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ABSTRACT

Multimodal large language models (LLMs) have achieved significant advances
through serial test-time scaling, which involves generating longer reasoning traces
at test-time, yet this approach encounters performance bottlenecks. Consequently,
parallel test-time scaling becomes as an alternative approach, which generates
multiple candidate solutions in parallel and selects the best one. However, existing
methods either focus solely on training generators or verifiers, which limits per-
formance improvements. We propose ADPO, Advantage-Decoupled Preference
Optimization, an RL framework that trains a unified policy to generate answers
and self-verify via preference reward and decoupled advantages. To enhance the
model’s verification ability, we introduce preference reward using discrete group-
adaptive ranking for binary outcomes and margin-based pairwise comparisons
for continuous signals, yielding more stable learning and better calibrated self-
verification scores. To address the gradient interference problem in joint training
of generation and verification tasks, we introduce decoupled optimization with
separate advantages and cross-task loss masking, effectively improving both gen-
eration and verification capabilities. Ablation studies show +0.03 average im-
provement in verification AUC/AP metrics. ADPO achieves superior performance
on multimodal math reasoning, image grounding and mobile agent tasks, with im-
provements of +2.8 %/+1.4% on MathVista/MMMU, +1.9% cloU on ReasonSeg,
+1.7%/+1.0% step success rate on AndroidControl/GUIOdyssey.

1 INTRODUCTION

The reliability and trustworthiness of multimodal LLMs ensure accurate and consistent outputs
across text, images, and audio, which is crucial for stable real-world deployments. High trustworthi-
ness builds user confidence, promoting widespread adoption and safe operation of multimodal tech-
nologies in deployment environments. Test-time scaling serves as an effective method to enhance
reliability by allocating additional computational resources during inference to improve output qual-
ity and consistency.

DeepSeek-R1 (Guo et al., 2025) and OpenAl-ol (OpenAl, 2024) demonstrate that reasoning models
achieve improved performance through serial test-time scaling by increasing the number of think-
ing tokens during inference in mathematics and coding domains. However, when transferring to
multimodal domains, recent work has found that reasoning provides only limited performance im-
provements on image clssification, video understanding and visual spatial understanding (Li et al.,
2025; Liao et al., 2025).These observations highlight the limitations of token-level scaling alone and
motivate the development of alternative principles for parallel test-time scaling that more effectively
support robust and efficient multimodal reasoning.

Repeated sampling combined with best-of-N selection is another approach to test-time scaling.
Existing methods often exclusively improve either the model’s generation or verification capabilities.
Training a generator and then majority voting at test-time (Wang et al., 2022), as well as training
a dedicated multimodal verifier and using a base model as the generator at test-time (Sun et al.,
2025), both approaches show limited performance improvements(see table 2). We propose a RL-
based framework to train a unified policy model that learns to both generate and self-verify.
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Figure 1: Overview of ADPO. Our advantage-decoupled preference optimization jointly trains con-

tent generation and self-verification via separate advantage computation and mutual loss masking,
enabling reliable test-time scaling through best-of-/V selection across multimodal tasks. The unified
verifier provides reliable scoring that enables effective test-time scaling via best-of-N selection, sig-
nificantly improving performance across multimodal tasks.

To train a unified policy for generation and verification, binary rewards are problematic: they are
sparse and threshold-sensitive, amplify class-imbalance in self-sampled data (often leading to model
predictions collapsing to entirely O or entirely 1 outputs), and discard magnitude cues about answer
quality. We instead use preference reward that enforce within-group ranking between scores and
true quality. For discrete tasks, we split samples by answer reward into positive/negative sets and
compute group-adaptive thresholds s and s~, encouraging positives s > s~ and negatives s <
sT. For continuous tasks, we apply margin-y pairwise comparisons to yield a smooth win-rate
signal. This replaces brittle absolute thresholds with relative signals robust to imbalance, provides
denser and more stable supervision, avoids hard-threshold information collapse, and improves score
calibration and best-of-N selection—well suited for unified multimodal policy training.

As generation and verification are coupled, training suffers from two pitfalls: gradient interfer-
ence—verification errors tug the generator (and vice versa), encouraging “reward hacking” that
inflates scores instead of improving answers—and class imbalance in self-sampled data, where bi-
nary supervision drives the scoring head to 0/1 collapse, harming stability and calibration. We
address this with dual-advantage optimization under a GRPO objective: compute separate advan-
tages for generation and verification from content and preference reward, and apply mutual loss
masking so each segment backpropagates only through its own tokens. Concretely, a single pol-
icy first outputs an answer and then a self-verification score; the generation segment uses verifiable
answer rewards, while the verification segment uses preference reward positive/negative grouping
with adaptive thresholds for discrete tasks, and margin-based pairwise comparisons for continuous
tasks—to align scores with true quality. This decoupling suppresses reward hacking and gradient
contamination, mitigates collapse under imbalance, stabilizes training, and yields better-calibrated,
more discriminative scores, improving area under the ROC curve (AUC), average precision (AP)
and best-of-N selection—delivering reliable test-time gains with only 10% extra training cost over
a GRPO-only generator.

Our contributions are summarized as follows:

1. Unified Preference reward. We develop unified preference reward that maintain informativeness
under severe class imbalance that improve calibration and are robust to class imbalance.

2.Decoupled advantage optimization. We introduce a principled approach to disentangle content
generation and verification learning within a unified GRPO framework.

3. Comprehensive validation. Our method significantly improves task performance and verifi-
cation quality: best-of-8 selection achieves +2.8/+1.4 accuracy gains on MathVista/MMMU, +1.9
cloU on ReasonSeg, and +1.7/+1.0 step success rates on AndroidControl/GUIOdyssey.

2 RELATED WORK

Reasoning and Test-Time Scaling. Recent work scales reasoning at test time via longer thinking
tokens and majority voting for LLMs (Guo et al., 2025; OpenAl, 2024; Wang et al., 2022; Shao
et al., 2024). Multimodal variants adapt this paradigm with R1-style objectives and structured CoT
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for VLMs (Liu et al., 2025b; Peng et al., 2025; Liu et al., 2025c; Shen et al., 2025; Huang et al.,
2025a; Zhang et al., 2025a; Yang et al., 2025). In agentic settings, GUI agents adopt RL with explicit
reasoning traces (Lu et al., 2025; Liu et al., 2025a; Qin et al., 2025; Huang et al., 2025b; Zhang et al.,
2025c¢; Gu et al., 2025). However, recent “no-think” results suggest that more internal tokens do not
always translate to better multimodal reasoning (Li et al., 2025; Liao et al., 2025). We instead couple
solution generation with a learned self-verification signal, enabling reliable performance scaling
through best-of-V selection without fragile dependence on longer chains.

Multimodal Reward Modeling and Generative Verifiers. Another line studies reward modeling
for multimodal alignment, including RLHF-style pipelines and chain-of-thought verification (Zhang
et al., 2025b; Sun et al., 2025). Process or scalar reward models provide step-level or outcome
supervision for reasoning (Du et al., 2025; Cao et al., 2025; Wang et al., 2025). Generative verifiers
and LL.M-as-judge train models to both solve and judge (Zhang et al., 2024; Zheng et al., 2023). In
contrast, we use reinforcement learning to train a single policy for answer and calibrated confidence
with separate advantages and mutual masking, and we do not finely control the positive/negative
ratio in training data; instead, we employ preference reward rather than binary reward, enabling
dependable best-of-N across multimodal tasks.

3 METHOD

We propose ADPO (Advantage-Decoupled Preference Optimization) (see fig. 1), a framework
that intergrates unified preference reward and advantage-decoupled optimization for reliable self-
verification. Given a multi-modal query, our method first produces an answer and then outputs a
self-verification score. At test time, we perform batch decoding to produce multiple candidate an-
swers and select the answer with the highest self-verification score as the final output. This unified
generation and verification paradigm achieves reliable self-verification without additional reward
models.

3.1 PRELIMINARY

GRPO. For each question g, the behavior policy 7, samples a group of G responses {0;}$ ;,
where each response 0;=(01,-..,0;0,) is a token sequence of length |o;| and assigned a
sequence-level reward R;. GRPO estimates advantages by normalizing rewards within each group
and optimizes the current policy mp with a PPO-style clipped objective:
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where riyt(ﬂ):% is the likelihood ratio, A”:%ﬁfl) is the group-

normalized advantage, ¢ is the clipping parameter, /5 is the KL coefficient, Dy is the KL regu-
larization, and 7 is the reference policy.

3.2 UNIFIED PREFERENCE REWARD

As shown in fig. 2, we propose a unified preference reward framework that brings heterogeneous
tasks—discrete and continuous—under a single supervision scheme. UPO couples (i) an answer-
level reward that standardizes task feedback and (ii) a verifier-driven preference signal that improves
discriminative ability and generalizes to continuous metrics.

Answer Reward. We unify answer rewards across heterogeneous tasks by factorizing them into
correctness and quality components. For task ¢t with answer y and ground truth y*, we define the
answer reward as:

R*(y,y") = X(y, y") - Ge(y,y7), 2)
where X; € {0,1} denotes binary correctness and G; € [0, 1] represents quality credit. For dis-

crete tasks such as mathematical reasoning and agent navigation, we set quality credit to unity and
determine correctness through rule-based matching:

Xmath/agem(y7 y*) = matCh(?J, y*), gmath/agem(y7 y*) =1, 3)
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Figure 2: The framework of ADPQ. Given an input, the policy model produces an answer and
a self-verification score used to rank candidates. ADPO optimizes two complementary objectives:
answer generation and self-verification. For answer generation, we introduce verifiable answer re-
wards that guide the model toward producing correct solutions. For self-verification, we design
preference rewards that align the model’s self-verification scores with ground-truth correctness. To
prevent reward hacking and reduce coupling effects between the two processes, we employ separate
advantage estimators and mutual loss masking under a GRPO objective.

Table 1: Prompt for ADPO training.

{Question} Output the thinking process in <think></think> and final answer
choice(number) in <answer></answer> tags.

After outputting the answer, you will act as a correctness evaluation assistant and assign a
score between O and 1 to indicate how accurate the answer is. If you believe the answer is
correct, the score should be close to 1; otherwise, it should be close to O.

For example:

<think>reasoning process here</think>

<answer>answer here</answer>

<score>score number here</score>.

where match(-, -) implements task-specific equivalence checking. For continuous tasks like visual
grounding, we treat all predictions as eligible and grade them by task-specific metrics:

Xgrounding(yv y*) =1, ggrounding(ya y*) = IOU(y, y*)7 “4)
where loU measures the spatial overlap between predicted and ground truth bounding boxes.

Binary Reward. To enable self-verification, we prompt the model to produce confidence estimate
using dedicated instruction (see table 1). After generating the answer in <answer></answer>,
the model outputs a confidence score s € [0, 1] in <score></score> indicating predicted cor-
rectness. We introduce a binary reward R to calibrate model confidence against ground truth:

R(y,y*) = 1{(s > 7) = Xi(y, y")}, (5)

where 7 is the binarization threshold. Thus, R®=1 when the predicted score agrees with the ground-
truth label and R®=0 otherwise. Despite its simplicity, this consistency reward has three key limi-
tations: (i) the binary score lacks sufficient discriminative capability for effective answer selection;
(ii) the prevalent correct predictions (see fig. 3a) creates a pronounced class imbalance, incentivizing
degeneration of always predicting s=1; (iii) it only applies to discrete tasks, as continuous tasks lack
a well-defined binary correctness signal A’.

Preference Reward. To address these limitations, we introduce a preference-based reward that pro-
vides contrastive supervision and naturally extends to continuous tasks. Intuitively, a positive sample
should be rewarded when its verification score exceeds the average of its negative counterparts, and
vice versa. The core idea is to adaptively partition samples into positive and negative groups and
maximize their margin to enhance discriminative capability. For the i-th sample with answer y;,
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ground truth y;, and verification score s;, we define the preference reward Rf as:
R (yi, y7 s 80) = L{(si > pa) = Xe(yi, y7) (6)
1 1s the mean verification score of the contrasting group:
wi =Ejeqr,..aylsi | oe(yiyi)ls @)

The function ¢, (y;, y;) defines task-specific criteria for sample partitioning. For discrete tasks (e.g.,
math reasoning, agent navigation), we partition samples based on answer correctness:

Spmath/agem (yza yj) = ]]-{Xma[h/agent(yia y;,k) 7£ Xma[h/agent(yja y;)} (8)

For continuous tasks (e.g., visual grounding), we regard samples with similar quality as positves and
others as contrastive negatives. We impose a margin v > 0 on quality differences:

@grounding(yiayj) = ]l{‘gt(yzﬁ yf) - gt(ijy;)l > 7}- (9)

This preference reward provides dense, contrastive supervision that maximizes quality-dependent
score margins while accommodating both discrete correctness and continuous paradigms.

Unified Objective. We optimize a unified objective that aggregates answer and preference rewards:

Rtotal = Ra(y?y*) + Rp(y7y*7 S) (10)

3.3 ADVANTAGE-DECOUPLED OPTIMIZATION

During experimentation, we observed that joint optimization of generation and verification objec-
tives creates conflicting gradients that degrade model performance. Answer rewards favor samples
with higher response quality, while preference rewards favor samples with well-calibrated verifica-
tion scores. To address this conflict, we decouple the advantage group with disjoint token masks.
We compute separate advantages within each reward group: A® from answer rewards and A? from
preference rewards. We then apply task-specific token masks to isolate gradients: M “ covers answer
generation tokens (including reasoning when present), while M? covers only verification score to-
kens. This prevents gradient interference between generation and verification objectives. The unified
training objective becomes:

T(0) = M- Joreo(A@) + MP - Logpo(AR)). (11)

4 EXPERIMENTS

We evaluate ADPO across three diverse multimodal domains: mathematical reasoning, visual
grounding, and GUI agent tasks. Our experiments demonstrate that the ADPO consistently im-
proves both task performance and self-verification reliability compared to existing methods.



Under review as a conference paper at ICLR 2026

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate on representative benchmarks across three domains: (1) Multimodal math
reasoning: We train on multimodal-open-r1-8k-verified dataset (LMMs-Lab, 2025) and evaluate on
MathVista (Lu et al., 2023) for in-domain performance and MMMU (Yue et al., 2024) for OOD gen-
eralization, focusing on the model’s ability to perform math reasoning in visually grounded contexts
with accuracy as the evaluation metric. (2) Visual grounding: We train on RefCOCO (Yu et al.,
2016) and evaluate on ReasonSeg (Lai et al., 2024), focusing on referring expression comprehen-
sion with cloU metrics. (3) Mobile agent: We train separately on AndroidControl (Li et al., 2024)
and GUIOdyssey (Lu et al., 2024) training sets and evaluate on their respective test sets for mobile
interface navigation, assessing step success rates(SR).

Baselines. We benchmark our method against three primary baselines: GRPO, GRPO with majority
voting, and GRPO with LLM-as-judge verification. For the verification-based baseline, we evaluate
three distinct LLM judges: the base model, the GRPO-trained model, and our ADPO-trained model.
To specifically assess performance on mathematical tasks, we introduce an additional baseline using
a reward model finetuned on specialized mathematical data.

Implementation details. All models are trained with a consistent set of hyperparameters: a learning
rate of 1 x 107, a batch size of 128, a group size G = 8, a GRPO clipping parameter ¢ = 0.2,
and a KL divergence coefficient 5 = 0.01. For the Multimodal Math Reasoning task, we fine-
tune Qwen2-VL-7B (Wang et al., 2024) for 1200 steps. For Visual Grounding and Mobile Agent,
we use Qwen2.5-VL-7B (Bai et al., 2025) as the base model, training for 1200 and 8000 steps,
respectively. During training rollout, we decode with temperature 7' = 1.0 and top-p = 0.99; at
evaluation, we use 1" = 0.2 and top-p = 0.99.

4.2 MAIN RESULTS

We evaluate three generators: the base model, the GRPO-finetuned model, and the ADPO-finetuned
model, each paired with four verification strategies: majority voting, Qwen-as-judge, GRPO-as-
judge, and ADPO-as-judge. We report pass@1 and best-of-N for N € {4,8,12}. Across all do-
mains, using ADPO as a unified generator and verifier yields the best performance under the same
sampling budget, while preserving pass@1 generation quality comparable to GRPO.

ADPO enables effective self-verification with superior generation quality. Under equal sampling
budgets (N=8 and N=12), ADPO delivers the strongest best-of-N on all three domains. At N=8, its
improvement over the next best approach are at least +1.0 on MathVista, +0.1 on ReasonSeg, and
+1.3 on AndroidControl; at N=12, the gains are at least +0.7, +0.3, and +1.4, respectively. These
results show that ADPO adds robust verification while preserving single-sample quality.

ADPO delivers stronger best-of- NV performance. When used as both generator and verifier, it consis-
tently surpasses GRPO and majority/LLM-as-judge baselines across sample budgets. On MathVista,
ADPO climbs from 64.8 at N=4 to 65.3 at N=12, exceeding GRPO by 1.4-2.1 points and Base by
4.6-6.6 points across N. On ReasonSeg (overall cloU), it improves from 61.1 to 61.6, maintaining
0.1-0.3 point gains over GRPO and 3.3-3.8 over Base. On AndroidControl (success rate), ADPO
stays around 72.7-72.9, leading GRPO by 1.3-1.5 and Base by 8.0-12.0 points. These consistent
margins over N € {4,8,12} show that ADPO yields more sample-efficient selection and higher
best-of- N returns than competing generator-verifier pairings.

ADPO equips the model with robust, cross-generator verification. Our judges remain strong even
on outputs from weaker generators: on MMMU with N = 8 from the baseline generator, the ADPO
judge reaches 51.2%, outperforming all baselines by +1.8-4-6.2 points. On ReasonSeg, ADPO’s
judge improves from 60.9% to 61.6% as N increases from 4 to 12, exceeding the GRPO judge at
every budget by +0.9-+2.0 points. For GUI agents, ADPO judges lead on both AndroidControl and
GUI Odyssey at N € {4, 12}, with consistent gains of roughly +0.4-+0.7 points over GRPO. Cali-
bration metrics align with these trends: ADPO yields higher AUC/AP across domains—for example,
+1.8/43.5 points on Math, +0.031/+0.030 on ReasonSeg, and +0.185/+0.126 on GUI—confirming
superior verification quality.

Performance scales with the sampling budget V. With ADPO finetuned model as the generator, best-
of-N improves monotonically, and pairing it with ADPO finetuned model as the verifier matches
or exceeds the strongest alternatives. On MMMU, performance increases 50.8 — 52.1 — 52.3,
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Table 2: Evaluation results on multi-modal math reasoning benchmarks. Rows correspond
to generators and columns correspond to verifiers. We use Qwen2-VL-7B as the base model, with
GRPO and ADPO representing the finetuned models. Majority voting serves as the verifier baseline.
Models are trained on multimodal-open-r1-8k-verified (LMMs-Lab, 2025) dataset and tested on
MathVista (Lu et al., 2023) for in-domain performance and MMMU (Yue et al., 2024) for OOD
generalization. MM-Verify is a fine-tuned reward model used to select the best answer from multiple
samples generated by the Qwen base model. See Appendix table 6 for detailed results.

Verifier| MathVista (In-domain) MMMU (OOD)
Generator Major Base GRPO ADPO|Major Base GRPO ADPO

Sample 1
MM-RLHF 61.6 -
R1-VL-7B 63.5 -
77777 Base | 519 | 41
GRPO 62.2 48.7
ADPO 62.4 47.7
Sample 4
MM-Verify \ 59.8 \ -
77777 Base | 582 557 555 564 | 486 452 458 499
GRPO 634 624 62.1 62.0 | 494 493 499 50.1
ADPO 633 61.5 62.1 648 | 50.7 483 49.1 508
Sample 8
MM-Verify | 62.5 | -
77777 Base | 60.1 57.0 56.4 565|494 450 466 512
GRPO 629 60.7 60.8 60.5 | 51.1 49.7 493 498
ADPO 64.0 623 623 650 | 51.8 51.6 512 521
Sample 12
MM-Verify | 64.1 | -
77777 Base | 607 569 563 550 | 507 458 452 506
GRPO 634 625 625 61.8 |51.7 512 508 51.3
ADPO 64.6 63.0 635 653|512 520 52.6 523

Table 3: Evaluation results on image grounding benchmarks. Rows correspond to generators and
columns correspond to verifiers. We use Qwen2-VL-7B as the base model, with GRPO and ADPO
representing the finetuned models. Majority voting serves as the verifier baseline. Models are trained
on RefCOCO (Yu et al., 2016) and tested on ReasonSeg (Lai et al., 2024) (out-of-domain). We report
cloU (%) on ReasonSeg for all methods. See Appendix table 7 for detailed results.

Verifier Short query Long query Overall
Generator Major Base GRPO ADPO | Major Base GRPO ADPO | Major Base GRPO ADPO

Sample 1
LISA-7B 48.5 489 488
SegLLM - 54.2 48.4
Seg-Zero-7B - 52.0
77777 Base | 518 | 510 | Tse71
GRPO 55.5 59.7 59.5
ADPO 55.7 60.2 59.9
Sample 4
Base 520 514 532 535 | 579 575 579 579 | 572 571 577 577
GRPO 57.0 575 564 578 | 595 603 59.7 611 | 594 602 595 609
ADPO 514 541 543 551 | 595 599 607 615 | 59.0 59.6 603 611
Sample 8
Base 514 514 505 509 | 578 572 575 584 | 574 569 570 579
GRPO 556 550 553 572 | 599 607 60.7 613 | 59.6 604 604 @ 61.1
ADPO 552 554 578 559 | 582 602 60.6 615 | 580 599 605 612
Sample 12
Base 537 533 531 526 | 579 576 579 582 | 576 574 576 578
GRPO 58.1 524 558 567 | 595 602 599 61.6 | 594 597 596 613
ADPO 553 574 565 562 | 600 609 610 620 | 598 607 60.7 61.6

competitive with the GRPO judge (52.6 at N = 12). For ReasonSeg, the ADPO verifier achieves
61.1 — 61.2 — 61.6, exceeding the next best (60.3/60.5/60.7). Overall, under the same generator,
ADPO yields consistent improvements in best-of-/V as N increases.

OOD results show ADPO’s strong generalization. On MMMU, ADPO (gen-+judge) reaches 52.1%
at N=8, surpassing the best GRPO pairing (51.1%, majority) and the strongest baseline (51.2%,
ADPO judge). Across N, it stays ahead: 50.8 at N=4 (+0.7-0.9%) and, with a GRPO judge, peaks
at 52.6 at N=12. As a judge, ADPO also boosts weak Base generators (51.2% vs. 45.0-46.6%). On
ReasonSeg, ADPO yields 61.1-61.6 cloU (N=4/8/12), topping GRPO by +0.1-0.3% and baselines by
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Figure 4: Ablation of Preference reward. We compare Binary reward with Preference reward
across three domains: Math, Grounding, and GUI Agent. (a) Preference reward achieves superior
generation quality (relative to Binary pass@ 1) while consistently improving best@8. (b-c) Prefer-
ence reward yields higher AP and AUC for self-verification, indicating better calibration of verifi-
cation scores to correctness. Numbers above markers denote absolute values; error bars omitted for
clarity. See Appendix table 9 for full results.

Entangled adv. pass@1
Entangled adv. best@8 0.84 073
Decoupled adv. best@8 X y

0.80 P
7 71};3-5 727 0.80 pas 0.70 0.67
70471, 70.4 jm]
gn T p i 0.77 i;
@
3 65.0 o o 0.64
€65 63.1 % o070 3 060
< 0.71
E 61 y/ 0.65 <
Lo Ae 0.52 -
& o * 054
s 060 o062 Y% Decoupled adv. 0.50 020 Y Decoupled adv.
O Entangled adv. O Entangled adv.
BMath ®Grounding @,GUI Agent EBMath @®Grounding gy, GUI Agent B Math @®Grounding g, GUI Agent
(a) Performance improvement (b) AP improvement (c) AUC improvement

Figure 5: Ablation on decoupled advantages. Across math, grounding, and mobile agent, decou-
pled advantages policy optimization achieves superior generation quality (pass@ 1) while yielding
higher best@8 (a). It also improves the calibration of self-verification, reflected by higher AP (b)
and AUC (c). See Appendix table 10 for full results.

+3.3-3.8%. Overall, unified training improves generator robustness and verifier calibration, enabling
effective best-of-N selection under shift.

4.3 ABLATION STUDIES

We conduct comprehensive ablation studies to analyze the key components of our decoupled advan-
tage preference optimization framework.

Effect of preference reward. Figure 4 shows the impact of preference reward compared to binary
reward across all three domains. The preference formulation consistently improves both task perfor-
mance and self-verification quality. For mathematical reasoning, we observe +1.6% improvement in
best@8 performance and +1.3% improvement in average precision (AP). The benefits are even more
pronounced for self-verification metrics, with AUC improvements of +1.3%, +3.6%, and +11.8%
for math, grounding, and agent tasks respectively. This demonstrates that preference reward provide
more stable training signals and better calibrated confidence scores, particularly important under the
naturally imbalanced positive/negative distributions in self-verification learning.

Effect of decoupled advantages. Figure 5 illustrates the contribution of our decoupled advantage
computation with mutual loss masking compared to simple reward aggregation. Decoupled advan-
tages consistently outperform entangled advantages across all domains, with particularly significant
improvements in self-verification quality. For GUI agent tasks, decoupled advantages achieve +2.8%
improvement in best@8 performance and substantial gains in AUC +18.5 This validates our hypoth-
esis that separating gradient flows between content generation and self-judgment prevents reward
hacking and enables more effective optimization of both objectives.
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Table 4: Evaluation results on mobile agent benchmarks. Rows correspond to generators and
columns correspond to verifiers. We use Qwen2-VL-7B as the base model, with GRPO and ADPO
representing the finetuned models. Majority voting serves as the verifier baseline. Models are
separately trained on AndroidControl (Li et al., 2024) and GUIOdyssey (Lu et al., 2024) training
sets and tested on respective test sets. We report step surpassing rate (%) on AndroidControl and
GUIOdyssey for all methods. See Appendix table 8 for detailed results.

Verifier| AndroidControl (SR) GUI Odyssey (SR)
Generator Major Base GRPO ADPO |Major Base GRPO ADPO
Sample 1
UI-TARS-7B 72.5 67.9
SpiritSight-8B 68.1 75.8
AgentCPM-GUI-8B 69.2 75.0
77777 Base | 613 | 528
GRPO 71.0 79.8
ADPO 70.9 79.7
Sample 4
Base 56.0 525 577 60.7 | 46.5 452 453 45.6
GRPO 71.0 71.0 70.8 712 | 81.3 81.0 80.7 814
ADPO 71.6 71.0 720 727 | 79.8 81.2 81.1 81.6
Sample 8
Base 583 543 61.0 647 | 46.6 449 445 446
GRPO 70.8 71.0 709 71.4 | 81.5 80.7 80.6 81.2
ADPO 713 708 714 727 | 809 81.6 814 817
Sample 12
Base 583 53.6 60.7 645 | 469 44.6 44.0 43.6
GRPO 71.1 714 709 715 | 81.1 799 79.7 80.3
ADPO 719 71.6 719 729 | 80.5 81.5 81.1 814

Table 5: Ablation on the margin v for continuous preference rewards. We evaluate different
margin values on ReasonSeg. v = 0.100 yields the bset overall gloU(60.4) and cloU(61.2).

Short query Long query Overall
v gloU cloU ACC | gloU cloU ACC | gloU cloU ACC

0.025 | 53.7 565 699 | 581 589 713 | 57.8 588 71.1
0.050 | 52.6 544 63.1 | 602 61.0 733 | 59.8 605 727
0.100 | 532 560 67.0 | 60.9 615 737 | 604 612 735
0200 | 532 557 66.0 | 599 60.7 727 | 59.6 604 723
0250 | 53.7 56.8 689 | 59.7 604 725 | 593 602 723

Margin parameter analysis. Table 5 analyzes the effect of margin parameter  in continuous
preference reward computation for visual grounding tasks. We find that v = 0.1 provides the
optimal balance, achieving 73.5% overall accuracy. Too small margins (y = 0.025) may not provide
sufficient discrimination between similar quality outputs, while too large margins (v > 0.2) may be
overly restrictive and reduce the density of preference signals. This hyperparameter study confirms
the importance of carefully tuning the preference threshold for optimal performance.

5 CONCLUSION

We introduce ADPO (Advantage-Decoupled Preference Optimization), a unified reinforcement
learning framework that trains a single policy to both generate solutions and perform self-
verification. ADPO addresses three key challenges in test-time scaling: (i) it enables reliable paral-
lel best-of-N selection through unified generator-verifier training; (ii) it replaces binary supervision
with relative, batch-adaptive preference reward that improve calibration across both discrete and
continuous tasks; and (iii) it employs decoupled advantages to separate gradient flows for generation
and verification, thereby mitigating reward hacking and gradient interference. Extensive evaluation
across five benchmarks spanning three domains: MathVista, MMMU, ReasonSeg, AndroidControl,
and GUI Odyssey, which demonstrates that ADPO achieves superior pass@1 performance while
consistently improving best-of-N selection and delivering superior self-verification calibration.
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under their original licenses; no personally identifiable information is processed beyond what is
already public, and all datasets were used in accordance with their terms. No new human-subject
experiments were conducted; when third-party annotations are involved, they were collected by the
dataset providers under their respective ethics approvals. We assessed potential risks of misuse (e.g.,
generating harmful or deceptive content) and release only evaluation scripts and models consistent
with responsible-use guidelines. We report known failure cases and distributional limitations, and
we caution against deploying our method in safety-critical settings without additional safeguards.

REPRODUCIBILITY STATEMENT

Due to company policy, the complete training code cannot be released at submission time. We will
release the training code, inference and evaluation code upon approval.

Models and hyperparameters. All models are trained with a consistent set of hyperparameters:
learning rate 1 x 1075, batch size 128, group size G = 8, GRPO clipping parameter £ = 0.2, and
KL coefficient 5 = 0.01. For Multimodal Math Reasoning, we fine-tune Qwen2-VL-7B (Wang
et al., 2024) for 1200 steps. For Visual Grounding and Mobile Agent, we finetune Qwen2.5-VL-
7B (Bai et al., 2025) for 1200 and 8000 steps, respectively.

Training data. We use only publicly available training sets for each domain: multimodal-open-r1-
8k-verified (LMMs-Lab, 2025) (math), RefCOCO (Yu et al., 2016) (grounding), AndroidControl (Li
et al., 2024), and GUI Odyssey (Lu et al., 2024) (mobile agents). No proprietary or sensitive data
are used.

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Qi Cao, Ruiyi Wang, Ruiyi Zhang, Sai Ashish Somayajula, and Pengtao Xie. Dreamprm: Domain-
reweighted process reward model for multimodal reasoning. arXiv preprint arXiv:2505.20241,
2025.

Lingxiao Du, Fanqing Meng, Zongkai Liu, Zhixiang Zhou, Ping Luo, Qiaosheng Zhang, and Wenqi
Shao. Mm-prm: Enhancing multimodal mathematical reasoning with scalable step-level supervi-
sion. arXiv preprint arXiv:2505.13427, 2025.

Zhangxuan Gu, Zhengwen Zeng, Zhenyu Xu, Xingran Zhou, Shuheng Shen, Yunfei Liu, Beitong
Zhou, Changhua Meng, Tianyu Xia, Weizhi Chen, et al. Ui-venus technical report: Building
high-performance ui agents with rft. arXiv preprint arXiv:2508.10833, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
Shaohui Lin. Vision-rl: Incentivizing reasoning capability in multimodal large language models.
arXiv preprint arXiv:2503.06749, 2025a.

Zhiyuan Huang, Ziming Cheng, Junting Pan, Zhaohui Hou, and Mingjie Zhan. Spiritsight agent:
Advanced gui agent with one look. In Proceedings of the Computer Vision and Pattern Recogni-
tion Conference, pp. 29490-29500, 2025b.

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Rea-
soning segmentation via large language model. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9579-9589, 2024.

10



Under review as a conference paper at ICLR 2026

Ming Li, Jike Zhong, Shitian Zhao, Yuxiang Lai, Haoquan Zhang, Wang Bill Zhu, and Kaipeng
Zhang. Think or not think: A study of explicit thinking in rule-based visual reinforcement fine-
tuning. arXiv preprint arXiv:2503.16188, 2025.

Wei Li, William E Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyam-
agundlu, and Oriana Riva. On the effects of data scale on ui control agents. Advances in Neural
Information Processing Systems, 37:92130-92154, 2024.

Zhenyi Liao, Qingsong Xie, Yanhao Zhang, Zijian Kong, Haonan Lu, Zhenyu Yang, and
Zhijie Deng. Improved visual-spatial reasoning via rl-zero-like training. arXiv preprint
arXiv:2504.00883, 2025.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. Infigui-rl: Advancing multimodal gui agents from reactive actors to deliberative
reasoners. arXiv preprint arXiv:2504.14239, 2025a.

Yuqi Liu, Tianyuan Qu, Zhisheng Zhong, Bohao Peng, Shu Liu, Bei Yu, and Jiaya Jia. Vision-
reasoner: Unified visual perception and reasoning via reinforcement learning. arXiv preprint
arXiv:2505.12081, 2025b.

Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
Wang. Visual-rft: Visual reinforcement fine-tuning. arXiv preprint arXiv:2503.01785, 2025c.

LMMs-Lab. multimodal-open-r1-8k-verified, 2025. URL https://huggingface.
co/datasets/lmms-lab/multimodal-open-rl-8k-verified. Commit e3c8f3a
(2025-01-27).

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Quanfeng Lu, Wengqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui
navigation on mobile devices. arXiv preprint arXiv:2406.08451, 2024.

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Han Xiao, Shuai Ren,
Guanjing Xiong, and Hongsheng Li. Ui-rl: Enhancing efficient action prediction of gui agents
by reinforcement learning. arXiv preprint arXiv:2503.21620, 2025.

OpenAl. Learning to reason with llms, 2024. URL https://openai.com/index/
learning-to-reason-with-1lms/.

Yi Peng, Peiyu Wang, Xiaokun Wang, Yichen Wei, Jiangbo Pei, Weijie Qiu, Ai Jian, Yunzhuo Hao,
Jiachun Pan, Tianyidan Xie, et al. Skywork r1v: Pioneering multimodal reasoning with chain-of-
thought. arXiv preprint arXiv:2504.05599, 2025.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qiangian Zhang, et al. VIm-rl: A stable and generalizable r1-style large
vision-language model. arXiv preprint arXiv:2504.07615, 2025.

Linzhuang Sun, Hao Liang, Jingxuan Wei, Bihui Yu, Tianpeng Li, Fan Yang, Zenan Zhou, and

Wentao Zhang. Mm-verify: Enhancing multimodal reasoning with chain-of-thought verification.
arXiv preprint arXiv:2502.13383, 2025.

11


https://huggingface.co/datasets/lmms-lab/multimodal-open-r1-8k-verified
https://huggingface.co/datasets/lmms-lab/multimodal-open-r1-8k-verified
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

Under review as a conference paper at ICLR 2026

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution, 2024. URL https://arxiv.org/abs/2409.
12191.

Weiyun Wang, Zhangwei Gao, Lianjie Chen, Zhe Chen, Jinguo Zhu, Xiangyu Zhao, Yangzhou Liu,
Yue Cao, Shenglong Ye, Xizhou Zhu, et al. Visualprm: An effective process reward model for
multimodal reasoning. arXiv preprint arXiv:2503.10291, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
Yin, Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized multimodal rea-
soning through cross-modal formalization. arXiv preprint arXiv:2503.10615, 2025.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context
in referring expressions. In European conference on computer vision, pp. 69—85. Springer, 2016.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
modal understanding and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9556-9567, 2024.

Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng
Tao. RI1-vl: Learning to reason with multimodal large language models via step-wise group
relative policy optimization. arXiv preprint arXiv:2503.12937, 2025a.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
Agarwal. Generative verifiers: Reward modeling as next-token prediction. arXiv preprint
arXiv:2408.15240, 2024.

Yi-Fan Zhang, Tao Yu, Haochen Tian, Chaoyou Fu, Peiyan Li, Jianshu Zeng, Wulin Xie, Yang Shi,
Huanyu Zhang, Junkang Wu, et al. Mm-rlhf: The next step forward in multimodal llm alignment.
arXiv preprint arXiv:2502.10391, 2025b.

Zhong Zhang, Yaxi Lu, Yikun Fu, Yupeng Huo, Shenzhi Yang, Yesai Wu, Han Si, Xin Cong, Haotian
Chen, Yankai Lin, et al. Agentcpm-gui: Building mobile-use agents with reinforcement fine-
tuning. arXiv preprint arXiv:2506.01391, 2025c.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595-46623, 2023.

12


https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191

Under review as a conference paper at ICLR 2026

A APPENDIX

LLM USAGE DISCLOSURE

We used large language models (LLMs) to assist (i) software engineering tasks (code scaffolding,
refactoring, and boilerplate generation) and (ii) academic writing (grammar polishing, tone adjust-
ment, and minor phrasing improvements). All research ideas, algorithmic designs, experimental
setups, and final claims are authored and verified by the human authors.

LLMs were not used to generate results, annotations, or proofs; they did not perform data labeling,
hyperparameter selection, or evaluation. All code produced with LLM assistance was reviewed
and unit-tested by the authors. For writing, we preserved factual accuracy, checked references, and
rewrote any ambiguous outputs. We screened for potential plagiarism and license contamination and
ensured that all cited text and code are properly attributed.

13
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Table 6: Evaluation results on multi-modal math reasoning benchmarks. Rows correspond
to generators and columns correspond to verifiers. We use Qwen2-VL-7B as the base model, with
GRPO and ADPO representing the finetuned models. Majority voting serves as the verifier baseline.
Values are accuracy (%). GVQA: General VQA; MVQA: Math Target VQA; ARD: Art & Design;
BUS: Business; HEM: Health & Medicine; HSS: Human & Social Science; SCI: Science; TEN:
Technology & Engineering.

Generator Verifier MathVista (In-domain) MMMU (OOD)
GVQA MVQA ALL |ARD BUS HEM HSS SCI TEN ALL
Sample 1

Base X 689 485 57.9 1675 39.1 49.3 69.0 33.9 36.7 47.1
GRPO X 69.8 557 622 |65.0 459 48.2 68.2 359 39.8 48.7
ADPO X 68.7 570 624 |63.1 46.2 50.2 71.1 33.3 35.3 47.7

Major | 65.7 519 58.2 |66.7 47.3 50.7 65.8 34.0 38.1 48.6
Base | 63.9 487 55.7 |60.0 44.0 50.7 60.8 32.7 33.8 45.2
Base GRPO | 633 489 55.5 |61.7 43.3 50.0 63.3 30.0 36.7 45.8
ADPO | 633 50.6 564 |66.7 49.3 533 70.8 34.0 37.6 49.9

Major | 69.8 58.0 634 |65.8 44.7 50.0 70.0 42.0 36.7 49.4
Base | 70.2 557 624 |62.5 44.0 50.0 70.8 40.0 39.5 49.3
GRPO GRPO | 69.6 557 62.1 |62.5 44.0 50.0 70.8 40.0 39.5 49.9
ADPO | 69.6 556 620 |64.2 46.7 50.7 71.7 39.3 39.5 50.1

Major | 71.7  56.1 63.3 | 66.7 48.0 52.7 70.0 39.3 39.0 50.7
Base | 68.5 556 615 |64.2 44.0 52.7 67.5 36.7 36.7 48.3
ADPO GRPO | 683 56.9 62.1 |65.0 44.0 52.0 68.3 40.7 36.7 49.1
ADPO | 71.3 593 64.8 | 683 48.0 52.0 69.2 39.3 39.5 50.8

Major | 68.0  53.3 60.1 |68.3 50.0 53.3 68.3 32.7 36.7 49.4
Base | 63.0 519 57.0 |65.0 40.7 48.0 65.0 32.0 32.4 45.0
Base GRPO | 62.8 509 56.4 658 40.0 49.3 65.8 32.7 37.1 46.6
ADPO | 63,5 506 565 |67.5 48.7 54.0 71.7 36.0 41.0 51.2

Major | 704  56.5 629 |66.7 48.7 51.3 742 42.7 36.7 51.1
Base | 67.6 550 60.7 |62.5 47.3 51.3 72.5 38.7 37.6 49.7
GRPO GRPO | 67.6 55.0 60.8 |62.5 46.7 50.0 70.0 39.3 38.6 49.3
ADPO | 67.6 544  60.5 |63.3 46.7 53.3 68.3 38.7 39.0 49.8

Major | 71.1  58.0  64.0 |65.0 493 56.7 71.7 38.7 40.5 51.8
Base | 70.0 557 62.3 | 633 52.0 53.3 66.7 42.7 41.0 51.6
ADPO GRPO | 69.8 559 623 633 52.7 54.7 65.8 42.0 39.0 51.2
ADPO | 72.2 589 65.0 |65.8 54.0 54.7 66.7 40.7 41.0 52.1

Major | 674 55.0 60.7 |69.2 52.0 50.7 70.8 38.0 36.7 50.7
Base | 63.7 5l1.1 569 [59.2 473 51.3 64.2 30.0 33.8 45.8
Base GRPO | 624 51.1 56.3 |583 453 49.3 63.3 30.0 35.2 45.2
ADPO | 62.6 485 55.0 |65.0 52.7 53.3 70.0 40.0 35.2 50.6

Major | 70.7 572 634 |64.2 50.0 51.3 73.3 43.3 39.5 51.7
Base | 70.0 56.3 62.6 |63.3 48.0 54.0 68.3 42.7 41.0 51.2
GRPO GRPO | 693 567 625 |63.3 48.7 52.7 67.5 42.0 40.5 50.8
ADPO | 69.6 552  61.8 |64.2 48.0 52.7 69.2 43.3 41.0 51.3

Major | 72.0 583 64.6 | 658 50.0 53.3 75.0 36.7 39.0 51.2
Base | 70.7 56.5 63.0 |62.5 52.0 54.7 70.0 41.3 41.4 52.0
ADPO GRPO | 71.3 569  63.5 |63.3 533 52.7 70.8 41.3 43.3 52.6
ADPO | 71.7 59.8 653 |67.5 53.3 54.0 71.7 38.7 40.5 52.3
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Table 7: Evaluation results on image grounding benchmarks. Rows correspond to generators
and columns correspond to verifiers. We use Qwen2-VL-7B as the base model, with GRPO and
ADPO representing the finetuned models. Majority voting serves as the verifier baseline. Models
are trained on RefCOCO training set and tested on ReasonSeg (out-of-domain).

. Short query Long query Overall
Generator  Verifier gloU cloU ACC | gloU cloU ACC | gloU cloU ACC
Sample 1
Base X 495 530 670 | 568 575 68.5 | 563 572 684
GRPO X 51.8 555 679 | 59.1 597 713 | 58.6 595 711
ADPO X 517 548 68.0 | 602 594 719 | 58.1 59.1 717
Sample 4
777777777 Major | 478 520 660 | 57.3 579 693 | 567 575 69.1
Base 472 514 660 | 569 575 68.6 | 563 57.1 684
Base GRPO | 496 532 67.0 | 574 579 68.7 | 569 577 68.6
ADPO | 504 535 680 | 573 579 69.1 | 569 577 69.1
777777777 Major | 545 570 68.0 | 588 595 721 | 585 594 718
Base 552 575 68.0 | 597 603 729 | 594 602 726
GRPO GRPO | 534 564 689 | 59.1 59.7 72.0 | 588 595 71.8
ADPO | 551 578 68.0 | 60.5 61.1 734 | 60.2 609 731
777777777 Major | 527 553 670 | 60.1 605 720 | 596 602 717
Base 512 541 660 | 593 599 717 | 588 59.6 714
ADPO GRPO | 51.0 543 67.0 | 600 60.7 727 | 594 603 724
ADPO | 522 551 67.0 | 610 615 733 | 605 61.1 729
Sample 8
777777777 Major | 478 514 631 | 572 578 692 | 566 574 688
Base 479 514 621 | 56.6 572 68.1 | 56.1 569 67.7
Base GRPO | 471 505 62.1 | 568 575 684 | 562 570 68.0
ADPO | 474 509 612 | 577 584 694 | 57.1 579 689
777777777 Major | 520 556 68.0 | 592 599 720 | 587 596 717
Base 517 550 670 | 60.1 607 724 | 59.6 604 72.1
GRPO GRPO | 515 553 68.0 | 600 60.7 724 | 595 604 72.1
ADPO | 544 572 67.0 | 60.6 613 738 | 602 61.1 733
777777777 Major | 532 56.1 670 | 588 594 713 | 585 592 710
Base 529 554 670 | 59.6 602 720 | 59.2 599 717
ADPO GRPO | 556 578 689 | 599 60.6 729 | 596 605 727
ADPO | 532 560 670 | 609 615 737 | 604 612 735
Sample 12
777777777 Major | 502 537 660 | 572 578 693 | 568 576 69.1
Base 495 533 68.0 | 569 57.6 689 | 565 574 6838
Base GRPO | 50.0 531 66.0 | 571 579 69.1 | 567 576 689
ADPO | 498 526 65.1 | 576 582 692 | 57.1 57.8 689
777777777 Major | 556 58.1 69.9 | 588 595 722 | 586 594 720
Base 488 524 651 | 59.6 602 725 | 589 59.7 721
GRPO GRPO | 532 558 68.0 | 59.1 599 719 | 588 59.6 71.7
ADPO | 541 567 689 | 609 616 74.0 | 605 613 73.7
] Major | 533 553 660 | 593 60.0 718 | 589 598 715
Base 550 574 689 | 602 609 721 | 599 607 719
ADPO GRPO | 538 565 689 | 603 61.0 724 | 599 60.7 72.1
ADPO | 539 562 670 | 61.3 620 73.6 | 609 61.6 732
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Table 8: Evaluation results on mobile agent benchmarks. Rows correspond to generators and
columns correspond to verifiers. We use Qwen2-VL-7B as the base model, with GRPO and ADPO
representing the finetuned models. Majority voting serves as the verifier baseline. Models are
separately trained on AndroidControl and GUI Odyssey training sets and tested on respective test
sets.

Generator  Verifier AndroidControl GUI Odyssey
Type Grounding SR | Type Grounding SR
Sample 1
Base X 82.2 73.6 61.3 | 81.1 61.4 52.8
GRPO X 86.0 76.9 71.0 | 93.1 83.9 79.8
ADPO X 85.8 76.2 70.9 | 94.2 82.5 79.7
Sample 4
777777777 Major | 763  68.1 560 | 769 553 465
B Base 72.1 67.8 525 | 753 55.6 452
ase GRPO | 74.9 71.4 57.7 | 75.3 55.2 453
ADPO 76.4 74.5 60.7 | 75.1 55.7 45.6
777777777 Major | 855 772 710 | 947 839 813
GRPO Base 85.4 77.2 71.0 | 94.3 83.8 81.0
GRPO 85.4 77.3 70.8 | 944 83.7 80.7
ADPO 85.6 77.7 712 | 94.5 84.0 81.4
777777777 Major | 86.6  77.1 716 | 939 835 798
ADPO Base 86.4 76.4 71.0 | 94.7 84.2 81.2
GRPO 86.4 77.9 72.0 | 94.7 84.2 81.1
ADPO | 86.3 79.5 727 | 94.7 84.5 81.6
Sample 8
777777777 Major | 787 688 583 | 767 554 466
Base Base 73.9 68.4 543 | 75.1 55.2 44.9
GRPO | 773 73.4 61.0 | 744 54.3 44.5
ADPO 79.7 76.5 64.7 | 73.9 54.6 44.6
777777777 Major | 856 769 708 | 946 844 815
GRPO Base 85.6 77.1 71.0 | 93.7 84.4 80.7
GRPO | 854 77.4 70.9 | 93.7 84.4 80.6
ADPO 85.6 77.7 714 | 939 84.8 81.2
777777777 Major | 86.5 764 713 | 948 840 809
ADPO Base 86.1 76.2 70.8 | 95.1 84.6 81.6
GRPO 85.8 77.7 714 | 949 84.4 81.4
ADPO 86.4 78.7 72.7 | 94.8 84.7 81.7
Sample 12
Major | 78.9 68.7 583 | 76.9 55.5 46.9
Base Base 73.4 67.9 53.6 | 74.5 55.5 44.6
’ GRPO 76.8 73.2 60.7 | 73.5 54.3 44.0
ADPO | 79.2 76.7 64.5 | 729 53.8 43.6
Major 85.6 77.4 71.1 | 94.5 84.0 81.1
GRPO Base 85.6 78.0 714 | 93.0 84.0 79.9
GRPO | 854 77.5 709 | 93.1 83.9 79.7
ADPO 85.7 77.9 71.5 | 93.2 84.2 80.3
777777777 Major | 86.6 767 719 | 944 837 805
ADPO Base 86.5 76.3 71.6 | 94.8 84.6 81.5
GRPO | 854 78.6 719 | 94.6 84.1 81.1
ADPO 86.3 78.9 729 | 944 84.5 81.4
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Table 9: Ablation of Preference reward. Replacing the binary answer reward with our preference
reward consistently strengthens self-verification (fAUC/AP) and improves best of N selection per-
formance on Math, Grounding, and GUI Agent.

. Performance Verification
Domain Method pass@1 best@8 | AUC AP
Math Binary reward 61.9 63.4 0.509 0.640

Preference reward (ours) 62.4 65.0 0.522 0.653

Groundin Binary reward 71.8 72.6 0.636  0.789
€  Preference reward (ours) 71.7 73.5 0.672 0.804

Binary reward 70.6 70.6 0.609 0.765

GUI Agent Preference reward (ours) 70.9 72.7 0.727 0.841

Table 10: Ablation study on decoupled advantages. Our proposed Dual Advantages method con-
sistently outperforms reward aggregation in both task performance and solution verification across
mathematical reasoning, grounding, and GUI agent tasks.

. Performance Verification
Domain  Method pass@l best@8 | AUC AP
Math Reward Aggregation 61.5 63.1 504 618

Dual Advantanges (ours) 62.4 65.0 522 653

Groundin Reward Aggregation 70.4 71.0 0.641 0.774
€ Dual Advantanges (ours) 71.7 73.5 0.672 0.804

Reward Aggregation 71.0 70.4 0.542  0.715

GUI Agent Dual Advantanges (ours) 70.9 72.7 0.727 0.841
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