

000 001 002 003 004 005 SQLAGENT: LEARNING TO EXPLORE BEFORE GEN- 006 ERATING AS A DATA ENGINEER 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Large Language Models have recently shown impressive capabilities in reasoning
029 and code generation, making them promising tools for natural language interfaces to relational databases. However, existing approaches often fail to generalize in complex, real-world settings due to the highly database-specific nature
030 of SQL reasoning, which requires deep familiarity with unique schemas, ambiguous
031 semantics, and intricate join paths. To address this challenge, we introduce
032 a novel two-stage LLM-based framework that decouples knowledge acquisition
033 from query generation. In the Exploration Stage, the system autonomously constructs
034 a database-specific knowledge base by navigating the schema with a Monte
035 Carlo Tree Search-inspired strategy, generating triplets of schema fragments, executable
036 queries, and natural language descriptions as usage examples. In the Deployment Stage,
037 a dual-agent system leverages the collected knowledge as in-context examples to iteratively
038 retrieve relevant information and generate accurate SQL queries in response to user questions. This design enables the agent to proactively
039 familiarize itself with unseen databases and handle complex, multi-step reasoning.
040 Extensive experiments on large-scale benchmarks demonstrate that our
041 approach significantly improves accuracy over strong baselines, highlighting its
042 effectiveness and generalizability.
043

1 INTRODUCTION

044 The recent advancement of Large Language Models (LLMs) has demonstrated remarkable capabilities
045 in complex reasoning and computational tasks(OpenAI, 2023; Bubeck et al., 2023; Mirchandani
046 et al., 2023; Wu et al., 2023; Meta Fundamental AI Research (FAIR) Diplomacy Team et al., 2022).
047 A significant application of these capabilities lies in processing and interpreting the vast amounts
048 of data that underpin modern society. While data exists in many forms, a substantial portion of high-value
049 information is stored as structured data within relational databases(Verbitski et al., 2017;
050 Yavuz et al., 2018). Consequently, there is a surging interest in leveraging LLMs to interact with
051 this structured data, aiming to democratize data access through natural language. This has given rise
052 to Text-to-SQL (also known as NL2SQL), a key research area focused on automatically translating
053 natural language questions into executable SQL queries(Liu et al., 2025; Katsogiannis-Meimarakis
054 & Koutrika, 2023; Kobayashi et al., 2025; Malekpour et al., 2024; Shi et al., 2025; Deng et al.,
055 2022). The core objective is to bridge the gap between human language and relational databases,
056 empowering users to retrieve and manipulate data without needing to master complex SQL syntax.
057

058 Despite this promise, current Text-to-SQL approaches struggle to generalize to complex, real-world
059 scenarios(Lei et al., 2025). While these models perform well on some benchmarks, their accuracy
060 often drops significantly when applied to more complex databases, revealing a significant generalization
061 gap(Pourreza & Rafiei, 2024; Gao et al., 2024; Talaei et al., 2024). This happens because
062 effective Text-to-SQL reasoning is highly database-specific. Unlike general code generation, where
063 a model can produce portable logic like a Python sorting algorithm, a valid SQL query is inextricably
064 tied to the unique schema of a specific database. This deep dependency manifests in several key
065 challenges. A model must handle intricate schemas, as their complexity and structure are entirely
066 unique to each database. It must also resolve ambiguous queries, where the correct interpretation of
067 a phrase like “recent customers” depends on knowing the specific column names and business logic
068 embedded in that particular schema. Furthermore, complex, multi-step reasoning is dictated by the
069 database’s specific join paths and relationships.
070

Without prior familiarity with the database, a generic pre-trained model struggles to navigate the unique structure and meaning within a new database(Lei et al., 2025). In contrast, human experts succeed by first building a deep familiarity with the database’s unique schema and relationships. This core insight motivates our approach: a preliminary process designed to build this foundational knowledge before attempting the final translation task. To achieve this goal, we propose a novel LLM-based agent framework that operates in two key stages. First, the framework autonomously explores an unfamiliar database to generate a rich, database-specific knowledge base. Subsequently, this knowledge is provided to the agent as in-context examples(Dong et al., 2024; Rubin et al., 2022; Zhang et al., 2022b). This process guides the generation of the final, complex SQL query.

The Exploration Stage autonomously constructs a structured, database-specific knowledge base. The core objective of this stage is to generate a rich set of usage examples for each key component of the database schema, such as its tables and columns. Each example is formalized as a triplet: a schema sub-structure, a corresponding executable SQL query, and its natural language description. To systematically generate these triplets across the entire schema, we first represent the database as a traversable tree structure, where entities like tables and columns are organized as nodes. This tree provides a map for our exploration. To generate triplets, the agent need explore this tree to find and combine meaningful nodes into valid queries. To this end, We then employ a search strategy inspired by Monte Carlo Tree Search(Kocsis & Szepesvári, 2006; Coulom, 2007), guided by an Agent that acts as the core reasoning engine. The agent intelligently navigates this tree to build and test new queries. It achieves this by selecting a series of actions, such as introducing a join or adding a filter. Each successful exploration path results in a new triplet. These triplets are collected to build our knowledge base, enabling the next stage to better write accurate SQL queries. Overall, this process allows the system to proactively familiarize itself with an unknown database without any manual intervention.

In the Deployment Stage, our goal is to effectively utilize the knowledge from the exploration phase to handle complex user queries. To achieve this, we introduce a dual-agent framework where an InfoAgent and a GenAgent collaborate with distinct roles. The InfoAgent is responsible for retrieving the most relevant knowledge triplets from the previously constructed database, based on the user’s question. Subsequently, the GenAgent uses this schema fragment to retrieve associated knowledge triplets stored during the exploration stage. The GenAgent then incorporates these retrieved triplets into its reasoning context, using them as in-context examples to guide the final query generation. If the generated query is unsuccessful, the GenAgent provides feedback to the InfoAgent, prompting a new cycle of information retrieval. The two agents then work together in an iterative loop, continuously refining the SQL query through a cycle of example retrieval, generation, and execution feedback. This collaborative, multi-step design allows our system to deconstruct the problem, leading to high accuracy and reliability.

To validate the effectiveness of our approach, we conducted extensive experiments showing that our method significantly outperforms strong baselines on complex, large-scale benchmarks. Our main contributions are:

1. We propose a novel two-stage LLM-based framework that decouples knowledge acquisition from query generation.
2. We develop an autonomous, agent-driven exploration strategy that constructs a structured, executable knowledge base without requiring manual annotations.
3. We introduce a dual-agent reasoning mechanism that iteratively retrieves and integrates in-context examples to generate accurate and executable SQL queries.
4. We will release the full implementation of our framework to foster reproducibility and future research in this domain.

2 RELATED WORK

LLM-based Text-to-SQL Methods. Research in Text-to-SQL has progressed from early neural parsers to modern LLM-driven approaches (Shi et al., 2025; Deng et al., 2022). Seminal neural methods introduced techniques like graph-based encoders to leverage database schema (Wang et al., 2020) and constrained decoding to ensure syntactic correctness (Scholak et al., 2021). With the advent of large language models, the field has seen significant advancements. Numerous fine-tuning

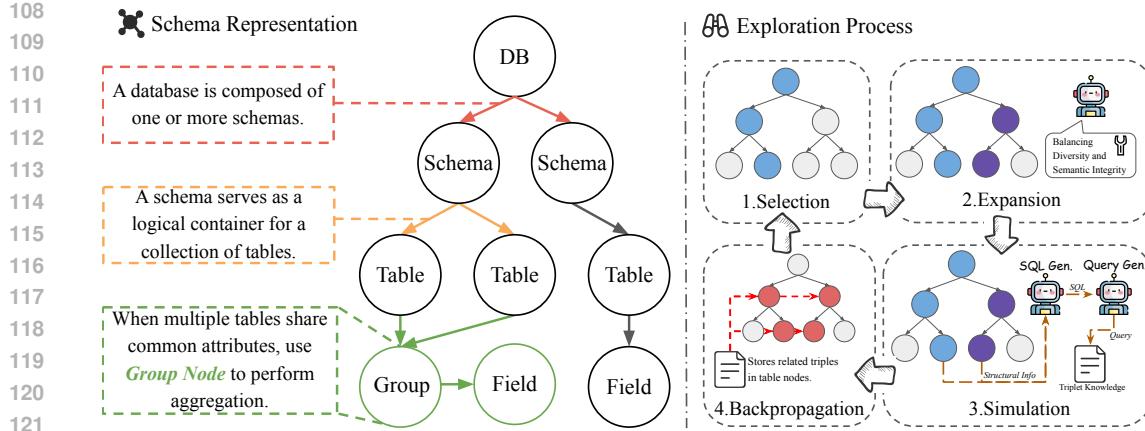


Figure 1: **Databases Representation and Exploration Phase.** The left side of this diagram illustrates our representation and processing of the database structure. The right side of this diagram shows a schematic of our exploration using Tree Search on the existing structure. This includes four phases: selection, expansion, simulation, and backpropagation. This approach enables the collection of a series of triplets.

methods (Li et al., 2024) and advanced LLM-prompting techniques (Dong et al., 2023; Wang et al., 2023a; Zhang et al., 2023; Talaei et al., 2024; Pourreza & Rafiei, 2024; Gao et al., 2024) have achieved strong performance on established benchmarks. However, these approaches still contend with challenges such as limited context windows and adapting to unseen database domains.

Multi-Agent for Code Generation. The intersection of generative models and interactive problem-solving has spurred a surge in agent-based frameworks designed to enhance the reasoning capabilities of language models, particularly for code generation (Yao et al., 2023; Zhang et al., 2022a; Chen et al., 2023; Wang et al., 2023b; Shinn et al., 2024; Zhang et al., 2024; Xia et al., 2024). To overcome the limits of a single model, a prominent strategy is to deploy multiple agents in co-ordinated roles. In this multi-agent paradigm, agents specialize and interact, often through patterns like cooperative decomposition (Li et al., 2023a) or hierarchical task delegation (langgenius, 2023). To make these interactions more robust, other works have focused on designing special action spaces to standardize agent operations (Wang et al., 2024; Yang et al., 2024). Inspired by these successes, our method employs a similar strategy with dedicated explorer and generator agents for text-to-SQL translation.

3 METHODOLOGY

Our work addresses the challenge of generalizing Text-to-SQL systems to unfamiliar databases by introducing a novel two-stage framework. First, an **exploration stage** autonomously constructs a database-specific knowledge base without requiring manual supervision. Subsequently, a **deployment stage** employs a dual-agent framework to effectively leverage this acquired knowledge for accurate and robust query synthesis.

3.1 DATABASE SCHEMA REPRESENTATION

Our approach to database exploration begins by transforming the conventional relational schema into a traversable, tree-like structure. The database, its tables, and their corresponding fields are treated as distinct nodes in the tree, explicitly capturing their nested relationships. However, a significant challenge arises from the structural redundancy common in large scale databases. For instance, time-based sharding often produces numerous tables with identical schemas, such as daily logs or hourly snapshots. Naively modeling each table independently would require connecting every table node to its respective field nodes, resulting in high representational complexity and redundancy. To address this issue, we introduce an abstraction termed the **Shared Field Group**. This component acts as a canonical, reusable template that encapsulates the common field structure for a set of struc-

162 turally identical tables. Consequently, instead of each table node maintaining numerous individual
 163 connections to its field nodes, it establishes a single link to the appropriate **Shared Field Group**.
 164 This design, illustrated in Figure 1, significantly simplifies the overall schema representation and
 165 clarifies the inherent relationships among tables with identical structures. By abstracting common
 166 structures, this approach reduces the complexity of representing the relationships between tables
 167 and fields from $O(N \times M)$ to $O(N + M)$, where N is the number of sharded tables and M is
 168 the number of shared fields. This abstraction not only streamlines the schema but also improves
 169 the interpretability and efficiency of the subsequent exploration process. The specific definition and
 170 identification algorithm for this structure are detailed in Appendix A and Appendix B.

173 3.2 EXPLORATION STAGE: LLM-GUIDED TREE SEARCH

174
 175 The goal of the exploration stage is to systematically acquire prior knowledge about the target
 176 database. This knowledge should capture not only the static schema structure but also how its com-
 177 ponents can be combined to form meaningful queries. Specifically, we aim to generate a knowledge
 178 base where viable structural patterns are translated into executable SQL queries and aligned with
 179 their natural language semantics. We formalize the exploration results as a set of triplets (S, Q, U) ,
 180 where S represents a subset of the database schema’s structural, Q is a corresponding executable
 181 SQL query, and U is the natural language semantically aligned with Q .

182 To manage the immense complexity arising from numerous schema components and their com-
 183 binatorial possibilities, we propose a novel exploration framework inspired by Monte Carlo Tree
 184 Search(Kocsis & Szepesvári, 2006), where we replace its traditional heuristic-based search policy
 185 with an LLM that serves as a semantic reasoning engine. The entire exploration process continues
 186 until a predefined termination condition is met, such as generating a target number of valid triplets
 187 or reaching a maximum number of iterations. This LLM-driven method retains the structured, it-
 188 erative cycle of exploration, allowing the system to build complex queries step-by-step, guided by
 189 the model’s understanding rather than numerical rewards alone. The process, illustrated in Figure 1,
 190 consists of four distinct phases. These phases are: LLM-guided selection and expansion, simulation,
 191 and backpropagation of outcomes.

192 **LLM-Guided Selection and Expansion.** The goal of this phase is to incrementally construct com-
 193 plex and semantically diverse SQL queries from the database schema. Our method achieves this
 194 by leveraging an LLM to perform both selection and expansion in a single, reasoned step. At each
 195 node in the search tree, the LLM is prompted with the necessary context to make an decision. This
 196 context includes the current query state (a sequence of previous actions) and the available schema
 197 context (a simplified JSON structure of reachable tables and columns). The LLM’s task is to select
 198 the most promising subsequent action from a predefined discrete action space, with options such as
 199 `Select Column`, `Add Constraint`, and `Apply Aggregation`. A detailed description of
 200 each action is provided in Appendix C. The LLM’s choice directly creates a new node, expanding
 201 the search tree. The objective of this expansion is to guide its growth toward constructing more
 202 sophisticated queries. This strategy ensures the generation of semantically rich examples that cover
 203 a wide range of database operations and schema interactions, moving beyond simple single-column
 204 retrievals.

205 **SQL Simulation.** From the newly expanded node, the simulation phase leverages an LLM to gen-
 206 erate a complete and executable query. The model is prompted to construct a SQL query that
 207 is semantically consistent with the structure represented by the current node. To guide this pro-
 208 cess toward generating meaningful queries, the LLM is instructed to prioritize using tables and
 209 columns that have associated documentation or comments. This metadata provides valuable seman-
 210 tic clues for building a more relevant query. The process operates on a dynamically constrained
 211 set of schema nodes, excluding those already incorporated into the current query path (with the
 212 exception of key columns like IDs) to ensure broad exploration. The LLM then uses the context
 213 from the expanded node to construct a correct SQL query. For instance, if the expanded node
 214 contains the columns `age`, `height`, and `gender` from a `users` table, the LLM might com-
 215 plete this structure by generating the SQL query `SELECT * FROM users WHERE age > 20`
`AND gender = 'Male'`; and its corresponding natural language description, “Find all male
 users older than 20.”

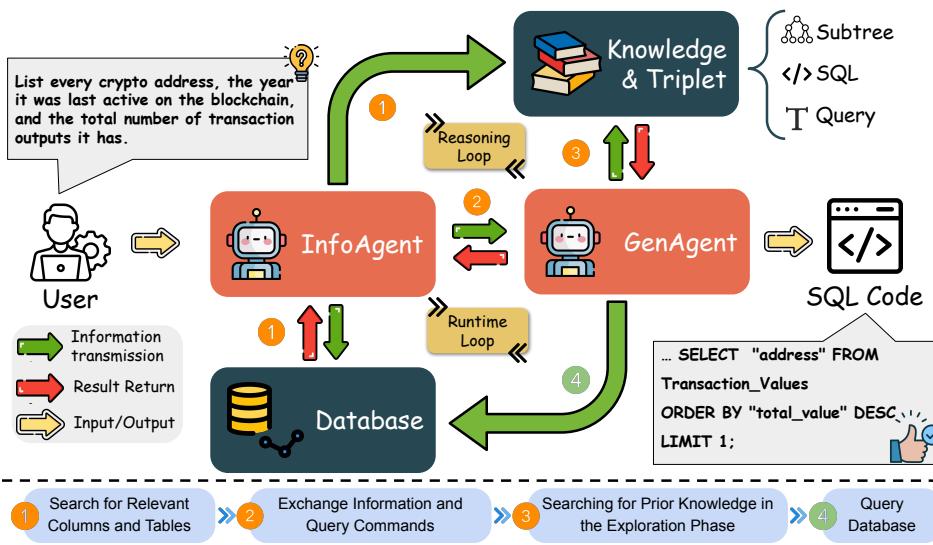


Figure 2: **SQL Deployment Stage.** In this stage, the database information obtained in the exploration stage and the user’s actual query are used to generate the SQL. The dual-agent architecture controls the information acquisition context and SQL generation context of the agent, enabling the system to process complex SQL statements while maintaining high query accuracy.

The resulting query Q is then executed against the database. If the query runs successfully and returns a non-empty result, we proceed to generate its natural language counterpart by providing the structural information S and the SQL query Q as input to an LLM, which generates a semantically consistent user query U . This culminates in a complete, high-quality triplet (S, Q, U) . If the query fails or returns an empty result, the simulation concludes, and this outcome is passed to the next phase.

By first defining a valid, localized schema structure and then generating the corresponding SQL and natural language description from it, our method produces highly accurate and dependable examples. Since each example is grounded in a real data sub-structure, it guarantees high semantic alignment and serves as a reliable reference during the deployment stage.

Backpropagation. The primary goal of the backpropagation phase is to systematically record the outcomes of each exploration and use this knowledge to guide deployment stage. To achieve this, the system updates the historical context of each node along an exploration path based on the outcome from the simulation phase. For a successful exploration that yields a valid (S, Q, U) triplet, this triplet is recorded as positive feedback. It is stored on all entity nodes, such as the tables and columns, that were part of the query’s creation path. This process enriches each schema component with a history of its successful usage in meaningful combinations. Conversely, if an exploration fails because the query is invalid or returns an empty result, a negative outcome is propagated to the nodes on that path. This feedback serves to lower the selection priority of this path in future iterations. It effectively discourages the model from repeatedly pursuing unproductive combinations. Ultimately, this accumulated historical information is crucial for adaptive learning. In subsequent selection steps, the prompt provided to the LLM is augmented with the feedback stored on the currently visible nodes. By learning directly from the consequences of its past actions, the LLM continuously refines its exploration strategy. It learns to favor paths that lead to valid, non-empty results, creating a self-optimizing exploration process.

3.3 DEPLOYMENT STAGE: DUAL-AGENT SQL SYNTHESIS

The SQL deployment phase aims for the robust and accurate translation of natural language into SQL, a task made difficult by the information gap between user queries and complex database schemas. To bridge this gap and effectively utilize the knowledge acquired in the exploration stage, we introduce a dual-agent framework. This framework manages a dynamic, iterative process that

270 begins by assembling an actionable context from the saved knowledge base, followed by cycles
 271 of context refinement and query construction. This process, illustrated in Figure 2, consists of an
 272 InfoAgent for schema interaction and context management, and a GenAgent for knowledge-driven
 273 SQL synthesis.

274 The workflow begins when the InfoAgent receives a user’s query. Its primary challenge is to bridge
 275 the semantic gap between the user’s natural language and the rigid, formal structure of the database
 276 schema. To address this, the agent first performs *schema grounding*, a process to identify an initial
 277 set of relevant tables and columns. It leverages an LLM to analyze the user’s question and extract
 278 key semantic keywords and entities. To make the schema searchable, we pre-process it by creating a
 279 vector embedding for each column. This is done by concatenating a column’s name, data type, and
 280 any available comments into a descriptive string, which is then converted into a high-dimensional
 281 vector using a sentence-embedding model. The InfoAgent then uses the extracted keywords to
 282 perform a semantic search against this vector database, retrieving the top-k schema components that
 283 are most semantically aligned with the user’s intent. This initial retrieval provides a strong, focused
 284 starting point for query construction.

285 However, this initial top-k set may be incomplete, often missing crucial components required for
 286 complex operations like multi-table joins or implicit user needs. To ensure the context is compre-
 287 hensive, the InfoAgent performs a second expansion step. It provides the user’s original query and
 288 the preliminary set of retrieved schema components as input to another LLM prompt. The LLM
 289 is tasked to act as a database expert, analyzing the relationships between the provided components
 290 and reasoning about what additional tables or columns are necessary to form a complete, executable
 291 query. For instance, if the initial set contains a `user_name` column from a `users` table and an
 292 `order_amount` from an `orders` table, the LLM would infer the need to include the `user_id` and
 293 `customer_id` keys to facilitate the join. This refined and enriched schema context containing
 294 both directly relevant and logically inferred components, is then transmitted to the GenAgent.

295 Upon receiving the refined schema context from the InfoAgent, the GenAgent initiates the synthesis
 296 process. Its core task is to select the most relevant examples from the knowledge base to guide
 297 the final query generation. To achieve this with high precision, our retrieval mechanism focuses
 298 on the semantic content of the SQL query component (Q) within each stored (S, Q, U) triplet.
 299 Specifically, we pre-process the entire knowledge base by vectorizing the SQL query Q of each
 300 triplet using a code-embedding model. This transforms our knowledge base into a high-dimensional
 301 vector space, where each triplet is represented by its query’s semantic vector, enabling efficient
 302 similarity searches. When a new user request is processed, the GenAgent uses the user’s natural
 303 language query and the provided schema context to generate a query embedding that represents the
 304 user’s intent. This embedding is then used to perform a similarity search against the vectorized
 305 knowledge base, retrieving the top-k triplets whose SQL queries are most semantically similar to
 306 the target query. These top-k triplets serve as powerful, database-specific in-context examples. The
 307 GenAgent then constructs a final, comprehensive prompt by integrating the user’s original question,
 308 the refined schema context, and these retrieved few-shot examples. Following generation, the query
 309 is executed against the database to validate both ability to return a non-empty result.

310 The outcome of this execution, whether a successful result or an error, triggers a collaborative re-
 311 finement loop by feeding back to the InfoAgent. The InfoAgent first updates its internal state by
 312 recording which schema components were utilized in the generated query. If the query failed due
 313 to a syntax error, the InfoAgent refines its strategy for the next attempt. It prunes the context by
 314 removing schema components that were provided to the GenAgent but ultimately unused in the
 315 failed query, thus narrowing the context window. Concurrently, it re-analyze the user’s query for
 316 secondary keywords to recall additional, potentially useful tables and columns. Conversely, if the
 317 query executed successfully, then performs a final step: a semantic fidelity check, where it assesses
 318 the alignment between the query’s output and the intent of the user’s original natural language
 319 request. This iterative cycle continues until either a syntactically valid and semantically correct SQL
 320 query is successfully validated, or a predefined maximum number of iterations is reached. The pro-
 321 cess then concludes by returning the successful result or a failure notification to the user. For a
 322 formal algorithmic representation, please refer to Appendix D.

323

324

4 EXPERIMENTS

325
326 This section presents a comprehensive experimental evaluation of our proposed two-stage method.
327 Our primary objective is to assess the effectiveness and efficiency of the SQLAgent. We begin by
328 detailing the experimental setup, followed by a thorough analysis of the results from comparative
329 and ablation studies.
330331

4.1 EXPERIMENT SETUP

332
333 **Benchmark.** We evaluate the proposed method on the Spider 2.0-Snow benchmark(Lei et al., 2025).
334 This benchmark includes a large number of enterprise-level SQL queries, some exceeding 100 lines
335 in length, representing a significantly higher level of complexity compared to traditional text-to-
336 SQL tasks. Each subtask contains 547 examples spanning over 150 databases, with each database
337 containing approximately 800 columns on average. Consistent with the Lei et al. (2025), we classify
338 SQL query difficulty based on token count: Easy (fewer than 80 tokens), Medium (80-159 tokens),
339 and Hard (160 or more tokens).
340341 **Evaluation Metrics.** We evaluate the performance of our method using the widely adopted Execu-
342 tion Accuracy (EX) metric(Li et al., 2023b; Yu et al., 2018; Lei et al., 2025). Execution Accuracy
343 compares the execution result of the predicted SQL query with that of the ground-truth query on
344 a given database instance. This metric provides a more precise estimate of model performance, as
345 there may be multiple valid SQL queries for a single question. To account for the stochastic na-
346 ture of large language models (LLMs), we also report PASS@K, which measures whether correct
347 results can be obtained within K runs, thereby evaluating the stability of the outputs under repeated
348 executions. To evaluate the overall efficiency of the model, we measure the number of calls made to
349 the Large Language Model and the number of executions sent to the database. We then report the
350 average of these counts across all tasks in the benchmark.
351352 **Baselines.** Our baseline method, inspired by Deng et al. (2025); Yu et al. (2018), employs a self-
353 refinement mechanism to navigate large database schemas. Initially, we construct a textual index
354 of the schema by concatenating table and column names. When a user submits a query, our system
355 retrieves the Data Definition Language (DDL) of the most relevant tables from this index and pro-
356 vides them as context to a Large Language Model. If an execution attempt returns an empty result
357 or produces a syntax error, the LLM initiates a refinement loop. It iteratively attempts to correct the
358 SQL query using the execution feedback, without re-querying the database structure. This process
359 continues until a valid query is generated or a predefined stopping condition is met.
360361

4.2 EXPERIMENTAL DETAILS.

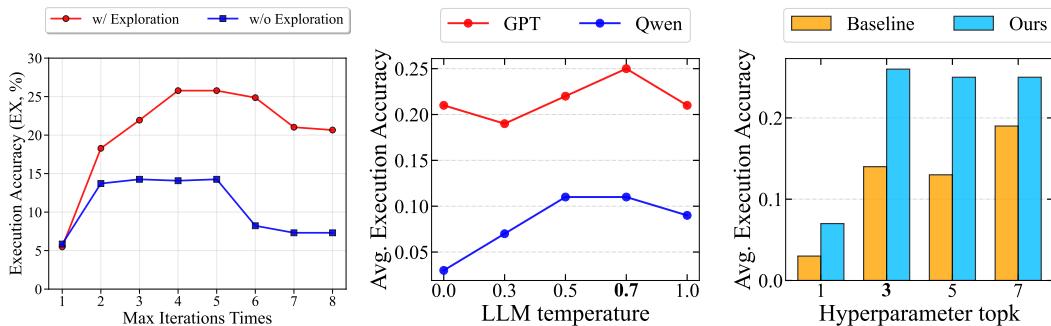
362 Throughout our experiments, we retrieve the top-3 most relevant database tables ($k = 3$) to pop-
363 ulate the context and set the maximum number of self-refinement attempts to 5. To ensure a fair
364 comparison, these hyperparameter settings are kept consistent for both the baseline and our pro-
365 posed method. Unless otherwise specified, all experiments utilize GPT-4o as the backbone LLM.
366 The temperature for the all the LLM were set to 0.7. The multi-agent framework is built upon the
367 LangGraph library. Vector embeddings are generated using the `text-embedding-3-small`
368 model from openai, and all vectorization tasks are subsequently handled by the Faiss library. Our
369 data modeling framework is built entirely on Neo4j, and we employ the Cypher query language for
370 all graph traversal.
371372

4.3 RESULTS AND ANALYSIS

373 This section evaluates the proposed two-stage framework, focusing on its effectiveness, efficiency,
374 and robustness. Unless otherwise specified, accuracy is reported using execution accuracy (EX),
375 while efficiency is assessed by wall-clock time and model token cost.
376377 **Comparative Results.** To evaluate the effectiveness and efficiency of our proposed framework, we
378 compared SQLAgent against two strong baselines, Spider-Agent and ReFoRCE, with detailed
379 results presented in Table 1. Our full method significantly outperforms both baselines, achieving an
380 overall Execution Accuracy (EX) of **25.78%**, compared to 20.84% for ReFoRCE and 12.98% for
381 Spider-Agent. The performance gap is particularly pronounced on complex queries; on the “Hard”
382

378
 379 **Table 1: Performance Comparison of Different Method.** This table presents a detailed comparison
 380 of execution success (EX) and efficiency metrics. EX is reported as a percentage for easy,
 381 medium, and hard difficulty levels, along with the overall score. Efficiency is measured by the aver-
 382 age number of LLM and Database (DB) calls per query. We evaluate our proposed SQLAgent with
 383 different components against other baseline methods and state-of-the-art methods.

384 Method	385 Strategy	386 EX (%)				387 Efficiency	
		388 Easy	389 Medium	390 Hard	391 Overall	392 LLM Calls	393 DB Calls
387 Spider-Agent	388 Agentic	389 24.22	390 11.38	391 6.94	392 12.98	393 11	394 3
	388 Consensus	389 4.9.22	390 17.00	391 5.23	392 20.84	393 3.5	394 3.9
389 SQLAgent	390 Baseline	391 32.81	392 14.57	393 0.00	394 14.26	395 3.0	396 4.2
	390 w/ Exp. Stage	391 41.40	392 19.03	393 5.81	394 20.10	395 4.1	396 5.2
	390 full method	391 57.81	392 18.62	393 12.21	394 25.78	395 5.2	396 3.6



404 (a) Performance During Iteration. (b) Analysis of Two Key Hyperparameters

405 **Figure 3: Analysis of the Exploration Stage and Key Hyperparameters.** The left figure shows
 406 Execution Accuracy as a function of agent iterations, demonstrating that the Exploration Stage
 407 consistently improves performance. The middle figure presents the effect of LLM temperature on
 408 different models, with the GPT model’s accuracy peaking at a temperature of 0.7. The right figure
 409 evaluates the top-k schema retrieval parameter, showing our method (Ours) outperforms the
 410 Baseline across all settings and that its performance gain saturates for k values greater than 3.

412
 413 subset, our method achieves an EX of **12.21 %**, demonstrating a clear improvement over competitors
 414 that struggle with these tasks. To isolate the contributions of our framework’s components, we
 415 conducted an ablation study. Our Baseline model establishes a performance of 14.26% overall
 416 EX, failing entirely on hard queries. Incorporating the knowledge from the Exploration Stage (w/
 417 Exp. Stage) improves the overall accuracy to **20.10%**, confirming the value of the proactively
 418 constructed knowledge base. Finally, the full method, which integrates the dual-agent framework
 419 of the Deployment Stage, achieves the highest accuracy of **25.78%**. This final performance gain
 420 validates that the dual-agent architecture effectively utilizes the acquired knowledge for robust SQL
 421 synthesis. In terms of efficiency, our full method averages **5.2** LLM calls and **3.6** DB calls, as
 422 detailed in Table 1. This configuration is notably more efficient than Spider-Agent, which requires
 423 11 LLM calls. While it uses more LLM calls than ReFoRCE (3.5), it requires fewer database
 424 interactions (3.9) to achieve its superior accuracy. The ablation study further clarifies this trade-
 425 off: introducing the Exploration Stage modestly increases cost over the baseline. However, the
 426 subsequent addition of the dual-agent framework reduces the number of database calls from 5.2 to
 427 3.6. This indicates that the framework’s structured reasoning not only enhances accuracy but also
 428 leads to fewer unnecessary query executions, validating the overall design.

428 **Performance During Iteration.** Figure 3a tracks EX as a function of the maximum iteration budget
 429 for the dual-agent loop, comparing the performance of our framework with and without the knowl-
 430 edge base from the Exploration Stage. In this analysis, we control the number of collaborative cycles
 431 between the InfoAgent and GenAgent; the GenAgent is compelled to generate a final SQL query
 432 upon reaching the iteration limit.

The results clearly demonstrate the value of the exploration-derived knowledge. For the model equipped with this knowledge (the red curve), accuracy shows a strong positive correlation with the number of iterations, rising from 5.5% to a peak of 25.8% at four iterations. This trend indicates that with each cycle, the agents effectively leverage the knowledge base to progressively refine the context and retrieve relevant examples, leading to more accurate query construction. In contrast, the model without the knowledge (the blue curve) exhibits limited improvement, with accuracy plateauing at a much lower peak of 14.1%. More significantly, its performance sharply degrades after five iterations. This phenomenon suggests that without validated priors, the iterative refinement process is less stable. The agents struggle to distinguish productive refinement paths from unproductive ones, and an accumulation of redundant or ambiguous feedback can even lead them to revise an initially correct query into an incorrect one.

Hyperparameter Analysis. We conduct experiments to determine the optimal settings for two critical hyperparameters: the schema retrieval top- k and the LLM temperature. The k parameter defines the number of most relevant columns retrieved from the database to address a user’s query. To analyze its impact, we compare the performance of our full method against the baseline across various k values. As illustrated in the right panel of Figure 3b, the performance of our method rapidly improves and approaches saturation at $k = 3$. Increasing k beyond 3 provides diminishing returns at a higher computational cost for our method. In contrast, the baseline requires a larger k but is constrained by the LLM’s context window. We therefore select $k = 3$ as the optimal setting to balance accuracy with efficiency. The temperature parameter controls the randomness of the LLM’s output (Peeperkorn et al., 2024). The middle panel of Figure 3b shows the effect of temperature on execution accuracy. We observe that a higher temperature (e.g., 0.7) enables the LLM to generate more varied and effective search terms. Consequently, we set the LLM temperature to 0.7 in our experiments.

LLM Backbones Analysis. Table 2 compares the performance of our full method against the baseline across four different Large Language Model (LLM) backbones, reporting the per-query token cost and Execution Accuracy after 8 passes (EX@8) (OpenAI, 2023; Qwen et al., 2025; Li et al., 2023b). The data shows that our framework delivers consistent and substantial improvements regardless of the underlying LLM’s capability. As detailed in the Δ column, our method achieves a robust absolute accuracy gain of approximately **+10%** across the more powerful models. The consistent performance improvement shows that our two-stage architecture, which combines proactive knowledge exploration and dual-agent reasoning, acts as a model-agnostic enhancement for any LLM it is paired with. Notably, the impact is particularly pronounced on the smaller model, where our method more than doubles the EX@8 of Qwen2.5-7B-Instruct from 7.12% to **14.99%**. This suggests our structured approach can effectively compensate for the reduced reasoning capacity of smaller models, highlighting its value and scalability.

5 CONCLUSION

We introduce SQLAgent, a framework that emulates a human data engineer’s problem-solving process. By first autonomously exploring a database to build context-specific knowledge and then leveraging it for deployment, SQLAgent provides a scalable and adaptive solution for large-scale, enterprise-level databases where conventional methods falter. Extensive experiments validate this approach, demonstrating state-of-the-art performance on challenging benchmarks. Ultimately, our work represents a significant step towards creating more autonomous and capable agents for data interaction, advancing the goal of democratizing access to complex structured data.

486
487
ETHICS STATEMENT488
489
490
491
492
493
494
495
This research aims to make a positive societal contribution by facilitating access to structured data
through natural language. All of our experiments are conducted on public academic benchmarks
and do not involve any new personal data collection or human subjects. We recognize the potential
for misuse of any data access tool, but our framework is designed to operate within existing data
security and access permission frameworks, rather than circumventing any security protocols. In
accordance with the principles of research integrity, we explicitly disclose our use of large language
models for writing assistance in the appendix. All authors have read and are committed to adhering
to the ICLR Code of Ethics.496
497
REPRODUCIBILITY STATEMENT
498499
500
501
502
503
504
We are committed to ensuring the reproducibility of this research. We will publicly release the
source code for our framework to support subsequent academic research. A detailed description
of our model architecture and the two-stage exploration-deployment methodology is presented in
Section 3. The complete experimental setup, including the benchmarks, evaluation procedures, and
all hyperparameter configurations required for replication, are thoroughly documented in Section 4.
Further implementation details and relevant definitions can be found in the appendix.505
506
REFERENCES
507508
509
510
Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. *arXiv preprint arXiv:2303.12712*, 2023.511
512
513
Xinyun Chen, Maxwell Lin, Nathanael Schaeffer, and Denny Zhou. Teaching large language models
to self-debug. In *The 61st Annual Meeting Of The Association For Computational Linguistics*,
2023.514
515
516
Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In H. Jaap
van den Herik, Paolo Ciancarini, and H. H. L. M. (Jeroen) Donkers (eds.), *Computers and Games*,
pp. 72–83, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-75538-8.518
519
520
Minghang Deng, Ashwin Ramachandran, Canwen Xu, Lanxiang Hu, Zhewei Yao, Anupam Datta,
and Hao Zhang. Reforce: A text-to-sql agent with self-refinement, consensus enforcement, and
column exploration, 2025. URL <https://arxiv.org/abs/2502.00675>.521
522
523
524
525
526
527
528
Naihao Deng, Yulong Chen, and Yue Zhang. Recent advances in text-to-SQL: A survey of what
we have and what we expect. In Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James
Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng
Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong
He, Tony Kyungil Lee, Enrico Santus, Francis Bond, and Seung-Hoon Na (eds.), *Proceedings
of the 29th International Conference on Computational Linguistics*, pp. 2166–2187, Gyeongju,
Republic of Korea, October 2022. International Committee on Computational Linguistics. URL
<https://aclanthology.org/2022.coling-1.190/>.529
530
531
532
533
534
Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context learning. In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing*, pp. 1107–1128, Miami, Florida, USA,
November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
64. URL <https://aclanthology.org/2024.emnlp-main.64/>.535
536
537
Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, Jinshu Lin, Dongfang Lou, et al.
C3: Zero-shot text-to-sql with chatgpt. *arXiv preprint arXiv:2307.07306*, 2023.538
539
Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. *Proceedings of the
VLDB Endowment*, 17(5):1132–1145, 2024.

540 George Katsogiannis-Meimarakis and Georgia Koutrika. A survey on deep learning approaches for
 541 text-to-sql. *The VLDB Journal*, 32(4):905–936, January 2023. ISSN 1066-8888. doi: 10.1007/
 542 s00778-022-00776-8. URL <https://doi.org/10.1007/s00778-022-00776-8>.

543

544 Hideo Kobayashi, Wuwei Lan, Peng Shi, Shuaichen Chang, Jiang Guo, Henghui Zhu, Zhiguo Wang,
 545 and Patrick Ng. You only read once (YORO): Learning to internalize database knowledge for text-
 546 to-SQL. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference
 547 of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
 548 Language Technologies (Volume 1: Long Papers)*, pp. 1889–1901, Albuquerque, New Mexico,
 549 April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/
 550 v1/2025.naacl-long.94. URL <https://aclanthology.org/2025.naacl-long.94/>.

551

552 Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Johannes Fürnkranz,
 553 Tobias Scheffer, and Myra Spiliopoulou (eds.), *Machine Learning: ECML 2006*, pp. 282–293,
 554 Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-46056-5.

555

556 langgenius. Dify: An open-source llm app development platform, 2023. URL <https://github.com/langgenius/dify>.

557

558 Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
 559 Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong, Caiming Xiong, Ruoxi Sun, Qian
 560 Liu, Sida Wang, and Tao Yu. Spider 2.0: Evaluating language models on real-world enterprise
 561 text-to-sql workflows, 2025. URL <https://arxiv.org/abs/2411.07763>.

562

563 Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem.
 564 Camel: Communicative agents for "mind" exploration of large language model society. In *Thirty-
 565 seventh Conference on Neural Information Processing Systems*, 2023a.

566

567 Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
 568 Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
 569 text-to-sql. *Proceedings of the ACM on Management of Data*, 2(3):1–28, 2024.

570

571 Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiy-
 572 ing Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C.C. Chang, Fei Huang,
 573 Reynold Cheng, and Yongbin Li. Can llm already serve as a database interface? a big bench
 574 for large-scale database grounded text-to-sqls. In *Proceedings of the 37th International Confer-
 575 ence on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023b. Curran
 576 Associates Inc.

577

578 Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuxin Zhang, Ju Fan, Guoliang Li,
 579 Nan Tang, and Yuyu Luo. A survey of text-to-sql in the era of llms: Where are we, and where are
 580 we going? *IEEE Transactions on Knowledge and Data Engineering*, 37(10):5735–5754, 2025.
 581 doi: 10.1109/TKDE.2025.3592032.

582

583 Mohammadhossein Malekpour, Nour Shaheen, Foutse Khomh, and Amine Mhedibi. Towards
 584 optimizing sql generation via llm routing, 2024. URL <https://arxiv.org/abs/2411.04319>.

585

586 Meta Fundamental AI Research (FAIR) Diplomacy Team, Anton Bakhtin, Noam Brown, Emily
 587 Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray, Hengyuan
 588 Hu, et al. Human-level play in the game of Diplomacy by combining language models with
 589 strategic reasoning. *Science*, 378(6624):1067–1074, 2022.

590

591 Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Are-
 592 nas, Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern
 593 machines. *arXiv preprint arXiv:2307.04721*, 2023.

594

595 OpenAI. GPT-4 technical report. Technical report, OpenAI, 2023.

596

597 Max Peeperkorn, Tom Kouwenhoven, Dan Brown, and Anna Jordanous. Is temperature the creativ-
 598 ity parameter of large language models?, 2024. URL <https://arxiv.org/abs/2405.00492>.

594 Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-
 595 sql with self-correction. *Advances in Neural Information Processing Systems*, 36, 2024.
 596

597 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 598 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 599 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 600 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 601 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 602 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 603 URL <https://arxiv.org/abs/2412.15115>.

604 Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
 605 learning. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.),
 606 *Proceedings of the 2022 Conference of the North American Chapter of the Association for Com-
 607 putational Linguistics: Human Language Technologies*, pp. 2655–2671, Seattle, United States,
 608 July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.191.
 609 URL <https://aclanthology.org/2022.naacl-main.191>.

610 Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: Parsing incrementally for
 611 constrained auto-regressive decoding from language models. In Marie-Francine Moens, Xu-
 612 anjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Con-
 613 ference on Empirical Methods in Natural Language Processing*, pp. 9895–9901, Online and
 614 Punta Cana, Dominican Republic, November 2021. Association for Computational Linguis-
 615 tics. doi: 10.18653/v1/2021.emnlp-main.779. URL <https://aclanthology.org/2021.emnlp-main.779>.

616 Liang Shi, Zhengju Tang, Nan Zhang, Xiaotong Zhang, and Zhi Yang. A survey on employing
 617 large language models for text-to-sql tasks. *ACM Comput. Surv.*, 58(2), September 2025. ISSN
 618 0360-0300. doi: 10.1145/3737873. URL <https://doi.org/10.1145/3737873>.

619 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 620 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing
 621 Systems*, 36, 2024.

622 Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
 623 Chess: Contextual harnessing for efficient sql synthesis. *arXiv preprint arXiv:2405.16755*, 2024.

624 Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Kamal Gupta, Raman
 625 Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili, and Xiaofeng Bao. Ama-
 626 zon aurora: Design considerations for high throughput cloud-native relational databases. In *Pro-
 627 ceedings of the 2017 ACM International Conference on Management of Data*, SIGMOD '17,
 628 pp. 1041–1052, New York, NY, USA, 2017. Association for Computing Machinery. ISBN
 629 9781450341974. doi: 10.1145/3035918.3056101. URL <https://doi.org/10.1145/3035918.3056101>.

630 Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. RAT-
 631 SQL: Relation-aware schema encoding and linking for text-to-SQL parsers. In Dan Jurafsky,
 632 Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meet-
 633 ing of the Association for Computational Linguistics*, pp. 7567–7578, Online, July 2020. As-
 634 sociation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.677. URL <https://aclanthology.org/2020.acl-main.677>.

635 Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and
 636 Zhoujun Li. Mac-sql: Multi-agent collaboration for text-to-sql. *arXiv preprint arXiv:2312.11242*,
 637 2023a.

638 Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
 639 Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
 640 models. In *Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
 641 guistics (Volume 1: Long Papers)*, pp. 2609–2634, 2023b.

648 Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
 649 Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
 650 Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
 651 Brennan, Hao Peng, Heng Ji, and Graham Neubig. OpenDevin: An Open Platform for AI
 652 Software Developers as Generalist Agents, 2024. URL <https://arxiv.org/abs/2407.16741>.

653

654 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang (Eric) Zhu, Beibin
 655 Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
 656 multi-agent conversation. Technical Report MSR-TR-2023-33, Microsoft, August 2023.

657

658 Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
 659 llm-based software engineering agents. *arXiv preprint arXiv:2407.01489*, 2024.

660 John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
 661 and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
 662 2024. URL <https://arxiv.org/abs/2405.15793>.

663

664 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 665 React: Synergizing reasoning and acting in language models, 2023. URL <https://arxiv.org/abs/2210.03629>.

666

667 Semih Yavuz, Izzeddin Gur, Yu Su, and Xifeng Yan. What it takes to achieve 100% condition accu-
 668 racy on WikiSQL. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.),
 669 *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp.
 670 1702–1711, Brussels, Belgium, October–November 2018. Association for Computational Lin-
 671 guistics. doi: 10.18653/v1/D18-1197. URL <https://aclanthology.org/D18-1197/>.

672

673 Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
 674 Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
 675 human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.
 676 In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of
 677 the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 3911–3921,
 678 Brussels, Belgium, October–November 2018. Association for Computational Linguistics. doi:
 679 10.18653/v1/D18-1425. URL <https://aclanthology.org/D18-1425/>.

680

681 Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen Xu, and Kai Yu. Act-sql: In-context learning
 682 for text-to-sql with automatically-generated chain-of-thought. In *Findings of the Association for
 683 Computational Linguistics: EMNLP 2023*, pp. 3501–3532, 2023.

684

685 Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B Tenenbaum, and Chuang Gan.
 Planning with large language models for code generation. In *The Eleventh International Confer-
 686 ence on Learning Representations*, 2022a.

687

688 Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. In
 689 Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference
 690 on Empirical Methods in Natural Language Processing*, pp. 9134–9148, Abu Dhabi, United Arab
 691 Emirates, December 2022b. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 emnlp-main.622. URL <https://aclanthology.org/2022.emnlp-main.622/>.

692

693 Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
 694 program improvement. In *Proceedings of the 33rd ACM SIGSOFT International Symposium on
 695 Software Testing and Analysis*, pp. 1592–1604, 2024.

696

697

698

699

700

701

702 A DEFINITION OF DATABASE STRUCTURE

704 As introduced in the main methodology, we represent the relational database as a traversable graph
 705 structure to facilitate autonomous exploration. This model is composed of distinct node and relation-
 706 ship types that capture the hierarchical and relational nature of the database schema. This appendix
 707 provides a formal definition of each component, their respective properties, and an overview of the
 708 graph's statistical composition.

710 A.1 GRAPH SCHEMA OVERVIEW

712 The graph model consists of five distinct node types and five relationship types that define their
 713 connections. The primary node types are:

- 714 • **Database:** The root node representing the entire database instance.
- 715 • **Schema:** Represents a schema or dataset within the database.
- 716 • **Table:** Represents a single table.
- 717 • **Field:** Represents a column within a table.
- 718 • **Shared Field Group:** Our proposed abstraction for a reusable set of fields shared by mul-
 719 tiple tables.

722 The relationships between these nodes define the structural integrity of the graph. Table 3 outlines
 723 the valid connections between node types.

725 Table 3: Relationship types defining the connections between nodes in the graph schema.

727 Start Node Type	728 Relationship Type	729 End Node Type
729 Database	730 HAS_SCHEMA	731 Schema
730 Schema	731 HAS_TABLE	732 Table
731 Table	732 USES_FIELD_GROUP	733 SharedFieldGroup
732 Table	733 HAS_UNIQUE_FIELD	734 Field
733 SharedFieldGroup	734 HAS_FIELD	735 Field

735 A.2 NODE PROPERTY DEFINITIONS

737 Each node in the graph contains a set of properties that store its metadata. The following tables
 738 detail the properties for each of the five node types.

740 Table 4: Properties of the Database node.

741 Property	742 Description	743 Example
743 <id>	744 Internal unique identifier for the node.	745 15313
744 name	745 The name of the database instance.	746 OPEN_TARGETS_PLATFORM_2
745 type	746 Node type specifier.	747 database

748 A.3 GRAPH COMPOSITION STATISTICS

750 To provide a sense of scale, Table 9 summarizes the composition of the graph constructed from our
 751 experimental datasets. The statistics highlight the prevalence of fields, which constitute over 90%
 752 of all nodes.

753 A key component of our model is the SharedFieldGroup, designed to reduce redundancy. Our
 754 analysis confirms its effectiveness:

- 755 • **Total Groups:** There are **542** unique SharedFieldGroup nodes.

756 Table 5: Properties of the Schema node.
757

758 Property	759 Description	760 Example
761 <id>	762 Internal unique identifier for the 763 node.	764 5430
765 database	766 Name of the parent database.	767 NOAA_DATA
768 description	769 A description of the schema, if 770 available.	771 -
772 name	773 The name of the schema.	774 NOAA_SIGNIFICANT_EARTHQUAKES
775 type	776 Node type specifier.	777 schema

778 Table 6: Properties of the Table node.
779

780 Property	781 Description	782 Example
783 <id>	784 Internal unique identifier for the node.	785 185
786 database	787 Name of the parent database.	788 COVID19_USA
789 ddl_summary	790 A summary of the table's DDL 791 statement.	792 Table with 245 columns
793 fullname	794 The fully qualified name of the ta- 795 ble.	796 CENSUS_BUREAU_ACS_2...
797 name	798 The name of the table.	799 SCHOOLDISTRICTSECONDARY...
799 schema	800 Name of the parent schema.	801 CENSUS_BUREAU_ACS
801 type	802 Node type specifier.	803 table

804 Table 7: Properties of the SharedFieldGroup node.
805

806 Property	807 Description	808 Example
809 <id>	810 Internal unique identifier for the node.	811 2079
812 database	813 Name of the parent database.	814 NEW_YORK_PLUS
815 description	816 Auto-generated description of the group.	817 FieldGroup_3ebfe5f9...
818 field_count	819 Number of fields encapsulated in this 820 group.	821 24
822 field_hash	823 An MD5 hash of the sorted field names, 824 used to identify unique groups.	825 3ebfe5f9...
826 name	827 Auto-generated name for the group.	828 FieldGroup_3ebfe5f9
828 schema	829 Name of the parent schema.	830 NEW_YORK_TAXI_TRIPS
830 type	831 Node type specifier.	832 shared_field_group

833

- 834 • **Average Fan-out:** On average, each group is linked to **10.6** tables, indicating frequent
835 reuse.
- 836 • **Maximum Fan-out:** The most utilized group is shared by **334** distinct tables.

837 This analysis demonstrates the high prevalence of redundant schema structures in large-scale
838 databases and validates our abstraction's utility in creating a more compact and efficient representa-
839 tion for exploration.

840 A.4 STRUCTURE VISUALIZATION

855 B IDENTIFYING SHARED FIELD GROUPS

860 The identification of Shared Field Group nodes is a critical preprocessing step designed to
861 abstract and consolidate recurring schema structures within the database. This process ensures that
862 tables with identical field compositions are linked to a single, canonical group node, thereby reduc-
863 ing redundancy in the graph representation. The methodology is executed in two primary phases:

Table 8: Properties of the Field node.

Property	Description	Example
<id>	Internal unique identifier for the node.	18
database	Name of the parent database.	NEW_YORK
description	A description of the field, if available.	-
name	The name of the column/field.	contributing_factor_vehicle_4
node_type	Specifies if the field is part of a group or unique to a table.	unique_field
sample_data	Sample data from this column.	-
schema	Name of the parent schema.	NEW_YORK
table	Name of the parent table (for unique fields).	NYPD_MV_COLLISIONS
type	The data type of the field.	TEXT

Table 9: Statistical overview of the constructed graph representation.

Component	Count	Percentage
Node Types		
Database	151	0.2%
Schema	267	0.3%
Table	7,848	8.7%
SharedFieldGroup	542	0.6%
Field	81,298	90.2%
Total Nodes	90,106	100.0%
Relationship Types		
HAS_SCHEMA	534	-
HAS_TABLE	15,696	-
USES_FIELD_GROUP	11,478	-
HAS_UNIQUE_FIELD	104,808	-
HAS_FIELD	57,788	-
Total Relationships	190,304	-

(1) generating a unique signature for each distinct set of fields, and (2) applying a greedy algorithm to select a final, non-overlapping set of shared groups.

Phase 1: Field Group Signature Generation To consistently identify tables that share an identical set of fields, we first compute a content-based signature for the field structure of each table. This signature is derived from the names and data types of all columns within a table.

The process, detailed in Algorithm 1, involves creating a canonical string representation for the set of fields. Each field is formatted as a string concatenation of its name and type (e.g., ``user_id:INTEGER''). To ensure that the signature is independent of the original column order, these formatted strings are sorted alphabetically before being joined into a single, delimited string. Finally, the MD5 hash function is applied to this canonical string to produce a compact and unique 128-bit signature. Any two tables that yield the same signature are considered to have structurally identical schemas.

Phase 2: Greedy Selection of Non-Overlapping Groups After an initial pass over all tables, we obtain a collection of potential shared groups, each identified by its unique signature and associated with a list of tables that match it. A subsequent optimization phase is necessary to produce a final, non-overlapping set of SharedFieldGroups. This is crucial because complex schemas may contain nested or overlapping field structures.

864

Algorithm 1 Field Group Signature Generation

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

Input: A table’s field set $F_{table} = \{(n_1, t_1), (n_2, t_2), \dots, (n_k, t_k)\}$, where n_i is a field name and t_i is its data type.

Output: A unique signature string S_{group} .

```

1: function GENERATESIGNATURE( $F_{table}$ )
2:   Initialize an empty list  $L_{fields}$ 
3:   for each field  $(n_i, t_i)$  in  $F_{table}$  do
4:      $s_i \leftarrow \text{Concatenate}(n_i, ":", t_i)$                                  $\triangleright$  Format as “name:type”
5:     Append  $s_i$  to  $L_{fields}$ 
6:   end for
7:   Sort  $L_{fields}$  alphabetically
8:    $S_{canonical} \leftarrow \text{Join}(L_{fields}, "|")$                            $\triangleright$  Create a canonical, delimited string
9:    $S_{group} \leftarrow \text{MD5}(S_{canonical})$                                  $\triangleright$  Compute the MD5 hash
10:  return  $S_{group}$ 
11: end function

```

We employ a greedy selection algorithm, detailed in Algorithm 2, to resolve this. The core principle is to prioritize the most significant and impactful shared structures. First, all potential groups are sorted in descending order based on two criteria: primarily by the number of tables they encompass, and secondarily by the number of fields they contain (as a tie-breaker). This heuristic prioritizes groups that represent the most widespread schema patterns.

The algorithm then iterates through this sorted list. For each candidate group, it checks if any of its member tables have already been assigned to a previously selected group. If there is no overlap, the group is added to the final set, and all of its member tables are marked as assigned. This process ensures that each table can belong to at most one `SharedFieldGroup`, resulting in an unambiguous and efficient final graph structure.

891

Algorithm 2 Greedy Selection of Shared Field Groups

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

Input: A collection of all potential groups G_{all} , where each group $g \in G_{all}$ has a signature, a set of fields, and a set of matching tables T_g .

Output: A final, non-overlapping set of shared groups G_{final} .

```

1: function SELECTGROUPS( $G_{all}$ )
2:    $G_{filtered} \leftarrow \{g \in G_{all} \mid |T_g| \geq 2\}$                        $\triangleright$  Consider only groups with at least two tables
3:   Sort  $G_{filtered}$  in descending order by  $|T_g|$ , then by number of fields.
4:   Initialize  $G_{final} \leftarrow \emptyset$ 
5:   Initialize set of assigned tables  $T_{assigned} \leftarrow \emptyset$ 
6:   for each group  $g$  in sorted  $G_{filtered}$  do
7:      $T_{current} \leftarrow$  the set of tables in group  $g$ .
8:     if  $T_{current} \cap T_{assigned} = \emptyset$  then           $\triangleright$  Check for overlap with already assigned tables
9:        $G_{final} \leftarrow G_{final} \cup \{g\}$                    $\triangleright$  Add group to the final set
10:       $T_{assigned} \leftarrow T_{assigned} \cup T_{current}$            $\triangleright$  Mark tables as assigned
11:    end if
12:   end for
13:   return  $G_{final}$ 
14: end function

```

C DETAILED ACTION SPACE

This section provides a detailed description of the discrete action space used by the LLM in the exploration stage. At each step of the tree search, the LLM selects one of the following actions to incrementally construct a SQL query based on the current query state and schema context.

915

916

917

- **Select Unused Column:** Adds a new, previously unselected column to the query’s ‘SELECT’ statement. This action progressively expands the breadth of information retrieved by the query.

- 918 • **Add Predicate Constraint:** Applies a filter condition to an existing column, typically by
919 adding a ‘WHERE’ clause. This action narrows the scope of the query, allowing it to focus
920 on specific subsets of data that meet certain criteria.
921
- 922 • **Introduce Join:** Connects the current set of tables to a new table based on foreign key
923 relationships or ‘Shared Field Group’ linkages. This action is fundamental for exploring
924 relationships across different tables and synthesizing information from multiple sources.
925
- 926 • **Apply Aggregation Function:** Applies a summary function (e.g., ‘COUNT’, ‘SUM’,
927 ‘AVG’, ‘MAX’, ‘MIN’) to a previously selected column. This action transforms the query’s
928 purpose from simple record retrieval to data summarization, enabling the model to under-
929 stand the scale and distribution of the data.
930
- 931 • **Add Group By Clause:** Groups the result set by one or more selected non-aggregated
932 columns. This action is typically used in conjunction with aggregation functions to perform
933 categorical analysis, such as calculating metrics for different segments of the data (e.g.,
934 “total sales per region”).
935
- 936 • **Add Ordering Clause:** Sorts the final result set based on a specified column, either in
937 ascending (‘ASC’) or descending (‘DESC’) order via an ‘ORDER BY’ clause. This enables
938 the discovery of extremes, such as top-performing items or most recent events.
939
- 940 • **Add Having Clause:** Applies a filter condition to the results of a ‘GROUP BY’ aggrega-
941 tion. Unlike a ‘WHERE’ clause which filters rows before aggregation, ‘HAVING’ filters
942 entire groups after aggregation, enabling more complex analytical questions like identify-
943 ing categories that meet a certain threshold (e.g., “customers with more than 5 orders”).
944

942 D ALGORITHM FOR DUAL-AGENT SQL SYNTHESIS

944 This section provides a detailed algorithmic implementation of the dual-agent framework for SQL
945 synthesis, as described in the Deployment Stage of our methodology. The process is designed as
946 an iterative loop where the **InfoAgent** and **GenAgent** collaborate to refine the context and generate
947 the final SQL query. The InfoAgent is responsible for schema grounding and context management,
948 while the GenAgent leverages the acquired knowledge base to synthesize the query. Algorithm 3
949 formalizes this collaborative workflow.
950

951 **Algorithmic Details** The algorithm details the iterative process of context refinement and query
952 generation managed by the dual-agent framework. The process begins with an **initialization** phase
953 (Lines 1-4), where the iteration counter, a success flag, and an empty structure for feedback infor-
954 mation are prepared. The `feedback_info` variable is crucial for passing insights from a failed
955 attempt to the next iteration.
956

957 Each cycle within the main loop starts with the **InfoAgent** performing schema grounding and ex-
958 pansion (Lines 6-9). It first uses an LLM to extract semantic keywords from the user’s utterance
959 and performs a semantic search to retrieve an initial set of schema components. Since this set may
960 be incomplete, a second LLM-driven step expands it by reasoning about logical necessities, such as
961 join keys. Following this, a crucial **context pruning** step occurs (Line 9), where the InfoAgent uses
962 feedback from any previous failed iteration to remove unused schema components, thus narrowing
963 the search space.
964

965 The refined context is then passed to the **GenAgent**, which conducts **knowledge retrieval** (Lines
966 11-12) by using the user’s intent to find the most relevant triplets from the knowledge base \mathcal{K} . With
967 these triplets as in-context examples, the GenAgent proceeds to **SQL synthesis** (Line 13), generating
968 a candidate query. This query then undergoes **execution and validation** (Lines 15-24). This step
969 has three possible outcomes. An **Execution Failure** (e.g., a syntax error) or a **Semantic Mismatch**
970 (where the query output does not match the user’s intent) results in failure feedback being stored in
971 `feedback_info` for the next loop. A **Success** occurs if the query executes correctly and passes
972 the fidelity check, which sets the success flag and terminates the loop. The entire process continues
973 until a valid query is found or the maximum number of iterations is reached, as defined by the
974 **termination** condition (Lines 27-31), after which the final query or a failure signal is returned.
975

972 **Algorithm 3** Dual-Agent SQL Synthesis Workflow

```

973     Input: User Utterance  $U_{in}$ , Database Schema Graph  $\mathcal{G}$ , Knowledge Base  $\mathcal{K}$ , Max Iterations
974      $N_{max}$ 
975     Output: Final SQL Query  $Q_{final}$  or  $failure$ 
976
977 1: function DUALAGENTSYNTHESIS( $U_{in}, \mathcal{G}, \mathcal{K}, N_{max}$ )
978 2:    $i \leftarrow 0$ 
979 3:    $is\_success \leftarrow \text{false}$ 
980 4:    $feedback\_info \leftarrow \emptyset$                                  $\triangleright$  Stores context from failed attempts for pruning
981 5:   while  $i < N_{max}$  and not  $is\_success$  do
982   6:      $keywords \leftarrow \text{LLM.ExtractKeywords}(U_{in})$ 
983   7:      $S_{initial} \leftarrow \text{SemanticSearch}(\mathcal{G}, keywords)$   $\triangleright$  Retrieve initial top-k schema components
984   8:      $S_{expanded} \leftarrow \text{LLM.ExpandContext}(U_{in}, S_{initial})$   $\triangleright$  Reason and add necessary related
985   9:      $S_{ctx} \leftarrow S_{expanded} \setminus \text{PruneUnused}(feedback\_info)$   $\triangleright$  Refine context based on last
986   failure
987   10:     $\triangleright$  InfoAgent: Schema Grounding & Expansion
988   11:     $Q_{embed} \leftarrow \text{EmbedQueryIntent}(U_{in}, S_{ctx})$ 
989   12:     $\mathcal{K}_{retrieved} \leftarrow \text{SimilaritySearch}(\mathcal{K}, Q_{embed})$   $\triangleright$  Retrieve top-k triplets
990   13:     $Q_{cand} \leftarrow \text{LLM.GenerateSQL}(U_{in}, S_{ctx}, \mathcal{K}_{retrieved})$   $\triangleright$  Generate candidate query
991   14:     $result, error \leftarrow \text{ExecuteSQL}(\mathcal{D}, Q_{cand})$ 
992   15:    if  $error \neq \emptyset$  or  $result$  is empty then                                 $\triangleright$  Package feedback for
993   16:       $feedback\_info \leftarrow (Q_{cand}, S_{ctx}, \text{"Execution Failed"})$   $\triangleright$  Package feedback for
994   17:      else
995   18:         $is\_aligned \leftarrow \text{LLM.CheckFidelity}(U_{in}, result)$   $\triangleright$  Semantic fidelity check
996   19:        if  $is\_aligned$  then
997   20:           $Q_{final} \leftarrow Q_{cand}$ 
998   21:           $is\_success \leftarrow \text{true}$ 
999   22:        end if
1000   23:         $feedback\_info \leftarrow (Q_{cand}, S_{ctx}, \text{"Semantic Mismatch"})$ 
1001   24:      end if
1002   25:       $i \leftarrow i + 1$ 
1003   26:    end while
1004   27:    if  $is\_success$  then
1005   28:      return  $Q_{final}$ 
1006   29:    else
1007   30:      return  $failure$ 
1008   31:    end if
1009   32: end function
1010
1011
1012
1013 E LLM USAGE
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
```
