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ABSTRACT

Cascades and speculative decoding are two common approaches to improving
language models’ inference efficiency. Both approaches interleave two models
of different sizes, but via fundamentally distinct mechanisms: cascades employ a
deferral rule that invokes the larger model only for “hard” inputs, while specula-
tive decoding uses speculative execution to primarily invoke the larger model in
parallel scoring mode. These mechanisms offer different benefits: cascades offer
compelling cost-quality trade-offs, often even outperforming the large model; spec-
ulative cascades offer impressive speed-ups, while guaranteeing quality-neutrality.
In this paper, we leverage the best of both these approaches by designing new spec-
ulative cascading techniques that implement their deferral rule through speculative
execution. We characterize the optimal deferral rule for our speculative cascades,
and employ a plug-in approximation to the optimal rule. Experiments with Gemma
and T5 models on a range of language benchmarks show that our approach yields
better cost-quality trade-offs than cascading and speculative decoding baselines.

1 INTRODUCTION

Large language models (LLMs) have yielded significant advances in quality on a range of natural
language processing tasks (Radford et al., 2018; Raffel et al., 2020; Brown et al., 2020; Black et al.,
2022; Chowdhery et al., 2022; Anil & et al., 2023; Touvron et al., 2023; Team et al., 2023; et al.,
2024b;a), at the cost of an increase in inference latency. This has sparked a growing body of literature
on reducing LLMs’ inference costs without (overly) compromising on quality (Elbayad et al., 2020;
Pope et al., 2022; Schuster et al., 2022; Leviathan et al., 2023; Chen et al., 2023a; Sheng et al., 2023;
Sun et al., 2024). One such line of work involves constructing a family of models of various sizes
(e.g., a small and large model), and suitably orchestrating amongst them to make a prediction. Two
canonical instantiations of this strategy are model cascading (Wang et al., 2020; Mamou et al., 2022;
Varshney & Baral, 2022; Khalili et al., 2022; Dohan et al., 2022; Chen et al., 2023b; Gupta et al.,
2024; Ding et al., 2024) and speculative decoding (Stern et al., 2018; Chen et al., 2023a; Leviathan
et al., 2023; Sun et al., 2024; Li et al., 2024a; Xia et al., 2024).

While similar in spirit, cascades and speculative decoding are fundamentally different in details.
Cascades employ a deferral rule to identify “hard” inputs, and only invoke larger models on such
inputs. For example, in a two-model cascade, one first invokes the smaller model, and uses its
associated probability of the generated output to decide whether to defer to the larger model. By
contrast, speculative decoding uses a small model to draft a block of tokens via standard auto-
regressive decoding, which are then verified in parallel by a large model. One then accepts all drafted
tokens until the first “implausible” one, which is rolled back based on the larger LM’s prediction.

Owing to their different mechanisms, both methods have complementary strengths. Cascades seek to
output distributions that have the best quality for a given cost budget, sometimes even yielding better
quality than the individual models they are constructed with (Jitkrittum et al., 2023; Kim et al., 2023)
(§3). By contrast, speculative decoding is theoretically guaranteed to match the output distribution (or
a close approximation thereof (Tran-Thien, 2023)), and is practically observed to provide impressive
speed-ups (Stern et al., 2018; Chen et al., 2023a; Leviathan et al., 2023; Sun et al., 2024). Given their
complementary nature, a natural question arises: can we leverage the best of both techniques?

†Work done while working at Google.
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Figure 1: Speculative cascade inference between a
small and a large LM via a deferral rule.

In this paper, we do so by designing new
techniques for two-model cascades that im-
plement their deferral rule in a speculative
manner: we have the smaller model gener-
ate drafts auto-regressively, and the larger
model execute in parallel on the drafts to
decide whether or not to defer on them.
We show that this speculative cascading ap-
proach yields better cost-quality trade-offs
than both standard cascades and speculative decoding. In detail, we make the following contributions:

(i) We introduce a general recipe for speculative execution, where we seek to mimic a general target
distribution that interleaves the drafter’s and verifier’s distributions. Lossy speculative sampling
(Tran-Thien, 2023) is a special case of this recipe for a particular target distribution (§4.1).

(ii) We show how common cascading rules, such as Chow’s rule (Chow, 1970) and confidence-
difference thresholding (Jitkrittum et al., 2023), can be implemented speculatively by plugging in
their target distribution into our framework. We refer to these as speculative cascades (§4.2).

(iii) We characterize the theoretically optimal deferral rule for a speculative cascade, and design a
speculative cascading technique that implements a plug-in estimate to the optimal rule (§4.3,
Lemma 4, Table 1). We also present token-specific variants of our deferral rules (§5).

(iv) Through experiments with Gemma (Team et al., 2024) and T5 models (Raffel et al., 2020) on
a range of benchmark language tasks including summarization, translation, reasoning, coding
and QA, we show that speculative cascades are able to provide better cost-quality trade-offs than
their sequential cascade and speculative decoding counterparts (§6).

Overall, we aim to develop a principled approach to trade-off quality and inference costs by inter-
leaving two models of different sizes, with promising empirical results. We hope to inspire future
research adapting the proposed ideas with ingredients underpinning the state-of-the-art in speculative
decoding (Cai et al., 2024; Li et al., 2024a;b; Chen et al., 2024).

2 A TALE OF TWO EFFICIENT LM INFERENCE STRATEGIES

Let V denote a finite vocabulary of tokens, with V∗ denoting the set of all finite-length sequences
generated by this vocabulary. Let ∆V denote the set of all probability distributions over tokens
in V. Given an arbitrary length sequence x = x1x2 . . . xL ∈ V∗ and index i ≤ L, we denote
x<i = x1x2 . . . xi−1. A language model (LM) is a probability distribution over V∗. Let P denote
the data generating probability distribution over V∗. This could be, for example, a distribution over
prompt-response pairs that the LM may encounter during deployment, or a distribution of sequences
used to pre-train the LM. We will measure the quality of an LM based on how closely it mimics P.

Suppose we are provided two LMs q and p, where p is the larger (more expensive) model. Our goal
is to design an inference strategy that selectively invokes q and p to trade-off between quality and
latency (which may be approximated by the fraction of times that p is invoked). We will denote by
q(xt|x<t) the probability q associates to token xt ∈ V given prefix x<t ∈ Vt−1, and by p(xt|x<t)
the same distribution from model p. Whenever it is clear from context, we will hide the conditioning
on prefix x<t, and use the shorthand qt(·) for q(·|x<t) and pt(·) for p(·|x<t).

Cascades are an effective strategy to trade-off cost and quality by having the smaller model q handle
the “easy” samples, and the larger model p handle the “hard” ones (Gupta et al., 2024; Yue et al.,
2024). A common cascading approach is confidence thresholding or Chow’s rule (Chow, 1970;
Jitkrittum et al., 2023), where we first run q on the input, and defer to p when q’s confidence for its
generated response is sufficiently low. This strategy is typically implemented at the sequence-level,
where for a given prefix x<m we invoke q, evaluate its maximum conditional probability over all
responses, and check whether it falls below a threshold α ∈ [0, 1]:

max
xm...xm+n

q(xm . . . xm+n |x<m) < 1− α. (1)

If this holds, we defer to p to generate a new response; otherwise, we generate a response with q. One
may tune α to achieve a desired cost-quality trade-off. The literature also offers variants of Chow’s
rule that use a more nuanced aggregation of per-token uncertainties (Gupta et al., 2024).
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Table 1: Target distributions associated with different inference algorithms, where α is a free
parameter and β ≥ 1− α depends on α, q and p. The last column indicates whether the execution is
sequential (Algorithm 2), via an oracle (Algorithm 3), or speculative (Algorithm 5) (Leviathan et al.,
2023). See (6) for details on δ. The third row presents a variant of the BiLD algorithm of Kim et al.
(2023), where D(q, p) is a measure of discrepancy between q and p; the original algorithm differs in
the use of a deterministic speculative decoding procedure with a dynamic draft window (see §B).

Inference strategy Deferral decision δ(q, p) Target distribution π(u) Execution

SpecDecoding (Leviathan et al., 2023) - p(u) Speculative

Lossy SpecDecoding (Tran-Thien, 2023) - max{min{q(u), p(u)
1−α},

p(u)
β } Speculative

BiLD* variant (Kim et al., 2023) 1
(
D(q, p) > α

)
(1− δ) · q(u) + δ · p(u) Speculative

TokenCascade [Chow] (Chow, 1970) 1
(

maxv q(v) < 1− α
)

(1− δ) · q(u) + δ · p(u) Sequential
Oracle [Diff] (Jitkrittum et al., 2023) 1

(
maxv q(v) < maxv p(v)− α

)
(1− δ) · q(u) + δ · p(u) Oracle

SpecCascade [Chow] 1
(

maxv q(v) < 1− α
)

(1− δ) · q(u) + δ · p(u) Speculative
SpecCascade [Diff] 1

(
maxv q(v) < maxv p(v)− α

)
(1− δ) · q(u) + δ · p(u) Speculative

SpecCascade [OPT] 1
(

maxv q(v) < maxv p(v)− α ·DTV(p, q)
)

(1− δ) · q(u) + δ · p(u) Speculative

Speculative decoding is an alternate strategy that applies token-level interleaving between q and p,
seeking to provably match the larger model quality at a reduced inference cost (Stern et al., 2018;
Leviathan et al., 2023). Given a prefix x<t, we draft γ draft tokens xt, . . . , xt+γ−1 via auto-regressive
sampling from q, and verify if these tokens can be accepted by running p in parallel on the γ prefixes
x<t, . . . , x<t+γ−1. We then rollback to the first rejected token t+ j∗ (where j∗ ∈ {0, 1, . . . , γ− 1}),
replace xt+j∗ with a new token, and repeat the process with prefix x<t+j∗+1.

During the verification stage, a draft token xt+j generated by q is accepted with probability

min
(

1,
pt+j(xt+j)
qt+j(xt+j)

)
and rejected otherwise, recalling the shorthand qt+j(·) = q(·|x<t+j) and

pt+j(·) = p(·|x<t+j). A rejected token is then replaced by a new token sampled from a modi-
fied distribution norm (max {0, pt+j(·)− qt+j(·)}) , where norm(·) denotes normalization to sum
to 1. This sampling process is provably equivalent to sampling γ tokens auto-regressively from p for
prefix x<t (Leviathan et al., 2023). We summarize this speculative sampling procedure in Algorithm
1. Each invocation of this algorithm generates at most γ + 1 next tokens (and at least one) for a given
prefix x<t. One may run this algorithm multiple times to generate a complete output sequence.

In practice, one may employ a lossy variant (Tran-Thien, 2023) of the above sampling that allows
some deviation from verifier’s distribution p. In this case, a draft token xt+j is accepted with

probability min
(

1,
pt+j(xt+j)

(1−α)·qt+j(xt+j)

)
, where α ∈ [0, 1) is a strictness parameter, with higher values

indicating greater deviation from p. A rejected token may then be replaced by a token sampled from
the residual distribution norm

(
max

{
0, 1

β · pt+j(·)− qt+j(·)
})

, where β ≥ 1− α is a parameter
that depends on α, q and p. A common heuristic is to simply set β = 1 (Zhou et al., 2024).

3 CASCADES MEET SPECULATIVE DECODING

Both cascades and speculative decoding interleave models of different sizes to reduce inference cost,
but fundamentally differ in the mechanisms they use. As a step towards comparing the strengths and
weaknesses of these approaches, we first describe how one may design a token-level cascade.

3.1 WARM-UP: TOKEN-LEVEL CASCADES

It is straightforward to extend the sequence-level Chow’s rule from §2 to form a token-level cascade
between q and p. For a prefix x<t, we first compute the smaller model’s distribution qt(·), and
check whether maxv∈V qt(v) is below a pre-chosen threshold. If so, we evaluate pt(·), and sample
xt ∼ pt(·); otherwise, we sample xt ∼ qt(·).

More generally, we may design a token-level deferral rule r : Vt−1 → {0, 1} that takes the prefix
x<t as input and outputs a binary decision, with r(x<t) = 1 indicating that we defer to p (i.e., draw
a sample from p rather than q). For example, token-level Chow’s rule can be written as:

rChow(x<t) = 1 ⇐⇒ maxv∈V qt(v) < 1− α, (2)
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where α is a threshold parameter; the higher the value, the lower is the frequency of deferral to p.
One may also use other confidence measures than the maximum probability, such as the entropy
of the small model’s probability distribution. We elaborate in §D.1 that the choice of confidence
measure would depend on the evaluation metric of interest; Equation (2) is typically prescribed when
the cascade’s quality is evaluated in terms of its accuracy against the data generating distribution on
individual tokens, whereas entropy is prescribed when the metric of interest is the cross-entropy loss.

3.2 OPTIMAL TOKEN-LEVEL CASCADE DEFERRAL

While Chow’s rule (2) is easy to implement, it can be sub-optimal if the smaller model’s max-token
probability is not reflective of which of the two models are better equipped to predict the next token
for a given prefix (Jitkrittum et al., 2023). Given this, it is natural to ask what the optimal deferral
rule r for a token-cascade looks like, and whether we can reasonably approximate this rule.

For this, we must first specify an objective to minimize at each step t. Following the prior cascade
literature (Jitkrittum et al., 2023; Gupta et al., 2024), a reasonable objective to minimize is the
expected loss from the deferral rule against the data generating distribution P, with an added cost
for deferring to the larger model. We state this below for a fixed prefix x<t, using as before the
short-hand qt(·) for q(·|x<t) and pt(·) for p(·|x<t):

Ldef(r;x<t) = Ev∼P(·|x<t)

[(
1− r(x<t)

)
· `(v, qt) + r(x<t) ·

(
`(v, pt) + α

)]
, (3)

for a cost penalty α ≥ 0 and loss function ` : V×∆V → R+. Common choices for ` include the 0-1
loss `0-1(v, qt) = 1 (v 6= arg maxv′ qt(v

′)) and the log loss `log(v, qt) = − log (qt(v)) .

Lemma 1 (Optimal deferral for token-level cascades (Jitkrittum et al., 2023)). The minimizer of (3)
is of the form:

r∗(x<t) = 1 ⇐⇒ Ev∼P(·|x<t) [`(v, qt)] > Ev∼P(·|x<t) [`(v, pt)] + α. (4)

Intuitively, we compare the expected loss from q with the expected cost of invoking p, and decide
to defer when the latter is smaller. We note here that this optimization problem is set up for a fixed
prefix x<t. One may also consider the coupled optimization problem across all positions.

Plug-in estimator for (4). The optimal rule in (4) requires computing expectations over the data
generating distribution P(·|x>t), which is not available during inference time. A common approach
in the cascades literature is to replace the expected losses with the models’ confidence estimates
(Jitkrittum et al., 2023). For example, when ` = `0-1, it may be reasonable to use 1−maxv qt(v) as
an estimate of the expected 0-1 loss Ext∼P(·|x<t) [`0-1(xt, qt)] and 1−maxv pt(v) as an estimate of
Ext∼P(·|x<t) [`0-1(xt, pt)]. The extent to which these estimates are accurate depend on how well q and
p are calibrated (Guo et al., 2017). The resulting plug-in estimator for (4) thresholds the difference of
confidence estimates from both distributions:

r̂Diff(x<t) = 1 ⇐⇒ maxv qt(v) < maxv pt(v)− α. (5)

Similarly, when ` = `log, we may use the entropy −
∑
v qt(v) · log(qt(v)) from qt as an estimate of

its expected log-loss, and similarly for pt (see § D).
Remark 1 (Diff rule is not realizable with a token-level cascade). We cannot directly employ
r̂Diff in a token-level cascade, as it needs the large model to be invoked at every step t. However, it
serves as an oracle that allows to analyze the head-room available to improve upon Chow’s rule.

3.3 CONTRASTING TOKEN-LEVEL CASCADE AND SPECULATIVE DECODING TRADE-OFFS

Token-level cascades and speculative decoding differ in the distribution over tokens they seek to
mimic. Speculative decoding seeks to mimic the large model’s output distribution, and is usually
used when one wants to match the quality of the large model. On the other hand, token-level cascades
seek to output distributions that closely approximate the label distribution and potentially offer good
cost-quality trade-offs, sometimes yielding better quality than even the large model.

Cascades are useful when the draft model fares better than the verifier on some inputs, and one may
want to retain the drafter’s predictions even when it disagrees with the verifier. Even in cases where
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Figure 2: Plots of quality as a function of the number of deferrals to the larger model divided by
the total number of generated tokens for cascades constructed from T5 models (under temperature
sampling with T = 1). The left-most point represents the small model and the right-most represents
the large model. We compare token-level cascades constructed with Chow’s rule (Chow) and an oracle
deferral rule (Diff). While speculative decoding will match the quality of the large model (see dashed
horizontal line), the oracle deferral rule yields significantly better quality on a range of deferral rates.

both the drafter and verifier fare poorly on some inputs (e.g., due to label noise), one may want to
ignore the disagreement between the drafter and verifier to avoid triggering unnecessary roll-backs.

As a concrete example, we consider token-level cascades of T5 models (Raffel et al., 2020) of
two different sizes finetuned on a WMT EN→ DE translation Bojar et al. (2014) and an extreme
summarization (XSum) task (Narayan et al., 2018). We construct these cascades using Chow’s rule
in (2), and the Diff rule in (5), which as noted in Remark 1, serves as an oracle. In Figure 2, we plot
quality as a function of fraction of samples deferred to the large model (number of deferrals divided
by number of generated tokens), as we vary the cost parameter α. Recall that speculative decoding is
guaranteed to match the quality of the large model. In contrast, the Diff rule based cascades yield a
wide range of cost-quality trade-offs, often outperforming the large model. Even Chow’s rule, which
is sub-optimal for cascading (Jitkrittum et al., 2023), outperforms the large model in a small region.
As noted by Kim et al. (2023), this may be attributed to the ensembling effect in a cascade.

However, compared to speculative decoding, token-level cascades may require a significantly larger
number of deferrals to the large model to achieve the same quality. This is because token-level
cascades are executed sequentially: whenever q defers, we execute p once to generate one next token
for the prefix accumulated so far, and the control transfers back to q. In contrast, speculative decoding
runs p in scoring mode to verify γ draft tokens from q in parallel. Moreover, the stochastic verification
algorithm in speculative decoding often results in fewer tokens from q getting rejected compared to
the deterministic deferral rules used in a cascade. These observations motivate a natural question:
given their complementary strengths, how can we leverage the best of both these techniques?

4 SPECULATIVE CASCADES: LEVERAGING THE BEST OF BOTH WORLDS

In addressing the above question, we present our main contribution: speculative cascades, a principled
approach to combining the better trade-offs token-level cascades offer with the faster execution of
speculative decoding. Unlike token-level cascades, where the large model is called only when the
small model defers, speculative cascades invoke the large model in parallel scoring mode after every
γ draft tokens. Consequently, they have the added benefit of being able to implement deferral rules
that are not realizable with a sequential cascade, and can thus potentially achieve lower latencies.

4.1 SPECULATIVE DECODING WITH GENERAL TARGET DISTRIBUTIONS

We begin by considering a generic version of speculative decoding that seeks to mimic a general target
distribution derived from the drafter’s and verifier’s distributions. In the proposed sampling procedure
outlined in Algorithm 4, we sample tokens auto-regressively as before from the drafter’s distribution.
During the verification step, however, we do not compare the drafter’s token probabilities against the
verifier’s distribution. Instead, we use a user-specified target distribution π = T(q, p) ∈ ∆V derived
from the drafter’s and verifier’s distributions at position t, for some function T(·, ·) that is inexpensive
to compute. We accept a draft token xt when q(xt) ≤ π(xt) and reject it otherwise with probability
1− π(xt)

q(xt)
. Upon rejection, we re-sample from the residual distribution norm (max{0, π(·)− q(·)}).

This general procedure not only encompasses standard speculative decoding (Leviathan et al., 2023)
for T(q, p) = p, but also includes lossy speculative decoding (Tran-Thien, 2023) as a special case:
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Lemma 2. Algorithm 4 reduces to the lossy speculative sampling procedure in (Tran-Thien, 2023)
with parameters α and β when T(q, p)(v) = max{min{q(v), p(v)

1−α},
p(v)
β }.

4.2 FROM SEQUENTIAL TO SPECULATIVE CASCADES

Equipped with Algorithm 4, we now propose new cascading techniques that implement their deferral
rule in a speculative manner. Recall from §3.1 that a token-level cascade of two models q and p is
defined by a deferral rule r : Vt−1 → {0, 1}. For a prefix x<t, the next-token distribution at position
t modeled by this cascade can be written as:

π(v) = (1− r(x<t)) · qt(v) + r(x<t) · pt(v).

In fact, for all the deferral rules described in §2, the resulting distribution can be described by a target
distribution function Tδ of the form:

Tδ(q, p)(v) = (1− δ(q, p)) · q(v) + δ(q, p) · p(v), (6)

for some function δ : ∆V ×∆V → {0, 1} that maps distributions (q, p) to a binary decision. For
example, to implement Chow’s rule, we may choose δ(q, p) = 1

(
maxv q(v) < 1− α

)
.

Our proposal is to then invoke the speculative sampling procedure in Algorithm 4 with Tδ as the
target distribution function. We outline this generic speculative cascading approach in Algorithm 5,
and contrast it with the sequential execution of a deferral rule in Algorithm 2.

Interestingly, as noted below, the Diff rule, which was not realizable with a token-level cascade, can
be efficiently implemented with a speculative cascaded using δ(q, p) = 1

(
maxv q(v) < maxv p(v)−

α
)
. See Table 1 for a summary of different deferral rules and corresponding target distributions.

Remark 2 (Diff rule is realizable with a speculative cascade). In a token-level cascade, the large
model’s distribution p cannot be used at the time the deferral decision is made (see Remark 1), as
this would defeat the purpose of the cascade. With a speculative cascade, however, we can employ
rules such as Diff that depend on both q and p. This is because we run the large model p in parallel
on drafts generated by the small model q, allowing us to compute both p(·) and q(·) on every prefix.

So far we have considered deferral rules designed for use with (sequential) token-level cascades.
In what follows, we derive the optimal deferral rule r for a speculative cascade, where we sample
speculatively from a target distribution π = (1− r(x<t)) · qt + r(x<t) · pt using qt as the drafter.

4.3 OPTIMAL SPECULATIVE CASCADE DEFERRAL

We seek a deferral rule r : Vt−1 → {0, 1} that trades-off between quality and inference cost. As with
§2, we measure quality in terms of the loss incurred against the data generating distribution. The
inference cost, on the other hand, crucially depends on how frequently a draft token is rejected in the
verification phase, triggering a rollback. To this end, we seek to minimize the expected loss from
the deferral rule subject to a constraint on the resulting rejection rate. More specifically, (i) we show
that the rejection rate can be computed using a simple closed-form expression (Lemma 3); (ii) we
formulate a constrained optimization objective (7) and the corresponding the Lagrangian (8); (iii)
we derive the optimal deferral rule that minimizes the Lagrangian (Lemma 4), approximate it with a
plug-in rule (10), and provide a regret bound guarantee for the approximation (Lemma 5).
Lemma 3. For a given prefix x<t, and target distribution π = (1− r(x<t)) · qt + r(x<t) · pt, the
probability of a token drawn from draft distribution qt being rejected is equal to: r(x<t) ·DTV(pt, qt),
where DTV(p, q) =

∑
v∈V max{0, p(v)− q(v)} is the TV distance between p and q.

Intuitively, whenever r(x<t) = 0, π(v) = qt(v), and therefore there is no rejection or roll-back;
when r(x<t) = 1, the rejection rate equals DTV(pt, qt), per Leviathan et al. (2023).

For a fixed prefix x<t, we formulate the goal of finding a solution to:

min
r

Ev∼P(·|x<t)

[(
1− r(x<t)

)
· `(v, qt) + r(x<t) · `(v, pt)

)]
s.t. r(x<t) ·DTV(pt, qt) ≤ B, (7)

for some budget B > 0. Equivalently, one may minimize an unconstrained objective similar to (3),
for suitable cost parameter α > 0 (see §D.5):

Lspec(r;x<t) = Ev∼P(·|x<t)
[(

1− r(x<t)
)
· `(v, qt) + r(x<t) ·

(
`(v, pt) + α ·DTV(pt, qt)

)]
, (8)
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Algorithm 1 SpecDecode

Input: Models q, p, Prefix x<t, Block size γ
T(q, p) .

= p
Output: GenSpecSample(q, p,T, x<t, γ)

Algorithm 2 TokenCascade

Input: Models q, p, Deferral logic δ, Prefix x<t
qt(·)

.
= q(·|x<t)

if δ(qt, ∅) = 0 then
Sample xt ∼ qt(·)

else
pt(·)

.
= p(·|x<t); Sample xt ∼ pt(·)

end if
Output: xt

Algorithm 3 OracleCascade

Input: Models q, p, Deferral logic δ, Prefix x<t
qt(·)

.
= q(·|x<t); pt(·)

.
= p(·|x<t)

if δ(qt, pt) = 0 then
Sample xt ∼ qt(·)

else
Sample xt ∼ pt(·)

end if
Output: xt

Algorithm 4 GenSpecSample

Input: Models q, p, Target distr. T, Prefix x<t, Block size γ
// Sample γ tokens auto-regressively from q
for j = 0 to γ − 1 do

qt+j(·)
.
= q(·|x<t+j); xt+j ∼ qt+j(·)

end for
// Run p in parallel to score γ draft tokens
pt+j(·)

.
= p(·|x<t+j), ∀j ∈ [γ] ≡ {0, . . . , γ}

πt+j = T(qt+j , pt+j)
// Find the earliest rejected draft token

aj ∼ Ber
(
min

{
1,

πt+j(xt+j)

qt+j(xt+j)

})
, ∀j ∈ [γ − 1]; aγ = 0

j∗ = min{j ∈ [γ] : aj = 0}
// Sample a new token from residual distribution
pres(·) ={
norm(max {0, πt+j∗(·)− qt+j∗(·)}) if j∗ < γ

πt+γ(·) else
Sample xt+j∗ ∼ pres(·)

Output: xt, . . . , xt+j∗

Algorithm 5 SpecCascade

Input: Models q, p, Deferral logic δ, Prefix x<t, Block size γ
Tδ(q, p)

.
= (1− δ(q, p)) · q + δ(q, p) · p

Output: GenSpecSample(q, p,Tδ, x<t, γ)

Contrasting (8) with the deferral risk in (3) for a token-level cascade, the difference is that the cost of
deferring to the larger model is no longer a constant, but depends on the similarity between qt and
pt, as measured by the total variation (TV) distance between them. Analgous to Lemma 1, we next
derive the optimal deferral rule for (8), and then construct a feasible estimator for it.
Lemma 4 (Optimal deferral for speculative cascades). The minimizer of (8) is of the form:

r∗(x<t) = 1 ⇐⇒ Ev∼P(·|x<t) [`(v, qt)] > Ev∼P(·|x<t) [`(v, pt)] + α ·DTV(pt, qt). (9)

When pt and qt are similar, the rejection rate for qt is low, and hence the deferral decision will depend
largely on which of the two models yields a lower expected loss. When pt and qt are very different,
the optimal decision is to defer to pt only when it yields a substantially lower loss than qt.

Plug-in estimator for (9). The optimal rule requires estimating expectations with respect the data
generating distribution P(·|x<t). We employ similar plug-in estimators as the ones used with token-
level cascades (§3.2). When ` = `0-1, we replace the expected 0-1 loss with (one minus) the maximum
probability from the model, giving us:

r̂OPT(x<t) = 1 ⇐⇒ maxv qt(v) < maxv pt(v)− α ·DTV(pt, qt). (10)

The efficacy of the plug-in estimator depends on how closely the individual models approximate the
data generating distribution P(·|x<t); this is formalized by the following regret bound:
Lemma 5 (Regret bound for r̂OPT). Suppose ` = `0-1. Denote Pt(v)

.
= P(v|x<t). Then for fixed x<t:

Lspec(r̂OPT;x<t)−min
r

Lspec(r;x<t) ≤ max
v∈V

∣∣Pt(v)− qt(v)
∣∣ + max

v∈V

∣∣Pt(v)− pt(v)
∣∣.

One can now run the speculative cascading procedure in Algorithm 5 using (10) as the deferral rule;
the corresponding δ(·) is listed in Table 1. See §D.3 for a similar derivation for ` = `log.

5 BEYOND CASCADED DEFERRAL: TOKEN-SPECIFIC INTERLEAVINGS

The deferral rules we have seen so far in (5) and (10) decide between the drafter’s distribution qt(·)
and the verifier’s distribution pt(·) by comparing their maximum token probabilities. A downside to
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this cascaded form of deferral is that the specific draft token sampled xt ∼ qt(·) may not be the same
as the token that maximizes maximize qt(·). Thus, even when xt is of poor quality, we may end up
accepting it because qt happens to be more peaked than pt.

Token-specific interleaving. To alleviate the above problem, we propose the use of token-specific
deferral rules r : Vt−1 × V→ {0, 1} that use both the prefix x<t and a candidate token v to provide
a binary decision r(x<t, v) ∈ {0, 1}, with 0 indicating that the token is of acceptable quality. We
may then construct a target distribution of the following form:

πToken(v) = qt(v) · (1− r(x<t, v)) + pt(v) · η, (11)
where η =

∑
v′∈V r(x<t, v

′)·qt(v′) is a normalizing term chosen to ensure that
∑
v∈V πToken(v) = 1.

This target distribution closely mimics qt(·) on tokens that the deferral rule r deems to be of acceptable
quality, and defers to pt(·) otherwise. One can modify the generic speculative sampling algorithm in
Algorithm 4 to use πToken as the target distribution, as shown in Algorithm 6 in §E.

To design the deferral rule r, we propose a heuristic variant of the Diff rule in equation 4 (in §E,
we discuss deriving a similar variant of the OPT rule in equation 9). Specifically, we compare the
probability that the draft token v is the incorrect next token to x<t according to the data-generating
distribution P with the expected 0-1 loss that we would incur if we were to defer to the verifier pt:

r(x<t, v) = 1 ⇐⇒ 1− P(v|x<t) > Ev′∼P(·|x<t) [`0-1(v′, pt)] + α, (12)
for a cost parameter α. The following are some simple plug-in approximations to (12), where we
approximate P(v|x<t) with either qt(v) or pt(v), and the expected 0-1 loss using maxv′ pt(v

′):

r̂TokenV1(x<t, v) = 1 ⇐⇒ qt(v) < maxv′ pt(v
′)− α

r̂TokenV2(x<t, v) = 1 ⇐⇒ pt(v) < maxv′ pt(v
′)− α

r̂TokenV3(x<t, v) = 1 ⇐⇒ pt(v) < maxv′ pt(v
′) · (1− α).

(13)
(14)
(15)

where (15) uses a multiplicative plug-in approximation.

The resulting target distributions have an intuitive form. For example, with (13):
πTokenV1(v) = qt(v) · 1

(
v ∈ Tα

)
+ pt(v) ·

∑
v′ /∈Tα qt(v

′), (16)

where Tα = {v ∈ V : qt(v) ≥ maxv′ pt(v
′)− α} is the set of tokens deemed important. For these

tokens, πTokenV1 approximates qt(·); for the rest, it is a re-scaled version of pt(·).

Contrasting with lossy speculative sampling. Recall that lossy speculative sampling (Tran-Thien,
2023) also seeks to mimic a token-specific interleaving of qt and pt, given by πLossy(v) =

max{min{qt(v), pt(v)
1−α },

pt(v)
β }, for trade-off parameters α, β (Lemma 2). However, in some settings,

this choice of target distribution may severely limit the range of cost-quality trade-offs that can be
achieved by varying α and β. For example, note that πLossy(v) = 0 whenever pt(v) = 0, making the
trade-off parameters α and β irrelevant for such tokens. This can be particularly problematic when
sampling with a small temperature or when applying top-P sampling, where qt and pt may not share
the same support. In contrast, our proposed approach to token-specific deferral enables a wider range
of trade-offs under both temperature and top-P sampling, by computing the deferral rule r in (11) on
unscaled versions of qt and pt, while interleaving between scaled versions of qt and pt (see §C).

In fact, in the extreme case of greedy decoding (sampling with temperature T = 0), πLossy simply
degenerates to pt. For this special case, Leviathan et al. (2023) propose an alternate lossy version
of speculative decoding with a deterministic rejection criterion similar to (15). Interestingly, our
proposed TokenV3 approach reduces to this variant when T → 0 (see §C.4). Thus TokenV3 can be
seen as a generic deferral rule that is applicable to both greedy and non-greedy decoding.

6 EXPERIMENTAL RESULTS

We compare our speculative cascading techniques with both sequential cascades and standard
speculative decoding on a range of language benchmarks, including translation, reasoning, coding,
QA, etc. We evaluate speculative cascades constructed from both the T5 v1.1 family of encoder-
decoder models (Raffel et al., 2020), and Gemma v2 decoder-only models (Team et al., 2024).1

1Illustrative colab notebook with Gemma models available at: https://github.com/google-research/
google-research/tree/master/speculative_cascades.
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Table 2: Reduction in latency (T = 1, γ = 5) when matching the quality of the large model (cols
2–7), and the best quality metric without exceeding the latency of the large model (cols 8–13). Quality
is measured in terms of BLEU for WMT and ROUGE-2 for XSum and CNNDM. Rows 1–4 are the
baselines; Rows 5–6 contain the proposed method with old deferral rules (§3); Rows 7–8 are with
new deferral rules (§4). See §F.2–F.3 for results with varying temperatures and top-P sampling.

Latency↓ when matching large model’s quality Best quality without exceeding large model’s latency

Small→ Large Small→ XL Small→ Large Small→ XL

Method WMT XSum CNNDM WMT XSum CNNDM WMT XSum CNNDM WMT XSum CNNDM
SeqCascade [Chow] 1.55× 0.84× 0.98× 2.46× 0.93× 0.94× 16.56 12.97 9.91 16.29 16.40 11.18
TokenCascade [Chow] 1.03× 0.93× 1.40× 1.46× 0.82× 1.51× 16.52 13.30 10.36 16.65 17.09 11.44
SpecDecode [Lossy] 1.61× 1.10× 1.57× 2.17× 1.28× 2.07× 17.26 13.90 10.43 16.94 17.36 11.53
BiLD∗ 1.34× 1.04× 1.38× 1.85× 1.28× 1.84× 16.49 13.81 10.14 15.90 17.35 11.35
SpecCascade [Chow] 1.43× 1.04× 1.41× 2.01× 1.28× 1.97× 17.76 13.82 10.28 16.35 17.36 11.39
SpecCascade [Diff] 1.79× 1.17× 1.75× 2.44× 1.30× 2.15× 18.04 14.00 10.64 18.07 17.37 11.67

SpecCascade [OPT] 1.95× 1.17× 1.80× 2.61× 1.34× 2.21× 18.33 14.10 10.86 18.09 17.48 11.85
SpecCascade [Token] 1.85× 1.18× 1.89× 2.50× 1.40× 1.89× 22.50 15.85 12.63 22.70 18.79 12.63

Cascades versus SpecDecode evaluation. Our evaluation protocol is markedly different from the
standard evaluation of speculative decoding algorithms, where the goal is to speed up inference with
a large model while preserving its output distribution. In contrast, our focus is on trading-off quality
for lower inference costs by interleaving two models of different sizes. We also do not claim to
develop a new state-of-the-art method for fast LM inference. Furthermore, the speculative cascades
we design build on the original speculative decoding algorithm Leviathan et al. (2023). While one
could potentially also adapt our proposal to other recent variants of speculative decoding (Cai et al.,
2024; Li et al., 2024a), these involve a wholly orthogonal suite of techniques to what we propose
(such as architectural changes, allowing for multiple drafts, distillation, and so on; see §B).

Proposed methods and baselines. We evaluate our proposed speculative cascades with four deferral
rules: (i) Chow in (2), (ii) Diff in (5), (iii) OPT in (10), and (iv) the Token-specific rule in (15). Of
these, (i) and (ii) are existing deferral rules, while (iii) and (iv) are new rules we propose. We also
present results for the V1 and V2 variants of the token-specific rules in §F.7.

We compare these with the following cascading and speculative decoding baselines:

(i) Sequence-level cascade (Jitkrittum et al., 2023; Gupta et al., 2024) based on sequence-level
Chow’s rule in (1) (SeqCascade [Chow]).

(ii) Token-level cascade outlined in Algorithm 2, with token-level Chow’s rule in (2) used for deferral
(Chow, 1970; Gupta et al., 2022) (TokenCascade [Chow]).

(iii) Lossy speculative decoding described in §2, with both β = 1 (Leviathan et al., 2023; Zhou et al.,
2024) (SpecDecode [Lossy]) and β tuned using the procedure in Tran-Thien (2023) (Lossy?).

(iv) Big-Little Decoder approach (Kim et al., 2023), with both the original deterministic rejection rule
(BiLD), and the stochastic rejection sampling variant of their method described in §B (BiLD∗).

Fine-tuned T5 cascades. Our experiments on T5 models are based on the setup in Zhou et al. (2024);
see §F.1 for details. We use T5-small (77M) as the small model, and either T5-large (800M) or
T5-XL (3B) as the large model. In each case, we supervised fine-tune these models on three tasks:
WMT EN→DE translation (Bojar et al., 2014), CNN/DM summarization (Hermann et al., 2015), and
XSum abstractive summarization (Narayan et al., 2018). We use temperatures T = 0, 0.1, 0.5, 1.0,
and block sizes γ = 3, 5, 7 (full results in §F). Following the protocol in Leviathan et al. (2023);
Zhou et al. (2024), to measure latency, we evaluate the wall-clock decoding time with batch size 1.

In Table 2, we report for the each method, (i) the reduction in latency from T5 cascades when
matching the quality of the large model, and (ii) the best quality it can deliver without exceeding
the latency of the large model. SeqCascade and TokenCascade are often seen to fare poorly on
both quality and latency metrics, with the exception of WMT, where SeqCascade yields non-trivial
speed-ups. SpecCascade [Token] often yields the highest speed-up and the best quality metrics, with
OPT coming in second. The reason the Token-specific rule fares better than OPT and Diff is because
the latter compute their deferral decisions based on which of qt(·) and pt(·) is more peaked; this can
be a disadvantage when the sampled token is not close to the distribution mode, which is likely to
happen when applying temperature sampling with a high temperature.
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Figure 3: Plots of quality vs. rejection rate for methods that interleave Gemma 2B with Gemma 27B
(γ = 1). We use instruction-tuned models; for MBPP we report additional results with pre-trained
models. See §F.7 for remaining plots, comparison to (13–14) and results on 2B→ 9B cascades.

We present plots of quality vs. latency for the different methods in Figure 4 in §F. In each case, we
vary the trade-off parameter α, and plot the quality metric as a function of the relative latency to the
large model. While methods that use speculative execution are considerably faster than sequential
cascades (TokenCascade [Chow]), the latter offer better quality in the low-latency regimes. This
is because unlike speculative approaches, which always call the large model after every γ steps,
sequential cascades invoke the large model only when the small model defers. In §F.5–F.6, we present
additional comparisons to SpecDecode [Lossy?], and the original BiLD algorithm (Kim et al., 2023).

We also report results with varying temperatures in §F.2, and with top-P sampling in §F.3. As the
temperature or P becomes smaller, SpecDecode [Lossy] yields comparable quality as our methods,
but is severely limited in the range of cost-quality trade-offs it offers (see discussion in §5). In
contrast, SpecCascade [Token] offers a wider range of trade-off points even for low temperature or
P values, and is able to match the quality of the larger model at lower latencies (see Table 5).

Few-shot Gemma cascades. To evaluate the Gemma model cascades, we use few-shot prompting
with 8 language benchmarks: WMT, CNN/DM, GSM8K, MBPP, SQuAD 2.0, WebQuestions,
NaturalQA and TriviaQA; many of these feature in the SpecBench suite (Xia et al., 2024). Figure 3
presents plots of quality vs. rejection rate with a 2B drafter and 27B verifier for γ = 1. For brevity,
we only compare the methods that fare the best in the previous experiments. With the exception of
TriviaQA, SpecCascade [Token] is able to both match the 27B’s quality at a lower rejection rate
and yield the best overall quality, often better than 27B. Since all three methods use the exact same
implementation but with different rejection criteria, we directly compare their rejection rates.

Interestingly, the OPT rule is not as effective as it was with the T5 models. We attribute this to the
differences in distributions between the two setups. With T5, the maximum token probability served
as a good indicator of token accuracy for both q and p. With Gemma models, however, we expect the
large model to have a closer alignment with the data generating distribution (due to it being several
billion parameters apart from the smaller model), and hence using the large model probabilities to
measure confidence for both the small and large model (15) yields better trade-offs than comparing
the modes from the two model distributions. More generally, we expect SpecCascade to yield
significant gains over SpecDecode when there exists a slice of data where the small model performs
comparable to or better than the large model. The larger this slice, the larger is the improvement.

Conclusions. We have proposed new speculative cascading techniques that use a combination of
auto-regressive drafting and parallel verification to implement their deferral rule, and shown that they
yield better cost-quality trade-offs than standard sequential cascades and speculative decoding. A
limitation of our approach is that while it offers lower latency via parallel execution, it also incurs
a higher total compute cost compared to sequential cascades. In the future, we wish to replace
our plug-in estimators with a router model (Gupta et al., 2024) trained on ground-truth samples to
approximate the optimal rule, and to extend our proposal to more than two models.
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A PROOFS

A.1 PROOF OF LEMMA 1

Proof. Expanding the loss in (3), we have:

Ldef(r;x<t)

=
(
1− r(x<t)

)
· Ext∼P(·|x<t) [`(xt, qt)] + r(x<t) ·

(
Ext∼P(·|x<t) [`(xt, pt)] + α

)
= r(x<t) ·

(
Ext∼P(·|x<t) [`(xt, pt)] + α− Ext∼P(·|x<t) [`(xt, qt)]

)
+ Ext∼P(·|x<t) [`(xt, qt)] .

This objective is minimized by a deferral rule r : Vt−1 → {0, 1} that minimizes, for each prefix x<t,
the term within the parenthesis. Therefore the minimizer r∗(x<t) = 1 whenever the term within the
parenthesis is negative:

Ext∼P(·|x<t) [`(xt, pt)] + α− Ext∼P(·|x<t) [`(xt, qt)] < 0,

and r∗(x<t) = 0 otherwise. Re-arranging the terms completes the proof.

A.2 PROOF OF LEMMA 2

Proof. The proof follows straight-forwardly from the results in (Tran-Thien, 2023). Recall from §2
that the lossy speculative decoding procedure of (Tran-Thien, 2023) accepts a draft token x with
probability:

κ(x) = min

{
1,

p(x)

(1− α) · q(x)

}
, (17)

and replaces a rejected draft token with a token sampled from the residual distribution:

pres(x) = norm

(
max

{
0,

1

β
· p(x)− q(x)

})
, (18)

for parameters α ∈ [0, 1) and β ≥ 1− α.

We need to show that running Algorithm 4 with the target distribution:

π(x) = max

{
min

{
q(x),

p(x)

1− α

}
,
p(x)

β

}
results in the same acceptance probability (17) and residual distribution (18).

The acceptance probability for a draft token x when running Algorithm 4 on π is given by:

κπ(x) = min

{
1,
π(x)

q(x)

}
.

The corresponding residual distribution is given by:

pπres(x) = norm (max {0, π(x)− q(x)}) .

We consider three possible cases:

Case (i): q(x) > 1
1−α · p(x) ≥ 1

β · p(x). In this case, π(x) = 1
1−α · p(x). As a result:

κπ(x) = min

{
1,

p(x)

(1− α) · q(x)

}
= κ(x);

pπres(x) = norm

(
max

{
0,

1

1− α
· p(x)− q(x)

})
= 0 = norm

(
max

{
0,

1

β
· p(x)− q(x)

})
= pres(x).
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Case (ii): 1
1−α · p(x) ≥ 1

β · p(x) > q(x). In this case, π(x) = 1
β · p(x). As a result:

κπ(x) = min

{
1,

p(x)

β · q(x)

}
= 1 = min

{
1,

p(x)

(1− α) · q(x)

}
= κ(x);

pπres(x) = norm

(
max

{
0,

1

β
· p(x)− q(x)

})
= pres(x).

Case (iii): 1
1−α · p(x) ≥ q(x) ≥ 1

β · p(x). In this case, π(x) = q(x). As a result:

κπ(x) = 1 = min

{
1,

p(x)

(1− α) · q(x)

}
= κ(x);

pπres(x) = 0 = norm

(
max

{
0,

1

β
· p(x)− q(x)

})
= pres(x).

In all three cases, the acceptance probabilities and residual distributions are identical.

A.3 PROOF OF LEMMA 3

Proof. Under a target distribution πt, the probability of a draft token drawn from qt being is rejected
is given by (Leviathan et al., 2023):

rejection probability =
∑
v∈V

qt(v) ·
(

1−min

{
1,
πt(v)

qt(v)

})
= 1−

∑
v∈V

min {qt(v), πt(v)}

=
∑
v∈V

πt(v)−
∑
v∈V

min {qt(v), πt(v)}

=
∑
v∈V

max {0, πt(v)− qt(v)} .

Expanding πt, the rejection probability becomes:

rejection probability =
∑
v∈V

max {0, (1− r(x<t)) · qt(v) + r(x<t) · pt(v)− qt(v)}

When r(x<t) = 1, we have:

rejection probability =
∑
v∈V

min {0, pt(v)− qt(v)} = DTV(pt, qt) = r(x<t) ·DTV(pt, qt).

When r(x<t) = 0, we have:

rejection probability = 0 = r(x<t) ·DTV(pt, qt),

as desired.

A.4 PROOF OF LEMMA 4

Proof. Expanding the deferral risk in (8), we have:

Lspec(r;x<t) = r(x<t) ·
(
Ext∼P(·|x<t) [`(xt, pt)] + α ·DTV(pt, qt)− Ext∼P(·|x<t) [`(xt, qt)]

)
+ Ext∼P(·|x<t) [`(xt, qt)] .

This objective is minimized by a deferral rule r : Vt−1 → {0, 1} that minimizes, for each prefix x<t,
the term within the parenthesis. Therefore the minimizer r∗(x<t) = 1 whenever the term within the
parenthesis is negative:

Ext∼P(·|x<t) [`(xt, pt)] + α ·DTV(pt, qt)− Ext∼P(·|x<t) [`(xt, qt)] < 0,

and r∗(x<t) = 0 otherwise. Re-arranging the terms completes the proof.
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A.5 PROOF OF LEMMA 5

For a fixed prefix x<t, we can write the deferral risk in (8) as:

Lspec(r;x<t) = r(x<t) ·
(
Ext∼P(·|x<t) [`(xt, pt)] + α ·DTV(pt, qt)− Ext∼P(·|x<t) [`(xt, qt)]

)
+ C,

where C is a term independent of the deferral rule r. Let r∗ : Vt−1 → {0, 1} denote the optimal
deferral rule that minimizes Lspec for any prefix x<t. We then have:

Lspec (r̂OPT;x<t)− Lspec (r∗;x<t)

= (r̂OPT(x<t)− r∗(x<t)) ·
(
Ext∼P(·|x<t) [`(xt, pt)] + α ·DTV(pt, qt)− Ext∼P(·|x<t) [`(xt, qt)]

)
.

Adding and subtracting maxv∈V qt(v) −maxv∈V pt(v) to the term within the second parenthesis,
we get:

Lspec (r̂OPT;x<t)− Lspec (r∗;x<t)

= (r̂OPT(x<t)− r∗(x<t)) ·
(

max
v∈V

qt(v) + α ·DTV(pt, qt)−max
v∈V

pt(v)

)
+ (r̂OPT(x<t)− r∗(x<t)) ·

(
Ext∼P(·|x<t) [`(xt, pt)]− Ext∼P(·|x<t) [`(xt, qt)]

−max
v∈V

qt(v) + max
v∈V

pt(v)

)
= (r̂OPT(x<t)− r∗(x<t)) ·

(
max
v∈V

qt(v) + α ·DTV(pt, qt)−max
v∈V

pt(v)

)
+ (r̂OPT(x<t)− r∗(x<t)) ·

(
Ext∼P(·|x<t) [`(xt, pt)]− 1 + max

v∈V
pt(v)

)
+ (r̂OPT(x<t)− r∗(x<t)) ·

(
1−max

v∈V
qt(v)− Ext∼P(·|x<t) [`(xt, qt)]

)
≤ (r̂OPT(x<t)− r∗(x<t)) ·

(
max
v∈V

qt(v) + α ·DTV(pt, qt)−max
v∈V

pt(v)

)
+ |r̂OPT(x<t)− r∗(x<t)| ·

∣∣∣∣Ext∼P(·|x<t) [`(xt, pt)]− 1 + max
v∈V

pt(v)

∣∣∣∣
+ |r̂OPT(x<t)− r∗(x<t)| ·

∣∣∣∣1−max
v∈V

qt(v)− Ext∼P(·|x<t) [`(xt, qt)]

∣∣∣∣
≤ (r̂OPT(x<t)− r∗(x<t)) ·

(
max
v∈V

qt(v) + α ·DTV(pt, qt)−max
v∈V

pt(v)

)
︸ ︷︷ ︸

term1

+

∣∣∣∣Ext∼P(·|x<t) [`(xt, pt)]− 1 + max
v∈V

pt(v)

∣∣∣∣︸ ︷︷ ︸
term2

+

∣∣∣∣1−max
v∈V

qt(v)− Ext∼P(·|x<t) [`(xt, qt)]

∣∣∣∣︸ ︷︷ ︸
term3

(19)

where we have used the fact that |r̂OPT(x<t)− r∗(x<t)| ≤ 1.

We bound each term separately. For the first term, consider two cases: (i) maxv∈V qt(v) + α ·
DTV(pt, qt) − maxv∈V pt(v) ≤ 0 and (ii) maxv∈V qt(v) + α · DTV(pt, qt) − maxv∈V pt(v) > 0.
When (i) holds, r̂OPT(x<t) = 1; so irrespective of whether r∗(x<t) is 0 or 1,

term1 ≤ max
v∈V

pt(v) + α ·DTV(pt, qt)−max
v∈V

qt(v) ≤ 0

When (ii) holds, r̂OPT(x<t) = 0; so irrespective of whether r∗(x<t) is 0 or 1,

term1 ≤ −
(

max
v∈V

pt(v) + α ·DTV(pt, qt)−max
v∈V

qt(v)

)
< 0.
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Thus we have:

term1 ≤ 0. (20)

We next move to the second term. Since ` = `0-1, we have:

term2 =

∣∣∣∣Ext∼P(·|x<t) [`(xt, pt)]− 1 + max
v∈V

pt(v)

∣∣∣∣
=

∣∣∣∣Ext∼P(·|x<t)

[
1

(
xt 6= arg max

v∈V
pt(v)

)]
− 1 + max

v∈V
pt(v)

∣∣∣∣
=

∣∣∣∣∣max
v∈V

pt(v)−
∑
xt∈V

P(xt|x<t) · 1
(
xt = arg max

v∈V
pt(v)

)∣∣∣∣∣
Let v∗ ∈ arg maxv∈V pt(v). Then:

term2 = |pt(v∗)− P(v∗|x<t)| ≤ max
v∈V
|pt(v)− P(v|x<t)| . (21)

Similarly, we can show that:

term3 ≤ max
v∈V
|qt(v)− P(v|x<t)| . (22)

Substituting (20)–(22) in (19) completes the proof.
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Inference strategy Deferral decision δ(q, p) Target distribution π(u) Execution

SpecDecoding Leviathan et al. (2023) - p(u) Speculative

Lossy SpecDecoding (Tran-Thien, 2023) - max{min{p(u), q(u)
1−α},

q(u)
β } Speculative

BiLD* (Kim et al., 2023) 1
(
D(q, p) > α

)
(1− δ) · q(u) + δ · p(u) Speculative

Cascade [Chow] (Chow, 1970) 1
(

maxv∈V q(v) < 1− α
)

(1− δ) · q(u) + δ · p(u) Sequential
Cascade [ChowLog] 1

(
entropy(q) > α

)
(1− δ) · q(u) + δ · p(u) Sequential

Oracle [Diff] (Jitkrittum et al., 2023) 1
(

maxv∈V q(v) < maxv∈V p(v)− α
)

(1− δ) · q(u) + δ · p(u) Oracle
Oracle [DiffLog] 1

(
entropy(p) < entropy(q)− α

)
(1− δ) · q(u) + δ · p(u) Oracle

SpecCascade [Chow] 1
(

maxv∈V q(v) < 1− α
)

(1− δ) · q(u) + δ · p(u) Speculative
SpecCascade [ChowLog] 1

(
entropy(q) > α

)
(1− δ) · q(u) + δ · p(u) Speculative

SpecCascade [Diff01] 1
(

maxv∈V q(v) < maxv∈V p(v)− α
)

(1− δ) · q(u) + δ · p(u) Speculative
SpecCascade [DiffLog] 1

(
entropy(p) < entropy(q)− α

)
(1− δ) · q(u) + δ · p(u) Speculative

SpecCascade [OPT01] 1
(

maxv∈V q(v) < maxv∈V p(v)− α ·DTV(p, q)
)

(1− δ) · q(u) + δ · p(u) Speculative
SpecCascade [OPTLog] 1

(
entropy(p) < entropy(q)− α ·DTV(p, q)

)
(1− δ) · q(u) + δ · p(u) Speculative

Table 3: Target distributions associated with different inference algorithms, where α is a free
parameter and β ≥ 1− α is a parameter dependent on q, p and α. The last column indicates whether
the execution is sequential (Algorithm 2), via an oracle (Algorithm 3), or speculative (Algorithm
5) (Leviathan et al., 2023). The third row presents a variant of the BiLD algorithm of Kim et al.
(2023), where D(q, p) is a measure of discrepancy between q and p; the original algorithm differs
from (Leviathan et al., 2023) in the use of a deterministic speculative decoding procedure with a
dynamic draft window (see §B).

B FURTHER RELATED WORK

Several works have studied improving the drafting process in speculative decoding; these include
having the drafter and verifier share their backbone (Stern et al., 2018; Kim et al., 2024; Cai et al.,
2024; Monea et al., 2023; Hooper et al., 2023; Zhang et al., 2023; Elhoushi et al., 2024; Liu et al.,
2024), using multiple small draft models (Chen et al., 2023c; Wang et al., 2024), using tree-structured
draft batches (Spector & Re, 2023; Miao et al., 2024), distilling the drafter with the verifier (Zhou
et al., 2024), and leveraging multiple sampled drafts (Sun et al., 2024; Chen et al., 2024).

The work that is most closely related to our specific proposal is the Big Little Decoder (BiLD) (Kim
et al., 2023), which can be seen as another lossy variant of speculative decoding (Leviathan et al.,
2023; Tran-Thien, 2023; Zhou et al., 2024). BiLD has two phases: a fallback phase, during which the
drafter q is run auto-regressively until its maximum predicted probability is sufficiently low; and a
rollback phase, during which the verifier p is run in parallel on the prefixes generated by q and rolls
back to the point where D(q, p) > α, for a metric D that measures discrepancy and threshold α. The
fallback phase implements Chow’s deferral rule in (2), and allows for the draft window size to vary
dynamically based on an estimate of how likely the draft tokens will be accepted; the rollback phase
can be seen as a deterministic variant of the rejection sampling algorithm of Leviathan et al. (2023).

An advantage of BiLD over the rejection sampling algorithm in (Leviathan et al., 2023) is the use
of Chow’s rule to vary the draft window size. However, the final target distribution it seeks to
mimic, TBiLD(q, p)(v) = 1(D(q, p) ≤ α) · q(v) + 1(D(q, p) > α) · p(v), is an approximation to p;
specifically, the target distribution π = TBiLD(q, p) is chosen to satisfy D(π, p) ≤ α. Hence, in cases
where q deviates substantially from p, BiLD would choose p as the target distribution, even when q
offers better quality on a prefix (where quality can be measured using a suitable loss function). In
contrast, our proposed approach in §4 uses speculative decoding to approximate target distributions
that seek to optimally cascade between q and p. In our experiments, we compare the efficacy of using
TBiLD as the target distribution with the target distributions we propose in this paper (see Table 3).
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C CONTRASTING SPECULATIVE CASCADES AND LOSSY SPECULATIVE
SAMPLING UNDER DIFFERENT SAMPLING SCHEMES

We contrast how speculative cascades and lossy speculative sampling behave under temperature
sampling, top-P sampling and greedy decoding.

C.1 SPECULATIVE CASCADES UNDER TEMPERATURE SAMPLING AND TOP-P SAMPLING

When implementing speculative cascades with temperature sampling and top-P sampling, we com-
pute the deferral rule on the original distributions p and q, but use the deferral decisions to interleave
the temperature-scaled (or top-P truncated) versions of p and q.

For the cascaded deferral rules in Table 1, with the exception of OPT, we construct the target
distribution in (6) as follows:

π̃t(v) = (1− δ(qt, pt)) · S(qt)(v) + δ(qt, pt) · S(p)(v), (23)

where S : ∆V → ∆V denotes a transformation of the distribution such as temperature scaling or
top-P truncation, and δ : ∆V ×∆V → {0, 1} denotes the deferral rule. One may run Algorithm 5
with π̃t as the target distribution, and S(qt) and S(pt) as the drafter and verifier distributions.

In the case of the OPT rule, we would formulate the constrained problem in (7) to use the TV distance
between the distributions S(qt) and S(pt) to measure the rejection rate. The optimal deferral rule in
Lemma 4 would now use DTV(S(pt),S(qt)) instead of DTV(pt, qt). To construct a plug-in estimator
to this optimal rule, we still prescribe using the unscaled probabilities qt and pt to estimate the
expected loss, giving us, for ` = `0-1:

δ(pt, qt) = 1 ⇐⇒ max
v

qt(v) < max
v

pt(v)− α ·DTV(S(pt),S(qt)).

For the token-specific deferral rules in §5, we compute the target distribution in (16) as follows:

πToken(v) = S(qt)(v) · (1− r(x<t, v)) + S(pt)(v) · η,
where the deferral rule r(x<t, v

′) is computed on unscaled distributions qt and pt, and η =∑
v′∈V r(x<t, v

′) · S(qt)(v
′) is a normalizing term. For example, for the TokenV3 deferral rule

in (15), we compute the target distribution as:

π(v) = S(qt)(v) · 1
(
v ∈ Tα

)
+ S(pt)(v) ·

∑
v′ /∈Tα

S(qt)(v
′),

where Tα = {v ∈ V : pt(v) ≥ maxv′ pt(v
′) · (1−α)} is the set of top-ranked tokens by the original

(unscaled) distribution pt.

C.2 CONTRASTING WITH LOSSY SPECULATIVE SAMPLING UNDER TEMPERATURE SAMPLING

When implementing lossy speculative decoding under temperature sampling, following Leviathan
et al. (2023); Zhou et al. (2024); Tran-Thien (2023), we compute the acceptance criterion and the
residual distribution using temperature-scaled drafter and verifier distributions. Specifically, we
accept a draft token v with probability:

min

{
1,

S(pt)(v)

(1− α) · S(qt)(v)

}
.

Upon rejection, we replace the token by a new token sampled from a residual distribution again
constructed from temperature-scaled distributions:

norm

(
max

{
0,

1

β
· S(pt)(·)− S(qt)(·)

})
,

where β ≥ 1− α is a parameter that depends on α, qt and pt, and is such that
∑
v∈V πLossy(v) = 1.

The resulting target distribution that the method samples from takes the form:

πLossy(v) = max

{
min

{
S(qt)(v),

S(pt)(v)

1− α

}
,
S(pt)(v)

β

}
.
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This choice of target distribution may severely limit the range of cost-quality trade-offs that can be
achieved by varying α and β. For example, observe that

S(pt)(v) = 0 =⇒ πLossy(v) = 0,

and so the the trade-off parameters α and β are not effective on tokens for which S(pt)(v) = 0.

This problem is exacerbated when sampling with temperature 0 (i.e., greedy decoding) where
πLossy(v) becomes identical to pt, making α and β irrelevant.

Lemma 6. When sampling with temperature 0 (i.e., greedy decoding), πLossy(v) = S0(pt).

Proof. Applying temperature sampling with temperature 0 to a distribution p is equivalent to sampling
from a transformed distribution S0(p), where S0(p) assigns a probability of 1 to arg maxv p(v). When
S0(pt)(v) = 0, we have that:

πLossy(v) = max {min {S0(qt)(v), 0} , 0} = 0.

Since
∑
v πLossy(v) = 1, it turns out that: πLossy(v) = 1 whenever S0(pt)(v) = 1. Thus:

πLossy(v) = S0(pt).

In contrast, because both our cascaded deferral rule and the token-specific deferral rules work with
unscaled distributions, they provide meaningful trade-offs under temperature sampling, including
when sampling with temperature 0.

C.3 CONTRASTING WITH LOSSY SPECULATIVE SAMPLING UNDER TOP-P SAMPLING

When implementing lossy speculative sampling under top-P sampling, we accept a draft token v
with probability:

min

{
1,

SP (pt)(v)

(1− α) · SP (qt)(v)

}
,

where SP (p) truncates the distribution p to only retain the top-P fraction of tokens (i.e. smallest
subset of tokens whose cumulative probability exceeds P ).

Notice that as P gets smaller, SP (p) assigns zero probabilities to a majority of tokens. As a result for
most draft token candidates v, the above criterion evaluates to 0, and the trade-off parameter α has
no effect on those tokens. Hence as P → 0, the trade-off parameter α becomes vacuous, and thus
lossy speculative decoding fails to offer meaningful trade-offs. In fact, mirroring Lemma 6, lossy
speculative decoding becomes identical to standard loss-less speculative decoding when P → 0.

A speculative cascade does not suffer from the same issue as it uses the trade-off parameter α not
as a scaling parameter in the acceptance criterion, but to construct a new target distribution that is
amenable to a higher acceptance rate even under top-P sampling. For example, with the TokenV3
deferral rule in (15), a draft token v is accepted with probability:

min

{
1,

SP (πt(v))

SP (qt(v))

}
,

where πt is a new target distribution defined using the trade-off parameter α that interleaves between
pt and qt as follows:

πt(v) = SP (qt)(v) · 1
(
v ∈ Tα

)
+ SP (pt)(v) ·

∑
v′ /∈Tα

SP (qt)(v
′),

where Tα = {v ∈ V : pt(v) ≥ maxv′ pt(v
′) · (1−α)} is the set of top ranked tokens by the original

untruncated distribution pt(·). Since the top-ranked tokens Tα are computed using the untruncated
distribution, varying the trade-off parameter α still produces meaningful cost-quality trade-offs when
speculatively sampling from πt(v).
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Table 4: Acceptance criterion for different speculative inference strategies under non-greedy and
greedy decoding. Rows 2 and 3 indicates that under 0 temperature, speculative cascade with the
TokenV3 deferral rule has an identical acceptance criterion as SpecDecode [Lossy, Greedy]; see
Lemma 7.

Method Ref. Acceptance Criterion

T > 0 T = 0

SpecDecode [Lossy] Leviathan et al. (2023) min
{

1, S(p(v))
(1−α)·S(q(v))

}
1(v = arg maxv′ p(v

′))

SpecDecode [Lossy, Greedy] Leviathan et al. (2023) - p(v) ≥ (1− α) ·maxv′ p(v
′)

SpecCascade [TokenV3] This paper min
{

1, S(π(v))
S(q(v))

}
, where π is in (16) p(v) ≥ (1− α) ·maxv′ p(v

′)

C.4 LOSSY SPECULATIVE GREEDY DECODING VARIANT BY LEVIATHAN ET AL. (2023)

For the special case of greedy decoding, Leviathan et al. (2023) propose an alternate lossy variant of
speculative decoding (Appendix A.5 in their paper), where a draft token v is accepted deterministically
whenever pt(v) ≥ (1− α) ·maxv′ pt(v

′); when the token is rejected, it is replaced with a new token
sampled from pt(·). We will refer to this variant as SpecDecode [Lossy, Greedy].

We now show that the proposed speculative cascades with the TokenV3 deferral rule (15) is identical
to SpecDecode [Lossy, Greedy] when sampling with temperature 0.
Lemma 7. For any fixed trade-off parameter α ∈ [0, 1], SpecCascade [TokenV3] is identical to
SpecDecode [Lossy, Greedy] when sampling with temperature 0.

Proof. Let S0(p) denote a temperature-scaled one-hot version of distribution p which places all its
mass on the mode of p. Let p̃t = S0(pt) and q̃t = S0(qt). With the TokenV3 rule, the acceptance
criterion is computed against the target distribution in (16) with trade-off parameter α.

πt(v) = q̃t(v) · 1
(
v ∈ Tα

)
+ p̃t(v) ·

∑
v′ /∈Tα

q̃t(v
′),

where Tα = {v ∈ V : pt(v) ≥ maxv′ pt(v
′) · (1−α)} is the set of top ranked tokens by the original

(unscaled) distribution pt(·).

Under greedy decoding, the draft token is given by v∗ = arg maxv′ qt(v). We consider two cases: (i)
v∗ ∈ Tα and (ii) v∗ /∈ Tα.

In the first case, we have πt(v∗) = q̃t(v
∗). As a result, a draft token v is accepted with probability:

min

{
1,

S0(q̃t(v
∗))

S0(qt(v∗))

}
= min

{
1,
q̃t(v

∗)

q̃t(v∗)

}
= 1.

In the second case, it is clear that the draft token v∗ is not the maximizer of pt(·). Furthermore,
πt(v

∗) = p̃t(v
∗). As a result, the draft token v∗ is rejected since the acceptance probability for the

token becomes:

min

{
1,

S0(p̃t(v
∗))

S0(qt(v∗))

}
= min

{
1,
p̃t(v

∗)

q̃t(v∗)

}
= min

{
1,

0

q̃t(v∗)

}
= 0.

It is then replaced with a token sampled from:

norm (max {0,S0(p̃t(·))− S0(qt(·))}) = norm (max {0, p̃t(·)− q̃t(·)}) = norm (p̃t(·)) = p̃t(·),

which would produce the token maximizing pt(·).
In both cases, the sampling procedure is identical to that of SpecDecode [Lossy, Greedy].

Table 4 summarizes the acceptance criteria for different speculative inference strategies under
temperature sampling and what they reduce to under greedy decoding.
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D OPTIMAL DEFERRAL: ADDITIONAL DISCUSSION

We provide additional discussion for the deferral rules derived in §3 and §4.

D.1 DERIVATION OF CHOW’S RULE

We show below that Chow’s rule is a plug-in estimator to the optimal solution to the following
objective

Lrej(r;x<t) = Ext∼P(·|x<t)

[(
1− r(x<t)

)
· `(xt, qt) + r(x<t) · α

]
, (24)

where the deferral rule is penalized with a constant penalty α ∈ [0, 1] for choosing to defer to the
large model.

Following the same steps as Lemma 1, it is easy to show:

Lemma 8. The minimizer of (24) is of the form:

r∗(x<t) = 1 ⇐⇒ Ext∼P(·|x<t) [`(xt, qt)] > α. (25)

If ` = `0-1, one may employ a plug-in estimator to (25) by replacing the expected 0-1 loss on qt with
1−maxv∈V qt(v), giving us r̂Chow(x<t) in (2). If ` = `log, one may replace the expected log loss on
qt with the entropy of qt, giving us:

r̂ChowLog(x<t) = 1 ⇐⇒ entropy
(
q(·|x<t)

)
> α, (26)

where entropy(q) = −
∑
v∈V q(v) · log(q(v)).

D.2 OPTIMAL SEQUENTIAL DEFERRAL WHEN ` = `log

Recall that the optimal deferral rule for a sequential cascade in Lemma 1 takes the form:

r∗(x<t) = 1 ⇐⇒ Ext∼P(·|x<t) [`(xt, qt)] > Ext∼P(·|x<t) [`(xt, pt)] + α.

When ` = `log, we may use the entropy −
∑
v∈V qt(v) · log(qt(v)) from qt as an estimate of its

expected log-loss, and similarly for pt, giving us the plug-in estimator:

r̂DiffLog(x<t) = 1 ⇐⇒
∑
v∈V qt(v) · log(qt(v)) <

∑
v∈V pt(v) · log(pt(v))− α. (27)

D.3 OPTIMAL SPECULATIVE DEFERRAL WHEN ` = `log

Recall that the optimal deferral rule for a speculative cascade in Lemma 4 takes the form:

r∗(x<t) = 1 ⇐⇒ Ext∼P(·|x<t) [`(xt, qt)] > Ext∼P(·|x<t) [`(xt, pt)] + α ·DTV(pt, qt).

When ` = `log, one may construct a plug-in estimator for the above rule by replacing the expected
log loss with the entropy from the distribution:

r̂OPTLog(x<t) = 1 ⇐⇒
∑
v∈V qt(v) · log(qt(v)) <

∑
v∈V pt(v) · log(pt(v))− α ·DTV(pt, qt).

(28)

Lemma 9 (Regret bound for r̂OPTLog). Suppose ` = `log. Suppose for a fixed x<t, | log(qt(v))| ≤ Bq
and | log(pt(v))| ≤ Bp, ∀v ∈ V, for some Bq, Bp > 0. Then:

Lspec(rOPT;x<t)−min
r
Lspec(r;x<t) ≤ Bq·

∑
v∈V

∣∣P(v|x<t)−qt(v)
∣∣+Bp·

∑
v∈V

∣∣P(v|x<t)−pt(v)
∣∣.

Proof. The proof follows similar steps to that for Lemma 5, except in bounding the resulting term2

and term3 for the log loss. In this case,

term2 =

∣∣∣∣∣Ext∼P(·|x<t) [log(pt(xt))]−
∑
v∈V

pt(v) · log(pt(v))

∣∣∣∣∣
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=

∣∣∣∣∣∑
v∈V

P(v|x<t) · log(pt(v))−
∑
v∈V

pt(v) · log(pt(v))

∣∣∣∣∣
≤
∑
v∈V

∣∣∣∣∣P(v|x<t)−
∑
v∈V

pt(v)

∣∣∣∣∣ · log(pt(v))

≤ Bp ·
∑
v∈V

∣∣∣∣∣P(v|x<t)−
∑
v∈V

pt(v)

∣∣∣∣∣ .
Similarly,

term3 ≤
∑
v∈V

∣∣∣∣∣P(v|x<t)−
∑
v∈V

qt(v)

∣∣∣∣∣ · log(qt(v))

≤ Bq ·
∑
v∈V

∣∣∣∣∣P(v|x<t)−
∑
v∈V

qt(v)

∣∣∣∣∣ .
Plugging these bounds into the equivalent of (19) in Lemma 5 for the log-loss completes the proof.

D.4 OPTIMAL SPECULATIVE DEFERRAL FOR GREEDY DECODING

When applying speculative cascades with greedy decoding, we shall see that both the optimal deferral
rule OPT (10) is equivalent to the Diff deferral rule (5).

As detailed in §C.1, when implementing a speculative cascade with temperature-scaled distributions
q̃t(v) ∝ qt(v)1/T and p̃t(v) ∝ pt(v)1/T respectively, for a temperature parameter T > 0, the Diff
and OPT deferral rules are computed as:

r̂Diff(x<t) = 1 ⇐⇒ maxv qt(v) < maxv pt(v)− α,
and

r̃OPT(x<t) = 1 ⇐⇒ maxv qt(v) < maxv pt(v)− α ·DTV(p̃t, q̃t).

One may run Algorithm 5 with either rDiff or r̂OPT as the deferral rule, and the temperature-scaled q̃t
as the drafter distribution and p̃t as the verifier distribution.
Lemma 10. When T → 0, running Algorithm 5 with r̃OPT as the deferral rule and q̃t and p̃t as the
drafter and verifier distributions, is equivalent to running it with r̂Diff as the deferral rule and q̃t and
p̃t as the drafter and verifier distributions.

Proof. When T → 0, note that q̃t and p̃t are one-hot encodings of arg maxv∈V qt(v) and
arg maxv∈V pt(v) respectively. As a result,

DTV(q̃t, p̃t) = 1

(
arg max
v∈V

qt(v) 6= arg max
v∈V

pt(v)

)
.

When running Algorithm 5 with r̃OPT as the deferral rule, we will accept a draft token v with
probability:

κOPT(v) = min

{
1,

(1− δOPT(qt, pt)) · q̃t(v) + δOPT(qt, pt) · p̃t(v)

q̃t(v)

}
,

where

δOPT(q, p) = 1

(
max
v∈V

q(v) < max
v∈V

p(v)− α · 1
(

arg max
v∈V

q(v) 6= arg max
v∈V

p(v)

))
.

When running Algorithm 5 with r̃Diff as the deferral rule, we will accept a draft token v with
probability:

κDiff(v) = min

{
1,

(1− δDiff(qt, pt)) · q̃t(v) + δDiff(qt, pt) · p̃t(v)

q̃t(v)

}
,
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where

δDiff(q, p) = 1

(
max
v∈V

q(v) < max
v∈V

p(v)− α
)
.

We consider two cases:

(i) If arg maxv∈V qt(v) = arg maxv∈V pt(v), then q̃t = p̃t, and irrespective of the outcome of
δOPT(qt, pt) or δDiff(qt, pt),we have that κOPT(v) = κDiff(v). Furthermore, the token gets accepted
in both cases.

(ii) If arg maxv∈V qt(v) 6= arg maxv∈V pt(v), then

κOPT(v) = 1− δOPT(qt, pt) = 1

(
max
v∈V

q(v) ≥ max
v∈V

p(v)− α
)

= 1− δDiff(q, p) = κDiff(v).

In this case, when the draft token gets rejected, with deferral rule r̃OPT, we will sample a new token
from the residual distribution:

pOPT(v) ∝ min{0, (1− δOPT(qt, pt)) · q̃t(v) + δOPT(qt, pt) · p̃t(v)− q̃t(v)}
= δOPT(qt, pt) ·min{0, p̃t(v)− q̃t(v)}

When a token gets rejected with deferral rule r̃Diff , we will sample a new token from the residual
distribution:

pDiff(v) ∝ δDiff(qt, pt) ·min{0, p̃t(v)− q̃t(v)}.

Since arg maxv∈V qt(v) 6= arg maxv∈V pt(v),

pOPT(v) ∝ δOPT(qt, pt) ·min{0, p̃t(v)− q̃t(v)} = δDiff(qt, pt) ·min{0, p̃t(v)− q̃t(v)} ∝ pDiff(v).

Thus both the acceptance probability and the residual distributions for r̂OPT are the same as the one
we would have used had we run Algorithm 5 with r̂Diff as the deferral rule.

D.5 EQUIVALENCE BETWEEN (7) AND (8)

Since the prefix x<t is fixed in (7), the constrained optimization we seek to solve is of essentially of
the following form:

min
r∈{0,1}

(1− r) · c0 + r · c1 s.t. r · c2 ≤ B,

for some coefficients c0, c1, c2 > 0. Since r is a binary variable, we may formulate an equivalent
unconstrained problem with the same minimizer:

min
r∈{0,1}

(1− r) · c0 + r · c1 + α · r · c2,

where we choose α = 0 when c2 ≤ B and choose an α > 1
c2
·(c0−c1) otherwise. This unconstrained

optimization problem is of the form in (8).
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E TOKEN-SPECIFIC SPECULATIVE CASCADE

We provide a modification of Algorithm 5 to accommodate the token-specific deferral rules in §5.

Algorithm 6 TokenSpecCascade

Input: Models q, p, Token-specific deferral rule r, Prefix x<t, Block size γ
TToken(q, p)(v)

.
= q(v) · (1− r(x<t, v)) + p(v) ·

∑
v′∈V r(x<t, v

′) · q(v′)
Output: GenSpecSample(q, p,TToken, x<t, γ)

Optimal token-specific deferral. Similar to §4.3, we may consider deriving the optimal token-
specific deferral rule. We start by formulating a similar optimization objective as §4.3. For a fixed
prefix x<t, this would look like:

min
r

Ev∼P(·|x<t)

[
`(v, πToken)

)]
(29)

s.t. DTV(πToken, qt) ≤ B,

where πToken(v)
.
= (1 − r(x<t, v)) · qt(v) + η · pt(v) is the target distribution resulting from the

choice of r, η =
∑
v′∈V r(x<t, v

′) · qt(v′) is a normalization term, and B > 0 is a budget parameter.

However, unlike §4.3, the above constrained optimization problem does not directly lend itself to
a simple closed-form solution. In some highly simplistic special cases, we may be able to derive a
trivial solution. For example, suppose ` = `0-1, and the mode of qt coincides with that of P(·|x<t),
i.e., arg maxv∈V qt(v) = arg maxv∈V P(v|x<t); then the optimal token-specific rule is given by
r(x<t, v) = 0, for all v ∈ V.

Under more realistic cases, we may not be able to derive a solution as simple as the OPT rule in (10).
Therefore, in our experiments, we employ the three heuristic rules in equations 13–15, which are
motivated by the form of the simpler Diff rule in (5).
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Figure 4: Plots of quality vs. latency for T5 models with temperatures T = 0.5 and T = 1, and
block size γ = 5. Each method interleaves T5-small with T5-large. We include speculative cascades
with the Chow, Diff, OPT and TokenV3 (referred to as Token) deferral rules, and compare it with three
baselines: SpecDecode [Lossy], TokenCascade [Chow] and BiLD∗. The x-axis tracks the latency
relative to that of calling the large model on all inputs. The horizontal dotted line denotes the quality
of the large model.

F ADDITIONAL EXPERIMENTAL DETAILS

We provide additional details about our experimental setup and additional experimental results.

F.1 EXPERIMENTAL SETUP AND HYPER-PARAMETERS

We first elaborate on our experimental setup and the hyper-parameters used.

T5 datasets. For the WMT English to German translation task (Bojar et al., 2014), we use a
validation sample of size 3,000 provided with the dataset. We set the maximum input length to 80
and the maximum output length to 80. For the Extreme Summarization (XSum) task (Narayan et al.,
2018), we use a validation sample of size 11,305, and set the maximum input length to 1,024 and
the maximum output length to 64. For the CNN/Daily Mail summarization task (Hermann et al.,
2015), we use a validation sample of size 13368, and set the maximum input length to 2,048 and the
maximum output length to 128. Following (Zhou et al., 2024), we use ROUGE-2 as the evaluation
metric for the summarization tasks.

We note that Kim et al. (2023) report ROUGE-L metrics for CNN/DM, which generally tend to
evaluate to higher values than ROUGE-2. Furthermore, most of their experimental results are with
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Figure 5: Plots of quality vs. latency for T5 models with greedy decoding (T = 0) with block size
γ = 5. Each method interleaves T5-small with T5-large. The x-axis tracks the latency relative to that
of calling the large model on all inputs. The horizontal dotted line denotes the quality of the large
model. SpecDecode [Lossy, Greedy] is the greedy version of lossy speculative decoding proposed
in Leviathan et al. (2023). SpecCascade [Token] uses the TokenV3 deferral rule in (15). As noted in
§C.4, when T → 0, SpecDecode [TokenV3] is identical to SpecDecode [Lossy, Greedy].

greedy decoding (T = 0), and hence, the ROUGE-L evaluation metrics they report in their paper tend
to be higher for the same T5 models when compared to our numbers for ROUGE-2 with temperature
sampling.

Gemma datasets. In addition to the WMT EN→DE translation and the CNN/DM summarization
datasets, we use the GSM8K (Cobbe et al., 2021) math reasoning dataset, the MBPP (Austin
et al., 2021) Python programming dataset, and four question-answering datasets: Natural Questions
(Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), WebQuestions (Berant et al., 2013) and
the Stanford Question-Answering Dataset (SQuAD) 2.0 (Rajpurkar et al., 2016). In each case, we
sample 1,000 prompts for evaluation. We employ few-shot inference, and set the maximum output
length to 80 for WMT, to 128 for CNN/DM, to 320 for GSM8K and MBPP, and to 5 for all the
question-answering datasets.

Models. We construct cascades from T5 v1.1 family of encoder-decoder models (Raffel et al., 2020),
of different sizes T5-small (77M), T5-base (250M), T5-large (800M) and T5-XL (3B).2 We follow
the protocol in (Zhou et al., 2024): we initialize with the public checkpoints, pre-train them further
for 100K steps, and supervise finetune the pre-trained models on the three respective tasks. We
finetune them for a maximum of 250K steps on WMT, a maximum of 100K steps on XSum and a
maximum of 200K steps on CNNDM.

We construct the Gemma cascades from instruction-tuned decoder-only v2 models. For MBPP alone
we additionally experiment with pre-trained models. We use a 2B drafter, and either a 9B verifier or
a 27B verifier (Team et al., 2024).

Run-time evaluation. For each dataset, we evaluate the quality metrics on the entire validation set.
For the run-time analysis in the T5 experiments, we adopt the protocol followed in Leviathan et al.
(2023); Zhou et al. (2024). We randomly sample 500 examples from the validation set, and calculate
the wall-clock time taken for decoding with a batch size of 1. We repeat this for three trials and report
the average running time. All methods are run on the same TPUv4 device.

2The pre-trained checkpoints we use are available here.
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Figure 6: Plots of quality vs. latency for T5 models with varying temperatures. Each method
interleaves T5-small with T5-large. The x-axis tracks the latency relative to that of calling the
large model on all inputs. The horizontal dotted line denotes the quality of the large model. As the
temperature decreases, SpecDecode [Lossy] produces fewer unique trade-off points as its acceptance
criterion is less susceptible to changes in the trade-off parameter α. In contrast, SpecCascade
[Token], which uses the TokenV3 deferral rule, offers a wider range of trade-off points; here the
trade-off parameter is not used to construct a traded-off target distribution, and does not feature as a
scaling term in the acceptance criterion.

T5 hyper-parameters. For the T5 experiments, unless otherwise specified, we set the block-size γ
to 5 for all methods that use speculative execution. For the token-level cascades, we allow the small
model to predict for a maximum of 10 tokens (similar to (Kim et al., 2023)), before invoking the
large model. This was needed, as otherwise, the small model would predict a long sequence, and
when it eventually defers to the large model, the large model is bottle-necked by the pre-filling of the
long prefix accumulated by the small model. We vary the trade-off parameter α to vary the latency
and plot quality as a function of latency.

Gemma inference. When implementing speculative cascades and speculative decoding with Gemma
models, we use block-size γ = 1. In this case, for each prefix x<t, we have the drafter generate one
draft token xt for the next step. We then invoke the verifier with the same prefix, and either accept
the draft token xt, or reject and replace it with the verifier’s prediction. We repeat this process to
generate the entire response.

BiLD baseline. For the BiLD method, we adopt the same discrepancy metric D as (Kim et al., 2023)
for greedy decoding:

D(q, p) = − log

(
p

(
arg max
v∈V

q(v)

))
,
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Figure 7: Plots of quality vs. latency for T5 models under Top-P sampling with varying values of
P . Each method interleaves T5-small with T5-large. The x-axis tracks the latency relative to that of
calling the large model on all inputs. The horizontal dotted line denotes the quality of the large model.
As P becomes smaller, SpecDecode [Lossy] is able to produce fewer unique trade-off points as the
scaling by the trade-off parameter α is less effective in its acceptance criterion (§C.3). SpecCascade
[Token], which uses the TokenV3 deferral rule in (15), does not suffer from the same issue; here the
trade-off parameter does not feature as a scaling term in the acceptance criterion.

and pick the value of the threshold α on this metric from the range [0, 10]. For temperature sampling
with a non-zero temperature, we use the following natural analogue to the above D:

D(q, p) = −Ev∼q [log(p(v))] = −
∑
v∈V

q(v) · log(p(v)).

In §F.5, we present comparisons between different implementations of this method.

Lossy speculative decoding. See §F.6 for details.

F.2 COMPARISONS UNDER VARYING TEMPERATURES AND GREEDY DECODING

In Figures 5 and 6, we provide additional plots of quality vs. latency for different inference strategies
under greedy decoding (T = 0) and temperature sampling (T = 0.1, 0.5, 1.0) respectively.

As expected, we see from the greedy decoding results in Figure 5 that all methods yield better quality
metrics compared to their performance under temperature sampling. In this case, the proposed
SpecCascade [TokenV3] is equivalent to the lossy variant of speculative decoding proposed by
Leviathan et al. (2023) for greedy decoding, which we refer to as SpecDecode [Lossy, Greedy].
See §C.4 for the discussion of this equivalence. Similarly, as noted in §D.4, with greedy decoding,
the OPT deferral rule coincides with the Diff deferral rule.

In the temperature sampling results in Figure 6, we compare the lossy speculative sampling proposed
by Leviathan et al. (2023) for temperature sampling (SpecDecode [Lossy]) with two of our proposed
methods: speculative cascades with the OPT and TokenV3 (referred to as Token) deferral rules. We can
see that SpecCascade [Lossy] generates fewer unique trade-off points as temperature T gets smaller.
As noted in §C.1, this is because its acceptance criterion is less susceptible to changes in trade-off
parameter α when S(pt) is peaked. In contrast, our proposed SpecCascade [Token] approach yields
a wider range of trade-off points; here the trade-off parameter is not used to construct a traded-off
target distribution, and does not feature as a scaling term in the acceptance criterion.

The reason the Token-specific rule fares better than OPT is because the latter computes its deferral
decisions based on which of qt(·) and pt(·) is more peaked; this can be a disadvantage when the
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Table 5: Reduction in latency (T = 1, γ = 5) when matching the quality of the large model, and the
best quality metric without exceeding the latency of the large model. We use T5-small and T5-large
as the small and large models respectively. Quality is measured in terms of the BLEU for WMT
and ROUGE-2 for CNNDM. We apply Top-P sampling with varying values of P . The proposed
SpecCascade [Token] method uses the TokenV3 deferral rule in (15).

Latency↓ when matching large model’s quality Best quality without exceeding large model’s latency

P = 0.1 P = 0.5 P = 0.8 P = 0.1 P = 0.5 P = 0.8

Method WMT CNNDM WMT CNNDM WMT CNNDM WMT CNNDM WMT CNNDM WMT CNNDM
SpecDecode [Lossy] 1.55× 1.48× 1.64× 1.63× 1.69× 1.75× 27.35 15.72 27.10 15.27 23.98 13.61
SpecCascade [Token] 1.74× 1.61× 1.73× 1.65× 1.71× 1.79× 27.49 15.79 27.30 15.46 25.64 14.38

sampled token is not be close the distribution mode, which is likely to happen with higher temperatures.
With lower temperatures, however, the sampled token is likely to be close the distribution mode, and
as a result, the advantage that the Token-specific rule has over OPT diminishes.

F.3 COMPARISONS UNDER TOP-P SAMPLING

We compare speculative cascades with the TokenV3 deferral rule (SpecCascade [Token]) with
SpecDecode [Lossy] under top-P sampling. As discussed in §C.3, when implementing SpecCascade
[Token], the TokenV3 deferral rule in (15) is applied to the original drafter and verifier distributions;
we use the deferral decision to then interleave top-P truncated versions of these distributions. In
Table 5, we report the results of our evaluation for varying P , while fixing the temperature T = 1
and γ = 5.

It is for the smallest value of P that our proposal offers the largest gains in speed-up over SpecDecode
[Lossy]. Unsurprisingly, the smaller the value of P , the better are the quality metrics, with both
methods being almost quality neutral for P = 0.1.

As we elaborate in §C.3, as P becomes smaller, the trade-off parameter α in lossy speculative
sampling becomes less effective, with the method becoming identical to standard loss-less speculative
decoding when P → 0. In contrast, our proposed SpecCascade [Token] approach does not suffer
from the same issue as it uses the trade-off parameter α not as a scaling parameter in the acceptance
criterion, but to construct a new target distribution that is amenable to a higher acceptance rate even
under top-P sampling. Therefore we are able to tune α to get a wider range of operating points and
match the quality of the larger model at a lower latency.

For example, in Figure 7, lossy speculative decoding with P = 0.1 is able to offer only three unique
trade-off points (despite sweeping through a fine-grained grid on α from 10−6 to 1); in contrast
SpecCascade [Token] is able to offer a wider range of trade-off points.

F.4 COMPARISONS UNDER DIFFERENT BLOCK SIZES γ

In Figure 8, we present latency-quality trade-off plots for T5 cascades under different block sizes γ.
In each case, we find that the proposed speculative cascading techniques outperform lossy speculative
decoding across different latency values. Furthermore, higher values of γ are seen to yield a wider
range of trade-offs, with lower quality operating points shifting to the left, and better quality operating
points shifting to the right. For example, with XSum, SpecDecode [Lossy] with γ = 3 matches the
small model’s quality at 0.64 relative latency, and matches the large model’s quality at 0.85 relative
latency; with γ = 7, it matches the small model’s quality at an even lower latency, but practically
provides no speed-up when matching the larger model’s quality. The reason a larger block size can
hurt speed-up at the higher quality regime is because it can result in frequent rollbacks, thus defeating
the purpose of using speculative execution.

F.5 BIG LITTLE DECODER (BILD) VARIANTS

In our experiments in the main text (§6), we compared against a version of the Big Little Decoder
method (Kim et al., 2023) that applied Algorithm 4 to the target distribution TBiLD the authors seek
to mimic (§B). We now show that this version performs similarly to the original BiLD algorithm in
(Kim et al., 2023).
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Figure 8: Plots of quality vs. latency for T5 models with with varying block sizes γ. Each method
interleaves T5-small with T5-large. The x-axis tracks the latency relative to that of calling the large
model on all inputs. The horizontal dotted line denotes the quality of the large model.

A key difference to the original algorithm in (Kim et al., 2023) is the use of the fallback phase, where
the drafter is run until its maximum predicted probability maxv∈V q(v) < 1− αf , for a threshold
αf ∈ [0, 1] (or until a maximum block size of 10 is reached), and the use of a deterministic rollback
policy where the verifier rejects a draft token whenever D(q, p) > α. In our implementation, we
adopt the speculative sampling algorithm from (Leviathan et al., 2023): we do not have the fallback
policy and replace the determinisic rollback policy with the rejection sampling in Algorithm 4.

Figure 9 (top) compares the original version of BiLD with the version we use in §6. We interleave
between a T5-small and T5-large model on WMT, using greedy decoding (T = 0) for inference. As
prescribed by the authors (Kim et al., 2023), we use the following discrepancy metric for greedy
decoding:

D(q, p) = log p

(
arg max
v∈V

q(v)

)
.

We compare our implementation (BiLD∗), where we set the block size to 5 (same as our proposed
speculative cascading approaches), with the original BiLD for different choices of maximum block
size γ and different fallback thresholds αf . For both methods, we vary the threshold α on D(q, p) to
vary the latency and plot the resulting BLEU score.

A higher fallback threshold αf results in larger draft generation windows; this gives an advantage
in the low latency regime, where most of the draft tokens are accepted. As a result, BiLD [γ =
10, α = 0.9] yields the lowest latencies, but also yields lower quality. A low fallback threshold results
in very small draft generation windows, and consequently, in higher latencies. This is why BiLD
[γ = 5, α = 0.1] is the slowest but yields high quality metrics.

Our implementation BiLD∗ is seen to perform comparable to the best parameter choices for the
original BiLD algorithm in Figure 9.
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Figure 9: Top: Plots of quality vs. latency comparing BiLD∗ with the original BiLD algorithm
in Kim et al. (2023) with varying maximum draft window size γ and fallback confidence threshold
αf . Bottom: Comparison of lossy speculative decoding with β = 1 [Lossy] and β tuned using the
procedure in (Tran-Thien, 2023) [Lossy?].
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Figure 10: Plots of quality vs. latency for T5 models with all three token-specific speculative
cascade deferral rules in equations 13–15. Each method interleaves a T5 small and a T5 large
model. The x-axis tracks the latency relative to that of calling the large model on all inputs. The
horizontal dotted line denotes the quality of the large model.

It is worth noting that while we view TBiLD as the target distribution that the algorithm in (Kim
et al., 2023) seeks to mimic, the presence of the fallback phase could mean that on some inputs a
output response is generated without the verification (or rollback) phase being invoked. In such cases,
the output response will come solely from drafter if it turns out that it contains tokens for which
D(qt, pt) > α.
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Figure 11: Plots of quality vs. rejection rate for Gemma models with all three token-specific
speculative cascade deferral rules in equations 13–15. Each method interleaves a Gemma 2B
drafter with a Gemma 27B verifier. The horizontal dotted line denotes the quality of the large model.
We include all three token-specific speculative cascade deferral rules in equations 13–15.

F.6 LOSSY SPECULATIVE DECODING VARIANTS

In our experiments in the main text (§6), we compared against the lossy speculative decoding (Tran-
Thien, 2023; Zhou et al., 2024) described in §2, with the parameter β set to 1. We now present
results for this method with β tuned according to the procedure in Tran-Thien (2023), and show that
choosing β = 1 fares at least as well as tuning β.

The goal in Tran-Thien (2023) is to choose α and β so as to maximize the acceptance rate for the
draft token, while ensuring that the KL divergence between the resulting target distribution and p
is within an allowable limit R. The authors prescribe specifying R, and for each prefix, tuning α
and β to solve the resulting constrained optimization problem. To be consistent with the rest of
our experimental setup, we vary α to vary the draft acceptance rate (note that each choice of α
corresponds to a particular KL divergence to p), and tune β ≥ 1−α to satisfy the following condition
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Figure 12: Plots of quality vs. rejection rate with Gemma 2B → 9B speculative cascades. Each
method interleaves a Gemma 2B drafter with a Gemma 9B verifier. The horizontal dotted line denotes
the quality of the large model. We include all three token-specific speculative cascade deferral
rules in equations 13–15.

outlined in Tran-Thien (2023):∑
v∈V

max

{
0, q(v)− p(v)

1− α

}
=
∑
v∈V

max

{
0,
p(v)

β
− q(v)

}

We pick β using a grid-search over 1000 values between α and 10.

Since this tuning procedure, in turn, can add to the method’s latency, for a fair comparison, we plot
quality as a function of the fraction of calls to the large model (rejection rate), instead of relative
latency. In Figure 9 (bottom), we plot these trade-off curves for loss speculative decoding with β = 1
(Lossy) and for speculative decoding with β tuned using the above procedure (Lossy?). We compare
performances on WMT and XSum, and in each case, interleave a T5-small model with a T5-large
model.

In both cases, setting β = 1 provides trade-offs comparable to or better than using a tuned value
of β. The reason using a tuned value of β fares worse than setting β = 1 might be because we are
measuring quality in terms of BLEU or ROUGE-2, which is different from the KL divergence to p
objective that the tuning procedure in Tran-Thien (2023) seeks to optimize.

F.7 TOKEN-SPECIFIC DEFERRAL RULE VARIANTS

In Figure 10, we present latency-quality trade-off plots for cascades constructed from a T5-small
and a T5-large model. We include in these comparisons, all three token-specific deferral rules in
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(13)–(15). In Figure 11, we present trade-off plots for cascades constructed from Gemma 2B and
Gemma 27B models with all three token-specific rules, and in Figure 12, we include similar plots for
cascades constructed from Gemma 2B and Gemma 9B models. We note that the trends with the 2B
→ 9B are similar to those seen with the 2B→ 27B cascades.

With the T5 models, the results are mixed, with the V1 and V2 variants sometime surpassing the V3
variant (which is the variant we included in the main experiments results in §6). Interestingly, with
the Gemma models, the V3 variant is seen to outperform the others for most rejection rates, with the
exception of the 2B→27B cascade on SQuAD 2.0, where the V2 variant is better.

The reason for the V3 variant outperforming the V1 and V2 variants on the Gemma models could be
due to the fact that it uses the larger model’s distribution pt(·) to measure confidence for both the
drafter and verifier tokens (see LHS and RHS in (13)). We expect this to be particularly helpful when
there is a larger gap in sizes between q and p, and the larger model’s distribution is better aligned with
the data-generating distribution compared to the smaller model. Furthermore, as per the discussion in
§5, the multiplicative form of the rule (15) results in a target distribution with an intuitive form: it
seeks to mimic qt(·) on the top-α ranked tokens by pt(·) and uses a re-scaled version of pt(·) for the
other tokens:

πTokenV3(v) = qt(v) · 1
(
v ∈ Tα

)
+ pt(v) ·

∑
v′ /∈Tα

qt(v
′),

where Tα = {v ∈ V : pt(v) ≥ maxv′ pt(v
′) · (1− α)}.
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G LIMITATIONS

One of the limitations of our proposal is the use of plug-in estimators to approximate the optimal rule
(9). While these approximations are effective in practice, they rely on the individual models being
calibrated. An alternative to the use of plug-in estimators is to use a router model explicitly trained
to mimic the optimal rule using a validation sample drawn from P (Gupta et al., 2024). Another
limitation is that the optimization objectives we seek to minimize are local objectives that seek to
make the best deferral decision at the current position t. In doing so, they ignore the downstream
effects of choosing a particular model in the current step. Devising a global deferral objective
that takes downstream errors into account would be an interesting direction for future work. More
broadly, our paper seeks to improve cost-quality trade-offs in LM inference. It is important that such
improvements do not unfairly advantage one slice of the data or a subset of the population, at the cost
of others. Ensuring that the trade-off gains that our approach offers is equitable across different slices
of the data is another important direction for the future.
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