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ABSTRACT

Large Language Models have recently shown impressive capabilities in reason-
ing and code generation, making them promising tools for natural language in-
terfaces to relational databases. However, existing approaches often fail to gen-
eralize in complex, real-world settings due to the highly database-specific nature
of SQL reasoning, which requires deep familiarity with unique schemas, ambigu-
ous semantics, and intricate join paths. To address this challenge, we introduce
a novel two-stage LLM-based framework that decouples knowledge acquisition
from query generation. In the Exploration Stage, the system autonomously con-
structs a database-specific knowledge base by navigating the schema with a Monte
Carlo Tree Search—inspired strategy, generating triplets of schema fragments, ex-
ecutable queries, and natural language descriptions as usage examples. In the
Deployment Stage, a dual-agent system leverages the collected knowledge as in-
context examples to iteratively retrieve relevant information and generate accurate
SQL queries in response to user questions. This design enables the agent to proac-
tively familiarize itself with unseen databases and handle complex, multi-step rea-
soning. Extensive experiments on large-scale benchmarks demonstrate that our
approach significantly improves accuracy over strong baselines, highlighting its
effectiveness and generalizability.

1 INTRODUCTION

The recent advancement of Large Language Models (LLMs) has demonstrated remarkable capabili-
ties in complex reasoning and computational tasks(OpenAl, 2023} Bubeck et al.| [2023; | Mirchandani
et al.| [2023; 'Wu et al.} 2023 Meta Fundamental Al Research (FAIR) Diplomacy Team et al.| [2022).
A significant application of these capabilities lies in processing and interpreting the vast amounts
of data that underpin modern society. While data exists in many forms, a substantial portion of
high-value information is stored as structured data within relational databases(Verbitski et al., 2017}
Yavuz et al., 2018). Consequently, there is a surging interest in leveraging LLMs to interact with
this structured data, aiming to democratize data access through natural language. This has given rise
to Text-to-SQL (also known as NL2SQL), a key research area focused on automatically translating
natural language questions into executable SQL queries(Liu et al., 2025} [Katsogiannis-Meimarakis
& Koutrikal 2023} |Kobayashi et al.l [2025; [Malekpour et al., [2024; Shi et al., [2025; |[Deng et al.,
2022). The core objective is to bridge the gap between human language and relational databases,
empowering users to retrieve and manipulate data without needing to master complex SQL syntax.

Despite this promise, current Text-to-SQL approaches struggle to generalize to complex, real-world
scenarios(Lei et al., 2025). While these models perform well on some benchmarks, their accuracy
often drops significantly when applied to more complex databases, revealing a significant general-
ization gap(Pourreza & Rafiei, [2024; |Gao et al., |2024; Talaei et al., [2024). This happens because
effective Text-to-SQL reasoning is highly database-specific. Unlike general code generation, where
a model can produce portable logic like a Python sorting algorithm, a valid SQL query is inextrica-
bly tied to the unique schema of a specific database. This deep dependency manifests in several key
challenges. A model must handle intricate schemas, as their complexity and structure are entirely
unique to each database. It must also resolve ambiguous queries, where the correct interpretation of
a phrase like “recent customers” depends on knowing the specific column names and business logic
embedded in that particular schema. Furthermore, complex, multi-step reasoning is dictated by the
database’s specific join paths and relationships.
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Without prior familiarity with the database, a generic pre-trained model struggles to navigate the
unique structure and meaning within a new database(Lei et al., [2025)). In contrast, human experts
succeed by first building a deep familiarity with the database’s unique schema and relationships.
This core insight motivates our approach: a preliminary process designed to build this foundational
knowledge before attempting the final translation task. To achieve this goal, we propose a novel
LLM-based agent framework that operates in two key stages. First, the framework autonomously
explores an unfamiliar database to generate a rich, database-specific knowledge base. Subsequently,
this knowledge is provided to the agent as in-context examples(Dong et al.,|2024; Rubin et al., 2022;
Zhang et al.,|2022b)). This process guides the generation of the final, complex SQL query.

The Exploration Stage autonomously constructs a structured, database-specific knowledge base. The
core objective of this stage is to generate a rich set of usage examples for each key component of
the database schema, such as its tables and columns. Each example is formalized as a triplet: a
schema sub-structure, a corresponding executable SQL query, and its natural language description.
To systematically generate these triplets across the entire schema, we first represent the database as
a traversable tree structure, where entities like tables and columns are organized as nodes. This tree
provides a map for our exploration. To generate triplets, the agent need explore this tree to find and
combine meaningful nodes into valid queries. To this end, We then employ a search strategy inspired
by Monte Carlo Tree Search(Kocsis & Szepesvaril, [2006; |(Coulom, 2007)), guided by an Agent that
acts as the core reasoning engine. The agent intelligently navigates this tree to build and test new
queries. It achieves this by selecting a series of actions, such as introducing a join or adding a filter.
Each successful exploration path results in a new triplet. These triplets are collected to build our
knowledge base, enabling the next stage to better write accurate SQL queries. Overall, this process
allows the system to proactively familiarize itself with an unknown database without any manual
intervention.

In the Deployment Stage, our goal is to effectively utilize the knowledge from the exploration phase
to handle complex user queries. To achieve this, we introduce a dual-agent framework where an In-
foAgent and a GenAgent collaborate with distinct roles. The InfoAgent is responsible for retrieving
the most relevant knowledge triplets from the previously constructed database, based on the user’s
question. Subsequently, the GenAgent uses this schema fragment to retrieve associated knowledge
triplets stored during the exploration stage. The GenAgent then incorporates these retrieved triplets
into its reasoning context, using them as in-context examples to guide the final query generation.
If the generated query is unsuccessful, the GenAgent provides feedback to the InfoAgent, prompt-
ing a new cycle of information retrieval. The two agents then work together in an iterative loop,
continuously refining the SQL query through a cycle of example retrieval, generation, and execu-
tion feedback. This collaborative, multi-step design allows our system to deconstruct the problem,
leading to high accuracy and reliability.

To validate the effectiveness of our approach, we conducted extensive experiments showing that our
method significantly outperforms strong baselines on complex, large-scale benchmarks. Our main
contributions are:

1. We propose a novel two-stage LLM-based framework that decouples knowledge acquisi-
tion from query generation.

2. We develop an autonomous, agent-driven exploration strategy that constructs a structured,
executable knowledge base without requiring manual annotations.

3. We introduce a dual-agent reasoning mechanism that iteratively retrieves and integrates
in-context examples to generate accurate and executable SQL queries.

4. We will release the full implementation of our framework to foster reproducibility and
future research in this domain.

2 RELATED WORK

LLM-based Text-to-SQL Methods. Research in Text-to-SQL has progressed from early neural
parsers to modern LLLM-driven approaches (Shi et al., |2025; [Deng et al.l [2022). Seminal neural
methods introduced techniques like graph-based encoders to leverage database schema (Wang et al.,
2020) and constrained decoding to ensure syntactic correctness (Scholak et al.l 2021). With the
advent of large language models, the field has seen significant advancements. Numerous fine-tuning
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Figure 1: Databases Representation and Exploration Phase. The left side of this diagram illus-
trates our representation and processing of the database structure. The right side of this diagram
shows a schematic of our exploration using Tree Search on the existing structure. This includes four
phases: selection, expansion, simulation, and backpropagation. This approach enables the collection
of a series of triplets.

methods (Li et al.,2024) and advanced LLM-prompting techniques (Dong et al.l 2023; Wang et al.,
2023a; [Zhang et al.| 2023} Talaei et al., 2024} [Pourreza & Rafiei, 2024} |Gao et al.| [2024) have
achieved strong performance on established benchmarks. However, these approaches still contend
with challenges such as limited context windows and adapting to unseen database domains.

Multi-Agent for Code Generation. The intersection of generative models and interactive
problem-solving has spurred a surge in agent-based frameworks designed to enhance the reason-
ing capabilities of language models, particularly for code generation (Yao et al.l 2023} [Zhang et al.,
2022aj;|Chen et al.|, 2023 Wang et al.|[2023b; |Shinn et al., 2024} Zhang et al., 2024} Xia et al.,[2024).
To overcome the limits of a single model, a prominent strategy is to deploy multiple agents in co-
ordinated roles. In this multi-agent paradigm, agents specialize and interact, often through patterns
like cooperative decomposition (Li et al.,|2023a) or hierarchical task delegation (langgenius| [2023).
To make these interactions more robust, other works have focused on designing special action spaces
to standardize agent operations (Wang et al., 2024} |Yang et al., 2024). Inspired by these successes,
our method employs a similar strategy with dedicated explorer and generator agents for text-to-SQL
translation.

3 METHODOLOGY

Our work addresses the challenge of generalizing Text-to-SQL systems to unfamiliar databases by
introducing a novel two-stage framework. First, an exploration stage autonomously constructs a
database-specific knowledge base without requiring manual supervision. Subsequently, a deploy-
ment stage employs a dual-agent framework to effectively leverage this acquired knowledge for
accurate and robust query synthesis.

3.1 DATABASE SCHEMA REPRESENTATION

Our approach to database exploration begins by transforming the conventional relational schema into
a traversable, tree-like structure. The database, its tables, and their corresponding fields are treated
as distinct nodes in the tree, explicitly capturing their nested relationships. However, a significant
challenge arises from the structural redundancy common in large scale databases. For instance,
time-based sharding often produces numerous tables with identical schemas, such as daily logs or
hourly snapshots. Naively modeling each table independently would require connecting every table
node to its respective field nodes, resulting in high representational complexity and redundancy. To
address this issue, we introduce an abstraction termed the Shared Field Group. This component
acts as a canonical, reusable template that encapsulates the common field structure for a set of struc-
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turally identical tables. Consequently, instead of each table node maintaining numerous individual
connections to its field nodes, it establishes a single link to the appropriate Shared Field Group.
This design, illustrated in Figure [I] significantly simplifies the overall schema representation and
clarifies the inherent relationships among tables with identical structures. By abstracting common
structures, this approach reduces the complexity of representing the relationships between tables
and fields from O(N x M) to O(N + M), where N is the number of sharded tables and M is
the number of shared fields. This abstraction not only streamlines the schema but also improves
the interpretability and efficiency of the subsequent exploration process. The specific definition and
identification algorithm for this structure are detailed in Appendix [A]and Appendix B}

3.2 EXPLORATION STAGE: LLM-GUIDED TREE SEARCH

The goal of the exploration stage is to systematically acquire prior knowledge about the target
database. This knowledge should capture not only the static schema structure but also how its com-
ponents can be combined to form meaningful queries. Specifically, we aim to generate a knowledge
base where viable structural patterns are translated into executable SQL queries and aligned with
their natural language semantics. We formalize the exploration results as a set of triplets (S, @, U),
where S represents a subset of the database schema’s structural, () is a corresponding executable
SQL query, and U is the natural language semantically aligned with Q).

To manage the immense complexity arising from numerous schema components and their com-
binatorial possibilities, we propose a novel exploration framework inspired by Monte Carlo Tree
Search(Kocsis & Szepesvari, |2006), where we replace its traditional heuristic-based search policy
with an LLM that serves as a semantic reasoning engine. The entire exploration process continues
until a predefined termination condition is met, such as generating a target number of valid triplets
or reaching a maximum number of iterations. This LLM-driven method retains the structured, it-
erative cycle of exploration, allowing the system to build complex queries step-by-step, guided by
the model’s understanding rather than numerical rewards alone. The process, illustrated in Figure[T}
consists of four distinct phases. These phases are: LLM-guided selection and expansion, simulation,
and backpropagation of outcomes.

LLM-Guided Selection and Expansion. The goal of this phase is to incrementally construct com-
plex and semantically diverse SQL queries from the database schema. Our method achieves this
by leveraging an LLM to perform both selection and expansion in a single, reasoned step. At each
node in the search tree, the LLM is prompted with the necessary context to make an decision. This
context includes the current query state (a sequence of previous actions) and the available schema
context (a simplified JSON structure of reachable tables and columns). The LLM’s task is to select
the most promising subsequent action from a predefined discrete action space, with options such as
Select Column, Add Constraint, and Apply Aggregation. A detailed description of
each action is provided in Appendix [C] The LLM’s choice directly creates a new node, expanding
the search tree. The objective of this expansion is to guide its growth toward constructing more
sophisticated queries. This strategy ensures the generation of semantically rich examples that cover
a wide range of database operations and schema interactions, moving beyond simple single-column
retrievals.

SQL Simulation. From the newly expanded node, the simulation phase leverages an LLM to gen-
erate a complete and executable query. The model is prompted to construct a SQL query that
is semantically consistent with the structure represented by the current node. To guide this pro-
cess toward generating meaningful queries, the LLM is instructed to prioritize using tables and
columns that have associated documentation or comments. This metadata provides valuable seman-
tic clues for building a more relevant query. The process operates on a dynamically constrained
set of schema nodes, excluding those already incorporated into the current query path (with the
exception of key columns like IDs) to ensure broad exploration. The LLM then uses the context
from the expanded node to construct a correct SQL query. For instance, if the expanded node
contains the columns age, height, and gender from a users table, the LLM might com-
plete this structure by generating the SQL query SELECT * FROM users WHERE age > 20
AND gender = ’'Male’; and its corresponding natural language description, “Find all male
users older than 20.”
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Figure 2: SQL Deployment Stage. In this stage, the database information obtained in the explo-
ration stage and the user’s actual query are used to generate the SQL. The dual-agent architecture
controls the information acquisition context and SQL generation context of the agent, enabling the
system to process complex SQL statements while maintaining high query accuracy.

The resulting query @ is then executed against the database. If the query runs successfully and
returns a non-empty result, we proceed to generate its natural language counterpart by providing the
structural information .S and the SQL query () as input to an LLM, which generates a semantically
consistent user query U. This culminates in a complete, high-quality triplet (S, @, U). If the query
fails or returns an empty result, the simulation concludes, and this outcome is passed to the next
phase.

By first defining a valid, localized schema structure and then generating the corresponding SQL and
natural language description from it, our method produces highly accurate and dependable examples.
Since each example is grounded in a real data sub-structure, it guarantees high semantic alignment
and serves as a reliable reference during the deployment stage.

Backpropagation. The primary goal of the backpropagation phase is to systematically record the
outcomes of each exploration and use this knowledge to guide deployment stage. To achieve this, the
system updates the historical context of each node along an exploration path based on the outcome
from the simulation phase. For a successful exploration that yields a valid (S, @, U) triplet, this
triplet is recorded as positive feedback. It is stored on all entity nodes, such as the tables and
columns, that were part of the query’s creation path. This process enriches each schema component
with a history of its successful usage in meaningful combinations. Conversely, if an exploration fails
because the query is invalid or returns an empty result, a negative outcome is propagated to the nodes
on that path. This feedback serves to lower the selection priority of this path in future iterations. It
effectively discourages the model from repeatedly pursuing unproductive combinations. Ultimately,
this accumulated historical information is crucial for adaptive learning. In subsequent selection
steps, the prompt provided to the LLM is augmented with the feedback stored on the currently
visible nodes. By learning directly from the consequences of its past actions, the LLM continuously
refines its exploration strategy. It learns to favor paths that lead to valid, non-empty results, creating
a self-optimizing exploration process.

3.3 DEPLOYMENT STAGE: DUAL-AGENT SQL SYNTHESIS

The SQL deployment phase aims for the robust and accurate translation of natural language into
SQL, a task made difficult by the information gap between user queries and complex database
schemas. To bridge this gap and effectively utilize the knowledge acquired in the exploration stage,
we introduce a dual-agent framework. This framework manages a dynamic, iterative process that
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begins by assembling an actionable context from the saved knowledge base, followed by cycles
of context refinement and query construction. This process, illustrated in Figure [2] consists of an
InfoAgent for schema interaction and context management, and a GenAgent for knowledge-driven
SQL synthesis.

The workflow begins when the InfoAgent receives a user’s query. Its primary challenge is to bridge
the semantic gap between the user’s natural language and the rigid, formal structure of the database
schema. To address this, the agent first performs schema grounding, a process to identify an initial
set of relevant tables and columns. It leverages an LLM to analyze the user’s question and extract
key semantic keywords and entities. To make the schema searchable, we pre-process it by creating a
vector embedding for each column. This is done by concatenating a column’s name, data type, and
any available comments into a descriptive string, which is then converted into a high-dimensional
vector using a sentence-embedding model. The InfoAgent then uses the extracted keywords to
perform a semantic search against this vector database, retrieving the top-k schema components that
are most semantically aligned with the user’s intent. This initial retrieval provides a strong, focused
starting point for query construction.

However, this initial top-k set may be incomplete, often missing crucial components required for
complex operations like multi-table joins or implicit user needs. To ensure the context is compre-
hensive, the InfoAgent performs a second expansion step. It provides the user’s original query and
the preliminary set of retrieved schema components as input to another LLM prompt. The LLM
is tasked to act as a database expert, analyzing the relationships between the provided components
and reasoning about what additional tables or columns are necessary to form a complete, executable
query. For instance, if the initial set contains a user_name column from a users table and an
order_amount from an orders table, the LLM would infer the need to include the user_id
and customer_id keys to facilitate the join. This refined and enriched schema context containing
both directly relevant and logically inferred components, is then transmitted to the GenAgent.

Upon receiving the refined schema context from the InfoAgent, the GenAgent initiates the synthesis
process. Its core task is to select the most relevant examples from the knowledge base to guide
the final query generation. To achieve this with high precision, our retrieval mechanism focuses
on the semantic content of the SQL query component () within each stored (S, Q,U) triplet.
Specifically, we pre-process the entire knowledge base by vectorizing the SQL query ) of each
triplet using a code-embedding model. This transforms our knowledge base into a high-dimensional
vector space, where each triplet is represented by its query’s semantic vector, enabling efficient
similarity searches. When a new user request is processed, the GenAgent uses the user’s natural
language query and the provided schema context to generate a query embedding that represents the
user’s intent. This embedding is then used to perform a similarity search against the vectorized
knowledge base, retrieving the top-k triplets whose SQL queries are most semantically similar to
the target query. These top-k triplets serve as powerful, database-specific in-context examples. The
GenAgent then constructs a final, comprehensive prompt by integrating the user’s original question,
the refined schema context, and these retrieved few-shot examples. Following generation, the query
is executed against the database to validate both ability to return a non-empty result.

The outcome of this execution, whether a successful result or an error, triggers a collaborative re-
finement loop by feeding back to the InfoAgent. The InfoAgent first updates its internal state by
recording which schema components were utilized in the generated query. If the query failed due
to a syntax error, the InfoAgent refines its strategy for the next attempt. It prunes the context by
removing schema components that were provided to the GenAgent but ultimately unused in the
failed query, thus narrowing the context window. Concurrently, it re-analyze the user’s query for
secondary keywords to recall additional, potentially useful tables and columns. Conversely, if the
query executed successfully, then performs a final step: a semantic fidelity check, where it assesses
the alignment between the query’s output and the intent of the user’s original natural language re-
quest. This iterative cycle continues until either a syntactically valid and semantically correct SQL
query is successfully validated, or a predefined maximum number of iterations is reached. The pro-
cess then concludes by returning the successful result or a failure notification to the user. For a
formal algorithmic representation, please refer to Appendix
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4 EXPERIMENTS

This section presents a comprehensive experimental evaluation of our proposed two-stage method.
Our primary objective is to assess the effectiveness and efficiency of the SQLAgent. We begin by
detailing the experimental setup, followed by a thorough analysis of the results from comparative
and ablation studies.

4.1 EXPERIMENT SETUP

Benchmark. We evaluate the proposed method on the Spider 2.0-Snow benchmark(Lei et al.|[2025).
This benchmark includes a large number of enterprise-level SQL queries, some exceeding 100 lines
in length, representing a significantly higher level of complexity compared to traditional text-to-
SQL tasks. Each subtask contains 547 examples spanning over 150 databases, with each database
containing approximately 800 columns on average. Consistent with the|Lei et al.|(2025)), we classify
SQL query difficulty based on token count: Easy (fewer than 80 tokens), Medium (80-159 tokens),
and Hard (160 or more tokens).

Evaluation Metrics. We evaluate the performance of our method using the widely adopted Execu-
tion Accuracy (EX) metric(L1 et al., 2023b; |Yu et al., 2018} |Le1 et al., |2025). Execution Accuracy
compares the execution result of the predicted SQL query with that of the ground-truth query on
a given database instance. This metric provides a more precise estimate of model performance, as
there may be multiple valid SQL queries for a single question. To account for the stochastic na-
ture of large language models (LLMs), we also report PASS @K, which measures whether correct
results can be obtained withinK runs, thereby evaluating the stability of the outputs under repeated
executions. To evaluate the overall efficiency of the model, we measure the number of calls made to
the Large Language Model and the number of executions sent to the database. We then report the
average of these counts across all tasks in the benchmark.

Baselines. Our baseline method, inspired by [Deng et al.[(2025); [Yu et al.| (2018)), employs a self-
refinement mechanism to navigate large database schemas. Initially, we construct a textual index
of the schema by concatenating table and column names. When a user submits a query, our system
retrieves the Data Definition Language (DDL) of the most relevant tables from this index and pro-
vides them as context to a Large Language Mode. If an execution attempt returns an empty result
or produces a syntax error, the LLM initiates a refinement loop. It iteratively attempts to correct the
SQL query using the execution feedback, without re-querying the database structure. This process
continues until a valid query is generated or a predefined stopping condition is met.

4.2 EXPERIMENTAL DETAILS.

Throughout our experiments, we retrieve the top-3 most relevant database tables (kK = 3) to pop-
ulate the context and set the maximum number of self-refinement attempts to 5. To ensure a fair
comparison, these hyperparameter settings are kept consistent for both the baseline and our pro-
posed method. Unless otherwise specified, all experiments utilize GPT-40 as the backbone LLM.
The temperature for the all the LLM were set to 0.7. The multi-agent framework is built upon the
LangGraph library. Vector embeddings are generated using the text-embedding-3-small
model from openai, and all vectorization tasks are subsequently handled by the Faiss library. Our
data modeling framework is built entirely on Neo4;j, and we employ the Cypher query language for
all graph traversal.

4.3 RESULTS AND ANALYSIS

This section evaluates the proposed two—stage framework, focusing on its effectiveness, efficiency,
and robustness. Unless otherwise specified, accuracy is reported using execution accuracy (EX) ,
while efficiency is assessed by wall-clock time and model token cost.

Comparative Results. To evaluate the effectiveness and efficiency of our proposed framework, we
compared SQLAgent against two strong baselines, Spider—Agent and ReFoRCE, with detailed
results presented in Table[I] Our full method significantly outperforms both baselines, achieving an
overall Execution Accuracy (EX) of 25.78 %, compared to 20.84% for ReFoRCE and 12.98% for
Spider-Agent. The performance gap is particularly pronounced on complex queries; on the “Hard”
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Table 1: Performance Comparison of Different Method. This table presents a detailed compar-
ison of execution success (EX) and efficiency metrics. EX is reported as a percentage for easy,
medium, and hard difficulty levels, along with the overall score. Efficiency is measured by the aver-
age number of LLM and Database (DB) calls per query. We evaluate our proposed SQLAgent with
different components against other baseline methods and state-of-the-art methods.

Method Strategy EX (%) Efficiency
Easy Medium Hard Overall LLM Calls DB Calls
Spider-Agent  Agentic 24.22 11.38 6.94 12.98 11 3
ReFoRCE Consensus 49.22 17.00 5.23 20.84 3.5 3.9
Baseline 32.81 14.57 0.00 14.26 3.0 4.2
SQLAgent w/ Exp. Stage  41.40 19.03 5.81 20.10 4.1 5.2
full method 57.81 18.62 12.21  25.78 5.2 3.6
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(a) Performance During Iteration.

(b) Analysis of Two Key Hyperparameters

Figure 3: Analysis of the Exploration Stage and Key Hyperparameters. The left figure shows
Execution Accuracy as a function of agent iterations, demonstrating that the Exploration Stage con-
sistently improves performance. The middle figure presents the effect of LLM temperature on dif-
ferent models, with the GPT model’s accuracy peaking at a temperature of 0.7. The right figure
evaluates the top-k schema retrieval parameter, showing our method (Ours) outperforms the Base-
line across all settings and that its performance gain saturates for k values greater than 3.

subset, our method achieves an EX of 12.21 %, demonstrating a clear improvement over competitors
that struggle with these tasks. To isolate the contributions of our framework’s components, we
conducted an ablation study. Our Baseline model establishes a performance of 14.26% overall
EX, failing entirely on hard queries. Incorporating the knowledge from the Exploration Stage (w/
Exp. Stage) improves the overall accuracy to 20.10%, confirming the value of the proactively
constructed knowledge base. Finally, the full method, which integrates the dual-agent framework
of the Deployment Stage, achieves the highest accuracy of 25.78%. This final performance gain
validates that the dual-agent architecture effectively utilizes the acquired knowledge for robust SQL
synthesis. In terms of efficiency, our full method averages 5.2 LLM calls and 3.6 DB calls, as
detailed in Table 1. This configuration is notably more efficient than Spider-Agent, which requires
11 LLM calls. While it uses more LLM calls than ReFoRCE (3.5), it requires fewer database
interactions (3.9) to achieve its superior accuracy. The ablation study further clarifies this trade-
off: introducing the Exploration Stage modestly increases cost over the baseline. However, the
subsequent addition of the dual-agent framework reduces the number of database calls from 5.2 to
3.6. This indicates that the framework’s structured reasoning not only enhances accuracy but also
leads to fewer unnecessary query executions, validating the overall design.

Performance During Iteration. Figure[3a]tracks EX as a function of the maximum iteration budget
for the dual-agent loop, comparing the performance of our framework with and without the knowl-
edge base from the Exploration Stage. In this analysis, we control the number of collaborative cycles
between the InfoAgent and GenAgent; the GenAgent is compelled to generate a final SQL query
upon reaching the iteration limit.
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The results clearly demonstrate the value of the exploration-derived knowledge. For the model
equipped with this knowledge (the red curve), accuracy shows a strong positive correlation with the
number of iterations, rising from 5.5% to a peak of 25.8% at four iterations. This trend indicates
that with each cycle, the agents effectively leverage the knowledge base to progressively refine the
context and retrieve relevant examples, leading to more accurate query construction. In contrast, the
model without the knowledge (the blue curve) exhibits limited improvement, with accuracy plateau-
ing at a much lower peak of 14.1%. More significantly, its performance sharply degrades after five
iterations. This phenomenon suggests that without validated priors, the iterative refinement process
is less stable. The agents struggle to distinguish productive refinement paths from unproductive
ones, and an accumulation of redundant or ambiguous feedback can even lead them to revise an
initially correct query into an incorrect one.

Hyperparameter Analysis. We conduct experiments to determine the optimal settings for two
critical hyperparameters: the schema retrieval top-k and the LLM temperature. The k parameter
defines the number of most relevant columns retrieved from the database to address a user’s query.
To analyze its impact, we compare the performance of our full method against the baseline across
various k values. As illustrated in the right panel of Figure the performance of our method
rapidly improves and approaches saturation at £ = 3. Increasing k beyond 3 provides diminishing
returns at a higher computational cost for our method. In contrast, the baseline requires a larger k
but is constrained by the LLM’s context window. We therefore select k = 3 as the optimal setting to
balance accuracy with efficiency. The temperature parameter controls the randomness of the LLM’s
output(Peeperkorn et al.| 2024). The middle panel of Figure [3b|shows the effect of temperature on
execution accuracy. We observe that a higher temperature (e.g., 0.7) enables the LLM to generate
more varied and effective search terms. Consequently, we set the LLM temperature to 0.7 in our
experiments.

LLM Backbones Analysis. Ta-

ble [2] compares the performance of Taple 2: Performance Comparison Across LLM Back-
our full method against the base- hones. The table compares our full method against a base-
line across four different Large Lan-  Jine across various LLMs. We report the per-query cost (k
guage Model (LLM) backbones, re- tokens) and Execution Accuracy (EX@8, %). The A col-

porting the per-query token cost and  ymn shows the absolute improvement of our method.
Execution Accuracy after 8 passes

(EX@8)(OpenAll 2023; |Qwen et al.|

2025 |Li et all) [2023b). The data LLM Cost EX@8 (%) A
shows that our framework delivers Baseline Full Method
consistent and substantial improve-

ments regardless of the underlying Qwen2.5-7B 20.8k  7.12 14.99 +7.87
LLM’s capability. As detailed in the GPT-4o 15.2k - 21.57 31.99 +10.42
A column, our method achieves a ro- GPT-5 12.5k  22.49 32.90 +10.70

bust absolute accuracy gain of ap- Claude-Sonnet-4.0 11.6k 29.97 39.12 +9.15

proximately +10% across the more

powerful models. The consistent performance improvement shows that our two-stage architec-
ture, which combines proactive knowledge exploration and dual-agent reasoning, acts as a model-
agnostic enhancement for any LLM it is paired with. Notably, the impact is particularly pronounced
on the smaller model, where our method more than doubles the EX @8 of Qwen2.5-7B-Instruct from
7.12% to 14.99 % . This suggests our structured approach can effectively compensate for the reduced
reasoning capacity of smaller models, highlighting its value and scalability.

5 CONCLUSION

We introduce SQLAgent, a framework that emulates a human data engineer’s problem-solving pro-
cess. By first autonomously exploring a database to build context-specific knowledge and then
leveraging it for deployment, SQLAgent provides a scalable and adaptive solution for large-scale,
enterprise-level databases where conventional methods falter. Extensive experiments validate this
approach, demonstrating state-of-the-art performance on challenging benchmarks. Ultimately, our
work represents a significant step towards creating more autonomous and capable agents for data
interaction, advancing the goal of democratizing access to complex structured data.
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and do not involve any new personal data collection or human subjects. We recognize the potential
for misuse of any data access tool, but our framework is designed to operate within existing data
security and access permission frameworks, rather than circumventing any security protocols. In
accordance with the principles of research integrity, we explicitly disclose our use of large language
models for writing assistance in the appendix. All authors have read and are committed to adhering
to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of this research. We will publicly release the
source code for our framework to support subsequent academic research. A detailed description
of our model architecture and the two-stage exploration-deployment methodology is presented in
Section 3. The complete experimental setup, including the benchmarks, evaluation procedures, and
all hyperparameter configurations required for replication, are thoroughly documented in Section 4.
Further implementation details and relevant definitions can be found in the appendix.
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A DEFINITION OF DATABASE STRUCTURE

As introduced in the main methodology, we represent the relational database as a traversable graph
structure to facilitate autonomous exploration. This model is composed of distinct node and relation-
ship types that capture the hierarchical and relational nature of the database schema. This appendix
provides a formal definition of each component, their respective properties, and an overview of the
graph’s statistical composition.

A.1 GRAPH SCHEMA OVERVIEW

The graph model consists of five distinct node types and five relationship types that define their
connections. The primary node types are:

» Database: The root node representing the entire database instance.

* Schema: Represents a schema or dataset within the database.

» Table: Represents a single table.

* Field: Represents a column within a table.

* Shared Field Group: Our proposed abstraction for a reusable set of fields shared by mul-

tiple tables.

The relationships between these nodes define the structural integrity of the graph. Table 3| outlines
the valid connections between node types.

Table 3: Relationship types defining the connections between nodes in the graph schema.

Start Node Type Relationship Type End Node Type
Database HAS_SCHEMA Schema

Schema HAS_TABLE Table

Table USES_FIELD_GROUP SharedFieldGroup
Table HAS_UNIQUE_FIELD Field
SharedFieldGroup HAS FIELD Field

A.2 NODE PROPERTY DEFINITIONS

Each node in the graph contains a set of properties that store its metadata. The following tables
detail the properties for each of the five node types.

Table 4: Properties of the Database node.

Property Description Example

<id> Internal unique identifier for the node. 15313

name The name of the database instance. OPEN_TARGETS_PLATFORM._2
type Node type specifier. database

A.3 GRAPH COMPOSITION STATISTICS

To provide a sense of scale, Table [9] summarizes the composition of the graph constructed from our
experimental datasets. The statistics highlight the prevalence of fields, which constitute over 90%
of all nodes.

A key component of our model is the SharedFieldGroup, designed to reduce redundancy. Our
analysis confirms its effectiveness:

* Total Groups: There are 542 unique SharedFieldGroup nodes.
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Table 5: Properties of the Schema node.

Property Description Example
<id> Internal unique identifier for the 5430
node.

database Name of the parent database. NOAA DATA
description A description of the schema, if -

available.
name The name of the schema. NOAA_SIGNIFICANT_EARTHQUAKES
type Node type specifier. schema

Table 6: Properties of the Table node.

Property Description Example
<id> Internal unique identifier for the 185

node.
database Name of the parent database. COVID19_USA

ddl_summary

A summary of the table’s DDL
statement.

Table with 245 columns

fullname The fully qualified name of the ta- CENSUS_BUREAU_ACS_2...

ble.
name The name of the table. SCHOOLDISTRICTSECONDARY. ..
schema Name of the parent schema. CENSUS_BUREAU_ACS
type Node type specifier. table

Table 7: Properties of the SharedFieldGroup node.

Property Description Example
<id> Internal unique identifier for the node. 2079
database Name of the parent database. NEW_YORK_PLUS
description Auto-generated description of the group. FieldGroup_3ebfe5f9...

field_count
field_hash

name
schema

type

Number of fields encapsulated in this

group.

An MD?5 hash of the sorted field names,

used to identify unique groups.
Auto-generated name for the group.
Name of the parent schema.

Node type specifier.

24
3ebfe5f9. ..
FieldGroup-3ebfe5£f9

NEW_YORK_TAXI_TRIPS
shared_field group

* Average Fan-out: On average, each group is linked to 10.6 tables, indicating frequent

reuse.

* Maximum Fan-out: The most utilized group is shared by 334 distinct tables.

This analysis demonstrates the high prevalence of redundant schema structures in large-scale
databases and validates our abstraction’s utility in creating a more compact and efficient representa-

tion for exploration.

A.4 STRUCTURE VISUALIZATION

B

IDENTIFYING SHARED FIELD GROUPS

The identification of Shared Field Group nodes is a critical preprocessing step designed to
abstract and consolidate recurring schema structures within the database. This process ensures that
tables with identical field compositions are linked to a single, canonical group node, thereby reduc-
ing redundancy in the graph representation. The methodology is executed in two primary phases:
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Table 8: Properties of the Field node.

Property Description Example
<id> Internal unique identifier for the 18
node.
database Name of the parent database. NEW_YORK
description A description of the field, if -
available.
name The name of the column/field. contributing_factor_vehicle_4
node_type Specifies if the field is part of a unique_field

group or unique to a table.
sample_data  Sample data from this column. -

schema Name of the parent schema. NEW_YORK

table Name of the parent table (for NYPD MV_COLLISIONS
unique fields).

type The data type of the field. TEXT

Table 9: Statistical overview of the constructed graph representation.

Component Count Percentage
Node Types
Database 151 0.2%
Schema 267 0.3%
Table 7,848 8.7%
SharedFieldGroup 542 0.6%
Field 81,298 90.2%
Total Nodes 90,106 100.0%
Relationship Types
HAS_SCHEMA 534 -
HAS_TABLE 15,696 -

USES_FIELD_GROUP 11,478 -
HAS_UNIQUE_FIELD 104,808 -
HAS_FIELD 57,788 -

Total Relationships 190,304 -

(1) generating a unique signature for each distinct set of fields, and (2) applying a greedy algorithm
to select a final, non-overlapping set of shared groups.

Phase 1: Field Group Signature Generation To consistently identify tables that share an identi-
cal set of fields, we first compute a content-based signature for the field structure of each table. This
signature is derived from the names and data types of all columns within a table.

The process, detailed in Algorithm involves creating a canonical string representation for
the set of fields. Each field is formatted as a string concatenation of its name and type (e.g.,
‘‘user_id:INTEGER"). To ensure that the signature is independent of the original column order,
these formatted strings are sorted alphabetically before being joined into a single, delimited string.
Finally, the MD5 hash function is applied to this canonical string to produce a compact and unique
128-bit signature. Any two tables that yield the same signature are considered to have structurally
identical schemas.

Phase 2: Greedy Selection of Non-Overlapping Groups After an initial pass over all tables, we
obtain a collection of potential shared groups, each identified by its unique signature and associated
with a list of tables that match it. A subsequent optimization phase is necessary to produce a final,
non-overlapping set of SharedFieldGroups. This is crucial because complex schemas may
contain nested or overlapping field structures.
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Algorithm 1 Field Group Signature Generation

Input: A table’s field set Fiope = {(n1,%1), (n2,1t2), ..., (ng,tx)}, where n; is a field name
and t; is its data type.

Output: A unique signature string Sy, oup-

1: function GENERATESIGNATURE(Fyapie)

2: Initialize an empty list L f;e145

3 for each field (n;, t;) in Fiqpe do

4: s; < Concatenate(n;, “: 7, t;) > Format as “name:type”

5 Append s; t0 L ;145

6 end for

7 Sort L y;c145 alphabetically

8: Secanonical < Join(L ficias, “”) > Create a canonical, delimited string
9: Sgroup < MD5(Scanonical) > Compute the MD5 hash

10: return Sg,.p

11: end function

We employ a greedy selection algorithm, detailed in Algorithm 2] to resolve this. The core principle
is to prioritize the most significant and impactful shared structures. First, all potential groups are
sorted in descending order based on two criteria: primarily by the number of tables they encompass,
and secondarily by the number of fields they contain (as a tie-breaker). This heuristic prioritizes
groups that represent the most widespread schema patterns.

The algorithm then iterates through this sorted list. For each candidate group, it checks if any
of its member tables have already been assigned to a previously selected group. If there is no
overlap, the group is added to the final set, and all of its member tables are marked as assigned. This
process ensures that each table can belong to at most one SharedFieldGroup, resulting in an
unambiguous and efficient final graph structure.

Algorithm 2 Greedy Selection of Shared Field Groups

Input: A collection of all potential groups G;;, where each group g € G,;; has a signature, a
set of fields, and a set of matching tables T},.
Output: A final, non-overlapping set of shared groups G final.

: function SELECTGROUPS(G ;)

1
2: Gyittered < {9 € Gau | |T,4| > 2} > Consider only groups with at least two tables
3: Sort G fiitereq in descending order by |1, |, then by number of fields.
4: Initialize G fipar < 0
5: Initialize set of assigned tables T}, ssigned < 0
6: for each group g in sorted G fjjzereq do
7: Teurrent < the set of tables in group g.
8: if Tourrent N Tassigned = () then > Check for overlap with already assigned tables
o: Gfinal < Ginat U{g} > Add group to the final set
10: Tossigned < Tussigned U Tourrent > Mark tables as assigned
11: end if
12: end for
13: return G #ipnq

14: end function

C DETAILED ACTION SPACE

This section provides a detailed description of the discrete action space used by the LLM in the
exploration stage. At each step of the tree search, the LLM selects one of the following actions to
incrementally construct a SQL query based on the current query state and schema context.

* Select Unused Column: Adds a new, previously unselected column to the query’s ‘SE-

LECT® statement. This action progressively expands the breadth of information retrieved
by the query.
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* Add Predicate Constraint: Applies a filter condition to an existing column, typically by
adding a “‘WHERE’ clause. This action narrows the scope of the query, allowing it to focus
on specific subsets of data that meet certain criteria.

* Introduce Join: Connects the current set of tables to a new table based on foreign key
relationships or ‘Shared Field Group* linkages. This action is fundamental for exploring
relationships across different tables and synthesizing information from multiple sources.

* Apply Aggregation Function: Applies a summary function (e.g., ‘COUNT", ‘SUM",
‘AVG*, ‘MAX", ‘MIN°) to a previously selected column. This action transforms the query’s
purpose from simple record retrieval to data summarization, enabling the model to under-
stand the scale and distribution of the data.

* Add Group By Clause: Groups the result set by one or more selected non-aggregated
columns. This action is typically used in conjunction with aggregation functions to perform
categorical analysis, such as calculating metrics for different segments of the data (e.g.,
“total sales per region”).

* Add Ordering Clause: Sorts the final result set based on a specified column, either in
ascending (‘ASC*) or descending (‘DESC*) order via an ‘ORDER BY ‘ clause. This enables
the discovery of extremes, such as top-performing items or most recent events.

* Add Having Clause: Applies a filter condition to the results of a ‘GROUP BY* aggrega-
tion. Unlike a “WHERE® clause which filters rows before aggregation, ‘HAVING® filters
entire groups after aggregation, enabling more complex analytical questions like identify-
ing categories that meet a certain threshold (e.g., “customers with more than 5 orders”).

D ALGORITHM FOR DUAL-AGENT SQL SYNTHESIS

This section provides a detailed algorithmic implementation of the dual-agent framework for SQL
synthesis, as described in the Deployment Stage of our methodology. The process is designed as
an iterative loop where the InfoAgent and GenAgent collaborate to refine the context and generate
the final SQL query. The InfoAgent is responsible for schema grounding and context management,
while the GenAgent leverages the acquired knowledge base to synthesize the query. Algorithm 3|
formalizes this collaborative workflow.

Algorithmic Details The algorithm details the iterative process of context refinement and query
generation managed by the dual-agent framework. The process begins with an initialization phase
(Lines 1-4), where the iteration counter, a success flag, and an empty structure for feedback infor-
mation are prepared. The feedback_info variable is crucial for passing insights from a failed
attempt to the next iteration.

Each cycle within the main loop starts with the InfoAgent performing schema grounding and ex-
pansion (Lines 6-9). It first uses an LLM to extract semantic keywords from the user’s utterance
and performs a semantic search to retrieve an initial set of schema components. Since this set may
be incomplete, a second LLM-driven step expands it by reasoning about logical necessities, such as
join keys. Following this, a crucial context pruning step occurs (Line 9), where the InfoAgent uses
feedback from any previous failed iteration to remove unused schema components, thus narrowing
the search space.

The refined context is then passed to the GenAgent, which conducts knowledge retrieval (Lines
11-12) by using the user’s intent to find the most relevant triplets from the knowledge base K. With
these triplets as in-context examples, the GenAgent proceeds to SQL synthesis (Line 13), generating
a candidate query. This query then undergoes execution and validation (Lines 15-24). This step
has three possible outcomes. An Execution Failure (e.g., a syntax error) or a Semantic Mismatch
(where the query output does not match the user’s intent) results in failure feedback being stored in
feedback_info for the next loop. A Success occurs if the query executes correctly and passes
the fidelity check, which sets the success flag and terminates the loop. The entire process continues
until a valid query is found or the maximum number of iterations is reached, as defined by the
termination condition (Lines 27-31), after which the final query or a failure signal is returned.
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Algorithm 3 Dual-Agent SQL Synthesis Workflow

Input: User Utterance U,,,, Database Schema Graph G, Knowledge Base /C, Max Iterations
Nma.'p
Output: Final SQL Query Q finq or failure

1: function DUALAGENTSYNTHESIS(U;,, G, K, Nonaz)

2: 1+ 0

3: is_success < false

4 feedback_info + 0 > Stores context from failed attempts for pruning
5 while ¢ < N,,.. and not is_success do

> InfoAgent: Schema Grounding & Expansion

6: keywords + LLM.ExtractKeywords(U;;,)
7: Sinitial < SemanticSearch(G, keywords) > Retrieve initial top-k schema components
8: Sespanded < LLM.ExpandContext(U;y,, Sinitiai) > Reason and add necessary related
components
9: Setz ¢ Sexpanded \ PruneUnused( feedback_info) > Refine context based on last
failure
> GenAgent: Knowledge Retrieval & SQL Synthesis
10: Qembed < EmbedQuerylIntent(Usy,, Sets)
11: Kretrieved < SimilaritySearch(K, Qembed) > Retrieve top-k triplets
12: Qcand + LLM.GenerateSQL(U;y,, Sctas Kretrieved) > Generate candidate query
> Execution and Validation Feedback Loop
13: result, error + ExecuteSQL(D, Qcand)
14: if error # () or result is empty then
15: feedback_info < (Qcand, Sectz, “Execution Failed”) > Package feedback for
context pruning
16: else
17: is_aligned < LLM.CheckFidelity (U;,,, result) > Semantic fidelity check
18: if is_aligned then
19: innal — Qcand
20: 1S_success < true
21: else
22: feedback_info < (Qcand, Sectz, “Semantic Mismatch”)
23: end if
24: end if
25: i—i+1
26: end while
27: if is_success then
28: return Q finql
29: else
30: return failure
31: end if

32: end function

E LLM USAGE

This statement is to disclose the use of large language models (LLMs) in preparing this manuscript,
in accordance with ICLR policy. The use of LLMs was strictly limited to improving the language
and readability of the text, including grammar correction and stylistic polishing. LLMs did not
contribute to any core scientific aspects of this work, such as research ideation, experimental design,
or data analysis. All intellectual contributions are the original work of the authors, who assume full
responsibility for the final content.
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