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Abstract

Cross-document event coreference resolution001
(CDECR) involves clustering event mentions002
across multiple documents that refer to the003
same real-world events. Existing approaches004
utilize fine-tuning of small language models005
(SLMs) like BERT to address the compatibility006
among the contexts of event mentions. How-007
ever, due to the complexity and diversity of con-008
texts, these models are prone to learning simple009
co-occurrences. Recently, large language mod-010
els (LLMs) like ChatGPT have demonstrated011
impressive contextual understanding, yet they012
encounter challenges in adapting to specific013
information extraction (IE) tasks. In this pa-014
per, we propose a collaborative approach for015
CDECR, leveraging the capabilities of both a016
universally capable LLM and a task-specific017
SLM. The collaborative strategy begins with018
the LLM accurately and comprehensively sum-019
marizing events through prompting. Then, the020
SLM refines its learning of event representa-021
tions based on these insights during fine-tuning.022
Experimental results demonstrate that our ap-023
proach surpasses the performance of both the024
large and small language models individually,025
forming a complementary advantage. Across026
various datasets, our approach achieves state-027
of-the-art performance, underscoring its effec-028
tiveness in diverse scenarios.029

1 Introduction030

Event coreference resolution is a useful task in in-031

formation extraction (Lu and Ng, 2018). This is032

crucial for achieving a more comprehensive un-033

derstanding of intricate narratives and facilitating034

knowledge extraction from diverse textual sources.035

The coreference of events typically relies on a036

thorough understanding of document-level con-037

text (Minh Tran et al., 2021; Kriman and Ji, 2021;038

Xu et al., 2022). Cross-document event corefer-039

ence (Lee et al., 2012), involving the comparison of040

event mentions from different documents, presents041

(a) Existing approach

(b) Our approach

Figure 1: Models for cross-document event coreference
resolution, where the input comprises event mentions
from different documents, and the output consists of
event clusters formed by coreferential mentions, which
are visually represented by icons sharing the same color
and shape.

additional challenges. On one hand, distinct events 042

in different documents may be portrayed in a very 043

similar manner, especially for events of the same 044

type (challenge 1). On the other hand, the portrayal 045

of the identical event may vary significantly across 046

different documents (challenge 2). The model is 047

required to grasp comparable coreference evidence 048

from varied contexts and make judgments based 049

on it (refer to the examples in Table 4 and 10 for 050

better illustration). 051

Existing work (Held et al., 2021; Yu et al., 2022) 052

attempts to address CDECR based on fine-tuning 053

small language models (SLMs) 1, as shown in Fig- 054

1In this work, SLM refers to pre-trained language models
with relatively fewer parameters, which are more cost-effective
for fine-tuning on specific tasks, such as BERT and RoBERTa.
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ure 1a. However, the complexity and diversity055

of the context make it prone to learning pseudo-056

features by capturing simple co-occurrences rather057

than genuinely coreference-related terms, includ-058

ing contextual words, entity mentions and other059

event mentions associated with the given event060

mention. Supporting this observation, CDECR061

remains a significant challenge for SLMs, as evi-062

denced by achieving only around 70% CoNLL F1063

score on the FCC dataset (Bugert et al., 2021).064

Recent advancements in LLMs have signifi-065

cantly advanced the field of NLP, enabling the066

effective resolution for tasks like machine trans-067

lation (Jiao et al., 2023) and text summariza-068

tion (Bang et al., 2023), with just a few demonstra-069

tions. However, when it comes to information ex-070

traction (IE) tasks, LLMs encounter challenges in071

task-specific adaptation. Specifically, LLMs strug-072

gle to achieve the same level of accuracy as super-073

vised SLMs because a small number of demonstra-074

tions cannot comprehensively cover the complex075

annotation guidelines of these tasks (Han et al.,076

2023; Li et al., 2023a). Moreover, the inherent na-077

ture of the CDECR task, which involves processing078

multiple documents, imposes enhanced demands079

on understanding the lengthy context in the demon-080

strations. 2 Instead of directly predicting CDECR081

structures, the relative strength of LLMs can en-082

hance the generic understanding of individual docu-083

ments, particularly the inherent meaning of diverse084

event mentions, which is complementary to the ad-085

vantage of SLMs in understanding structures with086

thorough fine-tuning.087

To leverage the relative strengths of LLMs and088

SLMs, we propose a collaborative approach, as089

shown in Figure 1b. First, we use the LLM to sum-090

marize event mentions from different documents.091

Then we feed these insights to the SLM to enhance092

its understanding of event mentions, enabling it093

to make coreference judgments based on more fo-094

cused contexts. For the LLM summarization, we095

design a two-step workflow with separate generic096

prompts to guide its comprehension of the context097

of each mention, instead of task-specific in-context098

learning or fine-tuning. For the SLM, we employ099

joint representation learning to integrate the origi-100

nal document and the generated summary.101

We conduct experiments on three datasets of102

CDECR, and the results demonstrate that our col-103

2On average, each instance of demonstration in the ECB+
dataset contains close to 15k tokens.

laborative approach, as compared to methods solely 104

relying on the LLM or SLM, exhibits significant 105

improvements. Across all three datasets (ECB+, 106

GVC, and FCC), our approach achieves state-of- 107

the-art results, with increases of 1%, 2.7%, and 7% 108

in CoNLL F1, respectively (averaged over three in- 109

dependent experiments for each dataset). Through 110

analysis, it is demonstrated that our approach can 111

more thoroughly address the aforementioned chal- 112

lenge 1 of similarly portrayed contexts, making a 113

substantial contribution to performance improve- 114

ment. Our code and data are released on XXX. 115

To the best of our knowledge, we are the first to 116

propose a collaborative approach that leverages the 117

universal capabilities of LLMs to address CDECR, 118

achieving superior performance compared to the 119

state-of-the-art baseline. 120

2 Related Work 121

CDECR Early work addresses CDECR by employ- 122

ing machine learning methods with manually de- 123

signed features (Bejan and Harabagiu, 2010; Yang 124

et al., 2015; Vossen and Cybulska, 2018; Bugert 125

et al., 2021). Recent neural approaches have uti- 126

lized SLMs to encode event mentions, obtaining 127

their embeddings for supervised coreference reso- 128

lution. Initial efforts involve encoding at sentence 129

level and fusing the embeddings of mentions and 130

the incomplete arguments extracted by SRL as the 131

representation of mentions (Barhom et al., 2019; 132

Zeng et al., 2020; Allaway et al., 2021; Yu et al., 133

2022). Subsequent work incorporates extensive 134

context directly into encoding, leading to notice- 135

able improvements (Caciularu et al., 2021; Cattan 136

et al., 2021; Held et al., 2021; Hsu and Horwood, 137

2022; Ahmed et al., 2023). More recently, Chen 138

et al. (2023) and Ravi et al. (2023) further establish 139

connections between event mentions using a dis- 140

course rhetorical structure constructor and a GPT-3 141

model fine-tuned with additional manually anno- 142

tated data specialized in temporal reasoning, re- 143

spectively. In comparison to existing work, we are 144

the first to establish comprehensive connections 145

between event mentions and their corresponding 146

contextual elements, including contextual words, 147

entity mentions, and other event mentions, by lever- 148

aging the intrinsic knowledge and out-of-the-box 149

context comprehension ability of LLMs. 150

LLM for IE Several recent studiess (Ma et al., 151

2023; Li et al., 2023a; Han et al., 2023; Yuan et al., 152

2023; Gao et al., 2023; Wei et al., 2023; Xie et al., 153
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2023; Li and Zhang, 2023; Xu et al., 2023; Wad-154

hwa et al., 2023; Qi et al., 2023; Ling et al., 2023)155

have evaluated the performance of LLMs, predomi-156

nantly ChatGPT, using in-context learning methods157

on various IE tasks. These investigations univer-158

sally demonstrate that LLMs exhibit commendable159

performance in zero-shot and few-shot settings, yet160

there remains a substantial gap when compared to161

state-of-the-art supervised SLMs, with the perfor-162

mance gap widening for more complex tasks.163

In addition, there are also methods directly using164

labeled data from IE tasks to fine-tune LLMs(Lu165

et al., 2022; Zhou et al., 2023; Wang et al., 2023;166

Sainz et al., 2023). In general, training on these167

larger-scale models, such as Code-LLaMA and168

Flan-T5, has yielded results comparable to super-169

vised baselines and demonstrated improvements in170

zero-shot settings. However, when the training of171

LLMs does not result in significant performance172

gains, the training cost, compared to training SLMs,173

becomes less cost-effective.174

Integration of LLM and SLM The integration175

of LLM and SLM is an emerging approach, with176

only a few explorations in complex IE tasks. Ma177

et al. (2023) prompts the LLM to rerank a small178

portion of difficult samples filtered by the super-179

vised SLM and achieves promising improvements180

on various few-shot IE tasks. Their method is181

based on the observation that LLMs excel only182

at a small number of hard samples compared with183

SLMs. Wan et al. (2023) utilizes a fine-tuned SLM184

to retrieve demonstrations and further inject the185

reasoning logic generated by the LLM into the186

demonstration for prompting. Their method sur-187

passes the supervised baseline on certain relation188

extraction datasets. However, it faces a drawback189

as LLM performance heavily depends on the qual-190

ity of SLM-retrieved demonstrations, especially for191

NULL-type triples, where finding suitable demon-192

strations is inherently challenging. This hinders193

performance on complex datasets, such as ACE05.194

Additionally, inducing complex reasoning logic for195

each of the k-demonstrations incurs high costs for196

LLM, leading them to sample only a subset from197

the original test set of ACE05 and TACRED. Xu198

et al. (2023) and Li et al. (2023b) leverage LLMs199

for data enhancement in sentence and document-200

level relation extraction tasks, respectively. The201

gap between triples recognized by LLMs and those202

annotated under manually crafted rules introduces203

potential shifts in the data distribution, making the204

effectiveness in practical applications unclear.205

Overall, the aforementioned integration methods 206

have exhaustively attempted to adapt LLMs to spe- 207

cific tasks by prompting them to establish accurate 208

connections with artificially defined labels. In con- 209

trast, our approach only requires LLMs to perform 210

generic tasks, leveraging their inherent capabilities 211

to assist specific tasks. 212

3 Method 213

We adopt the state-of-the-art method proposed 214

by Held et al. (2021) as our baseline (Section 3.1), 215

then summarize events using generic prompts for 216

LLM (Section 3.2), and finally integrate the repre- 217

sentations of events from both the summary and 218

the baseline system (Section 3.3). 219

3.1 Task and Baseline 220

The goal of the CDECR task is to group coreferen- 221

tial event mentions across multiple documents into 222

clusters. We formalize the task as follows: 223

Input: A corpus comprising multiple documents 224

denoted by D, where D = {D1, D2, ..., D|D|}, 225

with |D| representing the number of docu- 226

ments in the dataset. Let M represent all 227

event mentions in the corpus, such that M = 228

{m11,m12, . . . ,mij , . . . ,m|D|,k}, where k de- 229

notes the number of event mentions in each docu- 230

ment, and mij signifies the j-th event mention in 231

document Di. 232

Output: A set of clusters, denoted as C, 233

where C = {C1, C2, ..., Cn}. For each clus- 234

ter Ck, Ek represents all the event mentions 235

contained in the cluster Ck, such that Ek = 236

{ek1, ek2, . . . , ekj , . . . , ekM}, where M is the to- 237

tal number of event mentions in cluster Ck, and ekj 238

is the jth event mention in the cluster Ck. 239

Our baseline consists of two key modules for 240

coreference clustering: candidate retrieval and pair- 241

wise classification. Both of these modules primar- 242

ily involve using a RoBERTa (Liu et al., 2019) 243

encoder to encode the context and obtain vector 244

representations of event mentions, which can be 245

seamlessly replaced by our collaborative approach. 246

We formalize the encoding process as follows: 247

For each event mention mij , its vector represen- 248

tation can be obtained as: 249

hij = fenc(mij , Di) (1) 250

Here fenc is an encoder network used for encod- 251

ing Di and concatenating the representations of the 252

boundary tokens of mij . The resulting representa- 253

tion hij is fed into the subsequent neural network. 254
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Step 1

News: [input document]
Question 1: In this news, given “[mention 1]” mentioned in the sentence “[the sentence]”.
Please elaborate [mention 1] in the context of the news article.
Present the information in the following format: ‘Elaboration: [mention 1] refers to <placeholder>’.
Question 2: ...

Step 2

News: [input document]
Question 1: In this news, given “[mention 1]” mentioned in the sentence “[the sentence]”.
Elaboration: [output from step 1].
Please further elaborate “[mention 1]” by providing details for entities in the elaboration utilizing
coreference resolution. Provide any available or approximate dates in the news for reference, which
can be inferred from the publication date of the news if available.
Present the information in the following format: ‘Elaboration: [mention 1] refers to <placeholder>’.
Question 2: ...

Table 1: The two-step workflow for LLM summarization. Each prompt includes a document along with multiple
event mentions. Step 2 takes the output from Step 1 as its input. The content to be filled is represented as [content].

3.2 LLM Summarization255

Summarizing events for CDECR poses a non-256

trivial challenge. Existing summarization meth-257

ods are typically designed to provide a general258

overview of documents, making it difficult to ex-259

tract information specific to certain types of events.260

This not only provides limited assistance for coref-261

erence but may also lead to the omission of crucial262

details. Furthermore, designing a summary tem-263

plate for each type of event is not only impracti-264

cal in real-world applications 3 but also introduces265

bias, potentially causing LLMs to misinterpret or266

hallucinate information due to the inherent incom-267

pleteness of event information in documents.268

To address various types of events and gather269

specific details from complex contexts, we design270

a two-step workflow to prompt the LLM, as shown271

in Table 1. The first step is responsible for ex-272

tracting tailored information for different types of273

events in the context of the document. The sec-274

ond step aims to expand the details of the entities275

mentioned in the output of the first step, as entity276

details are often scattered throughout the document.277

In each step, we employ a straightforward prompt278

to accomplish a primary task. Our prompts ad-279

here to the basic principle of faithfulness, avoid-280

ing additional interpretations to prevent semantic281

shifts. Compared to a synthesized single-step work-282

flow, our two-step workflow guarantees that each283

step remains focused on its main objective, thereby284

preventing interference between the two steps, as285

illustrated by the analysis in Section 4.4.286

In the first step, we instruct the LLM agent to287

“elaborate” an event mention, rather than the con-288

3Based on the rough statistics in our experiment, the ECB+
dataset contains over 400 event types.

ventional instruction of “summarize”. The term 289

“elaborate” implies an explanatory behavior based 290

on the concept of the mention words themselves, 291

emphasizing the support of details from the docu- 292

ment context. This suggests that LLMs can auto- 293

matically select any relevant details from the con- 294

text to support this explanation, including contex- 295

tual words, entity mentions, and event mentions. 296

This provides a standardized and feasible way to 297

understand events, leveraging the LLM’s intrinsic 298

knowledge and contextual understanding capabili- 299

ties without imposing complex rules for the LLM 300

to adhere to. 301

In the second step, we prompt the LLM agent 302

to use coreference resolution to aggregate detailed 303

information about entities, as entity coreference is 304

a more standardized task compared with event and 305

performing it within a document reduces complex- 306

ity. Additionally, we require the LLM to perform 307

temporal reasoning based on the publication date 308

of the document, further reducing ambiguity in 309

coreference evidence comparison. 310

In both steps, we specify the generation format to 311

ensure the consistency between the mention spans 312

in summary and original document. This not only 313

reduces the generation difficulty of LLM but also 314

facilitates SLM in establishing the connection be- 315

tween the two during joint representation learning. 316

3.3 Integration into Final SLM 317

The SLM takes the original document and the gen- 318

erated summary as inputs. Through a direct joint 319

representation learning technique, the new mention 320

vector representation can be seamlessly integrated 321

into the baseline. 322

Specifically, for the mention mij , let Sij repre- 323

sents the generated summary, and m
(s)
ij signifies 324
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the mention within it. By concatenating the orig-325

inal document Di and the summary Sij , a new326

document D′
i is formed. Let f ′

enc denotes the new327

encoder network. It first encodes the new document328

D′
i, obtaining vector representations hij and h

(s)
ij329

for mij and m
(s)
ij respectively. These vectors are330

then concatenated to form the fused mention vector331

representation h′ij , which can seamlessly substi-332

tute hij in the baseline for subsequent operations.333

The joint representation learning process can be334

represented as:335

h′ij = f ′
enc({eij , e

(s)
ij }, D′

i)336

= concat
(
fenc({eij , e(s)ij }, D′

i)
)

337

= concat(hij , h
(s)
ij )338

Here {eij , e(s)ij } denotes a set containing two el-339

ements, implying that vector representations for340

both eij and e
(s)
ij can be derived using the same341

process as for a single element.342

This integration method, which involves concate-343

nating the original context and generated summary344

for joint representation learning, enables mutual345

learning of each other’s context in the same atten-346

tion space, thereby enhancing the understanding of347

genuinely coreference-related terms.348

4 Experiments349

4.1 Experimental Settings350

Dataset We conduct experiments on three351

CDECR datasets: Event Coreference Bank Plus352

(ECB+) (Cybulska and Vossen, 2014), Gun Vio-353

lence Corpus (GVC) (Vossen et al., 2018), and354

Football Coreference Corpus (FCC) (Bugert et al.,355

2021). The widely-used ECB+ dataset consists of356

news articles from various topics, including earth-357

quakes, murders, acquisitions, etc. Each topic in-358

cludes two similar subtopics, such as “6.1 earth-359

quake Indonesia 2009” and “6.1 earthquake Indone-360

sia 2013”. This setup aligns with the challenge 1361

mentioned in introduction, asking the model to dis-362

tinguish similar events. Similarly, GVC and FCC,363

focusing on news incidents of gun violence and364

football tournaments, respectively, also have mul-365

tiple subtopics under one overarching topic. More366

details can be found in Table 6 (Appendix A.1).367

Evaluation Metrics Following previous368

work (Barhom et al., 2019; Held et al., 2021),369

we conduct a comprehensive comparison using370

metrics including MUC, B3, CEAFe, CoNLL, 371

and LEA. The CoNLL F1 is a composite metric 372

representing the average of the first three. B3 is 373

chosen for analysis, following Held et al. (2021). 374

Hyper Parameters For LLM summarization, we 375

use the “GPT-4-0613” model via OpenAI API, set- 376

ting the sampling temperature t = 0 to reduce the 377

impact of randomness. In the first step of the gener- 378

ation workflow, we introduce a pre-step of instruct- 379

ing the LLM to perform dependency parsing on 380

the sentence containing the event mention. Based 381

on the parsing results, the LLM then elaborates 382

on the mention. For SLM integration, we employ 383

the pre-trained RoBERTaLARGE model (Liu et al., 384

2019) to embed event mentions, following our base- 385

line (Held et al., 2021). For all three datasets, we 386

apply a consistent set of hyper-parameters for fine- 387

tuning, as detailed in Table 7 (Appendix A.2). In all 388

experiments, be it primary results or analyses, we 389

ensure reliability by conducting three independent 390

experiments and averaging the outcomes. 391

4.2 Results 392

The main results are presented in Table 2. Our 393

method achieves new state-of-the-art results on all 394

three datasets, outperforming both the previously 395

reported best results and the improved results ob- 396

tained by our reproduced baseline. 397

ECB+ On this widely studied dataset, our 398

method demonstrates improvements of 1.5% in 399

CoNLL F1, compared to our baseline. In compar- 400

ison to Held et al. (2021), upon which our base- 401

line is built, our method also exhibits a 1% in- 402

crease in CoNLL F1. 4 This improvement stands 403

out notably in recent research, accompanied by 404

significance testing to demonstrate its robustness. 405

Compared to Chen et al. (2023), who also employs 406

RoBERTaLARGE for encoding while proposing a dif- 407

ferent method to leverage broader contexts, we also 408

achieve a 1% improvement, showcasing the effec- 409

tiveness of our method in utilizing context. 410

GVC & FCC Our method demonstrates im- 411

provements of 2.7% and 7.0% in CoNLL F1 on 412

the GVC and FCC datasets, respectively, compared 413

to our baseline. The significant improvement on 414

the challenging FCC dataset further underscores 415

the effectiveness of our collaborative approach in 416

leveraging LLM. Additionally, our baseline also 417

shows improvements of 1.0% and 7.3% compared 418

4Our baseline is slight lower in CoNLL F1 than reported
by Held et al. (2021), potentially be attributed to randomness.
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Methods
MUC B3 CEAFe CoNLL LEA

R P F1 R P F1 R P F1 F1 R P F1
ECB+
Barhom et al. (2019) 77.6 84.5 80.9 76.1 85.1 80.3 81.0 73.8 77.3 79.5 - - -
Cattan et al. (2020) 85.1 81.9 83.5 82.1 82.7 82.4 75.2 78.9 77.0 81.0 - - -
Bugert et al. (2021) 76.0 76.1 76.1 71.8 81.2 76.2 72.2 72.1 72.2 74.8 55.1 67.9 60.8
Caciularu et al. (2021) 87.1 89.2 88.1 84.9 87.9 86.4 83.3 81.2 82.2 85.6 76.7 77.2 76.9
Held et al. (2021) 87.0 88.1 87.5 85.6 87.7 86.6 80.3 85.8 82.9 85.7 74.9 73.2 74.0
Hsu and Horwood (2022) 87.8 82.9 85.3 86.5 83.1 84.8 76.9 82.8 79.7 83.3 74.4 74.0 74.2
Yu et al. (2022) 88.1 85.1 86.6 86.1 84.7 85.4 79.6 83.1 81.3 84.4 - - -
Ahmed et al. (2023) 80.0 87.3 83.5 79.6 85.4 82.4 83.1 75.5 79.1 81.7 70.5 73.3 71.9
Chen et al. (2023) 88.6 85.9 87.2 87.8 85.4 86.6 82.8 83.7 83.2 85.7 - - -
Our baseline 86.6 86.8 86.7 87.1 86.0 86.5 82.6 82.5 82.5 85.2 77.8 76.6 77.2
Our method 89.4 87.1 88.2 89.1 86.5 87.8 82.7 85.5 84.1 86.7 79.7 78.5 79.3
GVC
Barhom et al. (2019) - - - 81.0 66.0 72.7 - - - - - - -
Bugert et al. (2021) 66.3 78.1 71.7 49.9 73.6 59.5 60.9 38.2 47.0 59.4 38.2 56.5 45.6
Held et al. (2021) 91.8 91.2 91.5 82.2 83.8 83.0 75.5 77.9 76.7 83.7 79.0 82.3 80.6
Ahmed et al. (2023) 84.0 91.1 87.4 79.0 76.4 77.7 69.6 52.5 59.9 75.0 74.1 63.9 68.6
Our baseline 91.3 92.0 91.7 86.2 83.8 84.9 78.7 76.5 77.6 84.7 82.0 78.4 80.2
Our method 92.4 93.2 92.8 87.0 87.4 87.2 83.6 80.7 82.1 87.4 83.4 83.0 83.2
FCC
Barhom et al. (2019) - - - 36.0 83.0 50.2 - - - - - - -
Bugert et al. (2021) 82.7 78.3 80.4 70.8 38.3 49.2 28.2 40.4 33.2 54.3 60.4 30.4 39.8
Held et al. (2021) 86.4 75.7 80.7 61.6 65.4 63.5 39.1 65.3 48.9 64.4 47.2 57.0 51.6
Our baseline 81.4 89.0 85.1 69.4 66.6 68.0 76.4 52.2 62.0 71.7 63.5 54.6 58.7
Our method 85.3 90.6 87.8 74.5 82.5 78.3 80.9 61.5 69.8 78.7 69.7 73.5 71.5

Table 2: Performance comparison on the ECB+, GVC, and FCC datasets. Our baseline results are obtained
by replicating the state-of-the-art method proposed by Held et al. (2021), with the adoption of more advanced
hyper-parameters. Our method shows a statistically significant improvement compared to our baseline, with a
significance level of p < 0.01. The best results are highlighted in bold.

to Held et al. (2021), highlighting our comprehen-419

sive exploration on these two less-studied datasets.420

4.3 The Impact of LLM Summarization421

Error Analysis To gain a deeper understanding422

of the improvements achieved through LLM sum-423

marization, we perform a quantitative analysis on424

the false links within the clusters (see Table 3).425

Similar to Yu et al. (2022), we categorize link426

errors into two types: false positive (FP) and false427

negative (FN). FP links (incorrect links) occur428

when two non-coreferential mentions are clustered429

together, while FN links (missing links) occur when430

two coreferential mentions are not clustered to-431

gether. Additionally, we further categorize FP links432

into two sub-types based on whether two mentions433

share the same event type.5 FPA (false positives434

caused by arguments) indicates that two mentions435

of the same type differ in argument information.436

FPT (false positives caused by types) implies that437

two mentions actually belong to different event438

types, eliminating the need to consider arguments.439

5Details are provided in Appendix A.3.

Dataset Method FPA FPT FN

ECB+
Our baseline 1775 302 1262
Our method 1227 152 1087

GVC
Our baseline 1412 13 1041
Our method 865 13 1173

FCC
Our baseline 38522 0 8978
Our method 4037 20 8575

Table 3: Statistics of errors by different types.

FPA Our method demonstrates the most substan- 440

tial reduction in FPA errors across all three datasets, 441

making the greatest contribution to the overall im- 442

provement. The reduction is approximately 30% 443

for both ECB+ and GVC, and nearly 90% for FCC. 444

The significant reduction on FCC is primary at- 445

tributed to its nature, comprising multiple consec- 446

utive events from a large tournament, resulting in 447

more pronounced contextual similarities. This un- 448

derscores the effectiveness of our method in distin- 449

guishing events with similar contextual narratives 450

(aligning with the challenge 1 from introduction). 451

In Table 4, we present instances illustrating two 452

highly similar earthquakes. The original context 453
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Context Summarization
Dozens injured, child dead as [6.1 - magnitude earthquake] hits In-
donesia’s Aceh Updated : July 02, 2013 15:50 IST A 6.1-magnitude
earthquake which hit the Indonesian province of Aceh on Tuesday killed
a child, injured dozens and destroyed buildings ... The quake struck
inland at 0737 GMT at a depth of just 10 kilometres (6.2 miles) ... the
US Geological Survey said . House collapsed ... 50 people with injuries
... 30 people seriously injured ... People panicked and rushed out of their
homes ... In 2004 a massive tremor sparked a tsunami ...

[6.1-magnitude earthquake] refers to the
seismic event that occurred in the Bener
Meriah district in the heart of Aceh, In-
donesia, on July 2, 2013. The earthquake
struck inland at 0737 GMT at a depth of
just 10 kilometres (6.2 miles) and was
felt strongly for around 15 seconds, from
Bener Meriah to Banda Aceh.

Indonesia’s West Papua province was hit by a magnitude 6.1 [earthquake]
today, the latest powerful tremor to shake the region where five people
were killed and hundreds injured at the weekend when buildings were
destroyed. The quake struck off the coast at 7:48 a.m. local time, 75
kilometers (50 miles) ... the U.S. Geological Survey said ... At least
five people were killed, 250 others injured and more than 800 homes
destroyed ... 14,000 people fled their homes ... temblor in 2004 caused a
tsunami ...

[earthquake] refers to the magnitude
6.1 earthquake that hit Indonesia’s West
Papua province on an unspecified date.
The earthquake struck off the coast at 7:48
a.m. local time, 75 kilometers (50 miles)
west of the region’s main city of Manok-
wari, according to the U.S. Geological Sur-
vey.

Table 4: Two non-coreferential mentions for the event type “earthquake”, illustrating the remarkably similar contexts,
as well as our generated more distinctive summaries. To better illustrate the similarity, we preserve the sentence
containing the mention along with similar content from the context. Key information in our summarization is
highlighted in bold. Mention spans are represented as [mention span].

includes details about the earthquake occurrence,454

earthquake casualties, media coverage, and histor-455

ical events. Our generated summaries primarily456

focus on the core details of the earthquakes, such457

as date and specific location, thus facilitating their458

differentiation. It can be observed that our LLM459

summarization is capable of identifying specific460

information for particular events and aggregating461

sufficient details from the entire context.462

FPT Compared to FPA, there are significantly463

fewer FPT errors, only appearing in the ECB+464

dataset. The few occurrences on the single-topic465

GVC and FCC datasets can likely be disregarded,466

possibly due to random factors. This is because467

in the multi-topic ECB+ dataset, there may be top-468

ics in the test set that were not encountered in the469

training set, leading to unseen event types. By re-470

ducing half of the FPT errors on the ECB+ dataset,471

it signifies that our summarization also assists in472

distinguishing unseen event types.473

FN Our method shows less improvement in re-474

ducing FN errors compared to FP. The challenges475

arise from two primary factors. Firstly, mentions476

of the same event can vary greatly in expression477

styles. Secondly, some event mentions naturally478

lack sufficient details as the authors assume that479

readers already possess necessary background in-480

formation. We illustrate these issues with instances481

in Appendix A.4. For these cases (aligning with482

the challenge 2 in introduction), additional training483

data or external information retrieval may be nec-484

essary, as our faithful summarization based on the485

Figure 2: LLM paraphrase comparison with B3 F1. The
vertical axis has a baseline starting from 60.

original context struggles to cope. 486

Overall, LLM summarization excels in consoli- 487

dating information for specific events, facilitating 488

the differentiation of similar yet non-coreferential 489

events. Relatively, its effectiveness is limited for 490

events with significant expression differences or 491

those lacking essential details. 492

LLM Summarization VS LLM Paraphrase To 493

validate that the performance improvement brought 494

by our summarization is due to genuinely extract- 495

ing crucial information rather than introducing di- 496

versity in context, we conduct a comparison with 497

paraphrases generated by the LLM. We prompt 498

the LLM to paraphrase the context of mentions in- 499

stead of the sentences they belong to, and use the 500

same hyper-parameters for fine-tuning the SLM. 501
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Figure 3: Comparison of different steps with B3 F1.
The vertical axis has a baseline starting from 65.

As shown in Figure 2, compared to our baseline,502

LLM paraphrase exhibits a slight improvement on503

GVC and FCC, with a more pronounced decline504

on ECB+. More importantly, it significantly lags505

behind our summarization on all datasets. This506

comparison demonstrates the capability of our sum-507

marization method in selecting and aggregating rel-508

evant information. The prompt for LLM paraphrase509

is provided in Table 11 (Appendix A.5).510

4.4 Ablation Study on the Two-step Workflow511

We conduct an ablation study to specifically il-512

lustrate the effect of Step 1 and Step 2 in LLM513

summarization (Table 1). As shown in Figure 3,514

both steps contribute to the overall improvement,515

with the second step being more pronounced, espe-516

cially on the FCC dataset. This is attributed to the517

longer documents in FCC, with nearly double the518

number of sentences in each document compared519

to the other two datasets. This demonstrates that520

the information provided in Step 1 establishes a521

solid foundation but is relatively localized. Step522

2, involving global information expansion, plays a523

crucial role in overall enhancement.524

To examine the benefits of decomposed execu-525

tion, we further integrate the two-step workflow526

into a single-step one through simple concatena-527

tion. Despite demonstrating comparable perfor-528

mance on GVC, the integrated workflow shows a529

noticeable lag, being 1.2% and 2% behind on ECB+530

and FCC, respectively, in terms of B3 F1. This in-531

dicates that even with straightforward instructions,532

decomposing the multi-objective task into multiple533

independent steps is necessary, as evidenced by the534

recent LLM agent studies (Aksitov et al., 2023).535

We perform error analysis and compare the536

lengths of the generated summaries to provide a de-537

Method R P F1
Cluster+Lemma (Barhom et al., 2019) 71.7 85.0 77.8

Few-shot
Mention-inclusive sentences 76.3 78.1 77.2
Full context 65.6 77.2 70.9

Zero-shot
Mention-inclusive sentences 78.6 60.4 68.3
Full context 75.6 56.4 64.6

Table 5: Results on the ECB+ test set, based on the
B3 metric. “Mention-inclusive sentences” indicates
that we retain only those sentences containing mentions,
reducing the complexity of contextual understanding.

tailed explanation of the impact of each step in the 538

workflow and its decomposition. Further details 539

can be found in Appendix A.6. 540

4.5 GPT-4 Performance on CDECR 541

We test the performance of GPT-4 using in-context 542

learning in both few-shot and zero-shot settings 543

(see Table 5). In the few-shot setting, GPT-4 544

achieves performance comparable to the method 545

based on lemma matching (Here lemma refers to 546

the span words of a mention.). According to our 547

observations, GPT-4 still relies on a simplistic ap- 548

proach of clustering based on the literal meaning 549

of mentions. And the role of demonstrations seems 550

limited to expanding the scope of matching for 551

synonymous mentions without considering their 552

contexts. Moreover, its performance notably drops 553

when dealing with complete contexts, showing dif- 554

ficulty in understanding lengthy contexts composed 555

of multiple documents. In the zero-shot setting, 556

there are cases where a large number of unrelated 557

mentions are clustered into a single category, result- 558

ing in relatively high recall but very low precision. 559

This emphasizes the complexity of the CDECR 560

task, as GPT-4 faces challenges in performing basic 561

clustering solely relying on task description. Imple- 562

mentation details can be found in Appendix A.7. 563

5 Conclusion 564

We design generic tasks to leverage the potential 565

of LLMs for CDECR, effectively bridging the gap 566

between the general capabilities of LLMs and the 567

complex annotation guidelines of specific IE tasks. 568

Results show that by harnessing the inherent knowl- 569

edge and comprehension abilities of LLMs to gain 570

a deeper understanding of events, our collabora- 571

tive approach can alleviate the challenge of SLMs 572

for complex contextual understanding, ultimately 573

enhancing performance. 574

8



Limitations575

The LLM we use is GPT-4-0613. Moving forward,576

we plan to assess the performance of additional577

LLMs, such as LLaMa (Touvron et al., 2023).578

For CDECR, where internal information within579

the given document might be insufficient, there580

arises a need for external information retrieval. We581

are considering further leveraging the capabilities582

of LLMs to explore how to retrieve supplementary583

information from external corpora such as news584

articles. Our aim is to combine this additional585

information with the given documents to enhance586

performance.587
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We adhere to the ACL Code of Ethics.589
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A Experimental details 871

A.1 Dataset Statistics 872

As shown in Table 6. 873

ECB+ GVC FCC
Documents 982 510 451
Sentences 16314 9782 14940
Event mentions 6833 7298 3563
Event clusters 2741 1411 469
Event coref links 26712 29398 145272

Table 6: Statistics of each dataset.

A.2 SLM Fine-tuning Hyper-parameters 874

As shown in Table 7. 875

Candidate
retrieval

Pairwise
classification

Learning rate 1e-5 6e-6
Batch size 16 16
Epochs 50 20
Early stop patience 10 5
Train neighbor size - 20
Eval neighbor size 10 10

Table 7: Hyper-parameters for fine-tuning the SLM-
based modules.

A.3 Event Type Categorization 876

Mentions Clusters Types
ECB+ 1780 805 405
GVC 1008 194 4
FCC 1074 167 19

Table 8: Statistics for mention, cluster, and event type
in the test set.
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To categorize event types, we establish a three-877

layer hierarchical structure of (mention->cluster-878

>type), linking types between mentions. Specifi-879

cally, if there are synonymous mentions between880

any two clusters, they belong to the same event881

type, and all mentions within the clusters belong882

to a synonymous event type. Drawing inspiration883

from (Ahmed et al., 2023), we determine mention884

synonymity by matching their span words. Table 8885

illustrates that the contents of FCC and GVC be-886

long to the same topic, resulting in a concentrated887

set of event types. Conversely, ECB+ involves vari-888

ous topics such as quake, murder, acquisition, etc.,889

leading to a diverse set of event types.890

A.4 False Negative Cases891

Given the context where mentions of the same892

event can vary greatly in expression styles, we pro-893

vide an illustrative example in Table 9.894

Event Smith case as the incarnation of the Doctor

Mention
expressions

was handed the keys to the Tardis
winning the role of the 11th Doctor

stepping into Doctor Who’s title role

Table 9: Variations in mention expressions for identical
event.

In cases where event mentions naturally lack895

sufficient details, we illustrate this phenomenon896

through Table 10, which presents two mentions of897

the same earthquake. The context for the first men-898

tion contains essential information such as time,899

location, magnitude, casualties, etc. In contrast,900

the context for the second mention primarily de-901

scribes the subjective experiences of the individ-902

uals involved, lacking details related to the event903

itself. Despite our summarization extracting key904

information from the original context, it encounters905

difficulties in supporting coreference judgments.906

A.5 LLM Paraphrase Prompt907

As shown in Table 11.908

A.6 Two-step Workflow Analysis909

Error Analysis We conduct error analysis for the910

workflow with only Step 1, the complete two-step911

workflow (Step 2), and the integrated single-step912

workflow.913

As shown in Figure 4, Step 1 exhibits a sig-914

nificant reduction in FPA errors across all three915

datasets, indicating its effectiveness in extracting916

tailored information. However, an increase in FN917

errors is observed across all three datasets, suggest- 918

ing that while Step 1 provides sufficiently distinc- 919

tive information, it lacks the details needed to link 920

mentions of the same event. This issue was notably 921

addressed by the introduction of Step 2, resulting 922

in a substantial decrease in FN errors across all 923

datasets. FPA errors are also largely maintained 924

at the level achieved in Step 1, leading to a sig- 925

nificant improvement in coreference results. This 926

emphasizes the indispensable roles of both Step 1 927

and Step 2 in the final outcomes. In Table 12, we 928

provide examples to compare summaries generated 929

by Step 1 and Step 2. 930

Compared to the two-step workflow, the inte- 931

grated single-step workflow shows differing de- 932

grees of increase in both FPA and FN errors, further 933

underscoring the necessity of decomposed execu- 934

tion. 935

Summarization length comparison We further 936

compare the lengths of summaries generated in 937

Step 1 and Step 2. As illustrated by the green line 938

in Figure 5, it is evident that Step 2, building upon 939

Step 1, results in approximately double the length. 940

The additional detailed content contributes to the 941

reduction of FN errors, effectively linking mentions 942

of the same event. Furthermore, as indicated by 943

the red and blue lines, our generated summaries 944

remain within approximately 20% of the original 945

document starting from a document length of 200 946

words. Moreover, with the increase in document 947

length, this proportion further diminishes. This 948

reflects the conciseness our summarization. 949

A.7 GPT-4 Evaluation 950

Considering the need to handle very long con- 951

texts composed of multiple documents, we opt for 952

the “GPT-4-Turbo-Preview” model from OpenAI, 953

which can accommodate up to 120k tokens. De- 954

spite this, the model still cannot accommodate all 955

200+ documents in the ECB+ test set. Hence, we 956

conduct testing at the topic level, which means plac- 957

ing all documents from a topic into a single prompt 958

(there are no cross-topic links in ECB+). Also, We 959

introduce only one random selected topic from the 960

training data as the demonstration. The prompt is 961

shown in Table 13. We set the model parameters, 962

including seed and temperature, to 0 to minimize 963

randomness. Additionally, we specify the output 964

format to be in JSON. 965
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Context Summarization
[4.6 earthquake] shakes Northern California March 14, 2013 |
8:16 am A magnitude 4.6 earthquake struck Northern California
on Thursday morning, The temblor struck about 26 miles north of
Santa Rosa in the Geysers area. There were no reports of damage
or injuries, but there were some apparent aftershocks. It was felt
over a wide area of the region, including in Santa Rosa, Marin
County and Vallejo, according to the U.S. Geological Survey.
The "Do You Feel It?" survey by the USGS showed people as far
south a San Francisco felt shaking.

[4.6 earthquake] refers to the seismic event that
occurred in Northern California on March 14,
2013, with a magnitude of 4.6 on the Richter scale.
The earthquake was felt over a wide area of the
region, including in Santa Rosa, Marin County,
and Vallejo, and caused some apparent aftershocks.
However, there were no reports of damage or in-
juries.

Good sized quake at the California Geysers I felt this one pretty
good. I’m located 25 miles south of the quake. Slow easy rocking
for about 6 seconds. This one is pretty rare for the Geysers. The
Geysers is one of the most active areas of Northern California
with small earthquakes hitting the area nearly every week. A 4.4
[quake] is on the large size for The Geysers. The UGSG Website
says the largest quake ever to be recorded there was 4.5.

[quake] refers to a seismic event that occurred at the
California Geysers, which was felt 25 miles south
of the epicenter. The quake was described as a
slow, easy rocking that lasted for about 6 seconds.
The exact date of the quake is not provided in
the news, but it can be inferred to have occurred
recently based on the publication date of the news.

Table 10: Two coreferential mentions referring to the same earthquake, where the second provides minimal
coreference evidence. Key information in our summarization is highlighted in bold. Mention spans are represented
as [mention span].

News: [input document]
Question 1: In this news, given “[mention 1]” mentioned in the sentence “[the sentence]”.
Concatenate the preceding five sentences of the current sentence (ignore if not available), the current sentence,
and the subsequent five sentences of the current sentence (ignore if not available) into a single paragraph. Then,
paraphrase the concatenated paragraph while preserving the mention [mention 1]. Attempt to express the
information differently while maintaining the meaning and key information. Ensure that the mention [mention 1]
is preserved and marked as #[mention 1]# in the paraphrased result. Limit the paraphrased result to three sentences.
Present the information in the following format: ‘Paraphrase: <placeholder>’.
Question 2: ...

Table 11: The prompt for LLM paraphrase. Each prompt includes a document along with multiple event mentions.
The content to be filled is represented as [content].

Figure 4: FPA and FN error comparison. Due to the rarity of FPT-type errors, we have omitted them in the figures
for better clarity in presentation. Step 2 is built upon Step 1, and the integrated involves merging the two steps
together.
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Step 1 Step 2
[6.1-magnitude earthquake] refers
to the seismic event that occurred
in Aceh, Indonesia, with a magni-
tude of 6.1 on the Richter scale.

[6.1-magnitude earthquake] refers to the seismic event that occurred in the Bener
Meriah district in the heart of Aceh, Indonesia, on July 2, 2013. The earthquake
struck inland at 0737 GMT at a depth of just 10 kilometres (6.2 miles) and was
felt strongly for around 15 seconds, from Bener Meriah to Banda Aceh.

[earthquake] refers to the magni-
tude 6.1 earthquake that hit Indone-
sia’s West Papua province.

[earthquake] refers to the magnitude 6.1 earthquake that hit Indonesia’s West
Papua province on an unspecified date. The earthquake struck off the coast at
7:48 a.m. local time, 75 kilometers (50 miles) west of the region’s main city of
Manokwari, according to the U.S. Geological Survey.

Table 12: Comparison of summaries generated by Step 1 and Step 2. Step 2 is built upon Step 1. Key information
for distinguishing in Step 2 is highlighted in bold. Mention spans are represented as [mention span].

Figure 5: Summarization length comparison. Step 2 is built upon Step 1. The vertical axis represents the ratio of
content word count. The horizontal axis represents the number of words in the content, scaled by a factor of 100.

System role

You are a helpful assistant tasked with clustering coreferential event mentions in the provided documents.
The event mentions in the documents are marked as follows: [mention string](mention id). Please output
the result in JSON format without whitespace. In the JSON structure, each ‘mention id’ is assigned
a ‘cluster id’.

Prompt

You can learn from the following example:
Input:
Document: [... [mention](mention_id) ...]
...
Output: [mention_id: cluster_id, ...]
Now the following is your task:
Document: [... [mention](mention_id) ...]
...

Table 13: The prompt for GPT-4 evaluation. The system role is used to declare task requirements and output
specifications. The prompt is divided into two sections: initially, a demonstration, followed by data to be processed.
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