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ABSTRACT

Constrained decoding researchers have recently thought to extend context-free
constrainers to context-sensitive constraints such as matching selected columns to
tables in text-to-SQL. This is challenging, because context-sensitivity is achieved
by cross referencing different subtrees in the syntactic structure, which is only
partially available during LLM generation. Recent frameworks such as IterGen
gain some context sensitivity but with drawbacks including the need for expen-
sive backtracking or speculative lookahead of LLMs, overly permissive semantics
risking over-constraint, and complications in interfacing with works on improving
running speed such as XGrammar. To address these concerns, we propose a new
mildly-context-sensitive formal grammar called Conditional Deontics over Ter-
minals (CDoT). Its incremental parser has O(n3) time complexity each step and
allows for GPU acceleration, compared to the O(n8) of mildly context-sensitive
tree-adjoining grammars and the O(n2) of context-free grammars. This new for-
mal grammar is strong enough to implement the unit propagation algorithm, which
we employ to assist an LLM in solving the “Knight and Knave” logical puzzle,
achieving substantially improved performance at reduced output token budget. We
also evaluate on the traditional constrained decoding task of text-to-SQL.

1 INTRODUCTION

Constrained decoding allows programmatic control of inference-time LLM behavior without mod-
ifying model weights or engineering prompts. Prior work has successfully employed it to enforce
programming language specifications, molecular structures, and privacy requirements (Ugare et al.,
2025; Loula et al., 2025; Scholak et al., 2021; Poesia et al., 2022).

As the technique matures, works have emerged that improve various aspects of it. One line of inquiry
pushes for constraints of higher complexity class via speculative look-ahead or LLM backtracking
(Ugare et al., 2025; Loula et al., 2025). This is not only computationally expensive—requiring user
code to access and modify parser states—but also complicates integration with runtime optimization
methods such as XGrammar (Dong et al., 2025). The semantics allowed by such frameworks can
also sometimes be overly permissive and risk hazardous over-constraints that are difficult to detect.

To address these concerns, we design a new formal grammar for constrained-decoding, with the aim
of shielding users from the complexities of constrainer internals while providing researchers with a
stable target interface. Our contributions are:

• We design a new formal grammar that offers context-sensitivity in practical use cases and
can be efficiently parsed incrementally at O(n3) each step.

• Our formal grammar allows invocation of Python functions for added flexibility, while
eliminating the need for user code to access and modify parser state.

• We implement a GPU-accelerated parser for our grammar by extending an incremental
Valiant recognizer.
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Figure 1: Example: a generated symptom should constrain the associated condition that is generated.
But when CONDITION is being generated its ancestor structure (dashed lines) has not yet been
determined due to the nature of incremental parsing. Knowing the possible ancestor structures is
important, as the symptom-condition constraint should fire on the left tree but not the right.

2 RELATED WORK

Incrementally Parsable Mildly Context-sensitive Grammars: Constrained decoding relies on
incremental parsers capable of maintaining the valid-prefix property. Despite a diverse selection of
mildly context-sensitive grammars (Joshi & Schabes, 1997; Vijay-Shanker & Weir, 1993; Okhotin,
2001; Mrykhin & Okhotin, 2023; Barash & Okhotin, 2014), such grammars are often not designed
with the goal of efficient constrained-decoding in mind. For example, Tree-Adjoining Grammars
have an O(n8) step time-complexity (Schabes, 1991). The recently published grammar with one-
sided context (Barash & Okhotin, 2014) within the conjunctive grammar family overlaps with the
goal of constrained decoding, but is currently a theoretical construct applied only to toy grammars.

Constrained Decoding with Context Sensitivity: Context-sensitivity may reference across sub-
trees, as in fig. 1 where the SYMPTOM subtree must be observed to determine which CONDITIONs
are allowable. In the case of constrained decoding, an incremental process, the ancestor nodes are
unavailable at the time a constraint must be applied. Earlier work such as PiCARD (Scholak et al.,
2021) ignored ancestor structure, selecting preceding terminals directly and risking constraint mis-
fires as would be the case in the right side of fig. 1. IterGen (Ugare et al., 2025) and GenLM Control
(Loula et al., 2025) allowed ancestor structures to be considered by invoked expensive backtracking
and/or speculative look-ahead, where ancestor structures can emerge before constraints are applied
(Ugare et al., 2025; Loula et al., 2025). Melcer et al. (2024) implements specialized context-sensitive
constraints for some lexing features in programming languages.

3 FORMALISM FOR CONDITIONAL DEONTICS OVER TERMINALS (CDOT)

A context-free grammar (CFG) is a 4-tuple G = (V,Σ, R, S) where

• V is a finite set of nonterminal symbols (also called variables), which represent syntactic
categories that can be expanded,

• Σ is a finite set of terminal symbols, which are the basic alphabet symbols that appear in
the strings of the language, with V ∩ Σ = ∅,

• R ⊆ V × (V ∪ Σ)∗ is a finite set of production rules of the form A → α, where A ∈ V (a
nonterminal) and α ∈ (V ∪ Σ)∗ (a string of terminals and/or nonterminals),

• S ∈ V is the designated start symbol.

The language generated by G is defined as L(G) = {w ∈ Σ∗ | S ⇒∗ w }, where ⇒∗ denotes
the reflexive, transitive closure of the single-step derivation relation ⇒ induced by R. A language
L ⊆ Σ∗ is called context-free if there exists a CFG G such that L = L(G).

We extend CFGs with deontic rules, which constrain not only the structure of derivations, but also
the obligations and permissions of terminals. A Conditional Deontics over Terminals (CDoT) gram-
mar is a pair G+ = (G,D) where
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• G = (V,Σ, R, S) is a context-free grammar (possibly with regular-expression terminals),
• D is a finite set of deontic rules, which constrain terminal instances generated by G.

Each deontic rule has an anchor, identifying the scope of the rule, and a deontic function, which
maps terminal instances to a pair (□C,♢P ), where □C is a set of regular expressions (necessary
conditions), and ♢P is a set of regular expressions (permitted conditions).

Non-conditional deontic rules. A non-conditional rule has the form

Xconsequent ≪ tconseqent,

with Xconseqent ∈ V and tconseqent ∈ Σ. When the deontic function of a non-conditional deontic
rule returns (□C,♢P ), the semantics are that all terminals descended from X must collectively
satisfy every r ∈ □C, and each individual terminal must match at least one r ∈ ♢P .

Example (Balanced Meals). Given the grammar:

meal → food beverage
food → DISH food | DISH

beverage → BEVERAGE beverage | BEVERAGE.

The following deontic rule enforces that every meal includes grains, protein, and vegetables (□),
while also allowing optional extras like soup or steamed egg (♢).

anchor: food ≪ DISH
def enforce_meal():

return (□{rice|bread, chicken|fish,
salad|roasted_vegetable},

♢{rice, bread, chicken, fish,
salad, roasted_vegetable, steamed_egg, soup})

Conditional deontic rules. A conditional rule has the form

tantecedent ≫ XantecedentB . . .D > Xparent < Xconsequent ≪ tconsequent,

where tantecedent, tconsequent ∈ Σ, and B,D,Xantecedent, Xconsequent ∈ V are variables ap-
pearing in a parent production Xparent → . . . XantecedentB . . .DXconsequent . . . . The deontic
function of a non-conditional deontic rule takes an antecedent terminal instance tantecedent as input,
and uses it to determine and return constraints (□C,♢P ), on the consequent terminal tconsequent.

Example (Food–Drink Pairings). Given the same grammar as the previous example, the follow-
ing deontic rule enforces that when a food and a beverage are paired within a meal, steaks require
red wine, fish requires white wine, and spicy noodles require soda.

anchor: DISH ≫ food > meal < beverage ≪ BEVERAGE.
def match_drink_to_food(terminal_instance):

match terminal_instance.text:
case ’steak’:

return (□{’red_wine’}, ♢{})
case ’fish’:

return (□{’white_wine’}, ♢{})
case ’spicy_noodle’:

return (□{’soda’}, ♢{})

Notice that, while a single antecedent variable food can cover multiple antecedent DISH variables,
each invocation of the deontic function match drink to food sees only a single instance of DISH.
This prevents repetitive calling of the deontic function over different combinations. At the same
time, the conjunctive nature of □ and disjunctive nature of ♢ will still naturally combine so that, if
both fish and steak are ordered, both red and white wine are requested.
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4 PARSER

CYK-like parsers use TABLE[row, col, nt] to denote nt ⇒ ∗trow . . . trow+col. To also track deontic
rules we introduce a new state type LF[row, col, cnf], which indicates a property of a CNF context-
free rule with its left foot covering trow . . . trow+col, and the CNF rule itself covering trow to any
possible future terminal.

Our parser consists close to 20 slightly modified incremental valiant recognizers computing different
properties. For simplicity, we focus on LFALIV E , LFREACHABLE↑, LFREACHABLE↓.

LFALIV E tracks left feet whose has ♢ has not yet being violated. All □ underneath the left foot is
satisfied, although the left foot itself might not. By tracking invalidated ♢ deontics, we prevent co-
mingling of deontics from incompatible parse trees. We compute this attribute when a new terminal
tn is being committed.

LFALIV E [row, col, cnf] = True if and only if any of

• it is deontic that permits the new terminal.
• it is a descendant or ancestor of a deontic that permits the new terminal.
• reachable from both top and bottom without going pass a CNF rules associated with deontic

rule has type(tn) as consequent. (unconstrained version of tn)
• is a newly formed left foot, cannot be exceeded yet

LFREACHABLE↑, LFREACHABLE↓ is computed when probing for prospective next terminal tn.
A left foot need to be both REACHABLE ↑ and REACHABLE ↓ for it to be in one of the
completable parse tree of t0 . . . tn. Both attributes can be computed by logging successful triggering
of CNF rule during execution of incremental Valiant recognizer.

Permitted deontics are actualized by only allowing deontics of antecedent terminals beneath
deontic left feet that are ALIV E, REACHABLE ↑ and REACHABLE ↓ at the same time,
conditioned on matching consequent terminal type to the prospective terminal.

Necessary deontics enforcement simply happens at commit-time by preventing underlying CNF
rules from finishing until the right foot is grown enough to satisfy all required regular expressions.

We further illustrate the different between a CDoT parser states and ordinary CYK parser state in
figue 2.

5 EXPERIMENTS AND RESULTS

5.1 KNIGHT AND KNAVE

Knight and Knave is a logic puzzle where each character is either a knight (always tells the truth)
or a knave (always lies). The task is to infer each character’s type from their statements. For
example, if Alice says “Alice and Bob have the same identity”, and Bob says “Alice is lying”, we
must deduce that Alice is a knave and Bob is a knight. Xie et al. (2024) provides a readily usable
dataset containing both textual and logical form of puzzles with 2-8 characters.

5.1.1 PREPARATION: CONJUNCTIVE NORMAL FORM AND UNIT PROP

Conjunctive Normal Form is a conjunction of clauses, each clause being a disjunction of literals
(a variable or its negation). For example, (x1 ∨¬x3 ∨ x4) ∧ (¬x1 ∨x3) ∧ (x1 ∨x5). An arbitrary
boolean expression can be converted into equalsatisfiable conjunctive normal form efficiently via
the Tseytin transformation (Tseitin, 1983) with a caveat of adding O(n) auxiliary variables.

Unit Propagation is an algorithm that deduces assignments based on committed assignments of
other literals. It exploits the fact that each clause in conjunctive normal form must have at least one
literal to be true. Therefore, if all but one literal in a clause are false, the last remaining literal must
be true. In the example above, if we assume x1 is true, then x3 must also be true, because it is the
last remaining option to keep the second clause satisfied.
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Figure 2: A CYK parser (context-free) and partial states of a CDoT parser after consuming input se-
quence “shirmp happy-meal wine OJ”. There is no Box guarding food, therefore LFREACHABLE↑

for meal → food beverage behaves the same as CYK states for food. Position 3 in LFALIV E is true
because it covers both “shrimp” and “happy-meal” to permit both “wine” and “OJ”. Both position 1
and 2 are cannot permit both drinks by themselves. Although the left variable of both positions are in
the same tree as 3, the left feet they represent are not. Therefore 1 and 2 cannot “inherent” aliveness
by reachability. TIERIMM does not form any meal instances because □ are not yet satisfied.

5.1.2 CONSTRAINER DESIGN

Figure 3 shows the context free grammar we employ for the output of the LLM on the Knight and
Knave problem. It ensures that the model outputs a sequence of guesses. Each guess assigns roles to
characters and booleans value to auxiliary variables. The grammar alone will not ensure the desired
behavior, so we add the following deontic rules:

• The deontic rule for ensuring that sufficient assignment seq is recognized iff an
assignment seq commits to at least one literal from each clause is:

anchor: sufficient assignment seq << ASSIGNMENT
% attr: hidden\_permitted
def correct_guess():

return (□{ "xi| . . . |xj" for xi ∨ · · · ∨ xj in input_clauses}, ♢{})

• The deontic rule for constraining contradictory assignment seq is defined similarly.
• The deontic rule for ensuring that a REPEATED ASSIGNMENT is recognized iff it repli-

cates a previous ASSIGNMENT within this guess is defined as:

anchor: ASSIGNMENT >> assignment seq semi 1 > repetition assignment seq <
repeating assignment << REPEATED ASSIGNMENT

def repetition(terminal_instance):
return (□{}, ♢{terminal_instance})

5
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start → bad guess∗ good guess
good guess → sufficient assignment seq semi 3 GOOD GUESS TAIL

sufficient assignment seq → assignment seq
bad guess → contradictory assignment seq semi 3 CONTRADICTORY GUESS TAIL

| repetition assignment seq semi 3 REPETITION GUESS TAIL
contradictory assignment seq → assignment seq

repetition assignment seq → assignment seq semi 1 repeating assignment
assignment seq semi 1 → assignment seq semi 1

assignment seq → assignment seq semi 1 assignment
| GUESS HEAD assignment
| unit prop

assignment → ASSIGNMENT
ASSIGNMENT → (NAME "->" KK)

| AUX VAR
repeating assignment → REPEATING ASSIGNMENT

REPEATING ASSIGNMENT2 → ASSIGNMENT
semi 3 → SEMI 3 "\n"
semi 2 → SEMI 2 "\n"
semi 1 → SEMI 1 "\n"

SEMI 33 → ";"
SEMI 22 → ";"
SEMI 11 → ";"

GUESS HEAD → "Here is a different and improved guess: {{\n"
GOOD GUESS TAIL → "}} <<DONE>>"

CONTRADICTORY GUESS TAIL → "}} contradiction\n\n"
REPETITION GUESS TAIL → "}} Bad guess\n\n"

NAME → /(Jacob|Noah|Michael|Liam|Ella|...|Ava)/
KK → "knight" | "knave"

Figure 3: Context free grammar for LLM generations in the Knight and Knave problem.

• Deontic rules for implementing the unit propogation algorithm are defined for each xk in
the input clauses:

– Add context-free rule “unit prop → x k condition semi 2 x k assignment”
– Add deontic rule

anchor: x k assignment << ASSIGNMENT
% attr: self\_sufficient\_necessary
def x_k_condition():

return (□{"xk"}, ♢{})

– For each input clause c that contains xk, add deontic rule

anchor: x k condition << ASSIGNMENT
% attr: hidden\_permitted
def x_k_assignment():

return (□{"NEGATE_LITERAL(xm)" for xm in c if m ̸= k},
♢{"xm" if xm exists in any clause and m ̸= k})

These deontic rules result in the real-time triggering of unit propagation and the real-time detection
of good and bad guesses. As the LLM commits to literals, unit propagation will trigger immediately
upon conditions being met, and will constrain generation to only entailed literals. Bad guesses will
be detected immediately upon their first contradiction and generation will be forced to start a new
guess. Good guesses will be detected immediately once the formula is solved and generation will
be immediately terminated.

5.2 RESULTS

We set LLMs to solve puzzles in a 0-shot setting. Models are provided with both the textual and
logical forms of the puzzle in the prompt. The results are shown in table 1. When the output is
limited to 512 tokens, constrained models achieve about a 50-point higher solve rates than non-
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Model Constrained Unconstrained
Thinking Non-thinking Thinking

512 512 512 2048
Llama-3.2-1B-Instruct 0.52 0.04 0.04 OOM
Llama-3.2-3B-Instruct 0.65 0.13 0.13 OOM
Qwen/Qwen3-0.6B 0.61 0.07 0.07 0.36
Qwen/Qwen3-1.7B 0.69 0.03 0.03 0.55

Table 1: Knight and Knave test: solve rate of constrained vs. unconstrained models with 512 or
2048 token limits. Llama-3 models do not have a thinking switch, but do exhibit chain of thought-
like behavior. Xie et al. (2024) reported 0.14 for Llama-3-8B-instruct in the same setting.

Figure 4: Knight and Knave test: token efficiency of successes (dark) vs failures (light) of con-
strained (blue) vs. unconstrained (orange) models. Constrained models were cut off at 512 tokens,
unconstrained at 2048 tokens.

constrained models, and even outperform non-constrained models that are allowed to generate 4
times more tokens.

We also plot the number of output tokens for successful (dark) and failed (light) LLM responses
across constrained (blue) and unconstrained (orange) Qwen3-1.7B, shown in fig. 4. The constrained
model shows a skewed distribution, where a larger portion of puzzles are solved with lesser tokens,
and failures don’t show up until around 512 tokens. (Qualitatively, we observe that at this point,
the constrained model gets stuck in loops.) The non-constrained model forms a flat bell curve
distribution, and requires many more output tokens before starting to solve puzzles.

We also observe that the constrained model can often solve puzzle on the first attempt (fig. 5). This
indicates that the constrainer and LLM are organically collaborating. If the constrainer alone was
driving success, we would expect the distribution of guesses to be closer to random uniform, and it
would be rare to solve the puzzle on the first guess. If the LLM alone was driving success, we would
expect to see the non-constrained model having a similar number of solutions on the first attempt.

When we break down the solve rate by the size of the puzzle in fig. 6, we observe that the constrained
models scale much better and still achieve solve rate of around 0.50, in contrast to under 0.20 for
non-constrained models.

5.3 TEXT-TO-SQL

Spider (Yu et al., 2019) is a text-to-sql task, the model is provided with a database schema and a
natural text question, and it is expected to answer the question with an generated SQL query.

We finetune an LLM with the constrainer on during both finetuning and inferencing. For the con-
strainer, we use a grammar extracted from the SQLite source code as the base context-free grammar,
then add constraints that allow only identifiers that come from databases containing the columns in

7
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Figure 5: Knight and Knave test: constrained models solve many problems in the first guess, while
unconstrained models require more guesses.

Figure 6: Knight and Knave test: Constrained models outperform unconstrained models across all
puzzle sizes.

the “SELECT” clause. We also run experiments with the additional constraint of limiting identifier
in the “SELECT” clause to the scope of all databases. Formally:

anchor: ID >> select clause > select < from clause << ID
def allow_containing_database(terminal_instance):

return (□{}, ♢{name if name is an identifier of a database containing terminal_instance})

anchor: select clause << ID
def correct_guess():

return (□{}, ♢{name if is a table or column of any database })

For both constrained and unconstrained models, we remove tokens from the tokenizer that do not
align with SQL grammar terminals, such as “.Name” and “′);”. LLM performance is known to
suffer when such tokens are not handled by constrainer (Beurer-Kellner et al., 2024). For the uncon-
strained model, we add the target database schema to the model input, so the model has the same
information on the target database that is available to the constrained model.
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Figure 7: Text-to-SQL test: Execution accuracy of constrained vs non-constrained models over 3
runs and 10 epochs. Row (a) uses selected columns in “SELECT” clause to limit the remaining
identifiers to that of databases containing them. Row (b) additionally constraints the “SELECT”
clause to identifiers of all databases. Constrained decoding helps three of the four models.

The results are shown in fig. 7. “Qwen3-0.7B” , “Llama-3.2-1B-Instruct”, and “Llama-3.2-3B-
Instruct” benefit from the constrainer with either constraint configuration. However, “Qwen3-1.7B”
does not benefit from constrainer.

6 CONCLUSION

We introduced a new context-sensitive grammar formalism, conditional deontics over terminals
(CDoT), designed for use with constrained decoding, and a new O(n3) incremental CYK-like parser
for the grammar. This constrained decoding framework is strong enough to implement the unit prop-
agation algorithm, which we demonstrate on “Knight and Knave” logical puzzles, finding that our
framework dramatically improves LLM accuracy on this dataset while simultaneously reducing the
number of tokens the LLMs generate. We also apply our framework to constrain SQL table column
names in a text-to-SQL task and find improved accuracy for most LLMs tested.
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A APPENDIX

A.1 ADDITIONAL DETAILS OF KNIGHT AND KNAVE CONSTRAINER DESIGN

In the grammar for the Knight and Knave Constrainer Design, any special assignment sequence
such as x k condition is also acceptable as a plain assignment seq. This undermines the new
assignment we intend to force through our deontic rules. So we introduce the same delimiter at
different priorities, defined as semi p → SEMI P NEWLINE in the grammar. Two terminals are
needed to handle parser/LLM interfacing technicalities.
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When a special assignment sequence is not complete, the following higher priority delimiter terminal
will not be acceptable, consequently, the remaining part of special rule is not activated. On the other
hand, when the conditions of a special assignment are met, the delimiter would be recognized as the
higher priority version, and therefore deny the more general version of assignment seq.
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