4 70.9 93.7 84.4 80.6
ADPO 85.6 77.7 71.4 93.9 84.8 81.2

ADPO

Major 86.5 76.4 71.3 94.8 84.0 80.9
Base 86.1 76.2 70.8 95.1 84.6 81.6

GRPO 85.8 77.7 71.4 94.9 84.4 81.4
ADPO 86.4 78.7 72.7 94.8 84.7 81.7

Sample 12

Base

Major 78.9 68.7 58.3 76.9 55.5 46.9
Base 73.4 67.9 53.6 74.5 55.5 44.6

GRPO 76.8 73.2 60.7 73.5 54.3 44.0
ADPO 79.2 76.7 64.5 72.9 53.8 43.6

GRPO

Major 85.6 77.4 71.1 94.5 84.0 81.1
Base 85.6 78.0 71.4 93.0 84.0 79.9

GRPO 85.4 77.5 70.9 93.1 83.9 79.7
ADPO 85.7 77.9 71.5 93.2 84.2 80.3

ADPO

Major 86.6 76.7 71.9 94.4 83.7 80.5
Base 86.5 76.3 71.6 94.8 84.6 81.5

GRPO 85.4 78.6 71.9 94.6 84.1 81.1
ADPO 86.3 78.9 72.9 94.4 84.5 81.4

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Ablation of Preference reward. Replacing the binary answer reward with our preference
reward consistently strengthens self-verification (↑AUC/AP) and improves best of N selection per-
formance on Math, Grounding, and GUI Agent.

Domain Method Performance Verification
pass@1 best@8 AUC AP

Math Binary reward 61.9 63.4 0.509 0.640
Preference reward (ours) 62.4 65.0 0.522 0.653

Grounding Binary reward 71.8 72.6 0.636 0.789
Preference reward (ours) 71.7 73.5 0.672 0.804

GUI Agent Binary reward 70.6 70.6 0.609 0.765
Preference reward (ours) 70.9 72.7 0.727 0.841

Table 10: Ablation study on decoupled advantages. Our proposed Dual Advantages method con-
sistently outperforms reward aggregation in both task performance and solution verification across
mathematical reasoning, grounding, and GUI agent tasks.

Domain Method Performance Verification
pass@1 best@8 AUC AP

Math Reward Aggregation 61.5 63.1 50.4 61.8
Dual Advantanges (ours) 62.4 65.0 52.2 65.3

Grounding Reward Aggregation 70.4 71.0 0.641 0.774
Dual Advantanges (ours) 71.7 73.5 0.672 0.804

GUI Agent Reward Aggregation 71.0 70.4 0.542 0.715
Dual Advantanges (ours) 70.9 72.7 0.727 0.841
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