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ABSTRACT

Large language models (LLMs) are increasingly integrated into software devel-
opment, generating substantial volumes of source code. While they enhance pro-
ductivity, their misuse raises serious concerns, including plagiarism, license vio-
lations, and the propagation of insecure code. Robust detection of Al-generated
code is therefore essential, and requires benchmarks that faithfully reflect real-
world conditions. Existing benchmarks, however, are limited in scope, covering
few programming languages and relying on less capable models. In this paper,
we introduce CodeMirage, a comprehensive benchmark that addresses these gaps
through three key contributions: (1) coverage of ten widely used programming
languages, (2) inclusion of both original and perturbed code from ten state-of-
the-art, production-level LLMs, and (3) six progressively challenging tasks across
four evaluation configurations. Using CodeMirage, we evaluate ten representative
detectors spanning four methodological paradigms under realistic settings, with
performance reported across three complementary metrics. Our analysis yields
eight key findings that reveal the strengths and limitations of current detectors and
highlight critical challenges for future research. We believe CodeMirage provides
arigorous and practical testbed to drive the development of more robust and gen-
eralizable Al-generated code detectors.

1 INTRODUCTION

Large Language Models (LLMs) are rapidly evolving and demonstrating increasing capabilities
in coding, fundamentally transforming the software development ecosystem. Recent LLMs such
as ChatGPT (OpenAl| 2022) and Claude (Anthropic| 2025) exhibit remarkable code generation
performance, producing high-quality outputs in response to concise natural language prompts. The
emergence of reasoning-capable models like DeepSeek-R1 (Guo et al.| 2025) has further accelerated
LLM adoption among developers. According to Stack Overflow’s industry report (Stack Overflow,
2024)), 82.1% of the 65,000 surveyed developers report using ChatGPT (OpenAl, 2022) during
their development workflow. Capitalizing on the strong coding abilities of LLMs, assistant tools
such as GitHub Copilot (Friedman, Nat, 2022)) and Cursor (Cursor, 2023)) have been developed to
enhance productivity by helping developers write, modify, and debug code directly within integrated
development environments (IDEs). Furthermore, state-of-the-art LLM-based agentic systems such
as OpenHands (Wang et al.l |2025) achieve up to a 65.8% resolved rate on SWE-Bench (Jimenez
et al.,|2024), demonstrating the effectiveness of LLMs in addressing real-world software engineering
tasks. These trends indicate that LLMs and their associated tools are becoming integral to modern
software development workflows.

However, the rapid spread of Al-generated code has raised concerns about new vulnerabilities and
misuse. Systematic benchmarks show that LLM outputs often ship with logic errors and latent
security flaws (Liu et al} 2023} |Gao et al.| 2023} Téth et al.l 2024} [Zhang et al., 2023} |Pearce
et al.,2022; Kaniewski et al.,|2024). Comparative evaluations reveal that Al suggestions can embed
at least as many vulnerabilities as human code (Khoury et al.l 2023} [Wang et al.| [2024; Tambon
et al.,|[2025}; Vaidya & Asifl, [2023}; |Asare et al., 2023} Tihanyi et al., |[2025)). Furthermore, LLMs are
susceptible to manipulation (Kaniewski et al., [2024)), including poisoning attacks (Yan et al., [2024;
Cotroneo et al.}|2024;|Oh et al.,[2024) and prompt injections (Mastropaolo et al., 2023} |[Zeng et al.,
2025)), which can induce the generation of targeted vulnerable code. At the same time, educators
warn of an impending wave of Al-driven plagiarism that evades conventional detectors (Hutson,
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2024; |Steponenaite & Barakat, 2023} [Khalaf] 2025} [Dehouche} [2021}; Xiao et al., [2022; [Saglam
et al.,2024; Khalil & Er,[2023)), while legal scholars highlight intellectual-property (Yu et al., 2023
Li et al.} [2023; [Xu et al.l |2024a} Stalnaker et al., [2024) and licence-compliance (Xu et al.| [2024c)
risks. Robust Al-code detection is therefore critical for secure software supply chains, responsible
academic practice, and licence compliance.

To address the challenges of Al-generated code identification, various detection methods have been
proposed, leveraging statistical features of code (Idialu et al., |2024)), the capabilities of language
models (Xu & Shengl 2024; Shi et al., |2025; [Yang et al., [2023} |Ye et al., [2025} [Xu et al.l 2025;
Nguyen et al., 2024;2023)), and code embedding models (Suh et al.| [2025} |Liu et al., 2024b)). How-
ever, evaluations based on existing benchmarks and datasets (Suh et al.| 2025} [Pan et al.| 2024;
Demirok & Kutlul[2024;Pham et al., 2024;|Orel et al.,|2025; | Xu et al.,2024b) often fall short in three
key aspects. First, they typically cover only a narrow set of programming languages—primarily C++
and Python—while neglecting other widely used languages such as Go and HTML, resulting in lim-
ited language diversity compared to real-world software development. Second, most benchmarks
rely on open-source LLMs with relatively small model sizes and lower generation quality, or in-
clude only a small number of commercial models, leaving a gap between benchmark conditions and
real-world usage. Third, most existing datasets lack practical adversarial scenarios, such as para-
phrasing (Krishna et al.| [2023; [Sadasivan et al., [2023)), which are common in practice and essential
for evaluating the robustness of detection systems. Thus, a rigorous benchmark that captures real-
world language diversity, modern commercial models, and adversarial scenarios is indispensable for
driving meaningful progress in this emerging field.

We hence introduce CodeMirage, a comprehensive benchmark for stress-testing Al-generated code
detectors under realistic and adversarial conditions, to solve the three major limitations identified
in prior benchmark work. CodeMirage is constructed from real-world human-written code and
enriched with both Al-generated and perturbed variants produced by a diverse set of state-of-the-art
reasoning and non-reasoning LL.Ms from six major commercial service providers.

Our key contributions are as follows:

* We present a large-scale, multilingual benchmark for stress-testing Al-generated code de-
tection, spanning 10 widely used programming languages. The dataset comprises ap-
proximately 210,000 samples, including 10,000 human-written code files sourced from
GitHub (CodeParrot, 2022b), as well as Al-generated and perturbed counterparts produced
by 10 production-level LLMs.

* We design four progressively challenging evaluation configurations with six tasks and three
complementary performance metrics to facilitate rigorous and realistic assessment of de-
tector effectiveness under various real-world scenarios.

* We conduct a comprehensive evaluation of 10 representative detectors across four method-
ological paradigms using CodeMirage, providing insights into their accuracy, robustness,
and generalization across program languages, models, and adversarial settings.

2 BACKGROUND AND RELATED WORK

2.1 TAXONOMY OF AI-GENERATED CODE DETECTORS

Detecting Al-generated content has been a long-standing challenge in both the natural lan-
guage (Uchendu et al.l|2021;|Gehrmann et al.| 2019;|Akram, 2023} |Ghosal et al., 2023)) and computer
vision domains (Rossler et al., 2018} |Gliera & Delp| [2018};|Zhu et al., 2023} |Dolhansky et al., 2020;
/1 et al.| 2020), predating even the emergence of large language models (LLMs) (Vaswani et al.|
2017; |Achiam et al} [2023)) and diffusion-based generative models (Sohl-Dickstein et al., 2015} |[Ho
et al., 2020). In contrast, detecting Al-generated source code is a relatively new research direction,
emerging primarily in the last two years due to the rapid advancements in the coding capabilities of
LLMs (OpenAlL 2022} |Anthropicl 2025)).

Inspired by traditional statistical-based methods used for Al-generated text detection (Ramos et al.,
2003} [Ippolito et al.| [2020), early approaches for code focus on analyzing surface-level statistical
features. For example, Whodunit (Idialu et al.| 2024) extracts stylometric and complexity-based
features from both raw source code and its abstract syntax tree (AST). However, these methods
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Table 1: Comparison between existing Al-generated code benchmarks and our CodeMirage. Gran.
= granularity (Func: function/snippet, Doc: whole file). IID = in—distribution; OOD = out-of-
distribution. Baseline categories: Z (zero-shot detector), E (embedding-based detector), F (fine-
tuning-based detector), P (pre-trained LLM + downstream detector). Columns “Open LLMs” and
“Comm. LLMs” show whether the dataset includes any open-source or commercial generators.

#Open #Comm. Reasoning #Human #AI Adv.  Quality Baseline
Dataset | Stat.— #lang Gran. 1D 00D yyyne [IMs  Model ~ Code  Code Test Check  #Cat.
Suh et al. (Suh et al.}[2025] 3 Func v v 1 3 X ~ 3.7k ~ 29.5k X X 8/Z.EF
Pan er al. (Pan et al.|[2024) 1 Func v v 0 1 X ~ 5k ~ 71k v X 5/Z
AIGCodeSet (Demirok & Kutlu}[2024) 1 Func v X 2 1 X ~ 4.8k ~ 2.9k X v 3/EJF
MAGECODE (Pham et al.] 2024} 3 Doc v X 0 3 X ~ 81k ~ 45k X v 8/7
CoDet-M4 (Orel et al.| 2025 3 Func v v 4 1 X ~ 252k ~ 246k v v 6/FP
LLMGCode (Xu et al.[[2024b) 8 Doc v X 1 3 X <1k 2k X X 10/ Z,FP
CodeMirage (Ours) 10 Doc v v 4 6 v 10k ~200k v v 10/ Z,E,F,P

often struggle to distinguish code generated by modern, high-performing LLMs (OpenAll 2022
Anthropicl 2025} |Guo et al., 2025} [Kavukcuoglul [2025)), which better mimic human coding styles.

To improve detection effectiveness, recent research has explored more advanced techniques — often
leveraging large language models (LLMs) or code embedding models — which can be broadly
categorized into the following four methodological paradigms:

Zero-shot Detector. These detectors assign confidence scores from token-level statistics of pre-
trained LLMs without task-specific fine-tuning. LogRank (Gehrmann et al.l 2019) and En-
tropy (Lavergne et al., 2008) use average next-token log-rank and entropy to capture Al-generated
code distributions. DetectGPT (Mitchell et al., [2023) measures divergence between original and
perturbed text, a strategy extended to code by DetectCodeGPT (Shi et al., |2025)), GPT4Code (Yang
et al., [2023), and AIGC Detector (Xu & Sheng, 2024) with code-specific perturbations. CR (Ye
et al., 2025) instead compares original and LLM-rewritten code, while Binoculars (Hans et al.,
2024) employs cross-perplexity between instruction-tuned and non-instruction-tuned LLMs.

Embedding-based Detector. Embedding-based detectors (Khoury et al.| [2023)) utilize pretrained
code embedding models, such as CodeT5+ Embedding (Wang et al., 2023)) and CodeXEmbed (Liu
et al.,[2024b), to extract high-level semantic representations from either raw source code or abstract
syntax trees (ASTs). These embeddings are then fed into lightweight classifiers, e.g., MLP (Rosen-
blatt, [1958)), to perform binary classification between human-written and Al-generated code.

Fine-tuning-based Detector. This class of detectors fine-tunes transformer-based models to di-
rectly capture discriminative patterns between human-written and Al-generated code. For example,
GPTSniffer (Nguyen et al.| 2023} 2024) fine-tunes CodeBERT (Feng et al.l |2020) on labeled code
samples to perform binary classification. Other approaches (Suh et al.|[2025)) explore different back-
bone architectures, such as CodeT5+ (Wang et al., 2023) and RoBERTa (Liu et al.,2019).

Pretrained LLM with Downstream Detector. These methods extract semantic or statistical fea-
tures from pretrained LLMs and train downstream classifiers on them. MageCode (Pham et al.,
2024) leverages hidden-state statistics from the classification token of CodeT5+ (Wang et al., [2023)
with a two-layer linear classifier. Raidar (Mao et al.,[2024), originally for text, can be adapted to code
by comparing metrics between original and LLM-rewritten samples and training an XGBoost (Chen
et al.| 2025) classifier. BiScope (Guo et al., 2024) introduces a bi-directional cross-entropy analysis
using pretrained LLMs, with features classified via Random Forest (Breimanl 2001)).

2.2 EXISTING AI-GENERATED CODE DATASETS AND BENCHMARKS

Prior studies (Suh et al., 2025} |Pan et al.| [2024; Demirok & Kutlul, [2024; Pham et al., 2024 |Orel
et al., 2025} Xu et al., 2024b) has laid important groundwork for building benchmarks to evaluate
Al-generated code detectors. As shown in[Table 1] several benchmarks introduce valuable contribu-
tions: for instance, Suh ef al. (Suh et al.|[2025) propose a large-scale function-level dataset spanning
three programming languages. Pan ef al. (Pan et al.||2024) and CoDet-M4 (Orel et al.,|2025)) incor-
porate adversarial perturbations into Al-generated code to test robustness. AIGCodeSet (Demirok:
& Kutlu, 2024) and MAGECODE (Pham et al., 2024) employ quality checks during code genera-
tion. LLMGCode (Xu et al.| [2024b) expands language coverage to eight programming languages.
Collectively, these datasets serve as solid foundations for evaluating Al-generated code detectors.
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Figure 1: Overview of the CodeMirage framework. We collect and preprocess human-written code
from GitHub repositories, then leverage 10 state-of-the-art LLMs to summarize, generate, and per-
turb code with quality inspection. Finally, CodeMirage evaluates 10 Al-generated code detectors
across six evaluation tasks, covering a wide range of real-world scenarios.

However, these benchmarks have notable limitations. Most cover only a small number of program-
ming languages, rely on less capable LLMs, and none of them leverage latest reasoning models (Guo
et al.,2025; OpenAl, 2025} |Kane, [2025)). Furthermore, baseline evaluations in these benchmarks do
not comprehensively include all four major categories of detection methods, and only two existing
benchmarks include adversarial test, which is critical for real-world deployment.

To address these gaps, our proposed benchmark, CodeMirage, includes: (1) code samples across 10
widely used programming languages; (2) outputs from 10 state-of-the-art production-level LLMs,
including three reasoning models; (3) both out-of-distribution and adversarial evaluation settings;
and (4) baselines covering all four methodological categories of Al-generated code detection.

3 CodeMirage’s DATASET CONSTRUCTION

3.1 HUMAN CODE PRE-PROCESSING

To construct a comprehensive benchmark for Al-generated and paraphrased source code, we be-
gin by sourcing high-quality human-written samples from the CodeParrot GitHub-Code-Clean
dataset (CodeParrot, [2022b)) — a curated subset of the original GitHub-Code corpus (CodeParrot,
20224), as illustrated in[Figure 1] This cleaned dataset excludes overly short snippets, auto-generated
files, and code with excessive alphanumeric or non-semantic content. Importantly, the dataset was
collected and sanitized in May 2022, before the widespread deployment of modern code-generating
LLMs and Al-assisted coding agents. This timing ensures that the selected code examples are gen-
uinely human-authored. Based on the dataset’s language distribution, we select the ten most widely
used programming languages, including C, C++, C#, Go, HTML, Java, JavaScript, PHP, Python,
and Ruby. For each language, we randomly extract 1,000 representative code snippets. To preserve
diversity while maintaining tractability, we apply additional length-based filtering, ensuring that the
final samples span a broad range of real-world patterns but remain within a controlled length scale.
Additional details regarding ethical considerations and mitigation of potential dataset bias during

the human code pre-processing stage are provided in[Appendix A}

3.2 AI CODE SUMMARIZATION AND GENERATION

Following the collection of human-written code, we employ ten state-of-the-art, production-level
LLMs to generate their Al counterparts (detailed in . The process begins with AI Code
Summarization. To ensure high-quality generation and prevent direct copying, CodeMirage adopts a
text-to-code strategy in which each human-written code sample is first summarized into a descriptive
summary. The human samples in CodeMirage are often comprehensive code files, encompassing li-
brary imports, class and structure definitions, and detailed function logic. To distill this information,
we prompt the LLMs to summarize the sample’s purpose, functionality, logic overview, and key fea-
tures. The summaries also include the names of relevant libraries, functions, classes, structures, and
variables, along with any optional contextual notes describing uncommon assumptions or external

dependencies. Full prompts and example summaries are provided in
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Figure 2: Benchmark statistics of CodeMirage.

These summaries act as intermediate representations and are subsequently used as input prompts in
the next phase: Al Code Generation. Given the descriptive summary of each human-written code
sample, CodeMirage employs LLMs to generate corresponding Al code. To better align structural
characteristics with the original human sample, we additionally include metadata — such as target
line count and character length — within the prompt. Due to the inherent stochasticity of LLMs,
generated code may occasionally deviate from the desired format or exhibit insufficient novelty. To
ensure quality and distinctiveness, we apply a rule-based inspector enforcing two key constraints:
(1) consistency with the original sample’s line count and character length, and (2) adequate token-
level divergence from the original, enforced by requiring a BLEU (Papineni et al.,2002)) score below
0.5 to avoid recitation (the rationale for this threshold is detailed in [Appendix D). Samples failing
either criterion are regenerated, with repeated failures resulting in exclusion. Detailed prompts and

representative generation examples are included in[Appendix E]

3.3 AI CODE PERTURBATION

The primary perturbation technique employed in CodeMirage is Paraphrasing (Krishna et al.| 2023}
Sadasivan et al.| 2023)), a widely recognized method for evaluating the robustness of Al-generated
text detectors under adversarial and real-world conditions. Despite its relevance, most existing
benchmarks for Al-generated code detection (Suh et al., 2025} Pan et al.| 2024; |Demirok & Kutlu,
2024; Pham et al.| 2024 |Orel et al. 2025} Xu et al.l 2024b) do not incorporate such adversarial
testing. While a few studies in text detection (Mao et al., 2024} |Guo et al., |2024)) have included
paraphrased code in their evaluations, they typically utilize generic prompting schemes and limited
code samples, thereby restricting the scope and impact of their assessments. In CodeMirage, we
introduce a systematic, domain-specific paraphrasing for code, covering six transformation types.
These transformations are carefully designed to reflect realistic developer behaviors and common
coding style variations. Detailed rules, prompt designs, and representative examples are provided
in[Appendix F| Additionally, we incorporate three advanced adversarial techniques — Multi-Round
Paraphrasing, DeepWordBug (Gao et al.||2018])), and AST-based Perturbation — to further stress-test
detector robustness. While these advanced attacks are evaluated on a smaller subset of the dataset,
they offer valuable insights into more targeted and extreme adversarial conditions. The design and

evaluation of these attacks are detailed in[Appendix G|

3.4 BENCHMARK STATISTICS

CodeMirage covers ten programming languages, each containing 1,000 human-written code sam-
ples with 10,000 Al-generated counterparts and 10,000 Al-perturbed counterparts. For every lan-
guage, we obtain 2,000 outputs from each of ten production-level LLMs, yielding a 1:20 mapping
between every human sample and its LLM-generated variants. Within every 1,000-sample shard
(human or Al), we allocate 700 examples for training and 300 for testing.

We present four structural and semantic metrics of the dataset in[Figure 2} lines of code (a), character
length (b), AST depth (c), and CodeBLEU (Ren et al.,[2020) score (d). The first three metrics reflect
the overall structural characteristics of the code and show close resemblance between human-written
and Al-generated samples. This similarity implies that naive statistical classifiers would struggle to
detect Al-generated code using basic code features.
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igure reports the Code score, a composite metric calculated as:
F (d) reports the CodeBLEU posi ic calculated
CodeBLEU = o BLEU + 8- BLEU yeightea + 7 - Matchasr + 0 - Matchpr, (D

where each component is equally weighted with « = § = v = § = 0.25 by default. The median
CodeBLEU score for Al-generated code is approximately 0.3, consistent with prior observations in
text-to-code generation (Dong et al} [2023; |[Espejel et al.l [2023; |[Evtikhiev et al.l [2023). Perturbed
code yields slightly lower scores due to deliberate perturbations in both code format and structure.

To further analyze CodeMirage’s code quality, we decompose the CodeBLEU score into its four
subcomponents in (e)—(h). Both Al-generated and Al-perturbed code show relatively low
BLEU (Papineni et al.| |2002) and weighted BLEU (Ren et al., 2020) scores, indicating limited
n-gram overlap with their human counterparts. While the syntactic AST match and semantic data-
flow (Guo et al., 202 1)) match scores of Al code exceed 0.5 on average, suggesting that despite token-
level divergence, both Al-perturbed and Al-paraphrased code maintains a fair level of syntactic and
semantic consistency with human code. More detailed statistics are presented in

4 PROGRESSIVE ROBUSTNESS EVALUATION SCENARIOS

In this section, we present how CodeMirage systematically evaluates the robustness of state-of-the-
art Al-generated code detectors across six progressively challenging tasks. Our goal is to clarify their
practical reliability in real-world scenarios by identifying the conditions under which they remain
effective, exposing their limitations, and offering guidance for informed selection and improvement.
To this end, we design four evaluation settings: (1) in-distribution testing, (2) out-of-distribution
(OOD) testing, (3) adversarial perturbations, and (4) hybrid testing that combines OOD shifts with
adversarial perturbations. This progression reflects increasing levels of difficulty, enabling a system-
atic assessment that delineates applicability boundaries .

In-Distribution Testing. This setting evaluates each detector’s stability when the training and test
distributions align across multi-LL.Ms and multi-programming-languages. For each language, we
pair the human-written training set with generated samples from a single LLM, and either train the
detector on the combined data or select an optimal decision threshold. Evaluation is then conducted
on the corresponding human-written test set, paired with test samples from the same LLM.

Out-of-distribution (OOD) Testing. This setting evaluates robustness to unseen generators (cross-
model) and unseen languages (cross-language). In the cross-model case, for each language, we
train and threshold the detector on human-written samples paired with Al-generated samples from
a single LLM, and then test on the same human-written set paired with samples from all other
LLMs. In the cross-language case, we train on one language and evaluate on human-written and
Al-generated samples from the same LLM across all other languages. Results are averaged over
unseen-model or unseen-language test sets separately to yield the final OOD performance.

Adversarial Perturbation. This setting evaluates robustness against adversarial perturbations while
keeping the generating LLM fixed. We train and threshold the detector following the in-distribution
configuration, but test on perturbed Al-generated code derived from the same LLM’s original test
samples. Our primary perturbation technique is paraphrasing, supplemented by three advanced
attacks on a controlled subset of data to assess robustness against stronger adversaries.

Hybrid Testing (OOD + Adversarial Perturbation). This setting captures real-world scenar-
ios where code is generated by unseen LLMs and subsequently perturbed. We follow the cross-
model and cross-language testing protocols but pair human-written test samples with perturbed
Al-generated samples from the other LLMs or languages. Detector performance is then averaged
across these perturbed, unseen-model / unseen-language test sets to yield the hybrid result.

5 BENCHMARK RESULTS AND INSIGHTS

We conduct an extensive evaluation using CodeMirage in various scenarios and summarize the
observations into eight findings. We present representative processed results in the main text and

include the full experimental results in
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Figure 3: In-distribution performance (F1 score) comparison between all the baselines.
5.1 EVALUATION SETUP

Detectors. We evaluate ten state-of-the-art detectors spanning four categories. Zero-shot detec-
tors: LogRank (Gehrmann et all, 2019), Entropy (Gehrmann et all, 2019} [Lavergne et al., [2008),
and Binoculars (Hans et al.| 2024), which rely on token-rank or entropy-related features without
training. Embedding-based detectors: following existing studies 2025), we extract
representations with the CodeXEmbed-2B model from either raw source code
or its abstract-syntax tree (AST) and train a lightweight random forest classifier.
Fine-tuned detectors: we include GPTSniffer (Nguyen et al.| 2024} 2023)), a variant built on the
latest CodeT5+ backbone 2023)), and a RoBERTa detector 2019), with each
fine-tuned on our training corpus. Pretrained-LLM with downstream detector: Raidar
2024) and BiScope [2024), extracting features via rewriting ;Mao et a?. 2024) and
bi-directional cross entropy 2024). More details are presented in endix |

Metrics. To thoroughly assess the performance of the baseline detectors in different scenarios, we
employ three evaluation metrics in our experiments, including the FI score, TPR@FPR=10%, and
TPR@FPR=1%. The F1 score balances precision and recall, providing an overall measure of detec-
tion accuracy without favoring Al-generated or human-written code samples. For each detector, we
first identify the optimal decision threshold and then report its corresponding F'1 score. The metric
TPR@FPR=10% reports the true positive rate (TPR) when the false positive rate (FPR) is limited
to 10%, representing scenarios that can tolerate a moderate number of false alarms. Conversely,
TPR@FPR=1% measures the TPR at an FPR of only 1%, which is essential for applications where
even a small fraction of false positives is unacceptable.

5.2 ASSESS THE ROBUSTNESS OF DETECTORS UNDER A WIDE SPECTRUM OF SCENARIOS

In-distribution results are strong but potentially over-optimistic. The in-distribution results are
shown in with sub-figure (a) illustrating the results across different programming lan-
guages and (b) across different LLMs. Each value denotes the F-1 score averaged for all LLMs
and langauges respectively. Observe that the overall detection performance is strong, but may be
over-optimistic due to the overfitting problem.

Finding 1: Fine-tuning-based methods outperforms other types consistently under in-
distribution setting.

Fine-tuned detectors, e.g., GPTSniffer and CodeT5+, lead the pack, as the test data share the same
distribution with the training data, potentially introduce overfitting problem. Zero-shot approaches,
on the other hand, e.g., LogRank and Entropy, perform poorest, which makes sense given their
limited feature extraction when confronted with the complexity of code.

Finding 2: Detection is Consistent across Programming Languages, with Common Languages
Performing Slightly Better.
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Figure 4: Comparison under cross-model and cross-language OOD configurations by detector, lan-
guage, and source LLM.

We observe only slight performance differences across languages. Notably, less common languages
lead to marginally lower performance. For example, detectors typically achieve higher F1 scores
on C++ than Go or Ruby. This discrepancy arises because several detection methods, e.g., Bis-
cope (Guo et al., [2024)) and Raidar (Mao et al.| [2024), rely on pre-trained LLMs for feature extrac-
tion. These models are pre-trained on large online corpora containing more examples of common
languages (e.g., C++) than atypical ones (e.g., Ruby), resulting in stronger representations for the
former. Hence detection performances are better detection on those common languages.

Finding 3: Detection performance is largely consistent across LLMs, with smaller or less ca-
pable models being easier to detect.

Among all generators, code produced by GPT-40-mini is the easiest to detect, as reflected by con-
sistently higher scores across all detectors. This suggests that its code style is more regular and
distinctive, facilitating detection. Claude 3.5 Haiku and Llama 3.3 70B also yield relatively easy-to-
detect outputs. In contrast, code generated by Gemini-2.0-Pro is the most difficult to detect. Overall,
these results indicate that detection difficulty tends to increase with model scale and output diversity.

OOD testing significantly reduce the performance. Out-of-distribution results are shown in[Fig-|
with sub-figure (a) presents the F1 scores across detectors and (b) (c) across languages and
LLMs. We observe a constant significant degradation.

Finding 4: Fine-tuned approaches exhibit the largest degradation under OOD testing, partic-
ularly in the cross-language setting, whereas zero-shot detectors show the opposite trend with
stronger robustness.

Fine-tuned detectors (e.g., GPTSniffer and CodeT5-Plus) achieve the strongest in-distribution F1
scores but suffer the steepest declines out of distribution, reflecting overfitting of high-capacity clas-
sifiers to the training corpus. In contrast, zero-shot methods remain markedly more stable under
OOD shifts, while embedding-based and pretrained-LLM-with—downstream-detector approaches
experience moderate degradation. This observation underscores the value of zero-shot detectors.
Although their in-distribution performance is weaker, their robustness under OOD conditions makes
them an important and promising research direction.

Finding 5: Distribution shift induces a uniform, moderate performance drop across both lan-
guages and source LLMs, with no pronounced outliers.

The error bars largely overlap and per-language/per-model differences are small, indicating that the
loss is global rather than tied to specific syntax or generator families. Cross-language transfer is
typically harder than cross-model.

Adversarial perturbations consistently reduce detection performance. [Figure 5|reports F1 under
clean (blue) and paraphrased (hatched teal) inputs by detector (a), language (b), and source LLM
(c). We observe a near-uniform degradation across all settings, with overlapping error bars and no
systematic outliers.

Finding 6: Semantics-preserving paraphrases induce a broad, uniform performance drop
across languages and source LLMs.
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Figure 6: Comparison under cross-model perturb and cross-language perturb adversarial configura-
tions by detector, language, and source LLM.

Finding 7: Perturbation conducted by reasoning models usually lead to a larger performance
drop.

We observe that for non-reasoning models (DeepSeek V3, GPT40 mini, Llama 3.3 70B, and Qwen
2.5 Coder 32B), paraphrasing has minimal impact on performance. In contrast, reasoning models
(e.g., GPT 03 mini) lead to a more pronounced decline of detector’s performance. This likely stems
from their stronger comprehension abilities: they better interpret paraphrased inputs and adjust out-
puts to match human-style reasoning, making any deviations more evident after paraphrasing.

Hybrid setting is the most challenging. [Figure 6evaluates detectors under both paraphrase pertur-
bation and OOD transfer — our closest proxy to real deployment where both the source generator
and style are unknown. The baseline bars correspond to the paraphrase-only scores; adding OOD
shift produces an additional, consistent drop across detectors, languages, and LLMs.

Finding 8: The hybrid setting compounds distribution shifts and adversarial perturbations,
yielding uniform degradation across languages and source LLMs (with no clear outliers), and
fine-tuned detectors suffer the largest additional loss.

The pronounced degradation under OOD perturbation underscores the fragility of existing Al-
generated code detectors in real-world scenarios. Our TPR-at-low-FPR results reveal a similar trend,
as shown in[Appendix J| More obvious evidence is also observed under three advanced attacks on a

controlled subset of data, reported in

To further validate the robustness of our conclusions, we conduct comprehensive t-tests across all
tasks and settings. The results, presented in[Appendix T] consistently support our key findings. We
also discuss limitations and future work in|Appendix M

6 CONCLUSION

In this paper, we present CodeMirage, a large-scale benchmark for Al-generated code detection,
spanning 10 widely used programming languages and approximately 210,000 samples. The dataset
includes human-written code as well as Al-generated and perturbed variants produced by 10 state-
of-the-art production-level LLMs, with rigorous quality control to ensure reliability. We evaluate 10
representative detectors across four methodological categories under six progressively challenging
tasks and four evaluation configurations, conducting extensive analyses that reveal the strengths and
limitations of each approach. The breadth and depth of CodeMirage provide a solid foundation for
advancing the development of more robust and generalizable code detectors.
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ETHICAL STATEMENT

As a benchmark paper, we acknowledge the risk of inadvertently collecting private or low-quality
code from the web. To mitigate this, we do not directly source human-written code from GitHub. In-
stead, we rely on the well-established CodeParrot GitHub-Code-Clean |(CodeParrot| (2022b) dataset.
Additional ethical considerations, bias statements, and details about the human source code are pro-

vided with figures in[Appendix Al

Although CodeMirage encompasses a diverse range of programming languages, LL.Ms, and adver-
sarial scenarios, it is primarily designed for benchmarking detection performance in general-purpose
coding contexts. Applying it to specialized domains (e.g., student programming assignments) may
require domain adaptation or additional data collection to ensure proper alignment with the target
setting. Importantly, we do not recommend using CodeMirage for directly training and deploying
detectors in real-world applications. The primary goal of CodeMirage is to enable rigorous and re-
alistic evaluation, allowing researchers to better identify detector limitations and enhance robustness
prior to deployment.

We also provided a statement regarding the use of large language models (LLMs) in

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed step-by-step descriptions of our data construction
pipeline and evaluation methodology within the paper. We will release all benchmark data, and
evaluation code under an open-source license upon acceptance. In addition, we include implemen-
tation details, hyperparameter configurations, and dataset statistics in the appendices to facilitate
faithful replication of our results. Together, these resources are intended to enable the community to
fully reproduce our experiments and extend CodeMirage to future studies.
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APPENDIX

To further support and validate our CodeMirage benchmark, we provide the following supplemen-
tary materials:

. Detailed ethical and bias statement for human code collection and pre-
processing in CodeMirage.

. Detailed descriptions of the production-level LLMs used in CodeMirage and
their corresponding generation settings.

. Prompts used in the code summarization phase and representative examples.
. The rationale behind our BLEU-based data filtration.
. Prompts used in the code generation phase and representative examples.

* [Appendix F} Domain-specific transformation rules, prompts, used in the code paraphrasing
phase with representative examples.

. Introduction and results with three advanced perturbation techniques.

. Comprehensive statistics and distributions of the CodeMirage dataset.

. Detailed descriptions of the baseline detectors included in our evaluation.

. Supplementary results based on TPR@ FPR metrics.

. Extended and detailed experimental results across all evaluation settings.

. T-test across all the tasks’ results to show the steadiness of our key findings.
. Additional discussion on the limitations and future improvement directions.
. LLM usage declaration.

A ADDITIONAL ETHICAL INFORMATION FOR HUMAN CODE IN CodeMirage
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(a) Human code license distribution. (b) Human code repo-level repetition rate.

Figure 7: CodeMirage’s human source code license and diversity information.

As described in our main text and ethical statement, CodeMirage does not directly collect human-
written code from GitHub. Instead, it relies on the CodeParrot GitHub-Code-Clean dataset (Code-
Parrot, [2022b)), a curated and moderated subset from a larger public GitHub dataset maintained by
Google and GitHub. This ensures a high-quality and privacy-conscious data source.

All human-written code samples in our CodeMirage are hence from open-source projects with li-
censes permitting redistribution and research use. As shown in (a), the license distribution
includes widely used licenses such as MIT, Apache-2.0, and GPL variants. For licenses requiring
license notices (e.g., GPL-3.0), we retain the original license headers.

Besides, the ten programming languages in CodeMirage were selected based on their frequency in
the GitHub-Code-Clean dataset (CodeParrotl, 2022b), which contains over 850GB of curated code
from open-source projects on GitHub. We chose the top 10 most widely used languages in this

corpus, prioritizing those with high practical relevance and widespread exposure to LLM-generated
code in current development workflows.

17



Under review as a conference paper at ICLR 2026

Table 2: Detailed configurations of the production-level LLMs used in CodeMirage.

LLM Name API/ Model Path Hyper-Parameter
Claude-3.5-Haiku (Anthropic{[2024) Anthropic/claude-3-5-haiku-20241022 temperature = 1.0
GPT-40-mini (OpenAl[[2024) OpenAI/gpt-40-mini-2024-07-18 temperature = 1.0
GPT-03-mini (OpenAl|[2025) OpenAI/o03-mini-2025-01-31 temperature = | 0_ .
reasoning_effort = medium

Gemini-2.0-Flash (Pichai et al.||2024) Google/gemini-2.0-flash temperature = 1.0
Gemini-2.0-Flash-Thinking (Kane[[2025) Google/gemini-2.0-flash-thinking-exp-01-21 temperature = 1.0
Gemini-2.0-Pro (Kavukcuoglu/[2025} Google/gemini-2.0-pro-exp-02-05 temperature = 1.0
DeepSeek-V3 (Liu et al.|[2024a) deepseek-ai/DeepSeek-V3 temperature = 1.0
DeepSeek-R1 (Guo et al.[|2025) deepseek-ai/DeepSeek-R1 temperature = 1.0
Llama-3.3-70B (Meta|[2024) meta-llama/Llama-3.3-70B-Instruct temperature = 0.6
Qwen-2.5-Coder-32B (Hui et al..||2024) Qwen/Qwen2.5-Coder-32B-Instruct temperature = 0.7

We acknowledge that CodeMirage may not yet cover certain emerging or underrepresented lan-
guages, as expanding to all possible languages would require substantial additional resources. How-
ever, to the best of our knowledge, our language coverage already exceeds that of existing bench-

marks in this area, as shown in

Moreover, we mitigate repository-specific bias by sampling from a broad set of projects. As shown
in (b), our repo-level repetition rate analysis reveals that, for most languages, fewer than
10% of human-written code samples originate from the same repository. In total, the 10,000 human-
written code files in CodeMirage are sourced from 9,037 unique repositories, effectively minimizing
the risk of dominance by any single repository.

B DETAILS OF GENERATIVE MODELS AND GENERATION SETTINGS

In CodeMirage, we leverage ten production-level LLMs from six leading companies to gener-
ate code samples, covering the majority of LLMs commonly used for real-world coding tasks.
Among these ten models, four are open-source and three are designed with reasoning capa-
bilities.  Specifically, CodeMirage includes GPT-40-mini (OpenAl, 2024), 03-mini (OpenAl,
2025)), Claude-3.5-Haiku (Anthropic, 2024), Gemini-2.0-Flash (Pichai et al. 2024), Gemini-2.0-
Flash-Thinking-Experimental (Kanel [2025)), Gemini-2.0-Pro-Experimental (Kavukcuoglul [2025)),
DeepSeek-V3 (Liu et al.,[2024a)), DeepSeek-R1 (Guo et al.,|2025)), Llama-3.3-70B (Meta,[2024)), and
Qwen-2.5-Coder-32B (Huui et al.| [2024). We access all ten LLMs via API-based services with de-
fault temperatures. Detailed configurations and generation settings for these models are presented in
For key generation hyper-parameters such as temperature and reasoning_effort,
we use either default values or officially recommended settings to reflect realistic usage. Importantly,
we avoid setting temperature to zero, as doing so would produce overly deterministic outputs
that are easier to detect. Instead, we adopt general-purpose settings for high-quality while more
diverse and less predictable code generation.

C ADDITIONAL DETAILS OF AI CODE SUMMARIZATION

To generate high-quality and representative summaries that comprehensively describe the charac-
teristics of a code sample while preventing the leakage of concrete code, we design a structured
summarization prompt covering eight key aspects. We then prompt the LLMs to act as summariz-
ers, generating summaries based on the input code file using this carefully crafted prompt. The full
summarization prompt used in CodeMirage is as follows:

@ Summarization Prompt

Analyze the provided code snippet and generate a concise and informative description of its functional-
ity, purpose, and design. Avoid directly including or mirroring the given code. Focus on abstracting the
logic, functionality, and intent.

Follow the output format:

1. Purpose: A high-level summary of what the code is intended to achieve.
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2. Functionality: Describe the main tasks performed by the code, including inputs, outputs, and their
roles, without referencing exact code or variable names.

3. Logic Overview: Explain the key logic, algorithms, or patterns conceptually, avoiding specific code
structures or syntax.

4. Key Features: Highlight unique approaches or techniques without mentioning explicit implemen-
tation details.

5. Key Libraries: Include the key libraries used in the code snippet.
6. Key Functions: Include the key function names used in the code snippet.

7. Key Class, Structure, Variable: Include the key class, structure, and variable names used in the
code snippet.

8. Contextual Notes (optional): Any assumptions, dependencies, or inferred background information.

Below, we present a concrete Python code example with the summary generated by GPT-03-
mini 2025), illustrating the consistency and descriptive quality of the summarization pro-
cess in CodeMirage.

B3 Python Summary Example

Human-Written Code

import logging
import voluptuous as vol
from homeassistant.components.binary_sensor import
(BinarySensorDevice, PLATFORM_SCHEMA, SENSOR_CLASSES_SCHEMA)
from homeassistant.components import enocean
from homeassistant.const import (CONF_NAME, CONF_ID, CONF_SENSOR_CLASS)
import homeassistant.helpers.config_validation as cv

_LOGGER = logging.getLogger (__name__ )
DEPENDENCIES = [’enocean’]
DEFAULT_NAME = ’EnOcean binary sensor’

PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend ({
1)
def setup_platform(hass, config, add_devices, discovery_info=None) :

class EnOceanBinarySensor (enocean.EnOceanDevice, BinarySensorDevice) :
def __init_ (self, dev_id, devname, sensor_class):
Q@property
def name (self) :
Qproperty
def sensor_class(self):

def value_changed(self, value, value2):

GPT-03-mini Generated Summary

1. Purpose: The code integrates binary sensors that communicate using an EnOcean protocol into a larger home automation frame-
work. It enables sensor events to be received, processed, and dispatched within the automation system.

. Functionality: The implementation defines a platform component for binary sensors. It validates configuration inputs, creates ...
. Logic Overview: The code establishes a configuration schema to ensure correct setup parameters. It then creates a ...

Key Features: Validates configuration using a dedicated schema to ensure data consistency. Leverages inheritance to ...

. Key Libraries: Logging, Voluptuous for configuration validation, ...

. Key Functions: ... An event handler method that processes changes in sensor values and triggers events ...

. Key Class, Structure, Variable: A sensor class that ... , Variables for device identification, sensor naming, ...

[ R RV S N N

. Contextual Notes: The design assumes integration within a home automation ecosystem where components communicate via ...
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For more examples and summaries across different programming languages and generative models,
please refer to our CodeMirage dataset.

D ADDITIONAL DETAILS OF THE BLEU-BASED DATA FILTRATION
To filter potentially memorized Al-generated code, we use a BLEU-based inspector and set a con-
servative threshold of 0.5. This section explains the rationale behind this choice.

Specifically, to filter potentially memorized Al-generated code, we use a BLEU-based inspector and
set a conservative threshold of 0.5. This section explains the rationale behind this choice.

B Human-Written Code Example

from typing import List

def has_close_elements (numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
for idx, elem in enumerate (numbers) :
for i1idx2, elem2 in enumerate (numbers) :
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True

return False

B3 Al-generated Code Example

BLEU = 0.57 (Filtered Out)

from typing import List

def has_close_elements (numbers: List[float], threshold: float) -> bool:

nun

Check if any two elements in the list are closer than the specified threshold.

Args:
numbers: List of floating-point numbers to compare
threshold: Maximum allowed distance between two numbers

Returns:
Boolean indicating presence of close elements

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.1, 3.0], 1.0)
True
wnn
for idx, elem in enumerate (numbers) :
for i1dx2, elem2 in enumerate (numbers) :
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True

return False

4

As shown above, this Al-generated example shares substantial overlap in structure, variable naming,
and logic with the human-written version. Despite being technically valid, it lacks sufficient novelty
and is filtered out to avoid near-duplicates.
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B3 Al-generated Code Example

BLEU = 0.45 (Kept)
from typing import List

def has_close_elements (numbers: List[float], threshold: float) -> bool:

nun

Determines if any two elements in the list are closer than the threshold.

Args:
numbers: List of floating point numbers to check
threshold: Maximum allowed distance between elements

Returns:
Boolean indicating presence of closely positioned numbers

>>> has_close_elements([1.0, 2.0, 3.0], 1.5)
False
>>> has_close_elements([1.0, 2.1, 3.0], 1.0)
True

nun

for idx, elem in enumerate (numbers) :
for idx2, elem2 in enumerate (numbers[idx+1:], start=idx+1):
distance = abs(elem - elem2)
if distance < threshold:
return True
return False

In contrast, this version introduces meaningful variation, such as an optimized iteration and rewritten
documentation. While functionally correct, it is not semantically identical to the original, and thus
retained.

Furthermore, as shown in (e)-(f), the majority of Al-generated and paraphrased samples
naturally fall well below the 0.5 BLEU threshold. This indicates that our generation pipeline already
reduces memorization risk, and the BLEU filter acts as a conservative safeguard rather than a strict
enforcement mechanism.

E ADDITIONAL DETAILS OF Al CODE GENERATION

After generating a comprehensive yet concise summary of the human-written code, we prompt
LLMs to produce corresponding Al-generated versions. To preserve structural consistency, we ex-
plicitly include the statistical properties (e.g., line of code and character length) of the original code
in the prompt. The complete code generation prompt used in CodeMirage is presented below:

@ Code Generation Prompt

Generate a { Language } code snippet with around {Line_of_Code} lines and {Char_Length}
character length following the description. Only output the code, no any other information.

{Summary}

The generated code is then passed through a rule-based inspector, as described in [subsection 3.2}
to filter out overly short, overly long, or null outputs. Below, we show a Python code example

generated by GPT-03-mini 2025)), based on the summary presented in[Appendix Ct

B3 AI-Generated Python Example

GPT-03-mini Code Generation

import logging
import voluptuous as vol
from homeassistant.const import CONF_NAME, CONF_DEVICE_ID

DOMAIN = "enocean_binary_sensor"
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CONF_SENSOR_TYPE = "sensor_type"

class EventBus:
def fire(self, event_type, event_data):

class EnOceanDevice:
def __init__ (self, device_id):

def send_message (self, message):

class BinarySensorDevice:

class EnOceanBinarySensor (EnOceanDevice, BinarySensorDevice) :

if name == "__main__ ":

logging.basicConfig(level=logging.DEBUG)
hass = Hass ()
config = {

CONF_DEVICE_ID: "enocean_001",

}

setup_platform(hass, config)

We observe that though the detailed implementation of the Al-generated code differs from the
human-written version, it employs the same key libraries and similar variables to achieve com-
parable functionality, illustrating the quality of the Al-generated code. More examples are presented
in CodeMirage dataset.

F ADDITIONAL DETAILS OF AI CODE PARAPHRASING

We further evaluate the robustness of detectors under adversarial paraphrasing, a prevalent and prac-
tical challenge in real-world applications. Our adversarial setup is grounded in prompt-based para-
phrasing, which represents one of the most accessible and commonly used evasion strategies in
practice. Unlike prior works on natural language paraphrasing (Krishna et al) 2023}, [Sadasivan|
2023), which rely on generic and concise prompts, we propose a code-specific paraphras-
ing prompt tailored to the programming domain. This prompt incorporates seven transformation
strategies specifically designed for source code. The full prompt is provided below:

@ Paraphrasing Prompt

Transform the given code to bypass Al-generated code detectors by mimicking human coding styles.
Make structural, stylistic, and naming changes while preserving exact functionality. Apply the follow-
ing:

. Rename variables, functions, and classes with meaningful, human-like names.

. Adjust formatting (indentation, spacing, line breaks) and reorganize imports logically.
. Rewrite logic with equivalent constructs (e.g., refactor loops, conditionals).

Replace common standard library functions with alternatives or custom helpers.

. Vary expressions (e.g., ‘a+ b’ — ‘sum([a, b])’) and simplify inline logic into reusable functions.

< Y N NS O

. Transform literals (e.g., single vs. double quotes, ‘10’ — ‘0OxA’) and reorder independent code
blocks.

7. Add subtle redundancies (e.g., intermediate variables) to resemble human-written code.

Keep the line of code and character length similar to the original code and only output the transformed
code. No any other additional text and information.

We then apply the paraphrasing prompt to the Al-generated code sample and obtain its paraphrased
version. Below, we present the paraphrased code example produced by GPT-03-mini
2025)), based on the Al-generated example provided in
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B AI-Paraphrased Python Example

GPT-03-mini Paraphrased Code

import logging
import voluptuous as schema_validator

from homeassistant.const import CONF_NAME, CONF_DEVICE_ID
import homeassistant.helpers.config_validation as config_val

logger = logging.getLogger (__name__ )
SENSOR_DOMAIN = ’enocean_binary_sensor’
KEY_SENSOR_KIND = ’sensor_type’
SensorConfigSchema = schema_validator.Schema ({

3

class SimulatedEventBus:
def trigger(self, event_category, particulars):

class BaseEnOceanDevice:
def __init__ (self, dev_identifier):

def dispatch_message (self, msg_payload) :
class BasicBinarySensor:
class EnOceanSensorClient (BaseEnOceanDevice, BasicBinarySensor) :
if _ name_ == '_ _main__':
logging.basicConfig(level=logging.DEBUG)
simulated_hass = SimulatedHomeAssistant ()

input_configuration = {

}

initialize_platform(simulated_hass, input_configuration)

Compared to the original Al-generated code, the paraphrased version uses different aliases for im-
ported libraries, introduces redundant classes and variables, and modifies function and class names
with different implementations, while preserving the overall program functionality. Additional ex-
amples can be found in the full CodeMirage dataset.

G ROBUSTNESS EXPLORATION WITH MORE ADVANCED ATTACKS

Additional to the paraphrasing technique introduced in the main text, we further incorporate three ad-
vanced adversarial strategies to stress test Al-generated code detectors on a controlled subset of data.
These techniques emulate more sophisticated manipulations that could realistically be employed by
motivated adversaries, thereby enhancing both the realism and diversity of our benchmark.

Multi-Round Paraphrasing: We design an LLM-based feedback loop in which an auxiliary model
evaluates whether paraphrased code satisfies predefined transformation rules. When violations are
detected, the auxiliary model provides refinement suggestions, and another paraphrasing round is
triggered. This iterative process yields increasingly sophisticated and evasive adversarial samples.

DeepWordBug 2018): We adapt this well-established obfuscation method, originally
proposed for text classification, to the code detection setting. Specifically, we implement a multi-
round variant that directly targets our RoOBERTa-based detector, thereby simulating realistic, targeted
attacks on learning-based detection models.

AST-based Perturbation: As an untargeted variant of DeepWordBug, this technique applies
character-level perturbations to non-functional code elements (e.g., comments, function names)
identified through AST analysis. Importantly, these transformations do not alter program seman-
tics, but they increase surface-level variability and obfuscation.
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Table 3: Performance of baseline detectors under three advanced attacks and their combinations.

Attack LogRank Entropy Binoculars Embed- Code Embed- AST GPTSniffer CodeT5+ RoBERTa Raidar BiScope
One-round Paraphrasing 0.5271 0.5858 0.1914 0.7112 0.8314 0.9398 0.9684 0.9495 0.8243 0.6514
Multi-round Paraphrasing 0.4516 0.5161 0.1253 0.7112 0.8314 0.9630 0.9769 0.9532 0.8464  0.5676
DeepWordBug 0.3713 0.4531 0.5104 0.7081 0.8071 0.7140 0.9474 0.6667 0.6874  0.4871
Paraphrasing + DeepWordBug 0.1907 0.2659 0.0329 0.7097 0.8159 0.6550 0.9456 0.6667 0.6033  0.2398
AST-based Perturbation 0.0364 0.0514 0.0916 0.7081 0.8228 0.9000 0.9562 0.7721 04279 04507
Paraphrasing + AST-based Perturbation ~ 0.0074 0.0099 0.0144 0.7050 0.8331 0.8507 0.9384 0.6667 0.2021 05120

Table 4: CodeMirage’s data quantity statistics across different LLMs and programming languages.

LLM Paraphrase Python Java JavaScript C++ C C# Go Ruby PHP HTML
Human X 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Claude-3.5-Haiku X 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
’ ! v 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
DeepSeek-R1 X 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
P v 1,000 1,000 1,000 999 1,000 999 1,000 1,000 1,000 1,000
DeenSeek-V3 X 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
P N v 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Gemini-2.0-Flash X 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
’ ) v 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Gemini-2.0-Flash-Thinkin X 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
) ” & v 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Gemini-2.0-Pro X 1,000 1,000 1,000 1,000 1,000 998 1,000 1,000 998 999
- v 1,000 1,000 1,000 1,000 1,000 998 1,000 1,000 998 999

GPT-40-mini X 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
v 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Llama-3.3-70B X 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
’ v 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
GPT-03-mini X 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
v 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Qwen-2.5-Coder-32B X 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
’ v 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Beyond these single techniques, we also construct hybrid adversarial attacks by combining one-
round paraphrasing with either DeepWordBug or AST-based perturbations, thereby producing more
complex and challenging examples. All experiments are conducted on Python code generated by

03-mini, with results presented in

The results demonstrate that these advanced attacks substantially degrade detection performance
across all baselines compared to one-round paraphrasing alone. Detectors that rely heavily on pre-
trained language model signals — such as LogRank, Entropy, and BiScope — are particularly vul-
nerable, while embedding-based detectors exhibit greater resilience. Notably, CodeT5+ achieves the
highest robustness overall.

Importantly, these findings reinforce our core observation: current detectors lack robustness against
adversarial manipulations. Even lightweight paraphrasing already causes a marked performance
drop, and the addition of stronger adversarial strategies further highlights their fragility under real-
istic and evolving attack scenarios.

H ADDITIONAL STATISTICS OF CodeMirage’S DATASET

In we present detailed data quality statistics of the CodeMirage dataset across eight
metrics. Here, we additionally report the dataset’s quantity statistics, as summarized in[Table 4} For
both human-written code and most Al-perturbed code, we collect or synthesize 1,000 samples per
programming language, with a standard 700/300 split for training and testing, respectively.

However, for some LLMs and specific languages, such as Gemini-2.0-Pro (Kavukcuoglu, [2025) on
C#, we fall slightly short of the 1,000-sample target due to repeated generation refusals, typically
caused by the model’s built-in output filtering mechanisms. Despite these occasional gaps, the
overall data quality and balance of the CodeMirage dataset remain unaffected.

Furthermore, we also evaluate the impact of three additional advanced adversarial attacks and their
combinations on a representative subset of the dataset. Details are provided in
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I ADDITIONAL DETAILS OF BASELINE DETECTORS

In this section, we provide additional introduction and implementation details for each of the ten
baseline detectors evaluated in CodeMirage.

LogRank (Gehrmann et al., 2019) & Entropy (Lavergne et al.;, 2008). These two baseline detec-
tors represent classic zero-shot detection approaches that rely on pretrained LLMs. The underlying
intuition is that LLMs are more familiar with Al-generated text or code, resulting in lower token-
level log-rank or entropy values compared to human-written content. Both methods compute the
average token-level statistic (log-rank or entropy) over the input, which is then used as the detection
score. In CodeMirage, we implement these detectors using the state-of-the-art open-source pre-
trained model Llama-3.2-3B-Instruct (meta—1lama/Llama—3.2-3B-Instruct) as the scor-
ing backbone.

Binoculars (Hans et al., 2024). Binoculars is a state-of-the-art zero-shot detector based on the
insight that Al-generated text or code tends to receive more consistent scores across different LLMs
than human-written content. To exploit this property, the method feeds the input simultaneously
into two distinct LLMs and computes a novel cross-perplexity metric as the detection score. In
CodeMirage, we adopt the official implementatmlﬂ of Binoculars to ensure reproducibility and
optimized performance.

Embed-Code (Suh et al., |2025) & Embed-AST (Suh et al., 2025). These two embedding-based
methods leverage pretrained code embedding models to extract semantic representations of entire
code files. Embed-Code encodes the raw source code directly, while Embed-AST first parses the
code into its abstract syntax tree (AST) using tree—sitterﬂ and then encodes the AST. The em-
beddings are then passed to a supervised classifier for detection. In CodeMirage, we employ the
latest CodeXEmbed-2B (Liu et al., 2024b) model as the embedding model and use a Random For-
est (Breiman) 2001) classifier as the downstream detector.

GPTSniffer (Nguyen et al., 2023;2024). GPTSniffer is a state-of-the-art fine-tuning-based detector
that leverages the code-related capability of CodeBERT (Feng et al.| 2020). It is fine-tuned on a la-
beled dataset consisting of both human-written and Al-generated code samples, and evaluated on un-
seen test data. In CodeMirage, we adopt training hyperparameters consistent with prior work (Orel
et al., 2025): 5 training epochs, a learning rate of 3e-4, weight decay of 1le-3, and a warmup ratio of
0.1. We train GPTSniffer on CodeMirage’s training set and evaluate on CodeMirage’s test set.

CodeT5+ (Wang et al.,[2023) & RoBERTa (Liu et al.,)2019). These two fine-tuning-based detectors
follow the same training pipeline as GPTSniffer, but utilize different backbone models: the latest
CodeT5+ (Wang et al, [2023) and the classic RoBERTa (Liu et al., 2019). In CodeMirage, we
use the same training hyperparameters and evaluation settings as those employed for GPTSniffer to
ensure a fair comparison.

Raidar (Mao et al.,[2024). Raidar is based on the observation that LLMs tend to modify a greater
proportion of human-written content compared to Al-generated content. It hence uses multiple
prompts to instruct an LLM to rewrite the input and then computes a set of numerical features (e.g.,
Bag-of-Words edit distance and Levenshtein score). These features are used to train a downstream
classifier as the final detector. In CodeMirage, we adopt the latest GPT-4.]-nan as the rewriting
model, which is stronger than the original GPT-3.5-Turbo used in Raidar. We also follow the official
implementatiorﬂ to extract features and train the detection model.

BiScope (Guo et al., 2024). BiScope is a state-of-the-art detector that leverages a pre-trained LLM
to extract bi-directional entropy features, which are then used to train a lightweight downstream clas-
sifier. The bi-directional entropy is designed to capture both next-token prediction (forward entropy)
and previous-token memorization (backward entropy) from the model’s output logits. In CodeM:i-
rage, we use Llama-3.2-3B-Instruct (neta—-1lama/Llama-3.2-3B-Instruct) as the feature

'https://github.com/ahans30/Binoculars
Zhttps://github.com/tree-sitter/tree-sitter
*https://platform.openai.com/docs/models/gpt—4.1-nano
*nttps://github.com/cvlab-columbia/raidarllmdetect
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Figure 8: Comparison Between Different Evaluation Metrics. The bar charts illustrate the aver-
age F1 scores of baseline detectors on different LLMs across programming languages.

extractor for BiScope, consistent with the scoring model used in LogRank and Entropy. A Random
Forest 2001) classifier is employed as the downstream detector.

J EVALUATION RESULTS OF ADDITIONAL METRICS

The results appear in[Figure 8 where the x-axis lists the detection methods and the y-axis shows their
metric values. As before, each bar reflects the mean performance across ten programming languages
and ten LLMs, with error bars indicating one standard deviation. The figure is divided into six
panels, each corresponding to a different evaluation task. Despite decent F1 scores across the board,
all detectors suffer a dramatic drop in true-positive rate once the false-positive rate is constrained
(e.g., TPR@FPR=1% is generally lower than 0.3), showing that they fail to catch enough positives
under realistic, low false alarm requirements and are therefore less practical.

K ADDITIONAL EVALUATION RESULTS

In this section, we present the complete F1 scores of all baseline detectors evaluated across different
LLMs and programming languages. Specifically, [Figure 9|shows the results under the in-distribution

task, while [Figure T0|reports the scores under the adv. perturb task. [Figure T1|illustrates the results
under the cross-model task, and [Figure 12] presents the scores under the cross-model perturb task.

The results of cross-language task and cross-language perturb task are presented in and
respectively.

These comprehensive results are consistent with the trends discussed in[section 3] further validating
the key findings derived from the CodeMirage evaluation.
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Figure 9: Complete F1 scores of all baseline detectors across various LLMs and programming
languages under the in-distribution configuration.
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Figure 10: Complete F1 scores of all baseline detectors across various LLMs and programming
languages under the paraphrase configuration.
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Figure 11: Complete F1 scores of all baseline detectors across various LLMs and programming
languages under the cross-model configuration.
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Figure 12: Complete F1 scores of all baseline detectors across various LLMs and programming
languages under the cross-model paraphrase configuration.
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Figure 13: Complete F1 scores of all baseline detectors across various LLMs and programming
languages under the cross-language configuration.
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Figure 14: Complete F1 scores of all baseline detectors across various LLMs and programming
languages under the cross-language paraphrase configuration.
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Figure 15: T-test result across all the evaluation tasks.

L T-TEST ACROSS ALL THE TASKS

To further evaluate how consistent and general of our key findings based on our evaluation, we
further conduct the t-test across all the tasks’ results, shown in across all 10 baselines
over 600 distinct evaluation settings (10 languages x 10 generative models x 6 tasks). This analysis
quantifies the statistical significance of observed performance differences. The results align well
with our key findings in the main text. For example, fine-tuned methods such as CodeT5-Plus and
GPTSniffer consistently outperform other baselines, as reflected in large-magnitude t-values and
very low p-values when compared to other types of detectors. The generaly low p-value across all
the pair-wise comparisons also illustrate the steadiness of our key finds in the main text.

M LIMITATIONS AND FUTURE WORK

While CodeMirage represents a significant step toward a more comprehensive evaluation of Al-
generated code detectors, several limitations remain and could be addressed in future work.

First, though CodeMirage includes a broad set of programming languages, LLMs, and detectors,
it does not exhaustively cover all possibilities. Additional languages, particularly those less com-
monly used in mainstream software development but still important in specific domains, remain
unexplored. Similarly, many emerging LLMs and detection techniques are not included in the cur-
rent benchmark. Future work could expand CodeMirage to incorporate these newly emerged models
and underrepresented languages, enabling broader and more inclusive evaluations.

Second, CodeMirage focuses primarily on document-level detection. With the rapid advancement
and increasing adoption of sophisticated coding assistants, extending Al-generated code detection
to multi-file or project-level contexts represents an important and meaningful direction. While our
benchmark does not yet capture this dimension, we highlight it as a valuable direction for future
exploration.

Despite these limitations, CodeMirage advances the field by offering a more comprehensive and
realistic evaluation benchmark compared to prior work (Suh et al., 2025; |Pan et al.| 2024; Demirok:
& Kutlu, 2024; Pham et al.| 2024} |Orel et al.| 2025} |Xu et al.| 2024b). We believe the insights
obtained and evaluation platform established by CodeMirage will serve as a strong foundation for
developing more robust and generalizable Al-generated code detectors.

N USE OF LARGE LANGUAGE MODELS (LLMS)

We employed LLMs only for copyediting (grammar and style). They did not contribute to the
research design, analyses, writing of technical content, or interpretation of results. While our bench-
mark includes code generated by LLLMs as test data, LLMs were not used to write or structure the
paper. All scientific content and conclusions are by the authors.
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