Removing Concepts from Text-to-Image Models
with Only Negative Samples

Hanwen Liu, Yadong Mu*
Peking University
hanwenliu@msn.com, myd@pku.edu.cn

Abstract

This work introduces Clipout, a method for removing a target concept in pre-
trained text-to-image models. By randomly clipping units from the learned data
embedding and using a contrastive objective, models are encouraged to differentiate
these clipped embedding vectors. Our goal is to remove private, copyrighted,
inaccurate, or harmful concepts from trained models without the need for retraining.
This is achieved by considering only negative samples and generating them in a
bootstrapping-like manner, requiring minimal prior knowledge. Additionally,
theoretical analyses are provided to further understand our proposed Clipout.
Extensive experiments on text-to-image show that Clipout is simple yet highly
effective and efficient compared with previous state-of-the-art approaches.

1 Introduction

Modern deep learning researches are driven by scale. Powered by tremendous resources in computing
and data, large-scale models make it possible to connect the vision and language domains using
a single architecture (Radford et al.| 2021} [Dosovitskiy et al.l [2021), i.e., vision-language models
(VLMs). Modern text-to-image models (Ramesh et al.| 2021} Yasunaga et al., 2023)), such as the
famed generative model Stable Diffusion (Rombach et al |2022), are capable of high-quality and
diverse image synthesis based on a text prompt. For image-to-text tasks (Stefanini et al.|[2023)), based
on the large-scale data of image-text pairs, VLMs (Li et al.,|2022b) can describe visual concepts of
an image in natural language. These studies continue to evolve and scale, leading to various cases in
real-world scenarios (L1 et al., [2022a; |Xu et al., [2025).

While the scaled-up models and datasets have made monumental progress, there is an increasing risk
that the learned concepts in the trained models may be used maliciously. By leveraging personalized
text-to-image techniques (Ruiz et al., [2023}; (Gal et al., [2023)), personal portraits can be forged into
deepfakes (Shiohara and Yamasaki, [2022;[Chen et al.,|2021} Yu et al.,[2021)) by text-to-image models,
and aided by these models, the art style of paintings can also be easily imitated without authorization
(Liang et al, 2023)). Besides, since it is nearly impossible to carefully audit large-scale datasets,
models trained on these unfiltered data may present biased and harmful behaviors (Birhane et al.,
2021). These misuses of VLMs, especially text-to-image models, will severely violate the rights of
privacy and copyright, making the development of the scaling model go against its original intention.

A feasible solution to these issues is machine unlearning (Xu et al.,|2024), which grants people the
right to be forgotten. The primary challenge behind machine unlearning is how to efficiently and
precisely unlearn the target concept from trained models. Early research work (Bourtoule et al., 2021}
Yan et al.| 2022) focused on partitioning the dataset and model into several shards and sub-models,
and re-trained the sub-model corresponding to the target concept. However, these methods require
re-design of the model architecture, and cannot be applied to modern scaled-up vision-language
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models. Recent efforts have been made toward unlearning copyright or harmful data in trained text-
to-image models (Gandikota et al.l 2023; Kumari et al., 2023). These methods operate by fine-tuning
the trained diffusion model in an end-to-end fashion, and there is a trade-off between efficiency,
effectiveness, and the side effects introduced by the change of model parameters. As modern deep
neural networks, though large in scale, are built upon different foundational artifacts (Radford et al.|
2021)), this paper aims to investigate the question: Can we remove particular concepts in trained
text-to-image VLMs, by only unlearning the foundational artifacts that build up these models?

To unlearn text-to-image models at scale, this paper introduces a conceptually simple method,
Clipout, by focusing on the embedding of the learned concepts. Unlike previous methods that
treat the vision-language model as a whole, Clipout decouples the complex text-to-image system
into several distinct artifacts (e.g., the CLIP encoder (Radford et al.,[2021) used in Stable Diffusion
(Rombach et al.}|2022)), and only unlearns the artifact that is responsible for generating the concept
embedding. Inspired by the high efficiency and strong generalization of contrastive learning, in this
paper, we explore the opposite direction and propose contrastive unlearning, which aims at unlearning
a particular concept by introducing a novel contrastive objective. Based on the contrastive unlearning
paradigm, Clipout can unlearn target concepts in a more efficient and precise way.

Contributions. a) We propose the first machine unlearning method based on a contrastive objective
with only negative samples considered. b) Utilizing contrastive learning theories, we provide
necessary theoretical analyses on the effectiveness of the proposed unlearning method. c¢) Through
extensive experiments, our proposed method not only exceeds previous state-of-the-art methods in
performance but also has significant superiority in efficiency.

2 Background

Contrastive objectives (Zbontar et al.| 2021; |[Huang et al.| [2023b) have been widely adopted in vision-
language pre-training tasks, and many VLMs use image-text pairs to calculate these losses. InfoNCE
(van den Oord et al., 2018)) is one of the most canonical contrastive losses. [Radford et al.| (2021}
proposed CLIP to bridge vision and language domains by learning image and text encoders based on
InfoNCE. Following the idea of CLIP, a series of methods have been proposed (Jia et al.,|2021}; [Li
et al.,|2021). For image generation tasks, [Rombach et al.| (2022) proposed Stable Diffusion, which
runs the diffusion process in the latent space to generate photo-realistic images. Stable Diffusion uses
a fixed CLIP encoder to condition the images on the prompt.

Machine unlearning (Bourtoule et al.,|2021; [UIlah and Aroral 2023} Tarun et al., [2023) allows trained
models to discard specific information and maintain privacy by erasing the influence specific data
points have on the models. Different from unlearnable data (Huang et al.,|2021};|Liang et al.,|2023))
that safeguards personal privacy by adding the protective noise into data ahead of time, machine
unlearning aims to modify a trained model to delete certain data points. While most methods focus
on small-scale or discriminative tasks, some recent studies have started to pay attention to VLM
scenarios, especially in unlearning Stable Diffusion (Heng and Soh, |2023}; \Gandikota et al.| 2024)).
Kumari et al.| (2023)) proposed to ablate concepts in Stable Diffusion by overwriting them with a
general category anchor concept. Another concept-erasing method has been proposed by |Gandikota
et al.| (2023), which shares a similar motivation behind compositional energy-based models (Du
et al.}2020). Additionally, Schramowski et al.|(2023)) proposed an inference-time method, namely
Safe Latent Diffusion, to mitigate inappropriate concepts. |Amara et al.|(2025) discussed the ripple
effects that may extend beyond the target concepts to erase. [Kurmanji et al.| (2023)) proposed to use
a contrastive-like loss to unlearn small nets for classification tasks, while we proposed to unlearn
large-scale VLMs for image generation tasks. Generally, the text-to-image models intrinsically
contain the text encoder for prompt conditioning. By unlearning the text encoder, our method can
precisely remove the undesired concepts in the model, as the model cannot find the correct condition.

3 Contrastive Unlearning

We propose Clipout to unlearn private, copyrighted, or inappropriate concepts in text-to-image
VLMs. Based on the hypothesis of latent class (Wang and Isola, 2020; |Huang et al.| [2023a), the
term concept in this paper refers to a distribution that samples from the same concept share the same
semantic meaning, and it is described by the prompt in text-to-image generation. We only unlearn a
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Figure 1: The pipeline of Clipout. Given a prompt that describes the concept to unlearn, Clipout
first generates variants of the embedding by randomly masking the vector and then uses the contrastive
objective to optimize the encoder. These masked vectors, e.g., z;z;, serve as negative samples in
unlearning. The (red) positive samples, e.g., z;2;, are omitted in the optimization. The encoder
is updated by maximizing the dissimilarity between these masked variants. After unlearning, the
updated encoder replaces the original one, so the model can no longer generate the removed concept.
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part of VLMs, namely the encoder that produces the embedding to generate conditions for other parts,
and leave other parts fixed. Next, we will introduce the objective used in Clipout with theoretical
analyses. The following assumptions are made for simplicity. Proofs are present in the appendix.

Assumption 3.1. For any neural net fp(-) parameterized by 6 from a function class F, fp(-) is
continuous. Likewise, we assume the similarity function sim(-) is also continuous.

Assumption 3.2. In contrastive learning, the embedding 2’ and z from fy(-) share the same latent
class if ||z — 2’||? is not too large, and 2’ with z can form a positive pair w.z7. this latent class based
on empirical studies (Gao et al.,[2021)). By default, || - || denotes Frobenius or l3-norm.

3.1 Negative-Only Contrastive Loss

In text-to-image models, a concept is the semantic idea or category triggered by a text prompt, which,
in the context of representation learning, corresponds to a semantic distribution in the embedding
space that ensures all conditioned generated samples share the same underlying semantics.

The gist of Clipout is to make the concept embedding, which is used to represent the conditions,
unable to identify itself. Given a trained encoder f5(-) and the target embedding fp(x) = 2 € R? for
an input data point z, we randomly clip out some units from the embedding and set them to zero.
Assume the mask m € {0, l}d, the contrastive loss, which is inspired by InfoNCE, yields:
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where N is the batch size, 7 > 0 is the temperature parameter, and sim(-) is the similarity function.
Assume sim(z ® m;, z ©@ m;) = 1, we have:
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The element in m is i.i.d. drawn from Bernoulli(p), and m can be viewed as the vector of d Bernoulli
trials. We term p as the clipout rate analogous to the dropout rate (Srivastava et al.| 2014). In a single
training epoch, ¢y can be regarded as the empirical version of the population loss:
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where m; and m; are two independent random variables. According to Jensen’s inequality, we have:
lo> LEu, m,[sim(z@m;,z o m;)] +logN — L, “)
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As our goal is to minimize £y, Eq. @) largely reduces to:

min By, m, [sim(z ® m;, 2z ©m;)]. 6)



By generating multiple variants of z, we treat these clipped embedding vectors z ® m as negative
samples, and make them dissimilar from themselves. Since we do not use positive samples (i.e.,
samples that should be gathered together) and only focus on negative samples in the unlearning
objective, it is implied that the temperature 7 is not as important as in conventional contrastive
learning methods (Chen et al.| 2020; He et al., [2020). The pipeline of our method is presented in
Figure[I] Given a target prompt, it requires independent optimization for unlearning, and no extra
corpus is needed for fine-tuning.

3.2 On the Effectiveness of Unlearning

A proof of existence for randomly masking the embedding vectors is that these masked vectors
serve as the positive samples for the input data point in contrastive learning (Gao et al., [2021; | Xu
et al.| [2023). As we treat masked vectors as negative samples, we anticipate effective analyses with
theoretical guarantees. In this part, we first analyze the convergence of our proposed negative-only
contrastive loss in Eq. (I)) and then demonstrate why Clipout is effective, from the perspectives of
alignment and uniformity (Huang et al.|, | 2023a}; [Wang and Isolal 2020).

Convergence. From an intuitive perspective, Eq. (3)) demonstrates that by optimizing ¢y, the
representation of z for a particular concept can be destroyed and it no longer represents its original
semantic meaning. Besides, we can obtain the convergence guarantee of £y as in Proposition[3.3]

Proposition 3.3 (Convergence). Given the temperature 7 > 0 and the batch size N, {y in Eq. (1)
converges to:
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Compared with theoretical results in previous work (Huang et al., [2023a}; |Wang and Isolal [2020)),
Proposition [3.3]implies that our loss converges to a point where the distribution of /n matters, as there
is no positive sample in our loss. Since we only consider variants of a single target embedding, the
batch size N (i.e., the number of variants) can be (roughly) interpreted as the number of iterations
in the optimization. Proposition [3.3] has ensured that the loss considered in Clipout tends to be
convergent after masking the target embedding infinite times, and we now demonstrate the speed of
convergence as in Corollary [3.5]

Lemma 3.4 (The upper bound of E[|+- Zf\il ;|| (Wang and Isola, [2020)). Given i.i.d. random

variable x; with bounded support C [—a, a], zero mean and o2 < a® variance, the expected value
E“% Zf\il sz is bounded by O(ﬁ)

Corollary 3.5 (Convergence speed). The error term decays in O(\/—lﬁ) w.r.t. the convergence speed
of the limit in Proposition[3.3|according to Lemma

Corollary [3.5]encourages more negative samples in the optimization. As the dimension of vectors is
usually compact, it is feasible to involve a large batch size in practice.

Unlearning the target concept. To investigate whether Clipout can unlearn the target concept
while limiting the bad impact on other concepts, we try to analyze the problem from the perspective
of alignment and uniformity, as in Definition [3.6]

Definition 3.6 («-alignment and S-uniformity (Huang et al.,2023a}; [Wang and Isolal [2020))). In the
contrastive objective, alignment denotes positive pairs should be mapped to nearby features, and
uniformity represents feature vectors should be uniformly distributed on the unit hypersphere to

preserve the data information. Assume that features are normalized, i.e., || f(-)||?> = 1, these are
defined as follows:

Ealigh(f? a) = E, 2+ [Hf(x) - f(x+)”a}a @)

Euniform(f; B) = log Ey [e—ﬁHf(I)—f(gc’)HQ] , ®)

where o > 0, 3 > 0, x with ™ are positive samples, and x with 2’ are i.i.d. drawn from the input
data distribution.

Remark 3.7. Given a pre-trained encoder, alignment and uniformity can be used to measure the
unlearning performance. To unlearn a target concept, the unlearned encoder is supposed to have



Algorithm 1 Unlearning the encoder via Clipout

Parameter: prompt = and encoder fo(-)
1: for it = 1, iteration do
2:  Compute the data embedding z = fo(x);
3 Sample minibatch of N masked samples from z;
4 Compute the contrastive loss £p w.r.t. Eq. (1);
5: Update 6 by descending the gradients: V{g;
6: end for
7: return unlearned encoder parameters 6*;

poor alignment w.z¢. the target, as poor alignment means a deteriorated representation of the target.
Meanwhile, the unlearned encoder should have good uniformity for any pair sampled from the input
distribution, because the maximal information in the feature space should be preserved to maintain
the model performance on unrelated tasks w.r.z. other concepts.

Consider the cosine similarity in Eq. (3], we have:
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To minimize the loss, Eq. (9) implies that it needs to maximize the angle between two randomly
masked embedding vectors, regardless of the magnitudes. Previous kinds of literature (Gao et al.|
2021;|Xu et al.;,[2023)) have empirically proved that masked variants can be viewed as positive samples.
Consider o = 2 in Eq.(7), we build the connection between the unlearning objective and the loss of
alignment in Definition 3.6}

By m, [sim(z @ mi,z ©0m;)] =1 - %éahgn(fe; 2). (10
As in Definition [3.6] to learn a good representation, conventional contrastive learning aims at
minimizing alignment of positive samples, i.e., gathering these samples with the same latent semantics
closely in the feature space. On the contrary, Eq. (I0) suggests our proposed unlearning objective
intends to maximize the target’s alignment loss by increasing the Euclidean distance between their
unit vectors on the feature hypersphere. As a result, a pair of masked variants of z tends to become
two vectors in opposite directions. By making a learned representation scattered on the feature space,
Clipout can effectively unlearn the target concept by undermining the latent representations.

Influence on different concepts. Naively, one can always unlearn the target by adding noise to the
model parameters. However, arbitrarily changing the parameters will make the model useless for
other concepts. When maximizing the target alignment, the uniformity loss should not increase.

Lemma 3.8 (Uniform). For any x i.i.d. drawn from the input distribution, if the distribution of fp(x)
is the uniform distribution o4, 0 forms the minimizer for Luiform(fo; ).

Remark 3.9. For the unlearned encoder, we hope that the unlearned encoder with changed parameters
still preserves as much information as possible. This requires the loss to converge to a point where
the unlearned encoder can roughly form a uniform distribution on the feature hypersphere.

As we have demonstrated that optimizing Eq. helps to unlearn the target embedding, according
to Lemma|[3.8] we can alleviate side effects on other concepts if the normalized feature distribution
is the uniform distribution. Consider normalized vectors u and v where u,v € R?, ||u|| = 1 and

_ : Toy — _20m; T X zOm;, . s .
[lv]| = 1. Taking uTv = ot  TeomT for Eq. (6) in Proposition [3.3|we have:

Ep, [log By, [eSmzOmiz0ms)/7]] (11)
= Em1 [log Em_;’ [euTU/T]] :

Eq. (TI) can be largely reduced to Eq. (12) in Lemma [3.10] with proper clipout rates, since we mask
these vectors first and then normalize them. Note that Eq. (LT)) can only ensure a uniform distribution
over the masked embedding vectors. To maintain the maximal information at the global level, we
have to ensure the normalized feature vector z/||z|| is uniformly distributed on the unit hypersphere.




Table 1: Numerical results on VGGFace2 (Cao et al.,|2018). The sks person introduced by different
personalized methods (e.g., DreamBooth (Ruiz et al.|[2023)) is supposed to be unlearned, and similar
concepts, such as female persons, ought to be kept. T and + indicate that the higher and lower values
denote better performance, respectively. The prompts a photo of sks person, a photo of female person,
and a photo of male person are used. Diff. represents the difference between the metrics of the target
concept and the related concept. Values inside the bracket denote the difference compared with the
results in the original pre-trained model.

. CLIP Score FDFR ISM

Textual Inversion

sks (1) male (1) Diff. (1) sks (1) male (]) Diff. (1) sks (1) male Diff. ()
FSMG 26.04 (+0.18) 25.81 (-0.08) 0.23 (+0.20) 0.25 (+0.23) 0.08 (+0.00) 0.17 (+0.11) 0.30 (-0.30) 0.10 (+0.00) 0.20 (-0.30)
ASD 23.63 (-2.23) 25.84(-0.05) 2.21 (+2.18) 0.58 (+0.56) 0.16 (+0.08) 0.42 (+0.36) 0.39 (-0.21) 0.22 (+0.12) 0.17 (-0.33)
ESD 23.21 (-2.65) 25.44 (-0.45) 2.23 (+2.20) 0.11 (+0.09) 0.12 (+0.04) 0.01 (-0.05) 0.16 (-0.44) 0.09 (-0.01) 0.07 (-0.43)
SLD 22.60 (-3.26) 25.45(-0.44) 2.85(+2.82) 0.52 (+0.50) 0.27 (+0.19) 0.25 (+0.19) -0.01 (-0.61) -0.03 (-0.13) 0.02 (-0.48)
Clipout (Ours) 19.94 (-5.92) 26.06 (+0.17) 6.12 (+6.09) 0.80 (+0.78) 0.11 (+0.03) 0.69 (+0.63) 0.13 (-0.47) 0.13 (+0.03) 0.00 (-0.50)
DreamBooth sks (1) female (1) Diff. (1) sks (1) female (]) Diff. (1) sks (1) female Diff. (|)
FSMG 25.45 (-1.87) 27.25(+0.20) 1.80 (+1.53) 0.76 (+0.70) 0.03 (+0.03) 0.73 (+0.67) 0.29 (-0.37) 0.22 (-0.06) 0.07 (-0.31)
ASD 28.21 (+0.89) 27.80 (+0.75) 0.41 (+0.14) 0.03 (-0.03) 0.03 (+0.03) 0.00 (-0.06) 0.55(-0.11) 0.27 (-0.01) 0.28 (-0.10)
ESD 2520 (-2.12) 26.71(-0.34) 1.51 (+1.24) 0.33 (+0.27) 0.01 (+0.01) 0.32 (+0.26) 0.24 (-0.42) 0.18 (-0.10) 0.06 (-0.32)
SLD 25.65 (-1.67) 26.83 (-0.22) 1.18 (+0.91) 0.44 (+0.38) 0.02 (+0.02) 0.42 (+0.36) 0.31 (-0.35) 0.04 (-0.24) 0.27 (-0.11)
Clipout (Ours) 23.23 (-4.09) 27.15 (+0.10) 3.92 (+3.65) 0.94 (+0.88) 0.03 (+0.03) 0.91 (+0.85) 0.33 (-0.33) 0.31 (+0.03) 0.02 (-0.36)
LoRA sks (1) male (1) Diff. (1) sks (1) male (|) Diff. (1) sks (1) male Diff. ()
FSMG 26.49 (+1.56) 26.40 (+0.48) 0.09 (-0.90) 0.38 (+0.36) 0.02 (+0.00) 0.36 (+0.36) 0.29 (-0.34) 0.10 (-0.05) 0.19 (-0.29)
ASD 26.02 (+1.09) 26.26 (+0.34) 0.24 (-0.75) 0.56 (+0.54) 0.02 (+0.00) 0.54 (+0.54) 0.27 (-0.36) 0.21 (+0.06) 0.06 (-0.42)
ESD 24.13 (-0.80) 25.95 (+0.03) 1.82 (+0.83) 0.13 (+0.11) 0.02 (+0.00) 0.11 (+0.11) 0.40 (-0.23) 0.16 (+0.01) 0.24 (-0.24)
SLD 25.55 (+0.62) 26.27 (+0.35) 0.72 (-0.27) 0.06 (+0.04) 0.19 (+0.17) 0.13 (+0.13) 0.31(-0.32) 0.02 (-0.13) 0.29 (-0.19)

Clipout (Ours) 22.56 (-2.37) 27.01 (+1.09) 4.45 (+3.46) 0.95 (+0.93) 0.14 (+0.12) 0.81 (+0.81) 0.10 (-0.53) 0.08 (-0.07) 0.02 (-0.46)

Lemma 3.10 (Minimizer (Wang and Isola, [2020)). Given the hypersphere S?~! = {z € R? :
||2]| = 1}, and u,v € S, for p € M(SI™1) where M(-) is the set of Borel probability measures,
consider the following formulation:

min / 1og/ e* du(v)du(u), (12)
) Jsd—1 Sd—1

pHEM(Sd—1
where the uniform distribution o4 is the unique minimizer.

In Proposition [3.11] we show that if the masked (normalized) vectors in Eq. (II)) are uniformly
distributed on the unit hypersphere, the original normalized vectors are also uniformly distributed,
implying that the unlearned encoder can preserve maximal information with our loss, making other
concepts uniformly distributed and largely unaffected.

Proposition 3.11 (Feature distribution). Let z € R? be a feature vector sampled from a distribution
G and m € {0,1}? be a binary random vector sampled from a Bernoulli distribution, where each
element m; is 1.i.d. with parameter p € (0, 1). Define the masked vector Z = z ®m, where © denotes
element-wise multiplication. If the normalized masked vector Z /|| Z|| follows a uniform distribution
on the unit hypersphere S=1, then we have the following results:

e The feature distribution G must be a standard Gaussian distribution, i.e., z ~ N (0, Iy).

* The normalized feature vector z/||z|| is uniformly distributed on the unit hypersphere.

The implementation of Clipout is present in Algorithm [T, Our method does not rely on any
label or data distribution of the original training data, and the negative samples are generated via
a bootstrapping-like manner, i.e., masking the embedding vector itself. Compared with previous
methods, we do not need the anchor concept to align with (Kumari et al.l 2023), nor do we need the
knowledge of downstream generators to select the specific layers for modification (Gandikota et al.,
2023)), and we indeed change the model parameters (Schramowski et al., [2023)), which is hard to
bypass. We only require minimal prior knowledge, which makes our method more practical. Besides,
the efficiency of our method essentially results from the decoupling of complex text-to-image systems,
and we only focus on the part that accounts for generating the condition. These demonstrations are
verified in empirical evaluations.
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Figure 2: Face variations on CelebA-HQ (Karras et al.,[2018)) (the first two rows) and VGGFace2
2018) (the last two rows). Figures in the first and third rows are the target concepts to
be unlearned, and figures in the second and fourth rows are the similar concepts that we expect to
maintain after unlearning. photo denotes the prompt “a photo of sks person" and portrait represents
“a DSLR portrait of sks person". For similar concepts, the word sks is replaced by male or female.

4 Evaluation

We assess Clipout on a variety of tasks and datasets: a) the face datasets CelebA-HQ
[2018) and VGGFace2 (Cao et al., 2018), where the adversary could use personalized methods, e.g.,
Textual Inversion (Gal et al.l [2023), to make models remember personal concepts and forge fake
photos; b) LAION-5B (Schuhmann et al.} [2022)), where Stable Diffusion (Rombach et al},[2022) is
pre-trained on and we make use of this dataset to evaluate built-in concept unlearning. We consider
Stable Diffusion in experiments, as it is a significant open-source text-to-image model, and has
enlightened many works (Zhang and Agrawalal, 2023).

Metrics. For text-to-image tasks, the metric of CLIP Score (Hessel et al.,[2021) is used to check
if the generated images match the prompt that describes them. We use Face Detection Failure Rate
(FDFR) 2020) and Identity Score Matching (ISM) [2022)) to measure the
generated face quality compared with the training data. Once there is a face detected (i.e., the value
of FDFR is not 1), the similarity between the generated images and the original ones in the training
dataset is computed for ISM. ArcFace recognizer 2022) is used to compute the metrics
of FDFR and ISM, and the pre-trained weights are downloaded from its official code base.

Baselines. Since we focus on the prevention of unexpected results (e.g., model-related copyright
issues) from well-trained models, for text-to-image generation, Clipout is compared to three state-
of-the-art concept removal methods: Ablating Stable Diffusion (ASD) (Kumari et al.|[2023)), Erasing
Stable Diffusion (ESD) (Gandikota et al.,[2023), and Safe Latent Diffusion (SLD) (Schramowski
[2023). These methods aim to prevent the misuse of Stable Diffusion, and we report the best
empirical results in each experiment, based on their public official implementations. Additionally, we
also compare Clipout with FSMG 2023)), which is an advanced deepfake defense method
based on unlearnable data by using the protective noise. Note that both SLD and FSMG operate in a
scenario different from the machine unlearning setting (Bourtoule et al, 2021).

Personal concept. Personalized techniques allow text-to-image models to learn new concepts
given a few reference images. However, after crawling personal pictures from social platforms, the
adversary could generate counterfeit photos via these techniques to spread mendacious news.

In response to this privacy and safety concern, we investigate Clipout under three widely-used
personalized methods on Stable Diffusion: a) Textual Inversion (Gal et al.| 2023)), which transfers
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Figure 3: Disturbing pre-trained concept unlearning by Clipout. As modern VLMs are trained on
scaled datasets, some built-in concepts in trained models may be offensive. Images are randomly
sampled from the generator. The prompts “children with guns” and “a naked woman” describe the
target concepts we want to unlearn, and other harmless concepts are supposed to be kept. Images in
the first and the second rows denote the results by the original and unlearned models, respectively.
For naked experiments, we use “a photo of”” as the prefix to generate realistic images. The * stripes
are manually added for publication.

new knowledge into models by learning a new word for the concept; b) DreamBooth
[2023), which fine-tunes models to learn new concepts, and ¢) LoRA 2022), which utilizes
learned low-rank matrices to represent new concepts. The results are depicted in Figure2] Based on
transferred concepts from VGGFace?2 and CelebA-HQ, Stable Diffusion can generate photo-realistic
facial images according to text prompts. We use Adam (Kingma and Ba,[2015) as the optimizer with
a learning rate of 1.5 x 10~° and perform unlearning for 200 epochs. The clipout rate is set as 0.25
by default. After being unlearned by our method, the transferred concepts of the particular person no
longer exist, and the resultant images become meaningless (e.g., random scenes) while keeping the
ability of models to generate figure-like images.

We compare Clipout with baselines and report numerical results in Table [I] For original and
unlearned models, we evaluate metrics based on 128 generated images in each experiment. As CLIP
Score and FDFR denote whether the picture conforms to the text and whether it fails to detect the face,
we expect to enlarge the difference between images from the target and related concepts and reduce
ISM to differentiate the generated images from the source. It is observed that Clipout significantly
outperforms baselines about CLIP Score, FDFR, and ISM in all experiments. Considering the
difference between images from the target concept and related concepts, our method’s CLIP Score is
more than double that of the baselines, and the results of FDFR imply that Clipout only has minimal
side effects on other related concepts. As for ISM, results indicate that after unlearning, the generated
images do not look like the original reference images, which is consistent with the visual results in
Figure[2] The experiments indicate that our proposed method can precisely unlearn the target concept
of a particular person while keeping the similar concept as is.

Concept in pre-trained models. Benefit from an enormous amount of training data from the
Internet, text-to-image models enjoy a high quality of generated pictures. Yet disturbing concepts
may be unintentionally implanted into pre-trained VLMSs, due to the unfiltered training data.

In this part, we experiment with built-in concepts concerning Stable Diffusion, which is pre-trained
on the subsets of LAION-5B. We manage to unlearn two disturbing concepts, namely children with
guns and a naked woman, and inspect whether other related concepts are affected by the unlearning
process. Results are presented in Figure[3] The VLMs unlearned by Clipout cannot produce images
conditioned on disturbing concepts, e.g., the combination of naked and woman, anymore, and benign
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Figure 4: On matching the long target prompts in style transfer. Images in the first row oriented from
the prompt Claude Monet inspired painting / of a female botanist / surrounded by exotic plants /in a
greenhouse, which is the full target prompt to unlearn. We use the partial prompt in the unlearning
optimization and gradually lengthen the prompt by / to match the full target prompt.
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Figure 5: (a)(b) Efficiency evaluation on the time usage and GPU memory usage. NVIDIA A40 is
used to conduct evaluations. Baselines are based on their official implementations. (c)(d) Ablation
studies on the learning rate (vertical) and clipout rate (horizontal) for unlearning. We benchmark
Clipout on VGGFace2 2018). The absolute value of the difference between the metrics
of the target concept and the related concept is reported. FDFR and CLIP scores are present as
evaluation metrics. The higher score denotes better unlearning performance, i.e., the target concept is
unlearned while the related concept remains as is.

concepts like naked or woman alone remain intact. There is no observed reduction in the diversity
of other concepts or biases introduced by unlearning. Results show that Clipout can effectively
unlearn the target and retain other concepts to the greatest extent.

Unlearning built-in styles. The prompt standing for the target concept or used in practice may
not be exactly the prompt used in the unlearning process. We try to answer whether Clipout is
effective without an exact match in the prompt. We consider the style transfer scenario, where this
issue is likely to happen, as detailed paintings need more words to describe them. As in Figure 4]
two prompts, “Claude Monet inspired painting of a female botanist surrounded by exotic plants in a
greenhouse” (i.e., Claude Monet) and “Pablo Picasso inspired painting of a ship sailing in a stormy
sea with dramatic lighting and powerful waves” (i.e., Pablo Picasso), are evaluated. We gradually
lengthen the prompt to match the full prompt of Claude Monet and examine the generated paintings.
Results show that the unauthorized style imitation can be prevented with the short prompt “Claude
Monet inspired painting” unlearned, and other styles can be largely maintained.

Efficiency evaluation. As Clipout only unlearns a part of the large VLM, our method enjoys high
efficiency. We compare Clipout with baselines in terms of efficiency by measuring the average
usage in Table[T| with the same empirical setup, and the results are plotted in Figure[5] It is noted
that Clipout is far more time-efficient than ASD and ESD, and only has a minimal GPU memory
requirement. We ascribe this efficiency to the trait that Clipout decouples the large system into
different artifacts, and only focuses on the artifact obligated to generate the concept condition.

Additionally, inference-time mitigation methods like SLD are training-free and also enjoy high
efficiency. However, standard machine unlearning implies making a model forget or erase knowledge
from its parameters. SLD does the opposite: it actively relies on the model’s already acquired
knowledge of inappropriateness. It then uses this knowledge to apply the safety guidance during the
diffusion process, which suppresses or removes inappropriate image parts as they are being generated.



Therefore, it is more precise to demonstrate training-free methods like SLD as a training-free safety
guidance or content suppression technique that steers generation away from unsafe concepts rather
than one that makes the model forget them.

Hyperparameter tuning. Due to the high efficiency of our method, we can conveniently tune the
parameters and investigate the factors that contribute to the unlearning performance. The heat maps
are shown in Figure[5} The degeneration of performance can be seen if Clipout clips no unit or all
units out of the embedding, which demonstrates the validity of randomly clipping some units out of
the concept embedding. Besides, if we increase the learning rate during the unlearning process, all
concepts suffer from deterioration. Contrarily, with small learning rates, the target concept and other
concepts will not be significantly affected. This shows that it is vital to choose a reasonable learning
rate for unlearning, while Clipout is insensitive to the ratio of clipped units within a certain range.

Robustness analysis. We conducted adversarial prompt tests using Ring-A-Bell (Tsai et al.| [2024),
a model-agnostic red-teaming framework that automatically generates optimized adversarial prompts
to probe safety mechanisms in text-to-image diffusion models. Results are reported as follows: For
the model trained on VGGFace2 using DreamBooth, FDFR for the target concept is 0.06, while for
the benign female concept, the metric stays at zero. With Clipout, FDFR for the target concept rises
to 0.94 while the benign concept remains low at 0.03. When adversarial prompts from Ring-A-Bell
are applied to Clipout, FDFR for the target concept remains high at 0.58, with the benign concept
still at 0.03. These results confirm that Clipout maintains strong erasure of the targeted concept and
preserves benign concepts even under adversarial prompting, albeit with some degradation relative to
clean prompts. While Ring-A-Bell is designed to produce forged, highly optimized prompts that are
often unnatural in real-world usage, this evaluation complements our core threat model, in which
malicious users most commonly attempt to recover erased concepts via natural language variation
like synonyms, metaphors, and cultural paraphrases, rather than obfuscated tokens.

5 Broader Impact

Our work on machine unlearning for text-to-image diffusion models has both positive and negative
societal impacts. On the positive side, selective unlearning can reduce exposure to harmful content
(e.g., nudity or violence), honor take-down and consent-withdrawal requests, mitigate leakage
of sensitive or copyrighted material, and enable targeted safety updates without full retraining,
contributing to safer digital spaces. On the negative side, the same capability can enable censorship,
erase culturally significant or contested concepts, and introduce or amplify bias depending on who
defines inappropriate (Hall et al.| 2023} Berg et al., 2022} Hall et al., [2022; |Agarwal et al.| 2021}
Hong et al.| |2024). It may also be misused. For example, adversaries could use Clipout to remove
watermarks inside the trained models (Zhao et al.| [2023bj; [Liu et al., [2023;|Zhao et al., [2023a)) and
falsely claim ownership or copyright. Our aim is to foreground copyright and privacy issues in large
VLMs and promote awareness and responsible practice within the machine learning community.

6 Conclusion

In this paper, we demonstrate the potential risk in the text-to-image VLMs and propose Clipout
based on the negative-only contrastive loss to alleviate these risks. By unlearning target concepts in
text-to-image models, we purify the trained VLMs with negligible costs. We believe the proposed
method will play an indispensable role in building a more responsible text-to-image system, as its
efficacy has been demonstrated for removing undesired concepts.

There are still several limitations with our Clipout. Similar to other deep learning approaches, the
empirical results of our proposed method rely on the choice of the hyperparameter. Besides, since
the negative samples are generated via a bootstrapping-like manner, the unlearning direction of the
proposed method is not controllable, which makes the generated images usually look like some
landscapes or texture patterns. This unpredictability highlights the need for further refinement to
achieve more controllable unlearning outcomes.

Acknowledgment: We would like to acknowledge the valuable insights and suggestions provided
by the anonymous reviewers.
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NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Section[@l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Please see Appendix [A]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please see Appendix B}

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: The data and codes are not released at submission time. For experimental
result reproducibility, setting and details, please see Appendix B}

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please see Appendix B}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: It would be too computationally expensive for baseline methods, and all the
numerical results are based on 128 randomly generated images for statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please see Appendix B}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please see Section 3]
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper focuses on machine unlearning, which aims to remove particular
concepts in the trained models, instead of releasing a large model with a high risk.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Existing assets are properly credited and cited in this paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets at submission time.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A  Proofs

Following previous work in contrastive learning theories (Saunshi et al., 2019 Huang et al.| [2023a}
HaoChen et al.,|2021; |Wang and Isola), 2020; |Teng et al., [ 2022), we present the full proofs as below.

Proposition A.1 (Convergence). Given the temperature T > 0 and the batch size N, {g in Eq. (1)
converges to:

i lg —log N =E,, |logE,,. sim(20m;,z0m;) /T _ L
ity g = B [, -
Proof. Consider the Law of Large Numbers, the SV () can be replaced by the expected value

when N — o0, according to Eq. (2) we have:

]\}gnoo Ly —log N

1 N N 1

_ L sim(zOmg,z0my) /T _ =

Jim gy 2 loed e Pt
i= Jj=

1L 1
Emi [ngnoo lOg N Z es1m(z®m7¢,z®mj)/'r] =

‘ T
Jj=1
1 1
— : - sim(zOm;,zOmy)/T] _
o 1 i, 73 -1
j=
_ Em,; [log Emj [esim(sz“z@mj)/T]] .
-
The interchange of the limit and the logarithm is guaranteed by continuity (Assumption 1). O

Lemma A.2. Giveny > 0and z > 0, E[|logy — log z|] < e*E[|y — z|] holds, if e is a lower
bound of y and z.

Proof. Assume that there exists a constant x such that: | f'(£)| < e® for all £ between y and z, where
f(x) = log « is the natural logarithm function. Using Lagrange theorem, we have:

llogy —log 2| = |f(y) — f(2)| = |f(E)(y — 2)|,

for some & between y and z. Taking the absolute value of the derivative and using the given condition,
we get:

[logy —log 2| = |f"(E)lly — 2| < ey — 2.
Now, taking the expectation on both sides, we obtain:
E[[logy —log 2] < e"Ely — z[]. (13)
This inequality states that the expected absolute difference between the logarithms of two random
variables y and z is bounded above by e” multiplied by the expected absolute difference between y

and z, where e” is an upper bound on the absolute derivative of the logarithm function between y and
z. Since we have f/(§) = %, the upper bound of f/() is e® if the lower bound of £ is e ™. O

Corollary A.3 (Convergence speed). The error term decays in O(\/—lﬁ) w.r.t. the convergence speed
of the limit in Proposition 3 according to Lemma 4.
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Proof. According Proposition 3 and Eq. (3), the error term can be described as:
Err(¢y —log N) = |(A}im Ly —log N) — (Ly — log N)|
— 00

= |]Em1 [log Em]‘ [eSim(zCDmi’Z@””j)/T]

1L,
_ log N Z eslm(z@mi,zCij)/T] |
=1
]Emi, [| log ]Emj [esim(z(Dmi,Zij)/‘r]

N
— log % Z esim(z®mi,z®mj)/‘r|],
j=1
where the inequality is derived from Jensen’s inequality as the real absolute value function is a convex
function.

. _ 1.
Consider e~ is a lower bound of E,,,, [esm(®m::20m;)/T] and L Z eSim(z0mi,20m;) /T accord-
ing to Lemma[A.2] we have:

Err(fg — logN) < e7E

> [ m j
N

Z sim(zOm;,zOm;) /T |]

slm (zOmM;,z0m; )/T}

N
Z slm(z@m,,z@m])/T]

. eslm(z®muz®mg)/7')”

According to Lemma 4, given the bounded support of 8m(2©mi,20m5)/7 e have:

Err(lp — log N) < 0(—)

ﬂ

Therefore, the convergence speed is bound by O(\/Lﬁ) O

Lemma A.4 (Uniformly distributed). For any x i.i.d. drawn from the input distribution, if the
distribution of fg(x) is the uniform distribution o4, 0 forms the minimizer for yiform( fo; 5).

Proof. Assume x with 2’ are i.i.d. drawn from the input data distribution, and f(-) is normalized.
Lunitorm (fo; B) can be rewritten with Gaussian kernel Gg(u,v) = e~ Bllu—vl” Following well-known
results in[Bochner| (1933)); Stewart| (1976), G s (u, v) is strictly positive definite and o4 is the unique
measure in the solution of minimizing e‘miem(f6i8) (Wang and Isola, 2020). O

Theorem A.5 (Characterization of Gaussian Distribution (Ali, [1980)). Let x1,xo,...,x, be identi-
cally and independently distributed random variables. In order that the mean and the variance be
independently distributed, it is necessary and sufficient that each of the random variables be normally
distributed.

Proposition A.6 (Feature distribution). Let z € R? be a feature vector sampled from a distribution
G and m € {0,1}% be a binary random vector sampled from a Bernoulli distribution, where each
element my; is ii.d. with parameter p € (0, 1). Define the masked vector Z = z ® m, where ® denotes
element-wise multiplication. If the normalized masked vector Z /|| Z|| follows a uniform distribution
on the unit hypersphere S, then we have the following results:

¢ The feature distribution G must be a standard Gaussian distribution, i.e., z ~ N(0, I).

o The normalized feature vector z /|| z|| is uniformly distributed on the unit hypersphere.
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Proof. The intuition behind the proof includes two parts: the feature distribution and the normalized
feature vector. Given that z ~ G and m ~ Bernoulli(p). Consider the masked vector Z = z © m.
The distribution of Z conditioned on m is given by:

5 — Z ifml‘:L
‘0 ifm; = 0.

Given that Z/||Z|| is uniformly distributed on S?~!, first we need to show that this implies z ~

N(0, I,).

The feature distribution. Observe that if m; = 0 for all 7, then Z; = 0, which is not allowed since
||Z]| cannot be zero. Thus, at least one m; must be 1. Let k be the number of non-zero entries in m.
Conditionally on k, the non-zero entries of Z are a random subset of the entries of z.

Let S be the support of m, i.e., the set of indices where m; = 1. Then, conditioned on S, the vector
Z is given by:

zZs = zs, ZzZse =0,

where S€ is the complement of S. The normalization then gives:

z zS

[

Since Z/||Z|| is uniformly distributed on S¢~1, it follows that 25 /||2s|| must be uniformly distributed
on the lower-dimensional unit sphere S!S/,

Define v = zs5/||2s]|| and r = ||zs]|, the random vector zs can be expressed in polar coordinates as
zs = rv.

Since v is uniformly distributed on the unit hypersphere, it is mean zero because the unit hypersphere
is symmetric around each axis. Therefore, the mean of rv is:

E[rv] = E[r|E[v] = 0,

where the independence condition typically holds for spherically symmetric distributions (Schervish
and DeGroot, |2014). Since E[zs] = E[rv] is a constant, the mean and variance of zs is independent.
According to Theorem[A.3] the entries of zs must be i.i.d. from a Gaussian distribution.

Given that S is a random subset of {1, 2, ..., d} and the distribution of zs does not depend on S, we
can conclude that all entries of z must be i.i.d. standard normal variables. Therefore, z ~ N (0, I).

The normalized feature vector. Considering z ~ N(0, I), if O is an orthogonal matrix, Oz
is identically distributed with z. From that it follows, that z/||z|| is identically distributed with

0z/]0z|| L 0z /11|, where < means equal in distribution between two random variables. Thus
z/||z|| is invariant under rotations and belongs to the unit sphere. Let f. |, (-) be the probability

density function of z/||z|| on S, By rotation invariance, for any u € S¢~! and any orthogonal O,
we have:

fa1211 () = 2112 (Ow),

which implies f. /|.|(+) is constant on because the only functions that are invariant under all orthogo-
nal transformations are the constant functions. This implies that z/||z|| is uniformly distributed on
Sdfl_ ]

B Experiment Details and Discussions

In this section, we report implementation details, additional empirical results and discussions w.r..
our proposed method.
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Table 2: The norm of the embedding. We calculate  Table 3: Numerical results on the I2P
the norm of embedding vectors to investigate the dif-  dataset (Schramowski et al., [2023). We
ference before and after unlearning among the target ~ focus on the “Sexual" category, including
concept and similar concepts. Diff. denotes the differ-  armpits, belly, buttocks, feet, breasts and

ence after unlearning the encoder. genitalia.
Prompt Text Original Unlearned Diff. Method Unsafe proportion
children with guns (target) -0.1699 -0.1677  0.0022 Stable Diffusion (Clean) 28.54%
children at park -0.1696  -0.1680 -0.0008 SLD 14.97%
guns -0.1697 -0.1692  0.0005 Clipout (Ours) 11.06 %

Experimental setup. We use Adam (Kingma and Bal [2015) as the optimizer with a learning rate of
1.5 x 10~ and perform unlearning for 200 epochs. The clipout rate is set as 0.25 by default. For
diffusion models, we use Stable Diffusion 2.1 (Rombach et al.,[2022), with CLIP (Radford et al.,[2021}
Cherti et al.,[2023)) as the text encoder. All pre-trained weights are downloaded from the Hugging
Face platform (Wolf et al.,[2020). For numerical results, unless stated otherwise, we calculate these
results w.r.¢. different metrics based on 128 randomly generated images with 512 x 512 resolution
for statistical significance. The hyper-parameters in baseline methods are set as the recommended
values described in their publications. For reproducibility, we set the same random seed for Numpy
and PyTorch (Paszke et al.l 2019). We use PyTorch 1.13.1 with CUDA 11.6 on the Ubuntu operating
system. NVIDIA A40 with 48 GB GDDR6 memory is used to conduct most experiments. As
is described in the main text, our proposed method is efficient, which makes it easy to tune the
hyperparameters.

For datasets, we choose the face datasets CelebA-HQ (Karras et al.| 2018)) and VGGFace2 (Cao
et al.| [2018)). These two face datasets are commonly used in deepfake or privacy related tasks (Liang
et al.,[2023; |Le et al., 2023). We follow the same dataset split in the previous work (Le et al.,[2023)).
LAION-5B (Schuhmann et al., 2022)) is also considered, where Stable Diffusion (Rombach et al.|
2022) is pre-trained on and we make use of this dataset to remove target concepts from pre-trained
large diffusion models.

On the norm of the target embedding. In unlearning experiments, we calculated the distribution of
the embedding vectors, and it is observed that there is a significant change w.r. the target embedding.
Once the text encoder is unlearned, the embedding of a particular concept is fixed. We use 27 prompt
templates such as a photo of as in (Radford et al., 2021)) to generate multiple embedding vectors
centering around a concept. As in Table [2| for the target concept children with guns, the mean
values of embedding vectors are —0.1699 and —0.1677, before and after unlearning respectively,
and the average mean value is increased by 0.0022. The difference in the target concept embedding
vector is much higher than that of related concept embedding vectors, which supports alignment and
uniformity claims in the main text.

Personal and non-personal concepts. In the main text, we perform experiments on personal
concepts (e.g., sks person introduced by Textual Inversion) and non-personal concepts (e.g., children
with guns and Claude Monet inspired painting), and it turns out that our proposed method can unlearn
both concepts. Besides, for Textual Inversion experiments, the personalized concept is merely a
new embedding in the text encoder. Once the new and personalized concept is learned, there is no
difference between the personalized concept and the non-personalized concept, since the parameters
w.r.t. other parts of the model are unchanged.

Inappropriate image prompt benchmark. We performed experiments on the inappropriate image
prompts (I2P) dataset (Schramowski et al.| [2023)), and compared our proposed method with baselines.
For Clipout, we performed evaluations on the “Sexual" category of I12P, with the classifier metric of
NudeNet (Schramowski et al., | 2023)). For the baseline Safe Latent Diffusion (SLD) (Schramowski
et all [2023), we keep its default settings. The empirical results are presented in Table[3] It is noted
that the default SLD setting includes many "Sexual"-related keywords, including but not limited to
Nudity, while our proposed method only unlearns a naked woman in the Stable Diffusion model,
which can be considered as a stress test for our Clipout. The empirical results demonstrate that our
proposed method still outperforms the baseline method on the 12P dataset.
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Table 4: On the metric of FID Score.  Table 5: Empirical results on synonymous words. The
The score is calculated between the  metric of ISM is reported. Chris Hemsworth who plays
images generated by the original en-  Thor in the movies is the target concept to unlearn. Note
coder and the images generated by  there are other characters playing Thor in other movies,

the unlearned encoder. comics or cartoons.
Prompt Text FID Score Prompt Text Original Unlearned Diff.
children with guns (target)  463.14 Chris Hemsworth 0.95 022 -0.73
children with balloons 121.21 male person 0.33 023  -0.10
guns 133.12 the actor who plays Thor 0.75 0.50 -0.25
policemen with guns 135.22 the actor who plays Captain America  0.49 042  -0.07

Other metrics for numerical results. For other metrics, instead of CLIP Score, FDFR and ISM in
the main text, we also evaluate the FID Score (Heusel et al., 2017) on the target concept and related
concepts. Empirical results are reported in Table 4] For each experiment, we compute the FID Score
between 512 images generated by original models and unlearned models, respectively. It is observed
that after unlearning, the FID Score for children with guns is 463.14, which is much higher than that
of related concepts. Experiments demonstrate that our proposed method can effectively unlearn the
target concept while preserving the related concept as is.

Inclusion relation between concepts. Note that there is the inclusion relation between certain
concepts (e.g., children with guns and guns). After unlearning the concept of guns, the results show
that some generated images of children with guns are reduced to that of children, yet some other
generated images become meaningless images since the concept of guns is unlearned. In fact, this
unlearning situation is unusual in practice, since the concept guns alone is not regarded as a disturbing
concept in most cases, only when combined with other concepts like children are considered to be
disturbing.

Unlearning multiple concepts. Multiple concepts can be sequentially unlearned, since unlearning
one concept is an independent optimization process and other concepts can be largely maintained,
regardless of how many concepts are unlearned in total. As in Figure 3, since unlearning the first
concept (e.g., a naked woman) will not affect the other concept (e.g., a naked mole rat), we can
continue to unlearn other concepts in a sequential order. Therefore, the original generation capacity
of the text-to-image model will not be largely influenced by the proposed method.

Synonymous words. When describing a particular concept, there may be multiple choices for
the descriptive prompt text. We take “Chris Hemsworth" (“the actor who plays Thor") as the target
to unlearn, and also evaluate two related prompts, namely “male person" and “the actor who plays
Captain America", to investigate whether our proposed method can precisely unlearn the target
concept in pre-trained diffusion models. These non-personalized concepts are intrinsically involved
in the pre-trained Stable Diffusion models. We try to unlearn if these celebrities can be removed from
pre-trained diffusion models. We first generate 128 images from the pre-trained Stable Diffusion
as the reference images and calculate the metric of Identity Score Matching (ISM) to measure the
similarity between the generated images and the reference images. Numerical results are reported
in Table[5] It is observed that after unlearning, the similarity between generated Chris Hemsworth
or Thor images and the reference images significantly decreases, while related concepts are largely
unaffected. These results indicate that the proposed Clipout works in the scenario of synonymous
words.

Details on I2P benchmark. We performed experiments on the inappropriate image prompts
(I2P) dataset (Schramowski et al.,[2023)), and empirical results are reported in the main text. The
I2P benchmark includes real user prompts for text-to-image generation that are likely to produce
inappropriate images. It is designed to assess mitigation strategies in Stable Diffusion, without being
tied to any specific model. Inappropriate content is defined as offensive, threatening, or anxiety-
inducing, including categories like hate, harassment, violence, self-harm, sexual content, shocking
images, and illegal activity. These concepts vary across cultures and evolve over time. The benchmark
uses 26 keywords and phrases to detail these categories, collecting up to 250 real-world prompts for
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Table 6: Results for diverse prompts. 50 different ~ Table 7: Results for additional baselines. Diff.
prompts are sampled from MS-COCO (Lin et all  represents the difference between the metrics

2014) for evaluation. of the target concept and the related concept.
Method FID Score Method FDFR (Diff.) ISM (Diff.)
Original 151.03 SA 0.18 (+0.12) 0.1 (-0.27)
w/ “children with guns” Unlearned 157.79 (+4.48%) UCE 0.25 (+0.19)  0.10 (-0.28)
w/ “a naked woman” Unlearned  163.52 (+8.27%) Clipout (Ours) 0.91 (+0.85) 0.02 (-0.36)

each. These prompts generate images that align closely with inappropriate concepts in CLIP space.
The category of sexual content is considered for experiments, which includes armpits, belly, buttocks,
feet, female breasts, male breasts, male genitalia and female genitalia (Liu et al.,[2024; Wu et al.,
2024).

Diverse prompts. We benchmark 50 diverse MS-COCO prompts (Lin et al., 2014) (e.g., “a dog
catching a frisbee”) to check whether Clipout degrades the model’s overall generative quality on a
broader prompt set. Given a prompt, the score is calculated between the images generated by the
original encoder and the images generated by the unlearned encoder. Note that the metric of CLIP
Score may be biased (Agarwal et al.,|2021) (e.g., in terms of race, gender, and age). In this part, we
use FID Score as the metric, considering the diversity of sampled prompts. All images are randomly
generated. The average score is reported in Table[6] Since the unlearning process aims to change the
model parameters, and the prompts may already contain or overlap with words in the target prompts,
it is inevitable to see minor performance drops. Compared to the FID score change with respect to
the target prompt (e.g., Table ), results confirm that the overall generative ability of the model on
unrelated prompts is largely preserved.

Additional baselines. We include empirical evaluations about additional baselines like SA (Heng
and Soh, 2023)) and UCE (Gandikota et al., |2024)). The results are reported in Table In the table,
values inside the bracket denote the difference compared with the results in the original pre-trained
model. Numerical results indicate that Clipout remains competitive, particularly in effectiveness,
specificity, and preservation of non-target concepts.
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