

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FAST-DIPS: ADJOINT-FREE ANALYTIC STEPS AND HARD-CONSTRAINED LIKELIHOOD CORRECTION FOR DIFFUSION-PRIOR INVERSE PROBLEMS

006
007 **Anonymous authors**
008 Paper under double-blind review

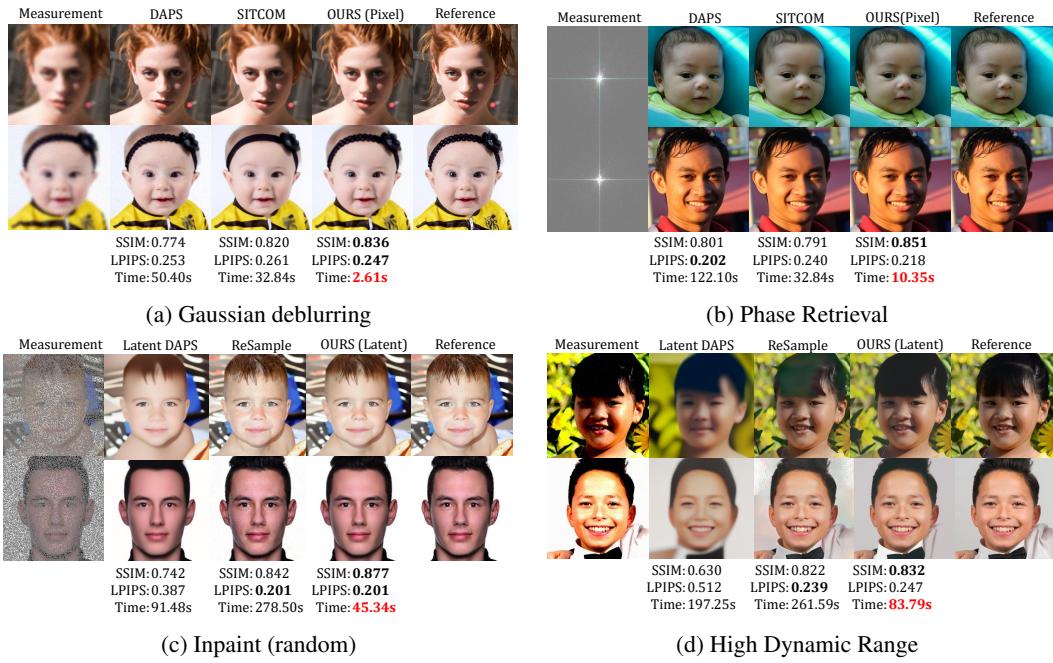


Figure 1: FFHQ results on four inverse problems: (a) Gaussian deblurring, (b) phase retrieval, (c) random inpainting, (d) HDR. Each panel shows the measurement, baselines (pixel: DAPS, SITCOM; latent: Latent DAPS, Resample), our FAST-DIPS output (pixel or latent as labeled), and the reference. SSIM/LPIPS and average per-image runtime (s) are overlaid; FAST-DIPS attains comparable or higher quality with markedly lower runtime.

ABSTRACT

041
042
043
044
045
046
047
048
049
050
051
052
053
FAST-DIPS is a training-free solver for diffusion-prior inverse problems, including nonlinear forward operators. At each noise level, a pretrained denoiser provides an anchor $\mathbf{x}_{0|t}$; we then perform a hard-constrained proximal correction in measurement space (AWGN) by solving $\min_{\mathbf{x}} \frac{1}{2\gamma_t} \|\mathbf{x} - \mathbf{x}_{0|t}\|^2$ s.t. $\|\mathcal{A}(\mathbf{x}) - \mathbf{y}\| \leq \varepsilon$. The correction is implemented via an adjoint-free ADMM with a closed-form projection onto the Euclidean ball and a few steepest-descent updates whose step size is analytic and computable from one VJP and one JVP—or a forward-difference surrogate—followed by decoupled re-annealing. We show this step minimizes a local quadratic model (with backtracking-based descent), any ADMM fixed point satisfies KKT for the hard-constraint, and mode substitution yields a bounded time-marginal error. We also derive a latent variant ($\mathcal{A} \mapsto \mathcal{A} \circ \mathcal{D}$) and a one-parameter pixel \rightarrow latent hybrid schedule. FAST-DIPS delivers comparable or better PSNR/SSIM/LPIPS while being substantially faster, requiring only autodiff access to \mathcal{A} and no hand-coded adjoints or inner MCMC.

054 1 INTRODUCTION
055

056 Inverse problems seek to recover an unknown signal \mathbf{x} from partial and noisy measurements $\mathbf{y} =$
057 $\mathcal{A}(\mathbf{x}) + \mathbf{n}$. Such problems are ubiquitous in science and engineering, yet they are often ill-posed:
058 distinct \mathbf{x} can produce similar \mathbf{y} due to the structure of the operator \mathcal{A} and measurement noise \mathbf{n} .
059 The Bayesian viewpoint constrains the solution via a prior and asks to sample from $p(\mathbf{x} | \mathbf{y}) \propto p(\mathbf{y} |$
060 $\mathbf{x}) p(\mathbf{x})$.

061 Diffusion models have emerged as a powerful class of learned priors for modeling complex data dis-
062 tributions, including natural images (Ho et al. (2020); Song & Ermon (2020); Song et al. (2021a;b);
063 Dhariwal & Nichol (2021); Karras et al. (2022); Song et al. (2023); Lu & Song (2025)). Through
064 reverse-time dynamics, they progressively transform simple noise into samples from the target dis-
065 tribution. This generative mechanism offers a natural framework for inverse problems, where the
066 reverse-time SDE is guided by measurements to draw posterior.

067 Diffusion-based inverse problem solvers generally begin with an unconditional pretrained prior and
068 impose data consistency at sampling time. Representative examples include task-specific diffu-
069 sion solver (Saharia et al. (2023); Lugmayr et al. (2022); Liu et al. (2023)), linear-operator frame-
070 works (Kawar et al. (2022); Wang et al. (2023)), and decoupled/posterior-aware updates (Chung
071 et al. (2023a;b); Dou & Song (2024); Zhang et al. (2025)). Other lines formulate plug-and-play
072 optimization with diffusion denoisers (Zhu et al. (2023); Rout et al. (2024); Wu et al. (2024); Xu &
073 Chi (2024); Mardani et al. (2024); Wang et al. (2024); Zheng et al. (2025)), Monte-Carlo guidance
074 (Cardoso et al. (2024)), or aim for faster sampling via preconditioning, parallelization, or schedule
075 tailoring (Garber & Trier (2024); Cao et al. (2024); Liu et al. (2024); Chung et al. (2024)). A central
076 practical question is how data consistency is enforced. Many training-free designs rely on differenti-
077 ation through \mathcal{A} , often in the form of explicit adjoints or pseudo-inverse, which can raise engineering
078 barriers and restrict applicability to operators with readily available derivatives (Kawar et al. (2022);
079 Wang et al. (2023); Rout et al. (2023); Liu et al. (2024); Pandey et al. (2024); Cao et al. (2024);
080 Garber & Trier (2024); Dou & Song (2024); Cardoso et al. (2024); Chung et al. (2024)). Methods
081 that avoid hand-coded adjoints typically lean on inner iterative solvers or MCMC subloops, which
082 increase wall-clock cost due to repeated score/denoiser calls (Zhu et al. (2023); Wu et al. (2024); Xu
083 & Chi (2024); Mardani et al. (2024); Wang et al. (2024); Zhang et al. (2025)).

084 A complementary design axis is *latent* vs. *pixel* execution. Latent diffusion models reduce di-
085 mensionality and sampling cost, and many recent posterior samplers therefore operate in latent
086 space (Rombach et al. (2022); Podell et al. (2024); Song et al. (2024); Rout et al. (2024); Zhang
087 et al. (2025)). However, when fidelity is defined in pixel space, gradients $\nabla_{\mathbf{z}} \|\mathcal{A}(\mathcal{D}(\mathbf{z})) - \mathbf{y}\|^2$
088 require repeated decoder-Jacobian evaluations, creating a throughput bottleneck. Conversely,
089 pixel-space updates avoid the decoder but can be sensitive to how Jacobian–vector products (JVPs)
090 are computed for highly nonlinear \mathcal{A} . These tradeoffs motivate methods that (i) enforce explicit
091 measurement-space feasibility, (ii) avoid hand-coded adjoints while making minimal autodiff calls,
092 (iii) minimize inner iterations, and (iv) leverage latent space where it helps most.

093 We propose **FAST-DIPS** (Fast And STable Diffusion-prior Inverse Problem Solver), a training-free
094 framework that (i) keeps the transport across diffusion time steps decoupled, (ii) enforces a hard
095 credible set in measurement space under an AWGN assumption (Euclidean norm), and (iii) performs
096 the per-level correction via an adjoint-free ADMM with few-step descent update equipped with an
097 analytic step size. Concretely, the denoiser provides a level-wise anchor; around it, we solve a
098 hard-constrained proximal problem that projects the predicted measurement onto a ball (credible
099 set) and updates the image by a single steepest-descent step with a step size computable from one
100 vector–Jacobian product (VJP) and one JVP—or a forward-difference JVP fallback—followed by
101 short backtracking. After correction we re-anneal by injecting the next-level noise, realizing the
102 exact time-marginal recursion. We also develop a latent counterpart (replace \mathcal{A} by $\mathcal{A} \circ \mathcal{D}$, where
103 $\mathcal{D} : \mathbb{R}^k \rightarrow \mathbb{R}^{C \times H \times W}$ is a pretrained decoder; the matching encoder is \mathcal{E}) and a hybrid schedule that
corrects in pixels early (cheap, robust) and latents late (manifold-faithful).

104 FAST-DIPS differs from PnP/RED-ADMM (Chan et al. (2017); Venkatakrishnan et al. (2013)): the
105 denoiser is not used as a proximal map; instead, it supplies an anchor and ADMM enforces measure-
106 ment feasibility around that anchor. Unlike quadratic data penalties that require tuning a tradeoff
107 weight and can be brittle under noise miscalibration, we use a set-valued (indicator) likelihood in the
measurement domain (AWGN), which exposes an interpretable budget. Unlike coupled DPS-style

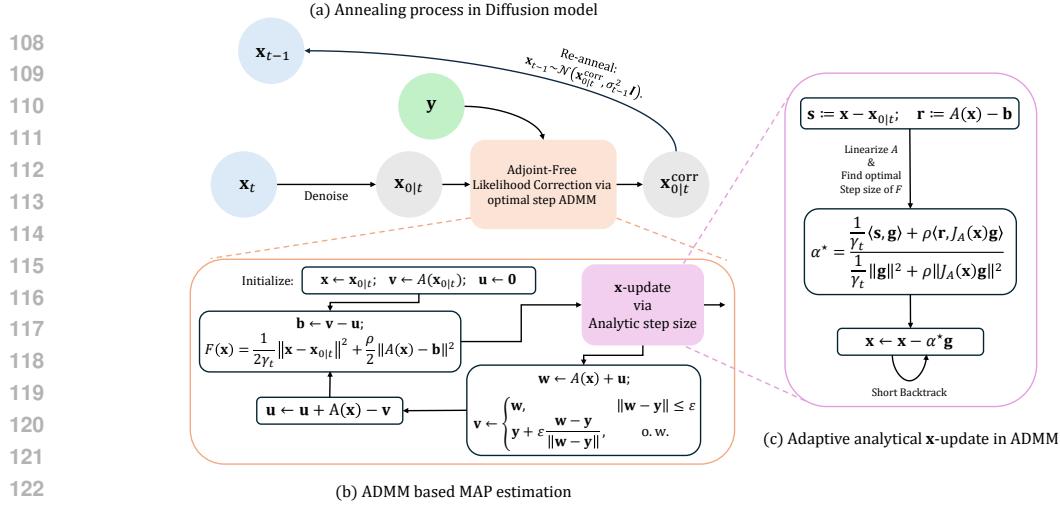


Figure 2: FAST-DIPS method sketch. At each noise level t we (1) take a denoiser anchor $\mathbf{x}_{0|t}$, (2) apply a hard-constrained correction by solving a proximal objective subject to a measurement-space credible set via few-step ADMM (closed-form projection and few-step descent with analytic α^* from one VJP + one JVP or a forward-difference surrogate), and (3) re-anneal to obtain \mathbf{x}_{t-1} .

guidance (Chung et al. (2023a)), we deliberately keep traversal decoupled and invoke the exact marginal transport after each correction. Relative to latent-only pipelines, our hybrid pixel→latent scheme trims decoder-Jacobian traffic early while preserving generative-manifold fidelity late. Importantly, while FAST-DIPS does assume (piecewise) differentiability to leverage automatic differentiation (Baydin et al. (2018)) for VJP (and a single JVP or its forward-difference surrogate), it does not require hand-crafted adjoints or closed-form Jacobians of \mathcal{A} , reducing engineering burden compared to many prior training-free designs.

Our contributions can be summarized as follows:

- **Adjoint-free hard-constrained correction.** A denoiser-anchored, measurement-space credible-set MAP with schedule-aware trust region; ADMM with closed-form projection and few analytic descent steps using one VJP + one JVP (or a forward-only probe), eliminating hand-crafted adjoints and inner MCMC.
- **Theory with practical guarantees.** The analytic step exactly minimizes a local quadratic model and, with backtracking, guarantees descent; ADMM fixed points satisfy KKT for the hard-constraint; decoupled re-annealing; mode substitution yields a bounded time-marginal error.
- **Latent & hybrid execution + empirical speed.** A latent counterpart via $A \circ D$ and a one-switch pixel→latent hybrid improve early-time throughput and late-time fidelity; across eight linear and nonlinear tasks, the method attains similar or better quality with $11.3 \times - 19.5 \times$ lower runtime across pixel-space tasks on FFHQ and robust default hyperparameters.

Orthogonal to our contributions, fast samplers and preconditioning/parallelization can reduce the number of denoising steps (Zhao et al. (2024); Cao et al. (2024); Liu et al. (2024); Chung et al. (2024)). FAST-DIPS complements such advances by minimizing inner correction cost and adjoint engineering while preserving explicit measurement feasibility, so these techniques are composable with our approach.

2 METHOD

2.1 HIGH-LEVEL OVERVIEW AND DESIGN CHOICES

We briefly summarize the goals and main design choices of FAST-DIPS before introducing the detailed derivations.

162 **Setting and practical issues.** We use a pretrained diffusion model as a prior for inverse problems
 163 $\mathbf{y} = \mathcal{A}(\mathbf{x}) + \mathbf{n}$, where \mathcal{A} may be nonlinear. Existing training-free solvers often enforce data consis-
 164 tency via many gradient steps or inner Langevin/MCMC chains at each noise level, and control their
 165 influence through a soft data-fidelity weight. This can be computationally heavy (many evaluations
 166 of \mathcal{A} and its gradient) and sensitive to step sizes and noise miscalibration.

168 **Per-level update in FAST-DIPS.** At each diffusion level t , FAST-DIPS performs a single cor-
 169 rect-then-noise update with three ingredients:

- 171 **1. Local hard-constrained MAP.** The denoiser output $\mathbf{x}_{0|t}$ is treated as the center of a local
 172 Gaussian prior, and data consistency is enforced via a simple measurement-space constraint
 173 $\|\mathcal{A}(\mathbf{x}) - \mathbf{y}\| \leq \varepsilon$. This defines a constrained proximal problem whose solution $\mathbf{x}_{0|t}^{\text{corr}}$ is the
 174 likelihood correction at level t .
- 175 **2. Adjoint-free ADMM with analytic step size.** We solve this constrained problem with a small,
 176 fixed number of deterministic ADMM iterations. The measurement variable is updated by a
 177 closed-form projection onto the constraint set, while the image variable is updated by steepest-
 178 descent step whose step size is chosen analytically by minimizing a local quadratic model. This
 179 optimal step design keeps the number of evaluations of \mathcal{A} and its derivatives very small. No inner
 180 MCMC chain and no hand-coded adjoint operator are required, which leads to substantially fewer
 181 total function calls than methods based on long gradient/MCMC inner loops.
- 182 **3. Re-annealing.** After the correction, we re-anneal by adding Gaussian noise with the next diffu-
 183 sion variance, decoupling the measurement-aware update from the diffusion noise.

185 **Theoretical support.** In the remainder of the section we formalize this procedure and show that:
 186 (i) the analytic step size yields a provable decrease of a well-defined augmented objective under mild
 187 regularity (Proposition 3 together with Remark 2); (ii) any fixed point of the ADMM iterations satis-
 188 fies the KKT conditions of the constrained proximal problem (Proposition 4); and (iii) replacing the
 189 full conditional by the local mode $\mathbf{x}_{0|t}^{\text{corr}}$ in the re-annealing step induces a bounded approximation
 190 error on the diffusion time-marginals (Proposition 1). These results explain why FAST-DIPS can be
 191 both fast (few evaluations of \mathcal{A} and its derivatives) and robust in practice.

192 **Practical per-step recipe.** In practice, one reverse diffusion step of FAST-DIPS at level t works
 193 as follows. (i) Denoiser proposal: given the current state \mathbf{x}_t and noise level σ_t , we compute $\mathbf{x}_{0|t} =$
 194 $\mathbf{x}_{\text{den}}(\mathbf{x}_t, \sigma_t)$ and initialize $\mathbf{x}^{(0)} \leftarrow \mathbf{x}_{0|t}$, $\mathbf{v}^{(0)} \leftarrow \mathcal{A}(\mathbf{x}^{(0)})$, $\mathbf{u}^{(0)} \leftarrow \mathbf{0}$. (ii) Fast ADMM correction: for
 195 a small fixed number of iterations K (typically 2–5), we update $\mathbf{x}^{(k)}$ by one steepest-descent step on
 196 a quadratic-regularized data term, with an analytic step size computed from a local quadratic model
 197 using one VJP and one JVP (or a single finite-difference probe) of \mathcal{A} ; we then project $\mathcal{A}(\mathbf{x}^{(k+1)}) +$
 198 $\mathbf{u}^{(k)}$ onto the ℓ_2 -ball $\{\|\mathbf{v} - \mathbf{y}\| \leq \varepsilon\}$ and update the dual variable $\mathbf{u}^{(k+1)}$. This yields the corrected
 199 estimate $\mathbf{x}_{0|t}^{\text{corr}} = \mathbf{x}^{(K)}$. (iii) Re-annealing: we sample $\mathbf{x}_{t-1} = \mathbf{x}_{0|t}^{\text{corr}} + \sigma_{t-1} \xi$ with $\xi \sim \mathcal{N}(\mathbf{0}, I)$.

2.2 PROBLEM SETUP

204 Let $\mathbf{x}_0 \in \mathbb{R}^{C \times H \times W}$ denote the clean image stacked as a vector and

$$205 \mathbf{y} = \mathcal{A}(\mathbf{x}) + \mathbf{n}, \quad \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \beta^2 I), \quad (1)$$

207 where $\mathcal{A} : \mathbb{R}^{CHW} \rightarrow \mathbb{R}^m$ is a (possibly nonlinear) forward operator. Throughout the paper we
 208 assume additive white Gaussian noise (AWGN) with variance β^2 and use the standard Euclidean
 209 norm in measurement space.

2.3 PROBABILISTIC MOTIVATION AND THE PER-LEVEL OBJECTIVE

213 The reverse process of the diffusion model, conditioned on \mathbf{y} , is described by the reverse-time
 214 SDE (Song et al. (2021b)):

$$215 d\mathbf{x}_t = -2\dot{\sigma}(t)\sigma(t)\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{y}; \sigma_t) dt + \sqrt{2\dot{\sigma}(t)\sigma(t)} d\mathbf{w} \quad (2)$$

At each diffusion level t we maintain a state \mathbf{x}_t and wish to transform the time-marginal $p(\mathbf{x}_t | \mathbf{y})$ into a good approximation to $p(\mathbf{x}_{t-1} | \mathbf{y})$ by performing a local, measurement-aware likelihood correction around the denoiser's prediction. The derivation proceeds from the conditional factorization

$$p(\mathbf{x}_0 | \mathbf{x}_t, \mathbf{y}) \propto p(\mathbf{x}_0 | \mathbf{x}_t) p(\mathbf{y} | \mathbf{x}_0), \quad (3)$$

and two modeling choices: a local Laplace surrogate for $p(\mathbf{x}_0 | \mathbf{x}_t)$ and a set-valued likelihood in measurement space.

Local prior surrogate around the denoiser. Write

$$\mathbf{x}_{0|t} := \mathbf{x}_{\text{den}}(\mathbf{x}_t, \sigma_t), \quad (4)$$

and approximate the intractable $p(\mathbf{x}_0 | \mathbf{x}_t)$ by a Gaussian centered at $\mathbf{x}_{0|t}$,

$$p(\mathbf{x}_0 | \mathbf{x}_t) \approx \tilde{p}_t(\mathbf{x}_0 | \mathbf{x}_t) \propto \exp\left(-\frac{1}{2\gamma_t} \|\mathbf{x}_0 - \mathbf{x}_{0|t}\|^2\right), \quad (5)$$

where $\gamma_t > 0$ plays the role of a local prior variance. We use the schedule-aware parameterization $\gamma_t = \sigma_t^2$ so that the proximal trust-region naturally tightens with annealing (Zhang et al. (2025)).

Conservative likelihood via a measurement-space credible set. Under AWGN, the Gaussian likelihood is

$$p(\mathbf{y} | \mathbf{x}_0, \beta) \propto \beta^{-m} \exp\left(-\frac{1}{2\beta^2} \|\mathcal{A}(\mathbf{x}_0) - \mathbf{y}\|^2\right), \quad (6)$$

which we replace by a set-valued surrogate that is robust to noise miscalibration while preserving a principled notion of data fidelity. If β is known, then for any confidence level $1 - \delta$ the $(1 - \delta)$ -level set of Equation 6 is the Euclidean ball $\{\mathbf{v} : \|\mathbf{v} - \mathbf{y}\| \leq \varepsilon\}$ with $\varepsilon = \beta \sqrt{\chi_{m,1-\delta}^2}$ (Casella & Berger (1990)); conditioning on this set replaces the likelihood by its indicator. If β is unknown, profiling it out gives $-\log p(\mathbf{y} | \mathbf{x}_0, \hat{\beta}(\mathbf{x}_0)) \propto m \log \|\mathcal{A}(\mathbf{x}_0) - \mathbf{y}\|$ (Casella & Berger (1990)), which is monotone in the residual norm; optimizing at a fixed confidence thus amounts to enforcing $\|\mathcal{A}(\mathbf{x}_0) - \mathbf{y}\| \leq \varepsilon$ for a chosen budget $\varepsilon > 0$ (Engl et al. (1996)). Both viewpoints lead to the conservative surrogate

$$\tilde{\ell}_\varepsilon(\mathbf{y} | \mathbf{x}_0) \propto \mathbf{1}\{\|\mathcal{A}(\mathbf{x}_0) - \mathbf{y}\| \leq \varepsilon\}. \quad (7)$$

Per-level surrogate conditional and MAP. Combining Equation 5 and Equation 7 with Equation 3 yields

$$\tilde{p}_t(\mathbf{x}_0 | \mathbf{x}_t, \mathbf{y}) \propto \exp\left(-\frac{1}{2\gamma_t} \|\mathbf{x}_0 - \mathbf{x}_{0|t}\|^2\right) \mathbf{1}\{\|\mathcal{A}(\mathbf{x}_0) - \mathbf{y}\| \leq \varepsilon\}. \quad (8)$$

We take the mode of Equation 8 as the likelihood correction at level t , which solves

$$\mathbf{x}_{0|t}^{\text{corr}} \in \arg \min_{\mathbf{x} \in \mathbb{R}^{CHW}} \frac{1}{2\gamma_t} \|\mathbf{x} - \mathbf{x}_{0|t}\|^2 \text{ s.t. } \|\mathcal{A}(\mathbf{x}) - \mathbf{y}\| \leq \varepsilon. \quad (9)$$

Problem Equation 9 is a hard-constrained proximal objective: the first term is a schedule-aware trust region around the denoiser estimate, while the constraint enforces measurement feasibility within an uncertainty budget in the whitened space.

2.4 DECOUPLED RE-ANNEALING AND CONNECTION TO TIME-MARGINALS

Let $\kappa_{t \rightarrow t-1}(\mathbf{x}_{t-1} | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \mathbf{x}_0, \sigma_{t-1}^2 I)$ denote the diffusion kernel that transports the clean image to the next diffusion state. The exact time-marginal recursion (Ho et al. (2020); Song et al. (2021b)) is

$$p(\mathbf{x}_{t-1} | \mathbf{y}) = \int \left[\int \kappa_{t \rightarrow t-1}(\mathbf{x}_{t-1} | \mathbf{x}_0) p(\mathbf{x}_0 | \mathbf{x}_t, \mathbf{y}) d\mathbf{x}_0 \right] p(\mathbf{x}_t | \mathbf{y}) d\mathbf{x}_t. \quad (10)$$

Thus, transforming $p(\mathbf{x}_t | \mathbf{y})$ to $p(\mathbf{x}_{t-1} | \mathbf{y})$ amounts to obtaining a representative $\mathbf{x}_0 \sim p(\mathbf{x}_0 | \mathbf{x}_t, \mathbf{y})$ and injecting Gaussian noise of variance σ_{t-1}^2 . We approximate $p(\mathbf{x}_0 | \mathbf{x}_t, \mathbf{y})$ by \tilde{p}_t in Equation 8 and substitute its mode, yielding the practical sampling rule

$$\mathbf{x}_{t-1} = \mathbf{x}_{0|t}^{\text{corr}} + \sigma_{t-1} \boldsymbol{\xi}, \quad \boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, I). \quad (11)$$

270 **Proposition 1** (Mode-substitution error under Laplace). *Assume locally $p(\mathbf{x}_0 \mid \mathbf{x}_t, \mathbf{y}) \approx \mathcal{N}(\mathbf{m}_t, \Sigma_t)$ and let $\mathbf{x}_t^{\text{corr}}$ solve Equation 9. Then the KL divergence between the time-marginals obtained by (i) injecting noise from $\mathcal{N}(\mathbf{m}_t, \Sigma_t)$ and (ii) injecting noise centered at $\mathbf{x}_{0|t}^{\text{corr}}$ is bounded by*

$$274 \quad \text{KL}\left(\mathcal{N}(\mathbf{m}_t, \Sigma_t + \sigma_{t-1}^2 I) \parallel \mathcal{N}(\mathbf{x}_{0|t}^{\text{corr}}, \sigma_{t-1}^2 I)\right) \leq \frac{\|\mathbf{m}_t - \mathbf{x}_{0|t}^{\text{corr}}\|^2}{2\sigma_{t-1}^2} + \frac{\|\Sigma_t\|_F^2}{4\sigma_{t-1}^4}. \quad (12)$$

276 Consequences. The bound is small (i) early, when σ_{t-1}^2 is large, and (ii) late, when $\|\Sigma_t\|$ is small; 277 this justifies the decoupled rule Equation 11.

279 2.5 PIXEL-SPACE ADMM SOLVER WITH ADJOINT-FREE UPDATES

281 We solve Equation 9 via variable splitting (Combettes & Pesquet (2011); Boyd et al. (2011)) in pixel 282 space. Introduce an auxiliary $\mathbf{v} \approx \mathcal{A}(\mathbf{x})$ and the feasibility set $\mathcal{C} := \{\mathbf{v} : \|\mathbf{v} - \mathbf{y}\| \leq \varepsilon\}$. Consider

$$283 \quad \min_{\mathbf{x}, \mathbf{v}} \underbrace{\frac{1}{2\gamma_t} \|\mathbf{x} - \mathbf{x}_{0|t}\|^2}_{f(\mathbf{x})} + \underbrace{\iota_{\mathcal{C}}(\mathbf{v})}_{g(\mathbf{v})} \quad \text{s.t.} \quad \mathcal{A}(\mathbf{x}) - \mathbf{v} = \mathbf{0}, \quad (13)$$

286 where $\iota_{\mathcal{C}}$ is the indicator of \mathcal{C} . Using scaled ADMM with penalty $\rho > 0$ and scaled dual \mathbf{u} , we iterate

$$287 \quad \mathbf{x}^{k+1} = \arg \min_{\mathbf{x}} \frac{1}{2\gamma_t} \|\mathbf{x} - \mathbf{x}_{0|t}\|^2 + \frac{\rho}{2} \|\mathcal{A}(\mathbf{x}) - \mathbf{v}^k + \mathbf{u}^k\|^2, \quad (14)$$

$$289 \quad \mathbf{v}^{k+1} = \Pi_{\mathcal{C}}\left(\mathcal{A}(\mathbf{x}^{k+1}) + \mathbf{u}^k\right), \quad (15)$$

$$291 \quad \mathbf{u}^{k+1} = \mathbf{u}^k + \mathcal{A}(\mathbf{x}^{k+1}) - \mathbf{v}^{k+1}. \quad (16)$$

292 Let $\mathbf{b}^k := \mathbf{v}^k - \mathbf{u}^k$ for brevity.

294 **Proposition 2** (Closed-form projection onto the credible set). *Let $\mathcal{C} = \{\mathbf{v} \in \mathbb{R}^m : \|\mathbf{v} - \mathbf{y}\| \leq \varepsilon\}$ in 295 the measurement space. Then the Euclidean projection $\Pi_{\mathcal{C}}(\mathbf{w})$ in Equation 15 is exactly the radial 296 shrink (Parikh & Boyd (2014))*

$$297 \quad \Pi_{\mathcal{C}}(\mathbf{w}) = \begin{cases} \mathbf{w}, & \|\mathbf{w} - \mathbf{y}\| \leq \varepsilon, \\ \mathbf{y} + \varepsilon \frac{\mathbf{w} - \mathbf{y}}{\|\mathbf{w} - \mathbf{y}\|}, & \text{otherwise.} \end{cases} \quad (17)$$

300 **Efficient x-update.** Define the smooth objective for Equation 14

$$302 \quad F(\mathbf{x}) = \frac{1}{2\gamma_t} \|\mathbf{x} - \mathbf{x}_{0|t}\|^2 + \frac{\rho}{2} \|\mathcal{A}(\mathbf{x}) - \mathbf{b}^k\|^2. \quad (18)$$

304 Its gradient is

$$306 \quad \mathbf{g} = \nabla F(\mathbf{x}) = \frac{1}{\gamma_t} (\mathbf{x} - \mathbf{x}_{0|t}) + \rho J_{\mathcal{A}}(\mathbf{x})^{\top} (\mathcal{A}(\mathbf{x}) - \mathbf{b}^k), \quad \mathbf{x} \leftarrow \mathbf{x} - \alpha \mathbf{g}, \quad (19)$$

308 where $J_{\mathcal{A}}(\mathbf{x})$ is the Jacobian of \mathcal{A} at \mathbf{x} . Crucially, both the VJP $J_{\mathcal{A}}(\mathbf{x})^{\top} \mathbf{r}$ and the JVP $J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}$ can 309 be obtained from autodiff (Baydin et al. (2018)).

310 Let $\mathbf{s} := \mathbf{x} - \mathbf{x}_{0|t}$ and $\mathbf{r} := \mathcal{A}(\mathbf{x}) - \mathbf{b}^k$. We linearize \mathcal{A} along the descent direction:

$$311 \quad \mathcal{A}(\mathbf{x} - \alpha \mathbf{g}) \approx \mathcal{A}(\mathbf{x}) - \alpha J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}. \quad (20)$$

312 For linear operators \mathcal{A} the relation above holds exactly (since $J_{\mathcal{A}}(\mathbf{x}) \equiv \mathcal{A}$), whereas for non-linear \mathcal{A} 313 it is the first-order Taylor approximation with a higher-order remainder; nonetheless, Proposition 3 314 shows that even in this non-linear case the resulting analytic step α^* , together with backtracking, 315 yields a descent step for the true objective F despite the residual term.

316 Substituting Equation 20 into $F(\mathbf{x} - \alpha \mathbf{g})$ yields a one-dimensional quadratic model (Nocedal & 317 Wright (2006))

$$318 \quad \tilde{F}(\alpha) = \frac{1}{2\gamma_t} \|\mathbf{s} - \alpha \mathbf{g}\|^2 + \frac{\rho}{2} \|\mathbf{r} - \alpha J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}\|^2, \quad (21)$$

320 whose exact minimizer is

$$322 \quad \alpha^* = \frac{\frac{1}{\gamma_t} \langle \mathbf{s}, \mathbf{g} \rangle + \rho \langle \mathbf{r}, J_{\mathcal{A}}(\mathbf{x}) \mathbf{g} \rangle}{\frac{1}{\gamma_t} \|\mathbf{g}\|^2 + \rho \|J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}\|^2} \quad (22)$$

323 with $J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}$ obtained via a single JVP.

324 **Proposition 3** (Local model-optimal step and descent). *Under C^1 regularity of \mathcal{A} near \mathbf{x} , α^* in
325 Equation 22 minimizes the quadratic model Equation 21. Moreover,*

$$327 \quad F(\mathbf{x} - \alpha^* \mathbf{g}) \leq F(\mathbf{x}) - \frac{\left(\frac{1}{\gamma_t} \langle \mathbf{s}, \mathbf{g} \rangle + \rho \langle \mathbf{r}, J_{\mathcal{A}}(\mathbf{x}) \mathbf{g} \rangle\right)^2}{2\left(\frac{1}{\gamma_t} \|\mathbf{g}\|^2 + \rho \|J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}\|^2\right)} + O(\|\mathbf{g}\|^3), \quad (23)$$

329 and the backtracking line search (Armijo (1966)) guarantees monotone decrease of F even when
330 Equation 20 is only a local approximation.

331 **Remark 1** (Linear \mathcal{A} yields exact optimal line search). *If \mathcal{A} is linear, then Equation 20 is exact and
332 Equation 22 gives the true optimal line-search step for F along $-\mathbf{g}$ (Nocedal & Wright (2006)),
333 delivering the fastest progress among steepest-descent steps.*

335 **Step Size via Finite-Difference Approximation.** The analytic step size α^* in Equation 22 provides
336 a nearly optimal descent but requires a JVP, $J_{\mathcal{A}}(\mathbf{x})\mathbf{g}$. In scenarios where an automatic differentiation
337 engine providing JVPs is unavailable or impractical, we can estimate the JVP by a single
338 forward probe (Nocedal & Wright (2006)):

$$339 \quad J_{\mathcal{A}}(\mathbf{x})\mathbf{g} \approx \frac{\mathcal{A}(\mathbf{x} + \eta \mathbf{g}) - \mathcal{A}(\mathbf{x})}{\eta} =: \frac{\Delta \mathcal{A}}{\eta}, \quad \eta \in (10^{-4}, 10^{-2}] \quad (24)$$

341 which replaces one JVP by one extra forward evaluation of \mathcal{A} .

343 By substituting this approximation into the quadratic model’s minimizer Equation 22, we derive
344 a practical, “forward-only” step size that circumvents the need for an explicit JVP or an adjoint
345 operator.

346 **Remark 2** (Step size from finite-difference JVP). *Replacing $J_{\mathcal{A}}(\mathbf{x})\mathbf{g}$ in Equation 22 by $\Delta \mathcal{A}/\eta$ from
347 Equation 24 yields the numerically stable single-forward-call step*

$$349 \quad \alpha_{\text{FD}} = \frac{\eta^2 \frac{1}{\gamma_t} \langle \mathbf{s}, \mathbf{g} \rangle + \eta \rho \langle \mathbf{r}, \Delta \mathcal{A} \rangle}{\eta^2 \frac{1}{\gamma_t} \|\mathbf{g}\|^2 + \rho \|\Delta \mathcal{A}\|^2} \quad \text{where} \quad \Delta \mathcal{A} = \mathcal{A}(\mathbf{x} + \eta \mathbf{g}) - \mathcal{A}(\mathbf{x}). \quad (25)$$

351 which is algebraically equivalent to substituting $J_{\mathcal{A}}(\mathbf{x})\mathbf{g} \approx \Delta \mathcal{A}/\eta$ in Equation 22 (the scaling by
352 η^2 avoids division by small η). Since $J_{\mathcal{A}}(\mathbf{x})\mathbf{g} = \Delta \mathcal{A}/\eta + O(\eta)$, we have $\alpha_{\text{FD}} = \alpha^* + O(\eta)$; Armijo
353 backtracking then preserves monotone decrease of the true F .

354 2.6 OPTIMALITY CONDITIONS AND FEASIBILITY

356 **Proposition 4** (Fixed points satisfy KKT for Equation 9). *Let $(\mathbf{x}^*, \mathbf{v}^*, \mathbf{u}^*)$ be a fixed point of Equa-
357 tion 14–Equation 16. Then $\mathcal{A}(\mathbf{x}^*) = \mathbf{v}^*$, $\mathbf{v}^* \in \mathcal{C}$, and there exists $\lambda^* \geq 0$ such that*

$$359 \quad \frac{1}{\gamma_t} (\mathbf{x}^* - \mathbf{x}_{0|t}) + \lambda^* J_{\mathcal{A}}(\mathbf{x}^*)^\top \boldsymbol{\nu}^* = 0, \quad \lambda^* (\|\mathcal{A}(\mathbf{x}^*) - \mathbf{y}\| - \varepsilon) = 0, \quad (26)$$

360 where

$$361 \quad \boldsymbol{\nu}^* \in \begin{cases} \left\{ \frac{\mathcal{A}(\mathbf{x}^*) - \mathbf{y}}{\|\mathcal{A}(\mathbf{x}^*) - \mathbf{y}\|} \right\}, & \|\mathcal{A}(\mathbf{x}^*) - \mathbf{y}\| = \varepsilon, \\ \{\mathbf{0}\}, & \|\mathcal{A}(\mathbf{x}^*) - \mathbf{y}\| < \varepsilon. \end{cases}$$

364 Hence \mathbf{x}^* satisfies the KKT conditions of Equation 9 (Bertsekas (1999)).

366 **Remark 3** (Nonconvexity). *With nonlinear \mathcal{A} , problem Equation 9 is generally nonconvex; we do
367 not claim global convergence. Our guarantees are local: the \mathbf{x} -update descends F (Proposition 3
368 and Remark 2), and any fixed point satisfies KKT (Proposition 4). The outer re-annealing Equa-
369 tion 11, together with Proposition 1, explains robustness to residual modeling error.*

370 2.7 LATENT FAST-DIPS

372 We extend the framework to latent space via Latent Diffusion Models (LDMs) by substituting the
373 forward operator \mathcal{A} with the composite operator $\mathcal{A} \circ \mathcal{D}$ (where \mathcal{D} is the pretrained decoder). Under
374 this change, the pixel-space objective, ADMM updates, and guarantees carry over, yielding adjoint-
375 free optimization with autodiff JVPs. To balance cost and fidelity, we propose a hybrid schedule:
376 early steps (large σ_t) apply cheaper pixel-space corrections, then switch to latent corrections once
377 $\sigma_t \leq \sigma_{\text{switch}}$ to better conform to the learned manifold. Derivations, analytic step sizes, and imple-
378 mentation details appear in Appendix A.1.

378	379	Task	Type	Method	FFHQ			ImageNet				
					PSNR (↑)	SSIM (↑)	LPIPS (↓)	Run-time (s)	PSNR (↑)	SSIM (↑)	LPIPS (↓)	Run-time (s)
380 381 382 383 384 385 386 387 388 389	380 381 382 383 384 385 386 387 388 389	Super resolution 4x Inpaint (box) Inpaint (random) Gaussian deblurring Motion deblurring Phase retrieval Nonlinear deblur High dynamic range	Pixel	DAPS	28.774	0.774	0.257	40.229	25.686	0.651	0.364	97.192
				SITCOM	29.555	0.841	0.237	21.591	26.519	0.716	0.309	65.657
				C-IIGDM	27.794	0.807	0.209	1.404	23.645	0.631	0.313	4.085
				HRDIS	30.455	0.867	0.156	2.274	26.764	0.744	0.291	6.216
				Ours	29.573	0.841	0.244	2.726	26.367	0.714	0.334	6.266
			Latent	LatentDAPS	29.184	0.825	0.273	93.383	26.189	0.702	0.388	95.675
				PSLD	23.749	0.601	0.347	92.799	21.262	0.405	0.501	149.29
				ReSample	23.317	0.456	0.507	248.865	22.152	0.423	0.470	275.999
				Ours	<u>28.634</u>	<u>0.797</u>	<u>0.283</u>	45.304	26.298	0.704	0.377	46.516
				DAPS	24.546	0.754	0.218	33.108	21.399	0.726	0.271	81.166
			Pixel	SITCOM	25.336	0.858	0.169	24.994	20.638	0.794	0.209	73.986
				C-IIGDM	18.294	0.731	0.358	<u>1.277</u>	<u>17.514</u>	0.676	<u>0.360</u>	<u>3.683</u>
				HRDIS	21.735	0.785	0.194	3.726	20.507	0.707	0.280	10.107
				Ours	24.605	0.850	0.190	2.937	21.381	0.777	0.278	6.347
				LatentDAPS	<u>23.530</u>	0.742	0.369	91.687	19.630	0.588	0.522	96.110
			Latent	PSLD	21.428	<u>0.823</u>	0.126	91.189	21.084	0.803	0.186	146.644
				ReSample	19.978	0.796	<u>0.247</u>	253.162	18.087	0.713	<u>0.309</u>	281.831
				Ours	24.048	0.829	<u>0.247</u>	45.276	19.349	<u>0.716</u>	0.389	45.989
				DAPS	30.280	0.797	0.211	35.361	25.946	0.662	0.352	82.617
				SITCOM	32.580	0.911	0.148	35.499	26.201	0.702	0.351	106.182
			Pixel	C-IIGDM	25.888	<u>0.728</u>	<u>0.283</u>	<u>1.281</u>	<u>23.701</u>	<u>0.595</u>	<u>0.352</u>	<u>3.613</u>
				HRDIS	28.722	0.823	0.202	4.518	24.614	0.676	0.321	9.703
				Ours	<u>31.022</u>	<u>0.879</u>	<u>0.202</u>	2.908	28.353	0.791	0.249	5.857
			Latent	LatentDAPS	25.979	0.742	<u>0.387</u>	91.480	22.695	0.567	0.549	95.442
				PSLD	22.836	0.472	0.467	87.157	22.761	0.522	0.431	146.022
				ReSample	<u>29.950</u>	<u>0.842</u>	0.201	278.498	26.916	<u>0.756</u>	0.255	315.707
				Ours	30.091	0.877	0.201	45.335	27.245	<u>0.775</u>	<u>0.288</u>	46.454
				DAPS	<u>28.895</u>	0.775	<u>0.253</u>	50.400	25.946	0.662	0.352	94.605
			Pixel	SITCOM	<u>28.775</u>	<u>0.820</u>	<u>0.261</u>	32.841	26.201	<u>0.702</u>	<u>0.351</u>	103.338
				C-IIGDM	24.432	0.678	0.368	1.305	<u>23.701</u>	<u>0.595</u>	<u>0.352</u>	<u>4.881</u>
				HRDIS	27.674	0.791	0.259	2.569	24.575	0.633	0.419	5.960
				Ours	29.406	0.836	0.247	2.612	<u>26.181</u>	0.705	0.344	4.958
				LatentDAPS	25.742	<u>0.732</u>	0.384	93.313	22.818	0.561	0.543	98.340
			Latent	PSLD	16.807	0.227	0.569	94.823	16.608	0.212	0.566	148.738
				ReSample	<u>26.345</u>	0.661	<u>0.329</u>	292.612	<u>23.530</u>	0.497	0.439	333.822
				Ours	28.006	<u>0.793</u>	<u>0.312</u>	46.307	25.356	<u>0.661</u>	0.424	48.229
				DAPS	31.074	0.829	<u>0.199</u>	50.924	28.838	0.776	<u>0.243</u>	94.681
				SITCOM	<u>31.172</u>	<u>0.872</u>	0.203	36.684	<u>28.875</u>	0.807	0.247	103.338
			Pixel	Ours	31.736	0.878	0.171	2.616	29.037	<u>0.799</u>	0.236	4.623
				LatentDAPS	26.649	<u>0.757</u>	0.361	93.400	23.557	0.592	0.513	97.988
				PSLD	19.237	0.288	0.518	90.682	18.327	0.288	0.544	148.151
				ReSample	<u>28.744</u>	0.754	0.262	302.828	<u>24.845</u>	<u>0.579</u>	0.404	316.985
				Ours	29.285	0.822	<u>0.278</u>	46.785	26.627	0.709	0.386	47.282
			Latent	DAPS	30.253	<u>0.801</u>	0.202	122.100	22.354	0.519	0.402	320.926
				SITCOM	28.512	0.791	0.240	37.425	18.704	0.393	0.519	99.103
				HRDIS	23.670	0.537	0.448	12.020	14.019	0.195	0.722	29.915
				Ours	<u>29.253</u>	0.851	<u>0.218</u>	10.354	19.738	0.490	0.479	16.629
				LatentDAPS	23.450	0.695	0.418	193.005	17.067	<u>0.446</u>	0.624	202.426
			Pixel	ReSample	<u>24.676</u>	<u>0.606</u>	<u>0.412</u>	321.227	<u>16.913</u>	0.320	<u>0.608</u>	354.430
				Ours	28.330	<u>0.789</u>	0.244	87.167	18.874	0.441	0.507	85.520
				DAPS	28.907	0.780	<u>0.222</u>	763.863	27.537	0.734	0.266	1453.314
				SITCOM	29.770	0.844	0.190	43.040	28.138	0.791	0.218	113.165
				HRDIS	24.929	0.658	0.357	3.094	22.553	0.504	0.448	6.653
			Latent	Ours	27.818	<u>0.803</u>	0.280	57.903	25.607	0.695	0.373	62.350
				LatentDAPS	25.151	0.727	0.384	229.700	22.516	0.568	0.530	249.639
				PSLD	28.748	<u>0.797</u>	0.236	1276.326	26.047	<u>0.697</u>	0.301	1250.783
				ReSample	<u>28.746</u>	0.823	<u>0.260</u>	110.567	26.234	0.720	<u>0.350</u>	113.537
				Ours	26.988	0.834	<u>0.196</u>	103.243	26.568	0.819	0.198	293.286
			Pixel	SITCOM	27.628	0.808	0.214	38.150	26.849	0.796	<u>0.207</u>	109.946
				HRDIS	26.346	<u>0.836</u>	0.178	2.428	24.623	0.825	0.199	5.989
				Ours	26.275	0.843	0.218	7.212	24.522	0.775	0.290	13.367
			Latent	LatentDAPS	20.789	0.630	0.512	197.250	19.394	0.469	0.641	207.469
				ReSample	<u>25.038</u>	<u>0.822</u>	0.239	261.558	24.950	0.783	0.257	285.495
				Ours	25.869	<u>0.832</u>	<u>0.247</u>	83.790	<u>24.415</u>	<u>0.773</u>	<u>0.291</u>	85.685

Table 1: Quantitative evaluation on 100 FFHQ images and 100 ImageNet images for eight inverse problems (five linear and three nonlinear). The best and second-best results within each task type (Pixel and Latent) are indicated in **bold** and underlined, respectively. Method names shown in gray denote methods designed for noiseless settings

3 EXPERIMENTS

Our experimental setup, including the suite of inverse problems and noise levels, largely follows that of DAPS (Zhang et al. (2025)). We evaluate our method across eight tasks—five linear and three nonlinear—to demonstrate its versatility.

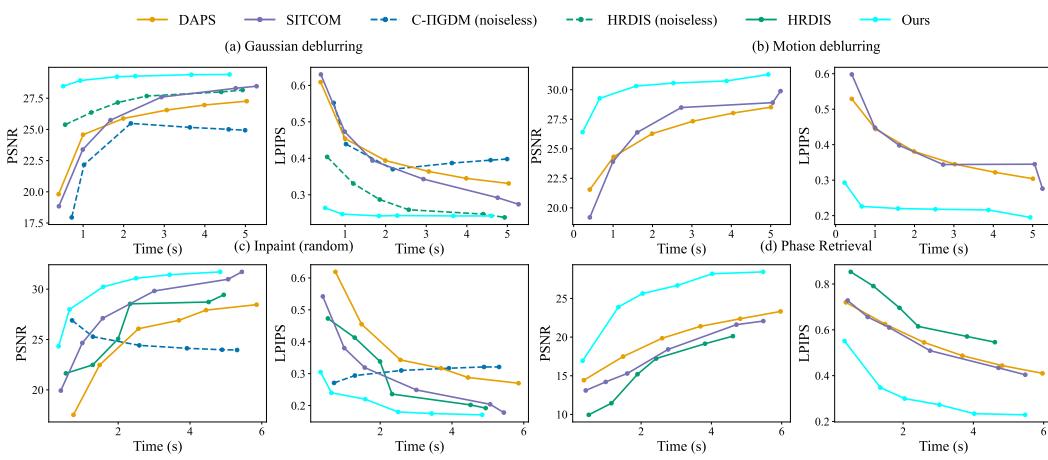


Figure 3: Quantitative evaluations comparing image quality and computational time for baseline methods. Each point is derived from an experiment on 100 FFHQ images. The y-axis value (PSNR or LPIPS) is the mean of the scores from the 100 resulting images. The x-axis value is the average per-image runtime, calculated by dividing the total processing time for all 100 images by 100. The plots show results for three linear tasks (a-c) and one nonlinear task (d).

Implementation details. For all experiments, we employ pretrained diffusion models in both pixel and latent domains. For the pixel-space setting, we use diffusion models trained on FFHQ (Chung et al. (2023a)) and ImageNet (Dhariwal & Nichol (2021)). For the latent-space setting, we use the unconditional LDM-VQ4 model (Rombach et al. (2022)) for both FFHQ and ImageNet. These models are used consistently across all baselines and our method to ensure a fair comparison. We adopt the time-step discretization and noise schedule from EDM (Karras et al. (2022)). Evaluation is performed on 100 images from FFHQ (256×256) and 100 images from ImageNet (256×256). Across all tasks, measurements are corrupted by additive Gaussian noise with a standard deviation of $\beta = 0.05$, and performance is reported using PSNR, SSIM, and LPIPS.

Baselines. We compare our method against a range of state-of-the-art baselines in both pixel and latent spaces. In pixel space, we include recent fast-sampling methods such as SITCOM (Alkhouri et al. (2025)), C-IIIGDM (Pandey et al. (2024)), and HRDIS (Dou et al. (2025)), alongside DAPS (Zhang et al. (2025)), which is recognized for its balance of performance and efficiency. For latent-space comparisons, we benchmark against prominent methods including PSLD (Rout et al. (2023)), ReSample (Song et al. (2024)), and Latent-DAPS. Details of the baseline methods are provided in Appendix A.7.

3.2 MAIN RESULTS

Table 1 presents the quantitative results on the FFHQ and ImageNet datasets, where all baselines are run with their official default settings. In pixel space, our method achieves comparable or superior performance to the baselines across nearly all tasks, but with a significantly lower run-time. This acceleration is particularly evident in Gaussian and motion deblurring, where FAST-DIPS is about $19.4 \times$ faster than DAPS while also achieving higher scores. For the challenging nonlinear task of phase retrieval, we follow the common practice of selecting the best of four independent runs. In this setting, our method is approximately $11.8 \times$ faster than DAPS, while achieving higher PSNR and SSIM on FFHQ. Furthermore, our approach addresses key inefficiencies commonly found in latent-space methods. While most guided techniques suffer from long run-times due to the computational cost of backpropagating through the decoder, our hybrid pixel-latent schedule avoids this bottleneck. By performing corrections in pixel space during the early sampling stages and switching to latent-space correction later, our method effectively reduces sampling time while maintaining high-quality, manifold-faithful reconstructions.

Table 1 alone does not fully capture how different methods compare under the same run-time budget. To offer a more comprehensive evaluation, Figure 3 reports PSNR and LPIPS while considering

486 the computational runtime. For this benchmark, we vary only the number of sampling steps/inner
 487 iterations per method, while all other hyperparameters were kept at their originally proposed optimal
 488 values to ensure a fair comparison. (Full details are provided in Appendix A.7). We evaluate three
 489 linear and one nonlinear task in total. Across all four tasks, our method consistently improves
 490 metrics in proportion to run time while maintaining a clear gap over competing baselines. The
 491 advantage is particularly pronounced in motion deblurring and phase retrieval, where the superiority
 492 highlighted earlier is equally evident under identical run-time budgets. In Gaussian deblurring, even
 493 compared to noiseless baselines, our method quickly attains strong PSNR and LPIPS in the early
 494 stage and sustains or further improves them as sampling proceeds. This robust performance was
 495 also mirrored in random inpainting. For this task, perceptual quality is paramount, and our method
 496 demonstrates its ability to generate natural-looking results by consistently maintaining a low LPIPS.
 497

498 We include additional experiments on FAST-DIPS in Appendix A.8, covering the effectiveness of
 499 the \mathbf{x} -update step, hyperparameter robustness, the hybrid schedule trade-off, experiments with non-
 Gaussian noise and qualitative results in both pixel and latent spaces.

500 3.3 ABLATION STUDIES

501 We study two factors inside the per-level correction: whether we enforce feasibility by projection
 502 and how we choose the step size for the \mathbf{x} -update. The projection variant is our default FAST-DIPS
 503 (ADMM + proj.); the no-projection control is an unsplitted penalized solver we call QDP (no splitting,
 504 no proj.), which minimizes the same quadratic objective as the ADMM \mathbf{x} -subproblem. To compare
 505 fairly, we equalize compute by counting first-order autodiff work: each \mathbf{x} -gradient step uses
 506 one forward of A , one VJP, and one JVP (or a single forward probe for FD); projection and dual
 507 updates are negligible. With K ADMM iterations and S gradient steps per iteration, FAST-DIPS
 508 spends $K \times S$ such triplets at each diffusion level, so we give QDP exactly $K \times S$ gradient steps per
 509 level. For step size we compare a tuned constant α , the analytic model-optimal α^* (one VJP + one
 510 JVP), and a forward-only finite-difference surrogate α_{FD} . Full protocol and numbers are provided
 511 in Appendix A.4, Table 3.

512 On a representative linear pixel task (Gaussian blur), α_{FD} reaches virtually the same quality as α^*
 513 at lower cost; on the nonlinear latent HDR task the optimization is sensitive to a fixed step and the
 514 JVP-based α^* is the robust choice, whereas α_{FD} tends to underperform through the decoder-forward
 515 stack. Enforcing feasibility by projection consistently improves quality relative to the unsplitted penalty
 516 path under the matched budget; the extra cost in latent space is dominated by backprop through the
 517 decoder rather than the projection. A practical recipe is therefore to use α_{FD} in pixel space and α^*
 518 in latent space within FAST-DIPS.

520 4 CONCLUSION

521 Our proposed method, FAST-DIPS, targets practical challenges in training-free, diffusion-based in-
 522 verse problems. It is broadly applicable: by using VJP and JVP from automatic differentiation
 523 instead of a hand-crafted adjoint, it can handle a wide range of linear and nonlinear forward models
 524 without requiring SVDs or pseudo-inverses.

525 For the guidance step, we replace generic optimizers (e.g., Adam with tuned learning rates) by a
 526 single gradient update with an analytic step size from a local quadratic model. This deterministic
 527 update removes step-size hyperparameters and improves efficiency and stability.

528 Empirically, FAST-DIPS works well for both noisy and noiseless problems and shows a predictable
 529 trade-off between computation and quality: more correction steps consistently improve reconstruc-
 530 tions. The framework also does not rely on carefully chosen initial samples. Limitations and future
 531 directions are discussed in Appendix A.9.

532
 533
 534
 535
 536
 537
 538
 539

540 **5 REPRODUCIBILITY STATEMENT**

541

542 Our experimental setup (datasets, pretrained models, forward operators, noise levels, metrics, and
 543 hardware) is specified in Section 3.1. In brief, we use publicly available pixel- and latent-space
 544 diffusion priors on the FFHQ-256 validation set, the EDM discretization, additive Gaussian mea-
 545 surement noise with $\beta = 0.05$, and evaluate PSNR/SSIM/LPIPS on 100 images. Most experiments
 546 are performed using a single NVIDIA RTX 4090 GPU, whereas the experiments reported in Ta-
 547 bles 5, 7, 9 were conducted on a single RTX 6000 Ada GPU. For phase retrieval, we follow the
 548 common ‘‘best-of-4’’ protocol. Baselines are run from the authors’ official repositories with their
 549 recommended defaults; Appendix A.7 lists the packages we used and task-specific settings. If the
 550 paper is accepted, we will release a public repository with scripts and configs.

551 **552 REFERENCES**

553

- 554 Ismail Alkhouri, Shijun Liang, Cheng-Han Huang, Jimmy Dai, Qing Qu, Saiprasad Ravishankar,
 555 and Rongrong Wang. SITCOM: Step-wise triple-consistent diffusion sampling for inverse prob-
 556 lems. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2025.
- 557 Larry Armijo. Minimization of functions having lipschitz continuous first partial derivatives. *Pacific
 558 Journal of Mathematics*, 16(1):1–3, 1966.
- 559 Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Radul, and Jeffrey Mark Siskind. Automatic
 560 differentiation in machine learning: A survey. *Journal of Machine Learning Research*, 18:153:1–
 561 153:43, 2018.
- 562 Dimitri P. Bertsekas. *Nonlinear Programming*. Athena Scientific, 2 edition, 1999.
- 563 Stephen P. Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed opti-
 564 mization and statistical learning via the alternating direction method of multipliers. *Foundations
 565 and Trends in Machine Learning*, 3(1):1–122, 2011.
- 566 Jiezhang Cao, Yue Shi, Kai Zhang, Yulun Zhang, Radu Timofte, and Luc Van Gool. Deep equilib-
 567 rium diffusion restoration with parallel sampling. In *Proceedings of the IEEE/CVF Conference
 568 on Computer Vision and Pattern Recognition (CVPR)*, pp. 2824–2834, 2024.
- 569 Gabriel V. Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, and Eric Moulines. Monte carlo guided
 570 denoising diffusion models for bayesian linear inverse problems. In *International Conference on
 571 Learning Representations (ICLR)*, 2024.
- 572 George Casella and Roger L. Berger. *Statistical Inference*. Duxbury Press, 1990.
- 573 Stanley H. Chan, Xiran Wang, and Omar A. Elgendy. Plug-and-play ADMM for image restoration:
 574 Fixed-point convergence and applications. *IEEE Transactions on Computational Imaging*, 3(1):
 575 84–98, 2017.
- 576 Hyungjin Chung, Jeongsol Kim, Michael T. McCann, Marc L. Klasky, and Jong Chul Ye. Diffusion
 577 posterior sampling for general noisy inverse problems. In *International Conference on Learning
 578 Representations (ICLR)*, 2023a.
- 579 Hyungjin Chung, Jeongsol Kim, and Jong Chul Ye. Direct diffusion bridge using data consistency
 580 for inverse problems. In *Advances in Neural Information Processing Systems (NeurIPS)*, vol-
 581 ume 36, 2023b.
- 582 Hyungjin Chung, Suhyeon Lee, and Jong Chul Ye. Decomposed diffusion sampler for accelerating
 583 large-scale inverse problems. In *International Conference on Learning Representations (ICLR)*,
 584 2024.
- 585 Patrick L. Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal process-
 586 ing. In *Fixed-Point Algorithms for Inverse Problems in Science and Engineering*, pp. 185–212.
 587 Springer, 2011.
- 588 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In
 589 *Advances in Neural Information Processing Systems (NeurIPS)*, volume 34, 2021.

- 594 Hongkun Dou, Zeyu Li, Jinyang Du, Lijun Yang, Wen Yao, and Yue Deng. Hybrid regularization
 595 improves diffusion-based inverse problem solving. In *The Thirteenth International Conference*
 596 *on Learning Representations (ICLR)*, 2025.
- 597
- 598 Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving: A
 599 filtering perspective. In *International Conference on Learning Representations (ICLR)*, 2024.
- 600 Heinz W. Engl, Martin Hanke, and Andreas Neubauer. *Regularization of Inverse Problems*. Kluwer
 601 Academic Publishers, 1996.
- 602
- 603 Tomer Garber and Tom Tirer. Image restoration by denoising diffusion models with iteratively
 604 preconditioned guidance. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 605 *Pattern Recognition (CVPR)*, pp. 25245–25254, 2024.
- 606
- 607 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances*
 608 *in Neural Information Processing Systems (NeurIPS)*, volume 33, 2020.
- 609 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 610 based generative models. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 611 volume 35, 2022.
- 612
- 613 Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
 614 models. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 35, 2022.
- 615
- 616 Gongye Liu, Haoze Sun, Jiayi Li, Fei Yin, and Yujiu Yang. Accelerating diffusion models for
 617 inverse problems through shortcut sampling. In *Proceedings of the Thirty-Third International*
 618 *Joint Conference on Artificial Intelligence (IJCAI)*, pp. 1101–1109, 2024.
- 619
- 620 Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A. Theodorou, Weili Nie, and Anima
 621 Anandkumar. I²SB: Image-to-image schrödinger bridge. *arXiv preprint arXiv:2302.05872*, 2023.
- 622
- 623 Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
 In *The Thirteenth International Conference on Learning Representations (ICLR)*, 2025.
- 624
- 625 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
 626 RePaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the*
 627 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 11451–11461,
 2022.
- 628
- 629 Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on solving
 630 inverse problems with diffusion models. In *International Conference on Learning Representa-
 631 tions (ICLR)*, 2024.
- 632
- Jorge Nocedal and Stephen J. Wright. *Numerical Optimization*. Springer, 2 edition, 2006.
- 633
- 634 Kushagra Pandey, Ruihan Yang, and Stephan Mandt. Fast samplers for inverse problems in iterative
 635 refinement models. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 37,
 2024.
- 636
- 637 Neal Parikh and Stephen P. Boyd. Proximal algorithms. *Foundations and Trends in Optimization*, 1
 638 (3):127–239, 2014.
- 639
- 640 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 641 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
 642 synthesis. In *The Twelfth International Conference on Learning Representations (ICLR)*, 2024.
- 643
- 644 Christoph Reich, Biplob Debnath, Deep Patel, and Srimat Chakradhar. Differentiable JPEG: The
 645 Devil is in the Details. In *Winter Conference on Applications of Computer Vision*, 2024.
- 646
- 647 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 648 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-
 649 ference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, 2022.

- 648 Litu Rout, Negin Raoof, Giannis Daras, Constantine Caramanis, Alex Dimakis, and Sanjay Shakkottai.
 649 Solving linear inverse problems provably via posterior sampling with latent diffusion models.
 650 In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 36, 2023.
- 651 Litu Rout, Yujia Chen, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai, and Wen-
 652 Sheng Chu. Beyond first-order Tweedie: Solving inverse problems using latent diffusion. In
 653 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 654 pp. 9472–9481, 2024.
- 655 Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, and Mohammad
 656 Norouzi. Image super-resolution via iterative refinement. *IEEE Transactions on Pattern Analysis
 657 and Machine Intelligence*, 45(4):4713–4726, 2023.
- 658 Bowen Song, Soo Min Kwon, Zecheng Zhang, Xinyu Hu, Qing Qu, and Liyue Shen. Solving inverse
 659 problems with latent diffusion models via hard data consistency. In *International Conference on
 660 Learning Representations (ICLR)*, 2024.
- 661 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Interna-
 662 tional Conference on Learning Representations (ICLR)*, 2021a.
- 663 Yang Song and Stefano Ermon. Improved techniques for training score-based generative models. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 33, 2020.
- 664 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 665 Poole. Score-based generative modeling through stochastic differential equations. In *Interna-
 666 tional Conference on Learning Representations (ICLR)*, 2021b.
- 667 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *Proceedings
 668 of the 40th International Conference on Machine Learning (ICML)*, volume 202, pp. 32211–
 669 32252. PMLR, 2023.
- 670 Singanallur V. Venkatakrishnan, Charles A. Bouman, and Brendt Wohlberg. Plug-and-play priors
 671 for model based reconstruction. In *2013 IEEE Global Conference on Signal and Information
 672 Processing (GlobalSIP)*, pp. 945–948. IEEE, 2013.
- 673 Hengkang Wang, Xu Zhang, Taihui Li, Yuxiang Wan, Tiancong Chen, and Ju Sun. DMPlug: A plug-
 674 in method for solving inverse problems with diffusion models. In *Advances in Neural Information
 675 Processing Systems (NeurIPS)*, volume 37, 2024.
- 676 Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
 677 null-space model. In *International Conference on Learning Representations (ICLR)*, 2023.
- 678 Zihui Wu, Yu Sun, Yifan Chen, Bingliang Zhang, Yisong Yue, and Katherine Bouman. Principled
 679 probabilistic imaging using diffusion models as plug-and-play priors. In *Advances in Neural
 680 Information Processing Systems (NeurIPS)*, volume 37, 2024.
- 681 Xingyu Xu and Yuejie Chi. Provably robust score-based diffusion posterior sampling for plug-and-
 682 play image reconstruction. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 683 volume 37, 2024.
- 684 Bingliang Zhang, Wenda Chu, Chenlin Meng, Anima Anandkumar, Julius Berner, and Yang Song.
 685 Improving diffusion inverse problem solving with decoupled noise annealing. In *Proceedings of
 686 the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.
- 687 Jiankun Zhao, Bowen Song, and Liyue Shen. CoSiGN: Few-step guidance of consistency model
 688 to solve general inverse problems. In *European Conference on Computer Vision (ECCV)*, pp.
 689 108–126, 2024.
- 690 Yang Zheng, Wen Li, and Zhaoqiang Liu. Integrating intermediate layer optimization and projected
 691 gradient descent for solving inverse problems with diffusion models. In *Proceedings of the Inter-
 692 national Conference on Machine Learning (ICML)*, 2025.
- 693 Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezheng Cao, Bihan Wen, Radu Timofte, and Luc
 694 Van Gool. Denoising diffusion models for plug-and-play image restoration. In *Proceedings of the
 695 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*, 2023.

702 **A APPENDIX**
703704 **A.1 LATENT-SPACE FAST-DIPS AND A HYBRID PIXEL-LATENT SCHEDULE**
705

706 The pixel-space method in 2.5 corrects the denoiser’s proposal directly in image space. In many dif-
707 fusion systems, however, the prior is trained in a lower-dimensional *latent* space. Let $E : \mathbb{R}^{CHW} \rightarrow$
708 \mathbb{R}^k and $\mathcal{D} : \mathbb{R}^k \rightarrow \mathbb{R}^{CHW}$ denote a pretrained encoder-decoder with $\mathbf{z}_0 = E(\mathbf{x}_0)$ and $\mathbf{x}_0 = \mathcal{D}(\mathbf{z}_0)$.
709 Measurements are still acquired in pixel space via Equation 1. A latent denoiser $\mathbf{z}_{\text{den}}(\mathbf{z}_t, \sigma_t)$ is
710 available from the diffusion prior. We now derive a latent analogue of the per-level objective and
711 show that all pixel-space results transfer verbatim under the substitution $\mathcal{A} \mapsto \mathcal{A} \circ \mathcal{D}$ and $\mathbf{x} \leftrightarrow \mathbf{z}$.
712

713 **Per-level surrogate in latent space.** At level t , the denoiser proposes $\mathbf{z}_{0|t} := \mathbf{z}_{\text{den}}(\mathbf{z}_t, \sigma_t)$. As in
714 §2.3, we approximate $p(\mathbf{z}_0 | \mathbf{z}_t)$ by a local Gaussian centered at $\mathbf{z}_{0|t}$ with variance parameter $\gamma_z > 0$
715 (we use $\gamma_z = \sigma_t^2$ for schedule-awareness), and we employ the same credible-set likelihood surrogate
716 in the whitened measurement space, now expressed through the decoder:
717

$$\tilde{p}_t(\mathbf{z}_0 | \mathbf{z}_t, \mathbf{y}) \propto \exp\left(-\frac{1}{2\gamma_z} \|\mathbf{z}_0 - \mathbf{z}_{0|t}\|^2\right) \mathbf{1}\{\|\mathcal{A}(\mathcal{D}(\mathbf{z}_0)) - \mathbf{y}\| \leq \varepsilon_z\}. \quad (27)$$

719 Taking the mode yields the latent per-level MAP:
720

$$\mathbf{z}_t^{\text{corr}} \in \arg \min_{\mathbf{z} \in \mathbb{R}^k} \frac{1}{2\gamma_z} \|\mathbf{z} - \mathbf{z}_{0|t}\|^2 \text{ s.t. } \|\mathcal{A}(\mathcal{D}(\mathbf{z})) - \mathbf{y}\| \leq \varepsilon_z. \quad (28)$$

723 Re-annealing then follows the same transport rule as Equation 11:
724

$$\mathbf{z}_{t-1} = \mathbf{z}_t^{\text{corr}} + \sigma_{t-1} \boldsymbol{\xi}, \quad \boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, I), \quad \mathbf{x}_{t-1} = \mathcal{D}(\mathbf{z}_{t-1}). \quad (29)$$

726 **ADMM in latent space and adjoint-free updates.** Introduce $\mathbf{v} \approx \mathcal{A}(\mathcal{D}(\mathbf{z}))$ and the same feasi-
727 bility set $\mathcal{C} := \{\mathbf{v} : \|\mathbf{v} - \mathbf{y}\| \leq \varepsilon_z\}$. The scaled ADMM iterations mirror Equation 14–Equation 16:
728

$$\mathbf{z}^{k+1} = \arg \min_{\mathbf{z}} \frac{1}{2\gamma_z} \|\mathbf{z} - \mathbf{z}_{0|t}\|^2 + \frac{\rho_z}{2} \|\mathcal{A}(\mathcal{D}(\mathbf{z})) - \mathbf{v}^k + \mathbf{u}^k\|^2, \quad (30)$$

$$\mathbf{v}^{k+1} = \Pi_{\mathcal{C}}(\mathcal{A}(\mathcal{D}(\mathbf{z}^{k+1})) + \mathbf{u}^k), \quad (31)$$

$$\mathbf{u}^{k+1} = \mathbf{u}^k + \mathcal{A}(\mathcal{D}(\mathbf{z}^{k+1})) - \mathbf{v}^{k+1}. \quad (32)$$

734 The projection $\Pi_{\mathcal{C}}$ is identical to Equation 17 because feasibility is enforced *in measurement space*.
735 For the \mathbf{z} -update, define
736

$$F_z(\mathbf{z}) = \frac{1}{2\gamma_z} \|\mathbf{z} - \mathbf{z}_{0|t}\|^2 + \frac{\rho_z}{2} \|\mathcal{A}(\mathcal{D}(\mathbf{z})) - \mathbf{b}^k\|^2, \quad \mathbf{b}^k := \mathbf{v}^k - \mathbf{u}^k, \quad (33)$$

739 whose gradient is
740

$$\mathbf{g}_z = \nabla F_z(\mathbf{z}) = \frac{1}{\gamma_z} (\mathbf{z} - \mathbf{z}_{0|t}) + \rho_z J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z})^\top (\mathcal{A}(\mathcal{D}(\mathbf{z})) - \mathbf{b}^k), \quad \mathbf{z} \leftarrow \mathbf{z} - \alpha \mathbf{g}_z. \quad (34)$$

743 As in pixel space, both the VJP $J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z})^\top \mathbf{r}$ and the JVP $J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z}) \mathbf{g}_z$ are obtained directly from
744 autodiff (backprop through \mathcal{D} and \mathcal{A} ; forward-mode or a single finite-difference for the JVP if
745 needed), so the update remains *adjoint-free*.
746

747 **Analytic step size in latent space.** Let $\mathbf{s}_z := \mathbf{z} - \mathbf{z}_{0|t}$ and $\mathbf{r} := \mathcal{A}(\mathcal{D}(\mathbf{z})) - \mathbf{b}^k$. Linearizing $\mathcal{A} \circ \mathcal{D}$
748 along $-\mathbf{g}_z$ gives $\mathcal{A}(\mathcal{D}(\mathbf{z} - \alpha \mathbf{g}_z)) \approx \mathcal{A}(\mathcal{D}(\mathbf{z})) - \alpha J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z}) \mathbf{g}_z$. The scalar quadratic model
749

$$\tilde{F}_z(\alpha) = \frac{1}{2\gamma_z} \|\mathbf{s}_z - \alpha \mathbf{g}_z\|^2 + \frac{\rho_z}{2} \|\mathbf{r} - \alpha J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z}) \mathbf{g}_z\|^2 \quad (35)$$

752 is minimized at
753

$$\alpha_z^* = \frac{\frac{1}{\gamma_z} \langle \mathbf{s}_z, \mathbf{g}_z \rangle + \rho_z \langle \mathbf{r}, J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z}) \mathbf{g}_z \rangle}{\frac{1}{\gamma_z} \|\mathbf{g}_z\|^2 + \rho_z \|J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z}) \mathbf{g}_z\|^2} \quad (36)$$

754 followed by clamping $\alpha \leftarrow \max(0, \alpha_z^*)$ and backtracking to ensure descent of F_z .
755

756 **Proposition 5** (Local model-optimal step and descent in latent space). *Under C^1 regularity of $\mathcal{A} \circ \mathcal{D}$
757 near \mathbf{z} , the step Equation 36 minimizes the quadratic model $\tilde{F}_z(\alpha)$ and*
758

$$759 F_z(\mathbf{z} - \alpha_z^* \mathbf{g}_z) \leq F_z(\mathbf{z}) - \frac{\left(\frac{1}{\gamma_z} \langle \mathbf{s}_z, \mathbf{g}_z \rangle + \rho_z \langle \mathbf{r}, J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z}) \mathbf{g}_z \rangle\right)^2}{2\left(\frac{1}{\gamma_z} \|\mathbf{g}_z\|^2 + \rho_z \|J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z}) \mathbf{g}_z\|^2\right)} + O(\|\mathbf{g}_z\|^3), \quad (37)$$

760 with monotone decrease ensured by backtracking.
761

762 **Proposition 6** (KKT at latent ADMM fixed points). *If $(\mathbf{z}^*, \mathbf{v}^*, \mathbf{u}^*)$ is a fixed point of Equation 30–Equation 32, then $\mathcal{A}(\mathcal{D}(\mathbf{z}^*)) = \mathbf{v}^* \in \mathcal{C}$ and there exists $\lambda^* \geq 0$ such that*
763

$$764 \frac{1}{\gamma_z} (\mathbf{z}^* - \mathbf{z}_{0|t}) + \lambda^* J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z}^*)^\top \boldsymbol{\nu}^* = \mathbf{0}, \quad \lambda^* (\|\mathcal{A}(\mathcal{D}(\mathbf{z}^*)) - \mathbf{y}\| - \varepsilon_z) = 0, \quad (38)$$

765 with $\boldsymbol{\nu}^* = (\mathcal{A}(\mathcal{D}(\mathbf{z}^*)) - \mathbf{y}) / \|\mathcal{A}(\mathcal{D}(\mathbf{z}^*)) - \mathbf{y}\|$ when the constraint is active and $\boldsymbol{\nu}^* = \mathbf{0}$ otherwise.
766

767 **Remark 4** (Transfer of pixel-space results). *All propositions in §2.4–§2.6 transfer to the latent case
768 by replacing \mathcal{A} with $\mathcal{A} \circ \mathcal{D}$ and \mathbf{x} with \mathbf{z} : the mode-substitution KL bound remains unchanged because
769 feasibility and annealing live in measurement space; the projection stays exact; and the analytic step
770 and KKT statements follow by the same quadratic-model and fixed-point arguments. In particular,
771 the latent method is also adjoint-free in practice because both VJP and JVP are provided by autodiff
772 across \mathcal{D} and \mathcal{A} .*
773

774 **Why (and when) prefer latent updates.** Late in the schedule, σ_t is small, the denoiser’s latent
775 prediction $\mathbf{z}_{0|t}$ lies near the generative manifold, and optimizing in \mathbf{z} respects that geometry by
776 construction. Early in the schedule, however, correcting in pixel space is often cheaper (no back-
777 prop through \mathcal{D}) and sufficiently robust because injected noise dominates the time–marginal. This
778 observation motivates a *hybrid* schedule.
779

780 **Hybrid pixel-latent schedule.** We adopt a single switching parameter σ_{switch} : for $\sigma_t > \sigma_{\text{switch}}$ we
781 correct in pixel space using Equation 9–Equation 16, then re-encode $\mathbf{z} \leftarrow E(\mathbf{x})$ before annealing in
782 latent space; once $\sigma_t \leq \sigma_{\text{switch}}$, we correct directly in latent space using Equation 28–Equation 32.
783 This keeps early iterations light and late iterations manifold-faithful.
784

785 **Complexity and switching.** A latent \mathbf{z} -gradient step costs one pass through \mathcal{D} and \mathcal{A} to form
786 \mathbf{r} , one VJP through $\mathcal{A} \circ \mathcal{D}$ to form $J_{\mathcal{A} \circ \mathcal{D}}^\top \mathbf{r}$, and one JVP to form $J_{\mathcal{A} \circ \mathcal{D}} \mathbf{g}_z$; we found this JVP-
787 based step is effective for nonlinear-deblur in latent space. In pixel space, for strongly nonlinear \mathcal{A}
788 we recommend the FD variant Equation 24+Equation 25, which swaps the JVP for a single extra
789 forward call and was both faster and more stable in our nonlinear-deblur experiments. The switch
790 σ_{switch} trades early-time efficiency for late-time fidelity; a stable default is to place it where the SNR
791 of the denoiser’s prediction visibly improves (e.g., where γ_t becomes comparable to the scale of
792 $\|\mathbf{x} - \mathbf{x}_{0|t}\|$ in Equation 18).
793

794 **Remark 5** (Consistency of pixel → encode with latent correction). *If E and \mathcal{D} are approximately
795 inverses near the data manifold (i.e., $\mathcal{D}(E(\mathbf{x})) \approx \mathbf{x}$ and $E(\mathcal{D}(\mathbf{z})) \approx \mathbf{z}$) and are locally Lipschitz, then
796 a pixel correction followed by $\mathbf{z} \leftarrow E(\mathbf{x})$ produces a latent iterate within $O(\|\mathcal{D} \circ E - \text{Id}\|)$ of the
797 one obtained by one latent correction step with the same residual budget. Thus the hybrid scheme is
798 a coherent approximation of the pure latent method early in the schedule.*
799

800
801
802
803
804
805
806
807
808
809

810 A.2 ALGORITHMS
811812 **Algorithm 1** FAST-DIPS in Pixel Space

813

814 **Require:** measurement \mathbf{y} ; schedule $\{\sigma_t\}$; denoiser $\mathbf{x}_{\text{den}}(\cdot, \sigma_t)$; forward \mathcal{A} ; parameters $\rho, \{\gamma_t\}, K,$
815 S, η

816 **Ensure:** reconstructed image \mathbf{x}_0

817 1: Sample $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \sigma_T^2 I)$

818 2: **for** $t = T$ **down to** 1 **do**

819 3: predict $\mathbf{x}_{0|t} \leftarrow \mathbf{x}_{\text{den}}(\mathbf{x}_t, \sigma_t)$

820 4: Initialize $\mathbf{x} \leftarrow \mathbf{x}_{0|t}; \mathbf{v} \leftarrow \mathcal{A}(\mathbf{x}); \mathbf{u} \leftarrow \mathbf{0}$

821 5: **for** $k = 1$ **to** K **do**

822 6: $\mathbf{b} \leftarrow \mathbf{v} - \mathbf{u}; F(\mathbf{x}) \leftarrow \frac{1}{2\gamma_t} \|\mathbf{x} - \mathbf{x}_{0|t}\|^2 + \frac{\rho}{2} \|\mathcal{A}(\mathbf{x}) - \mathbf{b}\|^2$

823 7: **for** $s = 1$ **to** S **do** ▷ x -update: gradient step + backtracking

824 8: $\mathbf{r} \leftarrow \mathcal{A}(\mathbf{x}) - \mathbf{b}; \mathbf{s} \leftarrow \mathbf{x} - \mathbf{x}_{0|t}$

825 9: $\mathbf{g}_{\text{data}} \leftarrow \nabla_{\mathbf{x}} \left(\frac{1}{2} \|\mathcal{A}(\mathbf{x}) - \mathbf{b}\|^2 \right)$ ▷ via automatic differentiation

826 10: $\mathbf{g} \leftarrow \frac{1}{\gamma_t} \mathbf{s} + \rho \mathbf{g}_{\text{data}}; \Delta \mathcal{A} \leftarrow \mathcal{A}(\mathbf{x} + \eta \mathbf{g}) - \mathcal{A}(\mathbf{x})$

827 11: $\alpha \leftarrow \frac{\eta^2 \frac{1}{\gamma_t} \langle \mathbf{s}, \mathbf{g} \rangle + \eta \rho \langle \mathbf{r}, \Delta \mathcal{A} \rangle}{\eta^2 \frac{1}{\gamma_t} \|\mathbf{g}\|^2 + \rho \|\Delta \mathcal{A}\|^2}$

828 12: Backtrack on α until $F(\mathbf{x} - \alpha \mathbf{g}) < F(\mathbf{x})$; set $\mathbf{x} \leftarrow \mathbf{x} - \alpha \mathbf{g}$

829 13: **end for**

830 14: $\mathbf{w} \leftarrow \mathcal{A}(\mathbf{x}) + \mathbf{u}; \mathbf{v} \leftarrow \Pi_{\|\cdot - \mathbf{y}\| \leq \epsilon}(\mathbf{w})$

831 15: $\mathbf{u} \leftarrow \mathbf{u} + \mathcal{A}(\mathbf{x}) - \mathbf{v}$

832 16: **end for**

833 17: Sample $\xi \sim \mathcal{N}(\mathbf{0}, I)$ and set $\mathbf{x}_{t-1} \leftarrow \mathbf{x} + \sigma_{t-1} \xi$

834 18: **end for**

835 19: **return** \mathbf{x}_0

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **Algorithm 2** FAST-DIPS in Latent Space

865 **Require:** measurement \mathbf{y} ; schedule $\{\sigma_t\}$; latent denoiser $\mathbf{z}_{\text{den}}(\cdot, \sigma_t)$; encoder \mathcal{E} ; decoder \mathcal{D} ; forward \mathcal{A} ; parameters $\rho_x, \gamma_x, K_x, S_x, \varepsilon_x, \rho_z, \gamma_z, K_z, S_z, \varepsilon_z, \sigma_{\text{switch}}$

866 **Ensure:** reconstructed image \mathbf{x}_0

867 1: Sample $\mathbf{z}_T \sim \mathcal{N}(\mathbf{0}, \sigma_T^2 I)$

868 2: **for** $t = T$ **down to** 1 **do**

869 3: predict (latent) $\mathbf{z}_{0|t} \leftarrow \mathbf{z}_{\text{den}}(\mathbf{z}_t, \sigma_t)$

870 4: **if** $\sigma_t > \sigma_{\text{switch}}$ **then** ▷ early: pixel correction

871 5: $\mathbf{x}_{0|t} \leftarrow \mathcal{D}(\mathbf{z}_{0|t})$; $\mathbf{x} \leftarrow \mathbf{x}_{0|t}$; $\mathbf{v} \leftarrow \mathcal{A}(\mathbf{x})$; $\mathbf{u} \leftarrow \mathbf{0}$

872 6: **for** $k = 1$ **to** K_x **do**

873 7: $\mathbf{b} \leftarrow \mathbf{v} - \mathbf{u}$; $F_x(\mathbf{x}) \leftarrow \frac{1}{2\gamma_x} \|\mathbf{x} - \mathbf{x}_{0|t}\|^2 + \frac{\rho_x}{2} \|\mathcal{A}(\mathbf{x}) - \mathbf{b}\|^2$

874 8: **for** $s = 1$ **to** S_x **do** ▷ \mathbf{x} -update with analytic step

875 9: $\mathbf{g} \leftarrow \frac{1}{\gamma_x} (\mathbf{x} - \mathbf{x}_{0|t}) + \rho_x J_{\mathcal{A}}(\mathbf{x})^\top (\mathcal{A}(\mathbf{x}) - \mathbf{b})$

876 10: Form $J_{\mathcal{A}}(\mathbf{x})\mathbf{g}$ (JVP) and set α by Equation 22;

877 11: Backtrack on α until $F_x(\mathbf{x} - \alpha\mathbf{g}) < F_x(\mathbf{x})$; set $\mathbf{x} \leftarrow \mathbf{x} - \alpha\mathbf{g}$

878 12: **end for**

879 13: $\mathbf{w} \leftarrow \mathcal{A}(\mathbf{x}) + \mathbf{u}$; $\mathbf{v} \leftarrow \Pi_{\|\cdot - \mathbf{y}\| \leq \varepsilon_x}(\mathbf{w})$; $\mathbf{u} \leftarrow \mathbf{u} + \mathcal{A}(\mathbf{x}) - \mathbf{v}$

880 14: **end for**

881 15: re-encode $\mathbf{z} \leftarrow \mathcal{E}(\mathbf{x})$

882 16: **else** ▷ late: latent correction

883 17: $\mathbf{z} \leftarrow \mathbf{z}_{0|t}$; $\mathbf{v} \leftarrow \mathcal{A}(\mathcal{D}(\mathbf{z}))$; $\mathbf{u} \leftarrow \mathbf{0}$

884 18: **for** $k = 1$ **to** K_z **do**

885 19: $\mathbf{b} \leftarrow \mathbf{v} - \mathbf{u}$; $F_z(\mathbf{z}) \leftarrow \frac{1}{2\gamma_z} \|\mathbf{z} - \mathbf{z}_{0|t}\|^2 + \frac{\rho_z}{2} \|\mathcal{A}(\mathcal{D}(\mathbf{z})) - \mathbf{b}\|^2$

886 20: **for** $s = 1$ **to** S_z **do** ▷ \mathbf{z} -update with analytic step

887 21: $\mathbf{g}_z \leftarrow \frac{1}{\gamma_z} (\mathbf{z} - \mathbf{z}_{0|t}) + \rho_z J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z})^\top (\mathcal{A}(\mathcal{D}(\mathbf{z})) - \mathbf{b})$

888 22: Form $J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z})\mathbf{g}_z$ (JVP) and set α by Equation 36;

889 23: Backtrack on α until $F_z(\mathbf{z} - \alpha\mathbf{g}_z) < F_z(\mathbf{z})$; set $\mathbf{z} \leftarrow \mathbf{z} - \alpha\mathbf{g}_z$

890 24: **end for**

891 25: $\mathbf{w} \leftarrow \mathcal{A}(\mathcal{D}(\mathbf{z})) + \mathbf{u}$; $\mathbf{v} \leftarrow \Pi_{\|\cdot - \mathbf{y}\| \leq \varepsilon_z}(\mathbf{w})$; $\mathbf{u} \leftarrow \mathbf{u} + \mathcal{A}(\mathcal{D}(\mathbf{z})) - \mathbf{v}$

892 26: **end for**

893 27: **end if**

894 28: re-anneal $\mathbf{z}_{t-1} \leftarrow \mathbf{z} + \sigma_{t-1} \xi$, $\xi \sim \mathcal{N}(\mathbf{0}, I)$

895 29: **end for**

896 30: **return** $\mathbf{x}_0 \leftarrow \mathcal{D}(\mathbf{z}_0)$

897

898

899

900 A.3 THEORY AND PROOFS

901 This appendix first summarizes the proposed FAST-DIPS procedure and its modeling assumptions

902 (App. A.3.1). We then restate the key propositions/remarks from the main text and provide detailed

903 proofs (App. A.3.2–A.3.3). Finally, we give step-by-step derivations of the analytic step sizes used

904 in the pixel and latent updates and explain how they can be computed with autodiff VJP/JVP or a

905 single forward-difference probe (App. A.3.4).

906

907 A.3.1 OVERVIEW AND ASSUMPTIONS

912 **Method in one paragraph.** At diffusion level t , the pretrained denoiser returns an anchor $\mathbf{x}_{0|t} =$

913 $\mathbf{x}_{\text{den}}(\mathbf{x}_t, \sigma_t)$. We then solve a *hard-constrained proximal* problem around $\mathbf{x}_{0|t}$,

914

915
$$\min_{\mathbf{x} \in \mathbb{R}^{CHW}} \frac{1}{2\gamma_t} \|\mathbf{x} - \mathbf{x}_{0|t}\|^2 \quad \text{s.t.} \quad \|\mathcal{A}(\mathbf{x}) - \mathbf{y}\| \leq \varepsilon, \quad (39)$$

916

918 in the standard (Euclidean) measurement space. We solve Equation 39 by scaled ADMM with
 919 variables $(\mathbf{x}, \mathbf{v}, \mathbf{u})$:
 920

$$\mathbf{x}^{k+1} = \arg \min_{\mathbf{x}} \frac{1}{2\gamma_t} \|\mathbf{x} - \mathbf{x}_{0|t}\|^2 + \frac{\rho}{2} \|\mathcal{A}(\mathbf{x}) - \mathbf{v}^k + \mathbf{u}^k\|^2, \quad (40)$$

$$\mathbf{v}^{k+1} = \Pi_{\mathcal{C}}(\mathcal{A}(\mathbf{x}^{k+1}) + \mathbf{u}^k), \quad \mathcal{C} = \{\mathbf{v} : \|\mathbf{v} - \mathbf{y}\| \leq \varepsilon\}, \quad (41)$$

$$\mathbf{u}^{k+1} = \mathbf{u}^k + \mathcal{A}(\mathbf{x}^{k+1}) - \mathbf{v}^{k+1}. \quad (42)$$

926 The \mathbf{v} -update is a closed-form projection onto a ball; the \mathbf{x} -update is one (or a few) *adjoint-free*
 927 gradient steps with an *analytic, model-optimal* step size, where the needed directional Jacobian term
 928 $J_{\mathcal{A}}(\mathbf{x})\mathbf{g}$ is obtained either by autodiff JVP or by a *single forward-difference probe*. After correction,
 929 we *re-anneal* by sampling

$$\mathbf{x}_{t-1} = \mathbf{x}_t^{\text{corr}} + \sigma_{t-1} \boldsymbol{\xi}, \quad \boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, I), \quad (43)$$

931 which implements the decoupled time–marginal transport.
 932

933 Standing assumptions.

935 **A1** (Noise model and metric) We assume additive white Gaussian noise (AWGN) with covari-
 936 ance $\beta^2 I$ and work in the standard Euclidean metric in measurement space; the feasibility
 937 set is the ball $\{\mathbf{v} : \|\mathbf{v} - \mathbf{y}\| \leq \varepsilon\}$.

938 **A2** (Regularity) \mathcal{A} is C^1 in a neighborhood of the iterates, and $J_{\mathcal{A}}$ is locally Lipschitz.

939 **A3** (Feasibility) The credible-set radius ε is chosen so that the ground-truth measurement is
 940 feasible: $\|\mathcal{A}(\mathbf{x}_0) - \mathbf{y}\| \leq \varepsilon$.
 941

942 A.3.2 PIXEL-SPACE PROPOSITIONS AND PROOFS

944 We restate the pixel-space results from the main text and provide detailed proofs.

945 **Proposition 2** (Closed-form projection onto the credible set). *Let $\mathcal{C} = \{\mathbf{v} \in \mathbb{R}^m : \|\mathbf{v} - \mathbf{y}\| \leq \varepsilon\}$ in
 946 the measurement space. Then the Euclidean projection $\Pi_{\mathcal{C}}(\mathbf{w})$ in Equation 15 is exactly the radial
 947 shrink (Parikh & Boyd (2014))*

$$\Pi_{\mathcal{C}}(\mathbf{w}) = \begin{cases} \mathbf{w}, & \|\mathbf{w} - \mathbf{y}\| \leq \varepsilon, \\ \mathbf{y} + \varepsilon \frac{\mathbf{w} - \mathbf{y}}{\|\mathbf{w} - \mathbf{y}\|}, & \text{otherwise.} \end{cases} \quad (17)$$

952 *Proof of Proposition 2.* We solve $\min_{\mathbf{v}} \frac{1}{2} \|\mathbf{v} - \mathbf{w}\|^2$ s.t. $\|\mathbf{v} - \mathbf{y}\| \leq \varepsilon$. The objective is 1-strongly
 953 convex and the feasible set is closed and convex; hence there is a unique minimizer.
 954

955 **KKT derivation.** The Lagrangian is
 956

$$\mathcal{L}(\mathbf{v}, \lambda) = \frac{1}{2} \|\mathbf{v} - \mathbf{w}\|^2 + \lambda (\|\mathbf{v} - \mathbf{y}\| - \varepsilon), \quad \lambda \geq 0.$$

957 Stationarity gives
 958

$$\mathbf{0} = \nabla_{\mathbf{v}} \mathcal{L}(\mathbf{v}, \lambda) = (\mathbf{v} - \mathbf{w}) + \lambda \frac{\mathbf{v} - \mathbf{y}}{\|\mathbf{v} - \mathbf{y}\|} \quad \text{if } \mathbf{v} \neq \mathbf{y}.$$

959 There are two cases.
 960

963 (i) Interior case. If the constraint is inactive at the optimum, then $\lambda = 0$ by complementary slackness
 964 and stationarity gives $\mathbf{v} = \mathbf{w}$. Feasibility requires $\|\mathbf{w} - \mathbf{y}\| \leq \varepsilon$, i.e., $\mathbf{w} \in \mathcal{C}$.
 965

966 (ii) Boundary case. Otherwise $\|\mathbf{v} - \mathbf{y}\| = \varepsilon$ and $\lambda > 0$. Stationarity implies $\mathbf{v} - \mathbf{w}$ is colinear with
 967 $\mathbf{v} - \mathbf{y}$; hence the optimizer lies on the ray from \mathbf{y} to \mathbf{w} . Write $\mathbf{v} = \mathbf{y} + \tau(\mathbf{w} - \mathbf{y})$ with $\tau \geq 0$.
 968 Enforcing $\|\mathbf{v} - \mathbf{y}\| = \varepsilon$ yields $\tau = \varepsilon / \|\mathbf{w} - \mathbf{y}\|$. Substituting gives
 969

$$\mathbf{v} = \mathbf{y} + \varepsilon \frac{\mathbf{w} - \mathbf{y}}{\|\mathbf{w} - \mathbf{y}\|}.$$

971 This is exactly the radial projection formula in Equation 17. Uniqueness follows from strong con-
 972 vexitity. \square

972 **Proposition 3** (Local model-optimal step and descent). *Under C^1 regularity of \mathcal{A} near \mathbf{x} , α^* in
973 Equation 22 minimizes the quadratic model Equation 21. Moreover,*
974

$$975 \quad F(\mathbf{x} - \alpha^* \mathbf{g}) \leq F(\mathbf{x}) - \frac{\left(\frac{1}{\gamma_t} \langle \mathbf{s}, \mathbf{g} \rangle + \rho \langle \mathbf{r}, J_{\mathcal{A}}(\mathbf{x}) \mathbf{g} \rangle\right)^2}{2\left(\frac{1}{\gamma_t} \|\mathbf{g}\|^2 + \rho \|J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}\|^2\right)} + O(\|\mathbf{g}\|^3), \quad (23)$$

978 and the backtracking line search (Armijo (1966)) guarantees monotone decrease of F even when
979 Equation 20 is only a local approximation.
980

981 *Proof of Proposition 3.* Write $F(\mathbf{x}) = \frac{1}{2\gamma_t} \|\mathbf{s}\|^2 + \frac{\rho}{2} \|\mathbf{r}\|^2$ with $\mathbf{s} = \mathbf{x} - \mathbf{x}_{0|t}$ and $\mathbf{r} = \mathcal{A}(\mathbf{x}) - \mathbf{b}$. The
982 gradient is
983

$$984 \quad \mathbf{g} = \nabla F(\mathbf{x}) = \frac{1}{\gamma_t} \mathbf{s} + \rho J_{\mathcal{A}}(\mathbf{x})^\top \mathbf{r}.$$

985 Consider the steepest-descent trial $\mathbf{x}(\alpha) = \mathbf{x} - \alpha \mathbf{g}$. A first-order Taylor expansion along $-\mathbf{g}$ gives
986

$$987 \quad \mathcal{A}(\mathbf{x}(\alpha)) = \mathcal{A}(\mathbf{x}) - \alpha J_{\mathcal{A}}(\mathbf{x}) \mathbf{g} + \mathbf{e}(\alpha), \quad \|\mathbf{e}(\alpha)\| \leq \frac{L_{\mathcal{A}}}{2} \alpha^2 \|\mathbf{g}\|^2,$$

988 for some local Lipschitz constant $L_{\mathcal{A}}$ of $J_{\mathcal{A}}$ (from **A2**). Plugging this into $F(\mathbf{x}(\alpha))$ yields
989

$$990 \quad F(\mathbf{x}(\alpha)) = \underbrace{\frac{1}{2\gamma_t} \|\mathbf{s} - \alpha \mathbf{g}\|^2 + \frac{\rho}{2} \|\mathbf{r} - \alpha J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}\|^2}_{:= \tilde{F}(\alpha)} + \rho \langle \mathbf{r} - \alpha J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}, \mathbf{e}(\alpha) \rangle + \frac{\rho}{2} \|\mathbf{e}(\alpha)\|^2.$$

993 The model \tilde{F} is a convex quadratic in α with derivative
994

$$995 \quad \tilde{F}'(\alpha) = -\frac{1}{\gamma_t} \langle \mathbf{s}, \mathbf{g} \rangle - \rho \langle \mathbf{r}, J_{\mathcal{A}}(\mathbf{x}) \mathbf{g} \rangle + \alpha \left(\frac{1}{\gamma_t} \|\mathbf{g}\|^2 + \rho \|J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}\|^2 \right),$$

997 and curvature $\tilde{F}''(\alpha) = \frac{1}{\gamma_t} \|\mathbf{g}\|^2 + \rho \|J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}\|^2 \geq 0$, with equality only at stationary points where
998 $\mathbf{g} = \mathbf{0}$ and $J_{\mathcal{A}}(\mathbf{x}) \mathbf{g} = \mathbf{0}$. Setting $\tilde{F}'(\alpha) = 0$ yields the model minimizer α^* in Equation 22.
999

1000 **Descent of the true F .** Using the expansion above and Cauchy–Schwarz with the bound on
1001 $\|\mathbf{e}(\alpha)\|$, we obtain
1002

$$1003 \quad F(\mathbf{x} - \alpha \mathbf{g}) \leq \tilde{F}(\alpha) + \rho \|\mathbf{r} - \alpha J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}\| \frac{L_{\mathcal{A}}}{2} \alpha^2 \|\mathbf{g}\|^2 + \frac{\rho}{2} \left(\frac{L_{\mathcal{A}}}{2} \alpha^2 \|\mathbf{g}\|^2 \right)^2.$$

1006 At $\alpha = \alpha^*$, $\tilde{F}(\alpha^*) = \min_{\alpha} \tilde{F}(\alpha)$ and the improvement over $\tilde{F}(0) = F(\mathbf{x})$ is
1007

$$1008 \quad \tilde{F}(0) - \tilde{F}(\alpha^*) = \frac{\left(\frac{1}{\gamma_t} \langle \mathbf{s}, \mathbf{g} \rangle + \rho \langle \mathbf{r}, J_{\mathcal{A}}(\mathbf{x}) \mathbf{g} \rangle \right)^2}{2\left(\frac{1}{\gamma_t} \|\mathbf{g}\|^2 + \rho \|J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}\|^2\right)}.$$

1011 The remainder terms are $O(\alpha^{*2} \|\mathbf{g}\|^2)$ and $O(\alpha^{*4} \|\mathbf{g}\|^4)$; shrinking α by a constant factor (standard
1012 Armijo backtracking) ensures these are dominated by the quadratic-model decrease, yielding strict
1013 descent of F . \square

1014 **Remark 2** (Step size from finite-difference JVP). *Replacing $J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}$ in Equation 22 by $\Delta \mathcal{A}/\eta$ from
1015 Equation 24 yields the numerically stable single-forward-call step*
1016

$$1017 \quad \alpha_{\text{FD}} = \frac{\eta^2 \frac{1}{\gamma_t} \langle \mathbf{s}, \mathbf{g} \rangle + \eta \rho \langle \mathbf{r}, \Delta \mathcal{A} \rangle}{\eta^2 \frac{1}{\gamma_t} \|\mathbf{g}\|^2 + \rho \|\Delta \mathcal{A}\|^2} \quad \text{where} \quad \Delta \mathcal{A} = \mathcal{A}(\mathbf{x} + \eta \mathbf{g}) - \mathcal{A}(\mathbf{x}). \quad (25)$$

1021 which is algebraically equivalent to substituting $J_{\mathcal{A}}(\mathbf{x}) \mathbf{g} \approx \Delta \mathcal{A}/\eta$ in Equation 22 (the scaling by
1022 η^2 avoids division by small η). Since $J_{\mathcal{A}}(\mathbf{x}) \mathbf{g} = \Delta \mathcal{A}/\eta + O(\eta)$, we have $\alpha_{\text{FD}} = \alpha^* + O(\eta)$; Armijo
1023 backtracking then preserves monotone decrease of the true F .

1024 **Remark 1** (Linear \mathcal{A} yields exact optimal line search). *If \mathcal{A} is linear, then Equation 20 is exact and
1025 Equation 22 gives the true optimal line-search step for F along $-\mathbf{g}$ (Nocedal & Wright (2006)),
1026 delivering the fastest progress among steepest-descent steps.*

1026 **Justification.** If $\mathcal{A}(\mathbf{x}) = H\mathbf{x}$, then $J_{\mathcal{A}}(\mathbf{x}) = H$ and the linearization is exact: $\mathcal{A}(\mathbf{x} - \alpha\mathbf{g}) =$
 1027 $\mathcal{A}(\mathbf{x}) - \alpha H\mathbf{g}$. Hence \tilde{F} coincides with $F(\mathbf{x} - \alpha\mathbf{g})$ along the line, and the model minimizer in
 1028 Equation 22 is the exact optimal line-search step.

1029 **Proposition 4** (Fixed points satisfy KKT for Equation 9). *Let $(\mathbf{x}^*, \mathbf{v}^*, \mathbf{u}^*)$ be a fixed point of Equa-
 1030 tion 14–Equation 16. Then $\mathcal{A}(\mathbf{x}^*) = \mathbf{v}^*$, $\mathbf{v}^* \in \mathcal{C}$, and there exists $\lambda^* \geq 0$ such that*
 1031

$$1032 \quad \frac{1}{\gamma_t}(\mathbf{x}^* - \mathbf{x}_{0|t}) + \lambda^* J_{\mathcal{A}}(\mathbf{x}^*)^\top \boldsymbol{\nu}^* = 0, \quad \lambda^*(\|\mathcal{A}(\mathbf{x}^*) - \mathbf{y}\| - \varepsilon) = 0, \quad (26)$$

1034 where

$$1035 \quad \boldsymbol{\nu}^* \in \begin{cases} \left\{ \frac{\mathcal{A}(\mathbf{x}^*) - \mathbf{y}}{\|\mathcal{A}(\mathbf{x}^*) - \mathbf{y}\|} \right\}, & \|\mathcal{A}(\mathbf{x}^*) - \mathbf{y}\| = \varepsilon, \\ \{\mathbf{0}\}, & \|\mathcal{A}(\mathbf{x}^*) - \mathbf{y}\| < \varepsilon. \end{cases}$$

1036 Hence \mathbf{x}^* satisfies the KKT conditions of Equation 9 (Bertsekas (1999)).

1037 *Proof of Proposition 4.* At a fixed point $(\mathbf{x}^*, \mathbf{v}^*, \mathbf{u}^*)$, the \mathbf{u} -update satisfies $\mathbf{u}^* = \mathbf{u}^* + \mathcal{A}(\mathbf{x}^*) - \mathbf{v}^*$,
 1038 hence primal feasibility $\mathcal{A}(\mathbf{x}^*) - \mathbf{v}^* = \mathbf{0}$. The \mathbf{v} -update is the metric projection onto \mathcal{C} :

$$1039 \quad \mathbf{v}^* = \Pi_{\mathcal{C}}(\mathcal{A}(\mathbf{x}^*) + \mathbf{u}^*),$$

1040 so $\mathbf{v}^* \in \mathcal{C}$ and the optimality condition of the projection reads

$$1041 \quad \mathbf{0} \in \partial \iota_{\mathcal{C}}(\mathbf{v}^*) + \rho(\mathbf{v}^* - (\mathcal{A}(\mathbf{x}^*) + \mathbf{u}^*)) = \partial \iota_{\mathcal{C}}(\mathbf{v}^*) - \rho \mathbf{u}^*,$$

1042 i.e., $\rho \mathbf{u}^* \in \partial \iota_{\mathcal{C}}(\mathbf{v}^*) = N_{\mathcal{C}}(\mathbf{v}^*)$, the normal cone of \mathcal{C} at \mathbf{v}^* . For the \mathbf{x} -subproblem, first-order
 1043 optimality gives

$$1044 \quad \mathbf{0} = \frac{1}{\gamma_t}(\mathbf{x}^* - \mathbf{x}_{0|t}) + \rho J_{\mathcal{A}}(\mathbf{x}^*)^\top (\mathcal{A}(\mathbf{x}^*) - \mathbf{v}^* + \mathbf{u}^*) = \frac{1}{\gamma_t}(\mathbf{x}^* - \mathbf{x}_{0|t}) + \rho J_{\mathcal{A}}(\mathbf{x}^*)^\top \mathbf{u}^*,$$

1045 using primal feasibility. The normal cone for the ball $\mathcal{C} = \{\mathbf{v} : \|\mathbf{v} - \mathbf{y}\| \leq \varepsilon\}$ is

$$1046 \quad N_{\mathcal{C}}(\mathbf{v}^*) = \begin{cases} \{\lambda \boldsymbol{\nu}^* : \lambda \geq 0\}, & \|\mathbf{v}^* - \mathbf{y}\| = \varepsilon, \\ \{\mathbf{0}\}, & \|\mathbf{v}^* - \mathbf{y}\| < \varepsilon, \end{cases} \quad \text{with} \quad \boldsymbol{\nu}^* = \frac{\mathbf{v}^* - \mathbf{y}}{\|\mathbf{v}^* - \mathbf{y}\|}.$$

1047 Thus $\rho \mathbf{u}^* = \lambda^* \boldsymbol{\nu}^*$ for some $\lambda^* \geq 0$ when the constraint is active and $\mathbf{u}^* = \mathbf{0}$ otherwise. Substituting
 1048 into the \mathbf{x} -optimality condition yields

$$1049 \quad \frac{1}{\gamma_t}(\mathbf{x}^* - \mathbf{x}_{0|t}) + \lambda^* J_{\mathcal{A}}(\mathbf{x}^*)^\top \boldsymbol{\nu}^* = \mathbf{0}.$$

1050 Complementarity $\lambda^*(\|\mathcal{A}(\mathbf{x}^*) - \mathbf{y}\| - \varepsilon) = 0$ follows by construction of the normal cone. Hence
 1051 $(\mathbf{x}^*, \lambda^*)$ satisfies the KKT conditions of Equation 39. \square

1052 **Proposition 1** (Mode-substitution error under Laplace). *Assume locally $p(\mathbf{x}_0 | \mathbf{x}_t, \mathbf{y}) \approx \mathcal{N}(\mathbf{m}_t, \Sigma_t)$ and let $\mathbf{x}_t^{\text{corr}}$ solve Equation 9. Then the KL divergence between the time-marginals obtained by (i) injecting noise from $\mathcal{N}(\mathbf{m}_t, \Sigma_t)$ and (ii) injecting noise centered at $\mathbf{x}_0^{\text{corr}}$ is bounded by*

$$1053 \quad \text{KL}\left(\mathcal{N}(\mathbf{m}_t, \Sigma_t + \sigma_{t-1}^2 I) \parallel \mathcal{N}(\mathbf{x}_0^{\text{corr}}, \sigma_{t-1}^2 I)\right) \leq \frac{\|\mathbf{m}_t - \mathbf{x}_0^{\text{corr}}\|^2}{2\sigma_{t-1}^2} + \frac{\|\Sigma_t\|_F^2}{4\sigma_{t-1}^4}. \quad (12)$$

1054 Consequences. The bound is small (i) early, when σ_{t-1}^2 is large, and (ii) late, when $\|\Sigma_t\|$ is small;
 1055 this justifies the decoupled rule Equation 11.

1056 *Proof of Proposition 1.* Let $P = \mathcal{N}(\mathbf{m}_t, \Sigma_t + \sigma^2 I)$ and $Q = \mathcal{N}(\mathbf{x}_t^{\text{corr}}, \sigma^2 I)$ in \mathbb{R}^d . The Gaussian
 1057 KL formula gives

$$1058 \quad \text{KL}(P \parallel Q) = \frac{1}{2} \left(\text{tr}(\Sigma_Q^{-1} \Sigma_P) + (\boldsymbol{\mu}_Q - \boldsymbol{\mu}_P)^\top \Sigma_Q^{-1} (\boldsymbol{\mu}_Q - \boldsymbol{\mu}_P) - d + \log \frac{\det \Sigma_Q}{\det \Sigma_P} \right).$$

1059 With $\Sigma_Q = \sigma^2 I$, $\Sigma_P = \sigma^2 I + \Sigma_t$, $\boldsymbol{\mu}_Q - \boldsymbol{\mu}_P = \mathbf{x}_t^{\text{corr}} - \mathbf{m}_t$, we get

$$1060 \quad \text{KL}(P \parallel Q) = \frac{\|\mathbf{x}_t^{\text{corr}} - \mathbf{m}_t\|^2}{2\sigma^2} + \frac{1}{2} \left(\text{tr}(I + \frac{1}{\sigma^2} \Sigma_t) - d - \log \det(I + \frac{1}{\sigma^2} \Sigma_t) \right).$$

1080 Diagonalize $\Sigma_t = U\Lambda U^\top$ with eigenvalues $\lambda_i \geq 0$. Then
 1081

$$1082 \text{KL}(P\|Q) = \frac{\|\mathbf{x}_t^{\text{corr}} - \mathbf{m}_t\|^2}{2\sigma^2} + \frac{1}{2} \sum_{i=1}^d \left(\frac{\lambda_i}{\sigma^2} - \log\left(1 + \frac{\lambda_i}{\sigma^2}\right) \right).$$

1085 Use $x - \log(1 + x) \leq x^2/2$ for $x \geq 0$ termwise to obtain
 1086

$$1087 \text{KL}(P\|Q) \leq \frac{\|\mathbf{x}_t^{\text{corr}} - \mathbf{m}_t\|^2}{2\sigma^2} + \frac{1}{4} \sum_{i=1}^d \frac{\lambda_i^2}{\sigma^4} = \frac{\|\mathbf{x}_t^{\text{corr}} - \mathbf{m}_t\|^2}{2\sigma^2} + \frac{\|\Sigma_t\|_F^2}{4\sigma^4}.$$

1090 **Tightness regimes.** The second term vanishes as $\sigma^2 \rightarrow \infty$ (early in the schedule) and as $\|\Sigma_t\|_F \rightarrow 0$
 1091 (late in the schedule); the first term quantifies bias between the mode $\mathbf{x}_t^{\text{corr}}$ and the posterior mean
 1092 \mathbf{m}_t . \square
 1093

1094 A.3.3 LATENT-SPACE COUNTERPARTS AND PROOFS

1097 **Why the substitution $\mathcal{A} \mapsto \mathcal{A} \circ \mathcal{D}$ is valid.** If \mathcal{A} and the decoder \mathcal{D} are C^1 , then so is the composite
 1098 $\mathcal{A} \circ \mathcal{D}$. All arguments that relied on VJP/JVP of \mathcal{A} and local linearization transfer verbatim to $\mathcal{A} \circ \mathcal{D}$
 1099 via the chain rule; the projection remains in *measurement* space and is unchanged.

1100 **Proposition 5** (Local model-optimal step and descent in latent space). *Under C^1 regularity of $\mathcal{A} \circ \mathcal{D}$
 1101 near \mathbf{z} , the step Equation 36 minimizes the quadratic model $\tilde{F}_z(\alpha)$ and*

$$1102 F_z(\mathbf{z} - \alpha_z^* \mathbf{g}_z) \leq F_z(\mathbf{z}) - \frac{\left(\frac{1}{\gamma_z} \langle \mathbf{s}_z, \mathbf{g}_z \rangle + \rho_z \langle \mathbf{r}, J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z}) \mathbf{g}_z \rangle \right)^2}{2\left(\frac{1}{\gamma_z} \|\mathbf{g}_z\|^2 + \rho_z \|J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z}) \mathbf{g}_z\|^2 \right)} + O(\|\mathbf{g}_z\|^3), \quad (37)$$

1105 with monotone decrease ensured by backtracking.

1107 *Proof of Proposition 5.* Define $F_z(\mathbf{z}) = \frac{1}{2\gamma_z} \|\mathbf{z} - \mathbf{z}_{0|t}\|^2 + \frac{\rho_z}{2} \|\mathcal{A}(\mathcal{D}(\mathbf{z})) - \mathbf{b}\|^2$ and $\mathbf{g}_z = \frac{1}{\gamma_z}(\mathbf{z} - \mathbf{z}_{0|t}) + \rho_z J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z})^\top (\mathcal{A}(\mathcal{D}(\mathbf{z})) - \mathbf{b})$. Linearize $\mathcal{A}(\mathcal{D}(\mathbf{z} - \alpha \mathbf{g}_z)) = \mathcal{A}(\mathcal{D}(\mathbf{z})) - \alpha J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z}) \mathbf{g}_z + \mathbf{e}_z(\alpha)$
 1109 with $\|\mathbf{e}_z(\alpha)\| \leq \frac{L_{\mathcal{A} \circ \mathcal{D}}^2}{\alpha} \|\mathbf{g}_z\|^2$. Repeat the pixel-space proof with \mathcal{A} replaced by $\mathcal{A} \circ \mathcal{D}$ to obtain the
 1110 model minimizer Equation 36 and the same Armijo descent guarantee. \square
 1111

1112 **Proposition 6** (KKT at latent ADMM fixed points). *If $(\mathbf{z}^*, \mathbf{v}^*, \mathbf{u}^*)$ is a fixed point of Equation 30–Equation 32, then $\mathcal{A}(\mathcal{D}(\mathbf{z}^*)) = \mathbf{v}^* \in \mathcal{C}$ and there exists $\lambda^* \geq 0$ such that*
 1113

$$1114 \frac{1}{\gamma_z}(\mathbf{z}^* - \mathbf{z}_{0|t}) + \lambda^* J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z}^*)^\top \boldsymbol{\nu}^* = \mathbf{0}, \quad \lambda^* (\|\mathcal{A}(\mathcal{D}(\mathbf{z}^*)) - \mathbf{y}\| - \varepsilon_z) = 0, \quad (38)$$

1115 with $\boldsymbol{\nu}^* = (\mathcal{A}(\mathcal{D}(\mathbf{z}^*)) - \mathbf{y}) / \|\mathcal{A}(\mathcal{D}(\mathbf{z}^*)) - \mathbf{y}\|$ when the constraint is active and $\boldsymbol{\nu}^* = \mathbf{0}$ otherwise.
 1116

1117 *Proof of Proposition 6.* Identical to the pixel-space KKT proof, replacing \mathcal{A} by $\mathcal{A} \circ \mathcal{D}$ and \mathbf{x} by \mathbf{z} .
 1118 The projection onto \mathcal{C} is unchanged; the normal cone and complementarity conditions are therefore
 1119 the same, yielding the stated KKT system. \square
 1120

1121 **Remark 6** (Mode-substitution transport in latent space). *Replacing $p(\mathbf{z}_0 \mid \mathbf{z}_t, \mathbf{y})$ by its mode and
 1122 re-annealing with $\mathbf{z}_{t-1} = \mathbf{z}_t^{\text{corr}} + \sigma_{t-1} \xi$ induces the same KL structure as Prop. 1 after decoding
 1123 because noise injection and credibility act in measurement space; only the mean is mapped by \mathcal{D} .*
 1124

1125 A.3.4 DERIVATION OF ANALYTIC STEP SIZES AND AUTODIFF COMPUTATION

1126 **Pixel space: detailed derivation.** Recall

$$1127 F(\mathbf{x}) = \frac{1}{2\gamma_t} \|\mathbf{x} - \mathbf{x}_{0|t}\|^2 + \frac{\rho}{2} \|\mathcal{A}(\mathbf{x}) - \mathbf{b}\|^2, \quad \mathbf{s} = \mathbf{x} - \mathbf{x}_{0|t}, \quad \mathbf{r} = \mathcal{A}(\mathbf{x}) - \mathbf{b}.$$

1128 Then $\mathbf{g} = \frac{1}{\gamma_t} \mathbf{s} + \rho J_{\mathcal{A}}(\mathbf{x})^\top \mathbf{r}$. For the trial $\mathbf{x}(\alpha) = \mathbf{x} - \alpha \mathbf{g}$,

$$1129 \mathcal{A}(\mathbf{x}(\alpha)) \approx \mathcal{A}(\mathbf{x}) - \alpha J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}$$

1134 gives the scalar quadratic model
 1135

$$1136 \quad \tilde{F}(\alpha) = \frac{1}{2\gamma_t} \|\mathbf{s} - \alpha \mathbf{g}\|^2 + \frac{\rho}{2} \|\mathbf{r} - \alpha J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}\|^2,$$

1138 whose derivative is
 1139

$$1140 \quad \tilde{F}'(\alpha) = -\frac{1}{\gamma_t} \langle \mathbf{s}, \mathbf{g} \rangle - \rho \langle \mathbf{r}, J_{\mathcal{A}}(\mathbf{x}) \mathbf{g} \rangle + \alpha \left(\frac{1}{\gamma_t} \|\mathbf{g}\|^2 + \rho \|J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}\|^2 \right).$$

1142 Setting $\tilde{F}'(\alpha) = 0$ yields α^* in Equation 22. The curvature $\tilde{F}''(\alpha) = \frac{1}{\gamma_t} \|\mathbf{g}\|^2 + \rho \|J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}\|^2 \geq 0$
 1143 shows uniqueness unless $\mathbf{g} = \mathbf{0}$.
 1144

1145 *Autodiff computation recipe (pixel):*

- 1146 1. Evaluate $\mathcal{A}(\mathbf{x})$ to get $\mathbf{r} = \mathcal{A}(\mathbf{x}) - \mathbf{b}$.
- 1147 2. Compute the VJP $J_{\mathcal{A}}(\mathbf{x})^\top \mathbf{r}$ (reverse-mode autodiff) and form \mathbf{g} .
- 1148 3. Obtain the directional Jacobian $J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}$ either
 - 1149 • by forward-mode autodiff (preferred when available), or
 - 1150 • by few forward-difference probe

$$1153 \quad J_{\mathcal{A}}(\mathbf{x}) \mathbf{g} \approx \frac{\Delta \mathcal{A}}{\eta}, \quad \Delta \mathcal{A} := \mathcal{A}(\mathbf{x} + \eta \mathbf{g}) - \mathcal{A}(\mathbf{x}), \quad \eta \in (10^{-4}, 10^{-2}],$$

1156 in which case it is numerically convenient to assemble the FD-stabilized closed form
 1157 Equation 25 (equivalent to substituting $\Delta \mathcal{A}/\eta$ into Equation 22 but avoiding division
 1158 by small η).

- 1159 4. Assemble the numerator/denominator, clamp $\alpha \leftarrow \max(0, \alpha^*)$, and perform Armijo back-
 1160 tracking.

1162 **Latent space: detailed derivation.** With

$$1164 \quad F_z(\mathbf{z}) = \frac{1}{2\gamma_z} \|\mathbf{z} - \mathbf{z}_{0|t}\|^2 + \frac{\rho_z}{2} \|\mathcal{A}(\mathcal{D}(\mathbf{z})) - \mathbf{b}\|^2, \quad \mathbf{g}_z = \frac{1}{\gamma_z} (\mathbf{z} - \mathbf{z}_{0|t}) + \rho_z J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z})^\top (\mathcal{A}(\mathcal{D}(\mathbf{z})) - \mathbf{b}),$$

1166 linearize $\mathcal{A} \circ \mathcal{D}$ to obtain

$$1168 \quad \tilde{F}_z(\alpha) = \frac{1}{2\gamma_z} \|\mathbf{z} - \mathbf{z}_{0|t} - \alpha \mathbf{g}_z\|^2 + \frac{\rho_z}{2} \|\mathcal{A}(\mathcal{D}(\mathbf{z})) - \mathbf{b} - \alpha J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z}) \mathbf{g}_z\|^2,$$

1170 whose minimizer is Equation 36. The VJP/JVP are computed end-to-end through \mathcal{D} and \mathcal{A} by
 1171 autodiff; a single finite-difference through the composition is a valid JVP fallback:
 1172

$$1173 \quad J_{\mathcal{A} \circ \mathcal{D}}(\mathbf{z}) \mathbf{g}_z \approx \frac{\mathcal{A}(\mathcal{D}(\mathbf{z} + \delta \mathbf{g}_z)) - \mathcal{A}(\mathcal{D}(\mathbf{z}))}{\delta}.$$

1176 **Complex-valued measurements.** When measurements are complex, we work with
 1177 real-imaginary stacking (dimension $2m$) and the Euclidean norm; all expressions remain
 1178 valid verbatim, with $J_{\mathcal{A}}$ denoting the real Jacobian.

1179 **Backtracking and safeguards.** We use the Armijo condition

$$1181 \quad F(\mathbf{x} - \alpha \mathbf{g}) \leq F(\mathbf{x}) - c \alpha \|\mathbf{g}\|^2, \quad c \in (0, 1),$$

1183 reducing $\alpha \leftarrow \tau \alpha$ (e.g., $\tau = \frac{1}{2}$) until acceptance. If $\alpha^* \leq 0$, initialize with

$$1185 \quad \alpha_0 = \frac{\|\mathbf{g}\|^2}{\|\mathbf{g}\|^2 / \gamma_t + \|J_{\mathcal{A}}(\mathbf{x}) \mathbf{g}\|^2 / \rho}$$

1187 and backtrack. Identical safeguards apply in latent space with $(\gamma_z, \rho_z, \mathbf{g}_z)$.

1188
1189

A.3.5 ADDITIONAL REMARKS

1190
1191
1192

Remark 7 (Trust-region scaling along the schedule). *Setting $\gamma_t = \sigma_t^2$ ties the proximal radius to the diffusion noise: large exploratory moves are allowed early (large σ_t), while the anchor tightens late, mirroring increasing prior certainty.*

1193
1194
1195

Remark 8 (Feasibility and whitening in implementation). *Under the AWGN setting adopted throughout, the measurement-space credible set is a Euclidean ball and the projection is the closed-form radial shrink of Equation 17; all ADMM updates are therefore standard and closed-form.*

1196
1197
1198
1199
1200
1201

Remark 9 (Empirical choice: FD in pixel, JVP in latent). *The latent formulation includes a decoder-forward stack, making it more complex than in pixel space. Accordingly, in pixel space we use the forward-difference variant Equation 25, which replaces one JVP with a single extra forward call to \mathcal{A} and solves the subproblem faster and more efficiently. By contrast, in latent space we rely on the autodiff JVP for greater stability. In both cases, Armijo backtracking guarantees descent of F .*

1202
1203

A.4 ABLATION STUDIES

1204
1205
1206
1207
1208

Goal and tasks. We assess the impact of measurement-space feasibility via projection and the choice of step size inside the \mathbf{x} -update. Experiments use 10 FFHQ images on two representatives: Gaussian blur in pixel space and HDR in latent space, with PSNR/SSIM/LPIPS and average per-image runtime.

1209
1210
1211

Baseline and objective. To isolate projection, we evaluate an unsplit penalized baseline that optimizes the *same* quadratic objective as the x -subproblem inside ADMM, but *without* variable splitting or projection:

1212
1213

$$\min_{\mathbf{x} \in \mathbb{R}^{CHW}} \frac{1}{2\gamma_t} \|\mathbf{x} - \mathbf{x}_{0|t}\|^2 + \frac{1}{2\beta^2} \|\mathcal{A}(\mathbf{x}) - \mathbf{y}\|^2,$$

1214
1215
1216

which we refer to as *QDP (no splitting, no proj.)*. In all runs we match the ADMM instantiation by setting $\gamma_t = \sigma_t^2$ identically to FAST-DIPS and choosing the data-penalty weight so that $\frac{\rho}{2} = \frac{1}{2\beta^2}$.

1217
1218
1219
1220
1221
1222
1223

Compute-matched fairness. Each \mathbf{x} -gradient step entails one forward pass of A , one VJP, and one JVP (or a single forward probe for FD); projection and dual updates are negligible. With K ADMM iterations and S gradient steps per iteration, *FAST-DIPS (ADMM + proj.)* spends $K \times S$ such triplets per level, so *QDP* is allotted $K \times S$ gradient steps per level to match compute. Step-size mechanisms are kept identical between solvers: constant α , analytic/JVP α^* , and finite-difference α_{FD} .

1224
1225
1226
1227

Findings. In pixel space, α_{FD} is competitive with α^* at lower cost; in latent space, α^* provides the stability needed for the nonlinear decoder-forward composition, while α_{FD} lags. Under the matched budget, enforcing feasibility via projection improves quality over the unsplit penalty path; latent runtimes primarily reflect decoder backprop.

1228
1229

A.5 HYPERPARAMETERS OVERVIEW.

1230
1231
1232
1233
1234
1235
1236
1237

Algorithm	Parameter	Super Resolution 4x	Inpaint (Box)	Inpaint (Random)	Linear task	Gaussian deblurring	Motion deblurring	Phase retrieval	Non Linear task	Nonlinear deblurring	High dynamic range
FAST-DIPS	T	75	75	75	50	50	50	150	150	150	150
	K	3	3	3	3	3	3	2	2	2	2
	S	1	1	1	2	2	2	5	5	5	5
	ρ	200	200	200	200	200	200	200	200	200	200
	ε	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Latent FAST-DIPS	T	50	50	50	50	50	50	25	25	25	25
	(K_x, K_z)	(5,5)	(5,5)	(5,5)	(5,5)	(5,5)	(5,5)	(10,10)	(10,10)	(10,10)	(10,10)
	(S_x, S_z)	(3,3)	(3,3)	(3,3)	(3,3)	(3,3)	(3,3)	(3,3)	(3,3)	(3,3)	(3,3)
	(ρ_x, ρ_z)	(200,200)	(200,200)	(200,200)	(200,200)	(200,200)	(200,200)	(200,200)	(200,200)	(200,200)	(200,200)
	σ_{switch}	1	1	1	1	1	1	5	5	5	5
	ε	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05

Table 2: The hyperparameters of experiments in paper for all tasks.

1240
1241

Throughout our experiments, hyperparameter settings are summarized in Table 2. In the annealing process, we set $\sigma_{max} = 100$ in pixel space and 10 in latent space, with $\sigma_{min} = 0.1$ in both, to enhance robustness to measurement noise.

1242 A.6 EXPERIMENTAL DETAILS.
12431244 **Validation set information** For reproducibility, we explicitly specify the indices of the samples
1245 used for validation. **FFHQ** (256×256). We use 100 images corresponding to dataset indices
1246 00000–00099. **ImageNet** (256×256). We use 100 images from the ImageNet validation set
1247 corresponding to indices 49000–49099.1248 A.7 BASELINE IMPLEMENTATION DETAILS.
12491250 All baselines were experiments using the authors’ public repositories:
1251

- 1252
- **DAPS/LatentDAPS**: github.com/zhangbingliang2019/DAPS
 - **SITCOM**: github.com/sjames40/SITCOM
 - **HRDIS**: github.com/deng-ai-lab/HRDIS
 - **C-IIGDM**: github.com/mandt-lab/c-pigdm
 - **PSLD**: github.com/LituRout/PSLD
 - **ReSample**: github.com/soominkwon/resample

1260 We followed each method’s original paper and default repository settings. Additionally, for phase
1261 retrieval we applied a best-of-four protocol uniformly across all compared baselines.
12621263 **Measurements noise setting.** Because the SVD operator caused instability when injecting noise
1264 in super-resolution and Gaussian deblurring, HRDIS is evaluated with noise on all other tasks, while
1265 C-IIGDM is evaluated only in the noiseless setting for all tasks.
12661267 **Details of Figure 3.** For the runtime–quality trade-off in Figure 3, we varied only the number of
1268 solver steps/iterations per method, keeping all other hyperparameters at their recommended defaults:
1269

- 1270
- **DAPS** The number of ODE steps was fixed at 4, while the number of annealing steps was
1271 swept over $\{2, 5, 10, 15, 20, 25\}$.
 - **SITCOM** We swept pairs of diffusion steps N and inner iterations K over $(N, K) \in$
1273 $\{(3, 2), (5, 3), (5, 5), (5, 10), (5, 15), (5, 20)\}$.
 - **HRDIS** We varied the number of diffusion steps over $\{10, 15, 50, 80, 100, 130\}$.
 - **C-IIGDM** We varied the number of diffusion steps over $\{20, 50, 75, 100, 150, 200\}$.

1277 **Automatic Differentiation Primitives.** To implement the adjoint-free analytic updates without
1278 manually deriving gradients for the forward operator \mathcal{A} , we leverage the automatic differentiation
1279 capabilities of PyTorch. Specifically, the Vector-Jacobian Product (VJP) term $J_{\mathcal{A}}(\mathbf{x})^\top \mathbf{r}$, which is
1280 necessary for computing the gradient of the data-consistency term, is obtained via standard reverse-
1281 mode differentiation using `torch.autograd.grad`. For the Jacobian-Vector Product (JVP)
1282 term $J_{\mathcal{A}}(\mathbf{x})\mathbf{g}$, we utilize the functional transformation API, specifically `torch.func.jvp`. This
1283 allows us to efficiently compute the directional derivative required for the local quadratic model in
1284 a fully differentiable manner.
12851286 A.8 ADDITIONAL EXPERIMENTS
12871288 **Effectiveness of K ADMM iterations and S gradient steps** We performed an ablation study
1289 to evaluate the influence of both the number of ADMM iterations (K) and the number of gradient
1290 steps (S) in the x-update stage. We tested $K \in \{2, 3, 5\}$ and $S \in \{1, 3, 5\}$ across both linear and
1291 nonlinear tasks. As shown in Table 5, increasing K consistently improves performance for both
1292 linear tasks (e.g., super-resolution) and nonlinear tasks (e.g., nonlinear deblurring), though naturally
1293 at the cost of higher computation. This suggests that the refinement offered by additional ADMM
1294 iterations is broadly beneficial regardless of task difficulty.1295 In contrast, the effect of increasing the number of gradient steps S is task-dependent. For linear
1296 tasks, the performance gain is marginal relative to the additional runtime. However, for nonlinear

1296	Solver	Gaussian Blur (Pixel)					Solver	High Dynamic Range (Latent)					
		Step Size Method	PSNR	SSIM	LPIPS	Run-time (s)		Step Size Method	PSNR	SSIM	LPIPS	Run-time (s)	
1297	QDP (no splitting, no proj.)	$\alpha = 10^{-4}$	22.854	0.665	0.429	1.893	QDP (no splitting, no proj.)	$\alpha = 10^{-5}$	22.113	0.671	0.459	21.827	
		constant	$\alpha = 10^{-3}$	28.028	0.796	0.314		constant	$\alpha = 10^{-4}$	23.486	0.769	0.356	22.078
		$\alpha = 10^{-2}$	2.687	0.162	0.779	1.955		$\alpha = 10^{-3}$	16.296	0.614	0.555	22.044	
		JVP	29.480	0.830	0.271	2.356		JVP	24.356	0.757	0.357	60.963	
		FD	29.577	0.832	0.268	2.018		FD	23.196	0.750	0.364	31.158	
		$\alpha = 10^{-4}$	24.829	0.714	0.391	1.988		$\alpha = 10^{-6}$	21.522	0.641	0.496	25.011	
1300	FAST-DIPS (ADMM + proj.)	constant	$\alpha = 10^{-3}$	28.647	0.811	0.296		constant	$\alpha = 10^{-5}$	25.021	0.768	0.339	25.110
		$\alpha = 10^{-2}$	3.851	0.151	0.772	1.993		$\alpha = 10^{-4}$	23.328	0.797	0.298	25.159	
		JVP	29.762	0.829	0.273	2.502		JVP	25.530	0.811	0.273	63.952	
		FD (Ours)	29.632	0.819	0.287	2.053		FD	21.041	0.736	0.355	34.197	

Table 3: Ablation of step-size selection inside two per-level solvers. Left: Gaussian blur (pixel). Right: HDR (latent). We compare constant α , analytic/JVP α^* , and forward-only α_{FD} within QDP (no splitting, no proj.) and FAST-DIPS (ADMM + proj.). For fairness, compute is matched by allocating $K \times S$ gradient steps per level to QDP when FAST-DIPS uses K ADMM iterations with S gradient steps each; projection/dual updates are negligible. All results are evaluated on FFHQ256 10 samples.

1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349
Measurement														Gaussian	Inpaint	Motion																													
Reconstruction														deblurring	(random)	deblurring																													
Reference																																													
Task														PSNR	SSIM	LPIPS																													
Gaussian deblurring														28.730	0.814	0.273																													
Random Inpainting														30.806	0.878	0.192																													
Nonlinear deblurring														27.016	0.781	0.266																													

Table 4: Quantitative results under Poisson measurement noise ($\lambda_{\text{poisson}} = 1$). FAST-DIPS remains accurate and perceptually faithful across tasks.

Figure 4: Qualitative reconstructions under Poisson measurement noise ($\lambda_{\text{poisson}} = 1$): FAST-DIPS preserves edges and textures across tasks.

tasks, the reconstruction metrics steadily improve as S increases, indicating that additional gradient refinement helps the solver locate more accurate correction points in challenging settings. Overall, both K and S present a clear quality–cost trade-off, with K providing general improvements and S offering additional benefits especially for complex nonlinear problems.

Hyperparameter Robustness We investigate the robustness of our method to its main hyperparameters. Table 6 shows the results for the super-resolution task when sweeping the ADMM penalty ρ , and the credible set radius ϵ . The performance remains remarkably stable across a wide range of values for each parameter. This highlights a key advantage of FAST-DIPS: it is not sensitive to fine-tuning and delivers strong results with default settings, enhancing its practicality and ease of use.

Hybrid Schedule Trade-off In our hybrid pixel-latent framework, the σ_{switch} parameter determines the point at which the correction process transitions from pixel space to latent space. Table 7 illustrates the resulting trade-off between performance and run-time. Performing the initial correction steps in pixel space ($\sigma_{\text{switch}} > 0$) provides a fast and effective rough update, significantly reducing the overall computation time. The subsequent switch to latent-space updates allows for more stable, fine-grained corrections that respect the generative manifold. This hybrid strategy proves highly effective, and an intermediate σ_{switch} value offers an optimal balance between speed and reconstruction fidelity.

<i>K</i>	<i>S</i>	Super Resolution 4x				Nonlinear Blur			
		PSNR	SSIM	LPIPS	Run-time (s)	PSNR	SSIM	LPIPS	Run-time (s)
2	1	29.627	0.837	0.260	1.444	25.101	0.711	0.367	8.711
	3	29.675	0.838	0.259	1.778	27.275	0.780	0.302	17.284
	5	29.678	0.838	0.259	2.113	27.914	0.800	0.285	26.766
3	1	29.740	0.839	0.256	1.569	25.491	0.725	0.347	10.937
	3	29.734	0.839	0.256	2.092	27.079	0.785	0.287	26.888
	5	29.734	0.839	0.256	2.608	27.546	0.801	0.274	38.314
5	1	29.736	0.838	0.252	1.794	25.501	0.734	0.323	15.707
	3	29.737	0.838	0.252	2.641	26.706	0.777	0.267	39.492
	5	29.737	0.838	0.252	3.418	27.006	0.786	0.265	63.044

Table 5: The trade-off between quality and cost in the x-update step. For complex nonlinear tasks such as nonlinear deblurring, increasing the number of gradient steps improves reconstruction quality but also increases computational cost. All experiments were conducted on 10 samples using an RTX 6000 Ada GPU.

ρ	PSNR	SSIM	LPIPS	ε	PSNR	SSIM	LPIPS
10	27.546	0.783	0.339	0	29.739	0.839	0.255
100	29.614	0.836	0.267	0.01	29.739	0.839	0.255
200	29.740	0.839	0.256	0.05	29.740	0.839	0.256
500	29.565	0.828	0.260	0.1	29.740	0.839	0.256
1000	29.363	0.816	0.276	1	29.726	0.839	0.258

Table 6: Sensitivity analysis of the main hyperparameters for Super resolution 4x, evaluated on 10 FFHQ images. The table shows the performance while sweeping the ADMM penalty ρ and the credible set radius ε . The results demonstrate that our method is robust, with performance remaining remarkably stable across a wide range of values, which reduces the need for extensive hyperparameter tuning.

σ_{switch}	PSNR	SSIM	LPIPS	Run-time (s)
< 0.0	24.283	0.553	0.469	3.082
0.2	27.185	0.681	0.374	11.727
1	28.809	0.793	0.302	38.014
5	28.828	0.791	0.306	73.138
>10.0	28.819	0.791	0.307	90.646

Table 7: Performance of the hybrid pixel-latent schedule with varying σ_{switch} values for 4x super-resolution on 10 FFHQ images. The schedule performs correction in pixel space when $\sigma_t > \sigma_{\text{switch}}$ and in latent space otherwise. The results, measured on an RTX 6000 Ada GPU, show that a balanced approach ($\sigma_{\text{switch}} = 0.6$) is more effective than a purely pixel-space (< 0.0) or purely latent-space (> 10.0) correction strategy.

Experiments with non-Gaussian noise. Figure 4 and Table 4 evaluate FAST-DIPS under Poisson measurement noise with rate $\lambda_{\text{poisson}} = 1$, showing that our method remains accurate and perceptually faithful beyond the additive white Gaussian noise (AWGN) setting. The robustness arises from replacing a parametric likelihood with a set-valued surrogate: at each diffusion level, we solve a denoiser-anchored, hard-constrained proximal problem that enforces feasibility within a measurement-space credible set (Euclidean ball) in a whitened domain, which is inherently tolerant to noise miscalibration and largely insensitive to the exact noise law when residuals are appropriately whitened. Our analytic step-size rules yield stable optimization across tasks, supporting practical insensitivity to corruption type.

Extension to Non-Differentiable Operators To address the applicability of FAST-DIPS to non-differentiable degradations, we evaluated our framework on JPEG restoration. While the standard JPEG compression pipeline involves a non-differentiable quantization step, it can be effectively handled using a differentiable surrogate (Reich et al. (2024)).

We applied FAST-DIPS using this differentiable surrogate to guide the restoration process under measurement noise $\beta = 0.05$. Qualitative results are presented in Figure 5, demonstrating that our method effectively suppresses blocking artifacts and restores high-frequency details. Quantitative metrics in Table 8 further confirm competitive reconstruction performance. These results suggest



Figure 5: Qualitative results for JPEG restoration on FFHQ using FAST-DIPS with a differentiable surrogate operator. We display the measurement, reconstruction, and the ground-truth reference across three compression levels: JPEG Quality 5, 10, and 25.

JPEG Quality	PSNR	SSIM	LPIPS
25	31.175	0.869	0.229
10	29.343	0.834	0.267
5	26.749	0.788	0.338

Table 8: Quantitative evaluation of JPEG restoration on FFHQ across JPEG quality factors 5, 10, and 25.

Method	PSNR	SSIM	LPIPS	Runtime (s)
Latent-DAPS	28.308	0.809	0.428	580.664
Ours(Latent)	31.438	0.852	0.356	247.399

Table 9: Quantitative evaluation of high-resolution (512×512) Gaussian deblurring on FFHQ using 10 samples, conducted on an RTX 6000 Ada GPU.

that FAST-DIPS remains highly effective for formally non-differentiable problems, provided a differentiable proxy of the forward operator is available.

High-resolution image data We further conducted high-resolution experiments on the FFHQ dataset at 512×512 resolution in the latent setting, going beyond the standard 256×256 regime. As shown in Table 9, our method improves PSNR, SSIM, and LPIPS compared to Latent DAPS—the most recent state-of-the-art latent diffusion-based inverse problem solver—while also achieving approximately $2.3 \times$ faster runtime. These results suggest that our hybrid approach can handle high-resolution inputs effectively and benefit from efficient computations in the latent space.

Qualitative Results Figures 6-22 provide additional qualitative samples for a comprehensive set of eight problems on FFHQ and ImageNet dataset. These results visually demonstrate the high-quality and consistent reconstructions achieved by both the pixel-space (FAST-DIPS) and latent-space (Latent FAST-DIPS) versions of our method.

A.9 FUTURE WORK AND LIMITATIONS

Our proposed method, FAST-DIPS, provides a robust framework for solving inverse problems, and its hyperparameter stability opens up several promising directions for future work. The framework is defined by a few key hyperparameters ($\rho, \varepsilon, \sigma_{\text{switch}}$), and as shown in additional experimental section Table 6, 7, it exhibits robustness across a wide range of their values, enhancing its practical usability. Among these, the ADMM penalty parameter ρ can be considered the most influential. While our experiments show stable performance with a fixed value, integrating adaptive penalty selection strategies could further improve convergence and robustness. Similarly, exploring an optimal or adaptive schedule for the hybrid switching point σ_{switch} remains another interesting avenue for research.

Despite these strengths and opportunities, we also acknowledge a primary limitation of the current framework: its dependency on differentiable forward operators. FAST-DIPS is "adjoint-free" in the sense that it does not require a hand-coded adjoint operator. However, its efficiency heavily relies on automatic differentiation to compute VJP and JVP needed for the analytic step size α^* . This implic-

1458 itly assumes that the forward operator \mathcal{A} is (at least piecewise) differentiable. For problems involving
1459 non-differentiable operators or black-box simulators where gradients are unavailable, our current
1460 approach cannot be directly applied. Future work could explore extensions using zeroth-order opti-
1461 mization techniques or proximal gradient methods that can handle non-differentiable terms.
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Figure 6: Phase Retrieval trajectory under FAST-DIPS and Latent FAST-DIPS with intermediate iterates along the diffusion schedule.

1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

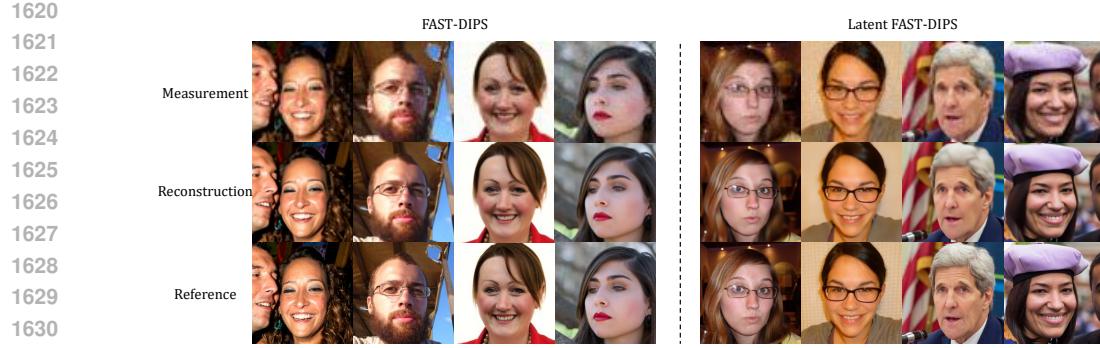


Figure 9: Additional qualitative results for **Super-Resolution** $\times 4$. Measurement, Reconstruction, and Reference are shown for FAST-DIPS and Latent FAST-DIPS.

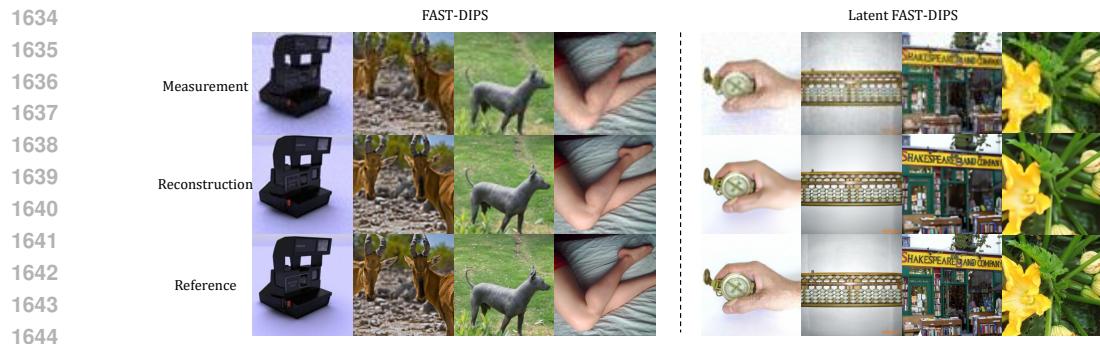


Figure 10: Qualitative results for **Super-Resolution** $\times 4$ on ImageNet dataset. Measurement, Reconstruction, and Reference are shown for FAST-DIPS and Latent FAST-DIPS.

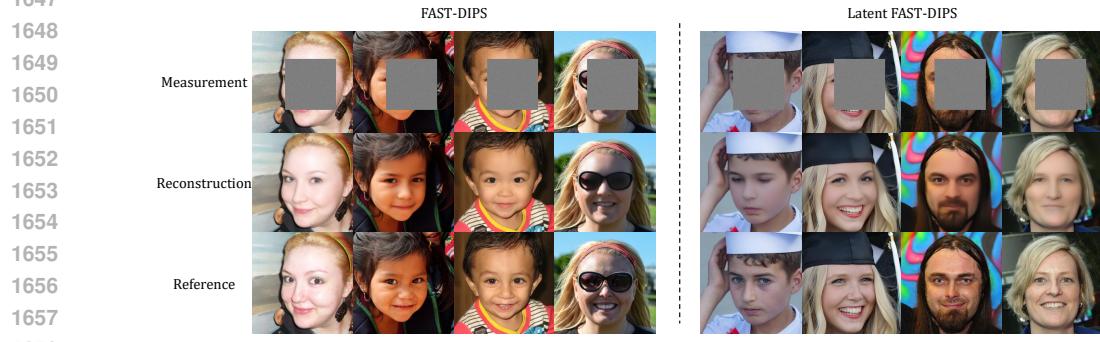


Figure 11: Additional qualitative results for **Inpaint(box)**. We display Measurement, Reconstruction, and Reference for FAST-DIPS and Latent FAST-DIPS.

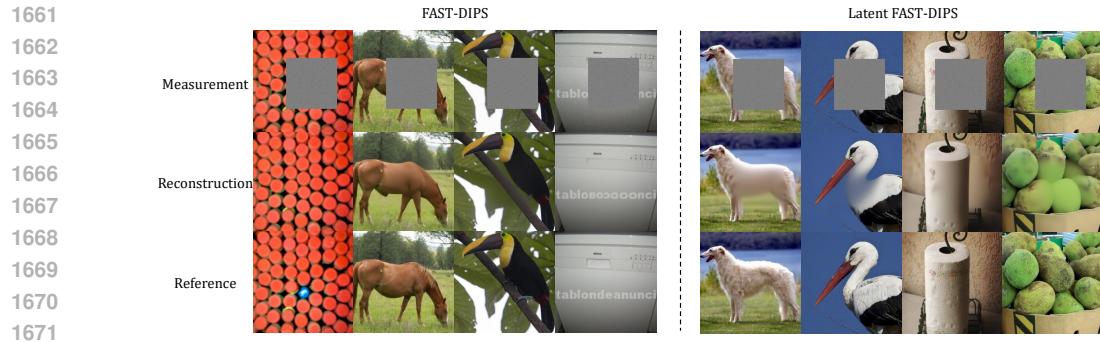


Figure 12: Qualitative results for **Inpaint(box)** on ImageNet dataset. We display Measurement, Reconstruction, and Reference for FAST-DIPS and Latent FAST-DIPS.

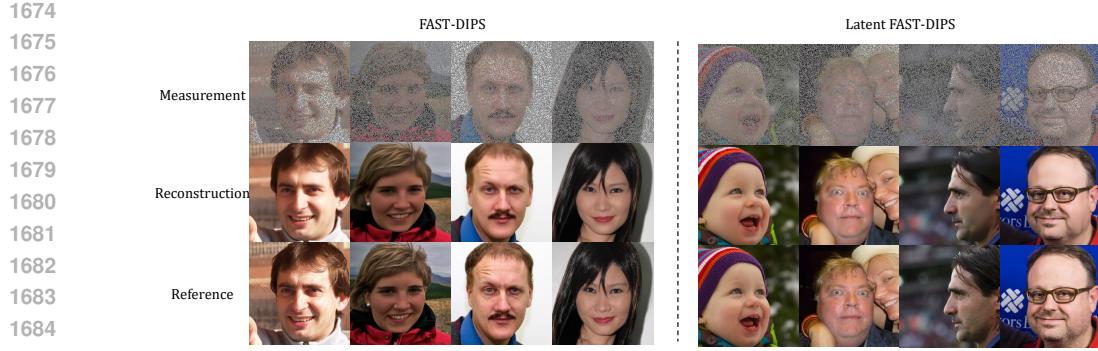


Figure 13: Additional qualitative results for **Inpaint(random)**. Measurement, Reconstruction, and Reference with FAST-DIPS and Latent FAST-DIPS.

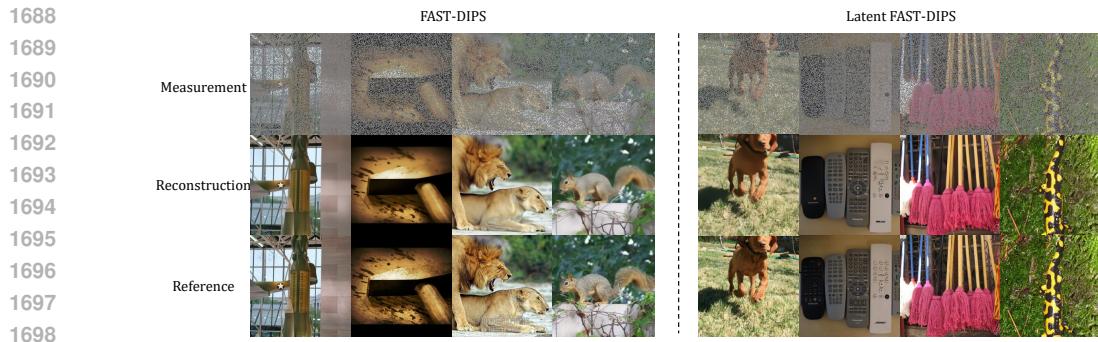


Figure 14: Qualitative results for **Inpaint(random)** on ImageNet dataset. Measurement, Reconstruction, and Reference with FAST-DIPS and Latent FAST-DIPS.

Figure 15: Additional qualitative results for **Gaussian deblurring**. We show Measurement, Reconstruction, and Reference for FAST-DIPS and Latent FAST-DIPS.

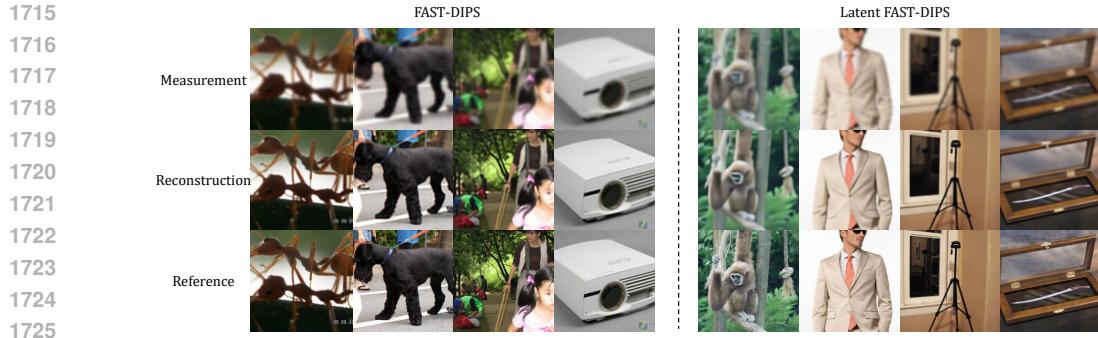


Figure 16: Qualitative results for **Gaussian deblurring** on ImageNet dataset. We show Measurement, Reconstruction, and Reference for FAST-DIPS and Latent FAST-DIPS.

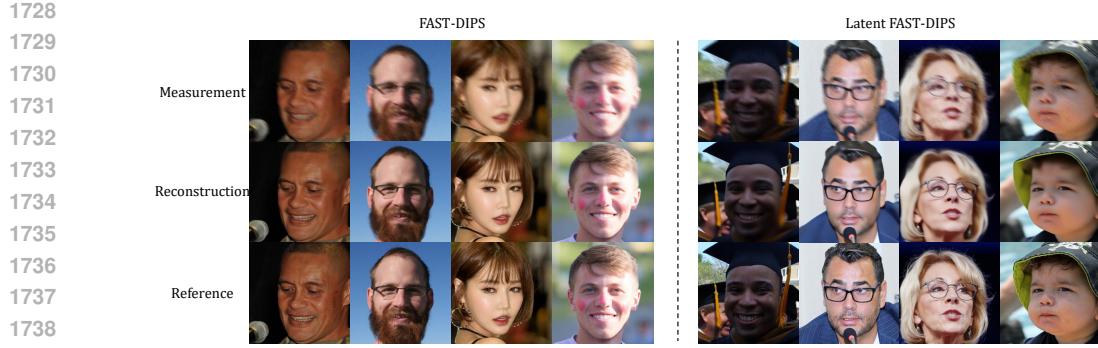


Figure 17: Additional qualitative results for **Motion deblurring**. Measurement, Reconstruction, and Reference are provided for FAST-DIPS and Latent FAST-DIPS.

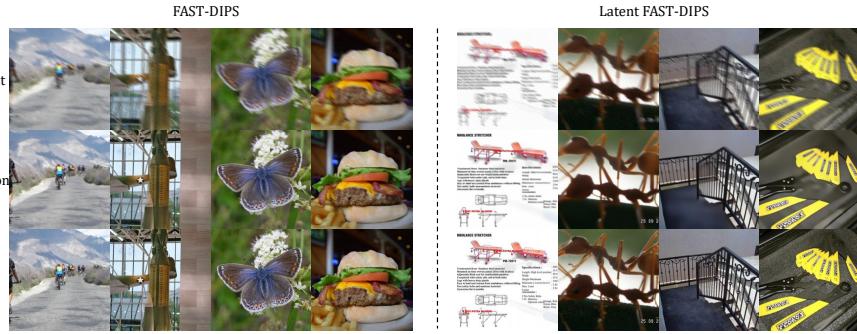


Figure 18: Qualitative results for **Motion deblurring** on ImageNet dataset. Measurement, Reconstruction, and Reference are provided for FAST-DIPS and Latent FAST-DIPS.

Figure 19: Additional qualitative results for **Nonlinear deblurring**. We present Measurement, Reconstruction, and Reference for FAST-DIPS and Latent FAST-DIPS.

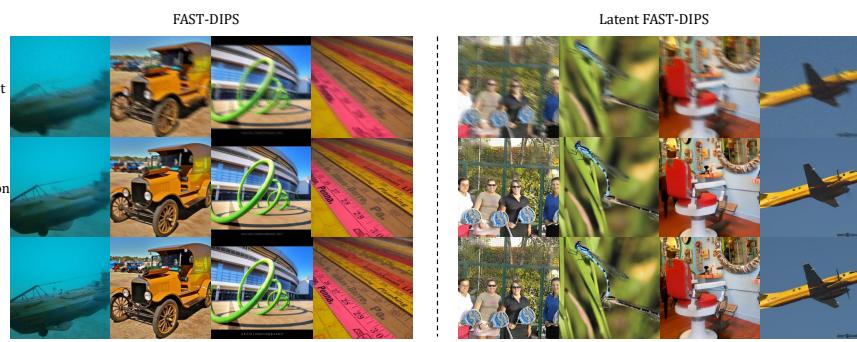
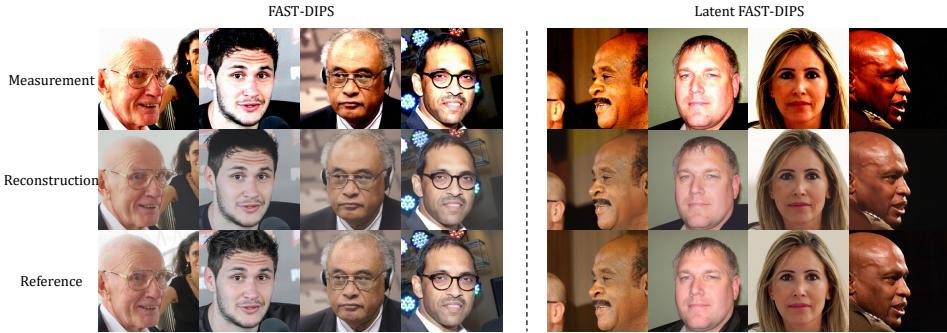


Figure 20: Qualitative results for **Nonlinear deblurring** on ImageNet dataset. We present Measurement, Reconstruction, and Reference for FAST-DIPS and Latent FAST-DIPS.



1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Figure 21: Additional qualitative results for **High Dynamic Range**. Measurement, Reconstruction, and Reference for FAST-DIPS and Latent FAST-DIPS.

Figure 22: Qualitative results for **High Dynamic Range** on ImageNet dataset. Measurement, Reconstruction, and Reference for FAST-DIPS and Latent FAST-DIPS.