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Abstract

We propose a new “Poisson flow” generative model (PFGM) that maps a uniform
distribution on a high-dimensional hemisphere into any data distribution. We
interpret the data points as electrical charges on the z = 0 hyperplane in a space
augmented with an additional dimension z, generating a high-dimensional electric
field (the gradient of the solution to Poisson equation). We prove that if these
charges flow upward along electric field lines, their initial distribution in the
z = 0 plane transforms into a distribution on the hemisphere of radius r that
becomes uniform in the r — oo limit. To learn the bijective transformation,
we estimate the normalized field in the augmented space. For sampling, we
devise a backward ODE that is anchored by the physically meaningful additional
dimension: the samples hit the (unaugmented) data manifold when the z reaches
zero. Experimentally, PFGM achieves current state-of-the-art performance among
the normalizing flow models on CIFAR-10, with an Inception score of 9.68 and a
FID score of 2.35. It also performs on par with the state-of-the-art SDE approaches
while offering 10x to 20x acceleration on image generation tasks. Additionally,
PFGM appears more tolerant of estimation errors on a weaker network architecture
and robust to the step size in the Euler method. The code is available at https:
//github.com/Newbeeer/poisson_flow.

1 Introduction

Deep generative models are a prominent approach for data generation, and have been used to produce
high quality samples in image [!], text [2] and audio [35], as well as improve semi-supervised
learning [20], domain generalization [25] and imitation learning [15]. However, current deep
generative models also have limitations, such as unstable training objectives (GANs [1, 12, 17]) and
low sample quality (VAEs [21], normalizing flows [6]). New techniques [12, 24] are introduced
to stablize the training of CNN-based or ViT-based GAN models. Although recent advances on
diffusion [16] and scored-based models [33] achieve comparable sample quality to GAN’s without
adversarial training, these models have a slow stochastic sampling process. [33] proposes backward
ODE samplers (normalizing flow) that speed up the sampling process but these methods have not yet
performed on par with the SDE counterparts.

We present a new “Poisson flow” generative model (PFGM), exploiting a remarkable physics fact
that generalizes to N dimensions. As illustrated in Fig. 1(a), motion in a viscous fluid transforms
any planar charge distribution into a uniform angular distribution. Specifically, we interpret N-
dimensional data points x (images, say) as positive electric charges in the z = 0 plane of an
N + 1-dimensional space (see Fig. 1(a)) filled with a viscous liquid (say honey). A positive charge
with z > 0 will be repelled by the other charges and move in the direction of their repulsive force,
eventually crossing an imaginary hemisphere of radius 7. We show that, remarkably, if the the original
charge distribution is let loose just above z = 0, this law of motion will cause a uniform distribution
for their hemisphere crossings in the » — oo limit.

*Equal Contribution.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).


https://github.com/Newbeeer/poisson_flow
https://github.com/Newbeeer/poisson_flow

Forward ODE >

= ~— ) —

density
high

Backward ODE
Forward ODE

Backward ODE

(b)

Figure 1: (a) 3D Poisson field trajectories for a heart-shaped distribution (b) The evolvements of a
distribution (top) or an (augmented) sample (bottom) by the forward/backward ODEs pertained to
the Poisson field.

Our Poisson flow generative process reverses the forward process: we generate a uniform distribution
of negative charges on the hemisphere, then track their motion back to the z = 0 plane, where they
will be distributed as the data distribution. A Poisson flow can be viewed as a type of continuous
normalizing flows [4, 10, 33] in the sense that it continuously maps between an arbitrary distribution
and an easily sampled one: in the previous works an /N-dimensional Gaussian and in PFGM a
uniform distribution on an /V-dimensional hemisphere. In practice, we implement the Poisson flow
by solving a pair of forward/backward ordinary differential equations (ODEs) induced by the electric
field (Fig. 1(b)) given by the N-dimensional version of Coulomb’s law (the gradient of the solution
to the Poisson’s equation with the data as sources). We will interchangeably refer to this gradient as
the Poisson field, since electric fields normally refer to the special case NV = 3.

The proposed generative model PFGM has a stable training objective and empirically outperforms
previously state-of-the-art continuous flow methods [30, 33]. As a different iterative method, PFGM
offers two advantages compared to score-based methods [32, 33]. First, the ODE process of PFGM
achieves faster sampling speeds than the SDE samplers in [33]. while retaining comparable perfor-
mance. Second, our backward ODE exhibits better generation performance than the reverse-time
ODE:s of VE/VP/sub-VP SDEs [33], as well as greater stability on a weaker architecture NSCNv2 [32].
The rationale for robustness is that the time variables in these ODE baselines are strongly correlated
with the sample norms during training time, resulting in a less error-tolerant inference. In contrast,
the tie between the anchored variable and the sample norm in PFGM is much weaker.

Experimentally, we show that PEFGM achieves current state-of-the-art performance on CIFAR-10
dataset in the normalizing flow family, with FID/Inception scores of 2.48/9.65 (w/ DDPM++ [33])
and 2.35/9.68 (w/ DDPM++ deep [33]). It performs competitively with current state-of-the-art SDE
samplers [33] and provides 10x to 20x speed up across datasets. Notably, the backward ODE in
PFGM is the only ODE-based sampler that can produce decent samples on its own on NCSNv2 [32],
while other ODE baselines fail without corrections. In addition, PFGM demonstrates the robustness to
the step size in the Euler method, with a varying number of function evaluations (NFE) ranging from
10 to 100. We further showcase the utility of the invertible forward/backward ODEs of the Poisson
field on likelihood evaluation and image manipulations, and its scalability to higher resolution images
on LSUN bedroom 256 x 256 dataset.

2 Background and Related works

Poisson equation Let x € RY and p(x) : RY — R be a source function. We assume that the source
function has a compact support, p € C° and N > 3. The Poisson equation is

V2o(x) = —p(x), (1)

N, 2 is the Laplaci
i=1 927 1s the Laplacian operator.

It is usually helpful to define the gradient field E(x) = —-V(x) and rewrite the Poisson equation as

where ¢(x) : RY — R is called the potential function, and V2 = ¥,



V - E = p, known in physics as Gauss’s law [1 1]. The Poisson equation is widely used in physics,
giving rise to Newton’s gravitational theory [9] and the electrostatic theory [11], when p(x) is
interpreted as mass density or electric charge density, respectively. E is the N-dimensional analog of
the electric field. The Poisson equation Eq. (1) (with zero boundary condition at infinity) admits a
unique simple integral solution :
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where Sy _;(1) is a geometric constant representing the surface area of the unit (N — 1)-sphere °,
and G(x,y) is the extension of Green’s function in /NV-dimensional space (details in Appendix A.3).
The negative gradient field of ¢(x), referred as Poisson field of the source p, is

1 X-y
Sy (1) [lx = ylIV

Qualitatively, the Poisson field E(x) points away from sources, or equivalently —E(x) points towards
sources, as illustrated in Fig. 1. It is straightforward to check that when p(x) - §(x —y), we get
o(x) > G(x,y) and E(x) - —VxG(x,y). This implies that G(x,y) and —-V,G(x,y) can be
interpreted as the potential function and the gradient field generated by a unit point source, e.g.,
a point charge, located at y. When p(x) takes general forms but has bounded support, simple
asymptotics exist for |[x|| > |ly||. To the lowest order, E(x) = VxG(x,¥)|y-0 ~ x/|[x||"Y behaves as
if it were generated by a unit point source at y = 0. In physics, the power law decay is considered to
be long-range (compared to exponential decay) [11].

E(x) =-Vo(x) == [ VxGxy)py)dy, VxG(x,y)- ©)

Particle dynamics in a Poisson field The Poisson field immediately defines a flow model, where the
probability distribution evolves according to the gradient flow dp;(x)/dt = -V - (p¢(x)E(x)). The
gradient flow is a special case of the Fokker-Planck equation [28], where the diffusion coefficient is
zero. Intuitively we can think of p;(x) as represented by a population of particles. The corresponding
(non-diffusion) case of the It6 process is the forward ODE ‘fi—’t‘ = E(x). We can interpret the
trajectories of the ODE as particles moving according to the Poisson field E(x), with initial states
drawn from pgy. The physical picture of the forward ODE is a charged particle under the influence of
electric fields in the overdamped limit (details in Appendix F).

The dynamics is also rescalable in the sense that the particle trajectory remains the same for fl—’t‘ =

+f(x)E(x) for f(x) > 0, f(x) € C', because the time rescaling dt — f(x(t))dt recovers % =
+E(x). Note that the dynamics is stiff due to the power law factor in the denominator in Eq. (3),
posing computational challenges. Luckily the rescalablility allows us to rescale E(x) properly to get

new ODEs (formally defined later in Section 3.3) that are more amenable for sampling.

Generative Modeling via ODE Generative modeling can be done by transforming a base distribution
to a data distribution via mappings defined by ODEs. The ODE-based samplers allow for adaptive
sampling, exact likelihood evaluation and modeling of continuous-time dynamics [4, 33]. Previous
works broadly fall into two lines. [4, 3] introduce a continuous-time normalizing flow model that
can be trained with maximum likelihood by the instantaneous change-of-variables formula [4]. For
sampling, they directly integrate the learned invertiable mapping over time. Another work [33] unifies
the scored-based model [31, 32] and diffusion model [16] into a general diffusion process, and uses
the reverse-time ODE of the diffusion process for sampling. They show that the reverse-time ODE
produces high quality samples with improved architecture.

3 Poisson Flow Generative Models

In this section, we start with the properties of the Poisson flow in the augmented space and show
how to draw samples from the data distribution by following the backward ODE of the Poisson
flow (Section 3.1). We then discuss how to actually learn a normalized Poisson field from data
samples through simulations of the forward ODE (Section 3.2) and present an equivalent backward
ODE that allows for exponentially decay on z (Section 3.3).

2Eq. (2) is valid for N > 3. When N = 2, the Green’s function is G(x,y) = —log(||x - y||)/27. We assume
N > 3 since N is typically large in the relevant applications.
3The N-sphere with radius r is defined as {x e RV ™ ||x|| = r}
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Figure 2: (a) Poisson field (black arrows) and particle trajectories (blue lines) of a 2D uniform disk
(red). Left (no augmentation, 2D): all particles collapse to the disk center. Right (augmentation, 3D):
particles hit different points on the disk. (b) Proof idea of Theorem 1. By Gauss’s Law, the outflow
flux d®,,; equals the inflow flux d®;,,. The factor of two in p(x)dA/2 is due to the symmetry of
Poisson fields in z < 0 and z > 0.

3.1 Augment the data with additional dimension

We wish to generate samples x € R™V from a distribution p(x) supported on a bounded region. We
may set the source p(x) = p(x) € C° * and compute the resulting gradient field E(x) from Eq. (3).
Since —E(x) points towards sources, the backward ODE dx/dt = ~E(x) will take samples close to
the sources. One may naively hope that the backward ODE is a generative model that recovers p(x).
Unfortunately, the backward ODE has the problem of mode collapse. We illustrate this phenomenon
with a 2D uniform disk. The reverse Poisson field —E(x) on the 2D (z, y)-plane points towards the
center of the disk O (Fig. 2(a) left), so all particle trajectories (blue lines) will eventually hit O. If we
instead add an additional dimension z (Fig. 2(a) right), particles can hit different points on the disk
and faithfully recover the data distribution.

Consequently, instead of solving the Poisson equation VZp(x) = —p(x) in the original data space,
we solve the Poisson equation in an augmented space X = (x, z) € R™V*! with an additional variable
z € R. We augment the training data X in the new space by setting z = 0 such that X = (x,0). As a
consequence, the data distribution in the augmented space is p(X) = p(x)d(z), where 4 is the Dirac
delta function. By Eq. (3), the Poisson field by solving the new Poisson equation V(%) = —p(X)
has an analytical form:

~ N+1 N =N 1 )N{—S’ ~p o g
V& e RV E(R) - W’(X)‘sN(1)[||>z—y||N+1p(y)dy @)

The associated forward/backward ODEs of the Poisson field are dx/dt = E(x),dx/dt = —-E(X).
Intuitively, theses ODEs uniquely define trajectories of particles between the z = 0 hyperplane and
an enclosing hemisphere (cf. Fig. 1(a)). In the following theorem, we show that the backward
ODE defines a transformation between the uniform distribution on an infinite hemisphere and the
data distribution p(x) in the z = 0 plane. We present the formal proof to Appendix A, illustrated
by Fig. 2(b). The proof is based on the idea that when the radius of hemisphere r — oo, the data
distribution p(X) can be effectively viewed as a delta distribution at origin. Consequently, the Poisson
field points in the radial direction at r — oo, perpendicular to S () (Green arrows in Fig. 2(b)).

Theorem 1. Suppose particles are sampled from a uniform distribution on the upper (z > 0) half
of the sphere of radius r and evolved by the backward ODE % = —-E(X) until they reach the z = 0
hyperplane, where the Poisson field E(X) is generated by the source p(X). In the r — oo limit, under

some mild conditions detailed in Appendix A, this process generates a particle distribution p(X), i.e.,
a distribution p(x) in the z = 0 hyperplane.

Proof sketch. Suppose the flux of the backward ODE connects a solid angle d2 (on S (7)) with
an area dA (on supp(p(X)). According to Gauss’s law, the outflow flux d®,,+ = d2/Sn (1) on the

* A probability distribution p(x) is a special case of “charge density” p(x) because p(x) need to be non-
negative and integrates to unity. Here we focus on applications to probability distribution of data, which is the
objective to be modeled in generative modeling.



hemisphere (Green arrows in Fig. 2(b)) equals the inflow flux d®;,, = p(x)dA/2 on supp(p(x)) (Red
arrows in Fig. 2(b)). d®;,, = d® s gives dQ/dA = p(x)Sn(1)/2 o< p(x). Together, by change-of-
variable, we conclude that the final distribution in the z = 0 hyperplane is p(x). O

The theorem states that starting from an infinite hemisphere, one can recover the data distribution p
by following the inverse Poisson field —E(X). We defer the formal proof and technical assumptions
of the theorem to Appendix A. The property allows generative modeling by following the Poisson
flow of V2 (%) = -p(x).

3.2 Learning the normalized Poisson Field

Given a set of training data D = {x; }*; i.i.d sampled from the data distribution p(x), we define the
empirical version of the Poisson field (Eq. (4)) as follows:

n

B(%) = (%) )

i=1 Hi - iiHNH

X -X;

where the gradient field is calculated on n augmented datapoints {x; = (x;,0)}},, and ¢(X) =
/%0, W is the multiplier for numerical stability. We further normalize the field to re-

solve the variations in the magnitude of the norm || E(X) |2, and fit the neural network to the

more amenable negative normalized field v(X) = —v/NE(X)/| E(X) ||2. The Poisson field is
rescalable (cf. Section 2) and thus trajectories of its forward/backward ODEs are invariant under

normalization. We denote the empirical field calculated on batch data B by Ejp and the negative
normalized field as v5(%X) = —V/NEg(X)/|| Es(X) ||

Similar to the scored-based models, we sample points inside the hemisphere by perturbing the
augmented training data. Given a training point x € D, we add noise to its augmented version
{x; = (x4,0)}, to construct the perturbed point (y, z):

v=x+|ex || (1+7)"u, z=|e|(1+7)™ 5)

where € = (ex,¢,) ~ N(0,0%Int1xn41), u ~U(Sy_1(1)) and m ~ U[0, M]. The upper limit M,
standard deviation o and 7 are hyper-parameters. With fixed € and u, the added noise increases
exponentially with m. The rationale behind the design is that points farther away from the data
support play a less important role in generative modeling, sharing a similar spirit with the choice of
noisy scales in score-based models [32, 33].

In practice, we sample the points by perturbing a mini-batch data B = {x; }lfll in each iteration. We
uniformly sample the power m in [0, M ] for each datapoint. We select a large M (typically around
300) to ensure the perturbed points can reach a large enough hemisphere. We use a larger batch By,
for the estimation of normalized field since the empirical normalized field is biased, which empirically
gives better results. Denoting the set of perturbed points as {y; }‘fll, we train the neural network fy
on these points to estimate the negative normalized field by minimizing the following loss:

1 |B]

>N fo(3i) =i, (33) I3

£O =15 &

We summarize the training process in Algorithm 1. In practice, we add a small constant y to the
denominator of the normalized field to overcome the numerical issue when 3i, || — X;|| ~ 0.

3.3 Backward ODE anchored by the additional dimension

After estimating the normalized field v, we can sample from the data distribution by the backward
ODE dx = v(x)dt. Nevertheless, the boundary condition of the above ODE is unclear: the starting
and terminal time ¢ of the ODE are both unknown. To remedy the issue, we propose an equivalent
backward ODE in which x evolves with the augmented variable z:

d(x, 2) = (%%dz,dz) - (v(®)ev(R),1)d>



Algorithm 1 Learning the normalized Poisson Field

Input: Training iteration 7, Initial model fy, dataset D, constant ~y, learning rate 7).
fort=1...T do

Sample a large batch By, from D and subsample a batch of datapoints B = {xi}fl from By,
Simulate the ODE: {§; = Y8

Calculate the normalized field by Br: vg, (¥:) = —\/NEBL (y:)/(l EBL (¥:) ll2 +7v), Vi
Calculate the loss: £() = 1| Z‘El I fo(3i) —vi, (3:) II3

18]
Update the model parameter: § = § — nv .L(6)
end for
return fy
Algorithm 2

Sample the power m ~ U[0, M ]

Sample the initial noise (ex, €.) ~ N'(0,0%(n41)x(N+1))
Uniformly sample the vector from the unit ball u ~ U(Sx (1))
Construct training pointy = x+ || ex || (1+7)™u, 2z = |e,|(1 + 7)™
return y = (y, 2)

where v(X)x, v(X), are the corresponding components of x, z in vector v(X). In the new ODE, we
replace the time variable ¢ with the physically meaningful variable z, permitting explicit starting
and terminal conditions: when z = 0, we arrive at the data distribution and we can freely choose
a large zm,x as the starting point in the backward ODE. The backward ODE is compatible with
general-purpose ODE solvers, e.g., RK45 method [23] and forward Euler method. The popular
black-box ODE solvers, such as the one in Scipy library [37], typically use a common starting time
for the same batch of samples. Since the distribution on the 2 = 2« hyperplane is no longer uniform,
we derive the prior distribution by radially projecting uniform distribution on the hemisphere with
radius 7 = zyax to the 2 = zpax hyperplane:

(x) 2z N+l 2 Zmax

DPprior\ X) = N+l N+l
SN(ZmaX)(” X ”% +Z1?nax 2 SN(l)(” X ”% +Zr2nax) 2

where Sy (7) is the surface area of N-sphere with radius r. The reason behind the radial projection

is that the Poisson field points in the radial direction at r — co. The new backward ODE also defines

a bijective transformation between ppror(x) on the infinite hyperplane (zma — o0) and the data

distribution (%), analogous to Theorem 1. In order to sample from ppior(x), it is suffice to sample

the norm (radius) from the distribution: pragius (|| X [l2) o< [| x |1371/(] x |2 +22,,) "2 and then
uniformly sample its angle. We provide detailed derivations and practical sampling procedure in
Appendix A.4. We further achieve exponential decay on the z dimension by introducing a new
variable t':

[Backward ODE]  d(x,2) = (V(X)xV(X);'2, 2)dt’ (6)

The z component in the backward ODE, i.e., dz = zdt’, can be solved by z = e!’. Since z reaches
zero as t' — —oo, we instead choose a tiny positive number zy;, as the terminal condition. The
corresponding starting/terminal time of the variable ¢’ are 10g zpmax / 10g zmin respectively. Empirically,
this simple change of variable leads to 2x faster sampling with almost no harm to the sample quality. In
addition, we substitue the predicted v(X), with a more accurate one when z is small (Appendix B.2.3).
We defer more details of the simulation of backward ODE to Appendix B.2.

4 Generative Modeling via the Backward ODE

In this section, we demonstrate the effectiveness of the backward ODE associated with PFGM
on image generation tasks. In Section 4.1, we show that PFGM achieves currently best in class
performance in the normalizing flow family. In comparison to the existing state-of-the-art SDE
or MCMC approaches, PEFGM exhibits 10x or 20x acceleration while maintaining competitive or



Table 1: CIFAR-10 sample quality (FID, Inception) and number of function evaluation (NFE).

Invertible? Inceptiont FID| NFE]

PixelCNN [36] X 4.60 65.9 1024
IGEBM [8] X 6.02 40.6 60
ViTGAN [24] X 9.30 6.66 1
StyleGAN2-ADA [17] X 9.83 2.92 1
StyleGAN2-ADA (cond.) [17] X 10.14 2.42 1
NCSN [31] X 8.87 25.32 1001
NCSNv2 [32] X 8.40 10.87 1161
DDPM [16] X 9.46 3.17 1000
NCSN++ VE-SDE [33] X 9.83 2.38 2000
NCSN++ deep VE-SDE [33] X 9.89 2.20 2000
Glow [19] 3.92 48.9 1
DDIM, T=50 [30] - 4.67 50
DDIM, T=100 [30] - 4.16 100
NCSN++ VE-ODE [33] 9.34 5.29 194
NCSN++ deep VE-ODE [33] 9.17 7.66 194
DDPM++ backbone

VP-SDE [33] X 9.58 2.55 1000
sub-VP-SDE [33] X 9.56 2.61 1000
VP-ODE [33] 9.46 2.97 134
sub-VP-ODE [33] 9.30 3.16 146
PFGM (ours) 9.65 2.48 104
DDPM++ deep backbone

VP-SDE [33] X 9.68 2.41 1000
sub-VP-SDE [33] X 9.57 2.41 1000
VP-ODE [33] 9.47 2.86 134
sub-VP-ODE [33] 9.40 3.05 146
PFGM (ours) 9.68 2.35 110

higher generation quality. Meanwhile, unlike existing ODE baselines that heavily rely on corrector to
generate decent samples on weaker architectures, PFGM exhibits greater stability against error (Sec-
tion 4.2). Finally, we show that PFGM is robust to the step size in the Euler method (Section 4.3),
and its associated ODE allows for likelihood evaluation and image manipulation by editing the latent
space (Section 4.4).

4.1 Efficient image generation by PFGM

Setup For image generation tasks, we consider the CIFAR-10 [22], CelebA 64 x 64 [38] and
LSUN bedroom 256 x 256 [39]. Following [32], we first center-crop the CelebA images and then
resize them to 64 x 64. We choose M = 291 (CIFAR-10 and CelebA)/356 (LSUN bedroom),
o = 0.01 and 7 = 0.03 for the perturbation Algorithm 2, and zy;, = le — 3, zZmax =
40 (CIFAR-10)/60 (CelebA 64%)/100 (LSUN bedroom) for the backward ODE. We further clip
the norms of initial samples into (0, 3000) for CIFAR-10, (0,6000) for CelebA 64% and (0, 30000)
for LSUN bedroom. We adopt the DDPM++ and DDPM++ deep architectures [33] as our backbones.
We add the scalar z (resp. predicted direction on z) as input (resp. output) to accommodate the
additional dimension. We take the same set of hyper-parameters, such as batch size, learning rate and
training iterations from [33]. We provide more training details in Appendix B.1, and discuss how to
set these hyper-parameters for general datasets in B.1.1 and B.2.1.

Baselines We compare PFGM to modern autoregressive model [36], GAN [17, 24], normalizing
flow [19] and EBM [8]. We also compare with variants of score-based models such as DDIM [30]
and current state-of-the-art SDE/ODE methods [33]. We denote the methods that use forward-time
SDE:s in [33] such as Variance Exploding (VE) SDE/Variance Preserving (VP) SDE/ sub-Variance
Preserving (sub-VP), and the corresponding backward SDE/ODE, as A-B, where A € {VE, VP,
sub-VP} and B € {SDE, ODE}. We follow the model selection protocol in [33], which selects the
checkpoint with the smallest FID score over the course of training every 50k iterations.



Figure 3: Uncurated samples on datasets of increasing resolution. From left to right: CIFAR-10
32 x 32, CelebA 64 x 64 and LSUN bedroom 256 x 256.

Numerical Solvers The backward ODE (Eq. (6)) is compatible with any general purpose ODE
solver. In our experiments, the default solver of ODEs is the black box solver in the Scipy library [37]
with the RK45 [7] method (RK45), unless otherwise specified. For VE/VP/subVP-SDEs, we
use the predictor-corrector (PC) sampler introduced in [33]. For VP/sub-VP-SDEs, we apply the
predictor-only sampler, because its performance is on par with the PC sampler while requiring half
computation.

Results For quantitative evaluation on CIFAR-10, we report the Inception [29] (higher is better)
and FID [13] scores (lower is better) in Table 1. We also include our preliminary experimental results
on a weaker architecture NCSNv2 [32] in Appendix D.2. We measure the inference speed by the
average NFE (number of function evaluation). We also explicitly indicate which methods belong to
the invertible flow family.

Our main findings are: (1) PFGM achieves the best Inception scores and FID scores among the
normalizing flow models. Specifically, PEFGM obtains an Inception score of 9.68 and a FID score of
2.48 using the DDPM++ deep architecture. To our best knowledge, these are the highest FID and
Inception scores by flow models on CIFAR-10. (2) PFGM achieves a 10x ~ 20x faster inference
speed than the SDE methods using the similar architectures, while retaining comparable sample
quality. As shown in Table 1, PFGM requires NFEs of 110 whereas the SDE methods typically use
1000 ~ 2000 inference steps. PFGM outperforms all the baselines on DDPM++ in all metrics. In
addition, PFGM generally samples faster than other ODE baselines with the same RK45 solver. (3)
The backward ODE in PFGM is compatible with architectures with varying capacities. PFGM
consistently outperforms other ODE baselines on DDPM++ (Table 1) or NCSNv2 (Appendix D.2)
backbones. (4) PEFGM shows scalability to higher resolution datasets. In Appendix D.1, we show
that PFGM are capable of scale-up to LSUN bedroom 256 x 256. In particular, PFGM has comparable
performance with VE-SDE with 15x fewer NFE.

In Fig. 3, we visualize the uncurated samples from PFGM on CIFAR-10, CelebA 64 x 64 and LSUN
bedroom 256 x 256. We provides more samples in Appendix E.

4.2 Failure of VE/VP-ODEs on NCSNv2 architecture

In our preliminary experiments on NCSNv2 PFGM Score-based VE-ODE
architectures, we empirically observe that the
VE/VP-ODE:s have FID scores greater than 90
on CIFAR-10. In particular, VE/VP-ODEs
can only generate decent samples when apply-
ing the Langevin dynamics corrector, and even
then, their performances are still inferior to
PFGM (Table 9, Table 10). The poor perfor-
mance on NCSNv2 stands in striking contrast to

their high sample quality on NCSN++/DDPM-++ Eigure 4.: Sample norm distributions with varying
in [33]. It indicates that the VE/VP-ODEs are {ime variables (o for VE-ODE and 2 for PFGM)
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Figure 5: (a) Norm-o (t) relation during the backward sampling of VE-ODE (Euler). (b) Norm-z(t")
relation during the backward sampling of PFGM (Euler). The shaded areas mean the standard
deviation of norms. (c) Number of steps versus FID score.

more susceptible to estimation errors than PFGM. We hypothesize that the strong norm-o correla-
tion seen during the training of score-based models causes the problem.

For score-based models, the l; norms of perturbed training samples and the standard deviations o (t)

of Gaussian noises have strong correlation, e.g., I norm ~ o(t)\/N for large o'(¢) in VE [33]. In
contrast, as shown in Fig. 4, PEGM allocates high mass across a wide spectrum of the training sample
norms. During sampling, VE/VP-ODEs could break down when the trajectories of backward ODEs
deviate from the norm-o (¢) relation to which most training samples pertain. The weaker NCSNv2
backbone incurs larger errors and thus leads to their failure. The PFGM is more resistant to estimate
errors because of the greater range of training sample norms.

To further verify the hypothesis above, we split a batch of VE-ODE samples into cleaner and noisier
samples according to visual quality (Fig. 8(a)). In Fig. 5(a), we investigate the relation for cleaner and
noisier samples during the forward Euler simulation of VE-ODE when o (t) < 15. We can see that
the trajectory of cleaner samples stays close to the norm-o (¢) relation (the red dash line), whereas
that of the noisier samples diverges from the relation. The Langevin dynamics corrector changes
the trajectory of noisier samples to align with the relation. Fig. 5(b) further shows that the anchored
variable z(¢") and the norms in the backward ODE of PFGM are not strongly correlated, giving rise
to the robustness against the imprecise estimation on NCSNv2. We defer more details to Appendix C.

4.3 Effects of step size in the forward Euler method

In order to accelerate the inference speed of ODEs, we can increase the step size (decrease the NFEs)
in numerical solvers such as the forward Euler method. It also enables the trade-off between sample
quality and computational efficiency in real-world deployment. We study the effects of increasing
step size on PFGM, VP-ODE and DDIM [30] using the forward Euler method, with a varying NFE
ranging from 10 to 100.

In Fig. 5(c), we report the sample quality measured by FID scores on CIFAR-10. As expected, all the
methods have higher FID scores when decreasing the NFE. We observe that the sample quality of
PFGM degrades gracefully as we decrease the NFE. Our method shows significantly better robustness
to step sizes than the VP-ODE, especially when only taking a few Euler steps. In addition, PFGM
obtains better FID scores than DDIM on most NFEs except for 10 where PFGM is marginally worse.
This suggests that the PFGM is a promising method for accommodating instantaneous resource
availability, as high-quality samples can be generated in limited steps.

4.4 Utilities of ODE: likelihood evaluation and latent representation

Similar to the family of discrete normalizing flows [6, 19, 14] and continuous probability flow [33],
the forward ODE in PFGM defines an invertible mapping between the data space and latent space
with a known prior. Formally, we define the invertible forward M mapping by integrating the
corresponding forward ODE d(x, 2) = (v(X)xVv(X);'2, z)dt’ of Eq. (6):

log Zmax

x(10g zmax ) = M(x(10g 2min) ) = x(10g 2min ) + [1 v(x(t'))xv(i(t'))glet/dt'

O8 Zmin



where log znmin/log zmax are the starting/terminal time in the forward ODE. The forward mapping
transfers the data distribution to the prior distribution pprior 0n the z = zmax hyperplane (cf. Section 3.3):
Pprior (X(10g Zmax ) ) = M(p(x(10g zmin)) ). The invertibility enables likelihood evaluation and creates
a meaningful latent space on the z = z,x hyperplane. In addition, we can adapt to the computational
constraints by adjusting the step size or the precision in numerical ODE solvers.

Likelihood evaluation We evaluate the data likelihood Table 2: Bits/dim on CIFAR-10
by the instantaneous change-of-variable formula [4, 33].

In Table 2, we report the bits/dim on the uniformly de- bits/dim §
quantized CIFAR-10 test set and compare with exist- RealNVP [0] 3.49
ing baselines that use the same setup. We observe that gl"f” e 335

. . . . . esidual Flow [3] 3.28
PFGM achieves better likelihoods than discrete normaliz- Flow-++ [14] 3.29
ing flow models, even without maximum likelihood train- DDPM (L) [16] <3.70"
ing. Among the continuous flow models, sub-VP-ODE DDPM++ backbone
shows the lowest bits/dim, although its sample quality is VP-ODE [33] 320
worse than VP-ODE and PFGM (Table 1). The explo- sub-VP-ODE [33] 3.02
ration of the seeming trade-off between likelihood and PFGM (ours) 319

sample quality is left for future works.

Latent representation Since the samples are uniquely identifiable by their latents via the invertible
mapping M, PFGM further supports image manipulation using its latent representation on the z =
Zmax hyperplane. We include the results of image interpolation and the temperature scaling [0, 19, 33]
to Appendix D.4 and Appendix D.5. For interpolation, it shows that we can travel along the latent
space to obtain perceptually consistent interpolations between CelebA images.

5 Conclusion

We present a new deep generative model by solving the Poisson equation whose source term is
the data distribution. We estimate the normalized gradient field of the solution in an augmented
space with an additional dimension. For sampling, we devise a backward ODE that exponential
decays on the physically meaningful additional dimension. Empirically, our approach has currently
best performance over other normalizing flow baselines, and achieving 10x to 20x acceleration
over the stochastic methods. Our backward ODE shows greater stability against errors than popular
ODE-based methods, and enables efficient adaptive sampling. We further demonstrate the utilities
of the forward ODE on likelihood evaluation and image interpolation. Future directions include
improving the normalization of Poisson fields. More principled approaches can be used to get around
the divergent near-field behavior. For example, we may exploit renormalization, a useful tool in
physics, to make the Poisson field well-behaved in near fields.
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