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Abstract

Ultra-high-resolution image generation poses great challenges, such as increased
semantic planning complexity and detail synthesis difficulties, alongside substantial
training resource demands. We present UltraPixel, a novel architecture utilizing
cascade diffusion models to generate high-quality images at multiple resolutions
(e.g., 1K to 6K) within a single model, while maintaining computational effi-
ciency. UltraPixel leverages semantics-rich representations of lower-resolution
images in the later denoising stage to guide the whole generation of highly detailed
high-resolution images, significantly reducing complexity. Furthermore, we intro-
duce implicit neural representations for continuous upsampling and scale-aware
normalization layers adaptable to various resolutions. Notably, both low- and high-
resolution processes are performed in the most compact space, sharing the majority
of parameters with less than 3% additional parameters for high-resolution out-
puts, largely enhancing training and inference efficiency. Our model achieves fast
training with reduced data requirements, producing photo-realistic high-resolution
images and demonstrating state-of-the-art performance in extensive experiments.

1 Introduction

Recent advancements in text-to-image (T2I) models, e.g., Imagen [42], SDXL [37], PixArt-α [4],
and Würstchen [36], have demonstrated impressive capabilities in producing high-quality images,
enriching a broad spectrum of applications. Concurrently, the demand for high-resolution images has
surged due to advanced display technologies and the necessity for detailed visuals in professional
fields like digital art. There is a great need for generating aesthetically pleasing images in ultra-high
resolutions, such as 4K or 8K, in this domain.

While popular T2I models [37, 4, 36] excel in generating images up to 1024 × 1024 resolution,
they encounter great difficulties in scaling to higher resolutions. To address this, training-free
methods have been proposed that modify the network structure [15, 22] or adjust the inference
strategy [1, 12, 21] to produce higher-resolution images. However, these methods often suffer from
instability, resulting in artifacts such as small object repetition, overly smooth content, or unreasonable
details. Additionally, they frequently require long inference time [12, 14, 21] and manual parameter
adjustments [15, 14, 12] for different resolutions, hindering their practical applications. Recent
efforts have focused on training models specifically for high resolutions, such as ResAdapter [6] for
2048× 2048 pixels and PixArt-Σ [4] for 2880× 2880. Despite these improvements, the resolution
and quality of generated images remain limited, with models optimized for specific resolutions only.

Training models for ultra-high-resolution image generation presents significant challenges. These
models must manage complex semantic planning and detail synthesis while handling increased
computational loads and memory demands. Existing techniques, such as key-value compression [3]
in attention [40, 11, 38, 39, 35] and fine-tuning a small number of parameters [6], often yield sub-
optimal results and hinder scalability to higher resolutions. Thus, a computationally efficient method
supporting high-quality detail generation is necessary. We meticulously review current T2I models
and identify the cascade model [36] as particularly suitable for ultra-high-resolution image generation.
Utilizing a cascaded decoding strategy that combines diffusion and variational autoencoder (VAE),
this approach achieves a 42:1 compression ratio, enabling a more compact feature representation.
Additionally, the cascade decoder can process features at various resolutions, as illustrated in Sec-
tion A in the appendix. This capability inspires us to generate higher-resolution representations
within its most compact space, thereby enhancing both training and inference efficiency. However,
directly performing semantic planning and detail synthesis at larger scales remains challenging. Due
to the distribution gap across different resolutions (i.e., scattered clusters in the t-SNE visualization in
Figure 2), existing models struggle to produce visually pleasing and semantically coherent results.
For example, they often result in overly dark images with unpleasant artifacts.

In this paper, we introduce UltraPixel, a high-quality ultra-high-resolution image generation method.
By incorporating semantics-rich representations of low-resolution images in the later stage as guid-
ance, our model comprehends the global semantic layout from the beginning, effectively fusing
text information and focusing on detail refinement. The process operates in a compact space, with
low- and high-resolution generation sharing the majority of parameters and requiring less than 3%
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Figure 2: Illustration of feature distribution disparity across varying resolutions.

additional parameters for the high-resolution branch, ensuring high efficiency. Unlike conventional
methods that necessitate separate parameters for different resolutions, our network accommodates
varying resolutions and is highly resource-friendly. We achieve this by learning implicit neural
representations to upscale low-resolution features, ensuring continuous guidance, and by developing
scale-aware, learnable normalization layers to adapt to numerical differences across resolutions. Our
model, trained on 1 million high-quality images of diverse sizes, demonstrates the capability to
produce photo-realistic images at multiple resolutions (e.g., from 1K to 6K with varying aspect ratios)
efficiently in both training and inference phases. The image quality of our method is comparable to
leading closed-source T2I commercial products, such as Midjourney V6 [32] and DALL·E 3 [34].
Moreover, we demonstrate the application of ControlNet [52] and personalization techniques [20]
built upon our model, showcasing substantial advancements in this field.

2 Related Work

Text-guided image synthesis. Recently, denoising diffusion probabilistic models [45, 18] have
refreshed image synthesis. Prominent text-guided generation models [37, 4, 3, 36, 9, 35, 29, 46, 42,
27] have demonstrated a remarkable ability to generate high-quality images. A common approach is
to map raw image pixels into a more compact latent space, in which a denoising network is trained to
learn the inverse diffusion process [4, 3, 37]. The use of variational autoencoders [23] has proven to
be highly efficient and is crucial for high-resolution image synthesis [13, 41]. StableCascade [36]
advances this approach by learning a more compact latent space, achieving a compression ratio of 42:1
and significantly enhancing training and inference efficiency. We build our method on StableCascade
primarily due to its extremely compact latent space, which allows for the efficient generation of
high-resolution images.

High-resolution image synthesis. Generating high-resolution images has become increasingly
popular, yet most existing text-to-image (T2I) models struggle to generalize beyond their trained
resolution. A straightforward approach is to generate an image at a base resolution and then upscale
it using super-resolution methods [51, 10, 28, 48, 8]. However, this approach heavily depends on
the quality of the initial low-resolution image and often fails to add sufficient details to produce
high-quality high-resolution (HR) images. Researchers have proposed direct HR image generation as
an alternative. Some training-free approaches [15, 12, 21, 1, 22, 53, 26] adjust inference strategies or
network architectures for HR generation. For instance, patch-based diffusion [1, 26] employ a patch-
wise inference and fusion strategy, while ScaleCrafter [15] modifies the dilation rate of convolutional
blocks in the diffusion UNet [37, 41] based on the target resolution. Another method [22] adapts
attention entropy in the attention layer of the denoising network according to feature resolutions.
Approaches like Demofusion [12] and FouriScale [21] design progressive generation strategies, with
FouriScale further introducing a patch fusion strategy from a frequency perspective.

Despite being training-free, these methods often produce higher-resolution images with noticeable
artifacts, such as edge attenuation, repeated small objects, and semantic misalignment. To improve
HR image quality, PixArt-sigma [3] and ResAdapter [6] fine-tune the base T2I model. However,
their results are limited to 2880× 2880 resolution and exhibit unsatisfied visual quality. Our method
leverages the extremely compact latent space of StableCascade and introduces low-resolution (LR)
semantic guidance for enhanced structure planning and detail synthesis. Consequently, our approach
can generate images up to 6K resolution with high visual quality, overcoming the limitations of
previous methods.
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Figure 3: Method Overview. Initially, we extract guidance from the low-resolution (LR) image
synthesis process and upscale it by learning an implicit neural representation. This upscaled guidance
is then integrated into the high-resolution (HR) generation branch. The generated HR latent undergoes
a cascade decoding process, ultimately producing a high-resolution image.

3 Method

Generating ultra-high-resolution images necessitates complex semantic planning and detail synthesis.
We leverage the cascade architecture [36] for its highly compact latent space to streamline this process,
as illustrated in Figure 3. Initially, we generate a low-resolution (LR) image and extract its inner
features during synthesis as semantic and structural guidance for high-resolution (HR) generation. To
enable our model to produce images at various resolutions, we learn implicit neural representations
(INR) of LR and adapt them to different sizes continuously. With this guidance, the HR branch, aided
by scale-aware normalization layers, generates multi-resolution latents. These latents then undergo
a cascade diffusion and VAE decoding process, resulting in the final images. In Section 3.1, we
detail the extraction and INR upscaling of LR guidance. Section 3.2 outlines strategies for fusing LR
guidance and adapting our model to various resolutions.

3.1 Low-Resolution Guidance Generation
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Figure 4: Illustration of continuous upscaling by
implicit neural representation.

To address the challenges of high-resolution im-
age synthesis, Previous studies [42, 17] have
often employed a progressive strategy, initially
generating a low-resolution image and then ap-
plying diffusion-based super-resolution tech-
niques. Although this method improves image
quality, the diffusion process in the pixel space
remains resource-intensive. The cascade archi-
tecture [36], achieving a 42:1 compression ratio,
offers a more efficient approach to this problem.

Guidance extraction. Instead of relying solely
on the final low-resolution output, we introduce
multi-level internal model representations of the low-resolution process to provide guidance. This
strategy is inspired by evidence suggesting that representations within diffusion generative models
encapsulate extensive semantic information [49, 2, 31]. To optimize training efficiency and stability,
we leverage features in the later stage, which delineate clearer structures compared to earlier stages.
This approach ensures that the high-resolution branch is enriched with detailed and coherent semantic
guidance, thereby enhancing visual quality and consistency. During training, the high-resolution
image (e.g., 4096 × 4096) is first down-sampled to the base resolution (1024 × 1024), then encoded

4



…

𝑓!

C
on

v.
Ti

m
e 

B
lo

ck
.

A
tte

nt
io

n

Sc
al

e-
Aw

ar
e 

N
or

m
. Guidance Fusion

𝑓"

Li
ne

ar

Ti
m

e 
B

lo
ck

Scale-Aware Norm.

N
or

m
.

Time Emb.

×

Li
ne

ar

Scale Emb.

+G
ui

da
nc

e 
Fu

si
on

+

𝑧#! 𝑧#$%!

Figure 5: Architecture details of generative diffusion model.

to a latent zL0 (24 × 24) and corrupted with Gaussian noise as

q(zLt |zL0 ) := N (zLt ;
√
αtz

L
0 , (1− αt)I) , (1)

where αt := 1− βt,
√
αt :=

∏t
s=0 αs, and βt is the pre-defined variance schedule for the diffusion

process. We then feed zLt to the denoising network and obtain multi-level features after the attention
blocks, denoted as the guidance features g.

Continuous upsampling. Note that the guidance features g are at the base resolution (24 × 24),
while the HR features vary in size. To enhance our network’s ability to utilize the guidance, we
employ implicit neural representations [33, 5], which allow us to upsample the guidance features
to arbitrary resolutions. This approach also mitigates noise disturbance in the guidance features,
ensuring effective utilization of their semantic content. As shown in Figure 4, we initially perform
dimensionality reduction on the LR guidance tokens via linear operartions for improved efficiency
and concatenate them with a set of learnable tokens. These tokens undergo multiple self-attention
layers, integrating information from the guidance features. Subsequently, the updated learnable
tokens are processed through multiple linear layers to generate the implicit function weights. By
inputting target position values into the implicit function, we obtain guidance features g′ that matches
the resolution of the HR features.

3.2 High-Resolution Latent Generation

The high-resolution latent generation is also conducted in the compact space (i.e., 96 × 96 latent
for a 4096 × 4096 image with a ratio of 1:42), significantly enhancing computational efficiency.
Additionally, the high-resolution branch shares most of its parameters with the low-resolution branch,
resulting in only a minimal increase in additional parameters. In detail, to incorporate LR guidance,
we integrate several fusion modules. Furthermore, we implement resolution-aware normalization
layers to adapt our model to varying resolutions.

Guidance fusion. After obtaining the guidance feature g′, we fuse it with the HR feature f as follows:

f ′ = Linear(Concat(f ,g′)) + f . (2)

The fused HR feature f ′ is further modulated by the time embedding et to determine the extent of LR
guidance influence on the current synthesis step:

f ′′ = Norm(f ′)⊙ Linear1(et) + Linear2(et) + f ′ . (3)

With such semantic guidance, our model gains an early understanding of the overall semantic structure,
allowing it to fuse text information accordingly and generate finer details beyond the LR guidance, as
illustrated in Figure 8.

Scale-aware normalization. As illustrated in Figure 2, changes in feature resolution result in
corresponding variations in model representations. Normalization layers trained at a base resolution
struggle to adapt to higher resolutions, such as 4096 × 4096. To address this challenge, we propose
resolution-aware normalization layers to enhance model adaptability. Specifically, we derive the
scale embedding es by calculating logNH NL, where NH denotes the number of pixels in the HR
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features (e.g., 96 × 96) and NL corresponds to the base resolution (24 × 24). This embedding is
then subjected to a multi-dimensional sinusoidal transformation, akin to the transform process used
for time embedding. Finally, we modulate the HR feature f as follows:

f ′ = Norm(f)⊙ Linear1(es) + Linear2(es) + f . (4)

The training objective of the generation process is defined as:

L := Et,x0,ϵ∼N (0,1)[||ϵθ,θ′(zt, s, t,g)− ϵ||2] , (5)

where s and g denote scale and LR guidance, respectively. The parameters θ of the main generation
network are fixed, while newly added parameters θ′ including INR, guidance fusion, and scale-aware
normalization are trainable.

4 Experiments

4.1 Implementation Details

We train models on 1M images of varying resolutions and aspect ratios, ranging from 1024 to
4608, sourced from LAION-Aesthetics [44], SAM [24], and self-collected high-quality dataset. The
training is conducted on 8 A100 GPUs with a batch size of 64. Using model weight initialization from
1024 × 1024 StableCascade [36], our model requires only 15,000 iterations to achieve high-quality
results. We employ the AdamW optimizer [30] with a learning rate of 0.0001. During training, we
use continuous timesteps in [0, 1] as [36], while LR guidance is consistently corrupted with noise at
timestep t = 0.05. During inference, the generative model uses 20 sampling steps, and the diffusion
decoding model uses 10 steps. We adopt DDIM [45] with a classifier-free guidance [19] weight of 4
for latent generation and 1.1 for diffusion decoding. Inference time is evaluated with a batch size of 1.

4.2 Comparison to State-of-the-Art Methods
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Figure 6: Win rate of our UltraPixel against competing methods in terms of PickScore [25].

Compared methods. We compare our method with competitive high-resolution image gener-
ation methods, categorized into training-free methods (ElasticDiffusion [14], ScaleCrafter [15],
Fouriscale [21], Demofusion [12]) and training-based methods (Pixart-σ [3], DALL·E 3 [34], and
Midjourney V6 [32]). For models that can only generate 1024×1024 images, we use a representative
image super-resolution method [51] for upsampling. We comprehensively evaluate the performance
of our model at resolutions of 1024×1792, 2048×2048, 2160×3840, 4096×2048, and 4096×4096.
For a fair comparison, we use the official implementations and parameter settings for all methods.
Considering the slow inference time (tens of minutes to generate an ultra-high-resolution image) and
the heavy computation of training-free methods, we compute all metrics using 1K images.

Benchmark and evaluation. We collect 1,000 high-quality images with resolutions ranging from
1024 to 4096 for evaluation. We focus primarily on the perceptual-oriented PickScore [25], which is
trained on a large-scale user preference dataset to determine which image is better given an image
pair with a text prompt, showing impressive alignment with human preference. Although FID [16]
and Inception Score [43] (IS) may not fully assess the quality of generated images [25, 3], we report
these metrics following common practice. It is important to note that both FID and IS are calculated
on down-sampled images with a resolution of 299 × 299, making them unsuitable for evaluating
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Table 1: Quantitative comparison with other methods. Our UltraPixel achieves state-of-the-art
performance on all metrics across different resolutions.

Resolution(H×W) Method FIDP ↓ FID↓ ISP ↑ IS↑ CLIP↑ Latency(sec.) ↓

1024× 1792
DALL·E 3 88.44 86.16 16.43 18.30 29.66 -

Ours 60.5 63.53 17.84 26.89 35.34 8

2048× 2048

ScaleCrafter [15] 64.75 73.79 15.41 22.53 31.79 45
ElasticDiffusion [14] 77.19 65.37 11.12 21.97 32.95 295

DemoFusion [12] 54.86 63.97 13.38 28.07 32.98 97
FouriScale [21] 68.79 86.71 7.70 18.08 30.70 74

Base + BSRGAN [51] 48.52 64.00 13.67 29.87 33.53 11+6
Pixart-Σ [3] 54.35 63.96 14.87 27.13 31.18 57

Ours 44.74 62.50 14.95 30.52 35.43 15

2160× 3840
Pixart-Σ [3] 49.86 63.87 10.89 25.35 30.86 111

Ours 46.06 62.41 11.91 25.65 34.98 31

4096× 2048

ScaleCrafter [15] 101.58 120.71 9.04 12.15 23.71 190
DemoFusion [12] 51.16 75.28 10.81 21.83 29.95 325
FouriScale [21] 128.03 137.16 3.82 10.41 21.98 197

Ours 42.60 64.69 11.76 25.36 34.59 33

4096× 4096

ScaleCrafter [15] 74.02 98.11 9.07 14.53 31.79 580
DemoFusion [12] 47.40 61.11 9.99 26.40 33.14 728
FouriScale [21] 72.23 105.12 8.12 14.81 27.73 573
StableSR [48] 48.18 65.27 9.25 27.55 32.49 728
SUPIR [50] 46.98 64.13 9.83 26.16 31.28 682

Ours 44.59 62.12 10.27 27.69 35.18 78

high-resolution image quality. Therefore, we adopt FID-patch and IS-patch for a more reasonable
measure. Finally, we evaluate image-text consistency using the CLIP score [7].

Quantitative Comparison. As mentioned, PickScore aligns closely with human perception, so we
use it as our primary metric. Figure 6 shows the win rate of our UltraPixel compared to other methods.
Our approach consistently delivers superior results across all resolutions. Notably, UltraPixel is
preferred in 85.2% and 84.0% of cases compared to the training-based Pixart-Σ [3], despite Pixart-Σ
using separate parameters for different resolutions and training on 33M images, whereas our model
uses the same parameters for varying resolutions and is trained on just 1M images. UltraPixel also
shows competitive performance compared to advanced T2I commercial product DALL·E 3 [34],
yielding a win rate of 70.0%. Continuous LR guidance enables our resolution-aware model to focus
on detail synthesis, resulting in higher visual quality. Furthermore, as shown in Table 1, our method
performs competitively on FID, IS, and CLIP scores across different resolutions. Training-free
HR generation methods [12, 15, 21, 14] struggle to produce high-quality 4096 × 2048 images,
showing limited generalization ability. Our UltraPixel also excels in inference efficiency, generating a
2160×3840 image in 31 seconds, which is nearly 3.6× faster than Pixart-Σ (111 seconds). Compared
to training-free methods that take tens of minutes to generate a 4096 × 4096 image, our model is
significantly more efficient, being 9.3× faster than DemoFusion [12]. These results highlight the
effectiveness of our method in generating ultra-high-resolution images with excellent efficiency.

Qualitative comparison. Figure 7 illustrates a visual comparison between our UltraPixel and
other high-resolution image synthesis methods at various resolutions. Training-free methods like
ScaleCrafter [15] and FouriScale [21] often produce visually unpleasant structures and large areas
of irregular textures, significantly degrading visual quality. DemoFusion [12] suffers from severe
small object repetition due to its patch-by-patch generation approach. Compared to Pixart-Σ [3], our
method excels in generating superior semantic coherence and fine-grained details. For instance, in
the 2160× 3840 resolution case, our generated camel and human faces exhibit richer details. Despite
using a single model to generate images at different resolutions, our method consistently produces
visually pleasing and semantically coherent results. Besides, as illustrated in Figure B.5, B.6, and B.7
of appendix, our method produces images of quality comparable to those generated by DALL·E 3
and Midjourney V6.

4.3 Ablation Study

In this section, for computational efficiency, we train all models with 5K iterations. Unless otherwise
stated, the results are reported at a resolution of 2560× 2560.
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Figure 7: Visual Comparison of our UltraPixel and other methods. Our method produces images
of ultra-high resolution with enhanced details and superior structures. More visual examples are
provided in the appendix.

LR guidance. Figure 8 visually demonstrates the effectiveness of LR guidance. The synthesized
HR result without LR guidance exhibits noticeable artifacts, with a messy overall structure and
darker color tone. In contrast, the HR image generated with LR guidance is of higher quality, for
instance, the characters “accepted” on the sweater and the details of the fluffy head are more distinct.
Visualization of attention maps reveals that the HR image generation process with LR guidance shows
clearer structures earlier. This indicates that LR guidance provides strong semantic priors for HR
generation, allowing the model to focus more on detail refinement while maintaining better semantic
coherence. Additionally, Figure 9 compares our method to the post-processing super-resolution
strategy, demonstrating that UltraPixel can generate more visually pleasing details.
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Figure 8: Ablation study on LR guidance. Leveraging the semantic guidance from LR features allows
the HR generation process to focus on detail refinement, improving visual quality. Text prompt: In
the forest, a British shorthair cute cat wearing a yellow sweater with “Accepted” written on it. A
small cottage in the background, high quality, photorealistic, 4k.

LR BSRGAN Ours

Figure 9: Visual comparison with super-resolution method BSRGAN [51] at resolution of 4096×4096.
Super-resolution has limited ability to refine the details of the low-resolution image, while our method
is capable of generating attractive details.

Timesteps of LR guidance extraction. We analyze the effect of timesteps used to extract LR
guidance in Table 2 and Figure 10. We consider three cases: t = tH , where LR guidance is
synchronized with the HR timesteps; t = 0.5, representing a fixed guidance at the middle timestep;
and t = 0.05, near the end. The results show that t = tH produces a poor CLIP score. This can be
attributed to the necessity of providing semantic structure guidance early on, but the LR guidance
is too noisy at this stage to be useful. Similarly, t = 0.5 also results in noisy LR guidance, as seen
in Figure 8. Conversely, t = 0.05 provides the best performance since features in the later stage of
generation exhibit much clearer structural information. With semantics-rich guidance, HR image
generation can produce coherent structures and fine-grained details, yielding higher scores in Table 2.

Implicit neural representation (INR). To incorporate multi-resolution capability into our model, we
adopt an INR design to continuously provide informative semantic guidance. In Table 3, we compare
continuous INR upsampling (dubbed “INR”) with directly upsampling LR guidance using bilinear
interpolation followed by convolutions (denoted as“BI + Conv”). The results show that INR yields
better semantic alignment and image quality, as it provides consistent guidance of LR features across
varying resolutions. Figure 11 further illustrates that directly upsampling LR guidance introduces
significant noise into the HR generation process, resulting in degraded visual quality.

Scale-aware normalization. As illustrated in Figure 2, features across different resolutions vary
significantly. To generate higher-quality results, we propose scale-aware normalization (SAN).
Table 3 compares the performance of models with (“INR + SAN”) and without (“INR”) this design.
When scaling the resolution from 2560 × 2560 to 4096 × 4096, the CLIP score gap noticeably
enlarges, indicating better textual alignment with SAN. Additionally, the Inception Score shows
significant improvement when adopting SAN, validating the effectiveness of our design.
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Table 2: Ablation study
on timesteps of LR guid-
ance extraction.

t = tH t = 0.5 t = 0.05

CLIP↑ 31.14 32.75 33.09

IS↑ 25.37 28.15 29.14

Table 3: Ablation on INR and SAN.
BI + Conv INR INR + SAN

25602
CLIP↑ 32.41 32.72 33.09

IS↑ 26.81 27.62 29.14

40962
CLIP↑ 31.90 31.93 32.87

IS↑ 22.22 25.22 27.15

Table 4: Ablation on the number of
trainable parameters.

Base LoRA Ours-512 Ours-1024

Param.(M) 0 106 65 101
CLIP↑ 30.39 31.20 32.78 33.09

IS↑ 20.89 22.73 27.43 29.14

LR

H
R

 (t
=
t!

)
H

R
 (t
=
0.
05

)

T 0

H
R

 (t
=
0.
5)

T 0

Figure 10: Visual comparisons of guidance across different timesteps. “LR” depicts the low-resolution
generation process, whereas the other “HR” cases illustrate the high-resolution process under varying
guidance. When employing synchronized (t = tH ) or middle timestep (t = 0.5) guidance, the
structure information provided is messy, while t = 0.05 offers semantics-rich and clear directives.

1024×1024	LR 2048×2048	 Without INR 4096×4096	 Without INR 2048×2048	 With INR 4096×4096	 With INR

Figure 11: Illustration of Implicit neural representation (INR) to provide consistent guidance.

Number of trainable parameters. Our model benefits from high training efficiency, partly because
we use a limited number of trainable parameters based on StableCascade [36]. Table 4 illustrates the
impact of the number of trainable parameters. Since most new parameters are in the INR module,
we can reduce the channel dimension of LR features from 2048 to a lower number. We explore
models with LR dimensions of 512 and 1024 and also include a LoRA [20] version with a rank of
48. Compared to the “LoRA” model, “Ours-512” produces better results with fewer parameters.
Increasing the channel number from 512 to 1024 (“Ours-1024”) achieves higher visual quality and
better text-image alignment. To balance efficiency and performance, we choose 1024 as the default.

5 Conclusion

We present UltraPixel, an efficient framework for generating high-quality images at varying resolu-
tions. Utilizing an extremely compact latent space, we introduce low-resolution (LR) guidance to
simplify the complexity of semantic planning and detail synthesis. Specifically, semantics-rich LR
features provide structural guidance for high-resolution image generation. To enable our model to
handle varying resolutions, we learn an implicit function to consistently upsample LR features and
insert scale-aware normalization layers to adapt feature distribution. UltraPixel efficiently generates
stunning, ultra-high-resolution images of varying sizes, elevating image synthesis to new heights.

6 Broader Impacts and Limitation

Despite the advancements in UltraPixel, the limited quantity and quality of training datasets constrain
the realism and quality of our generated images, especially in complex scenes. This issue underscores
the ongoing challenges in achieving true photorealism, and we are committed to further exploring
this area in future research.

10



7 Acknowledgments

This work is supported by the Guangzhou-HKUST(GZ) Joint Funding Program (No. 2023A03J0671),
the Guangzhou Municipal Science and Technology Project (Grant No. 2024A04J4230), Guangdong
Provincial Key Lab of Integrated Communication, Sensing and Computation for Ubiquitous Internet
of Things(No.2023B1212010007), and the National Natural Science Foundation of China (Project
No. 61902275).

References
[1] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion paths for

controlled image generation. 2023.

[2] Dmitry Baranchuk, Ivan Rubachev, Andrey Voynov, Valentin Khrulkov, and Artem Babenko. Label-
efficient semantic segmentation with diffusion models. arXiv preprint arXiv:2112.03126, 2021.

[3] Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping Luo,
Huchuan Lu, and Zhenguo Li. Pixart-sigma: Weak-to-strong training of diffusion transformer for 4k
text-to-image generation. arXiv preprint arXiv:2403.04692, 2024.

[4] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-α: Fast training of diffusion transformer for photorealistic
text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

[5] Yinbo Chen and Xiaolong Wang. Transformers as meta-learners for implicit neural representations. In
European Conference on Computer Vision, pages 170–187. Springer, 2022.

[6] Jiaxiang Cheng, Pan Xie, Xin Xia, Jiashi Li, Jie Wu, Yuxi Ren, Huixia Li, Xuefeng Xiao, Min Zheng,
and Lean Fu. Resadapter: Domain consistent resolution adapter for diffusion models. arXiv preprint
arXiv:2403.02084, 2024.

[7] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gordon,
Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for contrastive
language-image learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2818–2829, 2023.

[8] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. Second-order attention network for
single image super-resolution. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 11065–11074, 2019.

[9] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou
Shao, Hongxia Yang, et al. Cogview: Mastering text-to-image generation via transformers. Advances in
Neural Information Processing Systems, 34:19822–19835, 2021.

[10] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep
convolutional networks. IEEE transactions on pattern analysis and machine intelligence, 38(2):295–307,
2015.

[11] Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

[12] Ruoyi Du, Dongliang Chang, Timothy Hospedales, Yi-Zhe Song, and Zhanyu Ma. Demofusion:
Democratising high-resolution image generation with no $$$. arXiv preprint arXiv:2311.16973, 2023.

[13] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
12873–12883, 2021.

[14] Moayed Haji-Ali, Guha Balakrishnan, and Vicente Ordonez. Elasticdiffusion: Training-free arbitrary size
image generation. arXiv preprint arXiv:2311.18822, 2023.

[15] Yingqing He, Shaoshu Yang, Haoxin Chen, Xiaodong Cun, Menghan Xia, Yong Zhang, Xintao Wang,
Ran He, Qifeng Chen, and Ying Shan. Scalecrafter: Tuning-free higher-resolution visual generation with
diffusion models. In The Twelfth International Conference on Learning Representations, 2023.

[16] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information
processing systems, 30, 2017.

11



[17] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition video
generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[19] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

[20] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

[21] Linjiang Huang, Rongyao Fang, Aiping Zhang, Guanglu Song, Si Liu, Yu Liu, and Hongsheng Li.
Fouriscale: A frequency perspective on training-free high-resolution image synthesis. arXiv preprint
arXiv:2403.12963, 2024.

[22] Zhiyu Jin, Xuli Shen, Bin Li, and Xiangyang Xue. Training-free diffusion model adaptation for variable-
sized text-to-image synthesis. Advances in Neural Information Processing Systems, 36, 2024.

[23] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[24] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 4015–4026, 2023.

[25] Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-a-
pic: An open dataset of user preferences for text-to-image generation. Advances in Neural Information
Processing Systems, 36, 2024.

[26] Yuseung Lee, Kunho Kim, Hyunjin Kim, and Minhyuk Sung. Syncdiffusion: Coherent montage via
synchronized joint diffusions. Advances in Neural Information Processing Systems, 36:50648–50660,
2023.

[27] Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground
v2. 5: Three insights towards enhancing aesthetic quality in text-to-image generation. arXiv preprint
arXiv:2402.17245, 2024.

[28] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Image
restoration using swin transformer. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 1833–1844, 2021.

[29] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. arXiv preprint
arXiv:2301.12503, 2023.

[30] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[31] Grace Luo, Lisa Dunlap, Dong Huk Park, Aleksander Holynski, and Trevor Darrell. Diffusion hyperfea-
tures: Searching through time and space for semantic correspondence. Advances in Neural Information
Processing Systems, 36, 2024.

[32] Midjourney. Midjourney v6, 2023. https://www.midjourney.com/.

[33] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,
65(1):99–106, 2021.

[34] OpenAI. Dall-e 3, 2023. https://openai.com/dall-e-3.

[35] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

[36] Pablo Pernias, Dominic Rampas, Mats Leon Richter, Christopher Pal, and Marc Aubreville. Würstchen:
An efficient architecture for large-scale text-to-image diffusion models. In The Twelfth International
Conference on Learning Representations, 2023.

12



[37] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna,
and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. arXiv
preprint arXiv:2307.01952, 2023.

[38] Sucheng Ren, Zeyu Wang, Hongru Zhu, Junfei Xiao, Alan Yuille, and Cihang Xie. Rejuvenating image-gpt
as strong visual representation learners. In Forty-first International Conference on Machine Learning,
2023.

[39] Sucheng Ren, Fangyun Wei, Zheng Zhang, and Han Hu. Tinymim: An empirical study of distilling
mim pre-trained models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3687–3697, 2023.

[40] Sucheng Ren, Daquan Zhou, Shengfeng He, Jiashi Feng, and Xinchao Wang. Shunted self-attention via
multi-scale token aggregation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 10853–10862, 2022.

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10684–10695, 2022.

[42] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-
image diffusion models with deep language understanding. Advances in neural information processing
systems, 35:36479–36494, 2022.

[43] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training gans. Advances in neural information processing systems, 29, 2016.

[44] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale
dataset for training next generation image-text models. Advances in Neural Information Processing
Systems, 35:25278–25294, 2022.

[45] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

[46] Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, Karsten Kreis, et al. Lion: Latent
point diffusion models for 3d shape generation. Advances in Neural Information Processing Systems,
35:10021–10039, 2022.

[47] Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK Chan, and Chen Change Loy. Exploiting
diffusion prior for real-world image super-resolution. International Journal of Computer Vision, pages
1–21, 2024.

[48] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-esrgan: Training real-world blind super-
resolution with pure synthetic data. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 1905–1914, 2021.

[49] Jiarui Xu, Sifei Liu, Arash Vahdat, Wonmin Byeon, Xiaolong Wang, and Shalini De Mello. Open-
vocabulary panoptic segmentation with text-to-image diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2955–2966, 2023.

[50] Fanghua Yu, Jinjin Gu, Zheyuan Li, Jinfan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao, and
Chao Dong. Scaling up to excellence: Practicing model scaling for photo-realistic image restoration in the
wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
25669–25680, 2024.

[51] Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timofte. Designing a practical degradation model
for deep blind image super-resolution. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4791–4800, 2021.

[52] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3836–3847,
2023.

[53] Shen Zhang, Zhaowei Chen, Zhenyu Zhao, Zhenyuan Chen, Yao Tang, Yuhao Chen, Wengang Cao, and
Jiajun Liang. Hidiffusion: Unlocking high-resolution creativity and efficiency in low-resolution trained
diffusion models. arXiv preprint arXiv:2311.17528, 2023.

13



Appendix

In Section A, we first demonstrate that the latent space of StableCascade [36] can accommodate
images with various resolutions and compare the reconstruction quality with SDXL [37]. Subse-
quently, in Section B, we provide additional visual comparisons with the super-resolution method,
cutting-edge high-resolution generation techniques, and leading closed-source T2I products. We also
present more high-resolution results of our method in Section C. Next, we illustrate how our model
can be customized for controllable generation and personalization in Section D. Finally, we include
text prompts for the images generated, presented in both the main document and the appendix in
Section E.

A Latent Space of StableCascade

As illustrated in Figure A.1, StableCascade [36] achieves a high compression ratio of 42:1 while
capably reconstructing images of varying sizes with promising quality. Although there is some loss of
detail, this is considered acceptable given the significant efficiency gains in both training and inference
that the high compression ratio facilitates. In contrast, as shown in Table A.1, SDXL [37] has a
lower compression ratio 8:1 and obtains higher PSNR scores, indicating superior fidelity between
the reconstructed images and the original high-resolution inputs. Considering the trade-off between
efficiency and accuracy, we emphasize the value of StableCascade’s compact representation and its
suitability for ultra-high-resolution generation applications.

66
56
×
43
52

51
20
×
79
36

SDXLStableCascadeInput

Figure A.1: Visual comparison of reconstruction quality between VAEs of StableCascade [36] and
SDXL [37] on high-resolution images.

Table A.1: Quantatitive comparison of reconstruction quality and complexity between StableCas-
cade [36] and SDXL [37]

StableCascade SDXL
PSNR↑ Compress Ratio # of Params (M) PSNR↑ Compress Ratio # of Params (M)

30.87dB 42 : 1 1520 33.08dB 8:1 80
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B Additional Comparison Results

Comparison with an SR method. A common method to obtain high-resolution images involves
initially generating a low-resolution image and then upsampling it with an off-the-shelf super-
resolution (SR) model. In Figure B.2 and B.3, we compare the results produced by our UltraPixel
method and the advanced super-resolution techniques, BSRGAN [51], StableSR [47] and SUPIR [50].
It is evident that the SR method often fails to introduce adequate details; although the resolution
increases, the image quality does not improve proportionately. In contrast, our UltraPixel method
excels by incorporating an abundance of intricate details, significantly enhancing the visual quality of
the images.

LR BSRGAN Ours

Figure B.2: Visual comparison with BSRGAN [51] at 4096× 4096 resolution.

4096×4096 Ours4096×4096 SUPIR

4096×4096 Ours4096×4096 SUPIR1024×1024 LR 4096×4096 StableSR

1024×1024 LR 4096×4096 StableSR

Figure B.3: Visual comparison with generative diffusion-based super-resolution method StableSR [47]
and SUPIR [50] at 4096× 4096 resolution.

Comparison with high-resolution image generation methods. We present additional visual
comparisons with state-of-the-art high-resolution image generation methods in Figure B.4. The
results generated by our UltraPixel method consistently outperform others across various resolutions,
highlighting its superior capability.

Comparison with closed-source T2I products. We offer further visual comparisons between our
UltraPixel and closed-source commercial text-to-image (T2I) products: DALL·E 3 [34] in Figure B.5
and Midjourney V6 [32] in Figures B.6 and B.7. Our method showcases the ability to generate
high-quality images that are on par with these leading commercial products.
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OursPixart-sigma
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Figure B.4: Visual comparison with high-resolution image generation methods.

C Additional Visual Results

We present more visual results of UltraPixel in Figure C.8, C.9, C.10, C.11, C.12, C.13, C.14, C.15,
C.16. Our method produces images of diverse resolutions with excellent quality, excelling in a range
of scenarios from close-up portraits and imaginative content to photo-realistic scenes.

D Controllable High-Resolution Image Synthesis

Spatial control. We present high-resolution (HR) results controlled by edge maps. Notably, we
do not train our models directly; rather, we utilize the officially released control weights from
StableCascade [36]. These control features are integrated during the low-resolution (LR) guidance
extraction process. The results are demonstrated in Figures D.17 and D.18. Currently, the maximum
supported resolution is 3K. Further fine-tuning of the control weights will enable support for higher
resolutions.

Personalization. Figure D.19 demonstrates high-resolution personalized results based on a user-
provided instance. Specifically, we optimize the model parameters of the attention layers using
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Ours Dall-E 3

Figure B.5: Visual comparison with Dall·E 3 [34] at 1024× 1792 resolution.
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Ours Midjourney V6 

Figure B.6: Visual comparison with Midjourney V6 [32] at 2048× 2048 resolution.
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Ours Midjourney V6

Figure B.7: Visual comparison with Midjourney V6 [32] at 2048× 2048 resolution.
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Figure C.8: Visual results of UltraPixel at 5120× 2560 resolution.

20



Figure C.9: Visual results of UltraPixel at 5120× 3840 resolution.
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LoRA [20] with a rank of 4. The training involves an initial phase at a base resolution for 5,000
iterations, followed by fine-tuning at a higher resolution for an additional 5,000 iterations. Figure D.19
showcases our method’s capability to incorporate personalized techniques for achieving personalized
high-resolution image generation.

E Text Prompts

Text prompts are provided in Table E.2, E.3.
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Figure C.10: Visual results of UltraPixel at 3072× 6144 resolution.
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Figure C.11: Visual results of UltraPixel at 3072× 6144 resolution.
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Figure C.12: Visual results of UltraPixel at 5120× 2560 resolution.
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Figure C.13: Visual results of UltraPixel at 3840× 2160 resolution.
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Figure C.14: Visual results of UltraPixel at 2880× 5760 resolution.

27



Figure C.15: Visual results of UltraPixel at 4096× 4096 resolution.
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4096×𝟒𝟎𝟗𝟔

4096×𝟒𝟎𝟗𝟔

2160×𝟑𝟖𝟒𝟎 4096×𝟒𝟎𝟗𝟔

5120×𝟑𝟖𝟒𝟎 5120×𝟑𝟖𝟒𝟎

4096×𝟒𝟎𝟗𝟔 4096×𝟒𝟎𝟗𝟔

5120×𝟑𝟎𝟕𝟐

2160×𝟑𝟖𝟒𝟎

Figure C.16: Visual results of UltraPixel.
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Figure D.17: Edge-controlled results of UltraPixel at 3072× 3072 resolution.
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Figure D.18: Edge-controlled results of UltraPixel at 2160× 3840 resolution.
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Figure D.19: Personalization results of UltraPixel.
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Table E.2: Text prompts of figures in this manuscript. For each figure, prompts are provided in order
from left to right, top to bottom. (to be continued)

Figure Text Prompt

Figure 1

A close-up of a blooming peony, with layers of soft, pink petals, a delicate fragrance, and dewdrops glistening
in the early morning light.
A serene mountain landscape with towering snow-capped peaks, a crystal-clear blue lake reflecting the
mountains, dense pine forests, and a vibrant orange sunrise illuminating the sky.
An expressionist landscape with twisted trees, a turbulent sky, and a path leading to an unknown destination,
painted in vivid, unsettling colors and expressive brushstrokes that convey a sense of anxiety and movement.
A close-up portrait of a young woman with flawless skin, vibrant red lipstick, and wavy brown hair, wearing
a vintage floral dress and standing in front of a blooming garden.
The image features a snow-covered mountain range with a large, snow-covered mountain in the background.
The mountain is surrounded by a forest of trees, and the sky is filled with clouds. The scene is set during the
winter season, with snow covering the ground and the trees.
A statue of a person holding a torch
A pair of cuddly rabbits, one white with floppy ears and the other brown with a twitching nose, snuggling
together in a cozy hutch filled with straw.

Figure 2 Ford anglia van

Figure 7

Idaho wedding party
A man standing next to a camel
A wooden wagon in a yard
Crocodile in a sweater

Figure 9

A vibrant anime scene of a young girl with long, flowing pink hair, big sparkling blue eyes, and a school
uniform, standing under a cherry blossom tree with petals falling around her. The background shows a
traditional Japanese school with cherry blossoms in full bloom.
A playful Labrador retriever puppy with a shiny, golden coat, chasing a red ball in a spacious backyard, with
green grass and a wooden fence.

Figure 10 Dogs sitting around a poker table

Figure 11 Blairgowrie Holiday Park, Blairgowrie, Perthshire | Head Outside

Figure B.2

A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm
lights glowing from the windows, and a path of footprints leading to the front door.
A striking close-up of a young boy with curly blonde hair and bright green eyes, his face sprinkled with
freckles. He is smiling widely, showcasing a gap-toothed grin, and the background is a sunny, out-of-focus
playground.

Figure B.5
Campsite with picnic table surrounded by boulders and green plants.
Joey Fatone Hosts The Price Is Right - Live Show At Bally’s Las Vegas
steam rises from a geyser in a mountainous area
FOUNTAINE PAJOT Greenland 34

Figure B.6

A person with a backpack and skis in the snow
A charming depiction of a koala resting in a eucalyptus tree, with the soft gray fur and the lush green leaves
creating a peaceful scene.
brown wooden house in the middle of snow covered trees

Figure B.7

Smiling woman in white shirt
A highly detailed, high-quality image of the Banff National Park in Canada. The turquoise waters of Lake
Louise are surrounded by snow-capped mountains and dense pine forests. A wooden canoe is docked at the
edge of the lake. The sky is a clear, bright blue, and the air is crisp and fresh.
A highly detailed, high-quality image of a Shih Tzu receiving a bath in a home bathroom. The dog is standing
in a tub, covered in suds, with a slightly wet and adorable look. The background includes bathroom fixtures,
towels, and a clean, tiled floor.

Figure B.4

SSt. Basil’s Cathedral
2014 brabus b63s 700 6x6 mercedes benz g class hd pictures. Black Bedroom Furniture Sets. Home Design
Ideas
Ext for in ldg and sc gatlinburg cabin wahoo sale night cabins rentals of american homes tn log city

Figure C.8 A tiger is playing football.

Figure C.9 A detailed view of a blooming magnolia tree, with large, white flowers and dark green leaves, set against a
clear blue sky.

Figure C.10
A highly detailed, high-quality image of the Patagonia region in Argentina. Towering mountains with snow-
covered peaks rise above pristine lakes and dense forests. Glaciers can be seen in the distance, reflecting the
bright sunlight. The sky is a deep blue with scattered white clouds.

Figure C.11
A highly detailed, high-quality image of a Shih Tzu receiving a bath in a home bathroom. The dog is standing
in a tub, covered in suds, with a slightly wet and adorable look. The background includes bathroom fixtures,
towels, and a clean, tiled floor.

Figure C.12 Flowrider taking his chow chow for a walk.

Figure C.13 A laughing woman
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Table E.3: Text prompts of figures in this manuscript. For each figure, prompts are provided in order
from left to right, top to bottom. (continued)

Figure Text Prompt

Figure C.14

Adventure Romance Trip Ideas tree outdoor sky grass reflection Nature wilderness tarn mountain mountain-
ous landforms water leaf nature reserve Lake highland pond mount scenery loch national park fell landscape
bank biome cloud wetland autumn hill tundra mountain range River valley larch meadow Forest surrounded
lush hillside

Figure C.15

A detailed and realistic painting of a vintage steam train, with intricate details in the machinery and a sense
of motion and power, capturing the nostalgia and romance of the era, highly detailed, high quality

Figure C.16

Ice Kingdom: A stunning ice kingdom with crystalline castles and frozen landscapes. The castles are made
entirely of ice, with spires that sparkle in the sunlight. Snow-covered trees and icy pathways lead to the
grand palace at the heart of the kingdom, where the ice queen resides. The sky above is a brilliant blue, with
snowflakes gently falling.
A detailed macro shot of a daisy, showcasing its white petals and bright yellow center, with tiny insects like
bees and butterflies hovering nearby.
A high-fashion runway show featuring models in avant-garde clothing, dramatic makeup, and elaborate
hairstyles, with bright lights and a stylish, modern backdrop.
Anthropomorphic profile of the white snow owl Crystal priestess, art deco painting, pretty and expressive
eyes, ornate costume, mythical, ethereal, intricate, elaborate, hyperreralism, hyper detailed, 3D, 8K, Ultra
Realistic, high octane, ultra resolution, amazing detail, perfection, In frame, photorealistic, cinematic lighting,
visual clarity, shading, lumen reflections, super-resolution, gigapixel, color grading, retouch, enhanced, PBR,
Blender, V-ray, procreate, zBrush.
Art collection style and fashion shoot, in the style of made of glass, dark blue and light pink, paul rand,
solarpunk, camille vivier, beth didonato hair, barbiecore, hyper-realistic
A highly detailed, high-quality image of a Scottish Fold cat sitting on a bookshelf. The cat’s distinctive
folded ears and round face give it a unique appearance as it sits among books and decorative items. The
background features a well-lit room with wooden shelves and a reading nook
Traditional Breakfast: A hearty traditional breakfast with fluffy scrambled eggs, crispy bacon, golden hash
browns, and buttered toast. The plate is garnished with fresh parsley and accompanied by a glass of freshly
squeezed orange juice and a steaming cup of coffee. The background features a cozy kitchen setting with a
morning sunbeam streaming through the window.
Space Adventure: A thrilling scene of a spaceship navigating through an asteroid field. The ship is sleek and
futuristic, with glowing thrusters and advanced weaponry. The asteroids are large and rugged, illuminated
by the light of distant stars. In the background, a nebula in vibrant hues of blue and purple adds a touch of
cosmic beauty to the scene.
A medieval knight in shining armor, standing proudly in a lush, green field dotted with wildflowers, with a
grand stone castle and rolling hills in the background.
Several brightly colored rocks on a colorful beach, in the style of luminous spheres, emek golan, translucent
color, 32k uhd, toyen, captivating

Figure D.17
An East Asian girl with a simple wreath
A Pacific Islander girl with a tropical flower crown, against a backdrop of a pristine beach at sunset, in a
vibrant, colorful painting style.

Figure D.18 Small cottage near the lake, snow, winter.
Small cottage near the lake, summer.

Figure D.19 A cinematic photo of cat [roubao] in space suit.
A cinematic photo of cat [roubao] with flower.
A cinematic photo of cat [roubao] in white chef suit.
A cinematic photo of cat [roubao] in red outdoor jacket, Pixar anime style.
A cinematic photo of cat [roubao] playing the piano, oil painitng style.
A cinematic photo of cat [roubao] with black suit and sunglasses, on the beach.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 4.2 of main paper and Section B of appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Some key implementation details are provided in Section and have shared a
code link
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 4.1 and the linkhttps://jingjingrenabc.github.io/
ultrapixel/ to the project homepage below the author information.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code repository link is provided in the home page https://
jingjingrenabc.github.io/ultrapixel/.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4.1

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4.1

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research has conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: [Yes]
Guidelines: Section 6

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Section 6
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: https://github.com/Stability-AI/StableCascade

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: https://jingjingrenabc.github.io/ultrapixel/

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Section 6
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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