
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONDITIONAL DEONTICS OVER TERMINALS: A
MILDLY CONTEXT-SENSITIVE FORMAL GRAMMAR
FOR CONSTRAINED DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Constrained decoding researchers have recently thought to extend context-free
constrainers to context-sensitive constraints such as matching selected columns to
tables in text-to-SQL. This is challenging, because context-sensitivity is achieved
by cross referencing different subtrees in the syntactic structure, which is only
partially available during LLM generation. Recent frameworks such as IterGen
gain some context sensitivity but with drawbacks including the need for expen-
sive backtracking or speculative lookahead of LLMs, overly permissive semantics
risking over-constraint, and complications in interfacing with works on improving
running speed such as XGrammar. To address these concerns, we propose a new
mildly-context-sensitive formal grammar called Conditional Deontics over Ter-
minals (CDoT). Its incremental parser has O(n3) time complexity each step and
allows for GPU acceleration, compared to the O(n8) of mildly context-sensitive
tree-adjoining grammars and the O(n2) of context-free grammars. This new for-
mal grammar is strong enough to implement the unit propagation algorithm, which
we employ to assist an LLM in solving the “Knight and Knave” logical puzzle,
achieving substantially improved performance at reduced output token budget. We
also evaluate on the traditional constrained decoding task of text-to-SQL.

1 INTRODUCTION

Constrained decoding allows programmatic control of inference-time LLM behavior without mod-
ifying model weights or engineering prompts. Prior work has successfully employed it to enforce
programming language specifications, molecular structures, and privacy requirements (Ugare et al.,
2025; Loula et al., 2025; Scholak et al., 2021; Poesia et al., 2022).

As the technique matures, works have emerged that improve various aspects of it. One line of inquiry
pushes for constraints of higher complexity class via speculative look-ahead or LLM backtracking
(Ugare et al., 2025; Loula et al., 2025). This is not only computationally expensive—requiring user
code to access and modify parser states—but also complicates integration with runtime optimization
methods such as XGrammar (Dong et al., 2025). The semantics allowed by such frameworks can
also sometimes be overly permissive and risk hazardous over-constraints that are difficult to detect.

To address these concerns, we design a new formal grammar for constrained-decoding, with the aim
of shielding users from the complexities of constrainer internals while providing researchers with a
stable target interface. Our contributions are:

• We design a new formal grammar that offers context-sensitivity in practical use cases and
can be efficiently parsed incrementally at O(n3) each step.

• Our formal grammar allows invocation of Python functions for added flexibility, while
eliminating the need for user code to access and modify parser state.

• We implement a GPU-accelerated parser for our grammar by extending an incremental
Valiant recognizer.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Example: a generated symptom should constrain the associated condition that is generated.
But when CONDITION is being generated its ancestor structure (dashed lines) has not yet been
determined due to the nature of incremental parsing. Knowing the possible ancestor structures is
important, as the symptom-condition constraint should fire on the left tree but not the right.

2 RELATED WORK

Incrementally Parsable Mildly Context-sensitive Grammars: Constrained decoding relies on
incremental parsers capable of maintaining the valid-prefix property. Despite a diverse selection of
mildly context-sensitive grammars (Joshi & Schabes, 1997; Vijay-Shanker & Weir, 1993; Okhotin,
2001; Mrykhin & Okhotin, 2023; Barash & Okhotin, 2014), such grammars are often not designed
with the goal of efficient constrained-decoding in mind. For example, Tree-Adjoining Grammars
have an O(n8) step time-complexity (Schabes, 1991). The recently published grammar with one-
sided context (Barash & Okhotin, 2014) within the conjunctive grammar family overlaps with the
goal of constrained decoding, but is currently a theoretical construct applied only to toy grammars.

Constrained Decoding with Context Sensitivity: Context-sensitivity may reference across sub-
trees, as in fig. 1 where the SYMPTOM subtree must be observed to determine which CONDITIONs
are allowable. In the case of constrained decoding, an incremental process, the ancestor nodes are
unavailable at the time a constraint must be applied. Earlier work such as PiCARD (Scholak et al.,
2021) ignored ancestor structure, selecting preceding terminals directly and risking constraint mis-
fires as would be the case in the right side of fig. 1. IterGen (Ugare et al., 2025) and GenLM Control
(Loula et al., 2025) allowed ancestor structures to be considered by invoked expensive backtracking
and/or speculative look-ahead, where ancestor structures can emerge before constraints are applied
(Ugare et al., 2025; Loula et al., 2025). Melcer et al. (2024) implements specialized context-sensitive
constraints for some lexing features in programming languages.

3 FORMALISM FOR CONDITIONAL DEONTICS OVER TERMINALS (CDOT)

A context-free grammar (CFG) is a 4-tuple G = (V,Σ, R, S) where

• V is a finite set of nonterminal symbols (also called variables), which represent syntactic
categories that can be expanded,

• Σ is a finite set of terminal symbols, which are the basic alphabet symbols that appear in
the strings of the language, with V ∩ Σ = ∅,

• R ⊆ V × (V ∪ Σ)∗ is a finite set of production rules of the form A → α, where A ∈ V (a
nonterminal) and α ∈ (V ∪ Σ)∗ (a string of terminals and/or nonterminals),

• S ∈ V is the designated start symbol.

The language generated by G is defined as L(G) = {w ∈ Σ∗ | S ⇒∗ w }, where ⇒∗ denotes
the reflexive, transitive closure of the single-step derivation relation ⇒ induced by R. A language
L ⊆ Σ∗ is called context-free if there exists a CFG G such that L = L(G).

We extend CFGs with deontic rules, which constrain not only the structure of derivations, but also
the obligations and permissions of terminals. A Conditional Deontics over Terminals (CDoT) gram-
mar is a pair G+ = (G,D) where

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• G = (V,Σ, R, S) is a context-free grammar (possibly with regular-expression terminals),
• D is a finite set of deontic rules, which constrain terminal instances generated by G.

Each deontic rule has an anchor, identifying the scope of the rule, and a deontic function, which
maps terminal instances to a pair (□C,♢P), where □C is a set of regular expressions (necessary
conditions), and ♢P is a set of regular expressions (permitted conditions).

Non-conditional deontic rules. A non-conditional rule has the form

Xconsequent ≪ tconseqent,

with Xconseqent ∈ V and tconseqent ∈ Σ. When the deontic function of a non-conditional deontic
rule returns (□C,♢P), the semantics are that all terminals descended from X must collectively
satisfy every r ∈ □C, and each individual terminal must match at least one r ∈ ♢P .

Example (Balanced Meals). Given the grammar:

meal → food beverage
food → DISH food | DISH

beverage → BEVERAGE beverage | BEVERAGE.

The following deontic rule enforces that every meal includes grains, protein, and vegetables (□),
while also allowing optional extras like soup or steamed egg (♢).

anchor: food ≪ DISH
def enforce_meal():

return (□{rice|bread, chicken|fish,
salad|roasted_vegetable},

♢{rice, bread, chicken, fish,
salad, roasted_vegetable, steamed_egg, soup})

Conditional deontic rules. A conditional rule has the form

tantecedent ≫ XantecedentB . . .D > Xparent < Xconsequent ≪ tconsequent,

where tantecedent, tconsequent ∈ Σ, and B,D,Xantecedent, Xconsequent ∈ V are variables ap-
pearing in a parent production Xparent → . . . XantecedentB . . .DXconsequent The deontic
function of a non-conditional deontic rule takes an antecedent terminal instance tantecedent as input,
and uses it to determine and return constraints (□C,♢P), on the consequent terminal tconsequent.

Example (Food–Drink Pairings). Given the same grammar as the previous example, the follow-
ing deontic rule enforces that when a food and a beverage are paired within a meal, steaks require
red wine, fish requires white wine, and spicy noodles require soda.

anchor: DISH ≫ food > meal < beverage ≪ BEVERAGE.
def match_drink_to_food(terminal_instance):

match terminal_instance.text:
case ’steak’:

return (□{’red_wine’}, ♢{})
case ’fish’:

return (□{’white_wine’}, ♢{})
case ’spicy_noodle’:

return (□{’soda’}, ♢{})

Notice that, while a single antecedent variable food can cover multiple antecedent DISH variables,
each invocation of the deontic function match drink to food sees only a single instance of DISH.
This prevents repetitive calling of the deontic function over different combinations. At the same
time, the conjunctive nature of □ and disjunctive nature of ♢ will still naturally combine so that, if
both fish and steak are ordered, both red and white wine are requested.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 PARSER

CYK-like parsers use TABLE[row, col, nt] to denote nt ⇒ ∗trow . . . trow+col. To also track deontic
rules we introduce a new state type LF[row, col, cnf], which indicates a property of a CNF context-
free rule with its left foot covering trow . . . trow+col, and the CNF rule itself covering trow to any
possible future terminal.

Our parser consists close to 20 slightly modified incremental valiant recognizers computing different
properties. For simplicity, we focus on LFALIV E , LFREACHABLE↑, LFREACHABLE↓.

LFALIV E tracks left feet whose has ♢ has not yet being violated. All □ underneath the left foot is
satisfied, although the left foot itself might not. By tracking invalidated ♢ deontics, we prevent co-
mingling of deontics from incompatible parse trees. We compute this attribute when a new terminal
tn is being committed.

LFALIV E [row, col, cnf] = True if and only if any of

• it is deontic that permits the new terminal.
• it is a descendant or ancestor of a deontic that permits the new terminal.
• reachable from both top and bottom without going pass a CNF rules associated with deontic

rule has type(tn) as consequent. (unconstrained version of tn)
• is a newly formed left foot, cannot be exceeded yet

LFREACHABLE↑, LFREACHABLE↓ is computed when probing for prospective next terminal tn.
A left foot need to be both REACHABLE ↑ and REACHABLE ↓ for it to be in one of the
completable parse tree of t0 . . . tn. Both attributes can be computed by logging successful triggering
of CNF rule during execution of incremental Valiant recognizer.

Permitted deontics are actualized by only allowing deontics of antecedent terminals beneath
deontic left feet that are ALIV E, REACHABLE ↑ and REACHABLE ↓ at the same time,
conditioned on matching consequent terminal type to the prospective terminal.

Necessary deontics enforcement simply happens at commit-time by preventing underlying CNF
rules from finishing until the right foot is grown enough to satisfy all required regular expressions.

We further illustrate the different between a CDoT parser states and ordinary CYK parser state in
figue 2.

5 EXPERIMENTS AND RESULTS

5.1 KNIGHT AND KNAVE

Knight and Knave is a logic puzzle where each character is either a knight (always tells the truth)
or a knave (always lies). The task is to infer each character’s type from their statements. For
example, if Alice says “Alice and Bob have the same identity”, and Bob says “Alice is lying”, we
must deduce that Alice is a knave and Bob is a knight. Xie et al. (2024) provides a readily usable
dataset containing both textual and logical form of puzzles with 2-8 characters.

5.1.1 PREPARATION: CONJUNCTIVE NORMAL FORM AND UNIT PROP

Conjunctive Normal Form is a conjunction of clauses, each clause being a disjunction of literals
(a variable or its negation). For example, (x1 ∨¬x3 ∨ x4) ∧ (¬x1 ∨x3) ∧ (x1 ∨x5). An arbitrary
boolean expression can be converted into equalsatisfiable conjunctive normal form efficiently via
the Tseytin transformation (Tseitin, 1983) with a caveat of adding O(n) auxiliary variables.

Unit Propagation is an algorithm that deduces assignments based on committed assignments of
other literals. It exploits the fact that each clause in conjunctive normal form must have at least one
literal to be true. Therefore, if all but one literal in a clause are false, the last remaining literal must
be true. In the example above, if we assume x1 is true, then x3 must also be true, because it is the
last remaining option to keep the second clause satisfied.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: A CYK parser (context-free) and partial states of a CDoT parser after consuming input se-
quence “shirmp happy-meal wine OJ”. There is no Box guarding food, therefore LFREACHABLE↑

for meal → food beverage behaves the same as CYK states for food. Position 3 in LFALIV E is true
because it covers both “shrimp” and “happy-meal” to permit both “wine” and “OJ”. Both position 1
and 2 are cannot permit both drinks by themselves. Although the left variable of both positions are in
the same tree as 3, the left feet they represent are not. Therefore 1 and 2 cannot “inherent” aliveness
by reachability. TIERIMM does not form any meal instances because □ are not yet satisfied.

5.1.2 CONSTRAINER DESIGN

Figure 3 shows the context free grammar we employ for the output of the LLM on the Knight and
Knave problem. It ensures that the model outputs a sequence of guesses. Each guess assigns roles to
characters and booleans value to auxiliary variables. The grammar alone will not ensure the desired
behavior, so we add the following deontic rules:

• The deontic rule for ensuring that sufficient assignment seq is recognized iff an
assignment seq commits to at least one literal from each clause is:

anchor: sufficient assignment seq << ASSIGNMENT
% attr: hidden_permitted
def correct_guess():

return (□{ "xi| . . . |xj" for xi ∨ · · · ∨ xj in input_clauses}, ♢{})

• The deontic rule for constraining contradictory assignment seq is defined similarly.
• The deontic rule for ensuring that a REPEATED ASSIGNMENT is recognized iff it repli-

cates a previous ASSIGNMENT within this guess is defined as:

anchor: ASSIGNMENT >> assignment seq semi 1 > repetition assignment seq <
repeating assignment << REPEATED ASSIGNMENT

def repetition(terminal_instance):
return (□{}, ♢{terminal_instance})

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

start → bad guess∗ good guess
good guess → sufficient assignment seq semi 3 GOOD GUESS TAIL

sufficient assignment seq → assignment seq
bad guess → contradictory assignment seq semi 3 CONTRADICTORY GUESS TAIL

| repetition assignment seq semi 3 REPETITION GUESS TAIL
contradictory assignment seq → assignment seq

repetition assignment seq → assignment seq semi 1 repeating assignment
assignment seq semi 1 → assignment seq semi 1

assignment seq → assignment seq semi 1 assignment
| GUESS HEAD assignment
| unit prop

assignment → ASSIGNMENT
ASSIGNMENT → (NAME "->" KK)

| AUX VAR
repeating assignment → REPEATING ASSIGNMENT

REPEATING ASSIGNMENT2 → ASSIGNMENT
semi 3 → SEMI 3 "\n"
semi 2 → SEMI 2 "\n"
semi 1 → SEMI 1 "\n"

SEMI 33 → ";"
SEMI 22 → ";"
SEMI 11 → ";"

GUESS HEAD → "Here is a different and improved guess: {{\n"
GOOD GUESS TAIL → "}} <<DONE>>"

CONTRADICTORY GUESS TAIL → "}} contradiction\n\n"
REPETITION GUESS TAIL → "}} Bad guess\n\n"

NAME → /(Jacob|Noah|Michael|Liam|Ella|...|Ava)/
KK → "knight" | "knave"

Figure 3: Context free grammar for LLM generations in the Knight and Knave problem.

• Deontic rules for implementing the unit propogation algorithm are defined for each xk in
the input clauses:

– Add context-free rule “unit prop → x k condition semi 2 x k assignment”
– Add deontic rule

anchor: x k assignment << ASSIGNMENT
% attr: self_sufficient_necessary
def x_k_condition():

return (□{"xk"}, ♢{})

– For each input clause c that contains xk, add deontic rule

anchor: x k condition << ASSIGNMENT
% attr: hidden_permitted
def x_k_assignment():

return (□{"NEGATE_LITERAL(xm)" for xm in c if m ̸= k},
♢{"xm" if xm exists in any clause and m ̸= k})

These deontic rules result in the real-time triggering of unit propagation and the real-time detection
of good and bad guesses. As the LLM commits to literals, unit propagation will trigger immediately
upon conditions being met, and will constrain generation to only entailed literals. Bad guesses will
be detected immediately upon their first contradiction and generation will be forced to start a new
guess. Good guesses will be detected immediately once the formula is solved and generation will
be immediately terminated.

5.2 RESULTS

We set LLMs to solve puzzles in a 0-shot setting. Models are provided with both the textual and
logical forms of the puzzle in the prompt. The results are shown in table 1. When the output is
limited to 512 tokens, constrained models achieve about a 50-point higher solve rates than non-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Constrained Unconstrained
Thinking Non-thinking Thinking

512 512 512 2048
Llama-3.2-1B-Instruct 0.52 0.04 0.04 OOM
Llama-3.2-3B-Instruct 0.65 0.13 0.13 OOM
Qwen/Qwen3-0.6B 0.61 0.07 0.07 0.36
Qwen/Qwen3-1.7B 0.69 0.03 0.03 0.55

Table 1: Knight and Knave test: solve rate of constrained vs. unconstrained models with 512 or
2048 token limits. Llama-3 models do not have a thinking switch, but do exhibit chain of thought-
like behavior. Xie et al. (2024) reported 0.14 for Llama-3-8B-instruct in the same setting.

Figure 4: Knight and Knave test: token efficiency of successes (dark) vs failures (light) of con-
strained (blue) vs. unconstrained (orange) models. Constrained models were cut off at 512 tokens,
unconstrained at 2048 tokens.

constrained models, and even outperform non-constrained models that are allowed to generate 4
times more tokens.

We also plot the number of output tokens for successful (dark) and failed (light) LLM responses
across constrained (blue) and unconstrained (orange) Qwen3-1.7B, shown in fig. 4. The constrained
model shows a skewed distribution, where a larger portion of puzzles are solved with lesser tokens,
and failures don’t show up until around 512 tokens. (Qualitatively, we observe that at this point,
the constrained model gets stuck in loops.) The non-constrained model forms a flat bell curve
distribution, and requires many more output tokens before starting to solve puzzles.

We also observe that the constrained model can often solve puzzle on the first attempt (fig. 5). This
indicates that the constrainer and LLM are organically collaborating. If the constrainer alone was
driving success, we would expect the distribution of guesses to be closer to random uniform, and it
would be rare to solve the puzzle on the first guess. If the LLM alone was driving success, we would
expect to see the non-constrained model having a similar number of solutions on the first attempt.

When we break down the solve rate by the size of the puzzle in fig. 6, we observe that the constrained
models scale much better and still achieve solve rate of around 0.50, in contrast to under 0.20 for
non-constrained models.

5.3 TEXT-TO-SQL

Spider (Yu et al., 2019) is a text-to-sql task, the model is provided with a database schema and a
natural text question, and it is expected to answer the question with an generated SQL query.

We finetune an LLM with the constrainer on during both finetuning and inferencing. For the con-
strainer, we use a grammar extracted from the SQLite source code as the base context-free grammar,
then add constraints that allow only identifiers that come from databases containing the columns in

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: Knight and Knave test: constrained models solve many problems in the first guess, while
unconstrained models require more guesses.

Figure 6: Knight and Knave test: Constrained models outperform unconstrained models across all
puzzle sizes.

the “SELECT” clause. We also run experiments with the additional constraint of limiting identifier
in the “SELECT” clause to the scope of all databases. Formally:

anchor: ID >> select clause > select < from clause << ID
def allow_containing_database(terminal_instance):

return (□{}, ♢{name if name is an identifier of a database containing terminal_instance})

anchor: select clause << ID
def correct_guess():

return (□{}, ♢{name if is a table or column of any database })

For both constrained and unconstrained models, we remove tokens from the tokenizer that do not
align with SQL grammar terminals, such as “.Name” and “′);”. LLM performance is known to
suffer when such tokens are not handled by constrainer (Beurer-Kellner et al., 2024). For the uncon-
strained model, we add the target database schema to the model input, so the model has the same
information on the target database that is available to the constrained model.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 7: Text-to-SQL test: Execution accuracy of constrained vs non-constrained models over 3
runs and 10 epochs. Row (a) uses selected columns in “SELECT” clause to limit the remaining
identifiers to that of databases containing them. Row (b) additionally constraints the “SELECT”
clause to identifiers of all databases. Constrained decoding helps three of the four models.

The results are shown in fig. 7. “Qwen3-0.7B” , “Llama-3.2-1B-Instruct”, and “Llama-3.2-3B-
Instruct” benefit from the constrainer with either constraint configuration. However, “Qwen3-1.7B”
does not benefit from constrainer.

6 CONCLUSION

We introduced a new context-sensitive grammar formalism, conditional deontics over terminals
(CDoT), designed for use with constrained decoding, and a new O(n3) incremental CYK-like parser
for the grammar. This constrained decoding framework is strong enough to implement the unit prop-
agation algorithm, which we demonstrate on “Knight and Knave” logical puzzles, finding that our
framework dramatically improves LLM accuracy on this dataset while simultaneously reducing the
number of tokens the LLMs generate. We also apply our framework to constrain SQL table column
names in a text-to-SQL task and find improved accuracy for most LLMs tested.

REFERENCES

Mikhail Barash and Alexander Okhotin. An extension of context-free grammars with one-sided
context specifications. Information and Computation, 237:268–293, 2014. ISSN 0890-5401.
doi: https://doi.org/10.1016/j.ic.2014.03.003. URL https://www.sciencedirect.com/
science/article/pii/S0890540114000595.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Guiding llms the right way: Fast, non-
invasive constrained generation, 2024. URL https://arxiv.org/abs/2403.06988.

Yixin Dong, Charlie F. Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu, Yilong Zhao, and Tianqi Chen.
Xgrammar: Flexible and efficient structured generation engine for large language models, 2025.
URL https://arxiv.org/abs/2411.15100.

Aravind K. Joshi and Yves Schabes. Tree-Adjoining Grammars, pp. 69–123. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1997. ISBN 978-3-642-59126-6. doi: 10.1007/978-3-642-59126-6 2.
URL https://doi.org/10.1007/978-3-642-59126-6_2.

João Loula, Benjamin LeBrun, Li Du, Ben Lipkin, Clemente Pasti, Gabriel Grand, Tianyu Liu,
Yahya Emara, Marjorie Freedman, Jason Eisner, Ryan Cotterell, Vikash Mansinghka, Alexan-
der K. Lew, Tim Vieira, and Timothy J. O’Donnell. Syntactic and semantic control of large lan-
guage models via sequential monte carlo, 2025. URL https://arxiv.org/abs/2504.
13139.

9

https://www.sciencedirect.com/science/article/pii/S0890540114000595
https://www.sciencedirect.com/science/article/pii/S0890540114000595
https://arxiv.org/abs/2403.06988
https://arxiv.org/abs/2411.15100
https://doi.org/10.1007/978-3-642-59126-6_2
https://arxiv.org/abs/2504.13139
https://arxiv.org/abs/2504.13139

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Daniel Melcer, Nathan Fulton, Sanjay Krishna Gouda, and Haifeng Qian. Constrained decoding for
fill-in-the-middle code language models via efficient left and right quotienting of context-sensitive
grammars, 2024. URL https://arxiv.org/abs/2402.17988.

Mikhail Mrykhin and Alexander Okhotin. The hardest language for grammars with context op-
erators. Theoretical Computer Science, 958:113829, 2023. ISSN 0304-3975. doi: https://doi.
org/10.1016/j.tcs.2023.113829. URL https://www.sciencedirect.com/science/
article/pii/S0304397523001421.

Alexander Okhotin. Conjunctive grammars. J. Autom. Lang. Comb., 6(4):519–535, April 2001.
ISSN 1430-189X.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and
Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained language models. arXiv
preprint arXiv:2201.11227, 2022.

Yves Schabes. The valid prefix property and left to right parsing of Tree-Adjoining Grammar.
In Masaru Tomita, Martin Kay, Robert Berwick, Eva Hajicova, Aravind Joshi, Ronald Kaplan,
Makoto Nagao, and Yorick Wilks (eds.), Proceedings of the Second International Workshop on
Parsing Technologies, pp. 21–30, Cancun, Mexico, February 13-25 1991. Association for Com-
putational Linguistics. URL https://aclanthology.org/1991.iwpt-1.4/.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language models. In Marie-Francine Moens, Xu-
anjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Processing, pp. 9895–9901, Online and
Punta Cana, Dominican Republic, November 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.emnlp-main.779. URL https://aclanthology.org/2021.
emnlp-main.779/.

G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pp. 466–483. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1983. ISBN 978-3-642-81955-1. doi: 10.1007/
978-3-642-81955-1 28. URL https://doi.org/10.1007/978-3-642-81955-1_
28.

Shubham Ugare, Rohan Gumaste, Tarun Suresh, Gagandeep Singh, and Sasa Misailovic. Itergen:
Iterative semantic-aware structured LLM generation with backtracking. In The Thirteenth In-
ternational Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=ac93gRzxxV.

K Vijay-Shanker and David J. Weir. Parsing some constrained grammar formalisms. Computational
Linguistics, 19(4):591–636, 1993. URL https://aclanthology.org/J93-4002/.

Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning. 2024.
URL https://arxiv.org/abs/2410.23123.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale human-
labeled dataset for complex and cross-domain semantic parsing and text-to-sql task, 2019. URL
https://arxiv.org/abs/1809.08887.

A APPENDIX

A.1 ADDITIONAL DETAILS OF KNIGHT AND KNAVE CONSTRAINER DESIGN

In the grammar for the Knight and Knave Constrainer Design, any special assignment sequence
such as x k condition is also acceptable as a plain assignment seq. This undermines the new
assignment we intend to force through our deontic rules. So we introduce the same delimiter at
different priorities, defined as semi p → SEMI P NEWLINE in the grammar. Two terminals are
needed to handle parser/LLM interfacing technicalities.

10

https://arxiv.org/abs/2402.17988
https://www.sciencedirect.com/science/article/pii/S0304397523001421
https://www.sciencedirect.com/science/article/pii/S0304397523001421
https://aclanthology.org/1991.iwpt-1.4/
https://aclanthology.org/2021.emnlp-main.779/
https://aclanthology.org/2021.emnlp-main.779/
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28
https://openreview.net/forum?id=ac93gRzxxV
https://openreview.net/forum?id=ac93gRzxxV
https://aclanthology.org/J93-4002/
https://arxiv.org/abs/2410.23123
https://arxiv.org/abs/1809.08887

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

When a special assignment sequence is not complete, the following higher priority delimiter terminal
will not be acceptable, consequently, the remaining part of special rule is not activated. On the other
hand, when the conditions of a special assignment are met, the delimiter would be recognized as the
higher priority version, and therefore deny the more general version of assignment seq.

11

	Introduction
	Related Work
	Formalism for Conditional Deontics over Terminals (CDoT)
	Parser
	Experiments and Results
	Knight and Knave
	Preparation: conjunctive normal form and unit prop
	Constrainer Design

	Results
	Text-to-SQL

	Conclusion
	Appendix
	Additional Details of Knight and Knave Constrainer Design

