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Abstract

Transformers exhibit remarkable in-context learning capabilities, solving new tasks without
requiring explicit model weight updates. However, existing training paradigms for in-context
learners rely on vast, unstructured datasets, which are costly and challenging to collect.
These paradigms diverge significantly from how humans learn. Motivated by these limita-
tions, we propose a paradigm shift: training on multiple smaller, domain-specific datasets to
improve generalization. We investigate this paradigm by leveraging meta-learning to train an
in-context learner across diverse, small-scale datasets using the Meta-Album benchmark. We
further investigate realistic scenarios, including domain streaming with curriculum learning
strategies and settings where training data is entirely unlabeled. Our experiments demon-
strate that this multi-dataset approach promotes broader generalization, enhances robust-
ness in streaming scenarios, and achieves competitive performance even under unsupervised
conditions. These findings advance the in-context learning paradigm and shed light on how
to bridge the gap between artificial and natural learning processes.

1 Introduction

In-context learning (ICL) has emerged as a transformative paradigm in artificial intelligence, particularly
with the development of large language models (LLMs). Unlike traditional machine learning approaches that
rely on explicit weight updates or fine-tuning for adapting to new tasks, ICL enables models to generalize
and solve tasks on the fly given only a few examples in the form of demonstrations (Brown et al., |2020)).
These demonstrations act as contextual information that helps the model infer the objective of a given task
and make the right prediction without altering its internal parameters. This dynamic adaptability makes
ICL a powerful framework for few-shot and even zero-shot learning, positioning it as a versatile tool for
tackling diverse tasks in real time (Olsson et al., [2022).

Despite these advancements, the mechanisms underlying ICL remain an active area of investigation. Recent
work has sought to draw connections between ICL and meta-learning (Min et al. [2022a; |Kirsch et al.; |2022;
Fifty et al., [2024). Meta-learning approaches are explicitly trained to adapt to new tasks by leveraging
previously learned knowledge and information extracted from a small set of data (context) (Vettoruzzo
et al., [2024b). While meta-learning algorithms are explicitly trained for this purpose, e.g., by meta-learning
a generalizable feature extractor as in Snell et al.| (2017)); Vinyals et al.[(2016)), in-context learners acquire this
ability implicitly during the training phase (Akyiirek et al., [2022), relying on large-scale datasets and large
architectures to uncover patterns that enable generalization. Training such large models on vast, uncurated
language corpora, such as the Common Crawl dataset (Raffel et al., [2020), is prohibitively expensive, lacks
interpretability, and deviates significantly from how humans learn. Consider, for instance, the gradual
learning process of children: they do not need to be exposed to millions of words or images to master a task.
Instead, they start by recognizing individual letters, which, over time, builds the foundation for reading
complex sentences (Smith, 2024; [Vong et al., [2024)). This highlights an important difference: while LLMs
rely on vast amounts of unfiltered data to achieve generalization, a child can generalize with fewer, more
meaningful examples. This suggests that the key to generalization may depend less on the sheer volume of
data and more on its quality and the sequence in which it is presented (Bambach et all|2018])). Yet, filtering
and organizing such massive datasets used for training LLMs remains a significant challenge in terms of both
practicality and scalability.
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Figure 1: Overview of GEOM. The left side illustrates two training paradigms: (a) a leave-one-out (LOO)
approach where the model is trained on all domains except one (e.g., Large Animals), and a dataset from
the excluded domain is used for evaluation; and (b) a sequential approach, where datasets are introduced to
the model in a sequential order and the model is evaluated on the test set of a previously seen dataset. The
right side depicts the model evaluation process. A new task Ty is sampled from a dataset, either an entire
dataset from DFOC in (a) or the test split of a previously seen dataset in (b). This task is then organized
into a non-causal sequence as described in Sect. 3] An in-context learner processes this sequence, using the
context to infer and predict the query label.

Motivated by these limitations, we propose an alternative perspective: training on multiple smaller,
domain-specific datasets to foster generalization. This approach aligns more closely with human
learning, where knowledge is acquired through structured, incremental exposure to varied environments. To
investigate this, we analyze the performance of an in-context learner trained on visual tasks sampled from
Meta-Album, a multi-domain meta-dataset designed specifically for few-shot image classification
. By evaluating performance across distinct visual domains, we can assess whether ICL possesses
an intrinsic ability to generalize beyond its training domain. More specifically, we adopt a meta-learning
approach to train a transformer model from scratch, reframing meta-learning as a sequence modeling problem.
We organize tasks into non-causal sequences (Fifty et al 2024} [Vettoruzzo et al.l [2025)), where each instance
is concatenated with its corresponding label to form the context, while query data is used for prediction.
These sequences are fed into a transformer encoder, which processes the task context to predict the query
label. By leveraging this formulation, we aim to train a model that favors generalization over memorization,
a capability we emphasize in the name of our approach: GEOM.

Beyond investigating ICL with multiple domain-specific datasets, we further explore how GEOM can emu-
late human learning processes through two complementary strategies: sequential learning and unsupervised
learning. Both approaches draw inspiration from the ways humans acquire knowledge, i.e., progressively and
adaptively, yet they emphasize different facets of this process. Sequential learning mirrors the structured,
incremental progression of human learning, where knowledge is acquired over time in an ordered manner
(Sheybani et al.| [2024b [Wang et al.| [2024). This paradigm introduces unique challenges related to dataset
ordering such as how the order of datasets influences learning and the risk of forgetting earlier tasks
[Paz & Ranzato], [2017; |Wang et al. 2024)). Inspired by the natural progression of human learning, we employ
curriculum learning strategies (Bengio et al., 2009; [Soviany et al., |2022; [Liu et al., 2024a)) that organize
datasets based on increasing levels of difficulty, either using a transfer learning (TL)-based approach (Faber
or optimal transport (OT) (Peyré et al., 2019; |Chang et all [2023; [Alvarez-Melis & Fusi| [2020)).
These methods enable the model to adapt gradually, improving its generalization and resilience to forget-
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ting. An illustration of this variant, which we will refer to as GEOM-S (GEOM-Sequential), is presented
in Fig.

In contrast, unsupervised meta-learning reflects the human ability to derive meaningful patterns from raw,
unlabeled experiences (Bambach et al) 2018)). To explore this aspect of human learning, we experiment
with an unsupervised meta-learning approach, where tasks are generated through data augmentation and
data mixtures, following the method proposed in |[Vettoruzzo et al. (2025)). The resulting variant, denoted as
GEOM-U, achieves remarkable generalization across tasks, further underscoring the benefits of leveraging
small-scale datasets from diverse domains.

To summarize, our study (1) highlights the advantages of training on multiple small-scale, domain-specific
datasets, a paradigm that not only aligns more closely with human learning processes but is also more
practical given the availability of such datasets; (2) demonstrates that this approach fosters improved gen-
eralization compared to training on a single, large-scale dataset; (3) it proves even more effective in ordered
sequential scenarios, achieving continuous improvement as additional datasets are introduced without catas-
trophic forgetting; (4) it showcases remarkable generalization across tasks, even in the absence of labeled
data. In conclusion, by revisiting the training process of in-context learners, we propose an approach that
draws inspiration from human learning processes, potentially bringing AI closer to natural and efficient
learning, and offering a step towards narrowing the gap between human and machine intelligence.

The remainder of this paper is organized as follows. We provide an overview of the existing literature in
Sect. 2] and we formally define the method and the datasets used in our experiments in Sect. 3] and Sect. [4]
respectively. We then present the results across three different multi-domain scenarios: the supervised
(offline) scenario in Sect. |5 the sequential scenario in Sect. @ and the unsupervised scenario in Sect. Iﬂ
Finally, Sect. |8 concludes the paper and outlines potential directions for future work.

2 Related Work

Meta-learning for in-context learning. The term “in-context learning”, introduced by
, describes the ability of LLMs to solve tasks based solely on contextual examples provided during
inference, without requiring explicit weight updates or fine-tuning. Initially thought to be exclusive to large-
scale language models (Radford et al. |2019; Hendrycks et al., |2020), thus trained on vast datasets
let al.l 2020; |Gao et all 2020; Penedo et al, [2023)), subsequent studies have shown similar behavior could
be achieved also in smaller models (Schaeffer et al.| 2023; |Du et all [2024)), trained on more compact im-
age datasets (Chan et all 2022} [Singh et al., [2023) like Omniglot (Lake et all [2015). This capability has
been compared with meta-learning, which explicitly trains models to adapt to new tasks by leveraging prior
knowledge (Schmidhuber| [1987; Vettoruzzo et al.,2024b)). Unlike meta-learning, where task generalization is
explicitly encouraged during training, ICL emerges implicitly during the pre-training stage. Recent studies
have combined these paradigms by integrating meta-learning into ICL training, improving few-shot perfor-
mance and model generalization (Min et al., 2022a} |Chen et al., 2022; Kirsch et al., 2022; [Fifty et al., [2024;
[Vettoruzzo et all, [2025). In particular, CAML (Fifty et al., 2024) and CAMeLU (Vettoruzzo et al., 2025)
reframe meta-learning as a non-causal sequence modeling problem and demonstrate superior cross-domain
performance, respectively in supervised and unsupervised settings.

Multi-domain training paradigm. The training paradigm in LLMs usually relies on unstructured,
large-scale text corpora scraped from the entire web (Brown et al., 2020; Raffel et al., [2020} |Gao et al., [2020;
[Penedo et al., [2023)). However, the sheer scale and lack of curation in these datasets introduce challenges
related to data quality, redundancy, and potential biases. To address these issues, recent efforts have focused
on improving dataset quality by weighting different data sources based on their quality (Chowdhery et al.l
or balancing model weights during training (Xie et all 2024). These methods, though effective,
diverge from human-like learning processes (Winston, [1980)), where learning occurs through analogies across
diverse domains—a concept tied to meta-learning principles. Multi-domain datasets (Triantafillou et al.
[2020; [Bornschein et al.| [2024; |Zhai et al. 2019} [Koh et al.l [2021]) provide a structured way to emulate such
processes facilitating the model adaptation and generalization to diverse tasks (Fifty et al., 2024; [Vettoruzzo|
let all, [2025} [2024a}; [2023). However, these benchmarks are constrained to relatively similar domains or suffer




Under review as submission to TMLR

from overlaps with commonly used datasets in transfer learning and meta-learning research. Meta-Album
(Ullah et al.| 2022]) overcomes these limitations by offering a well-curated collection of datasets, systematically
organized across ten distinct domains, with minimal overlap and balanced representation.

Sequential learning. Sequential learning, also called continual, lifelong, or streaming learning, represents
a more human-like learning process, where concepts are introduced to a model sequentially, and each of
them is available to the model only for a limited time before it progresses to the next (Wang et al., 2024]). A
significant challenge in sequential learning is balancing two competing goals: ensuring robust generalization
to future tasks by reusing prior knowledge and mitigating catastrophic forgetting of previously learned
information (Lopez-Paz & Ranzato, 2017)). To address these challenges, various methods have been proposed
in the literature. These include memory-based methods (Buzzega et al., |2020; Rebuffi et al.; 2017} [Lopez-
Paz & Ranzato, 2017)), architectural-based methods (Sokar et al.l [2021; [Hemati et al., 2023} Kang et al.
2022), regularization-based methods (Kirkpatrick et al., [2017; Zenke et al., |2017)), and meta-learning-based
approaches (Vettoruzzo et all 2024c; |Gupta et all 2020; Javed & White, [2019). However, these strategies
typically evaluate model performance using artificially constructed task streams, often derived by splitting
a single dataset into subsets or applying manually designed data augmentations. Such synthetic streams
fail to capture the complexity of real-world scenarios and suffer from issues such as poorly defined domain
separation, arbitrary task orders, and an absence of structured progression. Curriculum learning offers
a promising solution to these limitations by organizing tasks in a structured manner, typically based on
increasing difficulty (Soviany et al.| 2022} [Bengio et al., [2009)). Studies like [Faber et al. (2024])); [Sheybani
et al.| (2024b)); [Chang et al.| (2023); [Liu et al.| (2024b)) propose various techniques for ordering datasets by
complexity level to achieve more human-like learning, which could potentially enhance model performance.

3 Method

In this section, we begin by defining the concepts of ICL and meta-learning, highlighting their key differences
in a comparative table (Tab. . Although both concepts have been extensively studied in the literature,
we observed a lack of clarity in the definitions, so we highlight these distinctions to better align with the
objectives of our study. Following this, we formally describe GEOM, a meta-trained in-context learner
specifically designed to adapt to diverse tasks by leveraging context examples during inference, and outline
the training details used in our experiments.

Table 1: Differences between in-context learning (ICL) and meta-learning.

Aspect In-context learning ‘ Meta-learning
Training data Trained on vast datasets, often leading | Relies on tasks sampled from meta-
to broad generalization. datasets for simulating adaptation.

Training objective Emerges implicitly from standard ob- | Explicitly optimized for task adapta-
jectives (e.g., next-token prediction or | tion during meta-training.
classification).

Adaptation process Adapts during inference solely through | May require task-specific adaptation
task context; no parameter updates re- | (e.g., gradient updates) during infer-

quired. ence.

Generalization Relies on patterns learned during pre- | Optimized to generalize quickly across
training. tasks.

Applications Commonly used in LLMs. Widely applied in scenarios requiring

rapid task adaptation (e.g., robotics,
reinforcement learning, few-shot classi-
fication).
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3.1 Definitions

Meta-learning, often referred to as “learning-to-learn” explicitly utilizes the task’s context (also referred to as
support set in meta-learning) in a structured and well-defined manner. It explicitly encodes how the context
is leveraged, typically through a dedicated adaptation step. This step systematically adapts the model to
the task by enforcing specific algorithms for utilizing and “learning from” the context information.

In-context learning (ICL), on the other hand, involves providing the task context as part of the input (e.g.,
concatenated context examples and queries). However, it does not explicitly define or enforce how the context
should be used to learn from it and produce task-specific outputs. Instead, the model exploits the broad
and diverse knowledge accumulated during the training phase and only leverages the attention mechanism
during inference.

Therefore, although both ICL and meta-learning utilize demonstration contexts for task adaptation, they
differ fundamentally in their approach (see Tab. . ICL arises implicitly during the pre-training phase of
attention-based models, requiring no additional design to enable adaptation, while meta-learning is a strategy
aimed at designing models that rapidly adapt to new tasks or domains through explicit task conditioning
and optimization. Given these distinctions, our approach meta-learns an in-context learner to combine
the learning to learn strategy typical of meta-learning with the implicit task inference and generalization
capabilities of ICL, resulting in a flexible yet systematic framework for generalization across diverse tasks.

3.2 GEOM

In this section, we provide a general overview of GEOM. The architecture will be further expanded in the
coming sections to fit the specific setting. Specifically, in Sect. [5}, GEOM is trained with a leave-one-out
(LOO) approach, where one domain is excluded from the training pipeline, to evaluate cross-domain general-
ization. In Sect. [0} sequential training is performed on the training split of each dataset, and performance is
evaluated on the test split. Finally, Sect. [7] discusses an unsupervised scenario where no labels are available
during training. An illustration of our approach both in the LOO and sequential setting is presented in

Fig.

We formalize the general pipeline for GEOM by following the same principle of several ICL methods (Brown
et al., [2020; Kirsch et al. [2022; |Chan et al., |2022)) and inheriting the non-causal nature of the transformer
encoder as in |Fifty et al.| (2024) and |Vettoruzzo et al.| (2025)). Let D = {D, | a =1,..., A} be the set of all
available datasets containing image-label pairs. Following the common rationale of meta-learning, we split
each dataset into two parts D, = {Drein Dlestl gquch that the classes in the training set do not overlap
with those in the test set, i.e., {y"*"} N {y'®s'} = (). At training time, we sample a task 7; from a randomly
chosen dataset D", Each task corresponds to a data generating distribution 7; = {p;(z), p;(y|z)} and
consists of data from N distinct classes. We reserve a small number of K labeled examples per class to
form the task context or demonstrations, while the remaining ) examples are used as queries to evaluate
the predictions. As a result, for each task, we construct @ sequences as the concatenation of the full context
and a single unlabeled query x,. This sequence is defined as follows:

Siq=((x1,y1),..., (*NK, YNK),Tq) q=1,...,Q, (1)

where NK is the total number of context examples. It is worth noting that this sequence is permutation
invariant, or mon-causal, as the order of context examples does not affect the query classification. This
property is inherent in visual meta-learners (Fifty et al., [2024; |Garnelo et al.| |2018; |Miiller et al., 2022]) and
differs from the causal sequence model typical of LLMs.

To enable the model to learn from these non-causal sequences, GEOM consists of three components: (1)
a feature extractor f, that maps each image into an embedding space; (2) a single-layer linear class en-
coder g4 that maps the value of each label y; € {1,...,N} to a high-dimensional space; and (3) a
non-causal transformer encoder My with a classification layer on top that performs the classification. In
particular, each sequence is formed by concatenating the output of the feature extractor for each image
with its corresponding encoded label. Since the class of the query image is unknown, a randomly ini-
tialized learnable vector is appended to each query representation. This results in the following sequence
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Siq = ((fu(21),96(¥1)), -, (fo(@nk), 96(UnK)), fu(2q)) g =1,...,Q, which resembles the format in Eq.
This sequence is fed into the transformer encoder, and only the output corresponding to the query sample

is selected and passed through a classification layer to predict the query label. This process iterates for all
queries in the task, and the aggregated loss is employed for model training. The resulting training objective

is formulated as follows:
Q

) 1
min Es, égcwe(si,q),yq) (2)

where S; = {Si’q}?zl represents the set of sequences associated to each task 7; ~ D" [ is the cross-
entropy loss function, and y, € {1,..., N} is the true label of the query z, within the context window.

During evaluation, a new task Tpe,, with N classes is sampled from a dataset DL (with a € {1,..., A}),
and the task context, consisting of K labeled examples per class, is used to guide the classification of each

query sample into one of the N classes.

3.3 Training details

For all our experiments, we build each training episode as an N-way K-shot classification task, where N and
K are fixed to 5. Following the same model architecture as in |Vettoruzzo et al.| (2025)), we use a ResNet-50
(He et al., |2016) feature extractor f, pre-trained on ImageNet-1k and a class encoder g, consisting of a
single learnable layer that maps the N class labels to a dimensionality of 256. The non-causal transformer
consists of eight encoder layers, each incorporating a multi-head self-attention block with eight attention
heads, an MLP, and a single-layer classifier that maps the transformer output to the predicted category. The
episodic training is performed for 300 000 iterations with the Adam optimizer, an initial learning rate set at
107°, and a warmup cosine scheduler. For future evaluation, the best-performing model is saved as the one
resulting in the highest validation accuracy across 50000 new tasks, sampled from D%, a = 1,..., A. The
code is written in Python and the experiments are run on an NVIDIA GeForce RTX 3070 Ti Laptop GPU
and on an NVIDIA A100-SXM4 GPU with 40GB of VRAM, to speed up the execution. More details about
the training settings can be found in Appendix while the code will be released upon acceptance of the

paper.

4 Dataset

Meta-Album (Ullah et al., |2022)) serves as the primary Table 2: Dataset IDs in Meta-Album Mini.
benchmark for this study, offering a diverse and compre-
hensive suite of datasets tailored for few-shot learning,
transfer learning, and meta-learning research. It includes
30 image classification datasets (as of writing), span-  Large Animals 44285 44298 44305
ning ten distinct domains. Each domain comprises three ~ Small Animals 44282 44292 44306

Domain name First Second  Third
release release release

datasets made available in three successive releases, as Plants 44283 44293 44302
outlined in Tab. The datasets are uniformly prepro- Plant Diseases 44286 44299 44303
cessed and are available in three sizes (Micro, Mini, and  Microscopy 44281 44297 44308
Extended) to accommodate varying computational re-  Remote Sensing | 44290 44300 44307
quirements. For our experiments, we primarily focus on Vehicles 44289 44295 44309

the Mini size, which includes all original classes from the  Manufacturing 44288 44294 44304
30 datasets (up to 706 classes per dataset), and 40 exam-  Human Actions | 44284 44291 44301
ples per class. We refer to the datasets by their dataset ~ OCR 44287 44296 44310
IDs, detailed in Tab. 2] unless otherwise stated.

Since ImageNet-1k (Deng et all 2009)) has been widely used when pre-training model backbones for visual
recognition and identification tasks, it is crucial to assess the potential overlap between Meta-Album and
ImageNet-1k. Such overlap could lead to data leakage, where models trained on ImageNet-1k may inadver-
tently benefit from prior exposure to similar data, resulting in enhanced performance on Meta-Album. To
ensure a fair evaluation, we perform an analysis to identify any overlaps, both in terms of class names and
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Figure 2: Class overlap between ImageNet-1k and
Meta-Album Mini datasets. The red color shows
the exact label matching analysis and the orange
color indicates the result of the concept similarity
analysis computed with CLIP embeddings (Rad-
ford et al., [2021). On the right side, we report the
number of overlapping classes.

tween CLIP (Radford et al. [2021) embeddings
of ImageNet-1k labels and the Meta-Album labels
that have no exact match. Horizontal bars rep-
resent the 90" percentile of similarity values for
each dataset. Datasets from the Small Animals,
Microscopy, and OCR domains are excluded from
the analysis.

underlying concepts, between Meta-Album and ImageNet-1k. We use two complementary approaches for
this investigation:

1. Label matching: Class names in Meta-Album and ImageNet-1k are compared by identifying
matching words. A pre-processing step is applied to remove special characters and convert all
names to lowercase, ensuring consistency in the comparison.

2. Concept similarity: Using CLIP (Radford et al., 2021|) embeddings, we calculate cosine similarity
scores between Meta-Album and ImageNet-1k labels to identify overlapping concepts. Scores above
a certain threshold are considered indicative of overlap. The threshold is computed considering
the distribution of cosine similarity values for each dataset, identifying the 90" percentile of the
distribution, and calculating the median value across all datasets. The resulting global threshold is
set to 0.83. Fig. 3] illustrates the cosine similarity distributions for all datasets.

Three domains—Small Animals, Microscopy, and OCR—are excluded from the concept similarity analysis
due to their unique characteristics and label formats, which make a direct comparison with ImageNet-1k
impractical. Specifically, Microscopy and OCR feature concepts differ significantly from those in natural
images (as in ImageNet-1k), while Small Animals, with its reliance on Latin names, introduces ambiguity
and confusion in the matching process, leading to unreliable results. The results, illustrated in Fig. [2] reveal
a substantial degree of similarity, exceeding 50%, for the Large Animals datasets (with dataset IDs 44285,
44289, 44305). Significant similarities with ImageNet-1k are identified also in the Remote Sensing and Human
Actions domains, highlighting the possibility of data leakage when models pre-trained on ImageNet-1k are
evaluated on these datasets. More details about this analysis and the other datasets used in this work are
described in Appendix [A72]
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5 Supervised (offline) learning

In this section, we investigate whether training on multiple small-scale datasets across diverse domains can
improve model generalization when tested on an entirely different domain. This setting offers practical
advantages as small datasets are easy to curate, update, and maintain allowing individual datasets to be
replaced or excluded without disrupting the overall training pipeline. This modular approach ensures flexi-
bility in handling potentially biased or outdated data (Bourtoule et al.| [2021; Menon et al.l [2020), making it
easier to refine and adapt the dataset composition over time. To address this question, we consider a stan-
dard supervised learning scenario where all training data are accessible at the start of the training phase,
and evaluation is performed cross-domain, on a domain excluded from training. We adopt a LOO approach,
where datasets from nine randomly selected domains are used for training, while the remaining domain is
reserved for evaluation. Specifically, we define the evaluation datasets as DMOO = {DlLOO |1 =1,2,3},
representing the three datasets from the left-out domain and the training datasets as {D\DF©°}, which
include all other datasets. As the focus here is on cross-domain evaluation, datasets are not split into D&
and D!t but all data are used during meta-training if they belong to {D\DF°}, or during evaluation if
they are part of DYOC. Depending on the baseline used, tasks may consist of examples from a single dataset
or a mixture of datasets, as described in the subsequent section. All other methodological aspects align with
those described in Sect. [Bl

5.1 Multi-dataset training
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Figure 4: (Left) Accuracy comparison between GEOM, GEOM-M, and GEOM-IN for all the Meta-Album
datasets. The training is performed using the LOO approach detailed in Sect. and the performance
is evaluated on the datasets from the left-out domain. (Right) Corresponding class overlapping between
ImageNet-1k and Meta-Album as shown in Fig. 2|
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Building on the cross-domain LOO scenario described earlier, we evaluate the generalization performance
of three distinct baselines. The goal of this section is to determine whether training on multiple, distinct
small-scale datasets from different domains provides greater benefits for model generalization than relying
on a single large-scale dataset. The baselines analyzed are as follows:

e GEOM: each Meta-Album dataset is treated as a distinct entity, and each training task consists
exclusively of images sampled from a single dataset.

o GEOM-M (GEOM-Merged): all Meta-Album datasets are combined to resemble a large-scale
dataset, where each training task can include samples from multiple datasets and domains.

o GEOM-IN (GEOM-ImageNet-1k): training tasks are sampled from ImageNet-1k (Deng et al.,
2009), a large-scale benchmark widely used in computer vision.

Both GEOM and GEOM-M are trained across ten distinct combinations of Meta-Album domains, ensuring
all possible LOO scenarios are covered. The performance for all baselines is evaluated on the left-out domain,
and the results are summarized in Fig. @] The results indicate that GEOM performs comparably or even
better than GEOM-M in the Meta-Album benchmark. While the differences are not always substantial,
GEOM offers several advantages, including improved modularity and adaptability to new domains without
requiring a large-scale, merged dataset. This highlights the benefit of preserving domain-specific boundaries
during training, rather than merging datasets into a single corpus. These findings contrast with the training
paradigm commonly used for LLMs, where massive, unstructured datasets, often combining text from a wide
variety of domains, are leveraged to improve generalization (Brown et al.; 2020)). Instead, our results suggest
that focusing on one domain at a time enhances cross-domain generalization, akin to human learning, which
prioritizes mastering individual tasks before integrating broader knowledge (O’hearn) 2005)). Additional
evidence supporting this principle is presented in Sect. where structured curricula further improve
performance and generalization.

When comparing GEOM to GEOM-IN, GEOM achieves superior or comparable performance in datasets
with minimal class overlap between Meta-Album and ImageNet-1k. In domains with significant class overlap,
such as Large Animals and Human Actions, GEOM-IN benefits from the knowledge acquired during training,
relying on memorization rather than true generalization. However, in domains like Remote Sensing, where a
notable overlap with ImageNet-1k exists but is accompanied by a significant distribution shift (e.g., images
acquired through a GPS system vs. a normal camera), GEOM-IN struggles to adapt to these differences and
to match GEOM’s performance. This suggests that memorization alone may not be sufficient when concepts
are represented through significantly different modalities or contexts. Another domain where GEOM-IN
prevails over GEOM is Manufacturing. This behavior can be attributed to the reliance of its datasets on
low-level features for classification, which are better captured by the large-scale ImageNet-1k (1281167
images) compared to the smaller Meta-Album Mini collection (163 200 images). This assumption is further
corroborated by results obtained with the Extended size of Meta-Album (1384616 images), where GEOM
performance in the Manufacturing domain improves significantly. As shown in Tab. [§ in Appendix [A75]
accuracy increases by 26.1%, 9.4%, and 10.9% for the three datasets in the Manufacturing domain.

For detailed accuracy results, please refer to Tab. [ in Appendix

5.2 Impact of number of datasets

To investigate whether the generalization ability of the model improves progressively with the number of
datasets used during training, we evaluate three distinct scenarios: training exclusively on datasets from the
first release, on datasets from the first and second releases, and on datasets from all three releases of Meta-
Album. These configurations allow us to examine the relationship between generalization and knowledge
accumulation, drawing parallels with the progressive learning process observed in humans (Sheybani et al.,
2024b)). We refer to these three scenarios as First, Second, and Third, highlighting the usage of all datasets
available up to a certain release. In line with the LOO setting described in Sect. [5] training is conducted
on datasets spanning nine domains, with evaluations performed cross-domain on the left-out domain. As
illustrated in Fig. [f] and in Fig. [I6]in Appendix[A75] incorporating additional datasets consistently enhances
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Figure 5: Comparison of GEOM training only on datasets from the first release (First, 9 datasets), on
datasets from the first and second releases (Second, 18 datasets), and on datasets from all three releases
(Third, 27 datasets) of Meta-Album Mini. The training is performed following the LOO setting described in
Sect. [5 and the performance is evaluated on the datasets from the left-out domain (represented with blue,
orange, and green colors). Results are reported only for three exemplary scenarios, while the complete set
of results can be found in Fig. [16] (Appendix [A.5)). In particular, (a) and (b) show increased generalization
as more out-of-domain datasets are added to the training pipeline, while (c) shows a modest performance
improvement due to its reliance on low-level features.

generalization across all domains. This improvement can be attributed to the increased variability of training
tasks, which has been shown to promote robust learning (Vettoruzzo et al., [2025; (Chan et al.l 2022} [Singh
et al.,[2023)). However, such improvement varies across domains. For instance, in Microscopy, Manufacturing,
and OCR, the performance gains remain relatively modest compared to other domains. We conjecture that
this is due to the reliance of these domains on simple, low-level features, which benefit more from an increased
number of images per class, rather than the increased diversity that a higher number of classes introduces. In
contrast, domains characterized by greater complexity benefit significantly from the inclusion of additional
datasets, as the broader diversity helps the model generalize to unseen data more effectively. These findings
raise an important question of whether this improvement is driven by the increased number of images or
by the broader representation of classes, a question explored in detail in the next section. The numerical
evidence of these experiments can be found in Tab. [10]in Appendix

5.3 Number of classes vs. number of images

To better understand the factors driving the improved performance of GEOM as more datasets are included
during training, we analyze whether the key determinant is an increase in the number of classes or the
number of images in the training set. Previous research (Singh et al.l|2023; |Chan et al.;|2022) suggests that
increasing the number of classes plays a more significant role in enhancing the generalization capabilities
of in-context learners than simply increasing the total number of images. However, these studies are often
limited to in-domain settings, and especially restricted to training and test tasks that are both drawn from
the same dataset (specifically, Omniglot (Lake et al., [2015)). Our work seeks to validate and extend these
claims to a more challenging cross-domain setting. To achieve this, we considered three different versions
of Meta-Album with varying sizes: Micro, Mini, and Extended. Since Extended does not include the OCR
domain, we remove the three datasets associated with OCR also in Micro and Mini. We then evaluate the
model on external datasets outside the Meta-Album benchmark, such as CIFAR-fs (Bertinetto et al., 2019),
CUB (Wah et al. [2011)), Aircraft (Maji et al.l [2013), Meta-iNat (Wertheimer & Hariharan, [2019), EuroSat
(Helber et al.l 2018]), and ISIC (Codella et al., [2018). This allows us to train the model following the same
approach described in Sect. [§] but incorporating all datasets from the nine Meta-Album domains, after ex-
cluding OCR. The main differences between the three Meta-Album sizes are that Micro and Mini have the
same number of images per class, but the number of classes per domain in Mini can be significantly higher
than the 20 classes used in Micro. The Extended size, instead, has the same number of classes as Mini when
removing the OCR dataset, but the number of images per class may notably increase for some domains. From
Tab. 3] we observe that the larger performance improvement occurs when moving from the Micro to the Mini
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Table 3: Results using the three sizes of Meta-Album: Micro, Mini, Extended. The training is performed
following the setting described in Sect. [5} with all Meta-Album domains, but OCR, included in the training
phase. The performance is then evaluated on datasets that do not belong to the Meta-Album benchmark,
such as CIFAR-fs (Bertinetto et al., [2019), CUB (Wah et al., [2011)), Aircraft (Maji et al.l 2013]), Meta-iNat
(Wertheimer & Hariharan, [2019), EuroSat (Helber et al., |2018), and ISIC (Codella et al., [2018). GEOM-IN
is trained using ImageNet-1k. Results show the average across three complete runs of the algorithms.

CIFAR-fs CUB Aircraft Meta-iNat EuroSat ISIC
GEOM (Micro) 60.47 +£4.98 62.174+2.51 29.26£0.62 58.38+6.39 63.70+1.20 25.6941.93
GEOM (Mini) 79.01+095 8894+0.70 39.73+1.32 74.10+£0.12 78.40+0.84 31.384+1.33
GEOM (Extended) 76.25+1.03 90.39+0.30 40.88+0.84 75.154+0.28 79.31+0.82 31.70£0.56
GEOM-IN 85.27+1.08 79.644+1.01 38.24+£1.20 76.10+£0.32 56.70+£2.32 27.904+1.41

size of Meta-Album, compared to moving from the Mini to the Extended size. These results suggest that
the most significant performance improvements arise from increasing the number of classes, which enriches
task variability and broadens the model’s capacity for generalization. On the other hand, the substantial
increase in the number of images in the Extended size does not yield a proportional performance boost, high-
lighting the greater importance of class diversity compared to an increase in the number of images per class.
This conclusion is further supported by the performance com-
parison between GEOM and GEOM-IN. Despite having access
to a consistently high number of images per class, GEOM-
IN does not achieve the same performance as GEOM (Mini).
Even in datasets like CIFAR-fs (Bertinetto et al. [2019) and
Meta-iNat (Wertheimer & Hariharan, 2019)), where we expect
higher performance for GEOM-IN due to the presence of sig-
nificant overlap with ImageNet-1k classes, GEOM-IN exhibits
performance that is only comparable with GEOM (Mini) and
GEOM (Extended). While class diversity emerges as the dom-
inant factor, the dataset size, i.e., the total number of images,
plays a non-negligible role. In the case of Micro, an insufficient
number of images leads to high variance in performance (see
Tab. . In addition, when comparing the validation accuracy
of Mini and Extended, as in Fig. [f;, GEOM on Mini achieves a
peak validation accuracy within 200 epochs but subsequently
declines, likely due to overfitting. A possible explanation is
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Figure 6: Validation performance of GEOM
while trained on the Mini and Extended
size of Meta-Album. The Mini size achieves

that after the model has explored all possible combinations
of the training data, it starts memorizing specific examples
rather than learning generalizable patterns, which may reduce
its ability to generalize to unseen classes. Conversely, train-
ing on Extended, which contains approximately five times the
number of images in Mini, requires a longer time to converge
but continues improving. These findings lead to two consider-
ations: while longer training times for a given dataset size may
not always enhance performance, a sequential scenario, where
datasets and classes evolve over time, can result in significant
performance gains. This is explored further in Sect. [6]

6 Sequential learning

peak performance early but declines due to
overfitting, while the Extended size shows
steady improvement over longer training
periods, indicating the impact of increased
image quantities in mitigating overfitting.
The validation accuracy at each epoch
is calculated on 50 tasks per dataset
(1500 tasks in total) and both the origi-
nal (shaded) and the smoothed (saturated)
curves are represented.

In this section, we investigate a more realistic scenario where datasets are presented to the model sequentially
as a stream of tasks rather than being available all at once during training. Following the task definition in
Sect. |3} each dataset D, € D is divided into D™ and DL*$!, ensuring no class overlap between the two sets.

11
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During training, each dataset is available for a fixed duration (measured in training epochs), and tasks are
sampled from it proportionally to the allocated time. Once the allocated time elapses, the stream advances to
the next dataset, and previously seen data becomes inaccessible. Importantly, we do not incorporate model
rehearsal techniques (Buzzega et all |[2020; Rebuffi et al., 2017} |Gupta et al.l [2020)), requiring GEOM to rely
solely on its meta-learned knowledge to generalize effectively to new tasks that may involve both previously
seen and novel concepts. To distinguish this scenario from the supervised (offline) setting (Sect. , where
all the datasets are available simultaneously during training, we refer to the sequential model as GEOM-S
(GEOM-Sequential). We define this scenario as “sequential” to highlight the progression of training datasets
ordered with some specific heuristic, e.g., with a domain-based order or with an increasing complexity. This
terminology reflects a key distinction from traditional continual learning approaches. Our method does not
involve training until convergence on each dataset before advancing to the next, and it aims to evaluate the
model on completely new tasks with different classes from those observed during training. This scenario
aligns more closely with the meta-learning literature and the human learning process.

More formally, at time T, with 7" < A, the model has observed the datasets Di ™, ... D" possibly
corresponding to different domains. The evaluation is performed by sampling new, unseen tasks T,ew ~
Diest t < T from datasets observed earlier in the sequence to assess performance on previously encountered
domains. To better manage computational resources, GEOM-S is evaluated only at the end of the training
stream, after all datasets in the Meta-Album Mini benchmark have been processed sequentially. Additionally,
we investigate the model’s ability to retain knowledge by measuring catastrophic forgetting on previously

seen domains (Sect. [6.2)).

An important consideration in the sequential paradigm is the order in which datasets are presented. One
straightforward approach is to organize the datasets in domains and present a sequence of domains to the
model. This ensures a gradual shift in concepts, as each domain comprises three related datasets, and it is
evaluated in Sect.[6.1] However, this method does not account for the progressive structuring of information,
which can facilitate more effective learning (Sheybani et al.l |2024b). To explore alternative dataset ordering,
we evaluate curriculum-based approaches (Bengio et all [2009; [Soviany et al., |2022). These include a TL-
based curriculum (Faber et al., |2024)), which balances similarity and difficulty in the dataset presentation to
create a structured learning path, and an OT-based curriculum (Alvarez-Melis & Fusil 2020; |Chang et al.)
2023)), where datasets are ordered based on their relevance to previously acquired knowledge. These strategies
are detailed in Sect[6.3.1] and Sect[6.3:2] respectively.

6.1 Domain-based sequential scenario

To begin, we evaluate GEOM-S in a domain-based sequential scenario, where datasets are ordered according
to their respective domains as defined in the Meta-Album benchmark: Large Animals, Small Animals,
Plants, Plant Diseases, Microscopy, Remote Sensing, Vehicles, Manufacturing, Human Actions, OCR. Given
the difference in dataset sizes across these domains, we evaluate the performance of GEOM-S using two
approaches. In the static approach each dataset is assigned an equal number of training epochs (20),
irrespective of its size, while in the proportional approach, the number of training epochs is allocated in
proportion to the size of each dataset. Additionally, the results are compared with an offline baseline, similar
to GEOM, where all the datasets are simultaneously available during training. This baseline, considered as
an oracle, represents an idealized scenario where all the available knowledge is present upfront. While less
realistic, it helps establish an upper bound for model performance when data accessibility is unconstrained.
Importantly, this baseline is trained exclusively on tasks sampled from D% and evaluated on new tasks
from DIt to have fair results with the streaming scenario. Therefore, unlike the GEOM model introduced
in Sect. [5] the offline baseline does not assess cross-domain generalization; instead, it measures the model’s
ability to “adapt” to new tasks from known domains, as typical in in-domain meta-learning.

Fig. [7] illustrates the performance of GEOM-S using the static and proportional approach relative to the
offline baseline, where all the datasets are available simultaneously. The relative accuracy is computed as
the difference between the accuracy achieved with each approach and the accuracy of the offline baseline,
which is set as the reference point at zero. More quantitative results can also be found in Tab. in
Appendix As expected, the proportional approach results in an overall better performance compared
to static, particularly for the final three datasets, in the OCR domain. These datasets are significantly

12



Under review as submission to TMLR

----- Offline
201 Bl Static
Proportional
> 101
v
o
a l
g 0 __l__l.__ __l n  }
2
S
1
[}
[~4

T '-'"-"'.'"I"I"""-"‘I' l"'l'"l'"'-'"-'"."—"I"'-' """""""" I """" N N
—~101
—201

Figure 7: Relative performance of GEOM-S using a static and proportional approach for assigning training
epochs to each dataset compared to the offline baseline, where all the datasets are available simultaneously.
The relative accuracy is calculated as the difference between the accuracy achieved with the static (propor-
tional) approach and the offline baseline, which is set as the reference point at zero.

larger in terms of both images and classes, and the static approach allocates an insufficient number of epochs
to achieve even partial convergence. In contrast, the proportional approach addresses this limitation by
assigning a more appropriate number of training epochs based on dataset size. Despite its advantages, the
proportional approach presents challenges in real-world scenarios. It assumes prior knowledge of the size of
incoming datasets to appropriately distribute training time/epochs, which is often unrealistic. Furthermore,
when a new dataset is introduced, it is impossible to retroactively adjust the epochs allocated to previous
datasets, as no information from them is retained. A more practical alternative might involve training the
model until convergence on each dataset, as commonly done in continual learning applications (Wang et al.

2024). However, determining the convergence point remains a challenging task 2023)), and with a
large number of datasets, this approach can be prohibitively time-consuming and computationally expensive.
Considering these constraints, we adopt the static approach for the remainder of this paper. While it may
not achieve optimal performance in all cases, it provides a consistent and practical framework for evaluating
GEOM-S in streaming scenarios.

6.2 Analysis of forgetting

To evaluate the model’s ability to retain previously learned knowledge, we adopt the backward transfer
(BWT) metric, which is widely used in the continual learning literature (Wang et al., [2024} Lopez-Paz &|
. BWT provides insight into how well the model maintains performance on earlier tasks as
new ones are introduced. In this work, we modify the traditional use of BWT to focus on domain-based
forgetting, rather than merely task-level forgetting. Specifically, we compute BWT as follows:

A—-1
1
BWT = —— -
A_1 ] RA7a Ra7aa (3)

where A is the total number of datasets (30 in Meta-Album) and R, , (with b < a) is the average classification
accuracy of the model on tasks sampled from D}j**" after training on Dirain  While the BWT is commonly
used to measure forgetting in traditional continual learning setups, where tasks typically belong to the
same domain, in our case, the dataset D;, belongs to domains that are different from the domain of D,.
This distinction allows us to evaluate domain-based forgetting, which is the focus of our analysis. To
calculate the BWT, we follow the same domain-based sequential order described in the previous section.
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150 Table 4: Average BWT values
tA zz computed using a domain-based
75 ordered sequence, as described

in Sect. [5l For each domain (de-
noted in the rows), the model
25 is trained on all datasets from
the previous domains, up to that
point, and the BWT value is cal-
culated by evaluating the model
on test tasks sampled from all
previously encountered datasets.
The calculation is performed as
detailed in Eq. using only
datasets from the first release of
Meta-Album Mini for simplicity
| 5o and consistency with the results
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Figure 8: Heatmap showing the performance difference, used to compute BWT
the BWT, on datasets from the first release of Meta-Album Mini (one per LA -

domain), training GEOM-S with the static approach and the domain-based + SA 0.45
streaming scenario described in Sect. @ Each entry e, . represents the + P -1.9
difference in accuracy on tasks sampled from dataset D., (column), when + PD ~1.15
the model is trained on all datasets up to domain r (row) versus when + MI —4.57
the model is trained on all datasets up to the domain that D. belongs to. + RS 1.37
The sequence order of domains is as follows: Large Animals (LA), Small +V 0.92
Animals (SA), Plants (P), Plant Diseases (PD), Microscopy (MI), Remote + MA 4.19
Sensing (RS), Vehicles (V), Manufacturing (MA), Human Actions (HA), + HA 4.78
OCR. Higher values in the lower part of the heatmap indicate the model’s + OCR  3.80

ability to leverage knowledge from previously observed domains to improve
performance as more domains are introduced.

After training on all datasets from a particular domain in the sequence, we save the model checkpoint and
evaluate its performance on test tasks sampled from datasets belonging to previously encountered domains.
The resulting accuracies are then used to calculate the average BWT as in Eq.[3] Unlike in typical continual
learning settings (Lopez-Paz & Ranzato| [2017)), where models are trained until convergence on each dataset,
we restrict the training time on each dataset to 20 epochs, following the static approach outlined in Sect.
Moreover, we evaluate the model on entirely new tasks that are distinct from those used for training. In this
context, the BWT metric captures the model’s ability to leverage previously learned knowledge to generalize
to new tasks that represent previously encountered domains. The results, reported in Fig. [§ and in Tab. [4]
indicate that early in training, when the model has not yet developed a strong internal representation of the
datasets, the model tend to forget, as represented by the negative BWT. However, as training progresses and
the model refines its representations, the BWT increases, reflecting improved retention and generalization.
This is particularly surprising considering the length of the sequence (30 diverse datasets) and the fact that
forgetting is a common challenge in continual learning approaches. Interestingly, the model’s performance on
previously seen domains even improves as it encounters datasets from new domains, leading to positive BWT
values. This supports the findings in Sect. which show that an increased number of classes enables the
model to generalize more effectively to unseen tasks. This approach aligns well with real-world applications,
where new data becomes available over time and seamlessly integrates into the learning process, showcasing
the practicality and effectiveness of GEOM-S in diverse, dynamic environments.
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6.3 Curriculum learning

To emulate how humans build knowledge over time, we propose ordering the datasets based on their level
of difficulty. However, the literature lacks a clear consensus on how to effectively quantify dataset difficulty
(Soviany et al., |2022; [Faber et al. [2024). In this work, we address this gap by utilizing two metrics: a
TL-based technique in Sect. [6.3.1] and an OT computation in Sect. [6.3.2} These metrics provide a measure
of similarity between datasets, enabling us to establish an order and construct various curricula. By doing
so, we could verify the impact of the datasets’ order on the model performance and draw analogies with the
human learning process.

For simplicity and to optimize computational resources, all curricula are built considering the Micro size of
Meta-Album, which comprises 31920 images with a balanced distribution of classes and images per class
across all datasets. This is particularly important as unbalanced datasets could skew the computation and
affect the results (Mundt et al., |2023; [Schouten, 2024]). Once the curricula are defined, the dataset indices
are replaced with those corresponding to Meta-Album Mini. The full training and evaluation pipeline is
then executed using the datasets in Meta-Album Mini to maintain consistency with prior experiments and
to avoid the overfitting problem described in Sect. [5.3]

6.3.1 Transfer learning-based curriculum
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Figure 9: Relative accuracy of the E2H and H2E curricula compared to the domain-based order baseline.
The relative accuracy is computed as the difference in performance between each curriculum and the domain-
based approach, which is set as the reference point at zero. Datasets in E2H and H2E are ordered according
to a TL-based approach and the results are obtained with Meta-Album Mini. The last column reflects the
average relative accuracy across all datasets.

As one of the two approaches proposed for constructing curricula, we apply a TL-based strategy to evaluate
the dataset difficulty. This method is grounded in the hypothesis that datasets where a model achieves high
performance after fine-tuning are inherently less challenging, compared to others with lower performance. By
ranking datasets based on their difficulty using this approach, we establish a curriculum that can influence
training order and model performance. Specifically, we use the same pre-trained feature extractor employed
in GEOM-S, a ResNet-50 (He et al.l 2016) model pre-trained on ImageNet-1k (Deng et al.l 2009), and we
fine-tune a simple projection head with ReLU non-linearity and batch normalization to classify the 20 classes
of each dataset. We optimize the cross-entropy loss with Adam optimizer for 100 epochs, starting from a
learning rate of 1074 and smoothly reducing it with a cosine annealing scheduler. We then evaluate the
performance of the fine-tuned model on the test split of each dataset and use this value as a metric to rank
datasets. Applying this TL-based approach resulted in the following dataset order:
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« TL-based order: [44304, 44299, 44288, 44305, 44283, 44284, 44285, 44298, 44300, 44286, 44291,
44282, 44301, 44294, 44281, 44307, 44290, 44295, 44306, 44293, 44292, 44289, 44303, 44287, 44309,
44297, 44302, 44310, 44296, 44308]

where datasets are ordered from easiest (highest accuracy) to most difficult (lowest accuracy). For our
experiments, we evaluate the following baselines:

o FEasy-to-Hard (E2H): a curriculum learning baseline where datasets are presented from the easiest
to the most difficult (increasing difficulty, from dataset ID 44304 to 44308).

o Hard-to-Easy (H2E): a curriculum learning baseline where datasets are presented from the most
difficult to the easiest (decreasing difficulty, from dataset ID 44308 to 44304). It is sometimes
referred to as anti-curriculum (Soviany et al., [2022) in the literature.

e Domain-based: the dataset order as presented in Meta-Album, where datasets are grouped into
domains, as explained in Sect. [6.1]

The results, illustrated in Fig. [9] and, more extensively, in Tab. in Appendix confirm that or-
dering the datasets based on their level of difficulty can improve model performance in the sequential
setting. This approach provides a more realistic alternative than simply using a random dataset or-
der, or simply grouping datasets into domains. Interestingly, the best performance is achieved with
the H2E configuration, as demonstrated by the average performance gain in the last column of Fig. [0
While this is counterintuitive compared to the human learning process, where tasks are typically pre-
sented in an E2H sequence to progressively build knowledge (Sheybani et all |2024al), the H2E config-
uration may benefit the model by exposing it to challenging datasets early in training. This early ex-
posure allows the model to explore the parameter space more extensively, reducing the risk of over-
fitting to simpler datasets and fostering greater generalization (Soviany et all |2022). This behav-
ior is further illustrated in Fig. which shows the learning trend for the E2H and H2E scenarios.
In the E2H setting, the model initially achieves

high accuracy on the easiest datasets, but its per-

formance deteriorates as more challenging datasets e end E21 Cearmimg fren HaE

are introduced. This fact raises some interesting
considerations. Firstly, building a sequence that
only takes into account the distribution shift from
the pre-acquired knowledge of the feature extrac-
tor may hamper the model’s ability to generalize to
harder datasets. Secondly, this highlights the im-
portance of the first phase of training, as observing
only simpler datasets at the beginning of the train-
ing time could saturate the knowledge of the model 5 o 5 5o e = =
and make it less flexible to adapt to new, harder Epochs

datasets later. Lastly, progressively increasing the

difficulty of a dataset at time 7', without accounting Figure 10: Comparison of learning trends for E2H and
for the knowledge acquired up to that point, may re- H2E TL-based curricula with GEOM-S.

quire longer training times when moving to harder

datasets. However, allocating sufficient training epochs for more challenging ones remains a significant chal-
lenge, due to a lack of precise metrics for quantifying dataset complexity and the inherent difficulties in
estimating the time required for convergence, as discussed in Sect. [6.1]
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6.3.2 Optimal transport curriculum

While the TL-based approach provides an intuitive measure of dataset difficulty relative to a pre-trained
model, it does not account for difficulty among datasets, and how the knowledge acquired from the previously
seen dataset might influence the current. This limitation motivates the use of an OT-based approach (Chang
et al [2023), which quantifies dataset similarity by computing the minimal cost required to transform one
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Figure 11: Relative accuracy of the E2E, H2H, and Switch curricula compared to the domain-based order
baseline. The relative accuracy is computed as the difference in performance between each curriculum and
the domain-based approach, which is set as the reference point at zero. The datasets are ordered based on
OTDD (Alvarez-Melis & Fusi, 2020) and the results are obtained with Meta-Album Mini. The last column
reflects the average relative accuracy across all datasets.

probability distribution into another (Peyré et al. [2019). However, applying OT to different datasets presents
challenges, as their label sets are often disjoint and unrelated. To overcome this issue, the Optimal Transport
Dataset Distance (OTDD) metric in (Alvarez-Melis & Fusi, [2020) proposes to represent a label-induced

~

distribution o, as a Gaussian N(f,, Y, ) and compute the distance between datasets as follows:
dor(Da,Dp) = minﬂen(aﬂ)/ dz(z,2")Pd(z,2"). (4)
ZXZ

where z £ (x,7) represents a pair of feature-label and Z £ X x ). Therefore, we can define
dz(z,2) = dz((z,y), (¢',) £ (dx (2,2 )P + WE(ay, ay)) 7.

as the p-Warssertein distance between feature-label pairs. Representing o, as a Gaussian is possible after
embedding the data with a non-linear mapping (e.g., a neural network) (Seddik et al.| 2020)). In our experi-
ments, we embed the datasets using a ResNet-50 architecture pre-trained on ImageNet-1k, and we compute
the OOTD distance in this embedding space. The similarities between the datasets are visualized in Fig. [[3]
and in Fig. (Appendix. Notably, datasets from Microscopy, Remote Sensing, and Plant Diseases are
the most dissimilar from all others, appearing at the top of the similarity figure. This observation aligns with
expectations, as these datasets belong to domains that are significantly different from the rest. Their images
are acquired using specialized devices, such as microscopes or GPS systems, and have distinct resolutions
and characteristics.

Due to the high computational cost of computing OTDD for large datasets (Alvarez-Melis & Fusil 2020)), we
build the curricula using the Micro size of Meta-Album, although we train and evaluate the model using the
corresponding datasets in Meta-Album Mini, as previously described. The first step in constructing an OT-
based curriculum is identifying a starting dataset. Intuitively, the dataset most similar to ImageNet-1k should
be the easiest for our model, as the feature extractor in GEOM-S is pre-trained on ImageNet-1k. However,
directly identifying this dataset using OTDD is impractical due to the imbalance between ImageNet-1k and
Meta-Album datasets and the wide domain coverage of ImageNet-1k compared to the specific domains in
Meta-Album. Instead, we set the first dataset in the TL-based curriculum (dataset ID 44304) as the starting
point for all OT-based curricula. From this starting point, we construct three distinct curriculaﬂ

o Fasy-to-Easy (E2E): a curriculum learning baseline where each dataset is the easiest (most similar)
with respect to the previous one.

1The detailed order of dataset IDs can be found in Appendix
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o Hard-to-Hasy (H2H): a curriculum learning baseline where each dataset is the most difficult (most
dissimilar) with respect to the previous one.

e Switch: a curriculum learning baseline where the order is decided by switching from the easiest to
the most difficult dataset, iteratively.

It is worth noting that these dataset orders are inherently different from those derived using the TL-based
method in Sect. Unlike the TL-based approach, which calculates similarity relative to ImageNet-1k,
OTDD measures pairwise distances between Meta-Album datasets directly. Additionally, always beginning
with the dataset closest to ImageNet-1k could potentially replicate the shortcomings observed in the E2H
curriculum from Sect. [6.3.1] For this reason, the results of OT-based and TL-based curricula should be
viewed as complementary rather than directly comparable.

For consistency and clarity with the results in Sect. we report the relative accuracy of each curriculum
against the domain-based order inherent in Meta-Album. The results, shown in Fig. reaffirm that
employing a curriculum strategy yields superior performance compared to simply grouping datasets by
domain. Furthermore, it appears that the best-performing curriculum across all datasets is E2E. This
aligns with our expectations, as gradual changes in the observed data encourage the model to accumulate
knowledge over time, avoid forgetting, and build upon prior learning incrementally. Such an approach mirrors
the natural learning processes, which are characterized by steady progress through increasingly challenging
tasks that foster both retention of knowledge and generalization.

7 Unsupervised training
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Figure 12: Relative accuracy of GEOM-U compared to CAMeLU (Vettoruzzo et al.,2025)) in the unsupervised
scenario computed as the performance difference between the two approaches, where CAMeLU is set as the
reference point at zero. GEOM-U is trained on an unsupervised version of Meta-Album following the task
creation mechanism of CAMeLU and using the LOO approach described in Sect. 5} CAMeLU is trained on
ImageNet-1k (Deng et al.l 2009), after removing the labels. The evaluation is performed on few-shot tasks
sampled from the Meta-Album datasets from the left-out domain.

In many real-world scenarios, collecting a large amount of labeled data to train a model is challenging and
impractical. Instead, it is more common to encounter smaller datasets collected from various environments
or domains, often without labels. Motivated by this real-world setting, we extend our analysis to the
unsupervised scenario, investigating whether training on a collection of small-scale, unlabeled datasets can
improve the performance over unsupervised training on a large-scale dataset. We adopt the same rationale
proposed in CAMeL U (Vettoruzzo et al [2025), which generates training tasks from unlabeled data and uses
these tasks to train an in-context learner similar to GEOM. During evaluation, we assume the availability of
standard few-shot tasks, where the context is fully labeled. We refer to this variant of GEOM as GEOM-U
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(GEOM- Unsupervised). The main difference between GEOM-U and CAMeLU is the training data. While
GEOM-U is trained with tasks sampled from the Meta-Album datasets across diverse domains, CAMeLU is
trained on ImageNet-1k (Deng et al.,[2009), a large-scale benchmark that represents a wide data distribution.

To construct tasks, we follow the process outlined in CAMeLU (Vettoruzzo et al., [2025). Let 7; be the
task we want to construct. As detailed in Sect. [3] it consists of K x N context examples and Q query
images. The context samples are generated by randomly sampling N images from an unlabeled training
dataset D" = {z;}. Each sampled image is augmented K times with distinct augmentation functions,
and all augmented versions of a sample z,, are assigned the same pseudo-label n € {1,...,N}. Queries
are created using a two-step process. For each query, a random augmentation is applied to an image x,,
yielding Z, ;, and a strategy inspired by mizup (Zhang et al., 2018) is used to generate the query image
as £ = A\zj + (1 — \)@,;, where A ~ Beta(a, /) and z; is a random example from D" = {z;}. The
same label n as the context sample x,, used for the generation is then assigned to the resulting query z,.
Additional details can be found in the original CAMeLU paper (Vettoruzzo et al., [2025)).

We compare the performance of GEOM-U against CAMeLU, using the architectures described in Sect. [3.3]
and the LOO configuration in Sect. [f] where datasets from an entire domain are excluded during training to
prevent the leakage of information during evaluation. The results, shown in Fig.[I2] and detailed in Tab.
(Appendix , indicate that training an in-context learner on diverse small-scale datasets outperforms
training on a single large-scale dataset like ImageNet-1k, even in the unsupervised scenario. This performance
improvement likely stems from the diversity introduced by the smaller datasets across different domains. The
resulting variability in tasks encourages the model to learn domain-invariant features, rather than simply
associating images and classes. Additionally, since GEOM-U is trained on small-scale datasets, there is a
high chance that multiple images from the same class appear within a single task. Without explicit class
labels, the model is forced to treat these instances as distinct entities, rather than grouping them together,
increasing task complexity. This, in turn, encourages the development of a more flexible and robust learner
capable of handling diverse and unseen data. The only cases where GEOM-U underperforms CAMeLU are
in the Large Animals domain. Due to significant overlap with ImageNet-1k (see Fig. , this domain suffers
from data leakage, giving CAMeLU a significant advantage.

8 Conclusions and future work

This work explored the generalization capabilities of ICL within a meta-learning framework, by shifting from
reliance on vast, unstructured datasets to a more focused, human-inspired approach using multiple smaller,
domain-specific datasets. By aligning training methodologies more closely with the way humans learn, we
demonstrated significant improvements in the ability of ICL models to generalize across tasks. This paradigm
not only fosters broader generalization but also enhances interpretability, modularity, and adaptability. The
smaller datasets allow for greater control over training dynamics, enabling targeted adjustments to the
learning process and facilitating the integration of new data. Our exploration of streaming scenarios further
underscored parallels with human learning. By presenting datasets sequentially, we observed that in-context
learners accumulate knowledge over time, improving their performance without erasing prior learning, a
phenomenon akin to lifelong learning in humans. Curriculum strategies based on dataset difficulty proved
particularly effective, highlighting the importance of structured exposure to tasks rather than random or-
dering in fostering adaptive learning. Since real-world data is often noisy, mislabeled, or entirely unlabeled,
we also evaluated the model’s robustness to label noise (Appendix and found that it maintains strong
performance despite such imperfections. Additionally, our experiments with unsupervised meta-learning
demonstrated that the model can generalize effectively even when trained on pseudo-labeled data derived
from augmentations. This approach opens avenues for deploying in-context learners in resource-constrained
or data-scarce environments, further bridging the gap between artificial systems and natural learning pro-
cesses. These findings altogether highlight the crucial role of data diversity, task design and learning sequence
in unlocking robust generalization across different domains.

Despite the promising outcomes of this study, some open questions remain. For instance, determining the
minimum number of classes or the optimal class-to-sample ratio required for effective learning could refine
dataset design. Addressing dataset imbalance is another key challenge, especially in streaming scenarios
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where data availability may vary. Integrating methods that dynamically weigh datasets during training
could mitigate these challenges and further enhance performance. Moreover, exploring adaptive curriculum
strategies that align task difficulty with the model’s learning progress may offer a more dynamic and effective
training paradigm.

In conclusion, this work proposes a more human-like paradigm for training in-context learners, emphasizing
the importance of structured, diverse, and incremental learning processes. By bridging the gap between
artificial and natural learning paradigms, we take a meaningful step toward developing Al systems capable
of more efficient, robust, and generalizable learning.

9 Broader impact statement

This work advances ICL by leveraging meta-learning and structured, domain-specific datasets for training,
enhancing generalization, adaptability, and modularity. Although GEOM relies on Meta-Album, a collection
designed to ensure balance across diverse domains, it does not prevent the potential misuse of other datasets
during training. In Sect. 5| we highlight the advantage of using small datasets, as they are easier to update
and replace. However, this approach may introduce strong distribution biases and unintended side effects
during inference (Menon et al., 2020). Furthermore, despite their ease of maintenance, small datasets may
suffer from labeling inaccuracies and fail to fully capture the diversity of the training distribution. These
could lead to some categories to be underrepresented. Additionally, reliance on pseudo-labeling and aug-
mentation techniques in unsupervised training introduces potential vulnerabilities. While our experiments in
Appendix [A74] demonstrate that the model is robust to label noise, adversarial attacks remain a concern and
warrant further investigation. Future work should focus on strengthening robustness against such threats
while ensuring ethical and responsible deployment of in-context learners.
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A Appendix

A.1 Default notation

General terms

ICL In-context learning

LLM Large language model

LOO Leave-one-out evaluation

BWT Backward transfer

TL Transfer learning

oT Optimal transport

OTDD Optimal transport dataset distance metric (Alvarez-Melis & Fusi,
2020)

Curriculum learning strategies

Domain-based Sequence of datasets ordered as in Meta-Album
E2H Easy-to-hard curriculum
H2E Hard-to-easy curriculum
E2E Easy-to-easy curriculum
H2H Hard-to-hard curriculum

GEOM training variants

GEOM-IN GEOM trained on ImageNet-1k

GEOM-M GEOM trained on a fully merged version of Meta-Album
GEOM-S GEOM trained sequentially

GEOM-U GEOM trained in an unsupervised manner

Dataset and task

D The set of available datasets D ={D, |a=1,..., A}

pLOO The set of datasets used for evaluation in the LOO scenario
Dlrain A dataset split used during training

Diest A dataset split used during evaluation

T A task sampled for training the model

Trnew A new task sampled for evaluation

S; A sequence generated from the task T;

N-way K-shot Few-shot classification with K examples for each of the IV classes
Q Number of queries per task

Zj An image, or sample

Yj A label associated to sample x;
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Model components

fo

9o
My
L

Meta-Album benchmark

The image encoder (i.e., feature extractor)
The label encoder
The non-causal transformer encoder with linear classification layer

The cross-entropy loss

Meta-Album

LA

SA

P

PD

MI

RS

\Y%

MA

HA

OCR

Meta-Album sizes
(Meta-Album) Micro
(Meta-Album) Mini
(Meta-Album) Extended

Meta-Album releases

(Meta-Album) First
(Meta-Album) Second

(Meta-Album) Third

A benchmark consisting of 30 datasets spanning ten domains
Large Animals domain

Small Animals domain

Plants domain

Plant Diseases domain

Microscopy domain

Remote Sensing domain

Vehicles domain

Manufacturing domain

Human Actions domain

OCR domain

The three different sizes of Meta-Album (Micro, Mini, Extended)
The size called “Micro” in Meta-Album

The size called “Mini” in Meta-Album

The size called “Extended” in Meta-Album

Batches of 10 datasets from distinct domains progressively added to
the benchmark

First release of Meta-Album (10 datasets overall)

The combined set of datasets from the first and second Meta-Album
releases (20 datasets overall)

The combined set of datasets from the first, the second, and the third
Meta-Album releases (30 datasets overall)

Sequential

t A timestamp in 1,...,T

Dirain A train dataset sampled at timestamp ¢

Diest A test dataset sampled at timestamp ¢

Rap Model accuracy on D! after training on DI ™
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Unsupervised

Ty An image with pseudo-label n € {1,..., N}

Zj A randomly sampled image from the training dataset

A A hyperparameter sampled from a Beta(a, 8) distribution
Tn,j An augmented version of image x; with pseudo-label n

Zq A query image

A.2 Experimental details

Datasets. In our experiments, we use the Meta-Album benchmark (Ullah et al.) 2022)E|7 which consists
of a collection of datasets spanning 10 different domains. Compared to other benchmark collections, such
as Meta-Dataset (Triantafillou et al.l [2020) or NEVIS (Bornschein et all 2024), Meta-Album offers a more
balanced dataset distribution while ensuring clear domain separation. The original Meta-Album paper (Ullah
et all 2022) defines a total of 40 datasets, but at the time of writing and experimental setup, only three
releases are available, reducing the number of accessible datasets to 30. Each Meta-Album dataset consists
of RGB images with a fixed resolution of 128 x 128 pixels. For our experiments, we upscale theses images
to 224 x 224 pixels to match the input requirements of a ResNet-50 pre-trained feature extractor.

Meta-Album datasets are organized into releases and sizes. Each release introduces 10 new datasets, one
for each domain. Therefore, when mentioning the First release, we indicate the set of 10 datasets that
originally composed Meta-Album, while Second and Third refer to the collection comprising 10 additional
datasets, each, that were introduced by each release (20 and 30 overall, respectively). The datasets also
vary in size, with three available configurations: Micro, Mini, and Extended. Micro ensures a balanced
distribution, where each dataset consists of 20 classes (with the exception of dataset IDs 44313 and 44312
which have 19 classes), with 40 images per class. Therefore, the total number of images for the 30 datasets
that compose the Third release of Micro is 31920. Instead, Mini is the ideal size for few-shot learning
scenarios as it contains a balanced number of images per class (40), while allowing for a greater number
of classes, reaching up to 706 classes per dataset. This increases task diversity, leading to a total number
of 163200 images in the Third release. Extended is the largest configuration, containing 1384 616 images,
although it contains fewer classes than Mini, as the OCR domain is not included. Table 5| summarizes these
details, while a comparison between the number of classes and images between Mini and Extended for each
dataset of the Third release is provided in Tab. [6]

The dataset splits used in our experiments depend on the specific learning scenario. When evaluating the
generalization on unseen domains, as in Sect. [5] and Sect. [7] training and test datasets do not overlap, thus
the entire dataset can be used either for training or evaluation purposes. In streaming scenarios (Sect.
we allocate 80% of dataset classes for training the model and the remaining 20% for the evaluation phase.
If a dataset is too small, i.e., the 20% split results in fewer than five classes, we increase the evaluation set
size to ensure at least one example per class, allowing us to create a 5-way classification task.

Table 5: Statistics of the Meta-Album collection for Micro, Mini, and Extended sizes, based on the three
available releases. The dataset details are obtained using Python’s pip package openml==0.14.2.

Size #domains #datasets #images min/max #classes min/max #images per class
Micro 10 30 31920 19 /20 40 / 40

Mini 10 30 163 200 19 / 706 40 / 40

Extended 9 27 1384616 19 / 315 1/ 187384

2Meta-Album datasets are downloaded using the openml==0.14.2 version of the OpenML library (Bischl et all [2021) via
the Python pip package.
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Table 6: Dataset information for Mini and Extended splits. For every dataset ID, the overall number of
images and the number of classes used for training/evaluation are defined.

(a) Size Mini of Meta-Album. (b) Size Extended of Meta-Album
Dataset Images Train Evaluation Dataset Images Train Evaluation

44285 12600 252 63 44320 49053 252 63
44298 4800 96 24 44331 20480 96 24
44305 2000 40 10 44338 37317 40 10
44282 3440 69 17 44317 473237 7 19
44292 4080 82 20 44326 75222 82 20
44306 4160 84 20 44340 170491 94 23
44283 4080 82 20 44318 8189 82 20
44293 1000 20 5 44327 120688 20 5
44302 1000 20 5 44335 15122 20 5
44286 1520 31 7 44321 54305 31 7
44299 1000 20 ) 44332 1596 21 )
44303 1080 22 ) 44336 2549 22 5
44281 1320 27 6 44316 4060 27 6
44297 760 14 5 44330 5530 14 5
44308 840 16 5 44342 15050 16 5
44290 1800 36 9 44324 31500 36 9
44300 1800 36 9 44333 36707 36 9
44307 1520 31 7 44341 43821 32 8
44289 7840 157 39 44323 16185 157 39
44295 840 16 5 44329 9625 16 5
44309 1040 21 ) 44343 138367 21 5
44288 2560 52 12 44322 8675 52 12
44294 1880 38 9 44328 5640 38 9
44304 10000 200 20 44337 25000 200 50
44284 2920 59 14 44319 10416 59 14
44291 1560 32 7 44325 3389 32 8
44301 1160 24 5 44334 2402 24 5
44287 28240 565 141
14296 93940 565 141 Total 1384616 1597 395
44310 28120 563 140
Total 163200 3270 810
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We also include external datasets for evaluation purposes. We use ImageNet-1k (Deng et al., 2009) both as
a baseline and to compute the overlap with class names and concepts between the classes in ImageNet-1k
and Meta-Album. As described in Sect. [d] when searching for the exact match, we extract the names of the
classes from the label files of each dataset, pre-process them by removing any underscore and apostrophe,
and make the whole word lowercase. If a label in ImageNet-1k is defined by multiple names, from the coarsest
to the finest, we select only the finest word. However, this analysis might overlook several minor differences,
misspelled items, and hyphenated words. For this reason, we take a step further and try to identify related
concepts by means of CLIP (Radford et al., [2021) embeddings of the label names. We take the same pre-
processed words, exclude those that had already found a match with the previous technique, and embed
them with the aforementioned feature extractor. For each dataset, we then compute the cosine similarity
between each embedded word in ImageNet-1k and every word that is still unmatched in the current dataset
and we keep the highest score for each word. To set a general threshold that could fit all the datasets, we
compute the 90" percentile of the similarity distribution for each dataset, in order to only keep matches
that have high similarity. Then, we select the median value among all the datasets’ percentiles and we define
a threshold set at 0.83.

We also consider different datasets for evaluation purposes, as described in Section [3.3] For each dataset,
we only use the test split generated following the splits proposed in the previous literature. In particular, we
considered CIFAR-fs which consists of 20 classes for testing (Bertinetto et al., [2019)); CUB (Wah et al. [2011)),
which consists of 30 classes in the test set; Aircraft (Triantafillou et al. |2020) with only 15 classes in the test
split; Meta-iNat (Wertheimer & Hariharan, |2019) consists of 227 classes reserved for testing. For EuroSat
(Helber et al [2018)) and ISIC (Codella et al., 2018), which were not initially meant for meta-learning, we
use all their classes in test, which are 10 and 7, respectively.

Training details. We build each training episode as an N-way K-shot classification task, where N and K
are fixed to 5. Following the same model architecture as in |[Vettoruzzo et al.| (2025, we use a ResNet-50 (He
et al., |2016) feature extractor fy, pre-trained on ImageNet-1k and a class encoder g, consisting of a single
learnable layer that maps the N class labels to a dimensionality of 256. The non-causal transformer consists
of 8 encoder layers, each incorporating a multi-head self-attention block with 8 attention heads, an MLP
with a reverse bottleneck of 3072 (with GeLU activation function), and an input-output feature size of 2304,
which corresponds to the concatenation of feature label (with a size of 2048) and the class label features
(with a size of 256). Finally, a single-layer classifier maps the transformer output to the predicted category.
The episodic training is performed for 300000 iterations with the Adam optimizer, an initial learning rate
set at 107°, and a warmup cosine scheduler. When referring to epochs and episodes, we define an epoch
as a collection of 500 iterations, after which the trainloader is re-initialized. The total number of epochs is
set to 600. For the subsequent evaluation, the best-performing model is saved as the one resulting in the
highest validation accuracy across 50 000 new tasks, sampled from D¢ q = 1,--- | A. The code is written
in Python and the experiments are run on an NVIDIA A100-SXM4 GPU with 40GB of VRAM for faster
execution. However, the model can also be run and debugged on consumer hardware, such as an NVIDIA
GeForce RTX 3070 Ti Laptop GPU.

When selecting a dataset to sample a task from, our study defines three main approaches. The first, used in

the supervised (offline) scenario detailed in Sect. [p|and in the offline baseline in Sect. select each dataset
with a probability p(D,) = %,
Deep '@
approaches refer to the streaming scenario described in Sect. where datasets are processed sequentially.
In the proportional approach, the number of training iterations allocated to each dataset depends on the

size of the dataset. Given a total number of iterations I (set to 300000 by default), each dataset D, receives

ensuring larger datasets are sampled more frequently. The other two

I,=1- % iterations before advancing to the next dataset. In contrast, the static approach assigns
DaeD ' ¢
each dataset an equal number of iterations I, = %, ensuring uniform training time across datasets.

Lastly, for the unsupervised part, we follow what is described in [Vettoruzzo et al. (2025)). We use the same
sampling strategy as in supervised (offline) learning, but we assume no labeled data are available during
training. We randomly draw N samples from a dataset D, and augment images to reconstruct the same
N-way K-shot problem. Each support image is augmented K times, with an augmentation function Ay
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sampled from a predefined set of transformations A. Queries go through a two-step augmentation process
to enhance diversity and increase the task complexity: firstly, K queries are generated from the same image
x; via another set of augmentations 4; and then mixed with an external sample z; drawn from the same
dataset D, with the following method: z, = Az; + (1 — A\)@,, ;, where A ~ Beta(a, 5) with a =1,8 =1 and

A€ (0,0.5).

A.3 Optimal transport curricula
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Figure 13: Heatmap representing the dataset similarity for all datasets in Meta-Album Mini computed with
OTDD (Alvarez-Melis & Fusi, 2020). The lower the number the closer/more similar are the datasets.

Using OTDD (Alvarez-Melis & Fusi, [2020)), we construct three curricula for our experiments based on the

dataset distance in Fig.

o FEasy-to-Easy (E2E): [44304, 44310, 44295, 44309, 44306, 44292, 44303, 44285, 44293, 44302, 44305,
44298, 44291, 44289, 44301, 44284, 44294, 44283, 44288, 44286, 44307, 44290, 44300, 44296, 44287,

44282, 44297, 44299, 44281, 44308];

o Hard-to-Hard (H2H): [44304, 44308, 44281, 44290, 44299, 44307, 44297, 44300, 44287, 44286, 44296,
44288, 44282, 44302, 44310, 44301, 44306, 44294, 44283, 44309, 44305, 44295, 44293, 44284, 44289,

44303, 44292, 44285, 44298, 44291];

o Switch (Switch): [44304, 44308, 44290, 44281, 44297, 44307, 44300, 44299, 44282, 44286, 44293,
44287, 44296, 44288, 44302, 44310, 44295, 44283, 44285, 44294, 44292, 44301, 44305, 44306, 44309,

44284, 44291, 44289, 44298, 44303].
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Figure 14: Dataset similarity for all datasets in Meta-Album Mini computed with OTDD
. A column is assigned to each dataset and it shows the dataset IDs ordered from the eas-
iest/similar (bottom) to the most difficult/dissimilar (top) dataset. Datasets with the same colors are
associated with the same domain: blue for Large Animals, orange for Small Animals, green for Plants, red
for Plant Diseases, purple for Microscopy, brown for Remote Sensing, pink for Vehicles, gray for Manufac-
turing, yellow for Human Actions, light blue for OCR.

In addition to reporting the distance values, Fig. [14] visualizes the dataset similarity relationships. The x-
axis represents the starting dataset, while the y-axis orders all other datasets from most similar (bottom) to
most dissimilar (top). Colors indicate the domain to which each dataset belongs. As previously mentioned,
distances are computed using the Micro size of the datasets rather than Mini. However, since the model
is trained and evaluated on Mini, we report only the Mini dataset IDs for simplicity. The corresponding
dataset IDs for both the Micro and Mini size of Meta-Album are listed in Tab. [7

Table 7: Dataset IDs for Micro and Mini sizes of Meta-Album.

Domain Micro dataset IDs Mini dataset IDs

Large Animals | 44241 44313 44275 | 44285 44298 44305
Small Animals | 44238 44248 44276 | 44282 44292 44306
Plants 44239 44249 44272 | 44283 44293 44302
Plant Diseases | 44242 44314 44273 | 44286 44299 44303
Microscopy 44237 44312 44278 | 44281 44297 44308
Remote Sensing | 44246 44315 44277 | 44290 44300 44307
Vehicles 44245 44251 44279 | 44289 44295 44309
Manufacturing | 44244 44250 44274 | 44288 44294 44304
Human Actions | 44240 44247 44271 | 44284 44291 44301
OCR 44243 44252 44280 | 44287 44296 44310

A.4 Robustness to label noise

A key challenge in evaluating GEOM is understanding its reliance on input-label mappings in the demonstra-
tions to perform a task. In real-world scenarios, mislabeling errors or label noise during pre-processing, as
well as challenges in assigning correct labels to certain samples, can lead to incorrect input-label mappings.
To simulate this, we introduce perturbations in the input-label mapping for a subset of examples, varying
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Figure 15: Model robustness to input-label mapping perturbations by varying the proportion of correctly
labeled examples in the demonstrations 100-90-75-50% (corresponding to 0-2-6-12 mislabeled examples) at
test time. Only the datasets in the first release of Meta-Album Mini are shown for simplicity.

the proportion of correctly labeled instances in the test task context. The results, illustrated in Fig. [I5]
reveal that the model remains robust to label perturbation even when only 75% of the labels in the task
context are correct. This aligns with the findings in Min et al.| (2022b)), suggesting that meta-training with
an explicit in-context learning objective encourages the model to rely less on the input-label mapping and
instead leverage other aspects of the demonstrations to make predictions. The complete results are reported

in Tab. [l

Additionally, we examine the effects of applying label perturbations exclusively during the training phase.
The results indicate that the model effectively exploits the task context for test time predictions rather than
relying on memorized input-label mappings from training. Indeed, if the model were memorizing erroneous
mappings, this would result in significant performance degradation during testing, which is not observed
in Tab. Interestingly, introducing minor label perturbations (e.g., 10% of the demonstrations) during
training acts as a form of regularization 2021), improving the model’s ability to generalize across
domains, even with more challenging tasks.
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A.5 Additional results - Offline learning

Table 8: Comparison between GEOM trained on Meta-Album Mini and on Meta-Album Extended. The
training is performed following the LOO setting described in Sect. [f] and the performance is evaluated on
the datasets from the left-out domain. The dataset IDs differ between the Mini and Extended sizes, and
they are reported here as they appear in the Meta-Album website (Ullah et al., 2022)). OCR is not part of
the Extended size of Meta-Album. Results show the average across three complete runs of the algorithms.

Large Animals

44285 44298

Small Animals

Plants

Plant Diseases

44305 44282 44292 44306 44283 44293 44302 44286 44299 44303
Mini 73.34+1.34 63.03+3.03 76.22+1.62 78.05+0.75 52.344+0.75 55.72+0.35 7838+1.22 51.14+0.74 37.92+0.54 7835+1.06 87.75+0.76 58.02+0.76
44320 44331 44338 44317 44326 44340 44318 44327 44335 44321 44332 44336
Extended 73.15+1.86 59.44+238 67.61+3.19 76.24+1.78 51.954+1.12 54.67+1.79 7835+0.19 51.98+1.27 3857+0.25 78.01+0.47 85.49+0.89 58.6 £ 0.6
Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309
Mini 79.41£0.55 30.64£0.56 31.53+£0.27 69.74+£0.62 82.28+1.33 68.45+£1.56 42.39+1.29 57.11+£0.52 36.78=£0.94
4316 44330 44342 44324 44333 44341 44323 44329 44343
Extended 77.30+0.59 31.98+0.34 32.01+0.92 68.50+0.40 85.58+0.43 67.58+0.49 43.97+1.98 47.66+0.39 36.71+0.98
Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310
Mini 73.05+0.99 56.34 £0.72 87.36+0.69 72.66+1.00 55.94+1.61 53.50+2.97 30.47+0.31 26.68+0.47 39.16+0.22
44322 44328 44337 44319 44325 44334 - - -
Extended 92.11+0.60 61.62+0.37 96.91+0.18 74.00+2.36 55.33 £2.57 55.06+4.15 - - -

Table 9: Performance comparison among GEOM, GEOM-M, and GEOM-IN across all Meta-Album (Mini)
datasets. The training is performed following the LOO setting described in Sect. [5| (for GEOM and GEOM-

M) and on ImageNet-1k (Deng et all 2009) for GEOM-IN. The performance is then evaluated on the

Meta-Album datasets in the left-out domain. The bold font highlights the best-performing approach for
each dataset. Results show the average across three complete runs of the algorithms.

Large Animals

44285 44298 44305 44282

Small Animals

Plants

44292 44306 44283 44293

Plant Diseases

44302 44286 44299 44303

GEOM 73.34 + 1.34 63.03 + 3.03 76.22 +1.62 78.05 4+ 0.75 52.34 +0.75 55.724+0.35 78.38+1.22 51.144+0.74 3792+054 7835+1.06 87.75+0.76 58.02+0.76
GEOM-M  71.774+0.41 63.97 4 0.36 68.38+0.30 78.37+0.56 51.25+0.86 54.09 + 1.50 76.57 + 1.51 47.16 £ 2.00 36.35 4 0.26 77.16 +0.88 86.65+1.13 57.714+0.29
GEOM-IN  90.33+0.44 9849+0.10 95.88+0.02 7429+0.71 55.14+043 6298+0.81 75.14+1.35 48.25 £ 1.50 37.54 +1.52 67.53 +2.59 80.11 4 4.00 47.46 £ 0.64
Microscopy Remote Sensing Vehicles

44281 44297 44308 44290 44300 44307 44289 44295 44309
GEOM 79.41+0.55 30.64+0.56 31.53+0.27 69.74+0.62 8228+1.33 6845+156 4239+129 57.11+052 36.78+0.94
GEOM-M  78.67+0.66 30.64+092 30.36+0.55 67.96+0.66 81.58+0.43 66.11+1.59 4547+1.20 57.44+0.59  35.19+0.08
GEOM-IN 71.78+1.25 30.81+0.64 30.82+0.63 6837+1.01 79.33+2.84 67.42+247 57.04+0.61 52.83+1.80 46.08+0.60

Manufacturing Human Actions OCR

44288 44294 44304 44284 44291 44301 44287 44296 44310
GEOM 73.05+£0.99 56.34+0.72 87.36+0.69 72.66+1.00 5594+1.61 53.50+£297 3047+0.31 26.68+0.47  39.16 +0.22
GEOM-M  71.32+0.18 5833+0.31 85.51+£0.26 7424+0.18 55.76+0.32 55.72+0.54 31.14+0.36 26.77+0.26  39.92+0.26
GEOM-IN 85.52+1.41 66.66+0.80 94.93+0.80 8891+0.63 8246+0.76 67.44+040 31.86+0.81 29.17+0.06 41.63+1.10
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Figure 16: Comparison of GEOM training only on datasets from the first release (First, 9 datasets), on
datasets from the first and second releases (Second, 18 datasets), and on datasets from all three releases
(Third, 27 datasets) of Meta-Album Mini. The training is performed following the LOO setting described in
Sect. |5}, and the performance is evaluated on the datasets from the left-out domain (represented with blue,

orange, and green colors).

Table 10: Comparison of GEOM training only on datasets from the first release (First, 9 datasets), on
datasets from the first and second releases (Second, 18 datasets), and on datasets from all three releases
(Third, 27 datasets) of Meta-Album Mini. The training is performed following the LOO setting described
in Sect. o] and the performance is evaluated on the datasets from the left-out domain. Results show the

average across three complete runs of the algorithms.

Large Animals Small Animals Plants

Plant Diseases

44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303
First 52.38+1.97 4526+2.18 59.88+2.18 7594+0.22 47.70+0.72 48.83+299 67.18 £1.43 42.56+0.71 34.434+2.06 73.58+0.89 84.22+1.13 52.43+0.61
Second  62.69+0.46 54.79+1.96 70.41+0.57 77.03+0.80 49.86+0.75 51.64+0.38 74.22+0.98 48.84+0.85 36.55+1.27 75.12+0.78 86.74+0.45 57.00+0.13
Third 73.34+£1.34 63.03+3.03 76.22+1.62 78.05+£0.75 52.344+0.75 55.72+£0.35 7838+£1.22 51.144+0.74 37.92+0.54 7835+1.06 87.75+0.76 58.02+0.76
Microscopy Remote Sensing Vehicles

44281 44297 44308 44290 44300 44307 44289 44295 44309
First 76.23+0.54 28.38+0.53 28.79+0.74 61.77+£0.71 74.56+1.10 60.43+1.17 38.59+1.46 51.21+0.32 32.15+0.08
Second T7.50+1.66 28.99+0.32 29.71+0.36 63.51+0.39 75.40+0.89 62.74+0.78 42.27+1.04 55.03+0.58 34.17+1.12
Third  79.41+0.55 30.64+£0.56 31.53+0.27 69.74+0.62 8228 +1.33 68.45+1.56 42.39+1.29 57.11+0.52 36.78 £0.94

Manufacturing Human Actions OCR

44288 44294 44304 44284 44291 44301 44287 44296 44310
First 74.43+£2.10 53.70+0.81 8430+0.71 62.83+£3.06 45.32+4.32 4816+3.27 30.02+1.25 26.53+£0.92 36.56 £ 1.02
Second 74.29+2.21 52.75+0.30 85.71+1.66 65.89+1.35 51.58+3.31 49.07+2.58 29.85+0.54 26.74+0.69 37.86=+0.87
Third — 73.05+0.99 56.34+0.72 87.36£0.69 72.66+1.00 55.94+1.61 53.50+297 30.47=+£0.31 26.68+£0.47 39.16+0.22
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Table 11: Model robustness to input-label mapping perturbations by varying the proportion of correctly
labeled examples in the demonstrations 100-90-75-50% (corresponding to 0-2-6-12 mislabeled examples) at
test time. The model is trained on all the Meta-Album datasets and the evaluation is performed on the test
set of each dataset. Results show the average across three complete runs of the algorithms.

Large Animals Small Animals Plants Plant Discases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303
100% correct  96.53 +0.09 95.54 +0.31  95.50 £0.59 80.70 +£0.32 56.99+0.40 75.04+0.77 91.18£0.564 59.47+1.06 35.37+2.06 56.26+2.18 86.69+2.42 49.49+ 1.68
90% correct 95.9240.22 95.074+0.39 94.77+£1.66 76.17+0.24 53.83+0.16 73.77+1.15 90.88+0.15 55.51+0.38 32.26+1.70 57.054+3.33 83.30+2.47 50.14+0.50

75% correct  93.37+0.31 91.79+0.35 90.124+2.01 72424044 47.72+0.79 67.87+1.30 85.90+0.23 51.53+1.70 31.02+0.19 50.80 £2.95 76.49+1.80 46.16 +0.66
50% correct 7256 £1.31 70.44+£2.29 67.14+0.79 54.67+1.67 3584+£1.13 51.16+£0.26 63.96+1.08 42.46+3.35 27.80£0.08 39.60+2.38 63.824+4.21 37.75+0.61

Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309

100% correct  73.23£0.59 32.43+2.78 30.74+0.78 81.74+0.66 94.29+0.34 75.17+2.15 7223+041 71.21+1.81 51.53+2.36

90% correct  70.88 £1.77 31.21+£250 29.88+0.58 80.17+0.73 93.66+0.29 72.87+1.78 70.19+£0.06 70.13+0.84 57.84+1.99
75% correct  66.42+1.69 28.53+1.12 27.90+2.00 74.37+£0.37 89.18+0.48 68.36+1.86 65.37+0.27 60.93+1.35 53.42+0.75
50% correct  48.80£1.00 26.62+1.40 24.66+2.34 54.76+0.13 68.65+1.11 50.84+0.73 49.12+0.61 46.57+6.51 39.76 +1.54

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310
100% correct  90.04 +£2.56 72.89 +1.05 98.34+0.15 85.26 +£2.55 68.86+1.55 57.33+2.59 61.98+0.25 57.03+0.27 72.60+0.42

90% correct  91.58 £2.97 69.38 +£1.25 98.00+0.16 81.544+1.80 67.93+1.26 57.01+2.53 59.59+0.16 54.53+0.19 70.42+0.58
75% correct  87.71+2.59 63.97+2.28 96.62+0.27 75.68+£2.40 60.69+2.09 53.24+0.99 53.85+0.22 49.01£0.79 64.54 +0.34
50% correct  64.10£0.85 46.28 £0.87 77.06£0.05 57.744+1.04 44.26+0.57 37.18 £1.74 41.11+£0.06 37.43+0.66 48.29+0.32

Table 12: Model robustness to input-label mapping perturbations by varying the proportion of correctly
labeled examples in the demonstrations 100-90-75-50% (corresponding to 0-2-6-12 mislabeled examples) at
training time. The model is trained on all the Meta-Album datasets and the evaluation is performed on the
test set of each dataset. Results show the average across three complete runs of the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303
100% correct  96.53 +0.09 95.54+0.31 95.50 £0.59 80.70+£0.32 56.99+0.40 75.044+0.77 91.18 £0.54 59.47+1.06 35.37+2.06 56.26+2.18 86.69+2.42 49.49+1.68
90% correct 96.4240.24 95414028 94.73+£0.85 78.26+0.18 55.51+1.06 7536099 91.24+£0.32 60.48+1.55 34.084+0.89 59.12+£2.28 86.72+£2.59 51.224+0.89

75% correct  96.34£0.08 9520 £0.39 95.01£1.35 77.65+0.34 55.52+0.78 75.26+1.62 90.89+0.51 58.77+2.82 33.56+2.70 59.66+1.54 83.74+1.61 51.40+2.15
50% correct  94.65+0.29 89.82+1.93 91.194+1.33 73.87+0.13 50.23+1.22 71.09+0.62 87.43+0.29 46.66+3.63 30.14+3.51 49.44+2.73 7835+6.52 45.38+2.62

Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309

100% correct  73.23 +£0.59 32.43+2.78 30.74+0.78 81.74+0.66 94.29+0.34 75.17+2.15 7223+0.41 71.21+1.81 51.53+2.36

90% correct  74.43 £1.67 32.55+292 2850+ 1.59 8248+0.62 94.44+0.40 75.94+1.66 72.01+£0.15 69.79+4.42 58.94+1.73
75% correct  71.79+1.10 32.37+2.25 27.80+2.32 8L.75+£0.70 95.04+0.65 74.10+2.24 71.77+0.58 72.24+0.94 55.20 +2.98
50% correct  63.74 £6.08 29.70 £3.45 26.46 £2.05 75.494+2.23 92.99+0.46 68.88+1.48 67.46+1.06 54.17+4.67 41.64+1.46

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310
100% correct  90.04 £2.56 72.89 +£1.05 98.34+0.15 85.26+2.55 68.86+t1.55 57.33+£2.59 61.98+0.25 57.03+0.27 72.60+0.42

90% correct  92.94+0.74 72.29+1.94 98.55+0.18 82.85+240 70.77+0.81 60.04+1.32 61.76£0.66 56.05+0.18 71.83+0.38
75% correct  92.63+1.81 72.85+1.45 98.45+0.22 83.48+1.47 70.76+1.80 61.88+1.13 60.03+£0.25 54.32+0.16 70.43+0.34
50% correct  92.14+1.06 67.55+5.38 97.64+0.23 78.02+1.19 56.03+4.78 47.20+4.70 53.31 £0.67 47.47+047 64.34+0.84
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A.6 Additional results - Sequential learning

Table 13: Comparative results of GEOM-S assigning to each dataset the same number of epochs (static)
or a proportion dependent on the size of each dataset (proportional). The offline baseline can be seen as
an oracle baseline as all datasets are available simultaneously during training (non-sequential approach). In
this setting, the training split of each dataset is used for sampling training tasks, while the performance is
evaluated on the test split, as described in Sect. [f] Results show the average across three complete runs of
the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303
Static 95.34+£0.04 94.734+0.54 92.60+1.94 76.83+£0.77 5L.75£0.62 72.97+£0.79 89.80+0.85 52.23+244 36.64+1.32 59.92+1.14 8234+£0.72 48.04+2.18
Proportional  95.77£0.33 95.06 £0.25 94.714+1.22 75.75£0.46 52.10+£0.48 73.74+048 89.66+0.76 54.02+2.81 33.35+£1.30 5581£0.77 81.90+1.55 47.57x1.11
Offline 96.53+£0.09 95.544+0.31 95.504£0.59 80.70£0.32 56.99+£0.40 75.04+£0.77 91.18 £0.54 59.47+1.06 35374206 56.26+£2.18 86.69+£2.42 49.49+1.68
Microscopy Remote Sensing Vehicles

44281 44297 44308 44290 44300 44307 44289 44295 44309
Static 71.66+1.39 31.294+0.84 30.064+1.79 79.554+0.86 94.004+1.24 70.65+0.74 71.46+0.11 70.65+1.91 57.81+1.59
Proportional 72.27+1.28 31.33+0.26 27.56+1.32 76.30+£1.26 90.74+1.57 7040+1.11 71.98+0.32 71.68+£0.74 59.44+0.98
Offline 73.23+£0.59 3243+£278 30.74+0.78 81.74+0.66 94.29+0.34 75.17+£215 7223+041 71.214+1.81 51.53+£2.36

Manufacturing Human Actions OCR

44288 44294 44304 44284 44291 44301 44287 44296 44310
Static 93.694+0.34 7472+138 98.61£0.07 81.51+£1.30 69.14+142 5814£5.26 39.13+£0.61 30.65+0.14 47.23+1.03
Proportional 87.56 +£0.52 70.45+1.14 96.87+0.59 81.11+1.93 64.34+1.24 57.71+£3.05 63.52+0.25 62.75+0.30 73.57+£0.23
Offline 90.04+£2.56 72.89+1.05 98.34£0.15 8526+£2.55 68.86+1.55 57.33+£259 61.98+£0.25 57.03+£0.27 72.604+0.42

Table 14: Accuracy results of GEOM-S using different TL-based curricula: easy-to-hard (E2H), hard-to-easy
(H2E), and domain-based order. The same number of epochs (20) is assigned to each dataset, using the
static approach in Sect.[6.1} The bold font highlights the best-performing approach for each dataset. Results
show the average across three complete runs of the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303
E2H 96.00 £0.27 95244021 92.63+£0.85 76.15+0.38 55.14+0.29 7478+£0.46 88.38+£0.86 53.98+2.85 3554+0.76 54.38+£1.18 82.00+£3.22 46.97+ 1.42
H2E 95.97+0.31 9547+041 9555+0.80 79.18+0.54 56.2840.61 76.66+048 91.21+0.51 57.03+1.32 3598+3.08 63.19+155 88.17+1.36 50.16+1.49

Domain-based  95.34 £0.48  94.734+0.54  92.60+1.94 76.83+0.77 51.754+0.62 72.97+0.79 89.80+0.85 52.234+2.44 36.64+1.32 59.92+1.14 82344072 48.04£2.18

Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309
E2H 66.29 £4.38 27.93+1.12 2731+£224 79.144+099 85.89+£1.00 63.124+1.07 71.10£049 68.78+3.12  57.23 £5.69
H2E 73.80+2.71 31.52+1.47 30.17+043 8322+130 9513+0.72 73.12+1.18 72.53+0.60 72.88+3.38 62.37+1.26

Domain-based  71.66 +£1.39  31.29+0.84 30.05+1.79 79.55+0.86 94.00+1.24  70.65+0.74 71.46+0.11 70.65+1.91  57.81+£1.59

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310
E2H 83.46 £4.97  61.43+2.69 96.49+0.92 74.94+0.67 52.97+4.69 55.87+4.51 50.10+0.24 37.05+0.50 58.67 £ 0.61
H2E 91.85+1.58 75.94+0.49 97.50+0.03 84.11+2.10 71.10+1.24 62.81+1.76 49.51+0.59 41.04+0.62 62.17+0.60

Domain-based 93.69 +£0.34 74.72+1.38 98.61+0.07 81.51+1.30 69.14 +1.42 58.14 + 5.26 39.13 £0.61 30.65 £0.14 47.23 £1.03
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Table 15: Accuracy results of GEOM-S using different OT-based curricula: easy-to-easy (E2E), hard-to-hard
(H2H), Switch, and the domain-based order. The same number of epochs (20) is assigned to each dataset,
using the static approach in Sect. The bold font highlights the best-performing approach for each
dataset. Results show the average across three complete runs of the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303
E2E 96.94+0.22 9590+0.07 9488+0.16 7837+0.36 53.80+0.59 74.88 4 0.60 91.18 £ 0.71 55.93 +1.92 35.16 4 0.90 57.27+3.11 88.00+2.58 47.74+0.54
H2H 92.66+£0.37 87.00+£0.56 94.05+1.31 77.44+1.06 55164018 75414075 91.44+054 57.25+3.34 3580+0.65 60.12+3.71 87.36+1.79 50.14+1.71
Switch 96.45 +0.12 91.19 £ 3.71 94.85 + 1.45 77.85+£0.69 56.84+0.58 76.28+0.52 91.02+0.34 53.90+2.34 36.55+2.30 61.70+2.82 85.31+1.36 45.39 + 1.35
Domain-based 9534+ 048  9473+£0.54  92.60+1.94  76.83+0.77 5L75+0.62 72974079 89.80+£0.85 52234244 36.64+1.32 5992+ 114 8234+0.72 48.04+2.18
Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309
E2E 71.02+1.28 31.47+247 29.194+2.16 82.30+0.96 94.30+0.54 72.13+080 7230+0.84 73.31+2.09 61.78+1.33
H2H 70.21 +£2.44 29.09+0.06 30.05+1.57 78.85+1.47 93.04 + 0.36 71.55 +1.09 69.76 £+ 1.06 72.21+1.43 60.51 + 3.47
Switch 70.49 +2.31 30.06 + 0.63 29.12+1.29 78.21 +£1.88 91.81 + 1.46 70.73 £ 2.32 62.88+0.33 73.57+0.67 59.42 4 0.57

Domain-based ~ 71.66 £1.39  31.294+0.84  30.05+1.79  79.55+0.86 94.00+1.24 70.65+0.74  71.46+0.11 70.65+1.91 57.81 £1.59

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310
E2E 88.54 +1.91 68.71+£0.77  97.83 £0.95 82.89 +0.31 67.62+0.76 62.70+2.10 55.76 £0.33 49.26 +0.56 69.69 + 0.76
H2H 89.77+3.40 70.86+0.48 98.03 £0.22 82.82+1.23 62.92 +2.38 59.21 +2.35 51.17+0.26 50.93+0.36 69.82+0.68
Switch 89.36 £0.08 71.85+0.95 98.34+0.10 84.01+1.60 69.62+1.88 59.98+0.88 52.55 = 0.61 49.90 £0.67 68.24 £0.72

Domain-based 93.69 £0.34 74.72+1.38 98.61+£0.07 81.51+1.30 69.14 +1.42 58.14 £+ 5.26 39.13£0.61 30.65 £0.14 47.23 £1.03

A.7 Additional results - Unsupervised learning

Table 16: Comparison between GEOM-U and CAMeLU (Vettoruzzo et al., [2025). GEOM-U is trained
with the LOO approach described in Sect. [5|on Meta-Album Mini removing the class labels during training,
while CAMeLU is trained on ImageNet-1k. The bold font highlights the best-performing approach for each
dataset. Results show the average across three complete runs of the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303
GEOM-U  84.49 £0.53 78.43 £1.30 83.43+1.06 84.70+0.12 5851+0.38 66.71+0.50 90.10+0.14 60.34+0.51 45.04+0.29 87.47+0.63 92.74+0.29 62.31+0.62
CAMeLU  90.69+0.19 96.34+0.16 93.03+0.29 80.28 +0.34 56.93 £ 0.27 62.09 £ 0.88 82.25 £0.28 52.13 +0.49 41.34 £0.91 81.01£0.20 87.56 = 1.53 55.54 £ 0.41

Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309

GEOM-U 81.97+0.41 34.40+0.56 34.30+0.58 80.22+0.64 92.31+0.24 7849+0.74 61.58+0.59 57.32+0.38 46.55+0.57
CAMeLU  81.45+£0.09 33.654+0.26 34.01£047 79.60+0.36 91.57+£0.10 78.02+0.37 53.31+£0.23 54.10+047 43.11+1.11

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310

GEOM-U 97.49+0.08 74.97+1.08 99.32+0.05 89.20+0.38 77.27+£0.50 72.57+0.21 38.27+0.10 32.60+0.30 45.74+0.18
CAMeLU 9581 +£0.45 76.62+0.53 98.99+0.19 90.52+0.22 79.82+0.25 72.20+0.61 29.06+0.39  27.04+£0.36  39.274+0.44
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