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Abstract

In this paper, we introduce the Multi-Modal001
Bilingual Instruction Tuning dataset (M2BIT),002
specifically designed to enhance the perfor-003
mance of vision language models (VLMs). Our004
M2BIT dataset is one of the largest multi-005
modal instruction tuning datasets available,006
covering 40 diverse vision-language tasks in007
both English and Chinese. It comprises 2 mil-008
lion instances, each accompanied by 400 man-009
ually written task instructions. With a care-010
fully curated annotation process, we strive to011
elevate the quality of response, thereby enrich-012
ing the user experience while minimizing the013
generation of potential hallucinations. To val-014
idate the efficacy of M2BIT, we train a VLM015
known as Ying-VLM using this dataset, delving016
into the impact of instruction tuning across di-017
verse languages and modalities. Upon compar-018
ing it with strong VLM baselines, Ying-VLM019
demonstrates superior performance on complex020
knowledge vision question answering tasks.021
Moreover, it exhibits a lower propensity for hal-022
lucination, displays greater generalization ca-023
pabilities to previously unseen video tasks, and024
better comprehends novel instructions in Chi-025
nese. We will open-source the M2BIT dataset026
and trained models to facilitate future research.027

1 Introduction028

Following the substantial success of Chat-029

GPT (OpenAI, 2022), the interest in designing a030

versatile intelligent assistant that can understand031

and interact with the multi-modal world has surged.032

The potential of transforming Large Language033

Models (LLMs) into powerful Vision Language034

Models (VLMs) has been demonstrated by further035

training on image-text pairs or implementing spe-036

cialized visual instruction tuning (Zhu et al., 2023;037

Liu et al., 2023b). This enhancement allows LLMs038

to see the world, offering promising capabilities039

that could significantly assist individuals with dis-040

abilities (OpenAI, 2023).041

Dataset Tasks LAN Samples Ins. / Task

MiniGPT4 N / A En 5K N / A
LLaVA 3 En 158K N / A
MultiModalGPT 3 En 6K 5
MultiInstruct 26 En 235K 5
InstructBLIP 28 En 1.6M 9.7
M2BIT (Ours) 40 En, Zh 2M 10

Table 1: Comparison of different multi-modal instruc-
tion tuning datasets. Ins. denotes Task Instruction and
N / A means instructions are artificially generated. Our
M2BIT is one of the largest datasets, covering 40 tasks
in English and Chinese.

The quality of the visual instruction tuning 042

dataset is pivotal in the development of VLMs, 043

as indicated by findings in LLMs (Zhou et al., 044

2023). Recent research efforts in this area can 045

be broadly grouped into two categories. The first 046

stream of research strives to augment existing aca- 047

demic vision-language (V+L) datasets with manu- 048

ally written task instructions (Xu et al., 2022; Dai 049

et al., 2023). Although VLMs trained on these 050

datasets exhibit notable performance on academic 051

benchmarks, they often generate responses that are 052

excessively terse and blunt (Chen et al., 2023a). 053

This brevity, a typical characteristic of academic 054

datasets, compromises the user experience dur- 055

ing interactions. The second stream of research 056

employs image annotation tools to generate tex- 057

tual descriptions of original images, subsequently 058

leveraging models like ChatGPT/GPT-4 to create 059

dialog-style instruction tuning datasets (Zhu et al., 060

2023; Liu et al., 2023b; Zhao et al., 2023a). How- 061

ever, a pitfall of training VLMs with these pseudo- 062

grounded dialogs is the risk of exacerbating LLMs’ 063

hallucination problem, possibly resulting in incon- 064

sistent image descriptions featuring non-existent 065

objects. Besides, current studies mainly focus on 066

English tasks, which limits the investigation of the 067

cross-lingual effects of instruction tuning. 068

In this paper, we introduce M2BIT, a Multi- 069
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# List[String]: the base64 string representation of a 
profile photo of F. Scott Fitzgerald
Images: [“iVBORw0KGg...5ErkJggg==”]
# String: task instruction
Instruction: “Analyze the image and provide an 
appropriate response to the question. ”
# String: task-specific inputs, e.g., a question related 
to the image.
Inputs: “On which book by this man, Baz luhrmann’s
planned a film?”
# String: task outputs, e.g., the correct answer for the 
question.
Outputs: “Baz Luhrmann has planned a film adaptation 
of the book The Great Gatsby. ”
# Dictionary: a meta information dictionary contains 
original data.
Meta Data: {“original_answer” : “The Great 
Gatsby", ... ,"wikipedia_id": "152171"}

Figure 1: The unified data format schema of our M2BIT.

Modal Bilingual Instruction Tuning dataset, which070

leverages valuable academic benchmarks and the071

capabilities of ChatGPT for dialog style enhance-072

ment. M2BIT is meticulously constructed in three073

stages: (1) Task Selection and Manual Instruc-074

tion Writing: Our dataset consists of diverse tasks,075

including traditional image-text tasks like visual076

question answering and image captioning, as well077

as video-related tasks such as video question an-078

swering. Annotators are instructed to review the079

dataset paper thoroughly and craft 10 unique in-080

structions for each task. We further incorporate081

Chinese vision-language datasets with correspond-082

ing Chinese instructions, resulting in a compre-083

hensive compilation of 40 diverse tasks and 400084

instructions. (2) Data Format Unification: We en-085

sure that all tasks within our dataset adhere to a086

unified vision-to-text format. This format com-087

prises four fields: images, instruction, inputs and088

outputs. Additional information, such as bounding089

box details, is embedded within the images, and090

short answers are rephrased using ChatGPT while091

incorporating contextual information, where avail-092

able. (3) Quality Check: For quality control, we093

assign an extra annotator to each task to review 20094

examples from each split of every dataset. A task095

is considered complete only after the annotator has096

verified the accuracy and consistency of the images,097

instructions, inputs, and outputs for each instance.098

As demonstrated in Table 1, M2BIT is one of the099

largest multi-modal instruction tuning datasets re-100

garding the number of instructions and samples,101

covering diverse tasks in English and Chinese.102

To substantiate the effectiveness of the M2BIT103

dataset, we develop Ying-VLM, merging the ca-104

pabilities of a vision encoder, BLIP-2 (Li et al., 105

2023a), with Ziya-13B (Zhang et al., 2022), which 106

is a derivative of LLaMA (Touvron et al., 2023a). 107

We leverage the proven methodology of incorporat- 108

ing visual tokens as prefix prompts in LLMs and 109

utilize a two-stage training regime. The initial stage 110

aligns vision features with text embeddings via 111

image captioning on LAION-400M (Schuhmann 112

et al., 2021), while the second stage enhances the 113

model by performing instruction tuning on M2BIT. 114

Our evaluation of the instruction tuning effect 115

with M2BIT is threefold. Firstly, we evaluate 116

Ying-VLM on knowledgeable VQA (KVQA) tasks, 117

including OK-VQA, A-OKVQA, and a held-out 118

dataset, ViQuAE. These tasks, which demand 119

VLM’s comprehension of image context and rea- 120

soning with the knowledge acquired by LLMs, 121

have gained wide recognition as benchmarks for 122

evaluating VLMs (Dai et al., 2023; Bai et al., 123

2023b). Secondly, we conduct a hallucination eval- 124

uation on image captioning, following the method- 125

ology by Li et al. (2023b). Lastly, we perform 126

zero-shot transfer evaluations on Chinese V+L 127

tasks and video-language tasks to scrutinize the 128

cross-language/modal effect of instruction tuning. 129

The experimental results highlight that Ying-VLM 130

surpasses potent baseline VLMs in KVQA tasks, 131

is less susceptible to hallucination than models 132

trained with generated pseudo-grounded dialogs, 133

and demonstrates enhanced generalization capa- 134

bilities when confronted with unseen video and 135

cross-lingual tasks. These results underscore the 136

potential of our proposed M2BIT dataset in con- 137

structing robust VLMs and investigating instruction 138

tuning effects across languages and modalities. 139

2 M2BIT: A Multi-Modal Bilingual 140

Instruction Tuning Dataset 141

In this section, we introduce the M2BIT dataset by 142

first elaborating the task coverage (§ 2.1), followed 143

by the annotation process details (§ 2.2). In § 2.3, 144

we present the dataset format and the statistics of 145

the crafted dataset instructions. 146

2.1 Task Coverage 147

Our dataset makes a wide coverage of the cur- 148

rent existing visual-language and video-language 149

benchmarks, from simple image captioning to com- 150

plicated reasoning based on the image even beyond 151

the visual content: 152

Captioning This task aims to produce descrip- 153
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tions of the given images according to different154

needs. We include MS COCO (Lin et al., 2014)155

(the Karpathy split) for generic image descriptions.156

TextCaps (Sidorov et al., 2020) requires models157

to capture the text presented in the image and158

generate captions accordingly. Image-Paragraph-159

Captioning (Krause et al., 2017) focuses on gener-160

ating detailed descriptions for images.161

Reasoning This task evaluates specific reason-162

ing capabilities. We incorporate CLEVR (John-163

son et al., 2017) and NLVR (Suhr et al., 2017)164

for spatial reasoning, Visual Commonsense Rea-165

soning (VCR) (Zellers et al., 2019) for com-166

monsense reasoning, Visual MRC (Tanaka et al.,167

2021) for reading comprehensive over images, and168

Winoground (Thrush et al., 2022) for fine-grained169

semantics reasoning over text descriptions and im-170

age contents.171

Visual Question Answering (VQA) This is the172

most widely studied multi-modal task, which re-173

quires the model to answer a given question based174

on the image correctly. Tasks include VQA175

v2 (Goyal et al., 2017b), Shapes VQA (Andreas176

et al., 2016), DocVQA (Mathew et al., 2021),177

OCR-VQA (Mishra et al., 2019), ST-VQA (Biten178

et al., 2019), Text-VQA (Singh et al., 2019), and179

GQA (Hudson and Manning, 2019).180

Knowledgeable Visual Question Answering181

(KVQA) Unlike traditional VQA tasks focusing on182

the question relevant to the content image, KVQA183

requires the model to draw upon outside knowledge184

to answer questions. We incorporate two outside185

knowledge VQA datasets: OK-VQA (Marino et al.,186

2019) and A-OK-VQA (Schwenk et al., 2022), Sci-187

enceQA (Lu et al., 2022) which contains multi-188

modal science questions, and ViQuAE (Lerner189

et al., 2022) focusing on knowledge facts of named190

entities in images.191

Classification This task involves classifying an192

image based on a given set of candidate labels.193

ImageNet (Russakovsky et al., 2015), Grounded194

Object Identification (COCO-GOI) (Lin et al.,195

2014), COCO-Text (Veit et al., 2016), Image Text196

Matching (COCO-ITM) (Lin et al., 2014), e-SNLI-197

VE (Kayser et al., 2021), Multi-modal Fact Check-198

ing (Mocheg) (Yao et al., 2022), and IQA (Duanmu199

et al., 2021) are included. Due to language model200

input length constraints, we reduce the number of201

options in some datasets with extensive candidate202

labels, such as ImageNet.203

Generation Visual conditional generation requires204

Number of different instructions 400
- Image Captioning 52
- Classification 113
- Visual Question Answering 95
- Knowledgeable Visual QA 40
- Reasoning 60
- Generation 40

Tokens per instruction 24.4± 9.6

Instruction edit distance among the same task 76.6± 37.2

Instruction edit distance across tasks 106.6± 39.5

Table 2: The statistics of our instructions.

models to understand the visual content and make 205

a composition meeting the task demand. We have 206

Visual Storytelling (VIST) (Huang et al., 2016), Vi- 207

sual Dialog (VisDial) (Das et al., 2017), and multi- 208

modal machine translation Multi30k (Elliott et al., 209

2016) in this category. 210

Chinese Vision-Language Tasks To examine the 211

effect of instruction tuning on different languages, 212

we incorporate several Chinese vision-language 213

tasks including FM-IQA (Gao et al., 2015) for 214

VQA, COCO-CN (Li et al., 2019) and Flickr8k- 215

CN (Li et al., 2016) for captioning, Chinese Food 216

Net (Chen et al., 2017) for classification, and MM- 217

Chat (Zheng et al., 2022) for generation. 218

Video-Language Tasks Beyond the static images, 219

we are interested in whether instruction tuning 220

can be applied to video-language tasks. We in- 221

clude the classic MSR-VTT datasets (Xu et al., 222

2016) for video captioning, MSRVTT-QA (Xu 223

et al., 2017), ActivityNet-QA (Yu et al., 2019), 224

iVQA (Yang et al., 2021) and MSVD-QA (Xu et al., 225

2017) for video question answering, Something- 226

Something (Goyal et al., 2017a) for video action 227

classification. 228

2.2 Annotation Process 229

To build high-quality multi-modal instruction 230

datasets, we rewrite various datasets into a vision- 231

to-text format. The annotation process includes 232

three steps: (1) writing instructions for each task, 233

(2) structuring images and texts into a unified 234

schema, and (3) checking the overall dataset quality. 235

Eight authors of this work are employed as human 236

annotators, each of whom is a graduate student 237

familiar with relevant literature. 238

Stage I: Instruction Writing To build high-quality 239

instructions, we first ask annotators to carefully 240

read the dataset paper and check the original dataset 241

with some instances to get a clear understanding 242

of the task. After that, they are required to write 243

10 diverse task instructions manually, covering the 244
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Bounding Box

Original Image Preprocessed Data

x: 421.0
y: 57.0

width: 82.0
height: 139.0

Question
Which number birthday is probably 
being celebrated?

Answer Thirty

You are given a question related to an image and a 
short ground-truth answer and corresponding 
rationales for the correct answer. Your task is to 
give a natural and convincing response as you are 
seeing the image, providing evidence and reasoning 
path for justifying your prediction. 

Question: <question>
Rationales: <rationales>
Answer: <answer>
Rephrased Answer: 

Question

Which number birthday is probably 
being celebrated?

Rephrased Answer
Based on the evidence in the image, it 
is most likely that the birthday being 
celebrated is the thirtieth. There is a 
birthday cake on the table with the 
numeral three and zero written in icing, 
indicating that the person is 30 years 
old as of their birthdate.

Prompt

Original Data Preprocessed Data

Identify the type of the object in the 
given image region.

(A) chair
(B) clock
(C) oven
(D) car

Answer:
(B) clock

Adding Bounding Box to Images Short Answer Rephrasing

There is a birthday cake on the 
table with the number 30 written 
in icing.

Rationales

Figure 2: (Left) On region-based tasks, bounding boxes are added to serve as a visual referring prompt. (Right)
Short answer rephrasing to improve the response quality, e.g., incorporating rationales into answers.

key characteristics of the task. Table 2 shows the245

statistics of the written instructions for each task246

and Figure 7 in the Appendix visualizes the in-247

struction verb distribution. In total, we annotate248

400 instructions for all tasks. The average length249

per instruction is 24.4. To evaluate the diversity250

of annotated instructions, we employ the average251

edit distance to measure the similarity between two252

strings. The average edit distance within the same253

task is 76.6, indicating a good range of instruction254

diversity.255

Stage II: Data Format Unification After the in-256

struction has been written according to the task257

characteristics, we further process the images and258

corresponding text for a unified instance schema.259

For most datasets, we keep the original images and260

text, where images are converted into correspond-261

ing base64 encoded strings for easy data loading.262

We perform two modifications on potential exam-263

ples: (1) Adding Bounding Box to Images. For264

tasks designed for specific regions in the image, a265

straightforward solution is to provide the bounding266

box information in natural language for inform-267

ing the language models of the regions in inter-268

est. However, the image pre-processing techniques269

adopted by different vision encoders may resize270

the original image, and the original bounding box271

annotation thus needs further adjustments. Inspired272

by the recent observation that vision encoders such273

as CLIP (Radford et al., 2021) are sensitive to the274

visual prompt (Shtedritski et al., 2023), we directly275

tag the bounding box as a red rectangle to the im-276

age, serving as a visual referring prompting (Ope-277

nAI, 2023) for VLMs to focus on the target region.278

(2) Short Answer Rephrasing. As recent studies279

have shown that the original short and brief answers280

Task Description
Total #samples

Train Val Test

CAP Given an image, write a description for the image. 679,087 41,462 27,499
CLS Given an image, classify the image into pre-defined categories. 238,303 100,069 21,206
VQA Given an image, answer a question relevant to the image. 177,633 46,314 10,828

KVQA Given an image, answer the question requires outside knowledge. 39,981 11,682 5,477
REA Given an image, conduct reasoning over the images. 99,372 11,500 10,000
GEN Given an image, make compositions with certain requirements. 145,000 11,315 17,350

Chinese CAP, CLS, VQA, and GEN tasks in Chinese. 192,076 77,306 4,100
Video CAP, CLS, and VQA tasks on video-language datasets. 20,868 7,542 9,294

Total 2,005,264

Table 3: M2BIT task descriptions and statistics. We
aggregate instance counts for training, validation, and
test sets across all tasks, totaling 2M instances.

in the common VQA dataset could negatively influ- 281

ence the model generation performance (Dai et al., 282

2023; Chen et al., 2023b), we propose to utilize 283

the ChatGPT (gpt-3.5-turbo-0301) (Ope- 284

nAI, 2022) model for rephrasing the original an- 285

swers, by providing origin question and answer 286

with potential extra contextual information. Con- 287

textual information includes the caption of the orig- 288

inal images, rationales for specific VQA tasks and 289

OCR tokens for the scene-related question, which 290

make the rephrased answers more engaging and 291

informative. The original short answers are also 292

kept in our dataset for potential usage. Figure 2 293

shows these two modifications. 294

Stage III: Quality Check In this stage, we assign a 295

different annotator to each task to review 20 exam- 296

ples from each split of every dataset. During this 297

stage, we identify minor format inconsistencies be- 298

tween tasks and address them by standardizing the 299

task formats. We observe that answer rephrasing 300

greatly improves the response quality, e.g., more 301

than 95% instances we checked are perceived as 302

better than original concise answers, while Chat- 303

GPT refused to rephrase a few answers (less than 304

3% of examined instances) due to insufficient im- 305

age information. We employ simple heuristics to 306
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Figure 3: The overview of Ying-VLM model architec-
ture and training stages.

filter these failed answers and use a basic template307

to convert the original answer into a sentence, with308

manual validation to ensure the quality. Finally,309

the task dataset is deemed complete once the an-310

notator can successfully load it and re-examine the311

accuracy of the instructions, inputs, and outputs for312

each instance examined.313

2.3 Dataset Format and Statistics314

The instance in our dataset consists of five fields:315

(1) Images: we represent the images with the po-316

tentially added bounding box by a base64 string.317

(2) Instruction: we randomly select an instruction318

from the task instruction pool for each instance.319

(3) Inputs: we allocate this field for providing320

task-specific inputs to the model, e.g., the ques-321

tion in the VQA tasks. For tasks such as caption-322

ing, there is no extra input so the corresponding323

field is left as an empty string. (4) Outputs: the324

required output to the specific tasks, such as the325

description of the image for captioning tasks and326

the answer to the image-related question. (5) Meta327

Data: we provide this field to preserve important328

information such as image ID for referencing the329

original dataset. With the clear distinction of these330

fields, the user of our benchmark can construct the331

training instances needed flexibly and evaluate the332

models conveniently. Table 3 gives the statistics333

aggregated by tasks and Figure 1 illustrates a case334

in M2BIT. For the detailed statistics, and the li-335

cense of each dataset in M2BIT, we refer readers336

to Appendix B.337

3 Experiments338

We first introduce the experimental setups (§ 3.1),339

then report and discuss the evaluation re-340

sults (§ 3.2). Lastly, we analyze instruction ro-341

bustness and provide a case study (§ 4).342

3.1 Experimental Settings 343

3.1.1 Implementation Details 344

Model Architecture: Inspired by the recent suc- 345

cess of BLIP-2 (Li et al., 2023a), we adopt the 346

vision encoder and the Q-former architecture in the 347

BLIP2-OPT-2.7B (Li et al., 2023a) model to extract 348

relevant visual features from images. For the large 349

language models, we utilize Ziya-13B (Zhang et al., 350

2022) derived from LLaMA (Touvron et al., 2023a) 351

with bilingual (English and Chinese) ability. 352

Training Datasets: We employ a two-staged train- 353

ing consisting of a visual-text alignment stage 354

(Stage I) and a multi-modal instruction tuning stage 355

(Stage II). Stage I aims to align the visual and tex- 356

tual feature space, where we utilize the instructions 357

in the coco captioning and perform an initial align- 358

ment training on LAION 400M (Schuhmann et al., 359

2021). In Stage II, we adopt our M2BIT dataset for 360

training the model, excluding ViQuAE for KVQA 361

evaluation, Winogound as it only has a test set, and 362

all Chinese V+L and video-language datasets for 363

cross-lingual/modality effect investigation. Details 364

of Stage II training datasets are in Figure 8 and 365

Figure 3 provides an overview of the model and 366

training stages. 367

Hyper-parameter Settings In Stage I, we only 368

train the Q-Former and the language projection 369

for modality alignment, resulting in a total 130M 370

parameters to optimize with AdamW (Loshchilov 371

and Hutter, 2019). The batch size is set to 256 to 372

maximize the utilization of GPU and the model is 373

trained with 300k steps. The learning rate linearly 374

increases to a peak value of 5e-5 in the first 2000 375

steps and follows a cosine decay scheduler. The 376

weight decay is set to 0.05. We train the model after 377

Stage I for 3 epochs and with a lower learning rate 378

of 1e-5 and a warmup stage of 1000 steps. Inspired 379

by LoRa tuning (Hu et al., 2022), the weights for 380

mapping query and value vectors in the attention 381

layer of LLMs are learnable in this stage to bet- 382

ter adapt to the instruction tuning dataset. Other 383

training parameters are consistent with Stage I. All 384

experiments are conducted with 8 NVIDIA 80GB 385

A100 GPUs. It took about 10 days for Stage I and 386

Stage II can be finished in a day. 387

3.1.2 Evaluation Setup 388

Evaluated Tasks We conduct three evaluations to 389

understand the instruction tuning effect comprehen- 390

sively with our M2BIT: (1) Evaluation of KVQA 391

tasks, which includes OK-VQA, A-OKVQA and a 392
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Model OK-VQA A-OKVQA ViQuAE

BLIP2-Flan-T5-XXL 9.1 15.6 9.7
MiniGPT4 23.3 21.8 24.4
InstructBLIP 7.1 5.9 7.3
Ying-VLMLLaVA 26.4 22.5 24.3
Ying-VLM 27.5 24.5 29.6

Table 4: ROUGE-L evaluation results of KVQA tasks.

held-out dataset ViQuAE. These tasks are widely393

adopted in evaluation for VLMs (Dai et al., 2023;394

Bai et al., 2023b) as they pose a great challenge for395

VLMs to understand the image context and perform396

reasoning with the knowledge acquired by LLMs.397

(2) Evaluation of object hallucination, which refers398

to a phenomenon that the model produces image de-399

scriptions that contain objects that are not anchored400

with or even absent from the target image. We fol-401

low the exact setup in Li et al. (2023b) to perform402

hallucination analysis on 2,000 images randomly403

sampled from the MSCOCO dataset (Lin et al.,404

2014). (3) Evaluation of cross-language/modality405

transferability. We hold out all Chinese V+L tasks406

and video-language tasks during the instruction407

tuning stage, then perform a zero-shot transfer to408

investigate whether instruction tuning is generaliz-409

able across languages, i.e., English to Chinese, and410

modalities, i.e., images to videos. For a compre-411

hensive evaluation, we also present the results on412

the generation performance on Visual-Dialog and413

image classification on ImageNet in Appendix D.414

In all experiments, we use greedy decoding in in-415

ference for deterministic results.416

Metrics We adopt ROUGE-L (Lin, 2004) as an417

automatic metric to assess the consistency between418

predictions and ground-truth answers, focusing on419

evaluating the model’s conversational abilities. As420

the automatic metric may not fully capture the nu-421

ances of conversational quality, we further intro-422

duce GPT-4 as a proxy of human evaluators (§ 4).423

For the object hallucination, we follow Li et al.424

(2023b) to adopt CHAIRI and CHAIRS (Rohrbach425

et al., 2018). CHAIRI denotes the proportion of426

hallucinated ones in all generated objects, while427

CHAIRS describes the hallucination at the sen-428

tence level, i.e., the proportion of generated cap-429

tions that contain hallucinated objects. Appendix H430

provides a detailed definition for these two metrics.431

Baselines We employ open-sourced VLMs as the432

off-the-shelf models for comparison, using the433

original model weights and greedy decoding: (1)434

BLIP-2-Flan-T5-XXL (Li et al., 2023a) where an435

Model Len CHAIRI(↓) CHAIRS(↓) Avg. (↓)

mPLUG-Owl∗ 98.5 30.2 76.8 53.5
LLaVA∗ 90.7 18.8 62.7 40.8
MiniGPT-4∗ 116.2 9.2 31.5 20.4
InstructBLIP∗ 7.5 2.5 3.4 3.0

Ying-VLMLLaVA 62.7 11.0 36.0 23.5
Ying-VLM 34.2 12.6 16.8 14.7

Table 5: Object hallucination evaluation with instruction
“Provide a brief description of the given image”. Len
denotes the average length of generated captions. ∗

denotes results collected from Li et al. (2023b).

Model Flickr-8k-CN FM-IQA Chinese-FoodNet

MiniGPT4 9.6 20.1 5.0
InstructBLIP 5.2 2.3 1.0
Ying-VLM 20.5 33.3 49.8
Ying-VLMzh 20.0 39.8 0.1

Table 6: Results Chinese vision-language tasks. Our
model generalizes well on unseen Chinese captioning,
VQA and classification tasks.

instruction-tuned Flan-T5 (Wei et al., 2022) is con- 436

nected with a powerful vision encoder to perform a 437

series of multi-modal tasks;1 (2) MiniGPT-4 which 438

aligns a CLIP visual encoder with a frozen Vicuna- 439

13B (Chiang et al., 2023) with artificially collected 440

dialog dataset;2 (3) InstructBLIP, an instruction 441

tuning enhanced VLM with Vicuna-13B with con- 442

verted multi-model datasets and the LLaVA (Liu 443

et al., 2023b) dataset generated by text-only GPT- 444

4.3 We refer readers to Appendix E for a detailed 445

introduction for these methods and related work. 446

To isolate the effect of the base LLM, we train 447

a variant of our model, Ying-VLMLLaVA, by only 448

replacing the Stage II training datasets with the 449

LLaVA dataset (Liu et al., 2023b), using the same 450

training setup with Ying-VLM. 451

3.2 Results 452

Evaluation of Knowledgeable VQA The results 453

on the KVQA benchmarks are shown in Table 4. 454

In comparison to the strongest baseline, our model 455

achieves an improvement of 1.1 and 2.0 ROUGE-L 456

points for OK-VQA and A-OKVQA, respectively. 457

Additionally, Ying-VLM delivers the best perfor- 458

mance on the held-out ViQuAE dataset. These 459

findings indicate that instruction tuning on M2BIT 460

1https://huggingface.co/Salesforce/
blip2-flan-t5-xxl

2https://github.com/Vision-CAIR/
MiniGPT-4

3https://huggingface.co/Salesforce/
instructblip-vicuna-13b
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effectively harnesses knowledge from LLMs and461

elevates response quality.462

Evaluation of Object Hallucination As shown463

in Table 5, the VLMs trained on instruction tun-464

ing datasets generated by ChatGPT/GPT-4 exhibit465

serious hallucination problems, as indicated by466

the relatively high average CHAIR of LLaVA and467

MiniGPT-4. InstructBLIP performs the best on this468

evaluation. However, it should be noted that the469

too-short answers provided by InstructBLIP may470

result in a lack of politeness in responses, which471

can harm the user experience. This was validated in472

the later evaluation with GPT-4. When comparing473

Ying-VLMLLaVA to Ying-VLM, it can be observed474

that Ying-VLM achieves a much lower CHAIRS475

score (16.8 v.s. 36.0), demonstrating that it suffers476

significantly less from the sentence-level hallucina-477

tion issue. These results suggest that M2BIT could478

help VLMs to achieve a better balance between the479

hallucination problem and response quality.480

Cross-Language Transferability We assess mod-481

els on three unseen Chinese vision-language tasks482

to investigate the cross-language generalization ef-483

fect of instruction tuning. BLIP-2 and Flan-T5 are484

not considered here as they do not support Chinese485

outputs.4 As illustrated in Table 6, our model per-486

forms well on all evaluated tasks compared with487

MiniGPT4 and InstructBLIP. While the gain can488

be attributed to the Chinese ability of the underly-489

ing Ziya-13B LLM, it promisingly indicates that490

instruction tuning with English datasets can effec-491

tively generalize to different languages. Further, we492

perform continual training on Chinese V+L tasks,493

resulting in YingVLMzh. As shown in the last row494

of Table 6, the scores of FM-IQA can be further495

enhanced. However, the model suffers from catas-496

trophic forgetting as there are no classification tasks497

in the continual training, resulting in poor perfor-498

mance on the Chinese-FoodNet. An in-depth inves-499

tigation for this problem could be promising (Zhai500

et al., 2023).501

Cross-Modality Transferability To evaluate per-502

formance on video-language tasks, we uniformly503

sample 8 frames from each video. MiniGPT4 is ex-504

cluded as it does not support video inputs. Follow-505

ing InstructBLIP (Dai et al., 2023), we concatenate506

the visual embedding extracted from the Q-former507

of each frame as a prefix embedding to the language508

model. As demonstrated in Table 7, our model509

4For all models, we introduce a prompt to promote Chinese
outputs. See Appendix F for details.

196

167

9

28

95

105

0% 20% 40% 60% 80% 100%

InstructBLIP

MiniGPT4

Ying-VLM Won Tie Ying-VLM Lost

Figure 4: Evaluation results using GPT-4 as an evaluator.
Our model outperforms MiniGPT-4 and InstructBLIP
with a winning rate at 55.6% and 65.5%, respectively.

excels in these challenging settings, significantly 510

surpassing the BLIP-series baselines. It is worth 511

noting that the training dataset does not include 512

any videos inputs, implying that our instruction 513

tuning effectively aids the model in generalizing 514

to inputs with a temporal dimension. Furthermore, 515

we train YingVLM on the video-language datasets 516

in M2BIT. The resulting YingVLMvideo achieves 517

the best performance on all tasks, suggesting the ef- 518

fectiveness of video instruction tuning in boosting 519

the video understanding abilities of VLMs. 520

4 Analysis 521

Evaluation with GPT-4 To further validate the 522

quality of the generated response, we propose to 523

utilize GPT-4 as a proxy of human evaluators (Peng 524

et al., 2023; Gilardi et al., 2023). Specifically, fol- 525

lowing Vicuna (Chiang et al., 2023), we query 526

GPT-4 to rate the performance of different mod- 527

els against our Ying-VLM. For each sample, we 528

construct a prompt consisting of the original ques- 529

tion, its corresponding reference answer, the re- 530

sponse generated by our Ying-VLM, and a baseline 531

system output. GPT-4 (gpt-4-0613) is asked 532

to rate both responses on a scale of 10 based on 533

the given question and its reference answer. The 534

ratings are primarily based on the accuracy, rele- 535

vance, and naturalness of the response to meet the 536

requirements when humans are interacting with 537

multi-modal agents (evaluation template is pro- 538

vided in Appendix G). We swap the order of can- 539

didate responses to mitigate potential evaluation 540

biases (Wang et al., 2023). Considering the API 541

cost of GPT-4, 300 examples are randomly sampled 542

from OK-VQA, A-OKVQA and ViQuAE datasets 543

as a subset for evaluation. Figure 4 shows that our 544

Ying-VLM outperforms baseline models in most 545

samples. For example, the GPT-4 evaluator favors 546

Ying-VLM over MiniGPT4 on 167 over 300 tested 547
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Model Video Captioning Video Question Answering

MSRVTT iVQA ActivityNet-QA MSRVTT-QA MSVD-QA

BLIP-2-Flan-T5-XXL 8.8 11.1 8.9 10.3 13.2
InstructBLIP 14.3 6.3 9.3 4.0 7.0
Ying-VLM 14.2 23.5 21.9 18.3 21.4
Ying-VLMvideo 16.1 41.3 44.8 32.0 40.5

Table 7: ROUGE-L results of video-language tasks. YingVLM shows great generalization from images to videos
and training on video datasets (YingVLMvideo) further boosts the performance.

Model iVQA ActivityNet-QA MSRVTT-QA MSVD-QA

BLIP2-Flan-T5-XXL 25.0 30.0 19.0 32.0
InstructBLIP 35.0 38.0 23.0 47.0
Ying-VLMVideo 40.0 40.0 40.0 58.0

Table 8: Video QA accuracy using GPT-4 as a judge.

Task

R
O

U
G

E-
L 

Sc
or

e

24

26

28

30

32

34

36

A-OKVQA OK-VQA ViQuAE

Seen Instructions Unseen Instructions

Figure 5: Ying-VLM performs stably on unseen instruc-
tions, with an average 0.23 ROUGE-L drop.

samples, indicating that VLMs tuned on M2BIT548

can produce more accurate and engaging responses549

on the challenging KVQA tasks. Similarly, we sup-550

plement the video-language evaluation using GPT-551

4 as a judge to obtain the question-answering accu-552

racy, following the recent practice in VLM evalu-553

ation (Yu et al., 2023). Table 8 shows the results554

on a 100-sample subset of each video-language555

task. We find that Ying-VLMvideo achieves the best556

performance, confirming the effectiveness of multi-557

modal instruction tuning.558

Robustness on Unseen Instructions We further559

explore the robustness of models on unseen instruc-560

tions, where models are trained on 4 randomly se-561

lected instructions and evaluated with the left 6562

instructions on each task. As shown in Figure 5,563

the model performs stably on the unseen instruc-564

tions with a moderate 0.23 ROUGE-L score drop,565

indicating that it generalizes well on the unseen566

instructions. Further analysis in Appendix I shows567

that the instruction diversity also affects the perfor-568

mance, and Ying-VLM shows promising scalability569

with the increased task number.570

Qualitative Results We conduct a case study571

Human: Who plays at this 
stadium ?

MiniGPT4: The stadium is 
called Wembley Stadium, 
home to the English national 
football team.

InstructBLIP: Arsenal F.C.

Ying-VLM: The stadium you 
are looking at is called 
Emirates Stadium and it is the 
home of Arsenal Football 
Club. Arsenal is a 
professional football club 
based in London, England, 
and they play in the Premier 
League.

Human: On which book by this 
man, Baz luhrmann’s planned a 
film?

MiniGPT4: The image shows a 
black and white portrait of a man 
in a suit and tie, with short, curly 
hair and a serious expression.

InstructBLIP: Great Gatsby

Ying-VLM: The book on which 
Baz Luhrmann‘s planned film is 
based is called 
’The Great Gatsby‘
and was written by F. Scott 
Fitzgerald.

Human:请给图中的食物分类。
(Classify the food in the image.)
Options:                                                                                               
(A)薯条 (French fries)
(B)凉拌⻄红柿  (Tomato salad)
(C)油焖⼤虾 (Braised Shrimp in chili oil)
(D)扇⻉ (Scallop in Shell)
(E)⽣蚝 (Oysters)
(F)螃蟹 (Crab)
(G)扬州炒饭 (Yangzhou fried rice)
(H)披萨 (Pizza) 
(I)蛋挞 (Egg Tart)
(J)⾁酱意⼤利⾯ (Spaghetti with meat sauce)   

MiniGPT4: This is a bowl of fried rice with 
various ingredients including carrots, peas, 
sausage, shrimp, and eggs. 

InstructBLIP: (K) 薯条

Ying-VLM: (G) 扬州炒饭

Figure 6: Case study of model outputs: Correct answers
in green, wrong answers in red, and non-compliant an-
swers in grey. Ying-VLM accurately responds to entity-
centric questions and generalizes to unseen Chinese
food classification tasks.

to provide a more intuitive understanding of 572

instruction-tuned models. The cases are chosen 573

from the held-out ViQuAE and ChineseFoodNet 574

datasets. As shown in Figure 6, Ying-VLM trained 575

with M2BIT provides correct and informative re- 576

sponses to entity-centric questions requiring exter- 577

nal world knowledge. In contrast, MiniGPT4 pro- 578

duces an incorrect answer for the stadium question 579

on the left, and InstructBLIP consistently provides 580

concise but less engaging answers. Ying-VLM 581

also generalizes to Chinese inputs, accurately clas- 582

sifying the food image. These cases underscore 583

the importance of instruction tuning dataset quality 584

and validate the value of our M2BIT. 585

5 Conclusion 586

In this paper, we introduce M2BIT, a multi-modal 587

bilingual instruction tuning dataset consisting of 2 588

million instances and 400 task instructions across 589

40 tasks. We develop Ying-VLM as a proof-of- 590

concept model to demonstrate the effectiveness of 591

our dataset. Extensive results confirm that Ying- 592

VLM excels in KVQA tasks, exhibits reduced hal- 593

lucination, and demonstrates superior generaliza- 594

tion in unseen video and Chinese tasks. 595
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Limitations596

Limitations of Dataset Collection The number of597

Chinese tasks in our M2BIT is limited, as most598

high-quality multi-modal resources are English599

only. In the future, we look forward to incorporat-600

ing more Chinese V+L tasks in our dataset and ex-601

ploring machine translation techniques to improve602

the V+L task coverage in Chinese. Besides, our603

M2BIT focuses on image-to-text and video-to-text604

tasks, while more modalities, such as audio (Kim605

et al., 2019; You et al., 2022; Mei et al., 2023), can606

be considered further.607

Limitations of Experimental Exploration In this608

paper, we curate the M2BIT dataset to provide a re-609

source for developing powerful VLMs and explore610

the cross-lingual/modality effect of multi-modal611

instruction tuning. However, there are still under-612

explored setups worth investigating. Promising av-613

enues include exploring improved methodologies614

for instruction and task selection by taking the in-615

terdependence of different tasks into consideration616

and exploring the effects of generalization across617

different languages and modalities. Furthermore,618

we only adopted the Ziya-13B LLM in our exper-619

iments due to its promising bilingual ability. Re-620

cently, many powerful foundation LLMs have been621

released, such as LLaMA-2 (Touvron et al., 2023a)622

and Baichuan-2 (Baichuan, 2023). It would also623

be interesting to perform a comprehensive analysis624

regarding different model families and scales.625

Ethic Considerations626

In line with established practices in language in-627

struction tuning (Mishra et al., 2022; Longpre et al.,628

2023), our M2BIT dataset has been carefully cu-629

rated by gathering and unifying NLP datasets from630

various sources, including academic papers and631

projects, making them suitable for research pur-632

poses. The licenses for the included tasks can be633

found in Appendix B. However, it should be noted634

that there are certain tasks for which the license635

information is not publicly available. We only re-636

lease the datasets with clear license information to637

avoid potential problems.638
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A.3 Maintenance Plan1146

We commit to continually updating the dataset and1147

rectifying any potential errors. Previous versions1148

of the dataset can still be accessed in the Git history.1149

Users can submit their questions and suggestions in1150

the dataset hub, and we will promptly address their1151

inquiries. We also encourage community contribu-1152

tions to expand the range of datasets by submitting1153

pull requests to the dataset repository.1154

A.4 Composition1155

What do the instances that comprise the dataset1156

represent? (e.g., documents, photos, people,1157

countries) Our data is provided in JSON format.1158

Each data instance consists of (1) an instruction1159

prompt, (2) a list of base64 strings representing1160

images (3) a task-specific input, such as the ques-1161

tion of the image, (4) a desired output, such as1162

the answer for the image-related question, and (5)1163

a metadata dictionary for referencing the original1164

dataset.1165

How many instances are there in total (of1166

each type, if appropriate)? The statistics of our1167

dataset can be found in Table 9.1168

Does the dataset contain all possible instances1169

or is it a sample (not necessarily random) of in-1170

stances from a larger set? We tried to transform1171

the original whole dataset into a unified schema.1172

However, due to the disk limitation and the cost of1173

paraphrasing short answers, we chose a randomly1174

sampled subset from the original dataset to perform1175

the transformation.1176

Is there a label or target associated with each in-1177

stance? Yes, the outputs field serves as the label.1178

Is any information missing from individual in-1179

stances? No.1180

Are relationships between individual instances1181

made explicit (e.g., users’ movie ratings, social1182

network links)? N/A.1183

Are there recommended data splits (e.g., train-1184

ing, development/validation, testing)? Yes. We1185

made the transformation based on the original1186

dataset split.1187

Are there any errors, sources of noise, or redun-1188

dancies in the dataset? No.1189

Is the dataset self-contained, or does it link to or 1190

otherwise rely on external resources (e.g., web- 1191

sites, tweets, other datasets)? Yes. 1192

Does the dataset contain data that might be con- 1193

sidered confidential? No. 1194

Does the dataset contain data that, if viewed di- 1195

rectly, might be offensive, insulting, threatening, 1196

or might otherwise cause anxiety? No. 1197

A.5 Uses 1198

Has the dataset been used for any tasks al- 1199

ready? Yes. We have used the M2BIT dataset to 1200

train a vision-language model, which demonstrates 1201

promising results on knowledgeable VQA tasks 1202

and generalizes well to video-language tasks and 1203

Chinese vision-language tasks. Please see Section 1204

4 of the main paper for details. 1205

What (other) tasks could the dataset be used 1206

for? M2BIT is a useful resource for instruction 1207

tuning studies in the multi-modal field. Future stud- 1208

ies can utilize M2BIT to investigate the influence 1209

of instruction tuning and improve the general per- 1210

formance of vision-language models. 1211

Is there a repository that links to any or all pa- 1212

pers or systems that use the dataset? No. 1213

Is there anything about the composition of the 1214

dataset or the way it was collected and prepro- 1215

cessed/cleaned/labeled that might impact future 1216

uses? The bounding boxes are added to the im- 1217

age with a red rectangle box to inform the model 1218

of regions in interest. For those models with a vi- 1219

sion encoder that is not sensitive to these visual 1220

prompts, the effect of this operation can be lim- 1221

ited. Besides, short answers in some VQA tasks 1222

are paraphrased by ChatGPT, which is designed to 1223

improve the response quality of the model while 1224

potentially impacting the language diversity of the 1225

model. 1226

B Dataset Statistics 1227

Table 9 lists the detailed statistics in our benchmark 1228

and Figure 1 illustrates the unified schema adopted 1229

in our dataset. We collect the dataset license from 1230

PaperWithCode.5 For datasets under Unknown and 1231

Custom licenses, we suggest the users check the 1232

project page or contact the dataset owner before 1233

usage. 1234

5https://paperswithcode.com/
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Task Dataset Used #samples LicenseTrain Val Test

Captioning
MS COCO (Lin et al., 2014) Yes 566,747 25,010 25,010 Custom

TextCaps (Sidorov et al., 2020) Yes 97,765 13,965 0 Unknown
Image-Paragraph-Captioning (Krause et al., 2017) Yes 14,575 2,487 2,489 Custom

Classification

COCO-GOI (Lin et al., 2014) Yes 30,000 2,000 0 Custom
COCO-Text (Veit et al., 2016) Yes 118,312 27,550 0 Custom

ImageNet (Russakovsky et al., 2015) Yes 30,000 50,000 0 Non-commercial
COCO-ITM (Lin et al., 2014) Yes 30,000 5,000 5,000 Custom

e-SNLI-VE (Kayser et al., 2021) Yes 20,000 14,339 14,740 Unknown
Mocheg (Yao et al., 2022) Yes 4,991 180 466 CC BY 4.0
IQA (Duanmu et al., 2021) Yes 5,000 1,000 1,000 Custom

VQA

VQA v2 (Goyal et al., 2017b) Yes 30,000 30,000 0 CC-BY 4.0
Shapes VQA (Andreas et al., 2016) Yes 13,568 1,024 1,024 Unknown

DocVQA (Mathew et al., 2021) Yes 39,463 5,349 0 Unknown
OCR-VQA (Mishra et al., 2019) Yes 11,414 4,940 0 Unknown

ST-VQA (Biten et al., 2019) Yes 26,074 0 4,070 Unknown
Text-VQA (Singh et al., 2019) Yes 27,113 0 5,734 CC BY 4.0

GQA (Hudson and Manning, 2019) Yes 30,001 5,001 0 CC BY 4.0

KVQA

OK-VQA (Marino et al., 2019) Yes 9,009 5,046 0 Unknown
A-OK-VQA (Schwenk et al., 2022) Yes 17,056 1,145 0 Unknown

ScienceQA (Lu et al., 2022) Yes 12,726 4,241 4,241 CC BY-NC-SA
ViQuAE (Lerner et al., 2022) No 1,190 1,250 1,236 CC By 4.0

Reasoning

CLEVR (Johnson et al., 2017) Yes 30,000 2,000 0 CC BY 4.0
NLVR (Suhr et al., 2017) Yes 29,372 2,000 0 Unknown
VCR (Zellers et al., 2019) Yes 25,000 5,000 5,000 Custom

VisualMRC (Tanaka et al., 2021) Yes 15,000 2,500 5,000 Unknown
Winoground (Thrush et al., 2022) No 0 0 800 Unknown

Generation
Visual Storytelling (Huang et al., 2016) Yes 5,000 4,315 4,350 Unknown

Visual Dialog (Das et al., 2017) Yes 50,000 1,000 1,000 CC By 4.0
Multi30k (Elliott et al., 2016) Yes 90,000 6,000 12,000 Non-commercial

Chinese

FM-IQA (Gao et al., 2015) No 164,735 75,206 0 Unknown
COCO-Caption CN (Li et al., 2019) No 18,341 1,000 1,000 Non-commercial

Flickr-8k-Caption CN (Li et al., 2016) No 6,000 1,000 1,000 CC By 3.0
Chinese Food Classification (Chen et al., 2017) No 0 0 1,100 Unknown

Multimodal Chat (Zheng et al., 2022) No 3,000 1,000 1,000 Unknown

Video

Action-Classification (Goyal et al., 2017a) No 2,000 2,000 2,000 Custom
iVQA (Yang et al., 2021) No 5,994 2,000 2,000 Unknown

MSVD QA (Xu et al., 2017) No 1,161 245 504 Unknown
ActivityNet QA (Yu et al., 2019) No 3,200 1,800 800 Unknown
MSRVTT QA (Xu et al., 2017) No 6,513 497 2,990 Unknown

MSRVTT Captioning (Xu et al., 2016) No 2,000 1,000 1,000 Unknown

Table 9: Detailed task descriptions and statistics of our instruction tuning tasks, including all datasets in all types of
tasks. The column “Used” indicates whether we use this dataset in the instruction tuning stage.

C Template for Answer Rephrasing1235

We provide the paraphrase template in Table 10 for1236

querying the ChatGPT to re-write the original short1237

answers, where {Q} and {A} is filled with the ques-1238

tion and the answer need to be paraphrased, respec-1239

tively. We incorporate an example to better inform1240

the model of the paraphrasing tasks. For VQAv21241

tasks, we add an extra {Caption} field in the tem-1242

plate filled with corresponding captions from the1243

COCO dataset to provide extra context information1244

to help to rephrase. For A-OKVQA tasks, the ratio-1245

nale of each sample is adopted to enrich the final1246

answer.1247

D Results on Generation and 1248

Classification 1249

For a comprehensive evaluation, we incorporate 1250

the results on an image-to-text generation task, i.e., 1251

Visual-Dialog and an image classification task Im- 1252

ageNet in Table 11. The results indicate that our 1253

M2BIT can provide more balanced coverage of 1254

different tasks, helping Ying-VLM achieve better 1255

overall performance across various types of tasks. 1256

E Related Work 1257

Our work is motivated by the recent progress in de- 1258

veloping powerful VLMs based on large language 1259
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Figure 7: Top 20 verbs distribution for each task type.

You are an AI visual assistant. Now you
are given a question related to an image and
a short ground-truth answer. Your task is
to transform the ground-truth answer into
a natural and convincing response. Make
sure the response is accurate, highly rele-
vant to the question, and consistent with the
original answer.

Question:
Which NASA space probe was launched to
this planet in 1989?
Answer:
Magellan
Transformed Answer:
NASA sent the Magellan spacecraft to
Venus in 1989, which was the first planetary
spacecraft launched from a space shuttle.

Question:
{Q}
Answer:
{A}
Transformed Answer:

Table 10: Template used to query ChatGPT for answer
paraphrasing.

models. The efforts can be divided into the ex-1260

ploration of the model architecture and the cura-1261

tion of high-quality multi-modal instruction tuning1262

datasets.1263

Model Visual-Dialog ImageNet

BLIP2-Flan-T5-XXL 6.4 96.0
InstructBLIP 7.0 74.5
MiniGPT4 20.3 41.7
Ying-VLM 14.7 91.9

Table 11: ROUGE-L evaluation on VisualDialog and
accuracy score on ImageNet dataset.

Model Architecture of VLMs The architecture 1264

of VLMs usually consists of three key modules, 1265

(i) a vision encoder, (ii) a modality alignment 1266

module, and (iii) an LLM backbone. The vi- 1267

sion encoder is responsible for converting raw im- 1268

ages/videos into vector representations, which are 1269

then mapped into the embedding space of the LLM 1270

backbone by the alignment module. Finally, the 1271

LLMs decode the response given the multimodal 1272

context. Previous studies mainly employ CLIP 1273

models as the vision encoder due to the transfer- 1274

ability of the learned visual representations (Rad- 1275

ford et al., 2021). For the LLM backbone, perfor- 1276

mant open-sourced LLMs such as LLaMA (Tou- 1277

vron et al., 2023b), Vicuna (Chiang et al., 2023) 1278

and Qwen-LM (Bai et al., 2023a) are usually 1279

adopted. Chen et al. (2023c) delves deeper into 1280

the scaling effects of the vision encoder and the 1281

language model, showcasing the great potential 1282

advantages of scaling both modules. There are 1283

many research efforts paid to the design of a bet- 1284

ter modality alignment module. The pilot studies 1285

(Open)Flamingo (Alayrac et al., 2022; Awadalla 1286

et al., 2023) design a gated cross-attention layer, 1287

where the keys and values in these layers are ob- 1288

tained from the vision features while the queries 1289

are derived from the language inputs. This design 1290

enables the LLM to produce visual-grounded text 1291

given interleaved context. Another common prac- 1292

tice is to treat the visual features as a prefix (Wang 1293

et al., 2021), and train the alignment module via the 1294

construction of the captions. In this way, the align- 1295

ment module can become a simple linear projection 1296

layer (Liu et al., 2023b; Zhu et al., 2023) and a two- 1297

layer MLP for better capacity (Liu et al., 2023a). 1298

The Q-Former module introduced by BLIP-2 (Li 1299

et al., 2023a) achieves the alignment goal by intro- 1300

ducing a suite of query tokens in the transformer 1301

to attend to the visual features. InstructBLIP (Dai 1302

et al., 2023) and MM-ICL (Zhao et al., 2023b) fur- 1303

ther incorporate the instruction information during 1304

the alignment process. Fuyu (Bavishi et al., 2023) 1305

presents a new architecture that directly projects 1306
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Figure 8: Tasks coverage of M2BIT. We hold out ViQuAE for evaluating the KVQA ability of VLMs and Winogound,
as it only provides a small test set. All Chinese V+L and Video-language datasets are excluded during training for
cross-lingual/modality effect investigation.

the raw pixels of images into the embedding space1307

of the LLM to perform the following training and1308

decoding.1309

Multi-modal Instruction Tuning Datasets Cu-1310

rating high-quality multi-modal instruction tuning1311

datasets has also played a vital role in empowering1312

VLMs, as evidenced in the progress of develop-1313

ing LLMs (Ouyang et al., 2022; Longpre et al.,1314

2023; Wang et al., 2022). The efforts can be di-1315

vided into two streams. The first uses existing1316

vision-text benchmarks to create an instruction-1317

tuning dataset (Xu et al., 2022; Dai et al., 2023).1318

Traditional multi-modal tasks such as VQA and1319

image captioning are collected, and supplemented1320

with task instructions annotated by humans or semi-1321

automatically generated, to serve as an instruction-1322

tuning dataset. The second line uses image an-1323

notation tools for providing ChatGPT/GPT-4 with1324

the textual description of images and then gener-1325

ates a dialog-style dataset (Zhu et al., 2023; Liu1326

et al., 2023b). For example, the LLaVA dataset (Liu1327

et al., 2023b) leverages image captions and bound-1328

ing boxes to serve as the textual context of the1329

original images. The context along with a designed1330

template is used to prompt the GPT-4 model for1331

generating instruction tuning samples. Following1332

this paradigm, Zhao et al. (2023a) further scales1333

this framework to create 4.2 million samples, and1334

LLaVAR (Zhang et al., 2023) extends the idea with1335

OCR results to create text-rich image understand- 1336

ing instructions. 1337

In this paper, we present M2BIT, a multi-modal 1338

multilingual instruction tuning dataset with 2 mil- 1339

lion samples and 400 tasks, providing more com- 1340

prehensive coverage of multi-modal tasks across 1341

different languages and modalities. Besides, we 1342

rephrase the short answers of original datasets into 1343

natural expressions to improve user experience. 1344

Built on the success recipe of VLM architecture, 1345

we develop Ying-VLM, which validates the effec- 1346

tiveness of our dataset. 1347

F Prompt for Zero-Shot Chinese 1348

Vision-Language Tasks 1349

In our experiments, all VLMs are fine-tuned ex- 1350

clusively using English data. In our preliminary 1351

study, we observe that these models tend to gen- 1352

erate English responses, even when the input and 1353

instructions are written in Chinese. We introduce 1354

a simple Chinese dialogue context during the zero- 1355

shot Chinese Vision-Language Task evaluation for 1356

all models, as illustrated in Table 12, Interestingly, 1357

this minor adjustment can encourage models to 1358

produce reasonable Chinese output. We leave the 1359

analysis of instruction-tuned VLM models’ multi- 1360

lingual capabilities for future research. 1361
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<human>:
请根据我的指示，以及所给的图片，做
出相应的回答。
<bot>:
好的。
<human>:
{Instruction}
{Input}
<bot>:
好的。

Table 12: Prompt for promoting Chinese outputs.

G Template for GPT-4 Evaluation1362

We adopt the template in Table 13 to query GPT-41363

and obtain the evaluation results with FairEval 61364

to obtain more stable results. Specifically, each1365

tested instance is a quaternion: (question,1366

reference, response1, response2),1367

where response1 and response2 are two1368

responses from our Ying-VLM and the baseline1369

model, respectively. For each instance, we1370

query GPT-4 to judge which response is of1371

better quality regarding accuracy, relevance1372

and naturalness. We populate the quaternion1373

into the evaluation template to form two query1374

prompts: T(Q=question, R=reference,1375

R1=response1, R2=response2)1376

and T(Q=question, R=reference,1377

R1=response2, R2=response1). We set1378

the temperature of GPT-4 to 1 and sample three1379

completions for each query prompt. Therefore,1380

each response will receive 6 scores, and we use1381

the average score as the final score for each1382

response. The response with the higher final1383

score is considered the better response. The1384

GPT-4 evaluation incurred a cost of $20.45 for1385

InstructBlip and $20.90 for MiniGPT-4.1386

H Object Hallucination Metrics1387

For object hallucination evaluation, we adopt Cap-1388

tion Hallucination Assessment with Image Rel-1389

evance (CHAIR) proposed by Rohrbach et al.1390

(2018), a metric for evaluating object hallucina-1391

tion in image captioning tasks. Specifically, given1392

the existing objects in the image, CHAIR calculates1393

the proportion of objects that appear in the caption1394

but not the image. CHAIR has two variants, i.e.,1395

6https://github.com/i-Eval/FairEval

CHAIRI and CHAIRS , which evaluate the halluci- 1396

nation degree at the object instance level and the 1397

sentence level, respectively. Formally, these two 1398

metrics are defined as: 1399

CHAIRI =
| { hallucinated objects } |
| { all mentioned objects } |

CHAIRS =
| { captions w/ hallucinated objects } |

| { all captions } | .

1400

Intuitively, CHAIRI denotes the proportion of 1401

hallucinated ones in all generated objects, while 1402

CHAIRS describes the hallucination at the sen- 1403

tence level, i.e., the proportion of generated cap- 1404

tions that contain hallucinated objects. We fol- 1405

low the settings adopted in Rohrbach et al. (2018), 1406

which only consider 80 objects in the MSCOCO 1407

segmentation challenge. Following (Li et al., 1408

2023b), a synonym list (Lu et al., 2018) is used 1409

for synonymous word unification in the generated 1410

captions to avoid misjudging hallucinated objects. 1411

I Effect of Instruction Diversity and 1412

Robustness 1413

To investigate the influence of instruction diver- 1414

sity, we randomly select 1, 2, 4, and 8 instructions 1415

from each dataset, resulting in varied instruction 1416

diversity. The other training parameters are con- 1417

sistent with those used in previous experiments on 1418

task number investigation. Figure 9 shows that 1419

the performance varies with the level of diversity. 1420

Specifically, our results suggest that using four in- 1421

structions per task is sufficient for achieving decent 1422

performance. 1423

We investigate the influence of task numbers by 1424

randomly shuffling our tasks and then selecting 1425

a subset to train the model during the instruction 1426

tuning stage. Due to the computational resource 1427

limitation, we set up a maximum of 5k examples 1428

for each task and train all the models for 5k steps 1429

with a batch size of 64. We select 0, 4, 8, 16 and 1430

all 27 tasks for training, and report the individual 1431

ROUGE-L score and the average score. As illus- 1432

trated in Figure 10, increasing the number of tasks 1433

greatly improves the results of the generalization 1434

performance. Besides, the performance gain is not 1435

diminished as the task number increases. This is 1436

promising as it indicates that we can continually 1437

improve performance by introducing more tasks 1438

into the training. 1439
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[Question]
{Q}
[The Start of Reference Answer]
{R}
[The End of Reference Answer]
[The Start of Assistant 1’s Answer]
{R1}
[The End of Assistant 1’s Answer]
[The Start of Assistant 2’s Answer]
{R2}
[The End of Assistant 2’s Answer]

[System]
We would like to request your feedback on the performance of two AI assistants in response to
the user’s multimodal question displayed above. We provided no multimodal inputs other than
question text, but we provided a reference answer for this question. You need to evaluate the
quality of the two responses based on the question and the reference answer.
Please rate the on the follow aspects:
1. Accuracy: whether the candidate’s response is consistent with the original answer, this is
important as we do not want a misleading result;
2. Relevance: whether the candidate’s response is highly relevant to the question and image
content;
3. Naturalness: whether the candidate’s response is engaging, providing a great communication
experience for the user when interacting with the AI visual assistant.
of the two Assistants’ responses.

Each assistant receives an overall score on a scale of 1 to 10, where a higher score indicates better
overall performance.
Please first provide a comprehensive explanation of your evaluation, avoiding any potential bias
and ensuring that the order in which the responses were presented does not affect your judgment.
Then, output two lines indicating the scores for Assistant 1 and 2, respectively.

Output with the following format:
Evaluation evidence: <evaluation explanation here>
The score of Assistant 1: <score>
The score of Assistant 2: <score>

Table 13: Template used to query GPT-4 for evaluating the response quality of different models.
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Figure 9: ROUGE-L Score changes with the varied
number of instructions used for training.
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Figure 10: ROUGE-L score increases when models are
trained with more instruction tuning datasets.
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