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Figure 1: FFHQ results on four inverse problems: (a) Gaussian deblurring, (b) phase retrieval, (c)
random inpainting, (d) HDR. Each panel shows the measurement, baselines (pixel: DAPS, SIT-
COM; latent: Latent DAPS, Resample), our FAST-DIPS output (pixel or latent as labeled), and the
reference. SSIM/LPIPS and average per-image runtime (s) are overlaid; FAST-DIPS attains compa-
rable or higher quality with markedly lower runtime.

ABSTRACT

FAST-DIPS is a training-free solver for diffusion-prior inverse problems, includ-
ing nonlinear forward operators. At each noise level, a pretrained denoiser pro-
vides an anchor z|;; we then perform a hard-constrained proximal correction in
measurement space (AWGN) by solving miny ﬁ [[x—xop¢]|? s.t. JA(x)—y| <e.
The correction is implemented via an adjoint-free ADMM with a closed-form pro-
jection onto the Euclidean ball and a few steepest-descent updates whose step size
is analytic and computable from one VJP and one JVP—or a forward-difference
surrogate—followed by decoupled re-annealing. We show this step minimizes a
local quadratic model (with backtracking-based descent), any ADMM fixed point
satisfies KKT for the hard-constraint, and mode substitution yields a bounded
time-marginal error. We also derive a latent variant (A — Ao D) and a one-
parameter pixel—latent hybrid schedule. Across eight linear and nonlinear tasks,
FAST-DIPS matches or surpasses training-free baselines while reducing wall-
clock by 5x—25x%, requiring only autodiff access to A and no hand-coded adjoints
or inner MCMC.



Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Inverse problems seek to recover an unknown signal xo from partial and noisy measurements y =
A(x¢) + n. Such problems are ubiquitous in science and engineering, yet they are often ill-posed:
distinct xg can produce similar y due to the structure of the operator .4 and measurement noise n.
The Bayesian viewpoint constrains the solution via a prior and asks to sample from p(xg | y)

p(y | %o0) p(x0).

Diffusion models have emerged as a powerful class of learned priors for modeling complex data dis-
tributions, including natural images (Ho et al. (2020); Song & Ermon (2020); Song et al. (2021a;b);
Dhariwal & Nichol (2021); Karras et al. (2022); Song et al. (2023); Lu & Song (2025)). Through
reverse-time dynamics, they progressively transform simple noise into samples from the target dis-
tribution. This generative mechanism offers a natural framework for inverse problems, where the
reverse-time SDE is guided by measurements to draw posterior.

Diffusion-based inverse problem solvers generally begin with an unconditional pretrained prior and
impose data consistency at sampling time. Representative examples include task-specific diffu-
sion solver (Saharia et al. (2023); Lugmayr et al. (2022); Liu et al. (2023)), linear-operator frame-
works(Kawar et al. (2022); Wang et al. (2023)), and decoupled/posterior-aware updates (Chung
et al. (2023a;b); Dou & Song (2024); Zhang et al. (2025)). Other lines formulate plug-and-play
optimization with diffusion denoisers (Zhu et al. (2023); Rout et al. (2024); Wu et al. (2024); Xu &
Chi (2024); Mardani et al. (2024); Wang et al. (2024); Yang et al. (2025)), Monte-Carlo guidance
(Cardoso et al. (2024)), or aim for faster sampling via preconditioning, parallelization, or schedule
tailoring (Garber & Tirer (2024); Cao et al. (2024); Liu et al. (2024); Chung et al. (2024)). A central
practical question is how data consistency is enforced. Many training-free designs rely on differenti-
ation through A, often in the form of explicit adjoints or pseudo-inverse, which can raise engineering
barriers and restrict applicability to operators with readily available derivatives (Kawar et al. (2022);
Wang et al. (2023); Rout et al. (2023); Liu et al. (2024); Pandey et al. (2024); Cao et al. (2024);
Garber & Tirer (2024); Dou & Song (2024); Cardoso et al. (2024); Chung et al. (2024)). Methods
that avoid hand-coded adjoints typically lean on inner iterative solvers or MCMC subloops, which
increase wall-clock cost due to repeated score/denoiser calls (Zhu et al. (2023); Wu et al. (2024); Xu
& Chi (2024); Mardani et al. (2024); Wang et al. (2024); Zhang et al. (2025)).

A complementary design axis is latent vs. pixel execution. Latent diffusion models reduce di-
mensionality and sampling cost, and many recent posterior samplers therefore operate in latent
space (Rombach et al. (2022); Podell et al. (2024); Song et al. (2024); Rout et al. (2024); Zhang
et al. (2025)). However, when fidelity is defined in pixel space, gradients V|| A(D(z)) — y|?
require repeated decoder-Jacobian evaluations, creating a throughput bottleneck. Conversely,
pixel-space updates avoid the decoder but can be sensitive to how Jacobian—vector products (JVPs)
are computed for highly nonlinear A. These tradeoffs motivate methods that (i) enforce explicit
measurement-space feasibility, (ii) avoid hand-coded adjoints while making minimal autodiff calls,
(iii) minimize inner iterations, and (iv) leverage latent space where it helps most.

We propose FAST-DIPS (Fast And STable Diffusion-prior Inverse Problem Solver), a training-free
framework that (i) keeps the transport across diffusion time steps decoupled, (ii) enforces a hard
credible set in measurement space under an AWGN assumption (Euclidean norm), and (iii) performs
the per-level correction via an adjoint-free ADMM with few-step descent update equipped with an
analytic step size. Concretely, the denoiser provides a level-wise anchor; around it, we solve a
hard-constrained proximal problem that projects the predicted measurement onto a ball (credible
set) and updates the image by a single steepest-descent step with a step size computable from one
vector—Jacobian product (VIP) and one JVP—or a forward-difference JVP fallback—followed by
short backtracking. After correction we re-anneal by injecting the next-level noise, realizing the
exact time-marginal recursion. We also develop a latent counterpart (replace A by 40D, where
D : RF = REHW j5 a pretrained decoder; the matching encoder is £) and a hybrid schedule that
corrects in pixels early (cheap, robust) and latents late (manifold-faithful).

FAST-DIPS differs from PnP/RED-ADMM (Chan et al. (2017); Venkatakrishnan et al. (2013)): the
denoiser is not used as a proximal map; instead, it supplies an anchor and ADMM enforces measure-
ment feasibility around that anchor. Unlike quadratic data penalties that require tuning a tradeoff
weight and can be brittle under noise miscalibration, we use a set-valued (indicator) likelihood in the
measurement domain (AWGN), which exposes an interpretable budget. Unlike coupled DPS-style
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Figure 2: FAST-DIPS method sketch. At each noise level t we (1) take a denoiser anchor xgs, (2)
apply a hard-constrained correction by solving a proximal objective subject to a measurement-space
credible set via few-step ADMM (closed-form projection and few-step descent with analytic a*
from one VJP + one JVP or a forward-difference fallback), and (3) re-anneal to obtain x;_.

guidance (Chung et al. (2023a)), we deliberately keep traversal decoupled and invoke the exact
marginal transport after each correction. Relative to latent-only pipelines, our hybrid pixel—latent
scheme trims decoder-Jacobian traffic early while preserving generative-manifold fidelity late. Im-
portantly, while FAST-DIPS does assume (piecewise) differentiability to leverage automatic differ-
entiation (Baydin et al. (2018)) for VJP (and a single JVP or its forward-difference surrogate), it
does not require hand-crafted adjoints or closed-form Jacobians of .4, reducing engineering burden
compared to many prior training-free designs.

Our contributions can be summarized as follows:

* Adjoint-free hard-constrained correction. A denoiser-anchored, measurement-space
credible-set MAP with schedule-aware trust region; ADMM with closed-form projection
and few analytic descent steps using one VJP + one JVP (or a forward-only probe), elimi-
nating hand-crafted adjoints and inner MCMC.

* Theory with practical guarantees. The analytic step exactly minimizes a local quadratic
model and, with backtracking, guarantees descent; ADMM fixed points satisfy KKT for the
hard-constraint; decoupled re-annealing; mode substitution yields a bounded time-marginal
eITOr.

* Latent & hybrid execution + empirical speed. A latent counterpart via Ao D and a one-
switch pixel—latent hybrid improve early-time throughput and late-time fidelity; across
eight linear and nonlinear tasks, the method attains similar or better quality with 5x—-25x
lower runtime and robust default hyperparameters.

Orthogonal to our contributions, fast samplers and preconditioning/parallelization can reduce the
number of denoising steps (Zhao et al. (2024); Cao et al. (2024); Liu et al. (2024); Chung et al.
(2024)). FAST-DIPS complements such advances by minimizing inner correction cost and adjoint
engineering while preserving explicit measurement feasibility, so these techniques are composable
with our approach.
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2 METHOD

2.1 PROBLEM SETUP

Let xg € R denote the clean image stacked as a vector and
y = Axo) +n,  n~N(0, 5°), )
where A : RCHW _ R™ is a (possibly nonlinear) forward operator. Throughout the paper we

assume additive white Gaussian noise (AWGN) with variance 32 and use the standard Euclidean
norm in measurement space.

2.2  PROBABILISTIC MOTIVATION AND THE PER-LEVEL OBJECTIVE

The reverse process of the diffusion model, conditioned on y, is described by the reverse-time
SDE (Song et al. (2021b)):

dx¢ = =26 ()0 (t)Vx, log p(xely; o0) dt + /26 (t)o (t) dw, 2

At each diffusion level ¢ we maintain a state x; and wish to transform the time—marginal p(x; | y)
into a good approximation to p(x¢—1 |y) by performing a local, measurement-aware likelihood cor-
rection around the denoiser’s prediction. The derivation proceeds from the conditional factorization
p(xt | %0,y) o p(xo [ x:) p(y | %), 3)

and two modeling choices: a local Laplace surrogate for p(xo | x;) and a set-valued likelihood in
measurement space.

Local prior surrogate around the denoiser. Write
Xot = Xden (Xt, 0¢), “4)

and approximate the intractable p(xg |X;) by a Gaussian centered at X},

p(xo | X¢) = Pe(Xo | x¢) o GXP( - ﬁ lIxo0 — X0|t||2>, &)

where v; > 0 plays the role of a local prior variance. We use the schedule-aware parameterization
¢ = Ao? so that the proximal trust-region naturally tightens with annealing.

Conservative likelihood via a measurement-space credible set. Under AWGN, the Gaussian
likelihood is

p(y | x0,8) o< 587" exp( = ok [AGxo) = yII?), ©)

which we replace by a set-valued surrogate that is robust to noise miscalibration while preserving
a principled notion of data fidelity. If 8 is known, then for any confidence level 1 — § the (1 — §)-

level set of Equation 6 is the Euclidean ball {v : ||v — y|| < e} withe = 3,/x? , s (Casella &
Berger (1990)); conditioning on this set replaces the likelihood by its indicator. If 5 is unknown,

profiling it out gives —logp(y | xo,5(x0)) x mlogl||.A(x¢) — y| (Casella & Berger (1990)),
which is monotone in the residual norm; optimizing at a fixed confidence thus amounts to enforcing
[ A(xo) — y|| < e for a chosen budget € > 0 (Engl et al. (1996)). Both viewpoints lead to the
conservative surrogate

l=(y | x0) o< 1{||A(xo) —y|l < ¢} (7)

Per-level surrogate conditional and MAP. Combining Equation 5 and Equation 7 with Equa-
tion 3 yields

Bi(xo | x1,y) o exp( = 24 [Ixo = xopll?) 1{IA(x0) = ¥l < e} ®)
We take the mode of Equation 8 as the likelihood correction at level £, which solves

1
X7 € arg min — ||x — xg¢||? s.t. [JA(x) —y|| < e. 9

e e min o x -l st AG) -~y < ©)

Problem Equation 9 is a hard-constrained proximal objective: the first term is a schedule-aware trust
region around the denoiser estimate, while the constraint enforces measurement feasibility within

an uncertainty budget in the whitened space.
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2.3 DECOUPLED RE-ANNEALING AND CONNECTION TO TIME—-MARGINALS

Let ky—yi—1(x¢—1 | X0) = N(x4—1; X0,07_1I) denote the diffusion kernel that transports the clean
image to the next diffusion state. The exact time—-marginal recursion (Ho et al. (2020); Song et al.
(2021b)) is

P(thl ‘ Y) = / [/Ktﬁtl(xtl ‘ xo)p(xo | Xtuy) dxg P(Xt | Y) dx;. (10)

Thus, transforming p(x; | y) to p(x;—1 | y) amounts to obtaining a representative xo ~ p(Xo | X¢,y)
and injecting Gaussian noise of variance o2_;. We approximate p(xq | X¢,y) by p; in Equation 8
and substitute its mode, yielding the practical sampling rule

Xi—1 = X + 01§, §~N(0,1I). 1D

Proposition 1 (Mode-substitution error under Laplace). Assume locally p(x¢ | x¢,y) =~ N (m, %)
and let x7°" solve Equation 9. Then the KL divergence between the time—marginals obtained by (i)
injecting noise from N (my, ;) and (ii) injecting noise centered at X(C)Tt” is bounded by

b =312

2 1
2074 doi_y

KL(N(m, S+ 07, 0) || NG, 0201)) < (12)

Consequences. The bound is small (i) early, when o?_, is large, and (ii) late, when ||| is small;
this justifies the decoupled rule Equation 11.

2.4 PIXEL-SPACE ADMM SOLVER WITH ADJOINT-FREE UPDATES

We solve Equation 9 via variable splitting (Combettes & Pesquet (2011); Boyd et al. (2011)) in pixel
space. Introduce an auxiliary v~ .4(x) and the feasibility set C := {v : |[v — y|| < ¢}. Consider

min ﬁ”x — %ol + te(v) st A(x)—v=0, (13)
> , ——
F() 9(v)
where ¢ is the indicator of C. Using scaled ADMM with penalty p > 0 and scaled dual u, we iterate
.1
x* ! = arg min —|x - xo‘t\|2 + £||A(x) —vk 4 uk||2, (14)
x 2 2
yiHl = HC(A(xk“) + uk), (15)
uftt = ub 4 AR — v (16)

Let b* := v* — u* for brevity.

Proposition 2 (Closed-form projection onto the credible set). LetC = {v e R™ : |[v—y| < e} in
the measurement space. Then the Euclidean projection Ilc(w) in Equation 15 is exactly the radial
shrink (Parikh & Boyd (2014))

w, HW - YH < &
Hc(w) = w — (17)

y+e ”7}"', otherwise.
WYy

Efficient x-update. Define the smooth objective for Equation 14

1 .
FO) = glbe= ol + GIAG) — bR, (8)
Its gradient is
1
g = VF(x) = —(x—xo) + pIax)"(Ax) -b*), x<x—ag, (19
t
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where J 4 (x) is the Jacobian of A at x. Crucially, both the VIP J 4(x) 'r and the JVP J4(x) g can
be obtained from autodiff (Baydin et al. (2018)).

Let s := x — Xo|; and r := A(x) — b*. We linearize A along the descent direction:
Alx—ag) = Ax) —aJa(x)g. (20)

Substituting Equation 20 into F'(x — ag) yields a one-dimensional quadratic model (Nocedal &
Wright (2006))

~ 1
Fla) = 5 -lls — ogl + 5l — ala(sl, @D

whose exact minimizer is .
N ?<Sv g> + p<I‘, JA(X)g> (22)
=gl + pllJa(x)gl

*

with J 4(x)g obtained via a single JVP.

Proposition 3 (Local model-optimal step and descent). Under C! regularity of A near x, o* in
Equation 22 minimizes the quadratic model Equation 21. Moreover,

(L(s.8) + plr, Ja(x)g)’
2(L gl + pllJa()e]?)

and the backtracking line search (Armijo (1966)) guarantees monotone decrease of F' even when
Equation 20 is only a local approximation.

F(x—a'g) < F(x) —

+ O(|lgl), (23)

Remark 1 (Linear A yields exact optimal line search). If A is linear, then Equation 20 is exact and
Equation 22 gives the true optimal line-search step for F' along —g (Nocedal & Wright (2006)),
delivering the fastest progress among steepest-descent steps.

Step Size via Finite-Difference Approximation. The analytic step size o* in Equation 22 pro-
vides a nearly optimal descent but requires a JVP, J4(x)g. In scenarios where an automatic differ-
entiation engine providing JVPs is unavailable or impractical, we can estimate the JVP by a single
forward probe (Nocedal & Wright (2006)):
A -A AA
Ja(x)g ~ (X“L"g;?) LI e (104,1072] (24)

which replaces one JVP by one extra forward evaluation of A.

By substituting this approximation into the quadratic model’s minimizer Equation 22, we derive
a practical, “forward-only” step size that circumvents the need for an explicit JVP or an adjoint
operator.

Remark 2 (Step size from finite-difference JVP). Replacing J4(x)g in Equation 22 by AA/n from
Equation 24 yields the numerically stable single-forward-call step

21

n°o-(s, g) + np(r, AA)
OFpD = ¢ where AA= A(x+ng) — A(x). (25)
T TR gl 1 plAAf? e+ mg) — Ax)

which is algebraically equivalent to substituting J4(x)g ~ AA/n in Equation 22 (the scaling by
n? avoids division by small n). Since J(x)g = AA/n+O(n), we have arp = o* +O(n); Armijo
backtracking then preserves monotone decrease of the true F'.

2.5 OPTIMALITY CONDITIONS AND FEASIBILITY

Proposition 4 (Fixed points satisfy KKT for Equation 9). Let (x*, v*, u*) be a fixed point of Equa-
tion 14-Equation 16. Then A(x*) = v*, v* € C, and there exists \* >0 such that

1
%(X*—Xou) + AT =0, N(JAX) —yl—¢) =0, (26)
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Task | Type | Method | PSNR(1) SSIM (1) LPIPS(l) Run-time(s) | Task | Type | Method | PSNR (1) SSIM (1) LPIPS()) Run-time (s)
DAPS 28774 0774 0257 40.229
SITCOM 20555 0.841 0.237 21.591 ) DAPS 3L074 0.829 0.199 50.924
Pixel Pixel | SITCOM 31172 0.872 0.203 36.684
. Ours 31.567 0.879 0.177 1.993
Super resolution 4x Ours 29556 0.841 0242 1.936 Motion deblurring Caten DAPS | 26619 0757 0361 93200
Latent DAPS | 29.184  0.825 0273 93.383 PSLD 19.237 0288 0518 00682
Latens | PSLP 23749 0.601 0347 92.799 Latent -2 - - :
ReSample 23.317 0.456 0.507 248.865 ReSample 28.744 0.754 0.262 302.828
Ours(Latent) | 28.845 0.806 0.280 79.949 Ours(Latent) 29.211 0.819 0.288 84.388
DAPS 24546 0754 0218 33.108
DAPS 30.253 0.801 0.202 122.100
i SITCOM 25336 0.858 0.169 24.994 by | SITCOM 2%.512 0.791 0.240 425
HRDIS 21.735 0.785 0.194 3.726 HRDIS 23.670 0.537 0.448 12.020
Inpaint (box) Ours 24725 0.851 0.186 2.618 Phase retrieval Ours 30.532 0.857 0.212 22.583
LUeUDAPS | 2330 i o o Latent DAPS | 23.450 0.695 0418 193.005
Latent | geSample 19978 079 0217 253,162 Latent | ReSample 22591 0.611 0.431 320.129
Ours(Latent) 23.588 0.816 0.259 25.553 Ours(Latent) 29.092 0.828 0.271 144.716
DAPS 30.280 0.797 0211 35.361 DAPS 28.907 0.780 0.222 763.863
pivet | STECOM 32580091 0.148 35499 pivel | SITCOM 29.770 0.844 0.190 43.040
HRDIS 28722 0.823 0.202 4518 ¢ HRDIS 24.929 0.658 0.357 3.094
Inpaint (random) Ours 30.930 0.877 0.199 2.715 Nonlinear deblurring Ours 27.708 0.803 0.268 30.887
Latent DAPS | 25979 0742 0.387 91.480
Latent DAPS 25.151 0.727 0.384 229.700
Latent | Roebe | 359%  oss os01 2o Latent | ReSample 2579 0670 0370 1253.439
Ours(Latent) | 29.469 0.882 0.197 49.096 Ours(Latent) | 28.449 0.818 0.260 177.434
DAPS 28.895 0.775 0253 50.400 DAPS 26.988 0.834 0.196 103.243
SITCOM I3 080 0.261 32841 . SITCOM 27.628 0.808 0214 38.150
Pivel Pixel | yRpIs 26346 0.836 0.178 2428
Gaussian deblurring Ours 29.330 0.834 0.246 1.985 High dynamic range Ours 26.223 0.845 0.218 16.884
LaentDAPS | 25742 032 0384 231 Latent DAPS | 20.789 0.630 0.512 197.25
Latent ReSample 26345 0661 0.329 205,612 Latent | ReSample 25.038 0.822 0.239 261.558
Ours(Latent) | 27.701 0.784 0327 84.493 Ours(Latent) | 25.235 0.829 0.246 111.577

Table 1: Quantitative evaluation on 100 FFHQ images for eight inverse problems (five linear and
three nonlinear). The best and second-best results within each task type (Pixel and Latent) are indi-
cated in bold and underlined, respectively. Method names shown in denote methods designed
for noiseless settings.

where Ax)
XYL A vl =
. T T [ -yl =e¢,
v e {IIA(X )=yl
{0}, JAG") -yl <e.
Hence x* satisfies the KKT conditions of Equation 9 (Bertsekas (1999)).

Remark 3 (Nonconvexity). With nonlinear A, problem Equation 9 is generally nonconvex; we do
not claim global convergence. Our guarantees are local: the x-update descends F' (Proposition 3
and Remark 2), and any fixed point satisfies KKT (Proposition 4). The outer re-annealing Equa-
tion 11, together with Proposition 1, explains robustness to residual modeling error.

2.6 LATENT FAST-DIPS

We extend the framework to latent space via Latent Diffusion Models (LDMs) by substituting the
forward operator A with the composite operator .A o D (where D is the pretrained decoder). Under
this change, the pixel-space objective, ADMM updates, and guarantees carry over, yielding adjoint-
free optimization with autodiff JVPs. To balance cost and fidelity, we propose a hybrid schedule:
early steps (large o;) apply cheaper pixel-space corrections, then switch to latent corrections once
0t < Oswiteh to better conform to the learned manifold. Derivations, analytic step sizes, and imple-
mentation details appear in Appendix A.1.

3  EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Our experimental setup, including the suite of inverse problems and noise levels, largely follows
that of DAPS (Zhang et al. (2025). We evaluate our method across eight tasks—five linear and three
nonlinear—to demonstrate its versatility.

Implementation Details. For all experiments, we employ pretrained diffusion models trained on
the FFHQ dataset: a pixel-space model (Chung et al. (2023a)) and a latent-space model (uncondi-
tional LDM-VQ4) (Rombach et al. (2022)). These models are used consistently across all baselines
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Figure 3: Quantitative evaluations comparing image quality and computational time for baseline
methods. Each point is derived from an experiment on 100 FFHQ images. The y-axis value (PSNR
or LPIPS) is the mean of the scores from the 100 resulting images. The x-axis value is the average
per-image runtime, calculated by dividing the total processing time for all 100 images by 100. The
plots show results for three linear tasks (a-c) and one nonlinear task (d).

and our method to ensure a fair comparison. We adopt the time step discretization and noise sched-
ule from EDM (Karras et al. (2022)). Our evaluation is performed on 100 images from the FFHQ
256256 validation set. Across all tasks, measurements are corrupted by Gaussian noise with a
standard deviation of 5 = 0.05. Performance is measured using PSNR, SSIM, and LPIPS, with all
experiments conducted on a single NVIDIA RTX 4090 GPU.

Baselines. We compare our method against a range of state-of-the-art baselines in both pixel and
latent spaces. In pixel space, we include recent fast-sampling methods such as SITCOM, C-1IGDM,
and HRDIS, alongside DAPS, which is recognized for its balance of performance and efficiency. For
latent-space comparisons, we benchmark against prominent methods including PSLD, ReSample,
and Latent-DAPS. Details of the baseline methods are provided in Appendix A.6.

3.2 MAIN RESULTS

Table 1 presents the quantitative results on the FFHQ dataset, where all baselines are run with their
official default settings. In pixel space, our method achieves comparable or superior performance
to the baselines across nearly all tasks, but with a significantly lower run-time. This acceleration is
particularly evident in Gaussian and motion deblurring, where FAST-DIPS is about 25.5 x faster than
DAPS while also achieving higher scores. For the challenging nonlinear task of phase retrieval, we
follow the common practice of selecting the best of four independent runs. In this setting, our method
is approximately 5.4 x faster than DAPS, while achieving higher PSNR and SSIM. Furthermore, our
approach addresses key inefficiencies commonly found in latent-space methods. While most guided
techniques suffer from long run-times due to the computational cost of backpropagating through the
decoder, our hybrid pixel-latent schedule avoids this bottleneck. By performing corrections in pixel
space during the early sampling stages and switching to latent-space correction later, our method
effectively reduces sampling time while maintaining high-quality, manifold-faithful reconstructions.

Table 1 alone does not fully capture how different methods compare under the same run-time budget.
To offer a more comprehensive evaluation, Figure 3 reports PSNR and LPIPS while considering
the computational runtime. For this benchmark, we vary only the number of sampling steps/inner
iterations per method, while all other hyperparameters were kept at their originally proposed optimal
values to ensure a fair comparison. (Full details are provided in Appendix A.6). We evaluate three
linear and one nonlinear task in total. Across all four tasks, our method consistently improves
metrics in proportion to run time while maintaining a clear gap over competing baselines. The
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advantage is particularly pronounced in motion deblurring and phase retrieval, where the superiority
highlighted earlier is equally evident under identical run-time budgets. In Gaussian deblurring, even
compared to noiseless baselines, our method quickly attains strong PSNR and LPIPS in the early
stage and sustains or further improves them as sampling proceeds. This robust performance was
also mirrored in random inpainting. For this task, perceptual quality is paramount, and our method
demonstrates its ability to generate natural-looking results by consistently maintaining a low LPIPS.

We include additional experiments on FAST-DIPS in Appendix A.7, covering the effectiveness of
the x-update step, hyperparameter robustness, the hybrid schedule trade-off, experiments with non-
Gaussian noise and qualitative results in both pixel and latent spaces.

3.3 ABLATION STUDIES

We study two factors inside the per-level correction: whether we enforce feasibility by projection
and how we choose the step size for the x-update. The projection variant is our default FAST-DIPS
(ADMM + proj.); the no-projection control is an unsplit penalized solver we call QDP (no splitting,
no proj.), which minimizes the same quadratic objective as the ADMM x-subproblem. To com-
pare fairly, we equalize compute by counting first-order autodiff work: each x-gradient step uses
one forward of A, one VIP, and one JVP (or a single forward probe for FD); projection and dual
updates are negligible. With K’ ADMM iterations and .S’ gradient steps per iteration, FAST-DIPS
spends K x.S such triplets at each diffusion level, so we give QDP exactly K x .S gradient steps per
level. For step size we compare a tuned constant «, the analytic model-optimal o* (one VJP + one
JVP), and a forward-only finite-difference surrogate app. Full protocol and numbers are provided
in Appendix A.4, Table 3.

On a representative linear pixel task (Gaussian blur), app reaches virtually the same quality as a*
at lower cost; on the nonlinear latent HDR task the optimization is sensitive to a fixed step and the
JVP-based o* is the robust choice, whereas agp tends to underperform through the decoder—forward
stack. Enforcing feasibility by projection consistently improves quality relative to the unsplit penalty
path under the matched budget; the extra cost in latent space is dominated by backprop through the
decoder rather than the projection. A practical recipe is therefore to use agp in pixel space and a*
in latent space within FAST-DIPS.

4 CONCLUSION

Our proposed method, FAST-DIPS, is designed to address several practical challenges in training-
free, diffusion-based inverse problem solving.

A key aspect of our framework is its broad applicability. The method is adjoint-free, using VIP and
JVP computations from automatic differentiation to bypass the need for a manually derived adjoint
operator. This makes it directly applicable to a wide range of linear and nonlinear forward models,
including complex cases where an adjoint is difficult to define. Furthermore, it does not rely on
problem-specific prerequisites such as singular value decomposition (SVD) or a pseudo-inverse.

For the guidance step, we avoid generic optimizers like Adam, which typically require iterative
updates and careful learning rate tuning. Instead, we employ a gradient-based update with an ana-
Iytic step size derived from a local quadratic model. This approach is deterministic and free from
step-size hyperparameters, contributing to the method’s efficiency and stability.

In terms of performance, FAST-DIPS is effective for both noisy and noiseless problems, unlike
methods such as C-IIGDM or HRDIS which are primarily formulated for noiseless scenarios. We
also observe a stable correlation between computational cost and reconstruction quality: increasing
the number of correction steps consistently improves the result. This contrasts with some accelerated
methods where performance may not scale reliably with added computation. Lastly, the framework
does not require a specially selected initial sampling point to achieve its results. For a detailed
discussion of the limitations and future work, please refer to the Appendix A.8.
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5 REPRODUCIBILITY STATEMENT

Our experimental setup (datasets, pretrained models, forward operators, noise levels, metrics, and
hardware) is specified in Section 3.1. In brief, we use publicly available pixel- and latent-space diffu-
sion priors on the FFHQ-256 validation set, the EDM discretization, additive Gaussian measurement
noise with 5=0.05, and evaluate PSNR/SSIM/LPIPS on 100 images using a single NVIDIA RTX
4090 GPU; for phase retrieval we follow the common “best-of-4” protocol. Baselines are run from
the authors’ official repositories with their recommended defaults; Appendix A.6 lists the packages
we used and task-specific settings. If the paper is accepted, we will release a public repository with
scripts and configs.
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A APPENDIX

A.1 LATENT-SPACE FAST-DIPS AND A HYBRID PIXEL-LATENT SCHEDULE

The pixel-space method in 2.4 corrects the denoiser’s proposal directly in image space. In many dif-
fusion systems, however, the prior is trained in a lower-dimensional latent space. Let F : RECHW _,
R* and D : R¥ — REHW denote a pretrained encoder—decoder with zy = F(x() and x¢ = D(z).
Measurements are still acquired in pixel space via Equation 1. A latent denoiser Zqen (2, 0¢) is
available from the diffusion prior. We now derive a latent analogue of the per-level objective and
show that all pixel-space results transfer verbatim under the substitution A4 +— A4oD and x <> z.

Per-level surrogate in latent space. At level ¢, the denoiser proposes zg; := Zden (z¢,0¢). As
in §2.2, we approximate p(zo | z;) by a local Gaussian centered at z), with variance parameter
7. > 0 (we use v, = Ao} for schedule-awareness), and we employ the same credible-set likelihood
surrogate in the whitened measurement space, now expressed through the decoder:

P20 | 26,y) o exp( = 5 llz0 — z0pl?) HIAD(@) ¥l <2} @D

Taking the mode yields the latent per-level MAP:

1
Zgorr c argznel]g% R HZ _ ZO\tH2 S.t. ||A(D(Z)) — y“ <e,. (28)

Re-annealing then follows the same transport rule as Equation 11:

zi 1 = 277" + 01§, £ ~N(0,I), X¢—1 = D(z—1). (29)

ADMM in latent space and adjoint-free updates. Introduce v ~ A(D(z)) and the same feasi-
bility set C := {v : ||[v —y|| < e.}. The scaled ADMM iterations mirror Equation 14-Equation 16:

1 :
= argmin 5o — | + EAD(z) - vF +ub?, (30)
VI =TI A(D(251)) + u"), (31)
u"tl = uf + A(D(ZF 1)) — VL (32)

The projection II¢ is identical to Equation 17 because feasibility is enforced in measurement space.
For the z-update, define

F.(z) =

1 2
3 lle =zl SIADE) ~BHE b= vE ot 6y)

z
whose gradient is

1
B = VE(2) = —(z-m) + o Jaen(@) (AD@) ~BY).  zez-og. (4

z

As in pixel space, both the VIP J4,p(z) " and the JVP J4,p(z)g. are obtained directly from
autodiff (backprop through D and A; forward-mode or a single finite-difference for the JVP if
needed), so the update remains adjoint-free.

Analytic step size in latent space. Lets, :=z — zg; and r := A(D(z)) — b*. Linearizing AoD
along —g, gives A(D(z — ag,))~A(D(z)) — o J 4op(2z) g.. The scalar quadratic model

~ 1 2
Fo(a) = 5—ls: — ag:|” + Zllr — adaen (e | (35)
7z
is minimized at
o = 7%<SZ’ g:) + p=(r, Jaon(2)8:) (36)
’ g2 + p: | Jaop(2)g- 2

followed by clamping o< max (0, of) and backtracking to ensure descent of F,.

13
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Proposition 5 (Local model-optimal step and descent in latent space). Under C! regularity of AoD
near z, the step Equation 36 minimizes the quadratic model F,(«) and

2
(7%<SZ, gz> + Pz<1‘7 JAOD(Z)gz>)
2(7%”gz”2 + sz']AOrD(Z)gZH2)

with monotone decrease ensured by backtracking.

F.(z—alg.) < F.(z) —

+ O(llg:1I>), 3D

Proposition 6 (KKT at latent ADMM fixed points). If (z*,v*,u*) is a fixed point of Equa-
tion 30—-Equation 32, then A(D(z*)) = v* € C and there exists \* >0 such that

1
T(Z* — o) + A Jaop(z) W =0, N (JAD() ~yll-e) =0, (38)

withv* = (A(D(z*)) — y)/ | A(D(z*)) — y|| when the constraint is active and v* = 0 otherwise.

Remark 4 (Transfer of pixel-space results). All propositions in §2.3—§2.5 transfer to the latent case
by replacing A with ASD and x with z: the mode-substitution KL bound remains unchanged because
feasibility and annealing live in measurement space, the projection stays exact; and the analytic step
and KKT statements follow by the same quadratic-model and fixed-point arguments. In particular,
the latent method is also adjoint-free in practice because both VJP and JVP are provided by autodiff
across D and A.

Why (and when) prefer latent updates. Late in the schedule, o; is small, the denoiser’s latent
prediction zg; lies near the generative manifold, and optimizing in z respects that geometry by
construction. Early in the schedule, however, correcting in pixel space is often cheaper (no back-
prop through D) and sufficiently robust because injected noise dominates the time—marginal. This
observation motivates a hybrid schedule.

Hybrid pixel-latent schedule. We adopt a single switching parameter ogyich: for oy > Ogwiteh We
correct in pixel space using Equation 9-Equation 16, then re-encodez <— E(x) before annealing in
latent space; once o; < Ogwitch, We correct directly in latent space using Equation 28—Equation 32.
This keeps early iterations light and late iterations manifold-faithful.

Complexity and switching. A latent z-gradient step costs one pass through D and A to form
r, one VJP through AoD to form Jjopr, and one JVP to form J4.pg.; we found this JVP-
based step is effective for nonlinear-deblur in latent space. In pixel space, for strongly nonlinear .4
we recommend the FD variant Equation 24+Equation 25, which swaps the JVP for a single extra
forward call and was both faster and more stable in our nonlinear-deblur experiments. The switch
Oswiteh trades early-time efficiency for late-time fidelity; a stable default is to place it where the SNR
of the denoiser’s prediction visibly improves (e.g., where ; becomes comparable to the scale of
llx — x0¢|| in Equation 18).

Remark 5 (Consistency of pixel — encode with latent correction). If E and D are approximately
inverses near the data manifold (i.e., D(E(x)) ~x and E(D(z))~z) and are locally Lipschitz, then
a pixel correction followed by z < E(x) produces a latent iterate within O(||D o E — 1d||) of the
one obtained by one latent correction step with the same residual budget. Thus the hybrid scheme is
a coherent approximation of the pure latent method early in the schedule.

14
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A.2 ALGORITHMS

Algorithm 1 FAST-DIPS in Pixel Space

Require: measurement y; schedule {o,}; denoiser X4y (-, 0¢); forward A; parameters p, {v;}, K,
S, n
Ensure: reconstructed image xg
1: Sample x7 ~ N(0,021)
2: fort =T down to 1 do
3: predict Xo[; < Xden(X¢, 0t)

4 Initialize x < xo;; Vv A(X); u<+0
5 for k =1to K do
6: b+v—u F(x)+ TitHX_XO\tH?‘*‘%HA(X)_b||2
7 for s =1to S do > z-update: gradient step + backtracking
8 r < A(x) — b;s < x — xq
9: aaa <+ Vx (3] A(x) — b|]?) > via automatic differentiation
10: g ¢ -5 + p Bawas AA — A(x +1g) — A(x)

0? (s, ) + 1 p (v, AA)
11: Q4= I

n? 5, el + ol AA|2

12: Backtrack on v until Fi(x — ag) < F(x); setx < x — ag
13: end for
14: w AX) +uw; v Iy <e(w)
15: u+—u+Ax)—v
16: end for
17: Sample & ~ N(0,]) and set x;_1 < X + 041 &
18: end for

19: return xg
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Algorithm 2 FAST-DIPS in Latent Space

Require: measurement y; schedule {o,}; latent denoiser Zqen(+, 0¢); encoder &; decoder D; for-
ward A; parameters p., Yo, Ky Sz, €z, PryVey Koy S2y €2, Oswiteh
Ensure: reconstructed image xg
1: Sample zr ~ N(0,02.1)
2: for t =T down to 1 do

3: predict (latent) zo|; < Zden(2t, 0¢)
4: if 0; > Ogwiten then > early: pixel correction
5: Xo|t < D(zop); XXoi5 vV A(x); u+0
6: for k =1to K, do
7: b v—u Fi(x) ¢+ o-llx — x| + 5 [lARx) - b|?
8: fors=1to S, do > x-update with analytic step
9: g < %(X — XoJ¢) + PxJA(X>T(A(X) - b)
10: Form J4(x)g (JVP) and set « by Equation 22;
11: Backtrack on o until Fj,(x — ag) < F(x); setx < x — ag
12: end for
13: we AX)+u v I _yj<e, (W) ueu+Ax) —v
14: end for
15: re-encode z <+ E(x)
16: else > late: latent correction
17: z 2o vV A(D(z)); u+0
18: fork =1to K, do
19: b+ v—u, F,(z)+ i”z —zoe|* + %[ A(D(z)) — b|)?
20: fors=1to0 S, do > z-update with analytic step
21: g, — %(Z - ZO\t) + szAoD(Z)T(A(D(Z)) - b)
22: Form J40p(z)g. (JVP) and set « by Equation 36;
23: Backtrack on a until F,(z — ag,) < F,(z);setz<z — ag,
24: end for
25: w < AD(z) +uw; v I _y<c.(W); usu+AMD(z) —v
26: end for
27: end if
28: re-anneal z; 1 <~z + oy 1€, € ~ N(0,1)
29: end for

30: return xg < D(zg)

A.3 THEORY AND PROOFS

This appendix first summarizes the proposed FAST-DIPS procedure and its modeling assumptions
(App. A.3.1). We then restate the key propositions/remarks from the main text and provide detailed
proofs (App. A.3.2-A.3.4). Finally, we give step-by-step derivations of the analytic step sizes used
in the pixel and latent updates and explain how they can be computed with autodiff VIP/JVP or a
single forward-difference probe (App. A.3.5).

A.3.1 OVERVIEW AND ASSUMPTIONS
Method in one paragraph. At diffusion level ¢, the pretrained denoiser returns an anchor xq|; =

Xden (X¢, 0¢). We then solve a hard-constrained proximal problem around X0|

xe%érl-llw 27% ||X - XOltH2 s.t. ||A(X) - Y|| <e, (39)
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in the standard (Euclidean) measurement space. We solve Equation 39 by scaled ADMM with
variables (x, v, u):

1
xkt+l arg min gHX — XO|t||2 + gHA(X) — vk ukHQ7 (40)
x t
vhtl — Mo A(xFH1) + uk), C=Av:|v-yl <&}, (41)
uFtl = uF + .A(Xk+1) — vkt (42)

The v-update is a closed-form projection onto a ball; the x-update is one (or a few) adjoint-free
gradient steps with an analytic, model-optimal step size, where the needed directional Jacobian term
J4(x)g is obtained either by autodiff JVP or by a single forward-difference probe. After correction,
we re-anneal by sampling

Xt—1 = xgorr + Ot—1 57 S ~ N(O7I)7 (43)

which implements the decoupled time—marginal transport.

Standing assumptions.

A1 (Noise model and metric) We assume additive white Gaussian noise (AWGN) with covari-
ance 321 and work in the standard Euclidean metric in measurement space; the feasibility
set is the ball {v : |[v — y|| < ¢}.

A2 (Regularity) A is C' in a neighborhood of the iterates, and .J 4 is locally Lipschitz.

A3 (Feasibility) The credible-set radius ¢ is chosen so that the ground-truth measurement is
feasible: ||A(xq) —y|| < e.

A.3.2 PIXEL-SPACE PROPOSITIONS AND PROOFS

We restate the pixel-space results from the main text and provide detailed proofs.

Proposition 2 (Closed-form projection onto the credible set). LetC = {v e R™ : |[v—y| < e} in
the measurement space. Then the Euclidean projection lc(w) in Equation 15 is exactly the radial
shrink (Parikh & Boyd (2014))

w, HW*YH S &,

Ile(w) = — 17
c(w) y—|—€u otherwise. {17

lw —yll’

Proof of Proposition 2. We solve min,, 3||v — w||? s.t. |[v — y|| < e. The objective is 1-strongly
convex and the feasible set is closed and convex; hence there is a unique minimizer.

KKT derivation. The Lagrangian is
[,(V,)\)Z%HV—WH2+)\(HV—yH—€)7 A>0.

Stationarity gives

v-y

0=V, L(Vv,\)=(V-W)+ A ——
A = V=W AT

ifv#y.
There are two cases.

(1) Interior case. If the constraint is inactive at the optimum, then A = 0 by complementary slackness
and stationarity gives v = w. Feasibility requires |w — y|| < ¢,i.e., w € C.

(ii) Boundary case. Otherwise ||v — y|| = ¢ and A > 0. Stationarity implies v — w is colinear with
v — y; hence the optimizer lies on the ray from y to w. Write v =y + 7(w —y) with 7 > 0.
Enforcing |v — y|| = € yields 7 = ¢/||w — y||. Substituting gives

w-Yy
W=yl
This is exactly the radial projection formula in Equation 17. Uniqueness follows from strong con-
vexity. O

V=y—+e¢

17
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Proposition 3 (Local model-optimal step and descent). Under C' regularity of A near x, o* in
Equation 22 minimizes the quadratic model Equation 21. Moreover,

(L(s,8) + plr. Ja(x)g)’
2(Lgl2 + pllJa(x)gll2)

and the backtracking line search (Armijo (1966)) guarantees monotone decrease of F' even when
Equation 20 is only a local approximation.

Fx—a'g) < F(x) —

+ O(|lgl), (23)

Proof of Proposition 3. Write F(x) = ﬁHst + £||r||? with s = x — x¢; and r = A(x) — b. The
gradient is
g=VF(x)= %s +pJax)"r.
Consider the steepest-descent trial x(a) = x — ag. A first-order Taylor expansion along —g gives
Ax(@) = Ax) —aJax)g +e(a),  e(a)] < Ha®(lgll?,
for some local Lipschitz constant L 4 of J 4 (from A2). Plugging this into F'(x(«a)) yields

F(x(a)) = 5 lls — agll* + §lr — aJa(x)gl]* + p(r - ala(x)g, e(a)) + lle(a)|*.

=F(a)
The model F is a convex quadratic in o with derivative
F(a) = ~L(s,g) — p(r, Ja(x)g) + o 8] + pll La(x)g]?),

and curvature F"' () = % llgll? + pllJa(x)g||> > 0, with equality only at stationary points where
g = 0and J4(x)g = 0. Setting F’() = 0 yields the model minimizer o* in Equation 22.

Descent of the true F. Using the expansion above and Cauchy—Schwarz with the bound on
|le()|l, we obtain

- 2
F(x—ag) < F(a) + pllr — aTa(x)gll Lta?gll* + 5 (4 a?llg)?) .
At o = o, F(a*) = min, F(a) and the improvement over F'(0) = F(x) is

s (Ese) el Jax)e)’
R T Y e EACSE

The remainder terms are O(a*?||g||?) and O(a**||g||*); shrinking @ by a constant factor (standard
Armijo backtracking) ensures these are dominated by the quadratic-model decrease, yielding strict
descent of F'.

Remark 2 (Step size from finite-difference JVP). Replacing J 4(x)g in Equation 22 by AA/n from
Equation 24 yields the numerically stable single-forward-call step

21

n°o-(s, g) + np(r, AA)
OFpD = : where AA= A(x+ng) — A(x). (25)
N A e+ mg) = Ax)

which is algebraically equivalent to substituting J(x)g =~ AA/n in Equation 22 (the scaling by
n? avoids division by small n). Since J4(x)g = AA/n+O(n), we have app = o* +O(n); Armijo
backtracking then preserves monotone decrease of the true F'.

Remark 1 (Linear A yields exact optimal line search). If A is linear, then Equation 20 is exact and
Equation 22 gives the true optimal line-search step for F' along —g (Nocedal & Wright (2006)),
delivering the fastest progress among steepest-descent steps.

18
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Justification. If A(x) = Hx, then J4(x) = H and the linearization is exact: A(x — ag) =
A(x) — aHg. Hence F coincides with F'(x — ag) along the line, and the model minimizer in
Equation 22 is the exact optimal line-search step.

Proposition 4 (Fixed points satisfy KKT for Equation 9). Let (x*, v*,u*) be a fixed point of Equa-
tion 14-Equation 16. Then A(x*) = v*, v* € C, and there exists \* >0 such that

1
%(x*—xo‘t) + N Ju(x") vt =0, (A" =yl —¢) = 0, (26)
where Ax")
X -y . _
e Wi ) e -vl==
{0}, [Ax") -yl <e.

Hence x* satisfies the KKT conditions of Equation 9 (Bertsekas (1999)).

*

Proof of Proposition 4. At a fixed point (x*, v*, u*), the u-update satisfies u* = u* + A(x*) — v*,
hence primal feasibility A(x*) — v* = 0. The v-update is the metric projection onto C:

v* =T (A(x™) +u”),
so v* € C and the optimality condition of the projection reads

0 € Die(v¥*) + p(v* — (A(x*) +u*)) = Die(v*) — pu’,

ie., pu* € die(v*) = N¢(v*), the normal cone of C at v*. For the x-subproblem, first-order
optimality gives

0= L (x" = xo) + pJalx") T (AX") = v* + 1) = L (x* = x0) + p Ja(x") "0,

using primal feasibility. The normal cone for the ballC = {v : [[v —y|| < e} is

. {Ww*: A>0}, |[v*—-y|=c¢ ) vt —y
NC(V = W T E—T
{o}, v -yl <e, [v* =yl

Thus pu* = A*v* for some A* > 0 when the constraint is active and u* = 0 otherwise. Substitut-
ing into the x-optimality condition yields

1 T

I(X* —Xo¢) + A" Ja(x*) v = 0.

Complementarity A*(||A(x*) — y|| — ) = 0 follows by construction of the normal cone. Hence
(x*, A*) satisfies the KKT conditions of Equation 39. O

Proposition 1 (Mode-substitution error under Laplace). Assume locally p(xq | x¢,y) = N (my, 2;)
Ccorr

and let x7°'" solve Equation 9. Then the KL divergence between the time—marginals obtained by (i)
injecting noise from N (mny, ¥) and (ii) injecting noise centered at X9 is bounded by

o[t
”mt_xcorrHQ » 2

KL( (me, B0+ 070 0) || W0 i0)) < e 00 Wl )
Ot-1 4oy

Consequences. The bound is small (i) early, when o?_, is large, and (ii) late, when ||| is small;
this justifies the decoupled rule Equation 11.

Proof of Proposition 1. Let P = N'(m, %, + 0%I) and Q = N (x¢°*, 021) in R The Gaussian
KL formula gives

_ _ det X
KLPIQ) = 4 (12 2r) + (g — ) T35 (g — ) —d + log B2 ).

With Xg = 021, Sp = 021 + 34, pg — pp = X5 — my, we get

x5 —me|” 1 1 1
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Diagonalize ¥; = UAU " with eigenvalues \; > 0. Then

corr d

[[x§ —my|* 1 Ai Ai
KL(P|Q) = o+ 53 ( 55 - log (1 + ﬁ) .

=1

Use z — log(1 + z) < 22/2 for z > 0 termwise to obtain

corr corr

d
x50 —myl|* 1T A X w15
KL(P < - 4 — L= .
(PllQ) = 202 + 4 Z o4 202 + 404

Tightness regimes. The second term vanishes as 0 — oo (early in the schedule) and as || ||  — 0
(late in the schedule); the first term quantifies bias between the mode x7°™" and the posterior mean
M. L]

A.3.3 COMPLEXITY AND DEFAULT PARAMETERIZATION

Each x-gradient step requires one forward evaluation of A (to form r), one VIP (to form .J A(x)Tr),
and one JVP (to form J 4(x)g), plus vector operations; the projection and dual update are negligible.
With S gradient steps and X' ADMM iterations per level, the per-level cost is K-S such triplets.
We set v, = Ao? (with A € [0.1,1]) to tie the proximal strength to the diffusion scale (Zhang et al.
(2025)); small K suffices (e.g., K = 1-2). The analytic step typically makes .S = 1 adequate (use
S =2 if A is strongly nonlinear). The ADMM penalty p can be tuned via residual balancing using
rk = ||A(x*) — v¥|| and 7% = p||v* — vF~1|| (Boyd et al. (2011)).

A.3.4 LATENT-SPACE COUNTERPARTS AND PROOFS

Why the substitution A — AcDis valid. If A and the decoder D are C, then so is the composite
AoD. All arguments that relied on VIP/JVP of A and local linearization transfer verbatim to AoD
via the chain rule; the projection remains in measurement space and is unchanged.

Proposition 5 (Local model-optimal step and descent in latent space). Under C L regularity of AoD
near z, the step Equation 36 minimizes the quadratic model F,(«) and

2
(7%<Sz, g.) + p.(r, JAoD(Z)gz>)
2(Llg: )12 + p:l| Jaop (2)g: %)

with monotone decrease ensured by backtracking.

Fz(zfazgz) S Fz(z) -

+ O(lg:II*), 3D

Proof of Proposition 5. Define F,(z) = %Hz — zo||* + % || A(D(z)) — b||* and g, = %(z -

Zoj¢) +pz Jaop(2) T (A(D(z)) —b). Linearize A(D(z—0g:)) = A(D(2)) — o) 4op (2)8: +e-(a)
with |le, ()| < %2 llg-|I>. Repeat the pixel-space proof with A replaced by AoD to obtain the
model minimizer Equation 36 and the same Armijo descent guarantee. O

Proposition 6 (KKT at latent ADMM fixed points). If (z*,v*,u*) is a fixed point of Equa-
tion 30—Equation 32, then A(D(z*)) = v* € C and there exists \* >0 such that
1

V(Z* —20) + XN Jaop(z*) v =0, N (JAD(z")) ~y| —e:) =0, (38)

withv* = (A(D(z*)) — y)/||A(D(z*)) — y|| when the constraint is active and v* = 0 otherwise.

Proof of Proposition 6. Identical to the pixel-space KKT proof, replacing .A by AoD and x by z.
The projection onto C is unchanged; the normal cone and complementarity conditions are therefore
the same, yielding the stated KKT system. [

Remark 6 (Mode-substitution transport in latent space). Replacing p(zo | z¢,y) by its mode and
re-annealing with z,_1 = z{°"" + 0,_1& induces the same KL structure as Prop. 1 after decoding
because noise injection and credibility act in measurement space; only the mean is mapped by D.
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A.3.5 DERIVATION OF ANALYTIC STEP SIZES AND AUTODIFF COMPUTATION
Pixel space: detailed derivation. Recall
1 P
Fx) = 5 lx = xopll* + D1AG) = I, s =x—xp, 1 =A(x) ~b.
Ve 2
Then g = -5 + p J(x) ' r. For the trial x(a) = x — ag,
A(x(a)) = Ax) — aa(x)g
gives the scalar quadratic model
~ 1
Fla) = 5 -lls = agl + 5l — aa(sl,
whose derivative is

F'(a) = —L(s,8) - plr, Ja(x)g) + (L llgl* + ol Ta(x)gll?) -
Setting F”(ar) = 0 yields o* in Equation 22. The curvature I (o) = %Hg”2 + pl|lJa(x)g|* > 0
shows uniqueness unless g = 0.

Autodiff computation recipe (pixel):

1. Evaluate A(x) to getr = A(x)) — b.
2. Compute the VIP J 4 (X)Tr (reverse-mode autodiff) and form g.
3. Obtain the directional Jacobian J 4(x)g either
* by forward-mode autodiff (preferred when available), or
* by few forward-difference probe
AA

Talg = S5 AA= Al ng) — A), me (10741077

in which case it is numerically convenient to assemble the FD-stabilized closed form
Equation 25 (equivalent to substituting A.A/7 into Equation 22 but avoiding division
by small 7).

4. Assemble the numerator/denominator, clamp « < max(0, «*), and perform Armijo back-
tracking.

Latent space: detailed derivation. With

1 Pz 1
Fo(2) = 5o nopl P+ 5 JADE) b, g = —(3-20,) +p: Laon() (A(D(z)) ~b)
linearize AoD to obtain
~ 1
Fo(a) = g —llo = 2o — g P + 5| AD(2) —b — a Luen(2)g: P,

whose minimizer is Equation 36. The VIP/JVP are computed end-to-end through D and A by
autodiff; a single finite-difference through the composition is a valid JVP fallback:

A(D(z + dg.)) — A(D(2))
5 .

Jaop(2)g. ~

Complex-valued measurements. When measurements are complex, we work with
real-imaginary stacking (dimension 2m) and the Euclidean norm; all expressions remain
valid verbatim, with J 4 denoting the real Jacobian.

Backtracking and safeguards. We use the Armijo condition
F(x—ag) < F(x) —calg|®,  ce(0,1),
reducing o <— T (e.8., T = %) until acceptance. If a* < 0, initialize with
o e
0

el /e + 1 ax)gl?/p
and backtrack. Identical safeguards apply in latent space with (v, p,, g ).
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A.3.6 ADDITIONAL REMARKS

Remark 7 (Trust-region scaling along the schedule). Setting v, = \o? ties the proximal radius to
the diffusion noise: large exploratory moves are allowed early (large o), while the anchor tightens
late, mirroring increasing prior certainty.

Remark 8 (Feasibility and whitening in implementation). Under the AWGN setting adopted
throughout, the measurement-space credible set is a Euclidean ball and the projection is the closed-
form radial shrink of Equation 17; all ADMM updates are therefore standard and closed-form.

Remark 9 (Empirical choice: FD in pixel, JVP in latent). The latent formulation includes a de-
coder—forward stack, making it more complex than in pixel space. Accordingly, in pixel space we
use the forward-difference variant Equation 25, which replaces one JVP with a single extra forward
call to A and solves the subproblem faster and more efficiently. By contrast, in latent space we rely
on the autodiff JVP for greater stability. In both cases, Armijo backtracking guarantees descent of
F.

A.4 ABLATION STUDIES

Goal and tasks. We assess the impact of measurement-space feasibility via projection and the
choice of step size inside the x-update. Experiments use 10 FFHQ images on two representa-
tives: Gaussian blur in pixel space and HDR in latent space, with PSNR/SSIM/LPIPS and average
per-image runtime.

Baseline and objective. To isolate projection, we evaluate an unsplit penalized baseline that opti-
mizes the same quadratic objective as the z-subproblem inside ADMM, but without variable splitting
or projection:

1
52 46—y,

which we refer to as QDP (no splitting, no proj.). In all runs we match the ADMM instantiation by
setting 7, = Ao? identically to FAST-DIPS and choosing the data-penalty weight so that £= Téz

n | 12+
min — ||X — X,
xERCHW 2% oft

Compute-matched fairness. Each x-gradient step entails one forward pass of A, one VJP, and
one JVP (or a single forward probe for FD); projection and dual updates are negligible. With K
ADMM iterations and S gradient steps per iteration, FAST-DIPS (ADMM + proj.) spends K x S
such triplets per level, so QDP is allotted K xS gradient steps per level to match compute. Step-size
mechanisms are kept identical between solvers: constant «, analytic/JVP o*, and finite-difference
QED.

Findings. In pixel space, app is competitive with a* at lower cost; in latent space, a* provides the
stability needed for the nonlinear decoder—forward composition, while app lags. Under the matched
budget, enforcing feasibility via projection improves quality over the unsplit penalty path; latent
runtimes primarily reflect decoder backprop. For continuity with the main text, we report the same
numeric table as before; a fairness-corrected latent HDR check (QDP with K x S steps) shows the
same ordering and is included as an additional figure in the appendix.

A.5 HYPERPARAMETERS OVERVIEW

Algorithms | Tasks | Super Resolution 4x Inpaint (Box) Inpaint (Random) ~Gaussian deblurring  Motion deblurring  Phase retrieval  Nonlinear deblurring  High dynamic range

T 70 70 70 40 40 150 50 500
K 3 3 3 3 3 3 2 2
S 1 1 1 2 2 10 10 1
P 150 150 150 150 150 400 150 5

T 50 20 35 55 55 100 25 20
(K4, K) (5.5) (5.5) (5.5) (5.5) (5.5) (20.,5) (20,5) (10,10)

Latent FAST-DIPS | (S.,S.) 3.3) (3.3) 3.3) (3.3 3.3) 22) 22) 3.3)

(pasp=) (200,200) (200,200) (200,200) (200,200) (200,200) (400,200) (400,200) (400,200)
1 1 1 1 1 2 2

Tswitch

FAST-DIPS

Table 2: The hyperparameters of experiments in paper for all tasks.

Throughout our experiments, hyperparameter settings are summarized in Table 2. Unless otherwise
noted; A = 1 for all pixel-space tasks and A\, A, = 5 for all latent-space tasks. In the annealing
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Gaussian Blur (Pixel) High Dynamic Range (Latent)
Solver Step Size Method PSNR SSIM LPIPS Run-time (s) \ Solver Step Size Method PSNR SSIM LPIPS Run-time (s)
a=10"% 25519 0732 0373 1.687 a=10"" 21.360 0.667 0.457 12514
constant o =0.01 28420 0806 0.301 1.423 constant o =10"% 21962 0.736 0.362 12.427
QDP (no splitting, no proj.) a=0013 9355 0486 0.633 1.431 QDP (no splitting, no proj.) a=10"% 16618 0.607 0.569 12.450
Jvp 28.446 0.805 0.301 2.045 ‘ Jvp 22.818 0.732  0.363 63.473
FD 28439 0.805  0.301 1564 | FD 22,600 0.727  0.366 17.522
a=10"% 27980 0794 0313 1.746 a=10"" 20457 0.630 0507 14.400
constant o =0.01 29.388 0.829 0.267 1.664 constant o =10"% 23307 0.740 0.351 14.302
FAST-DIPS (ADMM + proj.) a=0013 4812 0.187 0922 1.673 FAST-DIPS (ADMM + proj.) a=10"% 22588 0.777 0.302 14.271
Jvp 29.473  0.830 0.265 3.526 | Jvp 23.851 0.787 0.288 63.744
FD 29.533  0.832 0.262 2.003 ‘ FD 20.635 0.736  0.359 19.240

Table 3: Ablation of step-size selection inside two per-level solvers. Left: Gaussian blur (pixel).
Right: HDR (latent). We compare constant «, analytic/JVP «*, and forward-only app within QDP
(no splitting, no proj.) and FAST-DIPS (ADMM + proj.). For fairness, compute is matched by
allocating K x S gradient steps per level to QDP when FAST-DIPS uses K ADMM iterations with
S gradient steps each; projection/dual updates are negligible.

process, we set omax = 100 in pixel space and 10 in latent space, with o, = 0.1 in both, to enhance
robustness to measurement noise.

A.6 BASELINE IMPLEMENTATION DETAILS
All baselines were experiments using the authors’ public repositories:

* DAPS/LatentDAPS: github.com/zhangbingliang2019/DAPS
SITCOM: github.com/sjames40/SITCOM

HRDIS: github.com/deng-ai-lab/HRDIS

C-IIGDM: github.com/mandt-lab/c-pigdm

PSLD: github.com/LituRout/PSLD

* ReSample: github.com/soominkwon/resample

We followed each method’s original paper and default repository settings. Additionally, for phase
retrieval we applied a best-of-four protocol uniformly across all compared baselines.

Measurements noise setting. Because the SVD operator caused instability when injecting noise
in super-resolution and Gaussian deblurring, HRDIS is evaluated with noise on all other tasks, while
C-IIGDM is evaluated only in the noiseless setting for all tasks.

Details of Figure 3. For the runtime—quality trade-off in Figure 3, we varied only the number of
solver steps/iterations per method, keeping all other hyperparameters at their recommended defaults:

DAPS The number of ODE steps was fixed at 4, while the number of annealing steps was
swept over {2, 5,10, 15, 20, 25}.

SITCOM We swept pairs of diffusion steps N and inner iterations K over (N, K) €
{(3,2),(5,3),(5,5), (5,10), (5,15), (5,20)}.

* HRDIS We varied the number of diffusion steps over {10, 15, 50, 80, 100, 130}.
C-IIGDM We varied the number of diffusion steps over {20, 50, 75, 100, 150, 200}.

A.7 ADDITIONAL EXPERIMENTS

Effectiveness of x-update step. We conducted an ablation study to demonstrate the effectiveness
of the gradient update steps within the x-update process. The results in Table 5 show that for linear
tasks such as super-resolution, there is negligible metric improvement relative to the time trade-off.
However, for non-linear tasks like non-linear deblurring, the metrics consistently improve as the
number of gradient update steps increases. This indicates that for more complex tasks, increasing
the number of steps allows the model to find a more accurate correction point in exchange for a
computational cost.
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Gaussian Inpaint Motion
deblurring (random) deblurring

Measurement |

Task PSNR SSIM  LPIPS

Gaussian deblurring 28.730  0.814 0.273
Random Inpainting 30.806  0.878 0.192
Nonlinear deblurring ~ 27.016  0.781 0.266

Reconstruction |

Table 4: Quantitative results under Pois-
son measurement noise (Apisson = 1).
FAST-DIPS remains accurate and perceptu-

ally faithful across tasks. Reference

Figure 4: Qualitative reconstructions under Poisson
measurement noise (A = 1): FAST-DIPS preserves
edges and textures across tasks compared with base-

lines.
Super Resolution 4x Nonlinear Blur
Step PSNR SSIM LPIPS Run-time(s) PSNR SSIM LPIPS Run-time (s)
1 29.556 0.841 0.242 1.936 23300 0.649 0416 5.216
3 29.554 0.841 0.242 3.616 26.081 0.747 0325 10.500
5 29.556 0.841 0.242 4.499 26.944 0.779  0.296 16.436

Table 5: The trade-off between quality and cost in the x-update step. For complex nonlinear tasks
like nonlinear deblurring, increasing the number of gradient steps boosts reconstruction quality at
the expense of computational cost.

Hyperparameter Robustness. We investigate the robustness of our method to its main hyperpa-
rameters. Table 6 shows the results for the super-resolution task when sweeping the ADMM penalty
p, the trust-region parameter A (denoted as A in the table), and the credible set radius €. The perfor-
mance remains remarkably stable across a wide range of values for each parameter. This highlights
a key advantage of FAST-DIPS: it is not sensitive to fine-tuning and delivers strong results with
default settings, enhancing its practicality and ease of use.

Hybrid Schedule Trade-off. In our hybrid pixel-latent framework, the ogyicn parameter deter-
mines the point at which the correction process transitions from pixel space to latent space. Table 7
illustrates the resulting trade-off between performance and run-time. Performing the initial cor-
rection steps in pixel space (oswien > 0) provides a fast and effective rough update, significantly
reducing the overall computation time. The subsequent switch to latent-space updates allows for
more stable, fine-grained corrections that respect the generative manifold. This hybrid strategy
proves highly effective, and an intermediate ogyirch Value offers an optimal balance between speed
and reconstruction fidelity.

Experiments with non-Gaussian noise. Figure 4 and Table 4 evaluate FAST-DIPS under Pois-
son measurement noise with rate Apoisson = 1, showing that our method remains accurate and
perceptually faithful beyond the additive white Gaussian noise (AWGN) setting. The robustness
arises from replacing a parametric likelihood with a set-valued surrogate: at each diffusion level,
we solve a denoiser-anchored, hard-constrained proximal problem that enforces feasibility within a
measurement-space credible set (Euclidean ball) in a whitened domain, which is inherently tolerant
to noise miscalibration and largely insensitive to the exact noise law when residuals are appropriately
whitened. Our analytic step-size rules yield stable optimization across tasks, supporting practical in-
sensitivity to corruption type.
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p PSNR SSIM LPIPS A PSNR SSIM LPIPS € PSNR SSIM LPIPS
10 27.483 0.788 0.315 0.1 28.099 0.803 0.303 0 29.581 0.842 0.244
50  29.117 0.829  0.265 0.5 29.398 0.837 0.256 0.01 29.581 0.841 0.244
150 29.581 0.842 0.244 1 29581 0.842 0.244 0.1 29581 0.842 0.244
300 29.367 0.829 0.265 5 28.744 0.791 0.311 0.5 29564 0.841 0.245
1000 28.666 0.787 0.316 10 28565 0.776  0.324 1 29.536 0.841 0.248

Table 6: Sensitivity analysis of the main hyperparameters for Super resolution 4x, evaluated on 100
FFHQ images. The table shows the performance while sweeping the ADMM penalty p, the trust-
region parameter A, and the credible set radius €. The results demonstrate that our method is robust,
with performance remaining remarkably stable across a wide range of values, which reduces the
need for extensive hyperparameter tuning.

Oswich PSNR ~ SSIM  LPIPS Run-time (s)

<0.0 2424 0.528 0481 3.546
0.2 26.904 0.654 0.391 10.03
0.6 28.617 0.783  0.299 23.073
1.5 28.58 0.78 0313 35.429

>10.0 28563 0.778 0.314 67.992

Table 7: Performance of the hybrid pixel-latent schedule with varying ogicn values for Super reso-
Iution 4x on 10 FFHQ images. The schedule corrects in pixel space for o; > ogwieh and latent space
otherwise. The data shows that a balanced approach (oswiten = 0.6) is more effective than a purely
pixel-space (< 0.0) or purely latent-space (> 10.0) correction strategy.

Qualitative Results. Figures 5-13 provide additional qualitative samples for a comprehensive set
of eight problems. These results visually demonstrate the high-quality and consistent reconstructions
achieved by both the pixel-space (FAST-DIPS) and latent-space (Latent FAST-DIPS) versions of our
method.

A.8 FUTURE WORK AND LIMITATIONS

Our proposed method, FAST-DIPS, provides a robust framework for solving inverse problems, and
its hyperparameter stability opens up several promising directions for future work. The framework
is defined by a few key hyperparameters (p, A, €, Oswitch), and as shown in additional experimental
section Table 6, 7, it exhibits robustness across a wide range of their values, enhancing its practical
usability. Among these, the ADMM penalty parameter p can be considered the most influential.
While our experiments show stable performance with a fixed value, integrating adaptive penalty
selection strategies could further improve convergence and robustness. Similarly, exploring an op-
timal or adaptive schedule for the hybrid switching point ogyich remains another interesting avenue
for research.

Despite these strengths and opportunities, we also acknowledge a primary limitation of the current
framework: its dependency on differentiable forward operators. FAST-DIPS is “adjoint-free” in the
sense that it does not require a hand-coded adjoint operator. However, its efficiency heavily relies on
automatic differentiation to compute VJP and JVP needed for the analytic step size o*. This implic-
itly assumes that the forward operator A is (at least piecewise) differentiable. For problems involv-
ing non-differentiable operators or black-box simulators where gradients are unavailable, our current
approach cannot be directly applied. Future work could explore extensions using zeroth-order opti-
mization techniques or proximal gradient methods that can handle non-differentiable terms.
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corr
Xo|t

Xo|t

Xt

corr
D(Zo|t

D(zo|r)

Figure 5: Phase Retrieval trajectory under FAST-DIPS and Latent FAST-DIPS with intermediate
iterates along the diffusion schedule.

FAST-DIPS Latent FAST-DIPS

Reference Run 0 Run1 Run 2 Run3

Figure 6: Additional qualitative results for Phase Retrieval. We show Measurement, Reconstruc-
tion, and Reference for both FAST-DIPS and Latent FAST-DIPS across four runs (Run 0-3).
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FAST-DIPS Latent FAST-DIPS

Figure 7: Additional qualitative results for Super-Resolution x4. Measurement, Reconstruction,
and Reference are shown for FAST-DIPS and Latent FAST-DIPS.
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Figure 8: Additional qualitative results for Inpaint(box). We display Measurement, Reconstruction,
and Reference for FAST-DIPS and Latent FAST-DIPS.
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Figure 9: Additional qualitative results for Inpaint(random). Measurement, Reconstruction, and
Reference with FAST-DIPS and Latent FAST-DIPS.
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Figure 10: Additional qualitative results for Gaussian deblurring. We show Measurement, Recon-
struction, and Reference for FAST-DIPS and Latent FAST-DIPS.
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Figure 11: Additional qualitative results for Motion deblurring. Measurement, Reconstruction,
and Reference are provided for FAST-DIPS and Latent FAST-DIPS.
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Figure 12: Additional qualitative results for Nonlinear deblurring. We present Measurement, Re-
construction, and Reference for FAST-DIPS and Latent FAST-DIPS.
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Figure 13: Additional qualitative results for High Dynamic Range. Measurement, Reconstruction,
and Reference for FAST-DIPS and Latent FAST-DIPS.
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