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Figure 1: FFHQ results on four inverse problems: (a) Gaussian deblurring, (b) phase retrieval, (c)
random inpainting, (d) HDR. Each panel shows the measurement, baselines (pixel: DAPS, SIT-
COM,; latent: Latent DAPS, Resample), our FAST-DIPS output (pixel or latent as labeled), and the
reference. SSIM/LPIPS and average per-image runtime (s) are overlaid; FAST-DIPS attains compa-
rable or higher quality with markedly lower runtime.

ABSTRACT

FAST-DIPS is a training-free solver for diffusion-prior inverse problems, includ-
ing nonlinear forward operators. At each noise level, a pretrained denoiser pro-
vides an anchor xg|;; we then perform a hard-constrained proximal correction in
measurement space (AWGN) by solving miny ﬁ [[x—x0pe]|? s.t. JA(x)—y| <e.
The correction is implemented via an adjoint-free ADMM with a closed-form pro-
jection onto the Euclidean ball and a few steepest-descent updates whose step size
is analytic and computable from one VJP and one JVP—or a forward-difference
surrogate—followed by decoupled re-annealing. We show this step minimizes a
local quadratic model (with backtracking-based descent), any ADMM fixed point
satisfies KKT for the hard-constraint, and mode substitution yields a bounded
time-marginal error. We also derive a latent variant (A — AoD) and a one-
parameter pixel—latent hybrid schedule. FAST-DIPS delivers comparable or bet-
ter PSNR/SSIM/LPIPS while being substantially faster, requiring only autodiff
access to .A and no hand-coded adjoints or inner MCMC.
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1 INTRODUCTION

Inverse problems seek to recover an unknown signal x from partial and noisy measurements y =
A(x) + n. Such problems are ubiquitous in science and engineering, yet they are often ill-posed:
distinct x can produce similar y due to the structure of the operator .4 and measurement noise n.
The Bayesian viewpoint constrains the solution via a prior and asks to sample from p(x | y) « p(y |

x) p(x).

Diffusion models have emerged as a powerful class of learned priors for modeling complex data dis-
tributions, including natural images (Ho et al. (2020); Song & Ermon (2020); Song et al. (2021a;b);
Dhariwal & Nichol (2021); Karras et al. (2022); Song et al. (2023); Lu & Song (2025)). Through
reverse-time dynamics, they progressively transform simple noise into samples from the target dis-
tribution. This generative mechanism offers a natural framework for inverse problems, where the
reverse-time SDE is guided by measurements to draw posterior.

Diffusion-based inverse problem solvers generally begin with an unconditional pretrained prior and
impose data consistency at sampling time. Representative examples include task-specific diffu-
sion solver (Saharia et al. (2023); Lugmayr et al. (2022); Liu et al. (2023)), linear-operator frame-
works(Kawar et al. (2022); Wang et al. (2023)), and decoupled/posterior-aware updates (Chung
et al. (2023a;b); Dou & Song (2024); Zhang et al. (2025)). Other lines formulate plug-and-play
optimization with diffusion denoisers (Zhu et al. (2023); Rout et al. (2024); Wu et al. (2024); Xu &
Chi (2024); Mardani et al. (2024); Wang et al. (2024); Zheng et al. (2025)), Monte-Carlo guidance
(Cardoso et al. (2024)), or aim for faster sampling via preconditioning, parallelization, or schedule
tailoring (Garber & Tirer (2024); Cao et al. (2024); Liu et al. (2024); Chung et al. (2024)). A central
practical question is how data consistency is enforced. Many training-free designs rely on differenti-
ation through A, often in the form of explicit adjoints or pseudo-inverse, which can raise engineering
barriers and restrict applicability to operators with readily available derivatives (Kawar et al. (2022);
Wang et al. (2023); Rout et al. (2023); Liu et al. (2024); Pandey et al. (2024); Cao et al. (2024);
Garber & Tirer (2024); Dou & Song (2024); Cardoso et al. (2024); Chung et al. (2024)). Methods
that avoid hand-coded adjoints typically lean on inner iterative solvers or MCMC subloops, which
increase wall-clock cost due to repeated score/denoiser calls (Zhu et al. (2023); Wu et al. (2024); Xu
& Chi (2024); Mardani et al. (2024); Wang et al. (2024); Zhang et al. (2025)).

A complementary design axis is latent vs. pixel execution. Latent diffusion models reduce di-
mensionality and sampling cost, and many recent posterior samplers therefore operate in latent
space (Rombach et al. (2022); Podell et al. (2024); Song et al. (2024); Rout et al. (2024); Zhang
et al. (2025)). However, when fidelity is defined in pixel space, gradients V|| A(D(z)) — y|?
require repeated decoder-Jacobian evaluations, creating a throughput bottleneck. Conversely,
pixel-space updates avoid the decoder but can be sensitive to how Jacobian—vector products (JVPs)
are computed for highly nonlinear A. These tradeoffs motivate methods that (i) enforce explicit
measurement-space feasibility, (ii) avoid hand-coded adjoints while making minimal autodiff calls,
(iii) minimize inner iterations, and (iv) leverage latent space where it helps most.

We propose FAST-DIPS (Fast And STable Diffusion-prior Inverse Problem Solver), a training-free
framework that (i) keeps the transport across diffusion time steps decoupled, (ii) enforces a hard
credible set in measurement space under an AWGN assumption (Euclidean norm), and (iii) performs
the per-level correction via an adjoint-free ADMM with few-step descent update equipped with an
analytic step size. Concretely, the denoiser provides a level-wise anchor; around it, we solve a
hard-constrained proximal problem that projects the predicted measurement onto a ball (credible
set) and updates the image by a single steepest-descent step with a step size computable from one
vector—Jacobian product (VIP) and one JVP—or a forward-difference JVP fallback—followed by
short backtracking. After correction we re-anneal by injecting the next-level noise, realizing the
exact time-marginal recursion. We also develop a latent counterpart (replace A by 40D, where
D : RF = REHW j5 a pretrained decoder; the matching encoder is £) and a hybrid schedule that
corrects in pixels early (cheap, robust) and latents late (manifold-faithful).

FAST-DIPS differs from PnP/RED-ADMM (Chan et al. (2017); Venkatakrishnan et al. (2013)): the
denoiser is not used as a proximal map; instead, it supplies an anchor and ADMM enforces measure-
ment feasibility around that anchor. Unlike quadratic data penalties that require tuning a tradeoff
weight and can be brittle under noise miscalibration, we use a set-valued (indicator) likelihood in the
measurement domain (AWGN), which exposes an interpretable budget. Unlike coupled DPS-style
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Figure 2: FAST-DIPS method sketch. At each noise level t we (1) take a denoiser anchor xg;, (2)
apply a hard-constrained correction by solving a proximal objective subject to a measurement-space
credible set via few-step ADMM (closed-form projection and few-step descent with analytic o*
from one VJP + one JVP or a forward-difference surrogate), and (3) re-anneal to obtain x;_.

guidance (Chung et al. (2023a)), we deliberately keep traversal decoupled and invoke the exact
marginal transport after each correction. Relative to latent-only pipelines, our hybrid pixel—latent
scheme trims decoder-Jacobian traffic early while preserving generative-manifold fidelity late. Im-
portantly, while FAST-DIPS does assume (piecewise) differentiability to leverage automatic differ-
entiation (Baydin et al. (2018)) for VJP (and a single JVP or its forward-difference surrogate), it
does not require hand-crafted adjoints or closed-form Jacobians of .4, reducing engineering burden
compared to many prior training-free designs.

Our contributions can be summarized as follows:

* Adjoint-free hard-constrained correction. A denoiser-anchored, measurement-space
credible-set MAP with schedule-aware trust region; ADMM with closed-form projection
and few analytic descent steps using one VJP + one JVP (or a forward-only probe), elimi-
nating hand-crafted adjoints and inner MCMC.

* Theory with practical guarantees. The analytic step exactly minimizes a local quadratic
model and, with backtracking, guarantees descent; ADMM fixed points satisfy KKT for the
hard-constraint; decoupled re-annealing; mode substitution yields a bounded time-marginal
error.

» Latent & hybrid execution + empirical speed. A latent counterpart via Ao D and
a one-switch pixel—latent hybrid improve early-time throughput and late-time fidelity;
across eight linear and nonlinear tasks, the method attains similar or better quality with
11.3x-19.5x lower runtime across pixel-space tasks on FFHQ and robust default hyper-
parameters.

Orthogonal to our contributions, fast samplers and preconditioning/parallelization can reduce the
number of denoising steps (Zhao et al. (2024); Cao et al. (2024); Liu et al. (2024); Chung et al.
(2024)). FAST-DIPS complements such advances by minimizing inner correction cost and adjoint
engineering while preserving explicit measurement feasibility, so these techniques are composable
with our approach.

2 METHOD

2.1 HIGH-LEVEL OVERVIEW AND DESIGN CHOICES

We briefly summarize the goals and main design choices of FAST-DIPS before introducing the
detailed derivations.
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Setting and practical issues. We use a pretrained diffusion model as a prior for inverse problems
y = A(x) + n, where A may be nonlinear. Existing training-free solvers often enforce data consis-
tency via many gradient steps or inner Langevin/MCMC chains at each noise level, and control their
influence through a soft data-fidelity weight. This can be computationally heavy (many evaluations
of A and its gradient) and sensitive to step sizes and noise miscalibration.

Per-level update in FAST-DIPS. At each diffusion level ¢, FAST-DIPS performs a single cor-
rect—then—noise update with three ingredients:

1. Local hard-constrained MAP. The denoiser output xg; is treated as the center of a local
Gaussian prior, and data consistency is enforced via a simple measurement-space constraint
A(x) — y|| < e. This defines a constrained proximal problem whose solution x{%" is the

0t
likelihood correction at level ¢.

2. Adjoint-free ADMM with analytic step size. We solve this constrained problem with a small,
fixed number of deterministic ADMM iterations. The measurement variable is updated by a
closed-form projection onto the constraint set, while the image variable is updated by steepest-
descent step whose step size is chosen analytically by minimizing a local quadratic model. This
optimal step design keeps the number of evaluations of .4 and its derivatives very small. No inner
MCMC chain and no hand-coded adjoint operator are required, which leads to substantially fewer
total function calls than methods based on long gradient/MCMC inner loops.

3. Re-annealing. After the correction, we re-anneal by adding Gaussian noise with the next diffu-
sion variance, decoupling the measurement-aware update from the diffusion noise.

Theoretical support. In the remainder of the section we formalize this procedure and show that:
(1) the analytic step size yields a provable decrease of a well-defined augmented objective under mild
regularity (Proposition 3 together with Remark 2); (ii) any fixed point of the ADMM iterations satis-
fies the KKT conditions of the constrained proximal problem (Proposition 4); and (iii) replacing the
full conditional by the local mode xg“j{ " in the re-annealing step induces a bounded approximation
error on the diffusion time-marginals (Proposition 1). These results explain why FAST-DIPS can be
both fast (few evaluations of A and its derivatives) and robust in practice.

Practical per-step recipe. In practice, one reverse diffusion step of FAST-DIPS at level ¢ works
as follows. (i) Denoiser proposal: given the current state x; and noise level o, we compute xg; =

Xden (X¢, 0¢) and initialize x(©) « Xo|¢» v(® — A(x(),ul® « 0. (ii) Fast ADMM correction: for
a small fixed number of iterations K (typically 2-5), we update x(*) by one steepest-descent step on
a quadratic-regularized data term, with an analytic step size computed from a local quadratic model
using one VJP and one JVP (or a single finite-difference probe) of A4; we then project A(x(k“)) +
u®) onto the £5-ball {||v — y|| < €} and update the dual variable u'**1). This yields the corrected

estimate xgf}" = x()_ (iii) Re-annealing: we sample x;_; = Xt + oe-1€ with § ~ N(0,1).

2.2 PROBLEM SETUP

Let xg € RFXW denote the clean image stacked as a vector and
y = Ax)+n,  n~N(0, ), 8]

where A : REHW — R™ is a (possibly nonlinear) forward operator. Throughout the paper we
assume additive white Gaussian noise (AWGN) with variance 32 and use the standard Euclidean
norm in measurement space.

2.3 PROBABILISTIC MOTIVATION AND THE PER-LEVEL OBJECTIVE

The reverse process of the diffusion model, conditioned on y, is described by the reverse-time
SDE (Song et al. (2021b)):

dx; = —26(t)o(t)Vx, log p(x¢|y; o0) dt + /26 (t)o () dw, )
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At each diffusion level ¢ we maintain a state x; and wish to transform the time-marginal p(x; | y)
into a good approximation to p(x;—1 |y) by performing a local, measurement-aware likelihood cor-
rection around the denoiser’s prediction. The derivation proceeds from the conditional factorization

p(xo | x4,y) o p(xo [ x:) p(y | %o), 3)

and two modeling choices: a local Laplace surrogate for p(xo | x¢) and a set-valued likelihood in
measurement space.

Local prior surrogate around the denoiser. Write
Xot = Xden(xt70t)7 4)
and approximate the intractable p(xg |x;) by a Gaussian centered at X},
p(xo | x0) ~ B0 | x0) o exp( = 5k xo = xopel?). 5)

where v; > 0 plays the role of a local prior variance. We use the schedule-aware parameterization
vt = o2 so that the proximal trust-region naturally tightens with annealing (Zhang et al. (2025)).

Conservative likelihood via a measurement-space credible set. Under AWGN, the Gaussian
likelihood is

p(y | %0,8) o 87" exp( = b | A(x0) =) ©

which we replace by a set-valued surrogate that is robust to noise miscalibration while preserving
a principled notion of data fidelity. If 5 is known, then for any confidence level 1 — § the (1 — §)-

level set of Equation 6 is the Euclidean ball {v : ||[v —y| < e} withe = 3,/x7, | 5 (Casella &
Berger (1990)); conditioning on this set replaces the likelihood by its indicator. If 5 is unknown,

profiling it out gives —logp(y | xo,8(%0)) o mlog|A(x¢) — y|| (Casella & Berger (1990)),
which is monotone in the residual norm; optimizing at a fixed confidence thus amounts to enforcing
|A(xo) — y|| < e for a chosen budget £ > 0 (Engl et al. (1996)). Both viewpoints lead to the
conservative surrogate

l=(y | x0) o< 1{||A(xo) —y|l < e} (7)

Per-level surrogate conditional and MAP. Combining Equation 5 and Equation 7 with Equa-
tion 3 yields

Pulxo | x0,y) o< exp( = g [xo = o) 1l AGxo) = v < £} ®)
We take the mode of Equation 8 as the likelihood correction at level £, which solves

1
corr : 2
X € arg min —|x—x stt. [JA(x) —y|| <e. 9

e are min ok —xoul” st JAG) ] < 9)

Problem Equation 9 is a hard-constrained proximal objective: the first term is a schedule-aware trust
region around the denoiser estimate, while the constraint enforces measurement feasibility within

an uncertainty budget in the whitened space.

2.4 DECOUPLED RE-ANNEALING AND CONNECTION TO TIME—MARGINALS

Let ky—st—1(xi—1 | X0) = N (x4—1; X0,07_I) denote the diffusion kernel that transports the clean
image to the next diffusion state. The exact time—-marginal recursion (Ho et al. (2020); Song et al.
(2021b)) is

it | y) = / [ / Fsss1(%s—1 | Xo) P(Xo | Xe,¥) d%0 | p(%s | ¥) d%s. (10)

Thus, transforming p(x; | y) to p(x:—1 | y) amounts to obtaining a representative xo ~ p(Xq | X¢,y)
and injecting Gaussian noise of variance o;_;. We approximate p(xo | X¢,y) by p; in Equation 8
and substitute its mode, yielding the practical sampling rule

Xi—1 = X + 01§, £~ N(0,1). (an
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Proposition 1 (Mode-substitution error under Laplace). Assume locally p(xq | x¢,y) = N (my, 3;)
COorr

and let x{°'" solve Equation 9. Then the KL divergence between the time—marginals obtained by (i)
injecting noise from N'(my, 3;) and (ii) injecting noise centered at X" is bounded by

0|t
e — <G 1% (|2, )12

KL(A (me, B0+ o7 0) | W o0)) < e 00 Wl )
Ot-1 4oy

Consequences. The bound is small (i) early, when o?_, is large, and (ii) late, when ||| is small;
this justifies the decoupled rule Equation 11.

2.5 PIXEL-SPACE ADMM SOLVER WITH ADJOINT-FREE UPDATES

We solve Equation 9 via variable splitting (Combettes & Pesquet (2011); Boyd et al. (2011)) in pixel
space. Introduce an auxiliary v~ .A(x) and the feasibility set C := {v : ||[v — y|| < e}. Consider

min ﬁ”x —xoe|® + te(v) st A(x)—v=0, (13)
X,V N——
F(x) 9(v)
where (¢ is the indicator of C. Using scaled ADMM with penalty p > 0 and scaled dual u, we iterate
1
xM = argmin —||x — Xope||” + B||A(x) — vk ub)?, (14)
x 2 2
VL = (AR +ut), (15)
uhtt = uf 4 AxFT) — v (16)

Let b* := v* — u” for brevity.

Proposition 2 (Closed-form projection onto the credible set). LetC = {v e R™ : |[v—y| < e} in
the measurement space. Then the Euclidean projection Tlc(w) in Equation 15 is exactly the radial
shrink (Parikh & Boyd (2014))

W, Hw_y” S 6)

Ie(w) = — 17
c(w) y—i—ezu otherwise. 17

[w —yll’
Efficient x-update. Define the smooth objective for Equation 14
1 P
Fx) = 5l —xou]* + SIMAG) — b, (18)
Its gradient is

1
g = VE() = —(x—xop) + pJa(®) (Ax) =b"),  xex—ag  19)
t
where .J4(x) is the Jacobian of A at x. Crucially, both the VIP J 4(x) 'r and the JVP J4(x) g can
be obtained from autodiff (Baydin et al. (2018)).

Lets := x — xo; and r := A(x) — b*. We linearize A along the descent direction:

Ax —ag) =~ A(x) —aJa(x)g. (20)
For linear operators A the relation above holds exactly (since J4(x) = A), whereas for non-linear .A
it is the first-order Taylor approximation with a higher-order remainder; nonetheless, Proposition 3

shows that even in this non-linear case the resulting analytic step a*, together with backtracking,
yields a descent step for the true objective F’ despite the residual term.

Substituting Equation 20 into F'(x — ag) yields a one-dimensional quadratic model (Nocedal &
Wright (2006))
~ 1 p
Fla)=—]|s—agl*+ Z|r—aJ 2 21
(@) = 3 lIs = agll” + S lIr — ala(x)ell", 21
whose exact minimizer is )
(s, 8) + p(r, Jalx)g
R L R )
el + pll7ag]

with J 4(x)g obtained via a single JVP.



Under review as a conference paper at ICLR 2026

Proposition 3 (Local model-optimal step and descent). Under C' regularity of A near x, o* in
Equation 22 minimizes the quadratic model Equation 21. Moreover,

(L(s,8) +plr. Ja(x)g)’
2(L gl + pllLa(x)gll?)

and the backtracking line search (Armijo (1966)) guarantees monotone decrease of F' even when
Equation 20 is only a local approximation.

Fx—a'g) < F(x) —

+ O(|lgl?), (23)

Remark 1 (Linear A yields exact optimal line search). If A is linear, then Equation 20 is exact and
Equation 22 gives the true optimal line-search step for F' along —g (Nocedal & Wright (2006)),
delivering the fastest progress among steepest-descent steps.

Step Size via Finite-Difference Approximation. The analytic step size a* in Equation 22 pro-
vides a nearly optimal descent but requires a JVP, J4(x)g. In scenarios where an automatic differ-
entiation engine providing JVPs is unavailable or impractical, we can estimate the JVP by a single
forward probe (Nocedal & Wright (2006)):
A - A AA
Jat)g ~ AEFMB) ZAX) A4 (24)
Ui Ui

which replaces one JVP by one extra forward evaluation of A.

By substituting this approximation into the quadratic model’s minimizer Equation 22, we derive
a practical, “forward-only” step size that circumvents the need for an explicit JVP or an adjoint
operator.

Remark 2 (Step size from finite-difference JVP). Replacing J 4(x)g in Equation 22 by AA /7 from
Equation 24 yields the numerically stable single-forward-call step

1”5 (s, 8) + nplr, AA)
aFp = ! where AA= A(x+ — A(x). 25
D= TR 4 plIAARR (et ng) — AR, 29)
which is algebraically equivalent to substituting J4(x)g =~ AA/n in Equation 22 (the scaling by
n? avoids division by small n). Since J(x)g = AA/n+O(n), we have arp = o* +O(n); Armijo
backtracking then preserves monotone decrease of the true F'.

2.6 OPTIMALITY CONDITIONS AND FEASIBILITY

Proposition 4 (Fixed points satisfy KKT for Equation 9). Let (x*, v*, u*) be a fixed point of Equa-
tion 14-Equation 16. Then A(x*) = v*, v* € C, and there exists \* >0 such that
1

¥<x*—><o‘t) + NI =0, N(JAX) -yl —e) =0, (26)
where Al)
x*)—y o B
v e {m}, JA(x*) -yl =¢,
{0}, [AX") -yl <e.

Hence x* satisfies the KKT conditions of Equation 9 (Bertsekas (1999)).

Remark 3 (Nonconvexity). With nonlinear A, problem Equation 9 is generally nonconvex; we do
not claim global convergence. Our guarantees are local: the x-update descends F' (Proposition 3
and Remark 2), and any fixed point satisfies KKT (Proposition 4). The outer re-annealing Equa-
tion 11, together with Proposition 1, explains robustness to residual modeling error.

2.7 LATENT FAST-DIPS

We extend the framework to latent space via Latent Diffusion Models (LDMs) by substituting the
forward operator A with the composite operator .4 o D (where D is the pretrained decoder). Under
this change, the pixel-space objective, ADMM updates, and guarantees carry over, yielding adjoint-
free optimization with autodiff JVPs. To balance cost and fidelity, we propose a hybrid schedule:
early steps (large o) apply cheaper pixel-space corrections, then switch to latent corrections once
0t < Oswiteh to better conform to the learned manifold. Derivations, analytic step sizes, and imple-
mentation details appear in Appendix A.1.
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. FFHQ ImageNet
Task ‘Ty"e ‘Me‘h"d ‘PSNR () SSIM(t) LPIPS(|) Run-time(s) | PSNR(f) SSIM(f) LPIPS()) Run-time(s)
DAPS 28.774 0.774 0.257 40.229 25.686 0.651 0.364 97.192
SITCOM 29.555 0.841 0.237 21.591 26.519 0.716 0.309 65.657
Pixel
Super resolution 4x Ours 29.573 0.841 0.244 2.726 26.367 0.714 0.334 6.266
LatentDAPS | 29.184 0.825 0.273 93.383 26.189 0.702 0.388 95.675
Latens | PSLD 23.749 0.601 0.347 92.799 21.262 0.405 0.501 149.29
ReSample 23317 0.456 0.507 248.865 22.152 0.423 0.470 275.999
Ours 28.634 0.797 0.283 45.304 26.298 0.704 0.377 46.516
DAPS 24.546 0.754 0.218 33.108 21.399 0.726 0.271 81.166
SITCOM 25.336 0.858 0.169 24.994 20.638 0.794 0.209 73.986
Pixel
HRDIS 21.735 0.785 0.194 3.726 20.507 0.707 0.280 10.107
Inpaint (box) Ours 24.605 0.850 0.190 2,937 21.381 0.777 0.278 6.347
LatentDAPS | 23.530 0.742 0.369 91.687 19.630 0.588 0.522 96.110
Latens | PSLD 21.428 0.823 0.126 91.189 21.084 0.803 0.186 146.644
ReSample 19.978 0.796 0.247 253.162 18.087 0.713 0.309 281.831
Ours 24.048 0.829 0.247 45.276 19.349 0.716 0.389 45.989
DAPS 30.280 0.797 0.211 35.361 25.946 0.662 0.352 82.617
SITCOM 32.580 0.911 0.148 35.499 26.201 0.702 0.351 106.182
Pixel
HRDIS 28.722 0.823 0.202 4518 24.614 0.676 0.321 9.703
Inpaint (random) Ours 31.022 0.879 0.202 2.908 28.353 0.791 0.249 5.857
LatentDAPS | 25.979 0.742 0.387 91.480 22.695 0.567 0.549 95.442
Latens | PSLD 22.836 0.472 0.467 87.157 22,761 0.522 0.431 146.022
ReSample 29.950 0.842 0.201 278.498 26.916 0.756 0.255 315.707
Ours 30.091 0.877 0.201 45335 27.245 0.775 0.288 46.454
DAPS 28.895 0.775 0.253 50.400 25.946 0.662 0.352 94.605
SITCOM 28775 0.820 0.261 32.841 26.201 0.702 0.351 103.338
Pixel
Gaussian deblurring Ours 29.406 0.836 0.247 2.612 26.181 0.705 0.344 4.958
LatentDAPS | 25.742 0.732 0.384 93.313 22.818 0.561 0.543 98.340
Laten | PSLD 16.807 0.227 0.569 94.823 16.608 0.212 0.566 148.738
ReSample 26345 0.661 0.329 292,612 23.530 0.497 0.439 333.822
Ours 28.006 0.793 0.312 46.307 25.356 0.661 0.424 48.229
DAPS 31.074 0.829 0.199 50.924 28.838 0.776 0.243 94.681
Pixel | SITCOM 31172 0.872 0.203 36.684 28.875 0.807 0.247 103.338
Ours 31.736 0.878 0.171 2,616 29.037 0.799 0.236 4.623
Motion deblurring LatentDAPS |  26.649 0.757 0.361 93.400 23.557 0.592 0.513 97.988
Latens | PSLD 19.237 0.288 0.518 90.682 18.327 0.288 0.544 148.151
ReSample 28.744 0.754 0.262 302.828 24.845 0.579 0.404 316.985
Ours 29.285 0.822 0.278 46.785 26.627 0.709 0.386 47.282
DAPS 30.253 0.801 0.202 122.100 22.354 0.519 0.402 320.926
Ppivel | SITCOM 28512 0.791 0.240 37.425 18.704 0.393 0.519 99.103
HRDIS 23.670 0.537 0.448 12.020 14.019 0.195 0.722 29915
Phase retrieval Ours 29.253 0.851 0.218 10.354 19.738 0.490 0.479 16.629
LatentDAPS | 23.450 0.695 0.418 193.005 17.067 0.446 0.624 202.426
Latent | ReSample 24.676 0.606 0.412 321.227 16.913 0.320 0.608 354.430
Ours 28.330 0.789 0.244 87.167 18.874 0.441 0.507 85.520
DAPS 28.907 0.780 0.222 763.863 27.537 0.734 0.266 1453.314
pivel | SITCOM 29.770 0.844 0.190 43.040 28.138 0.791 0.218 113.165
HRDIS 24.929 0.658 0.357 3.094 22553 0.504 0.448 6.653
Nonlinear deblur Ours 27.818 0.803 0.280 57.903 25.607 0.695 0.373 62.350
LatentDAPS | 25.151 0.727 0.384 229.700 22,516 0.568 0.530 249.639
Latent | ReSample 28.748 0.797 0.236 1276.326 26.047 0.697 0.301 1250.783
Ours 28.746 0.823 0.260 110.567 26.234 0.720 0.350 113.537
DAPS 26.988 0.834 0.196 103.243 26.568 0.819 0.198 293.286
Ppivel | SITCOM 27.628 0.808 0214 38.150 26.849 0.796 0.207 109.946
HRDIS 26.346 0.836 0.178 2428 24.623 0.825 0.199 5.989
High dynamic range Ours 26275 0.843 0.218 7.212 24.522 0.775 0.290 13.367
LatentDAPS | 20.789 0.630 0.512 197.250 19.394 0.469 0.641 207.469
Latent | ReSample 25.038 0.822 0.239 261.558 24.950 0.783 0.257 285.495
Ours 25.869 0.832 0.247 83.790 24.415 0.773 0.291 85.685

Table 1: Quantitative evaluation on 100 FFHQ images and 100 ImageNet images for eight inverse
problems (five linear and three nonlinear). The best and second-best results within each task type
(Pixel and Latent) are indicated in bold and underlined, respectively. Method names shown in
denote methods designed for noiseless settings

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Our experimental setup, including the suite of inverse problems and noise levels, largely follows
that of DAPS (Zhang et al. (2025). We evaluate our method across eight tasks—five linear and three
nonlinear—to demonstrate its versatility.
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Figure 3: Quantitative evaluations comparing image quality and computational time for baseline
methods. Each point is derived from an experiment on 100 FFHQ images. The y-axis value (PSNR
or LPIPS) is the mean of the scores from the 100 resulting images. The x-axis value is the average
per-image runtime, calculated by dividing the total processing time for all 100 images by 100. The
plots show results for three linear tasks (a-c) and one nonlinear task (d).

Implementation details. For all experiments, we employ pretrained diffusion models in both pixel
and latent domains. For the pixel-space setting, we use diffusion models trained on FFHQ (Chung
et al. (2023a)) and ImageNet (Dhariwal & Nichol (2021)). For the latent-space setting, we use
the unconditional LDM-VQ4 model (Rombach et al. (2022)) for both FFHQ and ImageNet. These
models are used consistently across all baselines and our method to ensure a fair comparison. We
adopt the time-step discretization and noise schedule from EDM (Karras et al. (2022)). Evaluation
is performed on 100 images from FFHQ (256 x 256) and 100 images from ImageNet (256 x 256).
Across all tasks, measurements are corrupted by additive Gaussian noise with a standard deviation
of = 0.05, and performance is reported using PSNR, SSIM, and LPIPS.

Baselines. We compare our method against a range of state-of-the-art baselines in both pixel and
latent spaces. In pixel space, we include recent fast-sampling methods such as SITCOM (Alkhouri
et al. (2025)), C-IIGDM (Pandey et al. (2024)), and HRDIS (Dou et al. (2025)), alongside
DAPS (Zhang et al. (2025)), which is recognized for its balance of performance and efficiency.
For latent-space comparisons, we benchmark against prominent methods including PSLD (Rout
et al. (2023)), ReSample (Song et al. (2024)), and Latent-DAPS. Details of the baseline methods are
provided in Appendix A.7.

3.2 MAIN RESULTS

Table 1 presents the quantitative results on the FFHQ and ImageNet datasets, where all baselines are
run with their official default settings. In pixel space, our method achieves comparable or superior
performance to the baselines across nearly all tasks, but with a significantly lower run-time. This
acceleration is particularly evident in Gaussian and motion deblurring, where FAST-DIPS is about
19.4 x faster than DAPS while also achieving higher scores. For the challenging nonlinear task of
phase retrieval, we follow the common practice of selecting the best of four independent runs. In this
setting, our method is approximately 11.8x faster than DAPS, while achieving higher PSNR and
SSIM on FFHQ. Furthermore, our approach addresses key inefficiencies commonly found in latent-
space methods. While most guided techniques suffer from long run-times due to the computational
cost of backpropagating through the decoder, our hybrid pixel-latent schedule avoids this bottleneck.
By performing corrections in pixel space during the early sampling stages and switching to latent-
space correction later, our method effectively reduces sampling time while maintaining high-quality,
manifold-faithful reconstructions.

Table 1 alone does not fully capture how different methods compare under the same run-time budget.
To offer a more comprehensive evaluation, Figure 3 reports PSNR and LPIPS while considering
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the computational runtime. For this benchmark, we vary only the number of sampling steps/inner
iterations per method, while all other hyperparameters were kept at their originally proposed optimal
values to ensure a fair comparison. (Full details are provided in Appendix A.7). We evaluate three
linear and one nonlinear task in total. Across all four tasks, our method consistently improves
metrics in proportion to run time while maintaining a clear gap over competing baselines. The
advantage is particularly pronounced in motion deblurring and phase retrieval, where the superiority
highlighted earlier is equally evident under identical run-time budgets. In Gaussian deblurring, even
compared to noiseless baselines, our method quickly attains strong PSNR and LPIPS in the early
stage and sustains or further improves them as sampling proceeds. This robust performance was
also mirrored in random inpainting. For this task, perceptual quality is paramount, and our method
demonstrates its ability to generate natural-looking results by consistently maintaining a low LPIPS.

We include additional experiments on FAST-DIPS in Appendix A.8, covering the effectiveness of
the x-update step, hyperparameter robustness, the hybrid schedule trade-off, experiments with non-
Gaussian noise and qualitative results in both pixel and latent spaces.

3.3 ABLATION STUDIES

We study two factors inside the per-level correction: whether we enforce feasibility by projection
and how we choose the step size for the x-update. The projection variant is our default FAST-DIPS
(ADMM + proj.); the no-projection control is an unsplit penalized solver we call QDP (no splitting,
no proj.), which minimizes the same quadratic objective as the ADMM x-subproblem. To com-
pare fairly, we equalize compute by counting first-order autodiff work: each x-gradient step uses
one forward of A, one VIP, and one JVP (or a single forward probe for FD); projection and dual
updates are negligible. With X' ADMM iterations and .S’ gradient steps per iteration, FAST-DIPS
spends K x .S such triplets at each diffusion level, so we give QDP exactly K x .S gradient steps per
level. For step size we compare a tuned constant «, the analytic model-optimal o* (one VJP + one
JVP), and a forward-only finite-difference surrogate app. Full protocol and numbers are provided
in Appendix A.4, Table 3.

On a representative linear pixel task (Gaussian blur), app reaches virtually the same quality as a*
at lower cost; on the nonlinear latent HDR task the optimization is sensitive to a fixed step and the
JVP-based o* is the robust choice, whereas agp tends to underperform through the decoder—forward
stack. Enforcing feasibility by projection consistently improves quality relative to the unsplit penalty
path under the matched budget; the extra cost in latent space is dominated by backprop through the
decoder rather than the projection. A practical recipe is therefore to use agp in pixel space and a*
in latent space within FAST-DIPS.

4 CONCLUSION

Our proposed method, FAST-DIPS, targets practical challenges in training-free, diffusion-based in-
verse problems. It is broadly applicable: by using VJP and JVP from automatic differentiation
instead of a hand-crafted adjoint, it can handle a wide range of linear and nonlinear forward models
without requiring SVDs or pseudo-inverses.

For the guidance step, we replace generic optimizers (e.g., Adam with tuned learning rates) by a
single gradient update with an analytic step size from a local quadratic model. This deterministic
update removes step-size hyperparameters and improves efficiency and stability.

Empirically, FAST-DIPS works well for both noisy and noiseless problems and shows a predictable
trade-off between computation and quality: more correction steps consistently improve reconstruc-
tions. The framework also does not rely on carefully chosen initial samples. Limitations and future
directions are discussed in Appendix A.9.

10
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5 REPRODUCIBILITY STATEMENT

Our experimental setup (datasets, pretrained models, forward operators, noise levels, metrics, and
hardware) is specified in Section 3.1. In brief, we use publicly available pixel- and latent-space
diffusion priors on the FFHQ-256 validation set, the EDM discretization, additive Gaussian mea-
surement noise with 5 = 0.05, and evaluate PSNR/SSIM/LPIPS on 100 images. Most experiments
are performed using a single NVIDIA RTX 4090 GPU, whereas the experiments reported in Ta-
bles 5, 7, 9 were conducted on a single RTX 6000 Ada GPU. For phase retrieval, we follow the
common “best-of-4” protocol. Baselines are run from the authors’ official repositories with their
recommended defaults; Appendix A.7 lists the packages we used and task-specific settings. If the
paper is accepted, we will release a public repository with scripts and configs.
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A APPENDIX

A.1 LATENT-SPACE FAST-DIPS AND A HYBRID PIXEL-LATENT SCHEDULE

The pixel-space method in 2.5 corrects the denoiser’s proposal directly in image space. In many dif-
fusion systems, however, the prior is trained in a lower-dimensional latent space. Let F : RECHW _,
R* and D : R¥ — REHW denote a pretrained encoder—decoder with zy = F(x() and x¢ = D(z).
Measurements are still acquired in pixel space via Equation 1. A latent denoiser Zqen (2, 0¢) is
available from the diffusion prior. We now derive a latent analogue of the per-level objective and
show that all pixel-space results transfer verbatim under the substitution A4 +— A4oD and x <> z.

Per-level surrogate in latent space. At level ¢, the denoiser proposes zg; := Zden(Zt,0¢). Asin
§2.3, we approximate p(zo | z;) by a local Gaussian centered at z,|; with variance parameter 7, > 0

(we use v, = o7 for schedule-awareness), and we employ the same credible-set likelihood surrogate
in the whitened measurement space, now expressed through the decoder:

Bi(20 | 26,y) o exp( = 5 llzo — z00l?) HIAD(@) ¥l <2} @D

Taking the mode yields the latent per-level MAP:

1
Zgorr c argznel]g% R HZ _ ZO\tH2 S.t. ||A(D(Z)) — y“ <e,. (28)

Re-annealing then follows the same transport rule as Equation 11:

zi 1 = 277" + 01§, £ ~N(0,I), X¢—1 = D(z—1). (29)

ADMM in latent space and adjoint-free updates. Introduce v ~ A(D(z)) and the same feasi-
bility set C := {v : ||[v —y|| < e.}. The scaled ADMM iterations mirror Equation 14-Equation 16:

1 :
= argmin 5o — | + EAD(z) - vF +ub?, (30)
VI =TI A(D(251)) + u"), (31)
u"tl = uf + A(D(ZF 1)) — VL (32)

The projection II¢ is identical to Equation 17 because feasibility is enforced in measurement space.
For the z-update, define

F.(z) =

1 2
3 lle =zl SIADE) ~BHE b= vE ot 6y)

z
whose gradient is

1
B = VE(2) = —(z-m) + o Jaen(@) (AD@) ~BY).  zez-og. (4

z

As in pixel space, both the VIP J4,p(z) " and the JVP J4,p(z)g. are obtained directly from
autodiff (backprop through D and A; forward-mode or a single finite-difference for the JVP if
needed), so the update remains adjoint-free.

Analytic step size in latent space. Lets, :=z — zg; and r := A(D(z)) — b*. Linearizing AoD
along —g, gives A(D(z — ag,))~A(D(z)) — o J 4op(2z) g.. The scalar quadratic model

~ 1 2
Fo(a) = 5—ls: — ag:|” + Zllr — adaen (e | (35)
7z
is minimized at
o = 7%<SZ’ g:) + p=(r, Jaon(2)8:) (36)
’ g2 + p: | Jaop(2)g- 2

followed by clamping o< max (0, of) and backtracking to ensure descent of F,.

14
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Proposition 5 (Local model-optimal step and descent in latent space). Under C! regularity of AoD
near z, the step Equation 36 minimizes the quadratic model F,(«) and

2
(7%<SZ, gz> + Pz<1‘7 JAOD(Z)gz>)
2(7%”gz”2 + sz']AOrD(Z)gZH2)

with monotone decrease ensured by backtracking.

F.(z—alg.) < F.(z) —

+ O(llg:1I>), 3D

Proposition 6 (KKT at latent ADMM fixed points). If (z*,v*,u*) is a fixed point of Equa-
tion 30—-Equation 32, then A(D(z*)) = v* € C and there exists \* >0 such that

1
T(Z* — o) + A Jaop(z) W =0, N (JAD() ~yll-e) =0, (38)

withv* = (A(D(z*)) — y)/ | A(D(z*)) — y|| when the constraint is active and v* = 0 otherwise.

Remark 4 (Transfer of pixel-space results). All propositions in §2.4—§2.6 transfer to the latent case
by replacing A with ASD and x with z: the mode-substitution KL bound remains unchanged because
feasibility and annealing live in measurement space, the projection stays exact; and the analytic step
and KKT statements follow by the same quadratic-model and fixed-point arguments. In particular,
the latent method is also adjoint-free in practice because both VJP and JVP are provided by autodiff
across D and A.

Why (and when) prefer latent updates. Late in the schedule, o; is small, the denoiser’s latent
prediction zg; lies near the generative manifold, and optimizing in z respects that geometry by
construction. Early in the schedule, however, correcting in pixel space is often cheaper (no back-
prop through D) and sufficiently robust because injected noise dominates the time—marginal. This
observation motivates a hybrid schedule.

Hybrid pixel-latent schedule. We adopt a single switching parameter ogyich: for oy > Ogwiteh We
correct in pixel space using Equation 9-Equation 16, then re-encodez <— E(x) before annealing in
latent space; once o; < Ogwitch, We correct directly in latent space using Equation 28—Equation 32.
This keeps early iterations light and late iterations manifold-faithful.

Complexity and switching. A latent z-gradient step costs one pass through D and A to form
r, one VJP through AoD to form Jjopr, and one JVP to form J4.pg.; we found this JVP-
based step is effective for nonlinear-deblur in latent space. In pixel space, for strongly nonlinear .4
we recommend the FD variant Equation 24+Equation 25, which swaps the JVP for a single extra
forward call and was both faster and more stable in our nonlinear-deblur experiments. The switch
Oswiteh trades early-time efficiency for late-time fidelity; a stable default is to place it where the SNR
of the denoiser’s prediction visibly improves (e.g., where ; becomes comparable to the scale of
llx — x0¢|| in Equation 18).

Remark 5 (Consistency of pixel — encode with latent correction). If E and D are approximately
inverses near the data manifold (i.e., D(E(x)) ~x and E(D(z))~z) and are locally Lipschitz, then
a pixel correction followed by z < E(x) produces a latent iterate within O(||D o E — 1d||) of the
one obtained by one latent correction step with the same residual budget. Thus the hybrid scheme is
a coherent approximation of the pure latent method early in the schedule.
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A.2 ALGORITHMS

Algorithm 1 FAST-DIPS in Pixel Space

Require: measurement y; schedule {o,}; denoiser X4y (-, 0¢); forward A; parameters p, {v;}, K,
S, n
Ensure: reconstructed image xg
1: Sample x7 ~ N(0,021)
2: fort =T down to 1 do
3: predict Xo[; < Xden(X¢, 0t)

4 Initialize x < xo;; Vv A(X); u<+0
5 for k =1to K do
6: b+v—u F(x)+ TitHX_XO\tH?‘*‘%HA(X)_b||2
7 for s =1to S do > z-update: gradient step + backtracking
8 r < A(x) — b;s < x — xq
9: aaa <+ Vx (3] A(x) — b|]?) > via automatic differentiation
10: g ¢ -5 + p Bawas AA — A(x +1g) — A(x)

0? (s, ) + 1 p (v, AA)
11: Q4= I

n? 5, el + ol AA|2

12: Backtrack on v until Fi(x — ag) < F(x); setx < x — ag
13: end for
14: w AX) +uw; v Iy <e(w)
15: u+—u+Ax)—v
16: end for
17: Sample & ~ N(0,]) and set x;_1 < X + 041 &
18: end for

19: return xg
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Algorithm 2 FAST-DIPS in Latent Space

Require: measurement y; schedule {o,}; latent denoiser Zqen(+, 0¢); encoder &; decoder D; for-
ward A; parameters p., Yo, Ky Sz, €z, PryVey Koy S2y €2, Oswiteh
Ensure: reconstructed image xg
1: Sample zr ~ N(0,02.1)
2: for t =T down to 1 do

3: predict (latent) zo|; < Zden(2t, 0¢)
4: if 0; > Ogwiten then > early: pixel correction
5: Xo|t < D(zop); XXoi5 vV A(x); u+0
6: for k =1to K, do
7: b v—u Fi(x) ¢+ o-llx — x| + 5 [lARx) - b|?
8: fors=1to S, do > x-update with analytic step
9: g < %(X — XoJ¢) + PxJA(X>T(A(X) - b)
10: Form J4(x)g (JVP) and set « by Equation 22;
11: Backtrack on o until Fj,(x — ag) < F(x); setx < x — ag
12: end for
13: we AX)+u v I _yj<e, (W) ueu+Ax) —v
14: end for
15: re-encode z <+ E(x)
16: else > late: latent correction
17: z 2o vV A(D(z)); u+0
18: fork =1to K, do
19: b+ v—u, F,(z)+ i”z —zoe|* + %[ A(D(z)) — b|)?
20: fors=1to0 S, do > z-update with analytic step
21: g, — %(Z - ZO\t) + szAoD(Z)T(A(D(Z)) - b)
22: Form J40p(z)g. (JVP) and set « by Equation 36;
23: Backtrack on a until F,(z — ag,) < F,(z);setz<z — ag,
24: end for
25: w < AD(z) +uw; v I _y<c.(W); usu+AMD(z) —v
26: end for
27: end if
28: re-anneal z; 1 <~z + oy 1€, € ~ N(0,1)
29: end for

30: return xg < D(zg)

A.3 THEORY AND PROOFS

This appendix first summarizes the proposed FAST-DIPS procedure and its modeling assumptions
(App. A.3.1). We then restate the key propositions/remarks from the main text and provide detailed
proofs (App. A.3.2-A.3.3). Finally, we give step-by-step derivations of the analytic step sizes used
in the pixel and latent updates and explain how they can be computed with autodiff VIP/JVP or a
single forward-difference probe (App. A.3.4).

A.3.1 OVERVIEW AND ASSUMPTIONS
Method in one paragraph. At diffusion level ¢, the pretrained denoiser returns an anchor xq|; =

Xden (X¢, 0¢). We then solve a hard-constrained proximal problem around X0|

xe%érl-llw 27% ||X - XOltH2 s.t. ||A(X) - Y|| <e, (39)

17



Under review as a conference paper at ICLR 2026

in the standard (Euclidean) measurement space. We solve Equation 39 by scaled ADMM with
variables (x, v, u):

1
xkt+l arg min gHX — XO|t||2 + gHA(X) — vk ukHQ7 (40)
x t
vhtl — Mo A(xFH1) + uk), C=Av:|v-yl <&}, (41)
uFtl = uF + .A(Xk+1) — vkt (42)

The v-update is a closed-form projection onto a ball; the x-update is one (or a few) adjoint-free
gradient steps with an analytic, model-optimal step size, where the needed directional Jacobian term
J4(x)g is obtained either by autodiff JVP or by a single forward-difference probe. After correction,
we re-anneal by sampling

Xt—1 = xgorr + Ot—1 57 S ~ N(O7I)7 (43)

which implements the decoupled time—marginal transport.

Standing assumptions.

A1 (Noise model and metric) We assume additive white Gaussian noise (AWGN) with covari-
ance 321 and work in the standard Euclidean metric in measurement space; the feasibility
set is the ball {v : |[v — y|| < ¢}.

A2 (Regularity) A is C' in a neighborhood of the iterates, and .J 4 is locally Lipschitz.

A3 (Feasibility) The credible-set radius ¢ is chosen so that the ground-truth measurement is
feasible: ||A(xq) —y|| < e.

A.3.2 PIXEL-SPACE PROPOSITIONS AND PROOFS

We restate the pixel-space results from the main text and provide detailed proofs.

Proposition 2 (Closed-form projection onto the credible set). LetC = {v e R™ : |[v—y| < e} in
the measurement space. Then the Euclidean projection lc(w) in Equation 15 is exactly the radial
shrink (Parikh & Boyd (2014))

w, HW*YH S &,

Ile(w) = — 17
c(w) y—|—€u otherwise. {17

lw —yll’

Proof of Proposition 2. We solve min,, 3||v — w||? s.t. |[v — y|| < e. The objective is 1-strongly
convex and the feasible set is closed and convex; hence there is a unique minimizer.

KKT derivation. The Lagrangian is
[,(V,)\)Z%HV—WH2+)\(HV—yH—€)7 A>0.

Stationarity gives

v-y

0=V, L(Vv,\)=(V-W)+ A ——
A = V=W AT

ifv#y.
There are two cases.

(1) Interior case. If the constraint is inactive at the optimum, then A = 0 by complementary slackness
and stationarity gives v = w. Feasibility requires |w — y|| < ¢,i.e., w € C.

(ii) Boundary case. Otherwise ||v — y|| = ¢ and A > 0. Stationarity implies v — w is colinear with
v — y; hence the optimizer lies on the ray from y to w. Write v =y + 7(w —y) with 7 > 0.
Enforcing |v — y|| = € yields 7 = ¢/||w — y||. Substituting gives

w-Yy
W=yl
This is exactly the radial projection formula in Equation 17. Uniqueness follows from strong con-
vexity. O

V=y—+e¢
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Proposition 3 (Local model-optimal step and descent). Under C' regularity of A near x, o* in
Equation 22 minimizes the quadratic model Equation 21. Moreover,

(L(s,8) + plr. Ja(x)g)’
2(Lgl2 + pllJa(x)gll2)

and the backtracking line search (Armijo (1966)) guarantees monotone decrease of F' even when
Equation 20 is only a local approximation.

Fx—a'g) < F(x) —

+ O(|lgl), (23)

Proof of Proposition 3. Write F(x) = ﬁHst + £||r||? with s = x — x¢; and r = A(x) — b. The
gradient is
g=VF(x)= %s +pJax)"r.
Consider the steepest-descent trial x(a) = x — ag. A first-order Taylor expansion along —g gives
Ax(@) = Ax) —aJax)g +e(a),  e(a)] < Ha®(lgll?,
for some local Lipschitz constant L 4 of J 4 (from A2). Plugging this into F'(x(«a)) yields

F(x(a)) = 5 lls — agll* + §lr — aJa(x)gl]* + p(r - ala(x)g, e(a)) + lle(a)|*.

=F(a)
The model F is a convex quadratic in o with derivative
F(a) = ~L(s,g) — p(r, Ja(x)g) + o 8] + pll La(x)g]?),

and curvature F"' () = % llgll? + pllJa(x)g||> > 0, with equality only at stationary points where
g = 0and J4(x)g = 0. Setting F’() = 0 yields the model minimizer o* in Equation 22.

Descent of the true F. Using the expansion above and Cauchy—Schwarz with the bound on
|le()|l, we obtain

- 2
F(x—ag) < F(a) + pllr — aTa(x)gll Lta?gll* + 5 (4 a?llg)?) .
At o = o, F(a*) = min, F(a) and the improvement over F'(0) = F(x) is

s (Ese) el Jax)e)’
R T Y e EACSE

The remainder terms are O(a*?||g||?) and O(a**||g||*); shrinking @ by a constant factor (standard
Armijo backtracking) ensures these are dominated by the quadratic-model decrease, yielding strict
descent of F'.

Remark 2 (Step size from finite-difference JVP). Replacing J 4(x)g in Equation 22 by AA/n from
Equation 24 yields the numerically stable single-forward-call step

21

n°o-(s, g) + np(r, AA)
OFpD = : where AA= A(x+ng) — A(x). (25)
N A e+ mg) = Ax)

which is algebraically equivalent to substituting J(x)g =~ AA/n in Equation 22 (the scaling by
n? avoids division by small n). Since J4(x)g = AA/n+O(n), we have app = o* +O(n); Armijo
backtracking then preserves monotone decrease of the true F'.

Remark 1 (Linear A yields exact optimal line search). If A is linear, then Equation 20 is exact and
Equation 22 gives the true optimal line-search step for F' along —g (Nocedal & Wright (2006)),
delivering the fastest progress among steepest-descent steps.
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Justification. If A(x) = Hx, then J4(x) = H and the linearization is exact: A(x — ag) =
A(x) — aHg. Hence F coincides with F'(x — ag) along the line, and the model minimizer in
Equation 22 is the exact optimal line-search step.

Proposition 4 (Fixed points satisfy KKT for Equation 9). Let (x*, v*,u*) be a fixed point of Equa-
tion 14-Equation 16. Then A(x*) = v*, v* € C, and there exists \* >0 such that

1
%(x*—xo‘t) + N Ju(x") vt =0, (A" =yl —¢) = 0, (26)
where Ax")
X -y . _
e Wi ) e -vl==
{0}, [Ax") -yl <e.

Hence x* satisfies the KKT conditions of Equation 9 (Bertsekas (1999)).

*

Proof of Proposition 4. At a fixed point (x*, v*, u*), the u-update satisfies u* = u* + A(x*) — v*,
hence primal feasibility A(x*) — v* = 0. The v-update is the metric projection onto C:

v* =T (A(x™) +u”),
so v* € C and the optimality condition of the projection reads

0 € Die(v¥*) + p(v* — (A(x*) +u*)) = Die(v*) — pu’,

ie., pu* € die(v*) = N¢(v*), the normal cone of C at v*. For the x-subproblem, first-order
optimality gives

0= L (x" = xo) + pJalx") T (AX") = v* + 1) = L (x* = x0) + p Ja(x") "0,

using primal feasibility. The normal cone for the ballC = {v : [[v —y|| < e} is

. {Ww*: A>0}, |[v*—-y|=c¢ ) vt —y
NC(V = W T E—T
{o}, v -yl <e, [v* =yl

Thus pu* = A*v* for some A* > 0 when the constraint is active and u* = 0 otherwise. Substitut-
ing into the x-optimality condition yields

1 T

I(X* —Xo¢) + A" Ja(x*) v = 0.

Complementarity A*(||A(x*) — y|| — ) = 0 follows by construction of the normal cone. Hence
(x*, A*) satisfies the KKT conditions of Equation 39. O

Proposition 1 (Mode-substitution error under Laplace). Assume locally p(xq | x¢,y) = N (my, 2;)
Ccorr

and let x7°'" solve Equation 9. Then the KL divergence between the time—marginals obtained by (i)
injecting noise from N (mny, ¥) and (ii) injecting noise centered at X9 is bounded by

o[t
”mt_xcorrHQ » 2

KL( (me, B0+ 070 0) || W0 i0)) < e 00 Wl )
Ot-1 4oy

Consequences. The bound is small (i) early, when o?_, is large, and (ii) late, when ||| is small;
this justifies the decoupled rule Equation 11.

Proof of Proposition 1. Let P = N'(m, %, + 0%I) and Q = N (x¢°*, 021) in R The Gaussian
KL formula gives

_ _ det X
KLPIQ) = 4 (12 2r) + (g — ) T35 (g — ) —d + log B2 ).

With Xg = 021, Sp = 021 + 34, pg — pp = X5 — my, we get

x5 —me|” 1 1 1
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Diagonalize ¥; = UAU " with eigenvalues \; > 0. Then

d
g — mel|* 1 A Ai
KL(PQ) = T 5t + 530 (5 —log(1+ 55 ) )

i=1
Use z — log(1 + z) < 2%/2 for x > 0 termwise to obtain

d
x5 —mm]|* 1T A7 X = my P
KL(P < 4 " 41— =
(PllQ) = 202 + 4 ; o 202 +

2%
404

Tightness regimes. The second term vanishes as 0% — oo (early in the schedule) and as || ||  — 0
(late in the schedule); the first term quantifies bias between the mode x7°™" and the posterior mean
M. ]

A.3.3 LATENT-SPACE COUNTERPARTS AND PROOFS

Why the substitution A — AcD is valid. If A and the decoder D are C!, then so is the composite
AoD. All arguments that relied on VIP/JVP of A and local linearization transfer verbatim to AoD
via the chain rule; the projection remains in measurement space and is unchanged.

Proposition 5 (Local model-optimal step and descent in latent space). Under C L regularity of AoD
near z, the step Equation 36 minimizes the quadratic model F,(«) and

2
(,y%<sz’ g:) + p:(r, JAoD(Z)gz>)
2(-llg:= 112 + pallJaon (2):1?)

with monotone decrease ensured by backtracking.

FZ(Z_a:gz) < F.(z) -

+ O(llg:II>), 3D

Proof of Proposition 5. Define F(z) = 5~z — zo||* + 5 [ A(D(2)) — b||* and g. = --(z —
2ojt) + Pz Jaop(2) " (A(D(2z)) —b). Linearize A(D(z—ag.)) = A(D(z)) — aJaop(2)g. +e:(a)

with ||e, (o) < L“;—Dﬂ |lg.||?. Repeat the pixel-space proof with A replaced by AoD to obtain the
model minimizer Equation 36 and the same Armijo descent guarantee. O

Proposition 6 (KKT at latent ADMM fixed points). If (z*,v*,u*) is a fixed point of Equa-
tion 30-Equation 32, then A(D(z*)) = v* € C and there exists \* >0 such that

1
,7(Z* — o) + A Jaop(z) W =0, N(JAD(E)) ~yll—e) =0, (38

withv* = (A(D(z*)) — y)/||A(D(z*)) — y|| when the constraint is active and v* = 0 otherwise.

Proof of Proposition 6. Identical to the pixel-space KKT proof, replacing A by AoD and x by z.
The projection onto C is unchanged; the normal cone and complementarity conditions are therefore
the same, yielding the stated KKT system. O

Remark 6 (Mode-substitution transport in latent space). Replacing p(zo | z+,y) by its mode and
re-annealing with z,_1 = z{°"" + 0,_1& induces the same KL structure as Prop. 1 after decoding
because noise injection and credibility act in measurement space,; only the mean is mapped by D.

A.3.4 DERIVATION OF ANALYTIC STEP SIZES AND AUTODIFF COMPUTATION

Pixel space: detailed derivation. Recall

1
F) = 5= o + SIAG) ~BI s =x-xop r=A(x) b,

Then g = %s + pJa(x) r. For the trial x(a) = x — ag,
A(x(a)) = A(x) — aJa(x)g
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gives the scalar quadratic model
Fla)= 5 —[s — gl + Slir - aTu (gl
2’725 2 ’

whose derivative is

F'(a) = =L (s,8) - pr, Ja(x)g) + (L lgl* + ol Ta(x)gll?) -

R
Setting I (a) = 0 yields o* in Equation 22. The curvature F"' (o) = %Hg”2 +pllJa(x)gll*> >0
shows uniqueness unless g = 0.

Autodiff computation recipe (pixel):

1. Evaluate A(x) to getr = A(x)) — b.
2. Compute the VIP J 4 (X)Tr (reverse-mode autodiff) and form g.
3. Obtain the directional Jacobian J 4(x)g either

* by forward-mode autodiff (preferred when available), or
* by few forward-difference probe
A

Ja(x)g ~ - AA = A(x+ng) — Ax), ne (107*,1077],

in which case it is numerically convenient to assemble the FD-stabilized closed form
Equation 25 (equivalent to substituting A.A/7 into Equation 22 but avoiding division
by small 7).

4. Assemble the numerator/denominator, clamp « < max(0, «*), and perform Armijo back-
tracking.

Latent space: detailed derivation. With

ool 2 IADE) DI, g = - (5m0) o Jaon(z) T (A(D(z) D)

F.(z) =
¢ 27, V2

linearize .AoD to obtain

- 1 .
Fo(0) = 5o = zop — 0 + S IAD() ~ b~ aLuop()e: |

whose minimizer is Equation 36. The VIP/JVP are computed end-to-end through D and A by
autodiff; a single finite-difference through the composition is a valid JVP fallback:

Jaon(2)g: ~ A(D(z + 6g25)) — A(D(z)).

Complex-valued measurements. When measurements are complex, we work with
real-imaginary stacking (dimension 2m) and the Euclidean norm; all expressions remain
valid verbatim, with J 4 denoting the real Jacobian.

Backtracking and safeguards. We use the Armijo condition
F(x —ag) < F(x) — callg|?, ce(0,1),

reducing o < T (e.g., T = %) until acceptance. If o* < 0, initialize with

_ el
T/ + [Tatel/p

and backtrack. Identical safeguards apply in latent space with (7., p., g ).

Qg
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A.3.5 ADDITIONAL REMARKS

Remark 7 (Trust-region scaling along the schedule). Setting v, = o? ties the proximal radius to
the diffusion noise: large exploratory moves are allowed early (large o), while the anchor tightens
late, mirroring increasing prior certainty.

Remark 8 (Feasibility and whitening in implementation). Under the AWGN setting adopted
throughout, the measurement-space credible set is a Euclidean ball and the projection is the closed-
form radial shrink of Equation 17; all ADMM updates are therefore standard and closed-form.

Remark 9 (Empirical choice: FD in pixel, JVP in latent). The latent formulation includes a de-
coder—forward stack, making it more complex than in pixel space. Accordingly, in pixel space we
use the forward-difference variant Equation 25, which replaces one JVP with a single extra forward
call to A and solves the subproblem faster and more efficiently. By contrast, in latent space we rely
on the autodiff JVP for greater stability. In both cases, Armijo backtracking guarantees descent of
F.

A.4 ABLATION STUDIES

Goal and tasks. We assess the impact of measurement-space feasibility via projection and the
choice of step size inside the x-update. Experiments use 10 FFHQ images on two representa-
tives: Gaussian blur in pixel space and HDR in latent space, with PSNR/SSIM/LPIPS and average
per-image runtime.

Baseline and objective. To isolate projection, we evaluate an unsplit penalized baseline that opti-
mizes the same quadratic objective as the z-subproblem inside ADMM, but without variable splitting
or projection:

1
572 400 I

which we refer to as QDP (no splitting, no proj.). In all runs we match the ADMM instantiation by
setting ; = o7 identically to FAST-DIPS and choosing the data-penalty weight so that £=

2
min X —X +
xERCHW 2y, ” Olt”

_1
282"

Compute-matched fairness. Each x-gradient step entails one forward pass of A, one VJP, and
one JVP (or a single forward probe for FD); projection and dual updates are negligible. With K
ADMM iterations and S gradient steps per iteration, FAST-DIPS (ADMM + proj.) spends K x S
such triplets per level, so ODP is allotted K xS gradient steps per level to match compute. Step-size
mechanisms are kept identical between solvers: constant «, analytic/JVP o*, and finite-difference
QFD.

Findings. In pixel space, app is competitive with a* at lower cost; in latent space, a* provides the
stability needed for the nonlinear decoder—forward composition, while agp lags. Under the matched
budget, enforcing feasibility via projection improves quality over the unsplit penalty path; latent
runtimes primarily reflect decoder backprop.

A.5 HYPERPARAMETERS OVERVIEW.

Linear task Non Linear task
Super Resolution 4x  Inpaint (Box) Inpaint (Random) ~Gaussian deblurring  Motion deblurring | Phase retrieval Nonlinear deblurring  High dynamic range
T 75 75 75 50 50 150 150 150
K 3 3 3 3 3 2 2 2

Algorithm Parameter

FAST-DIPS

S
P

1
200
0.05

1
200
0.05

1
200
0.05

2
200
0.05

2
200
0.05

5
200
0.05

5
200
0.05

5
5
0.05

Latent FAST-DIPS

T

50

(K., K.) (5.5)

(5252
(pe-)

Tswitch

(3.3)
(200,200)
1

0.05

50
(5.5)

(3,3)
(200,200)
1

0.05

50
(5.5)

33
(200,200)
1

0.05

(3.3)
(200,200)
1

50
(5,5)

0.05

50
(5.5)

(3.3)
(200,200)
1

0.05

25
(10,10)

33)
(200,200)
5

0.05

25
(10,10)
(3.3)
(200,200)

5
0.05

25
(10,10)
(3.3)
(200,200)
5

0.05

Table 2: The hyperparameters of experiments in paper for all tasks.

Throughout our experiments, hyperparameter settings are summarized in Table 2. In the annealing
process, we set omax = 100 in pixel space and 10 in latent space, with o, = 0.1 in both, to enhance
robustness to measurement noise.

23



Under review as a conference paper at ICLR 2026

A.6 EXPERIMENTAL DETAILS.

Validation set information For reproducibility, we explicitly specify the indices of the samples
used for validation. FFHQ (256 x 256). We use 100 images corresponding to dataset indices
00000-00099. ImageNet (256 x 256). We use 100 images from the ImageNet validation set
corresponding to indices 49000-49099.

A.7 BASELINE IMPLEMENTATION DETAILS.
All baselines were experiments using the authors’ public repositories:

* DAPS/LatentDAPS: github.com/zhangbingliang2019/DAPS
SITCOM: github.com/sjames40/SITCOM

* HRDIS: github.com/deng-ai-lab/HRDIS

e C-IIGDM: github.com/mandt-lab/c-pigdm

» PSLD: github.com/LituRout/PSLD

» ReSample: github.com/soominkwon/resample

We followed each method’s original paper and default repository settings. Additionally, for phase
retrieval we applied a best-of-four protocol uniformly across all compared baselines.

Measurements noise setting. Because the SVD operator caused instability when injecting noise
in super-resolution and Gaussian deblurring, HRDIS is evaluated with noise on all other tasks, while
C-IIGDM is evaluated only in the noiseless setting for all tasks.

Details of Figure 3. For the runtime—quality trade-off in Figure 3, we varied only the number of
solver steps/iterations per method, keeping all other hyperparameters at their recommended defaults:

* DAPS The number of ODE steps was fixed at 4, while the number of annealing steps was
swept over {2, 5,10, 15, 20, 25}.

* SITCOM We swept pairs of diffusion steps N and inner iterations K over (N, K) €
{(3,2),(5,3),(5,5), (5,10), (5,15), (5,20)}.

* HRDIS We varied the number of diffusion steps over {10, 15, 50, 80, 100, 130}.
* C-IIGDM We varied the number of diffusion steps over {20, 50, 75, 100, 150, 200}.

Automatic Differentiation Primitives. To implement the adjoint-free analytic updates without
manually deriving gradients for the forward operator A, we leverage the automatic differentiation
capabilities of PyTorch. Specifically, the Vector-Jacobian Product (VIP) term .J 4(x) " r, which is
necessary for computing the gradient of the data-consistency term, is obtained via standard reverse-
mode differentiation using torch.autograd.grad. For the Jacobian-Vector Product (JVP)
term J4(x)g, we utilize the functional transformation API, specifically torch. func. jvp. This
allows us to efficiently compute the directional derivative required for the local quadratic model in
a fully differentiable manner.

A.8 ADDITIONAL EXPERIMENTS

Effectiveness of X' ADMM iterations and S gradient steps We performed an ablation study
to evaluate the influence of both the number of ADMM iterations (KX') and the number of gradient
steps (S) in the x-update stage. We tested K € {2,3,5} and S € {1,3,5} across both linear and
nonlinear tasks. As shown in Table 5, increasing K consistently improves performance for both
linear tasks (e.g., super-resolution) and nonlinear tasks (e.g., nonlinear deblurring), though naturally
at the cost of higher computation. This suggests that the refinement offered by additional ADMM
iterations is broadly beneficial regardless of task difficulty.

In contrast, the effect of increasing the number of gradient steps .S is task-dependent. For linear
tasks, the performance gain is marginal relative to the additional runtime. However, for nonlinear
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Gaussian Blur (Pixel)

High Dynamic Range (Latent)
Step Size Method PSNR SSIM LPIPS Run-time (s)

Solver Step Size Method ~ PSNR  SSIM_ LPIPS  Run-time (s)

Solver ‘

a=10"" 22854 0.665 0429 1.893 a=10"" 22113 0671 0459 21.827

constant o =10"% 28028 0.796 0.314 1.867 constant o = 10"* 23486 0.769  0.356 22,078

QDP (no splitting, no proj.) a=10"2 2687 0162 0.779 1.955 QDP (no splitting, no proj.) a=10"% 16296 0614 0.555 22.044
| VP 29480 0830 0271 2356 | | VP 24356 0757 0357 60.963

| FD 29577 0.832  0.268 2018 | | FD 23196 0750  0.364 31.158

a=10"" 24829 0714 0391 1.988 a=10"% 21522 0641 0496 25.011

constant o =102 28.647 0811 0.296 2.029 constant o =107 25021 0768 0.339 25.110

FAST-DIPS (ADMM + proj.) a=10"% 3851 0.I51 0772 1.993 FAST-DIPS (ADMM + proj.) a=10"* 23328 0797 0298 25.159
| VP 29762 0.829 0273 2502 | | VP 25530 0811 0273 63.952

| FD (Ours) 29.632 0819 0287 2053 | | FD 21041 0736 0355 34.197

Table 3: Ablation of step-size selection inside two per-level solvers. Left: Gaussian blur (pixel).
Right: HDR (latent). We compare constant «, analytic/JVP «*, and forward-only app within QDP
(no splitting, no proj.) and FAST-DIPS (ADMM + proj.). For fairness, compute is matched by
allocating K x S gradient steps per level to QDP when FAST-DIPS uses K ADMM iterations with
S gradient steps each; projection/dual updates are negligible. All results are evaluated on FFHQ256
10 samples.

Gaussian Inpaint Motion
deblurring (random) deblurring

Measurement

Task PSNR SSIM  LPIPS

Gaussian deblurring 28.730  0.814 0.273
Random Inpainting 30.806  0.878 0.192
Nonlinear deblurring 27.016 0.781 0.266 Reconstruction ‘

Table 4: Quantitative results under Pois-

son measurement noise (Apoisson = 1).
FAST-DIPS remains accurate and perceptu-
ally faithful across tasks. Reference

Figure 4: Qualitative reconstructions under Poisson
measurement noise (Apoisson = 1): FAST-DIPS pre-
serves edges and textures across tasks.

tasks, the reconstruction metrics steadily improve as S increases, indicating that additional gradient
refinement helps the solver locate more accurate correction points in challenging settings. Overall,
both K and S present a clear quality—cost trade-off, with K providing general improvements and .S
offering additional benefits especially for complex nonlinear problems.

Hyperparameter Robustness We investigate the robustness of our method to its main hyperpa-
rameters. Table 6 shows the results for the super-resolution task when sweeping the ADMM penalty
p, and the credible set radius e. The performance remains remarkably stable across a wide range
of values for each parameter. This highlights a key advantage of FAST-DIPS: it is not sensitive to
fine-tuning and delivers strong results with default settings, enhancing its practicality and ease of
use.

Hybrid Schedule Trade-off In our hybrid pixel-latent framework, the ogyich parameter deter-
mines the point at which the correction process transitions from pixel space to latent space. Table 7
illustrates the resulting trade-off between performance and run-time. Performing the initial cor-
rection steps in pixel space (Ogswiten > 0) provides a fast and effective rough update, significantly
reducing the overall computation time. The subsequent switch to latent-space updates allows for
more stable, fine-grained corrections that respect the generative manifold. This hybrid strategy
proves highly effective, and an intermediate oyich value offers an optimal balance between speed
and reconstruction fidelity.
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K ls Super Resolution 4x Nonlinear Blur
PSNR SSIM LPIPS Run-time(s) | PSNR  SSIM LPIPS Run-time (s)
1 ]29.627 0.837 0.260 1.444 25.101 0.711 0367 8.711
2 | 329675 0838 0259 1.778 27.275 0.780  0.302 17.284
5] 29.678 0.838 0.259 2.113 27914 0.800 0.285 26.766
1] 29740 0839 0.256 1.569 25491 0.725 0347 10.937
3 | 3129734 0839 0.256 2.092 27.079 0.785 0.287 26.888
5] 29.734 0839 0.256 2.608 27.546 0.801 0274 38.314
1] 29736 0.838 0.252 1.794 25.501 0.734  0.323 15.707
5 | 329737 0838 0252 2.641 26.706 0.777  0.267 39.492
529737 0838 0.252 3.418 27.006 0.786  0.265 63.044

Table 5: The trade-off between quality and cost in the x-update step. For complex nonlinear tasks
such as nonlinear deblurring, increasing the number of gradient steps improves reconstruction qual-
ity but also increases computational cost. All experiments were conducted on 10 samples using an
RTX 6000 Ada GPU.

p PSNR SSIM LPIPS € PSNR SSIM LPIPS
10 27546 0.783  0.339 0 29.739  0.839  0.255
100 29.614 0.836 0.267 0.01 29.739 0.839 0.255
200 29.740 0.839 0.256 0.05 29.740 0.839 0.256
500  29.565 0.828  0.260 0.1 29.740 0.839 0.256
1000 29363 0.816 0.276 1 29.726  0.839 0.258

Table 6: Sensitivity analysis of the main hyperparameters for Super resolution 4%, evaluated on
10 FFHQ images. The table shows the performance while sweeping the ADMM penalty p and
the credible set radius €. The results demonstrate that our method is robust, with performance
remaining remarkably stable across a wide range of values, which reduces the need for extensive
hyperparameter tuning.

Owich PSNR  SSIM  LPIPS  Run-time (s)

< 0.0 24283 0.553 0469 3.082
0.2 27.185 0.681 0.374 11.727
1 28.809 0.793  0.302 38.014
5 28.828 0.791  0.306 73.138

>10.0 28819 0.791 0.307 90.646

Table 7: Performance of the hybrid pixel-latent schedule with varying ogwich values for 4x super-
resolution on 10 FFHQ images. The schedule performs correction in pixel space when o; > Oswitch
and in latent space otherwise. The results, measured on an RTX 6000 Ada GPU, show that a bal-
anced approach (ogwiren = 0.6) is more effective than a purely pixel-space (< 0.0) or purely latent-
space (> 10.0) correction strategy.

Experiments with non-Gaussian noise. Figure 4 and Table 4 evaluate FAST-DIPS under Pois-
son measurement noise with rate Apoisson = 1, showing that our method remains accurate and
perceptually faithful beyond the additive white Gaussian noise (AWGN) setting. The robustness
arises from replacing a parametric likelihood with a set-valued surrogate: at each diffusion level,
we solve a denoiser-anchored, hard-constrained proximal problem that enforces feasibility within a
measurement-space credible set (Euclidean ball) in a whitened domain, which is inherently tolerant
to noise miscalibration and largely insensitive to the exact noise law when residuals are appropriately
whitened. Our analytic step-size rules yield stable optimization across tasks, supporting practical in-
sensitivity to corruption type.

Extension to Non-Differentiable Operators To address the applicability of FAST-DIPS to non-
differentiable degradations, we evaluated our framework on JPEG restoration. While the standard
JPEG compression pipeline involves a non-differentiable quantization step, it can be effectively
handled using a differentiable surrogate (Reich et al. (2024)).

We applied FAST-DIPS using this differentiable surrogate to guide the restoration process under
measurement noise S = 0.05. Qualitative results are presented in Figure 5, demonstrating that our
method effectively suppresses blocking artifacts and restores high-frequency details. Quantitative
metrics in Table 8 further confirm competitive reconstruction performance. These results suggest
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JPEG Quality Measurement Run 0 Run 1 Reference Measurement Run 0 Run 1 Reference

Q=25

Figure 5: Qualitative results for JPEG restoration on FFHQ using FAST-DIPS with a differentiable
surrogate operator. We display the measurement, reconstruction, and the ground-truth reference
across three compression levels: JPEG Quality 5, 10, and 25.

JPEG Quality PSNR SSIM  LPIPS

Method PSNR  SSIM  LPIPS  Runtime (s)
%8 S;;E g'ggi g'iég Latent-DAPS 28308 0809 0428 580664
s om0 Ours(Latent) 31438 0852 0356 247399

Table 8: Quantitative evaluation of Table 9: Quantitative evaluation of high-resolution

JPEG restoration on FFHQ across JPEG (512x512) Gaussian deblurring on FFHQ using 10

quality factors 5, 10, and 25. samples, conducted on an RTX 6000 Ada GPU.

that FAST-DIPS remains highly effective for formally non-differentiable problems, provided a dif-
ferentiable proxy of the forward operator is available.

High-resolution image data We further conducted high-resolution experiments on the FFHQ
dataset at 512x 512 resolution in the latent setting, going beyond the standard 256 x 256 regime. As
shown in Table 9, our method improves PSNR, SSIM, and LPIPS compared to Latent DAPS—the
most recent state-of-the-art latent diffusion—based inverse problem solver—while also achieving
approximately 2.3 x faster runtime. These results suggest that our hybrid approach can handle high-
resolution inputs effectively and benefit from efficient computations in the latent space.

Qualitative Results Figures 6-22 provide additional qualitative samples for a comprehensive set
of eight problems on FFHQ and ImageNet dataset. These results visually demonstrate the high-
quality and consistent reconstructions achieved by both the pixel-space (FAST-DIPS) and latent-
space (Latent FAST-DIPS) versions of our method.

A.9 FUTURE WORK AND LIMITATIONS

Our proposed method, FAST-DIPS, provides a robust framework for solving inverse problems, and
its hyperparameter stability opens up several promising directions for future work. The framework
is defined by a few key hyperparameters (p, €, Oswitch), and as shown in additional experimental sec-
tion Table 6, 7, it exhibits robustness across a wide range of their values, enhancing its practical
usability. Among these, the ADMM penalty parameter p can be considered the most influential.
While our experiments show stable performance with a fixed value, integrating adaptive penalty
selection strategies could further improve convergence and robustness. Similarly, exploring an op-
timal or adaptive schedule for the hybrid switching point oy remains another interesting avenue
for research.

Despite these strengths and opportunities, we also acknowledge a primary limitation of the current
framework: its dependency on differentiable forward operators. FAST-DIPS is “adjoint-free” in the
sense that it does not require a hand-coded adjoint operator. However, its efficiency heavily relies on
automatic differentiation to compute VJP and JVP needed for the analytic step size a*. This implic-
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itly assumes that the forward operator A is (at least piecewise) differentiable. For problems involv-
ing non-differentiable operators or black-box simulators where gradients are unavailable, our current
approach cannot be directly applied. Future work could explore extensions using zeroth-order opti-
mization techniques or proximal gradient methods that can handle non-differentiable terms.

28



Under review as a conference paper at ICLR 2026

X

corr
D(Zo|t

Figure 6: Phase Retrieval trajectory under FAST-DIPS and Latent FAST-DIPS with intermediate
iterates along the diffusion schedule.
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FAST-DIPS Latent FAST-DIPS

Reference Run 0 Run 1 Run 2 Run 3 Run 1

Figure 7: Additional qualitative results for Phase Retrieval. We show Measurement, Reconstruc-
tion, and Reference for both FAST-DIPS and Latent FAST-DIPS across four runs (Run 0-3).

FAST-DIPS Latent FAST-DIPS

Reference Run 0 Run 1 Run 2 Run 3 Reference Run 0 Run1 Run 2 Run 3

Figure 8: Qualitative results for Phase Retrieval on ImageNet dataset. We show Measurement,
Reconstruction, and Reference for both FAST-DIPS and Latent FAST-DIPS across four runs (Run
0-3).
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FAST-DIPS Latent FAST-DIPS

; g
/.

Measurement

Figure 9: Additional qualitative results for Super-Resolution x4. Measurement, Reconstruction,
and Reference are shown for FAST-DIPS and Latent FAST-DIPS.

FAST-DIPS Latent FAST-DIPS

Measurement

Reconstruction

Reference

Figure 10: Qualitative results for Super-Resolution x4 on ImageNet dataset. Measurement, Re-
construction, and Reference are shown for FAST-DIPS and Latent FAST-DIPS.

FAST-DIPS Latent FAST-DIPS

Measurement |

Reconstruction|

Reference

Figure 11: Additional qualitative results for Inpaint(box). We display Measurement, Reconstruc-
tion, and Reference for FAST-DIPS and Latent FAST-DIPS.

FAST-DIPS

Measurement

Reconstruction

Reference

Figure 12: Qualitative results for Inpaint(box) on ImageNet dataset. We display Measurement,
Reconstruction, and Reference for FAST-DIPS and Latent FAST-DIPS.
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FAST-DIPS Latent FAST-DIPS

Measurement

Reconstructio

Reference

Figure 13: Additional qualitative results for Inpaint(random). Measurement, Reconstruction, and
Reference with FAST-DIPS and Latent FAST-DIPS.

FAST-DIPS Latent FAST-DIPS

Measurement

Reconstructio

Reference

Figure 14: Qualitative results for Inpaint(random) on ImageNet dataset. Measurement, Recon-
struction, and Reference with FAST-DIPS and Latent FAST-DIPS.

FAST-DIPS Latent FAST-DIPS

Measurement

Reconstructio

Reference

Figure 15: Additional qualitative results for Gaussian deblurring. We show Measurement, Recon-
struction, and Reference for FAST-DIPS and Latent FAST-DIPS.

FAST-DIPS Latent FAST-DIPS
I

Measurement

Reconstruction

Reference

Figure 16: Qualitative results for Gaussian deblurring on ImageNet dataset. We show Measure-
ment, Reconstruction, and Reference for FAST-DIPS and Latent FAST-DIPS.
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FAST-DIPS Latent FAST-DIPS

Measurement

Reconstructio

Reference

Figure 17: Additional qualitative results for Motion deblurring. Measurement, Reconstruction,
and Reference are provided for FAST-DIPS and Latent FAST-DIPS.

FAST-DIPS Latent FAST-DIPS
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Measurement
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Reconstructio

Reference

Figure 18: Qualitative results for Motion deblurring on ImageNet dataset. Measurement, Recon-
struction, and Reference are provided for FAST-DIPS and Latent FAST-DIPS.

FAST-DIPS Latent FAST-DIPS

Measurement

Reconstruction’

Reference

Figure 19: Additional qualitative results for Nonlinear deblurring. We present Measurement, Re-
construction, and Reference for FAST-DIPS and Latent FAST-DIPS.

FAST-DIPS Latent FAST-DIPS

Measurement

Reconstruction|

Reference

Figure 20: Qualitative results for Nonlinear deblurring on ImageNet dataset. We present Measure-
ment, Reconstruction, and Reference for FAST-DIPS and Latent FAST-DIPS.
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FAST-DIPS Latent FAST-DIPS

k !
Figure 21: Additional qualitative results for High Dynamic Range. Measurement, Reconstruction,
and Reference for FAST-DIPS and Latent FAST-DIPS.

FAST-DIPS Latent FAST-DIPS

Measurement

Reconstruction

Reference

Figure 22: Qualitative results for High Dynamic Range on ImageNet dataset. Measurement, Re-
construction, and Reference for FAST-DIPS and Latent FAST-DIPS.
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