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ABSTRACT

Out-of-distribution (OOD) detection is crucial for ensuring reliable deployment of
machine learning models in real-world scenarios. Recent advancements leverage
auxiliary outliers to represent the unknown OOD data to regularize model during
training, showing promising performance. However, detectors face challenges in
effectively identifying OOD data that deviate significantly from the distribution of
the auxiliary outliers, limiting their generalization capacity. In this work, we thor-
oughly examine this problem from the generalization perspective and demonstrate
that a more diverse set of auxiliary outliers improves OOD detection. Constrained
by limited access to auxiliary outliers and the high cost of data collection, we
propose Provable Mixup Outlier (ProMix), a simple yet practical approach that
utilizes mixup to enhance auxiliary outlier diversity. By training with these di-
verse outliers, our method achieves superior OOD detection. We also provide in-
sightful theoretical analysis to verify that our method achieves better performance
than prior works. Furthermore, we evaluate ProMix on standard benchmarks and
demonstrate significant relative improvements of 14.2% and 31.5% (FPR95) on
CIFAR-10 and CIFAR-100, respectively, compared to state-of-the-art methods.
Our findings emphasize the importance of incorporating diverse auxiliary outliers
during training and highlight ProMix as a promising solution to enhance model
security in real-world applications. Compared with other methods, the proposed
method achieves excellent performance on different metrics in almost all datasets.

1 INTRODUCTION

The OOD problem occurs when machine learning models encounter data that differs from the dis-
tribution of training data. In such scenarios, models may make incorrect predictions, leading to
safety-critical issues in real-world applications, e.g., autonomous driving (Geiger et al., 2012) and
medical diagnosis (Liang et al., 2022). To ensure the reliability of models’ predictions, it is essential
not only to achieve good performance on in-distribution (ID) samples, but also to detect potential
OOD samples, thus avoiding making erroneous decisions in test. Therefore, OOD detection has
become a critical challenge for the secure deployment of machine learning models (Amodei et al.,
2016; Dietterich, 2017; Li et al., 2023; Liu et al., 2023).

Several significant studies (Hendrycks & Gimpel, 2017; Lee et al., 2018b; Liang et al., 2018b) focus
on detecting OOD examples using only ID data in training. However, due to a lack of supervision
information from unknown OOD data, it is difficult for these methods for satisfactory performance
in detecting OOD samples. Recent methods (Hendrycks & andThomas G. Dietterich, 2019; Wang
et al., 2021a; Chen et al., 2021; Ming et al., 2022) introduce auxiliary outlier data during the training
process to regularize models. While these methods have exhibited significant improvement com-
pared to previous methods without auxiliary outliers, there remains a notable risk that models may
encounter OOD instances that deviate significantly from the auxiliary outliers distribution. As de-
picted in Figure 1(a)-(b), although the auxiliary outliers enhance the model in detecting OOD, its
generalization ability is quite unpromising. The above limitation motivates the following important
yet under-explored question: how to guarantee an effective utilization of auxiliary outliers?

In this work, we theoretically investigate this crucial question from the perspective of generaliza-
tion ability (Bartlett & Mendelson, 2002). Specifically, we first conduct a theoretical analysis to
demonstrate how the distribution shift between auxiliary outlier training set and test OOD data af-
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Figure 1: OOD score measurement for different training strategies. The ID data Xin ⊂ R2 is
sampled from three distinct Gaussian distributions, each representing a different class. The auxiliary
outliers are sampled from a Gaussian mixture model away from the ID data, where the number of
mixture components indicates the number of classes contained in the auxiliary outliers dataset. (a)
The model trained without auxiliary outliers fails to detect OOD. (b) Incorporating auxiliary outliers
(10 classes) during training enables partial OOD detection, but overfits auxiliary outliers. (c) OOD
detection improves with a more diverse set of auxiliary outliers (1000 classes). (d) Mixup boosts the
diversity of auxiliary outliers (10 classes), thereby improving the model’s performance.

fects the generalization capability of OOD detector. Then, a generalization bound is provided on the
classifier’s test-time OOD detection error, considering both its empirical error and the error caused
by the distribution shift between test OOD data and auxiliary outliers. Based on the generalization
bound, we deduce an intuitive conclusion that a more diverse set of auxiliary outliers can reduce
the distribution shift error and effectively lower the upper bound of the OOD detection error. As
shown in Figure 1(b)-(c), the model trained with a more diverse set of auxiliary outliers achieves
better OOD detection. However, in practice, collecting more auxiliary outliers is expensive and the
auxiliary outliers we can use are limited. Therefore, a natural question arises - how to guarantee
effective utilization of a fixed set of auxiliary outliers?

An intuitive idea is to enhance the diversity of auxiliary outliers through data augmentation tech-
niques. Accordingly, we propose a simple yet effective method called Provable Mixup Outliers,
which introduces the mixup strategy to enhance the diversity of outliers. Mixup employs semantic-
level interpolation to generate distinct mixed samples, generating outliers that significantly differ
from the originals. This effectively boosts the diversity of auxiliary outliers, as shown in Fig-
ure 1(b)-(d), leading to improved OOD detection performance. The contributions of this paper
are summarized as follows:

• We provide a theoretical analysis of the generalization error linked to methods trained with
auxiliary outliers. By establishing an upper bound for expected error, we reveal the con-
nection between auxiliary outlier diversity and the upper bound of OOD detection error.
Our theoretical insights emphasize the importance of leveraging diverse auxiliary outliers
to enhance the generalization capacity of the OOD detector.

• Constrained by limited access to auxiliary outliers and the high cost of data collection,
we introduce ProMix, a simple yet effective data augmentation method that increases the
diversity of auxiliary outliers and is theoretically guaranteed to improve OOD detection
performance.

• We observe that ProMix achieves state-of-the-art OOD detection performance, outper-
forming all compared methods training with auxiliary outliers. Our evaluation on six
OOD datasets in standard benchmarks demonstrates significant improvement of 14.2% and
31.5% (FPR95) on CIFAR-10 and CIFAR-100 datasets, respectively.

2 RELATED WORKS

In this section, we review the relevant prior research to our work and subsequently conduct a com-
parative analysis of our approach.

2



Under review as a conference paper at ICLR 2024

OOD Detection without Auxiliary Outliers. Early work by Hendrycks & Gimpel (2017) pioneered
the field of OOD detection, introducing a baseline method based on maximum softmax probability.
However, it has since been established, as noted by Morteza & Li (2022), that this approach is un-
suitable for OOD detection. To address this, various methods have been developed that operate in
the logit space to enhance OOD detection. These include ODIN (Liang et al., 2018b), energy score
(Wang et al., 2021a; Lin et al., 2021; Wang et al., 2021b), ReAct (Sun et al., 2021), logit normaliza-
tion (Wei et al., 2022), Mahalanobis distance (Lee et al., 2018b), and KNN-based scoring (Sun et al.,
2022). However, post-hoc OOD detection methods that don’t involve pre-training on a substantial
dataset generally exhibit poorer performance compared to methods that leverage auxiliary datasets
for model regularization (Fort et al., 2021).

OOD Detection with Auxiliary Outliers. Recent advancements in OOD detection have focused
on incorporating auxiliary outliers into the model regularization process. Such as outlier exposure
(Hendrycks & andThomas G. Dietterich, 2019) encourages giving predictions with uniform distribu-
tion for outliers and Energy-bounded learning (Wang et al., 2021a) widens the energy gap between
ID and OOD samples. Prior studies (Wang et al., 2021a; Sehwag et al., 2021; Salehi et al., 2022;
Wei et al., 2022) demonstrate improved OOD detection when including outliers during training. Lee
et al. (2018a); Grcić et al. (2020); Kong & Ramanan (2021) use properly trained generative models
to generate outliers. However, performance heavily depends on outlier quality. ATOM (Chen et al.,
2021) uses greedy sampling strategies to select informative outliers to tighten the decision boundary,
while POEM (Ming et al., 2022) employs Thompson sampling. Nevertheless, these methods assume
access to diverse outliers, which may not always be feasible in practical scenarios.

Comparison with Existing Methods. Our approach, ProMix, focuses on enhancing the quality
of auxiliary outliers used during training while providing theoretical guarantees. Notably, the most
relevant prior algorithms to ProMix are ATOM (Chen et al., 2021) and POEM (Ming et al., 2022),
which both recognized that original auxiliary outliers may lack informativeness and proposed meth-
ods to mine informative outliers for improving performance. In contrast, our work emphasizes the
theoretical significance of auxiliary outlier diversity and enhances outlier diversity through mixup.
Importantly, our approach is complementary to ATOM (Chen et al., 2021) and POEM (Ming et al.,
2022), as the joint consideration of informative and diverse outliers yields synergistic benefits, re-
sulting in enhanced model regularization.

3 THEORY: DIVERSE AUXILIARY OUTLIERS BOOST OOD DETECTION

In this section, we lay the foundation for our analysis of OOD detection. We begin by introducing
key notations for OOD detection in Sec. 3.1. Following this, in Sec. 3.2, we establish a generalization
bound that highlights the critical role played by auxiliary outliers in influencing the generalization
capacity of OOD detection methods. Finally, in Sec. 3.3, we demonstrate how a more diverse set of
auxiliary outliers serves to effectively mitigate distribution shift errors, consequently reducing the
upper bound of error. For detailed proofs, please refer to Appendix A, while a concise summary of
our findings is provided below.

3.1 PRELIMINARIES

We consider multi-class classification and each sample in the training set Did = {(xi, yi)}Ni=1 is
drawn i.i.d. from the joint distribution PXid×Yid

, where Xid denotes the input space of ID data,
and Yid = {1, 2, . . . ,K} represents the label space. OOD detection can be formulated as a binary
classification problem to learn a hypothesis h from hypothesis space H ⊂ {h : X → {0, 1}} such
that h outputs 0 for any x ∈ Xid and 1 for any x ∈ Xood, where Xood represents the input space of
OOD data with semantics outside the support of Yid and X = Xid∪Xood represents the entire input
space in the open-world setting. To address the challenge posed by the unknown and arbitrariness of
OOD distribution PXood

, we leverage an auxiliary dataset Daux drawn from the distribution PXaux

to serve as partial OOD data, where Xaux ⊂ Xood. Due to the diversity of real-world OOD data,
auxiliary outliers cannot fully represent all OOD data, so PXaux

̸= PXood
. We aim to train a model

on data sampled from PX̃ = ktrainPXid
+ (1− ktrain)PXaux

to obtain a reliable hypothesis h that
can effectively generalize to the unknown test-time distribution PX = ktestPXid

+(1−ktest)PXood
,

where ktrain and ktest determine the proportion of ID data and OOD data used for training and
testing, respectively. Note that ktest is unknown due to unpredictable test data distribution.
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3.2 GENERALIZATION ERROR BOUND IN OOD DETECTION

Basic Setting: We define an OOD label function1 as f : X → [0, 1]. The probability that a
hypothesis h disagrees with f with respect to a distribution P is defined as:

ϵP(h, f) = Ex∼P [|h(x)− f(x)|]. (1)

Additionally, we define the set of ideal hypotheses on the training data distribution PX̃ and test-time
data distribution PX as:

H∗
aux : h = argmin

h∈H
ϵPX̃

(h, f),H∗
ood : h = argmin

h∈H
ϵPX (h, f). (2)

It is worth noting that H∗
ood ⊆ H∗

aux (given over-parameterized models)2, reflecting the reality that
hypotheses perform well on real-world OOD data also perform well on auxiliary outliers, given that
auxiliary outliers are a subset of real-world OOD data. The generalization error of an OOD detector
h is defined as:

GError(h) = ϵx∼PX (h, f). (3)

Now, we present our first main result regarding OOD detection (training with auxiliary outliers).

Theorem 1 (Generalization Bound of OOD Detector). We let Dtrain = Did ∪ Daux, consisting
of N samples. For any hypothesis h ∈ H and 0 < δ < 1, with a probability of at least 1 − δ, the
following inequality holds:

GError(h) ≤ ϵ̂x∼PX̃
(h, f)︸ ︷︷ ︸

empirical error

+ ϵ(h, h∗
aux)︸ ︷︷ ︸

reducible error

+ sup
h∈H∗

aux

ϵx∼PX (h, h
∗
ood)︸ ︷︷ ︸

outlier coverage error

+Rm(H)︸ ︷︷ ︸
complexity

+

√
ln( 1δ )

2N
+ β, (4)

where ϵ̂x∼PX̃
(h, f) is the empirical error. We define ϵ(h, h∗

aux) =
∫
|ϕX (x) − ϕX̃ (x)||h(x) −

h∗
aux(x)|dx as the reducible error, where ϕX and ϕX̃ is the density function of PX and PX̃ re-

spectively. sup
h∈H∗

aux

ϵx∼PX (h, h
∗
ood) is the outlier coverage error, Rm(h) represents the Rademacher

complexity, and β is the error related to ideal hypotheses. Notably, when β is large, there exists no
detector that performs well on PX , making it unfeasible to find a good hypothesis through training
with auxiliary outliers.

Minimizing empirical risk optimizes the model h to h ∈ H∗
aux, leading to a reduction in the re-

ducible error, which tends to zero. However, the inherent distribution shift error between auxiliary
outliers and real-world OOD data remains constant. This limitation fundamentally restricts the gen-
eralization of OOD detection methods trained with auxiliary outliers. To address this limitation, we
investigate the effect of outlier diversity.

3.3 ENHANCING OOD DETECTION WITH DIVERSE AUXILIARY OUTLIERS

In this paper, the diversity refers to semantic diversity, where a formal definition is given as follows.

Definition 1 (Diversity of Outliers). We assume Xaux can be divided into distinct semantic sub-
spaces: Xaux = X y1 ∪ X y2 ∪ . . . ∪ X ym , where each subspace X yi contains data points with
label yi. Given datasets Ddiv sampled from the distribution PXdiv

, where Xdiv ⊂ Xood encom-
passes Xaux and a new subspace Xnew = X ym+1 . . . ∪ X yn with different semantic of Xaux, i.e.,
Xdiv = Xaux ∪ Xnew, we define that Ddiv is more diverse than Daux.

Suppose we could use this diverse auxiliary outliers dataset for training, the ideal hypotheses
achieved by training with Ddiv are denoted as

H∗
div : h = argmin

h∈H
ϵx∼PX̃div

(h, f), (5)

1OOD label function provides ground truth labels (OOD or ID) for the inputs.
2The over-parameterized setting enables the models to achieve a near-perfect fitting to a wide range of

functions during training (the training loss is sufficiently small) (Zhang et al., 2021; Belkin et al., 2019).
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with PX̃div
= ktrainPXid

+ (1 − ktrain)PXdiv
. Because Xaux ⊂ Xdiv holds, the hypotheses

performing well on PXdiv
also perform well on PXaux

, giving rise to H∗
div ⊂ H∗

aux. Consequently,
we have

sup
h∈H∗

div

ϵx∼PX (h, h
∗
ood) ≤ sup

h∈H∗
aux

ϵx∼PX (h, h
∗
ood), (6)

which indicates that training with a more diverse set of auxiliary outliers can reduce the outlier
coverage error. Furthermore, effective training leads to sufficient small empirical error and reducible
error, and the intrinsic complexity of the model remains constant. Consequently, a more diverse set
of auxiliary outliers results in a lower generalization error bound. This theorem is formally presented
as follows:

Theorem 2 (Diverse Outliers Enhance Generalization). LetO(GError(h)) andO(GError(hdiv))
represent the upper bounds of the generalization error of detector training with vanilla auxiliary
outliers Daux and diverse auxiliary outliers Ddiv , respectively. For any hypothesis h and hdiv inH,
and 0 < δ < 1, with a probability of at least 1− δ, the following inequality holds

O(GError(hdiv)) ≤ O(GError(h)). (7)

Remark. Theorem 2 highlights that the diversity of the outlier set is a critical factor in reducing
the upper bound of generalization error. However, despite the fundamental improvement in model
generalization achieved by increasing the diversity of auxiliary outliers, collecting more auxiliary
outliers is expensive, and the auxiliary outliers we can use are limited in practical scenarios, which
hinders the application of outlier exposure methods for OOD detection. This raises an intuitive
question: Can we enhance the diversity of a fixed set of auxiliary outliers to make better use of
them?

4 METHOD: PROVABLE MIXUP OUTLIER

In this section, we show how mixup addresses the challenge of effective training when outlier di-
versity is limited. We begin with a theoretical analysis demonstrating the effectiveness of mixup in
enhancing outlier diversity to improve OOD detection performance, providing a reliable guarantee
for our method. Then, we introduce a simple yet effective framework implementing our mixup-
based method to enhance OOD detection performance.

4.1 MIXUP FOR ENHANCING DIVERSITY OF AUXILIARY OUTLIERS

Mixup (Zhang et al., 2018) is a widely used machine learning technique to augment training data
by creating synthetic samples. It involves generating virtual training examples (referred to as mixed
samples) through linear interpolations between data points and their corresponding labels, given by:

x̂ = λxi + (1− λ)xj , ŷ = λyi + (1− λ)yj , (8)

where (xi, yi) and (xj , yj) are two samples drawn randomly from the empirical training distribution,
and λ ∈ [0, 1] is usually sampled from a Beta distribution denoted as Beta(α, α). This technique
assumes a linear relationship between semantics (labels) and features (in data), allowing us to cre-
ate new samples that deviate from the semantics of the original ones by combining features from
samples with distinct semantics. This assumption is formulated as follows:

Assumption 1 (Semantic Change under Mixup). Let xi and xj be any two data points from the
input spaces X yi and X yj , respectively, where yi and yj are their corresponding semantic labels
and yi ̸= yj . If ζ < λ < 1 − ζ, then there exists a positive value ζ such that the mixed data point
x̂ = λxi + (1− λ)xj does not belong to either set X yi or X yj .

This assumption suggests that we can enhance outlier diversity by generating new outliers with
distinct semantics using mixup. Specifically, applying mixup to outliers in Xaux results in some
mixed outliers having different semantics, suggesting that they belong to a novel subspace outside
ofXaux. Consequently, mixed outliers can be considered as samples from a broader subspace within
the input space. As per Definition 1, mixed outliers exhibit greater diversity than the original outliers.
This lemma is formally presented as follows:
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Lemma 1 (Diversity Enhancement with Mixup). For a group of mixup transforms3 G acting on
the input space Xaux to generate an augmented input space GXaux, defined as GXaux = {x̂|x̂ =
λx1 + (1− λ)x2;x1, x2 ∈ Xaux, λ ∈ [0, 1]}, the following relation holds:

Xaux ⊂ GXaux. (9)

Lemma 1 establishes that mixed outliers Dmix exhibits greater diversity compared to Daux, where
Dmix is drawn from distribution PGXaux

. Consequently, according to Theorem 2, mixup outliers
contribute to a reduction in generalization error. We can formalize this relationship as follows, and
the detailed proofs can be found in Appendix A.

Theorem 3 (Mixed Outlier Enhances Generalization). Let O(GError(h)) and O(GError(hmix))
represent the upper bounds of the generalization error of detector training with vanilla auxiliary
outliers Daux and mixed auxiliary outliers Dmix, respectively. For any hypothesis h and hmix in
H, and 0 < δ < 1, with a probability of at least 1− δ, we have

O(GError(hmix)) ≤ O(GError(h)). (10)

Theorem 3 demonstrates that mixup enhances auxiliary outlier diversity, reducing the upper bound of
generalization error in OOD detection, which provides a reliable guarantee of mixup’s effectiveness
in improving OOD detection. Next, we will provide an implementation of our method to show its
practical effectiveness.

4.2 IMPLEMENTATION

We follow the basic settings of Chen et al. (2021). Considering a (K + 1)-way classifier network
Fθ, where the (K + 1)-th class label indicates OOD class, and Fθ(x) denotes the softmax output of
Fθ for input x. We denote the OOD score as c(x) = Fθ(x)K+1. At test time, we construct the OOD
detector G(x) using:

G(x) =

{
OOD, if c(x) ≥ γ

ID, if c(x) < γ
(11)

where γ is the threshold. Given an input detected as ID by G(x), its ID label can be obtained using
F̂ (x):

F̂ (x) = argmax
y∈{1,2,...,K}

F (x)y. (12)

The training objective is given by:

argmin
θ

E(x,y)∼Did
[l(Fθ(x), y)] + ω · Ex′∼Dmix

[l(Fθ(x
′),K + 1)], (13)

where l is the cross entropy loss and ω is a hyperparameter which controls the strength of regular-
ization. Constructing the mixed outliers dataset Dmix is computationally expensive due to the need
to cover all possible data point combinations and λ values for mixup. To address this, we use an
online approach. In each training epoch, we randomly sample N data points from the large pool
of auxiliary dataset to create S. Mixup is then applied to part of S to generate Smix, which can be
regarded as drawn from PGXaux when considering the overall training process.

Considering that not all mixed outliers are equally valuable for model training, as some are eas-
ily detectable, it is important to identify and prioritize those outliers that provide more valuable
information. We focus on mining informative mixed outliers located at the classification boundary
between ID and OOD data for training. We evaluate the set Smix using the existing model and select
outliers with the lowest OOD score which are the most informative. These selected mixed outliers
constitute the mixed outliers dataset Dmix that is used for the training objective (13). The whole
pseudocode of the proposed method is shown in Alg. 1.

Remark. Mixup has a unique advantage in diversifying auxiliary outliers as it can generate outliers
with distinct semantics from the originals without much computational overhead, while conventional
data augmentation methods often produce outliers closely aligned with the original data, as they
simply perturb existing points without introducing semantic variation.

3The set of all possible combinations of data points and all possible values of λ for mixup.
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Algorithm 1 Provable Mixup Outlier
Input: ID dataset Did, outliers dataset Daux, pool size N , informative fraction µ, hyperparameter
of mixup ratio σ, hyperparameter of Beta distribution α;
Output: ID classifier F̂ , OOD detector G;
for each iteration do

// Randomly sample N outliers from Daux to create subset S.
S ← {si | si ∈ Daux, i = 1, 2, ..., N};
// Copy S and random shuffle to create S ′.
S ′ ← shuffle(S);
// Apply mixup on S and S ′ to obtain mixed candidate set Smix.
Sample p ∼ Uniform(0, 1);
Smix ← {x̂i | x̂i = λxi + (1− λ)x′

i; x ∈ S, x′ ∈ S ′; i = 1, 2, ..., N ;
if p≤ σ, then λ ∼ Beta(α, α), else λ = 1} ;
// Compute OOD scores on Smix using the current model.
C ← {c | c = Fθ(x)k+1, x ∈ Smix};
// Sort Smix in order of OOD scores C from least to greatest.
Smix ← Smix[argsort(C)];
// Select the first µN samples from S as the mixed auxiliary outliers Dmix.
Dmix ← Smix[: µN ];
Train Fθ for one epoch using the training objective of Eq. 13;

Build F̂ and G according to Eq. 12 and Eq. 11;

5 EXPERIMENTS

In this section, we outline our experimental setup and conduct experiments on common OOD detec-
tion benchmarks to answer the following questions: Q1. Effectiveness: Does our method outperform
its counterparts? Q2. Reliability: Is our theory truly dependable? Q3. Ablation study (I): What is
the key factor contributing to performance improvement in our method? Q4. Ablation study (II):
Does ProMix truly offer a distinct advantage over other data augmentation methods?

5.1 EXPERIMENTAL SETUP

We briefly present the experimental setup here, including the experimental datasets, training details
and evaluation metrics. Further experimental setup details can be found in Appendix B. It is worth
noting that we are committed to open-sourcing the code related to our research after publication.

Datasets. We use common benchmarks from previous work (Chen et al., 2021; Ming et al., 2022),
including CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009). A downsampled version of Ima-
geNet (ImageNet-RC) (Deng et al., 2009) is used as auxiliary outliers. For OOD test sets, we em-
ploy diverse image datasets: SVHN (Netzer et al., 2011), Textures (Cimpoi et al., 2014), Places365
(Zhou et al., 2016), LSUN-crop, LSUN-resize (Yu et al., 2015), and iSUN (Xu et al., 2015).

Training details. We use DenseNet-101 (Huang et al., 2017) as the backbone for all methods, em-
ploying stochastic gradient descent with Nesterov momentum (momentum = 0.9) over 100 epochs.
The initial learning rate of 0.1 decreases by a factor of 0.1 at 50, 75, and 90 epochs. Batch sizes are
64 for ID data and 128 for OOD data. For mixup, we set α = 1, σ = 0.5. In the greedy sampling
phase, We assign the values N = 400, 000 and µN = 100, 000. Experiments are run over five times
to report the means and standard deviations.

Evaluation metrics. Following common practice, we report: (1) OOD false positive rate (FPR95) at
95% true positive rate for ID samples (Liang et al., 2018a), (2) the area under the receiver operating
characteristic curve (AUROC) (Davis & Goadrich, 2006), (3) the area under the precision-recall
curve (AUPR) (Manning & Schutze, 1999). We also provide ID classification accuracy (ID-ACC).

5.2 EXPERIMENTAL RESULTS AND DISCUSSION

Q1 Effective. Our method outperforms existing competitive methods, establishing state-of-the-
art performance both on CIFAR-10 and CIFAR-100 datasets. Table 1 provides a comprehensive
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Table 1: Main results. Comparison with competitive OOD detection methods trained with the same
DenseNet backbone. The performance is averaged (%) over six OOD test datasets from Section 5.1.
Some baseline results are sourced from Ming et al. (2022). The best results are in red, with standard
deviations are provided in the Appendix C.1.

Din Method FPR95 (↓) AUROC (↑) AUPR (↑) ID-ACC w./w.o. Daux informative diverse

CIFAR-10

MSP 58.98 90.63 93.18 94.39 × NA NA
ODIN 26.55 94.25 95.34 94.39 × NA NA

Mahalanobis 29.47 89.96 89.70 94.39 × NA NA
Energy 28.53 94.39 95.56 94.39 × NA NA
SSD+ 7.22 98.48 98.59 NA × NA NA

OE 9.66 98.34 98.55 94.12 ✓ × ×
SOFL 5.41 98.98 99.10 93.68 ✓ × ×
CCU 8.78 98.41 98.69 93.97 ✓ × ×

Energy (w. Daux) 4.62 98.93 99.12 92.92 ✓ × ×
NTOM 4.00 99.09 98.61 94.26 ✓ ✓ ×
POEM 2.54 99.40 99.50 93.49 ✓ ✓ ×

ProMix (ours) 2.18 99.43 99.01 94.32 ✓ ✓ ✓

CIFAR-100

MSP 80.30 73.13 76.97 74.05 × NA NA
ODIN 56.31 84.89 85.88 74.05 × NA NA

Mahalanobis 47.89 85.71 87.15 74.05 × NA NA
Energy 65.87 81.50 84.07 74.05 × NA NA
SSD+ 38.32 88.91 89.77 NA × NA NA

OE 19.54 94.93 95.26 74.25 ✓ × ×
SOFL 19.32 96.32 96.99 73.93 ✓ × ×
CCU 19.27 95.02 95.41 74.49 ✓ × ×

Energy (w. Daux) 19.25 96.68 97.44 72.39 ✓ × ×
NTOM 18.77 96.69 96.49 74.52 ✓ ✓ ×
POEM 15.14 97.79 98.31 73.41 ✓ ✓ ×

ProMix (ours) 10.37 98.03 98.63 74.26 ✓ ✓ ✓

comparison with various methods grouped as follows: (1) ID-only training: MSP (Hendrycks &
Gimpel, 2017), ODIN (Liang et al., 2018b), Mahalanobis (Lee et al., 2018b), Energy (Wang et al.,
2021a); (2) Utilizing auxiliary outliers (without outlier mining): OE (Hendrycks & andThomas
G. Dietterich, 2019), SOFL (Mohseni et al., 2020), CCU (Meinke & Hein, 2019), Energy with
outlier (Wang et al., 2021a); (3) Outlier mining: NTOM (Chen et al., 2021), POEM (Ming et al.,
2022). Specifically, when compared to the best baseline, ProMix achieves a reduction in terms of
FPR95 of 0.36% and 4.77% on CIFAR-10 and CIFAR-100, respectively, which means a relative
error reductions of 14.2% and 31.5%. Furthermore, in comparison to NTOM (Chen et al., 2021),
which employs the same sampling strategy as our method, we achieve FPR95 reductions of 1.81%
and 8.4% on CIFAR-10 and CIFAR-100 respectively. These reductions correspond to relative error
reductions of 45.3% and 44.8%. These notable improvements can be attributed to the enhanced
diversity in auxiliary outliers offered by ProMix, which serves to reduce the generalization error
bound and significantly enhances OOD detection performance.

Q2 Reliability. Our theory demonstrates that augmenting the semantic diversity of auxiliary outliers
leads to a substantial enhancement in performance. To confirm this, we manipulate the number of
classes within the outlier dataset while keeping the data size constant. This manipulation allows us to
regulate the level of semantic diversity. Figure 2(a) illustrates noticeable performance improvements
as semantic diversity increases. Moreover, to emphasize that performance is influenced primarily
by semantic diversity rather than data size (sample diversity), we maintain a consistent number of
classes within the outlier dataset but decrease the data size. Figure 2(b) demonstrates that data size
exerts limited influence on performance, thereby establishing the reliability of our theoretical frame-
work. Furthermore, it is worth noting that our proposed method consistently achieves significant
performance improvements across a range of diversity and data size settings, which further validates
the reliability and effectiveness of our approach.

Q3 Ablation Study (I). We conduct an ablation study to explore the impact of various components
within our method. Our approach primarily relies on mixup outliers and a greedy sampling strategy.
Table 5 highlights two key findings: (1) Mixup outliers play a substantial role in enhancing OOD
detection performance by introducing diversity among outliers. (2) Additionally, the integration of
the greedy sampling strategy results in a performance improvement, which is likely attributed to its
ability to enhance the efficiency of outlier utilization.
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(a) Fixing the dataset size changing the diversity of outliers (b) Fixing the diversity of outliers changing the dataset size

Figure 2: Comparing the performance of OOD detection methods on CIFAR-100 with different
types of auxiliary outliers. (a) Varying outlier diversity, with the x-axis representing the proportion
in the original outlier dataset classes. (b) Varying outlier dataset sizes, with the x-axis reflecting the
proportion of the original outlier dataset’s data size. See Appendix B.2 for more details.

Table 2: Ablation study on module contributions. Performance averaged (%) over six OOD test
datasets from Section 5.1. The best results are in red, with standard deviations in the Appendix C.1.

Mixup Greedy sample CIFAR-10 CIFAR-100
FPR (↓) AUROC (↑) AUPR (↑) ID-ACC FPR (↓) AUROC (↑) AUPR (↑) ID-ACC

× × 5.14 98.91 98.89 94.40 20.69 95.90 95.65 74.27
× ✓ 4.00 99.09 98.61 94.26 18.77 96.69 96.49 74.52
✓ × 3.28 99.23 99.45 94.30 13.33 97.35 98.66 74.28
✓ ✓ 2.18 99.43 99.01 94.32 10.37 98.03 98.63 74.26

Table 3: Ablation on data augmentation method. Performance averaged (%) over six OOD test
datasets from Section 5.1. The best results are in red, with standard deviations in the Appendix C.1.

Semantic change ? CIFAR-10 CIFAR-100
FPR (↓) AUROC (↑) AUPR (↑) ID-ACC FPR (↓) AUROC (↑) AUPR (↑) ID-ACC

Noise × 7.84 98.56 98.87 94.02 26.01 94.87 96.06 74.69
Cutout × 8.83 98.45 98.37 94.27 24.36 95.01 94.91 74.55
Vanilla NA 5.41 98.91 98.89 94.40 20.69 95.90 95.65 74.27
Cutmix ✓ 5.76 98.95 99.08 94.37 21.23 96.03 96.34 74.45

ProMix (ours) ✓ 3.28 99.23 99.45 94.30 13.33 97.35 98.66 74.28

Q4 Ablation study (II). Finally, we conduct the ablation study to compare ProMix with other data
augmentation methods. Table 3 shows that adding noise or using cutout, both of which do not change
the semantics of outliers, do not improve performance. Instead, they have the potential to introduce
extraneous noise, thereby degrading the original data, and leading to a deterioration in performance.
For mixup methods, cutmix introduces noise at clipping boundaries, which may result in overfitting
and subsequently inferior performance compared to ProMix. For more details of the comparative
methods, please refer to Appendix B.3.

6 CONCLUSIONS AND FUTURE WORK

In this study, we demonstrate that the performance of OOD detection methods is hindered by the dis-
tribution shift between unknown test OOD data and auxiliary outliers. Through rigorous theoretical
analysis, we demonstrate that enhancing the diversity of auxiliary outliers can effectively mitigate
this problem. However, constrained by limited access to auxiliary outliers and the high cost of data
collection, we introduce ProMix, an effective method that enhances the diversity of auxiliary outliers
and significantly improves model performance. The effectiveness of ProMix is supported by both
theoretical analysis and empirical evidence. Further exploration could explore different sampling
strategies for ProMix. Additionally, our theoretical analysis does not investigate the relationship be-
tween informative outliers and enhanced model performance. Future work will focus on developing
a comprehensive theory to elaborate the role of diversity and informative outliers on OOD detection
performance.
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A THEORETICAL ANALYSIS

In this section, we provide detailed proofs of our theories and the proposed method, including the
establishment of the generalization error bound for OOD detection (Theorem 1), a more diverse set
of auxiliary outliers leads to a reduced generalization error (Theorem 2), and the proof of diversity
enhancement with mixup (Lemma 1).

A.1 PROOF OF THEOREM 1

In this section, we analyze the generalization error of the OOD detector training with auxiliary
outliers. First, we recall the setting from Sec. 3.1, our goal is to train a detector with auxiliary
outliers that can perform well on real-world OOD data. In other words, we aim to train a model on
data sampled from PX̃ = ktrainPXid

+(1− ktrain)PXaux
to obtain a reliable hypothesis h that can

effectively generalize to the unknown test-time distribution PX = ktestPXid
+ (1− ktest)PXood

.

Next, we develop bounds on the OOD detection performance of a detector training with auxiliary
outliers, which can be formulated as follow:

(Generalization Bound of OOD Detector). LetDtrain = Did∪Daux, consisting of N samples. For
any hypothesis h ∈ H and 0 < δ < 1, with a probability of at least 1 − δ, the following inequality
holds:

GError(h) ≤ ϵ̂x∼PX̃
(h, f)︸ ︷︷ ︸

empirical error

+ ϵ(h, h∗
aux)︸ ︷︷ ︸

reducible error

+ sup
h∈H∗

aux

ϵx∼PX (h, h
∗
ood)︸ ︷︷ ︸

outlier coverage error

+Rm(H)︸ ︷︷ ︸
complexity

+

√
ln( 1δ )

2N
+β, (14)
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where ϵ̂x∼PX̃
(h, f) is the empirical error. We define ϵ(h, h∗

aux) =
∫
|ϕX (x) − ϕX̃ (x)||h(x) −

h∗
aux(x)|dx is the reducible error, ϕX and ϕX̃ is the density function of PX and PX̃ respectively.
sup

h∈H∗
aux

ϵx∼PX (h, h
∗
ood) is the outlier coverage color,Rm(h) represents the Rademacher complexity,

β is the error related to ideal hypotheses. The roadmap of our analysis is as follows:

Roadmap. We first show how to bound the OOD detection error in terms of the generalization
error on PX̃ and the maximum distribution shift error as well as the reducible error which can be
reduced to a small value as the model is optimized. Then, we study the generalization bound from
the perspective of Rademacher complexity. We use complexity-based learning theory to quantify the
generalization error on PX̃ . In the end, we bound the OOD detection generalization error in terms
of the empirical error on the training data, the reducible error, the maximum distribution shift error,
and the complexity. We also provide detailed proof steps as follows:

Proof. This proof relies on the triangle inequality for classification error (Ben-David et al., 2006;
Crammer et al., 2006), which implies that for any labeling functions f1, f2, and f3, we have
ϵ(f1, f2) ≤ ϵ(f1, f3) + ϵ(f2, f3).

GError(h) = ϵx∼PX (h, f)

≤ ϵx∼PX (h, h
∗
ood) + ϵx∼PX (h

∗
ood, f)

= ϵx∼PX (h, h
∗
ood) + ϵx∼PX (h

∗
ood, f) + ϵx∼PX̃

(h, h∗
ood)− ϵx∼PX̃

(h, h∗
ood)

= ϵx∼PX̃
(h, h∗

ood) + ϵx∼PX (h
∗
ood, f) + ϵx∼PX (h, h

∗
ood)− ϵx∼PX̃

(h, h∗
ood)

≤ ϵx∼PX̃
(h, f) + ϵx∼PX̃

(h∗
ood, f) + ϵx∼PX (h

∗
ood, f) + ϵx∼PX (h, h

∗
ood)− ϵx∼PX̃

(h, h∗
ood)

Let ϕX and ϕX̃ be the density functions of PX and PX̃ , respectively.

GError(h) ≤ ϵx∼PX̃
(h, f) + ϵx∼PX̃

(h∗
ood, f) + ϵx∼PX (h

∗
ood, f)

+

∫
ϕX (x)|h(x)− h∗

ood(x)| dx−
∫

ϕX̃ (x)|h(x)− h∗
ood(x)| dx

≤ ϵx∼PX̃
(h, f) + ϵx∼PX̃

(h∗
ood, f) + ϵx∼PX (h

∗
ood, f) +

∫
|ϕX (x)− ϕX̃ (x)| |h(x)− h∗

ood(x)| dx

≤ ϵx∼PX̃
(h, f) + ϵx∼PX̃

(h∗
ood, f) + ϵx∼PX (h

∗
ood, f) +

∫
|ϕX (x)− ϕX̃ (x)| |h(x)− h∗

aux(x)| dx

+

∫
|ϕX (x)− ϕX̃ (x)| |h∗

aux(x)− h∗
ood(x)| dx

≤ ϵx∼PX̃
(h, f) + ϵx∼PX̃

(h∗
ood, f) + ϵx∼PX (h

∗
ood, f) +

∫
|ϕX (x)− ϕX̃ (x)| |h(x)− h∗

aux(x)| dx

+

∫
ϕX (x) |h∗

aux(x)− h∗
ood(x)| dx+

∫
ϕX̃ (x) |h∗

aux(x)− h∗
ood(x)| dx

= ϵx∼PX̃
(h, f) + ϵx∼PX̃

(h∗
ood, f) + ϵx∼PX (h

∗
ood, f) +

∫
|ϕX (x)− ϕX̃ (x)| |h(x)− h∗

aux(x)| dx

+ϵx∼PX (h
∗
aux, h

∗
ood) + ϵx∼PX̃

(h∗
aux, h

∗
ood)

≤ ϵx∼PX̃
(h, f) + ϵx∼PX̃

(h∗
ood, f) + ϵx∼PX (h

∗
ood, f) +

∫
|ϕX (x)− ϕX̃ (x)| |h(x)− h∗

aux(x)| dx

+ϵx∼PX (h
∗
aux, h

∗
ood) + ϵx∼PX̃

(h∗
aux, f) + ϵx∼PX̃

(h∗
ood, f)

We denote β1 = min
h∈H

ϵx∼PX (h, f), β2 = min
h∈H

ϵx∼PX̃
(h, f) as the error of h∗

ood and h∗
aux on PX and

P̃X ,

GError(h) ≤ ϵx∼PX̃
(h, f) + β1 + β2 +

∫
|ϕX (x)− ϕX̃ (x)| |h(x)− h∗

aux(x)| dx

+ϵx∼PX (h
∗
aux, h

∗
ood) + β2 + β2
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We denote 1/4 ∗ β = max{β1, β2}, so

GError(h) ≤ ϵx∼PX̃
(h, f) +

∫
|ϕX (x)− ϕX̃ (x)||h(x)− h∗

aux(x)| dx+ ϵx∼PX (h
∗
aux, h

∗
ood) + β

Consider an upper bound on the distribution shift error ϵx∼PX (h
∗
aux, h

∗
ood)

GError(h) ≤ ϵx∼PX̃
(h, f) +

∫
|ϕX (x)− ϕX̃ (x)||h(x)− h∗

aux(x)| dx

+ sup
h∈H∗

aux

ϵx∼PX (h, h
∗
ood) + β,

Next, we recap the Rademacher complexity measure for model complexity. We use complexity-
based learning theory (Bartlett & Mendelson, 2002) (Theorem 8) to quantify the generalization
error. Let Dtrain = Did ∪ Daux consisting of N samples, ϵ̂x∼PX̃

(h, f) is the empirical error of h.
Then for any hypothesis h in H (i.e.,H : X → {0, 1}, h ∈ H) and 1 > δ > 0, with probability at
least 1− δ, we have

ϵx∼PX̃
(h, f) ≤ ϵ̂x∼PX̃

(h, f) +Rm(H) +

√
ln( 1δ )

2N

whereRm(H) is the Rademacher complexities. Finally, it holds with a probability of at least 1− δ
that

ϵx∼PX (h, f) ≤ ϵ̂x∼PX̃
(h, f)︸ ︷︷ ︸

empirical error

+ ϵ(h, h∗
aux)︸ ︷︷ ︸

reducible error

+ sup
h∈H∗

aux

ϵx∼PX (h, h
∗
ood)︸ ︷︷ ︸

outlier coverage error

+Rm(H)︸ ︷︷ ︸
complexity

+

√
ln( 1δ )

2N
+ β

where ϵ(h, h∗
aux) =

∫
|ϕX (x) − ϕX̃ (x)| |h(x)− h∗

aux(x)| dx represents the reducible error and β
is the error related to ideal hypotheses. When β is large, then there is no detector that performs well.
Therefore, we cannot hope to find a good hypothesis by training with auxiliary outliers.

A.2 PROOF OF THEOREM 2

In this section, we proof that diverse outliers enhance generalization, which can be formulated as
follows:

Let O(GError(h)) and O(GError(hdiv)) represent the upper bounds of the generalization error of
detector training with vanilla auxiliary outliers Daux and diverse auxiliary outliers Ddiv , respec-
tively. For any hypothesis h and hdiv in H, and 0 < δ < 1, with a probability of at least 1− δ, the
following inequality holds

O(GError(hdiv)) ≤ O(GError(h)). (15)
The detailed proof proceeds as follows:

Proof. At first, we prove that diverse outliers correspond to a smaller outlier coverage error than
vanilla outliers. BecauseXaux ⊂ Xdiv holds, the hypotheses performing well on PXdiv

also perform
well on PXaux

, giving rise toH∗
div ⊂ H∗

aux.

sup
h∈H∗

div

ϵx∼PX (h, h
∗
ood) ≤ max{ sup

h∈H∗
div

ϵx∼PX (h, h
∗
ood), sup

h∈H∗
aux−H∗

div

ϵx∼PX (h, h
∗
ood)},

note that
max{ sup

h∈H∗
div

ϵx∼PX (h, h
∗
ood), sup

h∈H∗
aux−H∗

div

ϵx∼PX (h, h
∗
ood)} = sup

h∈H∗
aux

ϵx∼PX (h, h
∗
ood),

Consequently, we have
sup

h∈H∗
div

ϵx∼PX (h, h
∗
ood) ≤ sup

h∈H∗
aux

ϵx∼PX (h, h
∗
ood). (16)

Furthermore, model effective training leads to small empirical error and small reducible error, if we
continue to use the same model architecture, the intrinsic complexity of the modelRm(H) remains
invariant, consider that β is a small constant value, therefore, it holds that

O(GError(hdiv)) ≤ O(GError(h)), (17)
with a probability of at least 1− δ.
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A.3 PROOF OF LEMMA 1

In this section, we give the proof of the Lemma 1, which can be formalized as follow:

(Diversity Enhancement with Mixup). For a group of mixup transforms4 G acting on the input
space Xaux to generate an augmented input space GXaux, defined as GXaux = {x̂|x̂ = λx1 + (1−
λ)x2;x1, x2 ∈ Xaux, λ ∈ [0, 1]}, the following relation holds:

Xaux ⊂ GXaux. (18)

Proof. Xaux = X y1
aux ∪ . . .∪X yi

aux ∪ . . .∪X
yj
aux ∪ . . .∪X yn

aux. Consider performing mixup to obtain
a mixed outlier x̂ = λxi + (1 − λ)xj , where xi ∈ X yi

aux, xj ∈ X
yj
aux and yi ̸= yj . According to

assumption 1, there exists λ such that x̂ exhibits different semantics from the original, i.e., x̂ /∈ X yi
aux

and x̂ /∈ X yj
aux. Clearly, the semantic of x̂ is also inconsistent with other outliers in Xaux. Therefore,

x̂ /∈ Xaux. We define Xmix = {x̂ | x̂ /∈ Xaux, x̂ = λxi + (1− λ)xj , xi, xj ∈ Xaux} to represents
the input space of mixed outliers with distinct semantic to the original. Consequently, GXaux =
Xaux ∪ Xmix, leading to GXaux ⊃ Xaux.

B EXPERIMENTAL DETAILS

B.1 DETAILS OF DATASET

Auxiliary OOD datasets. In our research, we employ the downsampled ImageNet dataset (Ima-
geNet 64 × 64) as a variant of the original ImageNet dataset, comprising 1,281,167 images with
dimensions of 64×64 pixels and organized into 1000 distinct classes. Notably, there is overlap be-
tween some of these classes and those present in CIFAR-10 and CIFAR-100 datasets. It is important
to emphasize that we abstain from utilizing any label information from this dataset, thereby regard-
ing it as an unlabeled auxiliary OOD dataset. To augment our dataset for experiments, we apply a
random cropping procedure to the 64×64 images, resulting in 32×32 pixel images with a 4-pixel
padding. This operation, performed with a high probability, ensures that the resulting images are
unlikely to contain objects corresponding to the ID classes, even if the original images featured such
objects. Consequently, we retain a substantial quantity of OOD data for training purposes, yielding
a low proportion of ID data within the auxiliary OOD dataset. For conciseness and clarity, we refer
to this dataset as ImageNet-RC.

Test OOD datasets. To evaluate OOD performance of our model, we follow the procedure in Chen
et al. (2021); Ming et al. (2022). Specifically, we employ six different natural image datasets as
our OOD test datasets, while CIFAR-10 and CIFAR-100 serve as our ID test datasets. These six
datasets are SVHN (Netzer et al., 2011), Textures (Cimpoi et al., 2014), Places365 (Zhou et al.,
2016), LSUN (crop), LSUN (resize) (Yu et al., 2015), and iSUN (Xu et al., 2015). Below, we
provide detailed information about these OOD test datasets, all of which consist of 32 × 32 pixel
images.

SVHN. The SVHN dataset (Netzer et al., 2011) comprises color images of house numbers, encom-
passing ten different digit classes from 0 to 9. Originally, the test set contained 26,032 images.
For our evaluation, we randomly select 1,000 test images from each digit class, creating a new test
dataset with 10,000 images.

Textures. The Describable Textures Dataset (DTD) (Cimpoi et al., 2014) consists of textural images
in the wild. We include the entire collection of 5,640 images for evaluation.

Places365. The Places365 dataset (Zhou et al., 2016) comprises a large-scale photographs depicting
scenes classified into 365 scene categories. In the test set, there are 900 images per category. We
randomly sample 10,000 images from the test set for our evaluation.

LSUN (crop) and LSUN (resize). The Large-scale Scene Understanding dataset (LSUN) (Yu et al.,
2015) offers a testing set containing 10,000 images from 10 different scenes. We create two variants
of this dataset, namely LSUN (crop) and LSUN (resize). LSUN (crop) is generated by randomly
cropping image patches to the size of 32 × 32 pixels, while LSUN (resize) involves downsampling
each image to the same size.

4The set of all possible combinations of data points and all possible values of λ for mixup.
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Algorithm 2 ProMix: Provable Mixup Outlier (w.o. Greedy Sample)
Input: ID datasetDid, outliers datasetDaux, pool size N ′, hyperparameter of mixup ratio σ, hyper-
parameter of Beta distribution α;
Output: ID classifier F̂ , OOD detector G;
for each iteration do

// Randomly sample N ′ outliers from Daux to create subset S.
S ← {si | si ∈ Daux, i = 1, 2, ..., N ′};
// Copy S and random shuffle to create S ′.
S ′ ← shuffle(S);
// Apply mixup on S and S ′ to obtain the mixed outlier set Dmix.
Sample p ∼ Uniform(0, 1);
Dmix ← {x̂i | x̂i = λxi + (1− λ)x′

i; x ∈ S, x′ ∈ S ′; i = 1, 2, ..., N ′;
if p≤ σ, then λ ∼ Beta(α, α), else λ = 1} ;
Train Fθ for one epoch using the training objective of Eq. 13;

end
Build F̂ and G according to Eq. 12 and Eq. 11;

iSUN. The iSUN dataset (Xu et al., 2015) is a subset of SUN images. We incorporate the entire
collection of 8,925 images from iSUN for our evaluation.

B.2 MORE DETAILS OF Q2 RELIABILITY.

In this experiment, our objective is to examine the impact of semantic diversity of outliers on perfor-
mance and subsequently verify our theory. Moreover, to eliminate the influence of sample diversity,
we assess the effect of data size on performance as well. Furthermore, we aim to validate the ef-
fectiveness of our approach on a range of auxiliary outlier datasets with varying diversity levels and
data sizes.

Varying the diversity of auxiliary outliers. To achieve auxiliary outliers with different diver-
sity, we manipulate the number of classes present in the auxiliary outliers dataset. Specifically, we
systematically control the number of classes selected from the Imagenet-RC dataset and extract a
predetermined number of samples from the chosen classes. By varying the number of classes while
maintaining a constant dataset size, we can effectively control the diversity of the auxiliary outliers
dataset. We randomly sample classes from the original Imagenet-RC dataset, selecting percentages
of {10%, 25%, 40%, 55%, 70%, 85%, 100%} of the original Imagenet-RC classes, and adjust the
dataset size to be 10% of the original Imagenet-RC dataset, thus generating training datasets with
different degrees of diversity.

Varying the sample size of auxiliary outliers. To further explore the impact of sample di-
versity on our experimental results, we keep the number of classes constant and vary the size
of the auxiliary outliers dataset. This is achieved by applying downsampling techniques, re-
sulting in datasets with the same classes as the original Imagenet-RC dataset but with sizes of
{10%, 25%, 40%, 55%, 70%, 85%, 100%} compared to the auxiliary outliers dataset. A smaller
dataset size indicates reduced sample diversity.

Methodology. In our comparative analysis, the Vanilla method solely applies (k+1)-way regular-
ization when using auxiliary outliers for model training. On the other hand, the ProMix method
incorporates the mixup outliers operation as an extension of the Vanilla approach. To ensure fair-
ness in our comparison, we did not employ a greedy sampling strategy. The complete pseudocode
for our approach, without the use of greedy sampling, is presented in Algorithm 2.

B.3 MORE DETAILS OF Q4 RELIABILITY.

To explore whether mixup has unique advantages compared to other data augmentation to enhance
the diversity of outliers, we select different data augmentation techniques to process outliers and
validate their impact on performance. Specifically, we chose semantic-invarient data augmentation
methods: noise (Rifai et al., 2011), cutout (Rifai et al., 2011), and the mixup-style augmentation
cutmix (Rifai et al., 2011) for comparison with our method.
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Table 4: Main results. Comparison between our ProMix method and other competitive OOD de-
tection methods that are trained with the same DenseNet backbone. All values are percentages and
are averaged over six OOD test datasets outlined in Section 5.1. The best results are in red. Some
baseline model results are sourced from Ming et al. (2022). Our method’s reported performance is
based on five independent training runs using different random seeds.

Din Method FPR95 (↓) AUROC (↑) AUPR (↑) ID-ACC w./w.o. Daux informative diverse

CIFAR-10

MSP (Hendrycks & Gimpel, 2017) 58.98 90.63 93.18 94.39 × NA NA
ODIN (Liang et al., 2018b) 26.55 94.25 95.34 94.39 × NA NA

Mahalanobis (Lee et al., 2018b) 29.47 89.96 89.70 94.39 × NA NA
Energy (Wang et al., 2021a) 28.53 94.39 95.56 94.39 × NA NA
SSD+ (Sehwag et al., 2021) 7.22 98.48 98.59 NA × NA NA

OE (Hendrycks & andThomas G. Dietterich, 2019) 9.66 98.34 98.55 94.12 ✓ × ×
SOFL (Mohseni et al., 2020) 5.41 98.98 99.10 93.68 ✓ × ×
CCU (Meinke & Hein, 2019) 8.78 98.41 98.69 93.97 ✓ × ×

Energy (w. Daux) (Wang et al., 2021a) 4.62 98.93 99.12 92.92 ✓ × ×
NTOM (Chen et al., 2021) 4.00± 0.22 99.09± 0.05 98.61± 0.32 94.26± 0.11 ✓ ✓ ×
POEM (Ming et al., 2022) 2.54± 0.56 99.40± 0.05 99.50 ± 0.07 93.49± 0.27 ✓ ✓ ×

ProMix (ours) 2.18 ± 0.16 99.43 ± 0.02 99.01 ± 0.02 94.32 ± 0.28 ✓ ✓ ✓

CIFAR-100

MSP (Hendrycks & Gimpel, 2017) 80.30 73.13 76.97 74.05 × NA NA
ODIN (Liang et al., 2018b) 56.31 84.89 85.88 74.05 × NA NA

Mahalanobis (Lee et al., 2018b) 47.89 85.71 87.15 74.05 × NA NA
Energy (Wang et al., 2021a) 65.87 81.50 84.07 74.05 × NA NA
SSD+ (Sehwag et al., 2021) 38.32 88.91 89.77 NA × NA NA

OE (Hendrycks & andThomas G. Dietterich, 2019) 19.54 94.93 95.26 74.25 ✓ × ×
SOFL (Mohseni et al., 2020) 19.32 96.32 96.99 73.93 ✓ × ×
CCU (Meinke & Hein, 2019) 19.27 95.02 95.41 74.49 ✓ × ×

Energy (w. Daux)(Wanget al., 2021a) 19.25 96.68 97.44 72.39 ✓ × ×
NTOM (Chen et al., 2021) 18.77± 0.75 96.69± 0.12 96.49± 0.33 74.52± 0.31 ✓ ✓ ×
POEM (Ming et al., 2022) 15.14± 1.16 97.79± 0.17 98.31± 0.12 73.41± 0.21 ✓ ✓ ×

ProMix (ours) 10.37 ± 0.43 98.03 ± 0.02 98.63 ± 0.09 74.26± 0.19 ✓ ✓ ✓

Noise. Here, we introduce an appropriate level of noise to the training data to augment its diversity
and quantity. We incorporate Gaussian noise with a mean of 0 and a variance of 0.1. To mitigate the
risk of model overfitting to Gaussian noise, wherein the model classifies any image with Gaussian
noise as an outlier (OOD) and any noise-free image as an ID sample, this type of noise is applied to
half of the outlier samples during the model training phase.

Cutout. Cutout is a data augmentation technique that introduces random masking of small regions
in input images, preventing the model from relying on specific features. In our study, we apply
the cutout augmentation to half of the outlier samples. This involves randomly masking out small
regions within these outlier images by setting all pixel values in the masked regions to zero.

Cutmix. Cutmix is a data augmentation technique that involves randomly selecting two images from
the training set, cropping one image, and replacing the cropped region with the corresponding region
from the other image. The resulting mixed image is assigned a label that is a weighted average of
the labels corresponding to the two original images. In our experimentation, we apply Cutmix data
augmentation to half of the outlier samples.

The results of our study indicate that the inclusion of semantically invariant data augmentation tech-
niques such as adding noise or applying cutout does not yield improved performance. While these
methods have the potential to enhance sample diversity (data size) and theoretically improve the
generalization error of the model, they fail to address the issue of distribution shift. Moreover, these
techniques introduce inherent noise that deteriorates the quality of the original data, resulting in a
decline in performance. Among the mixup methods investigated, Cutmix introduces noise at clip-
ping boundaries, which can potentially lead to overfitting and inferior performance compared to the
ProMix approach. As a result, our proposed method offers unique advantages in addressing these
challenges.

C ADDITIONAL RESULTS

C.1 FULL RESULTS WITH STANDARD DEVIATION

In Tab. 4, Tab. 5 and Tab. 6, we present the experimental results for all evaluation metrics along
with the corresponding standard deviations. From the experimental results we can draw similar
conclusions as those in Sec. 5.
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Table 5: Ablation study on module contributions. Performance averaged (%) over six OOD test
datasets from Section 5.1. The best results are in red. Our method’s reported performance is based
on five independent training runs using different random seeds.

Mixup Greedy sample CIFAR-10 CIFAR-100
FPR (↓) AUROC (↑) AUPR (↑) ID-ACC FPR (↓) AUROC (↑) AUPR (↑) ID-ACC

× × 5.14± 0.78 98.91± 0.12 98.89± 0.17 94.40± 0.15 20.69± 0.57 95.90± 0.33 95.65± 0.13 74.27± 0.17
× ✓ 4.00± 0.22 99.09± 0.05 98.61± 0.32 94.26± 0.11 18.77± 0.75 96.69± 0.12 96.49± 0.33 74.52± 0.31
✓ × 3.28± 0.45 99.23± 0.05 99.45 ± 0.19 94.30± 0.12 13.33± 1.20 97.35± 0.19 98.66 ± 0.18 74.28± 0.20
✓ ✓ 2.18 ± 0.16 99.43 ± 0.02 99.01 ± 0.02 94.32 ± 0.28 10.37 ± 0.43 98.03 ± 0.02 98.63 ± 0.09 74.26± 0.19

Table 6: Ablation on data augmentation method. Averaged performance (%) over six OOD test
datasets from Section 5.1. The best results are in red. Our method’s reported performance is based
on five independent training runs using different random seeds.

Semantic change ? CIFAR-10 CIFAR-100
FPR (↓) AUROC (↑) AUPR (↑) ID-ACC FPR (↓) AUROC (↑) AUPR (↑) ID-ACC

Noise × 7.84 ± 0.81 98.56 ± 0.13 98.87 ± 0.18 94.02 ± 0.15 26.01 ± 1.09 94.87 ± 0.13 96.06 ± 0.13 74.69 ± 0.30
Cutout × 8.83 ± 1.89 98.45 ± 0.31 98.37 ± 0.36 94.27 ± 0.04 24.36 ± 0.22 95.01 ± 0.33 94.91 ± 0.61 74.55 ± 0.19
Vanilla NA 5.41 ± 0.78 98.91 ± 0.12 98.89 ± 0.17 94.40 ± 0.15 20.69 ± 0.57 95.90 ± 0.09 95.65 ± 0.13 74.27 ± 0.17
Cutmix ✓ 5.76 ± 0.78 98.95 ± 0.11 99.08 ± 0.27 94.37 ± 0.10 21.23 ± 1.27 96.03 ± 0.32 96.34 ± 0.45 74.45 ± 0.29

Mixup (ours) ✓ 3.28 ± 0.45 99.23 ± 0.05 99.45 ± 0.19 94.30 ± 0.12 13.33 ± 1.20 97.35 ± 0.19 98.66 ± 0.18 74.28 ± 0.20

Table 7: main results on individual OOD dataset. We provide the results of ProMix on each OOD
dataset from Section 5.1. The best results are in red. Our method’s reported performance is based
on five independent training runs using different random seeds.

OOD dataset CIFAR-10 CIFAR-100
FPR (↓) AUROC (↑) AUPR (↑) ID-ACC FPR (↓) AUROC (↑) AUPR (↑) ID-ACC

LSUN (crop) 6.23± 0.73 98.68± 0.12 98.44± 0.16 94.32± 0.28 26.18± 26.18 95.76± 0.21 94.79± 0.31 74.26± 0.19
LSUN (resize) 0.00± 0.00 100.00± 0.00 100.00± 0.00 94.32± 0.28 0.00± 0.00 99.99± 0.01 99.98± 0.02 74.26± 0.19

iSUN 0.00± 0.00 100.00± 0.00 100.00± 0.00 94.32± 0.28 0.03± 0.01 99.97± 0.01 100.00± 0.00 74.26± 0.19
dtd 0.81± 0.06 99.70± 0.02 99.99± 0.00 94.32± 0.28 4.59± 0.44 98.76± 0.09 99.98± 0.01 74.26± 0.19

places365 5.01± 0.33 98.74± 0.09 96.46± 0.23 94.32± 0.23 21.33± 0.29 95.83± 0.16 99.79± 0.09 74.26± 0.19
SVHN 1.06± 0.29 99.44± 0.09 99.18± 0.14 94.32± 0.28 10.07± 1.69 97.88± 0.16 97.25± 0.27 74.26± 0.19

average 2.18± 0.16 99.43± 0.02 99.01± 0.02 94.32± 0.28 10.37± 0.43 98.03± 0.02 98.63± 0.09 74.26± 0.19

Table 8: Hyperparameter Analysis. Comparison results with varying hyperparameter α ∈
{0.5, 0.75, 1.0, 1.25, 1.5}. The best results are in red. All values are percentages and are aver-
aged over six OOD test datasets described in Sec. 5.1.

α
CIFAR-10 CIFAR-100

FPR (↓) AUROC (↑) AUPR (↑) ID-ACC FPR (↓) AUROC (↑) AUPR (↑) ID-ACC

0.5 1.92 99.48 99.73 94.21 9.76 98.13 98.99 74.68
0.75 2.27 99.40 99.60 94.22 11.19 97.80 98.67 73.80
1.0 2.18 99.43 99.01 94.32 10.37 98.03 98.63 74.26
1.25 2.33 99.38 99.67 94.22 9.25 98.07 99.09 74.27
1.5 2.42 99.38 99.65 94.08 11.45 97.70 98.49 74.40

C.2 RESULTS ON INDIVIDUAL OOD DATASET

We also provide the performance of our method on individual OOD dataset in tabel 7.

C.3 HYPERPARAMETER ANALYSIS.

Analysis of hyperparameter α. This study aims to investigate the influence of the hyperparameter
α in the mixup technique on the performance of our proposed method. A systematic exploration was
conducted by varying the value of α while keeping other parameters fixed. The outcomes of this
analysis are summarized in a concise manner in Table 8. Remarkably, our approach demonstrated
robustness to changes in the α hyperparameter, encompassing a broad range from 0.5 to 1.5.

Analysis of hyperparameter σ. Furthermore, an extensive investigation was performed on the
CIFAR-10 and CIFAR-100 datasets to assess the impact of the hyperparameter σ in the mixup tech-
nique. The fine-tuning of σ was carried out while maintaining the other parameters at their original
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Table 9: Hyperparameter Analysis. Comparison results with varying hyperparameter σ ∈
{0, 0.25, 0.5, 0.75, 1.0}. The best results are in red. All values are percentages and are averaged
over six OOD test datasets described in Sec. 5.1.

σ
CIFAR-10 CIFAR-100

FPR (↓) AUROC (↑) AUPR (↑) ID-ACC FPR (↓) AUROC (↑) AUPR (↑) ID-ACC

0 4.00 99.09 98.61 94.26 18.77 96.69 96.69 74.52
0.25 2.39 99.37 98.74 94.20 15.74 97.17 98.92 74.25
0.5 2.18 99.43 99.01 94.32 10.37 98.03 98.63 74.26
0.75 2.26 99.35 99.15 94.34 11.70 97.84 98.45 74.30
1.0 2.46 99.38 99.62 94.33 10.03 97.94 98.89 74.41

Table 10: OOD Score Analysis. Comparison results with different OOD scores. All values are
percentages and are averaged over six OOD test datasets described in Sec. 5.1.

Method CIFAR-10 CIFAR-100
FPR (↓) AUROC (↑) AUPR (↑) ID-ACC FPR (↓) AUROC (↑) AUPR (↑) ID-ACC

Energy 3.42 ± 0.55 99.15 ± 0.10 99.11 ± 0.08 93.25 ± 0.03 19.02 ± 1.01 96.44 ± 0.19 96.42 ± 0.22 72.61 ± 0.33
Energy + ProMix 2.01 ± 0.58 99.41 ± 0.10 99.53 ± 0.07 93.11 ± 0.07 12.74 ± 1.08 97.58 ± 0.11 97.99 ± 0.18 72.56 ± 0.49

OE 9.14 ± 0.64 98.43 ± 0.07 98.60 ± 0.22 94.09 ± 0.07 19.97 ± 1.27 94.89 ± 0.32 96.18 ± 0.86 74.21 ± 0.07
OE + ProMix 8.09 ± 0.28 98.54 ± 0.07 98.88 ± 0.10 94.01 ± 0.13 16.43 ± 0.94 95.72 ± 0.17 98.08 ± 0.15 74.35 ± 0.36

Table 11: Main results on large-scale datasets. Comparison results with different OOD scores.

Method SSB-hard NINCO iNaturalist Textures OpenImage-O Average
FPR (↓) AUROC (↑) FPR (↓) AUROC (↑) FPR (↓) AUROC (↑) FPR (↓) AUROC (↑) FPR (↓) AUROC (↑) FPR (↓) AUROC (↑)

MSP 78.90 80.24 76.25 81.11 67.64 81.97 76.12 82.77 78.19 80.90 75.42 81.40
Energy 73.56 84.12 68.86 84.91 52.55 86.78 67.68 87.66 72.76 84.18 67.08 85.53

OE 67.78 84.85 65.07 85.81 51.31 88.92 65.72 86.64 62.75 86.71 62.53 86.59
K+1 77.48 82.31 73.14 84.61 71.95 84.47 91.49 78.87 75.64 83.59 77.94 82.77

ProMix (OE) 42.80 90.82 36.75 92.19 35.41 92.12 25.86 95.12 33.48 93.43 34.86 92.74
ProMix (K+1) 50.37 90.42 43.99 91.76 55.62 88.91 45.30 92.33 40.31 92.80 47.12 91.24

predefined values. The corresponding experimental results are presented in Table 9. Notably, in-
corporating mixup on a certain fraction of outliers substantially improved the model’s performance,
thereby confirming the effectiveness of our proposed approach.

C.4 ABLATION STUDY ON DIFFERENT OOD SCORE.

The form of the OOD score adopted in this paper, derived as classification confidence for the K +1
class, is a specific case in implementation. We conduct experiments with more general forms of
anomaly scores and provide the corresponding experimental results. In particular, we chose two
distinct anomaly scores, energy and OE, for the application of our method. The experimental results
are outlined in table 10. The experimental results demonstrate that our method is effective in broader
settings, accommodating arbitrary OOD scores.

C.5 EXPERIMENTS ON LARGE-SCALE DATASETS

We evaluate our approach on larger-scale benchmarks and provide the corresponding experiments
under the setting in Yang et al. (2022). Our experimental setup involved utilizing 200 classes from
ImageNet-1k (224x224 resolution) as the ID class and an additional 800 classes as outliers. We
conducted tests across five different out-of-distribution OOD test sets. Specifically, SSB-hard and
NINCO were included as part of the near-OOD group for ImageNet-1k, while iNaturalist, Textures,
and OpenImage-O were classified under the far-OOD group. The experimental results are repre-
sented in table 11:
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(a) training with vanilla outliers (b) training with mixed outliers

Figure 3: 2D Visualization of data representations in the DNN’s feature space. Stars of different
colors represent data from distinct ID categories, while dots represent outliers. Red dots signify
vanilla outliers, and orange dots denote mixed outliers generated through mixup. In (a), outliers are
dispersed and form clustered distributions. In (b), mixup applied to outliers generates mixed outliers,
effectively bridging the sparsity observed among vanilla outliers and covering a more extensive area,
thereby enhancing the diversity of outliers.

C.6 VISUALIZATION

The utilization of mixup techniques has the potential to extend the high-dimensional spatial cov-
erage of auxiliary outlier data, thereby enriching its diversity. Auxiliary outliers encompass data
from diverse classes, indicating significant semantic distinctions among different categories. This
implies that, in a high-dimensional space, auxiliary outliers are clustered by category, with sparse
distribution between outliers from distinct categories. Mixup operates by interpolating between
outliers with different semantic information belonging to distinct clusters, effectively bridging the
sparsity between these clusters. This process empowers auxiliary outliers to cover a broader region
in high-dimensional space, thereby enhancing the diversity of auxiliary outliers. To provide a clearer
understanding of why mixup enhances the diversity of auxiliary outliers, visualizations have been
included in Figure 3.

D HARDWARE AND SOFTWARE

We run all the experiments on NVIDIA GeForce RTX 3090 GPU. Our implementations are based
on Ubuntu Linux 18.04 with Python 3.8.
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