CodeMirage: Stress-Testing AI-Generated Code Detectors Against Production-Level LLMs

Anonymous authorsPaper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly integrated into software development, generating substantial volumes of source code. While they enhance productivity, their misuse raises serious concerns, including plagiarism, license violations, and the propagation of insecure code. Robust detection of AI-generated code is therefore essential, and requires benchmarks that faithfully reflect realworld conditions. Existing benchmarks, however, are limited in scope, covering few programming languages and relying on less capable models. In this paper, we introduce *CodeMirage*, a comprehensive benchmark that addresses these gaps through three key contributions: (1) coverage of ten widely used programming languages, (2) inclusion of both original and perturbed code from ten state-ofthe-art, production-level LLMs, and (3) six progressively challenging tasks across four evaluation configurations. Using *CodeMirage*, we evaluate ten representative detectors spanning four methodological paradigms under realistic settings, with performance reported across three complementary metrics. Our analysis yields eight key findings that reveal the strengths and limitations of current detectors and highlight critical challenges for future research. We believe *CodeMirage* provides a rigorous and practical testbed to drive the development of more robust and generalizable AI-generated code detectors.

1 Introduction

Large Language Models (LLMs) are rapidly evolving and demonstrating increasing capabilities in coding, fundamentally transforming the software development ecosystem. Recent LLMs such as ChatGPT (OpenAI, 2022) and Claude (Anthropic, 2025) exhibit remarkable code generation performance, producing high-quality outputs in response to concise natural language prompts. The emergence of reasoning-capable models like DeepSeek-R1 (Guo et al., 2025) has further accelerated LLM adoption among developers. According to Stack Overflow's industry report (Stack Overflow, 2024), 82.1% of the 65,000 surveyed developers report using ChatGPT (OpenAI, 2022) during their development workflow. Capitalizing on the strong coding abilities of LLMs, assistant tools such as GitHub Copilot (Friedman, Nat, 2022) and Cursor (Cursor, 2023) have been developed to enhance productivity by helping developers write, modify, and debug code directly within integrated development environments (IDEs). Furthermore, state-of-the-art LLM-based agentic systems such as OpenHands (Wang et al., 2025) achieve up to a 65.8% resolved rate on SWE-Bench (Jimenez et al., 2024), demonstrating the effectiveness of LLMs in addressing real-world software engineering tasks. These trends indicate that LLMs and their associated tools are becoming integral to modern software development workflows.

However, the rapid spread of AI-generated code has raised concerns about new vulnerabilities and misuse. Systematic benchmarks show that LLM outputs often ship with logic errors and latent security flaws (Liu et al., 2023; Gao et al., 2023; Tóth et al., 2024; Zhang et al., 2023; Pearce et al., 2022; Kaniewski et al., 2024). Comparative evaluations reveal that AI suggestions can embed at least as many vulnerabilities as human code (Khoury et al., 2023; Wang et al., 2024; Tambon et al., 2025; Vaidya & Asif, 2023; Asare et al., 2023; Tihanyi et al., 2025). Furthermore, LLMs are susceptible to manipulation (Kaniewski et al., 2024), including poisoning attacks (Yan et al., 2024; Cotroneo et al., 2024; Oh et al., 2024) and prompt injections (Mastropaolo et al., 2023; Zeng et al., 2025), which can induce the generation of targeted vulnerable code. At the same time, educators warn of an impending wave of AI-driven plagiarism that evades conventional detectors (Hutson,

055

056

057

058

060

061

062

063

064

065

066

067

068

069

071

072

073

074

075

076

077

078

079

081

082

084

085

087

090

091

092 093

094

096

098

100

101

102

103

104 105

106

107

2024; Steponenaite & Barakat, 2023; Khalaf, 2025; Dehouche, 2021; Xiao et al., 2022; Sağlam et al., 2024; Khalil & Er, 2023), while legal scholars highlight intellectual-property (Yu et al., 2023; Li et al., 2023; Xu et al., 2024a; Stalnaker et al., 2024) and licence-compliance (Xu et al., 2024c) risks. Robust AI-code detection is therefore critical for secure software supply chains, responsible academic practice, and licence compliance.

To address the challenges of AI-generated code identification, various detection methods have been proposed, leveraging statistical features of code (Idialu et al., 2024), the capabilities of language models (Xu & Sheng, 2024; Shi et al., 2025; Yang et al., 2023; Ye et al., 2025; Xu et al., 2025; Nguyen et al., 2024; 2023), and code embedding models (Suh et al., 2025; Liu et al., 2024b). However, evaluations based on existing benchmarks and datasets (Suh et al., 2025; Pan et al., 2024; Demirok & Kutlu, 2024; Pham et al., 2024; Orel et al., 2025; Xu et al., 2024b) often fall short in three key aspects. First, they typically cover only a narrow set of programming languages—primarily C++ and Python—while neglecting other widely used languages such as Go and HTML, resulting in limited language diversity compared to real-world software development. Second, most benchmarks rely on open-source LLMs with relatively small model sizes and lower generation quality, or include only a small number of commercial models, leaving a gap between benchmark conditions and real-world usage. Third, most existing datasets lack practical adversarial scenarios, such as paraphrasing (Krishna et al., 2023; Sadasivan et al., 2023), which are common in practice and essential for evaluating the robustness of detection systems. Thus, a rigorous benchmark that captures realworld language diversity, modern commercial models, and adversarial scenarios is indispensable for driving meaningful progress in this emerging field.

We hence introduce *CodeMirage*, a comprehensive benchmark for stress-testing AI-generated code detectors under realistic and adversarial conditions, to solve the three major limitations identified in prior benchmark work. *CodeMirage* is constructed from real-world human-written code and enriched with both AI-generated and perturbed variants produced by a diverse set of state-of-the-art reasoning and non-reasoning LLMs from six major commercial service providers.

Our key contributions are as follows:

- We present a large-scale, multilingual benchmark for stress-testing AI-generated code detection, spanning 10 widely used programming languages. The dataset comprises approximately 210,000 samples, including 10,000 human-written code files sourced from GitHub (CodeParrot, 2022b), as well as AI-generated and perturbed counterparts produced by 10 production-level LLMs.
- We design four progressively challenging evaluation configurations with six tasks and three complementary performance metrics to facilitate rigorous and realistic assessment of detector effectiveness under various real-world scenarios.
- We conduct a comprehensive evaluation of 10 representative detectors across four methodological paradigms using *CodeMirage*, providing insights into their accuracy, robustness, and generalization across program languages, models, and adversarial settings.

2 BACKGROUND AND RELATED WORK

2.1 TAXONOMY OF AI-GENERATED CODE DETECTORS

Detecting AI-generated content has been a long-standing challenge in both the natural language (Uchendu et al., 2021; Gehrmann et al., 2019; Akram, 2023; Ghosal et al., 2023) and computer vision domains (Rössler et al., 2018; Güera & Delp, 2018; Zhu et al., 2023; Dolhansky et al., 2020; Zi et al., 2020), predating even the emergence of large language models (LLMs) (Vaswani et al., 2017; Achiam et al., 2023) and diffusion-based generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020). In contrast, detecting AI-generated source code is a relatively new research direction, emerging primarily in the last two years due to the rapid advancements in the coding capabilities of LLMs (OpenAI, 2022; Anthropic, 2025).

Inspired by traditional statistical-based methods used for AI-generated text detection (Ramos et al., 2003; Ippolito et al., 2020), early approaches for code focus on analyzing surface-level statistical features. For example, Whodunit (Idialu et al., 2024) extracts stylometric and complexity-based features from both raw source code and its abstract syntax tree (AST). However, these methods

Table 1: Comparison between existing AI-generated code benchmarks and our *CodeMirage*. **Gran.** = granularity (*Func*: function/snippet, *Doc*: whole file). IID = in-distribution; OOD = out-of-distribution. Baseline categories: **Z** (zero-shot detector), **E** (embedding-based detector), **F** (fine-tuning-based detector), **P** (pre-trained LLM + downstream detector). Columns "Open LLMs" and "Comm. LLMs" show whether the dataset includes *any* open-source or commercial generators.

$\textbf{Dataset} \downarrow \textbf{Stat.}{\rightarrow}$	#Lang	Gran.	IID	OOD	#Open LLMs	#Comm. LLMs	Reasoning Model	#Human Code	#AI Code	Adv. Test	Quality Check	Baseline #/Cat.
Suh et al. (Suh et al., 2025)	3	Func	/	/	1	3	Х	$\sim 3.7k$	$\sim 29.5k$	Х	Х	8 / Z,E,F
Pan et al. (Pan et al., 2024)	1	Func	/	/	0	1	X	$\sim 5k$	$\sim 71k$	/	X	5 / Z
AIGCodeSet (Demirok & Kutlu, 2024)	1	Func	/	X	2	1	×	$\sim 4.8k$	$\sim 2.9k$	X	/	3 / E,F
MAGECODE (Pham et al., 2024)	3	Doc	/	X	0	3	X	$\sim 81k$	$\sim 45k$	Х	/	8 / Z
CoDet-M4 (Orel et al., 2025)	3	Func	/	/	4	1	X	$\sim 252k$	$\sim 246k$	/	/	6 / F,P
LLMGCode (Xu et al., 2024b)	8	Doc	1	X	1	3	×	< 1k	2k	×	X	10 / Z,F,P
CodeMirage (Ours)	10	Doc	1	/	4	6	/	10k	$\sim \! 200k$	1	/	10 / Z,E,F,P

often struggle to distinguish code generated by modern, high-performing LLMs (OpenAI, 2022; Anthropic, 2025; Guo et al., 2025; Kavukcuoglu, 2025), which better mimic human coding styles.

To improve detection effectiveness, recent research has explored more advanced techniques — often leveraging large language models (LLMs) or code embedding models — which can be broadly categorized into the following four methodological paradigms:

Zero-shot Detector. These detectors assign confidence scores from token-level statistics of pretrained LLMs without task-specific fine-tuning. LogRank (Gehrmann et al., 2019) and Entropy (Lavergne et al., 2008) use average next-token log-rank and entropy to capture AI-generated code distributions. DetectGPT (Mitchell et al., 2023) measures divergence between original and perturbed text, a strategy extended to code by DetectCodeGPT (Shi et al., 2025), GPT4Code (Yang et al., 2023), and AIGC Detector (Xu & Sheng, 2024) with code-specific perturbations. CR (Ye et al., 2025) instead compares original and LLM-rewritten code, while Binoculars (Hans et al., 2024) employs cross-perplexity between instruction-tuned and non-instruction-tuned LLMs.

Embedding-based Detector. Embedding-based detectors (Khoury et al., 2023) utilize pretrained code embedding models, such as CodeT5+ Embedding (Wang et al., 2023) and CodeXEmbed (Liu et al., 2024b), to extract high-level semantic representations from either raw source code or abstract syntax trees (ASTs). These embeddings are then fed into lightweight classifiers, *e.g.*, MLP (Rosenblatt, 1958), to perform binary classification between human-written and AI-generated code.

Fine-tuning-based Detector. This class of detectors fine-tunes transformer-based models to directly capture discriminative patterns between human-written and AI-generated code. For example, GPTSniffer (Nguyen et al., 2023; 2024) fine-tunes CodeBERT (Feng et al., 2020) on labeled code samples to perform binary classification. Other approaches (Suh et al., 2025) explore different backbone architectures, such as CodeT5+ (Wang et al., 2023) and RoBERTa (Liu et al., 2019).

Pretrained LLM with Downstream Detector. These methods extract semantic or statistical features from pretrained LLMs and train downstream classifiers on them. MageCode (Pham et al., 2024) leverages hidden-state statistics from the classification token of CodeT5+ (Wang et al., 2023) with a two-layer linear classifier. Raidar (Mao et al., 2024), originally for text, can be adapted to code by comparing metrics between original and LLM-rewritten samples and training an XGBoost (Chen et al., 2025) classifier. BiScope (Guo et al., 2024) introduces a bi-directional cross-entropy analysis using pretrained LLMs, with features classified via Random Forest (Breiman, 2001).

2.2 Existing AI-generated Code Datasets and Benchmarks

Prior studies (Suh et al., 2025; Pan et al., 2024; Demirok & Kutlu, 2024; Pham et al., 2024; Orel et al., 2025; Xu et al., 2024b) has laid important groundwork for building benchmarks to evaluate AI-generated code detectors. As shown in Table 1, several benchmarks introduce valuable contributions: for instance, Suh *et al.* (Suh et al., 2025) propose a large-scale function-level dataset spanning three programming languages. Pan *et al.* (Pan et al., 2024) and CoDet-M4 (Orel et al., 2025) incorporate adversarial perturbations into AI-generated code to test robustness. AIGCodeSet (Demirok & Kutlu, 2024) and MAGECODE (Pham et al., 2024) employ quality checks during code generation. LLMGCode (Xu et al., 2024b) expands language coverage to eight programming languages. Collectively, these datasets serve as solid foundations for evaluating AI-generated code detectors.

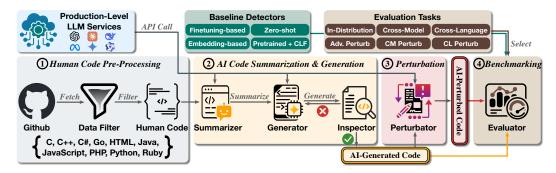


Figure 1: Overview of the *CodeMirage* framework. We collect and preprocess human-written code from GitHub repositories, then leverage 10 state-of-the-art LLMs to summarize, generate, and perturb code with quality inspection. Finally, *CodeMirage* evaluates 10 AI-generated code detectors across six evaluation tasks, covering a wide range of real-world scenarios.

However, these benchmarks have notable limitations. Most cover only a small number of programming languages, rely on less capable LLMs, and none of them leverage latest reasoning models (Guo et al., 2025; OpenAI, 2025; Kane, 2025). Furthermore, baseline evaluations in these benchmarks do not comprehensively include all four major categories of detection methods, and only two existing benchmarks include adversarial test, which is critical for real-world deployment.

To address these gaps, our proposed benchmark, *CodeMirage*, includes: (1) code samples across 10 widely used programming languages; (2) outputs from 10 state-of-the-art production-level LLMs, including three reasoning models; (3) both out-of-distribution and adversarial evaluation settings; and (4) baselines covering all four methodological categories of AI-generated code detection.

3 CodeMirage's DATASET CONSTRUCTION

3.1 Human Code Pre-Processing

To construct a comprehensive benchmark for AI-generated and paraphrased source code, we begin by sourcing high-quality human-written samples from the CodeParrot GitHub-Code-Clean dataset (CodeParrot, 2022b) — a curated subset of the original GitHub-Code corpus (CodeParrot, 2022a), as illustrated in Figure 1. This cleaned dataset excludes overly short snippets, auto-generated files, and code with excessive alphanumeric or non-semantic content. Importantly, the dataset was collected and sanitized in May 2022, before the widespread deployment of modern code-generating LLMs and AI-assisted coding agents. This timing ensures that the selected code examples are genuinely human-authored. Based on the dataset's language distribution, we select the ten most widely used programming languages, including C, C++, C#, Go, HTML, Java, JavaScript, PHP, Python, and Ruby. For each language, we randomly extract 1,000 representative code snippets. To preserve diversity while maintaining tractability, we apply additional length-based filtering, ensuring that the final samples span a broad range of real-world patterns but remain within a controlled length scale. Additional details regarding ethical considerations and mitigation of potential dataset bias during the human code pre-processing stage are provided in Appendix A.

3.2 AI CODE SUMMARIZATION AND GENERATION

Following the collection of human-written code, we employ ten state-of-the-art, production-level LLMs to generate their AI counterparts (detailed in Appendix B). The process begins with AI Code Summarization. To ensure high-quality generation and prevent direct copying, CodeMirage adopts a text-to-code strategy in which each human-written code sample is first summarized into a descriptive summary. The human samples in CodeMirage are often comprehensive code files, encompassing library imports, class and structure definitions, and detailed function logic. To distill this information, we prompt the LLMs to summarize the sample's purpose, functionality, logic overview, and key features. The summaries also include the names of relevant libraries, functions, classes, structures, and variables, along with any optional contextual notes describing uncommon assumptions or external dependencies. Full prompts and example summaries are provided in Appendix C.

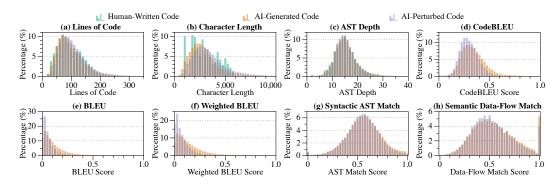


Figure 2: Benchmark statistics of *CodeMirage*.

These summaries act as intermediate representations and are subsequently used as input prompts in the next phase: AI Code Generation. Given the descriptive summary of each human-written code sample, *CodeMirage* employs LLMs to generate corresponding AI code. To better align structural characteristics with the original human sample, we additionally include metadata — such as target line count and character length — within the prompt. Due to the inherent stochasticity of LLMs, generated code may occasionally deviate from the desired format or exhibit insufficient novelty. To ensure quality and distinctiveness, we apply a rule-based inspector enforcing two key constraints: (1) consistency with the original sample's line count and character length, and (2) adequate token-level divergence from the original, enforced by requiring a BLEU (Papineni et al., 2002) score below 0.5 to avoid recitation (the rationale for this threshold is detailed in Appendix D). Samples failing either criterion are regenerated, with repeated failures resulting in exclusion. Detailed prompts and representative generation examples are included in Appendix E.

3.3 AI CODE PERTURBATION

The primary perturbation technique employed in *CodeMirage* is Paraphrasing (Krishna et al., 2023; Sadasivan et al., 2023), a widely recognized method for evaluating the robustness of AI-generated text detectors under adversarial and real-world conditions. Despite its relevance, most existing benchmarks for AI-generated code detection (Suh et al., 2025; Pan et al., 2024; Demirok & Kutlu, 2024; Pham et al., 2024; Orel et al., 2025; Xu et al., 2024b) do not incorporate such adversarial testing. While a few studies in text detection (Mao et al., 2024; Guo et al., 2024) have included paraphrased code in their evaluations, they typically utilize generic prompting schemes and limited code samples, thereby restricting the scope and impact of their assessments. In *CodeMirage*, we introduce a systematic, domain-specific paraphrasing for code, covering six transformation types. These transformations are carefully designed to reflect realistic developer behaviors and common coding style variations. Detailed rules, prompt designs, and representative examples are provided in Appendix F. Additionally, we incorporate three advanced adversarial techniques — Multi-Round Paraphrasing, DeepWordBug (Gao et al., 2018), and AST-based Perturbation — to further stress-test detector robustness. While these advanced attacks are evaluated on a smaller subset of the dataset, they offer valuable insights into more targeted and extreme adversarial conditions. The design and evaluation of these attacks are detailed in Appendix G.

3.4 BENCHMARK STATISTICS

CodeMirage covers ten programming languages, each containing 1,000 human-written code samples with 10,000 AI-generated counterparts and 10,000 AI-perturbed counterparts. For every language, we obtain 2,000 outputs from each of ten production-level LLMs, yielding a 1:20 mapping between every human sample and its LLM-generated variants. Within every 1,000-sample shard (human or AI), we allocate 700 examples for training and 300 for testing.

We present four structural and semantic metrics of the dataset in Figure 2: lines of code (a), character length (b), AST depth (c), and CodeBLEU (Ren et al., 2020) score (d). The first three metrics reflect the overall structural characteristics of the code and show close resemblance between human-written and AI-generated samples. This similarity implies that naive statistical classifiers would struggle to detect AI-generated code using basic code features.

Figure 2 (d) reports the CodeBLEU score, a composite metric calculated as:

$$CodeBLEU = \alpha \cdot BLEU + \beta \cdot BLEU_{weighted} + \gamma \cdot Match_{AST} + \delta \cdot Match_{DF}, \quad (1)$$

where each component is equally weighted with $\alpha=\beta=\gamma=\delta=0.25$ by default. The median CodeBLEU score for AI-generated code is approximately 0.3, consistent with prior observations in text-to-code generation (Dong et al., 2023; Espejel et al., 2023; Evtikhiev et al., 2023). Perturbed code yields slightly lower scores due to deliberate perturbations in both code format and structure.

To further analyze *CodeMirage*'s code quality, we decompose the CodeBLEU score into its four subcomponents in Figure 2 (e)–(h). Both AI-generated and AI-perturbed code show relatively low BLEU (Papineni et al., 2002) and weighted BLEU (Ren et al., 2020) scores, indicating limited n-gram overlap with their human counterparts. While the syntactic AST match and semantic data-flow (Guo et al., 2021) match scores of AI code exceed 0.5 on average, suggesting that despite token-level divergence, both AI-perturbed and AI-paraphrased code maintains a fair level of syntactic and semantic consistency with human code. More detailed statistics are presented in Appendix H.

4 Progressive Robustness Evaluation Scenarios

In this section, we present how *CodeMirage* systematically evaluates the robustness of state-of-theart AI-generated code detectors across six progressively challenging tasks. Our goal is to clarify their practical reliability in real-world scenarios by identifying the conditions under which they remain effective, exposing their limitations, and offering guidance for informed selection and improvement. To this end, we design four evaluation settings: (1) in-distribution testing, (2) out-of-distribution (OOD) testing, (3) adversarial perturbations, and (4) hybrid testing that combines OOD shifts with adversarial perturbations. This progression reflects increasing levels of difficulty, enabling a systematic assessment that delineates applicability boundaries.

In-Distribution Testing. This setting evaluates each detector's stability when the training and test distributions align across **multi-LLMs** and **multi-programming-languages**. For each language, we pair the human-written training set with generated samples from a *single* LLM, and either train the detector on the combined data or select an optimal decision threshold. Evaluation is then conducted on the corresponding human-written test set, paired with test samples from the *same* LLM.

Out-of-distribution (OOD) Testing. This setting evaluates robustness to unseen generators (**cross-model**) and unseen languages (**cross-language**). In the cross-model case, for each language, we train and threshold the detector on human-written samples paired with AI-generated samples from a *single* LLM, and then test on the same human-written set paired with samples from all *other* LLMs. In the cross-language case, we train on one language and evaluate on human-written and AI-generated samples from the *same* LLM across all other languages. Results are averaged over unseen-model or unseen-language test sets separately to yield the final OOD performance.

Adversarial Perturbation. This setting evaluates robustness against adversarial perturbations while keeping the generating LLM fixed. We train and threshold the detector following the in-distribution configuration, but test on *perturbed* AI-generated code derived from the same LLM's original test samples. Our primary perturbation technique is paraphrasing, supplemented by three advanced attacks on a controlled subset of data to assess robustness against stronger adversaries.

Hybrid Testing (OOD + Adversarial Perturbation). This setting captures real-world scenarios where code is generated by unseen LLMs and subsequently perturbed. We follow the cross-model and cross-language testing protocols but pair human-written test samples with *perturbed* AI-generated samples from the other LLMs or languages. Detector performance is then averaged across these perturbed, unseen-model / unseen-language test sets to yield the hybrid result.

5 BENCHMARK RESULTS AND INSIGHTS

We conduct an extensive evaluation using *CodeMirage* in various scenarios and summarize the observations into eight findings. We present representative processed results in the main text and include the full experimental results in Appendix K.

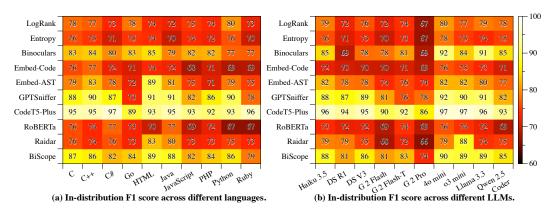


Figure 3: In-distribution performance (F1 score) comparison between all the baselines.

5.1 EVALUATION SETUP

Detectors. We evaluate ten state-of-the-art detectors spanning four categories. **Zero-shot detectors**: *LogRank* (Gehrmann et al., 2019), *Entropy* (Gehrmann et al., 2019; Lavergne et al., 2008), and *Binoculars* (Hans et al., 2024), which rely on token-rank or entropy-related features without training. **Embedding-based detectors**: following existing studies (Suh et al., 2025), we extract representations with the *CodeXEmbed-2B* model (Liu et al., 2024b) from either raw source code or its abstract-syntax tree (AST) and train a lightweight random forest (Breiman, 2001) classifier. **Fine-tuned detectors**: we include *GPTSniffer* (Nguyen et al., 2024; 2023), a variant built on the latest *CodeT5*+ backbone (Wang et al., 2023), and a *RoBERTa* detector (Liu et al., 2019), with each fine-tuned on our training corpus. **Pretrained-LLM with downstream detector**: *Raidar* (Mao et al., 2024) and *BiScope* (Guo et al., 2024), extracting features via rewriting (Mao et al., 2024) and bi-directional cross entropy (Guo et al., 2024). More details are presented in Appendix I.

Metrics. To thoroughly assess the performance of the baseline detectors in different scenarios, we employ three evaluation metrics in our experiments, including the F1 score, TPR@FPR=10%, and TPR@FPR=1%. The F1 score balances precision and recall, providing an overall measure of detection accuracy without favoring AI-generated or human-written code samples. For each detector, we first identify the optimal decision threshold and then report its corresponding F1 score. The metric TPR@FPR=10% reports the true positive rate (TPR) when the false positive rate (FPR) is limited to 10%, representing scenarios that can tolerate a moderate number of false alarms. Conversely, TPR@FPR=1% measures the TPR at an FPR of only 1%, which is essential for applications where even a small fraction of false positives is unacceptable.

5.2 Assess the robustness of detectors under a wide spectrum of scenarios

In-distribution results are strong but potentially over-optimistic. The in-distribution results are shown in Figure 3, with sub-figure (a) illustrating the results across different programming languages and (b) across different LLMs. Each value denotes the F-1 score averaged for all LLMs and languages respectively. Observe that the overall detection performance is strong, but may be over-optimistic due to the overfitting problem.

Finding 1: Fine-tuning-based methods outperforms other types consistently under indistribution setting.

Fine-tuned detectors, e.g., GPTSniffer and CodeT5+, lead the pack, as the test data share the same distribution with the training data, potentially introduce overfitting problem. Zero-shot approaches, on the other hand, e.g., LogRank and Entropy, perform poorest, which makes sense given their limited feature extraction when confronted with the complexity of code.

Finding 2: Detection is Consistent across Programming Languages, with Common Languages Performing Slightly Better.

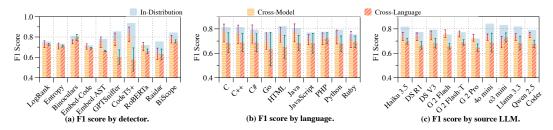


Figure 4: Comparison under cross-model and cross-language OOD configurations by detector, language, and source LLM.

We observe only slight performance differences across languages. Notably, less common languages lead to marginally lower performance. For example, detectors typically achieve higher F1 scores on C++ than Go or Ruby. This discrepancy arises because several detection methods, e.g., Biscope (Guo et al., 2024) and Raidar (Mao et al., 2024), rely on pre-trained LLMs for feature extraction. These models are pre-trained on large online corpora containing more examples of common languages (e.g., C++) than atypical ones (e.g., Ruby), resulting in stronger representations for the former. Hence detection performances are better detection on those common languages.

Finding 3: Detection performance is largely consistent across LLMs, with smaller or less capable models being easier to detect.

Among all generators, code produced by GPT-40-mini is the easiest to detect, as reflected by consistently higher scores across all detectors. This suggests that its code style is more regular and distinctive, facilitating detection. Claude 3.5 Haiku and Llama 3.3 70B also yield relatively easy-to-detect outputs. In contrast, code generated by Gemini-2.0-Pro is the most difficult to detect. Overall, these results indicate that detection difficulty tends to increase with model scale and output diversity.

OOD testing significantly reduce the performance. Out-of-distribution results are shown in Figure 4, with sub-figure (a) presents the F1 scores across detectors and (b) (c) across languages and LLMs. We observe a constant significant degradation.

Finding 4: Fine-tuned approaches exhibit the largest degradation under OOD testing, particularly in the cross-language setting, whereas zero-shot detectors show the opposite trend with stronger robustness.

Fine-tuned detectors (e.g., GPTSniffer and CodeT5-Plus) achieve the strongest in-distribution F1 scores but suffer the steepest declines out of distribution, reflecting overfitting of high-capacity classifiers to the training corpus. In contrast, zero-shot methods remain markedly more stable under OOD shifts, while embedding-based and pretrained-LLM—with—downstream-detector approaches experience moderate degradation. *This observation underscores the value of zero-shot detectors*. Although their in-distribution performance is weaker, their robustness under OOD conditions makes them an important and promising research direction.

Finding 5: Distribution shift induces a uniform, moderate performance drop across both languages and source LLMs, with no pronounced outliers.

The error bars largely overlap and per-language/per-model differences are small, indicating that the loss is global rather than tied to specific syntax or generator families. Cross-language transfer is typically harder than cross-model.

Adversarial perturbations consistently reduce detection performance. Figure 5 reports F1 under clean (blue) and paraphrased (hatched teal) inputs by detector (a), language (b), and source LLM (c). We observe a near-uniform degradation across all settings, with overlapping error bars and no systematic outliers.

Finding 6: Semantics-preserving paraphrases induce a broad, uniform performance drop across languages and source LLMs.

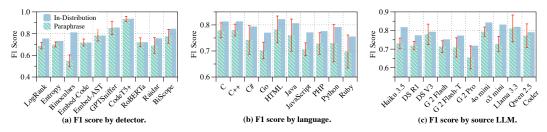


Figure 5: Comparison under adversarial perturb by detector, language, and source LLM.

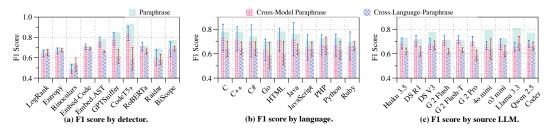


Figure 6: Comparison under cross-model perturb and cross-language perturb adversarial configurations by detector, language, and source LLM.

Finding 7: Perturbation conducted by reasoning models usually lead to a larger performance drop.

We observe that for non-reasoning models (DeepSeek V3, GPT40 mini, Llama 3.3 70B, and Qwen 2.5 Coder 32B), paraphrasing has minimal impact on performance. In contrast, reasoning models (e.g., GPT o3 mini) lead to a more pronounced decline of detector's performance. This likely stems from their stronger comprehension abilities: they better interpret paraphrased inputs and adjust outputs to match human-style reasoning, making any deviations more evident after paraphrasing.

Hybrid setting is the most challenging. Figure 6 evaluates detectors under *both* paraphrase perturbation and OOD transfer — our closest proxy to real deployment where both the source generator and style are unknown. The baseline bars correspond to the paraphrase-only scores; adding OOD shift produces an additional, consistent drop across detectors, languages, and LLMs.

Finding 8: The hybrid setting compounds distribution shifts and adversarial perturbations, yielding uniform degradation across languages and source LLMs (with no clear outliers), and fine-tuned detectors suffer the largest additional loss.

The pronounced degradation under OOD perturbation underscores the fragility of existing AI-generated code detectors in real-world scenarios. Our TPR-at-low-FPR results reveal a similar trend, as shown in Appendix J. More obvious evidence is also observed under three advanced attacks on a controlled subset of data, reported in Appendix G.

To further validate the robustness of our conclusions, we conduct comprehensive t-tests across all tasks and settings. The results, presented in Appendix L, consistently support our key findings. We also discuss limitations and future work in Appendix M.

6 CONCLUSION

In this paper, we present *CodeMirage*, a large-scale benchmark for AI-generated code detection, spanning 10 widely used programming languages and approximately 210,000 samples. The dataset includes human-written code as well as AI-generated and perturbed variants produced by 10 state-of-the-art production-level LLMs, with rigorous quality control to ensure reliability. We evaluate 10 representative detectors across four methodological categories under six progressively challenging tasks and four evaluation configurations, conducting extensive analyses that reveal the strengths and limitations of each approach. The breadth and depth of *CodeMirage* provide a solid foundation for advancing the development of more robust and generalizable code detectors.

ETHICAL STATEMENT

As a benchmark paper, we acknowledge the risk of inadvertently collecting private or low-quality code from the web. To mitigate this, we do not directly source human-written code from GitHub. Instead, we rely on the well-established CodeParrot GitHub-Code-Clean CodeParrot (2022b) dataset. Additional ethical considerations, bias statements, and details about the human source code are provided with figures in Appendix A.

Although *CodeMirage* encompasses a diverse range of programming languages, LLMs, and adversarial scenarios, it is primarily designed for benchmarking detection performance in general-purpose coding contexts. Applying it to specialized domains (e.g., student programming assignments) may require domain adaptation or additional data collection to ensure proper alignment with the target setting. *Importantly, we do not recommend using CodeMirage for directly training and deploying detectors in real-world applications*. The primary goal of *CodeMirage* is to enable rigorous and realistic evaluation, allowing researchers to better identify detector limitations and enhance robustness prior to deployment.

We also provided a statement regarding the use of large language models (LLMs) in Appendix N.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed step-by-step descriptions of our data construction pipeline and evaluation methodology within the paper. We will release all benchmark data, and evaluation code under an open-source license upon acceptance. In addition, we include implementation details, hyperparameter configurations, and dataset statistics in the appendices to facilitate faithful replication of our results. Together, these resources are intended to enable the community to fully reproduce our experiments and extend *CodeMirage* to future studies.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Arslan Akram. An empirical study of ai generated text detection tools. *arXiv preprint* arXiv:2310.01423, 2023.
- Anthropic. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku, 2024. URL https://www.anthropic.com/news/3-5-models-and-computer-use.
- Anthropic. Claude 3.7 Sonnet and Claude Code, 2025. URL https://www.anthropic.com/news/claude-3-7-sonnet.
- Owura Asare, Meiyappan Nagappan, and Nirmal Asokan. Is github's copilot as bad as humans at introducing vulnerabilities in code? *Empirical Software Engineering*, 28(6):129, 2023.
- Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.
- Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu Cho, Kailong Chen, Rory Mitchell, Ignacio Cano, Tianyi Zhou, Mu Li, Junyuan Xie, Min Lin, Yifeng Geng, Yutian Li, Jiaming Yuan, and David Cortes. *xgboost: Extreme Gradient Boosting*, 2025. URL https://github.com/dmlc/xgboost. R package version 3.0.1.1.
- CodeParrot. Github code dataset, 2022a. URL https://huggingface.co/datasets/codeparrot/github-code.
- CodeParrot. Github code clean dataset, 2022b. URL https://huggingface.co/datasets/codeparrot/github-code-clean.
- Domenico Cotroneo, Cristina Improta, Pietro Liguori, and Roberto Natella. Vulnerabilities in ai code generators: Exploring targeted data poisoning attacks. In *IEEE/ACM International Conference on Program Comprehension (ICPC)*, pp. 280–292, 2024.

- Cursor. Cursor: The AI Code Editor, 2023. URL https://www.cursor.com.
- Nassim Dehouche. Plagiarism in the age of massive generative pre-trained transformers (gpt-3). *Ethics in Science and Environmental Politics*, 21:17–23, 2021.
 - Basak Demirok and Mucahid Kutlu. Aigcodeset: A new annotated dataset for ai generated code detection. arXiv preprint arXiv:2412.16594, 2024.
 - Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ Howes, Menglin Wang, and Cristian Canton Ferrer. The deepfake detection challenge (dfdc) dataset. *arXiv* preprint *arXiv*:2006.07397, 2020.
 - Yihong Dong, Ge Li, and Zhi Jin. Codep: grammatical seq2seq model for general-purpose code generation. In *ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA)*, pp. 188–198, 2023.
 - Jessica López Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, and El Hassane Ettifouri. Jacotext: a pretrained model for java code-text generation. *arXiv preprint arXiv:2303.12869*, 2023.
 - Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov, and Timofey Bryksin. Out of the bleu: how should we assess quality of the code generation models? *Journal of Systems and Software*, 203: 111741, 2023.
 - Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming and natural languages. https://arxiv.org/abs/2002.08155, 2020.
 - Friedman, Nat. Introducing GitHub Copilot: your AI pair programmer, 2022. URL https://github.blog/news-insights/product-news/introducing-github-copilot-ai-pair-programmer/.
 - Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. Black-box generation of adversarial text sequences to evade deep learning classifiers. In *IEEE Security and Privacy Workshops (SPW)*, pp. 50–56, 2018.
 - Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan Wang, Hongyu Zhang, and Michael R Lyu. What makes good in-context demonstrations for code intelligence tasks with llms? In *IEEE/ACM International Conference on Automated Software Engineering (ASE)*, pp. 761–773, 2023.
 - Sebastian Gehrmann, Hendrik Strobelt, and Alexander M Rush. Gltr: Statistical detection and visualization of generated text. In *Annual Meeting of the Association for Computational Linguistics* (ACL), 2019.
 - Soumya Suvra Ghosal, Souradip Chakraborty, Jonas Geiping, Furong Huang, Dinesh Manocha, and Amrit Bedi. A survey on the possibilities & impossibilities of ai-generated text detection. *Transactions on Machine Learning Research (TMLR)*, 2023.
 - David Güera and Edward J Delp. Deepfake video detection using recurrent neural networks. In *IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)*, pp. 1–6, 2018.
 - Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, LIU Shujie, Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with data flow. In *International Conference on Learning Representations (ICLR)*, 2021.
 - Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
 - Hanxi Guo, Siyuan Cheng, Xiaolong Jin, Zhuo Zhang, Kaiyuan Zhang, Guanhong Tao, Guangyu Shen, and Xiangyu Zhang. Biscope: Ai-generated text detection by checking memorization of preceding tokens. *Advances in Neural Information Processing Systems (NeurIPS)*, 37:104065–104090, 2024.

- Abhimanyu Hans, Avi Schwarzschild, Valeriia Cherepanova, Hamid Kazemi, Aniruddha Saha, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Spotting llms with binoculars: Zero-shot detection of machine-generated text. In *International Conference on Machine Learning (ICML)*, 2024.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems (NeurIPS)*, 33:6840–6851, 2020.
 - Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*, 2024.
 - James Hutson. Rethinking plagiarism in the era of generative ai. *Journal of Intelligent Communication*, 3(2):20–31, 2024.
 - Oseremen Joy Idialu, Noble Saji Mathews, Rungroj Maipradit, Joanne M Atlee, and Mei Nagappan. Whodunit: Classifying code as human authored or gpt-4 generated-a case study on codechef problems. In *International Conference on Mining Software Repositories (MSR)*, pp. 394–406, 2024.
 - Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck. Automatic detection of generated text is easiest when humans are fooled. In *Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 1808–1822, 2020.
 - Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R Narasimhan. Swe-bench: Can language models resolve real-world github issues? In *International Conference on Learning Representations (ICLR)*, 2024.
 - Patrick Kane. Access the latest 2.0 experimental models in the gemini app., 2025. URL https://blog.google/feed/gemini-app-experimental-models/.
 - Sabrina Kaniewski, Dieter Holstein, Fabian Schmidt, and Tobias Heer. Vulnerability handling of ai-generated code-existing solutions and open challenges. In *Conference on AI, Science, Engineering, and Technology (AIxSET)*, pp. 145–148, 2024.
 - Koray Kavukcuoglu. Gemini 2.0 is now available to everyone, 2025.

 URL https://blog.google/technology/google-deepmind/gemini-model-updates-february-2025/.
 - Mustafa Ali Khalaf. Does attitude towards plagiarism predict aigiarism using chatgpt? *AI and Ethics*, 5(1):677–688, 2025.
 - Mohammad Khalil and Erkan Er. Will chatgpt g et you caught? rethinking of plagiarism detection. In *International Conference on Human-Computer Interaction*, pp. 475–487, 2023.
 - Raphaël Khoury, Anderson R Avila, Jacob Brunelle, and Baba Mamadou Camara. How secure is code generated by chatgpt? In *IEEE international conference on systems, man, and cybernetics* (*SMC*), pp. 2445–2451. IEEE, 2023.
 - Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphrasing evades detectors of ai-generated text, but retrieval is an effective defense. *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
 - Thomas Lavergne, Tanguy Urvoy, and François Yvon. Detecting fake content with relative entropy scoring. In *Proceedings of the International Conference on Uncovering Plagiarism, Authorship and Social Software Misuse (PAN)*, volume 377, pp. 27–31, 2008.
 - Zongjie Li, Chaozheng Wang, Shuai Wang, and Cuiyun Gao. Protecting intellectual property of large language model-based code generation apis via watermarks. In *ACM SIGSAC Conference on Computer and Communications Security (CCS)*, pp. 2336–2350, 2023.
 - Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024a.

- Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chatgpt really correct? rigorous evaluation of large language models for code generation. *Advances in Neural Information Processing Systems (NeurIPS)*, 36:21558–21572, 2023.
 - Ye Liu, Rui Meng, Shafiq Joty, Silvio Savarese, Caiming Xiong, Yingbo Zhou, and Semih Yavuz. Codexembed: A generalist embedding model family for multiligual and multi-task code retrieval. *arXiv preprint arXiv:2411.12644*, 2024b.
 - Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. *arXiv preprint arXiv:1907.11692*, 2019.
 - Chengzhi Mao, Carl Vondrick, Hao Wang, and Junfeng Yang. Raidar: generative ai detection via rewriting. In *International Conference on Learning Representations (ICLR)*, 2024.
 - Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Simone Scalabrino, Rocco Oliveto, and Gabriele Bavota. On the robustness of code generation techniques: An empirical study on github copilot. In *International Conference on Software Engineering (ICSE)*, pp. 2149–2160, 2023.
 - Meta. Llama 3.3: Model cards & prompt formats, 2024. URL https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/.
 - Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. Detectgpt: Zero-shot machine-generated text detection using probability curvature. In *International Conference on Machine Learning (ICML)*, pp. 24950–24962. PMLR, 2023.
 - Phuong T Nguyen, Juri Di Rocco, Claudio Di Sipio, Riccardo Rubei, Davide Di Ruscio, and Massimiliano Di Penta. Is this snippet written by chatgpt? an empirical study with a codebert-based classifier. *arXiv preprint arXiv:2307.09381*, 2023.
 - Phuong T Nguyen, Juri Di Rocco, Claudio Di Sipio, Riccardo Rubei, Davide Di Ruscio, and Massimiliano Di Penta. Gptsniffer: A codebert-based classifier to detect source code written by chatgpt. *Journal of Systems and Software*, 214:112059, 2024.
 - Sanghak Oh, Kiho Lee, Seonhye Park, Doowon Kim, and Hyoungshick Kim. Poisoned chatgpt finds work for idle hands: Exploring developers' coding practices with insecure suggestions from poisoned ai models. In *IEEE Symposium on Security and Privacy (S&P)*, pp. 1141–1159, 2024.
 - OpenAI. Introducing ChatGPT, 2022. URL https://openai.com/index/chatgpt/.
 - OpenAI. Gpt-4o mini: advancing cost-efficient intelligence, 2024. URL https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.
 - OpenAI. Openai o3-mini: Pushing the frontier of cost-effective reasoning, 2025. URL https://openai.com/index/openai-o3-mini/.
 - Daniil Orel, Dilshod Azizov, and Preslav Nakov. Codet-m4: Detecting machine-generated code in multi-lingual, multi-generator and multi-domain settings. *arXiv preprint arXiv:2503.13733*, 2025.
 - Wei Hung Pan, Ming Jie Chok, Jonathan Leong Shan Wong, Yung Xin Shin, Yeong Shian Poon, Zhou Yang, Chun Yong Chong, David Lo, and Mei Kuan Lim. Assessing ai detectors in identifying ai-generated code: Implications for education. In *International Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET)*, pp. 1–11, 2024.
 - Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic evaluation of machine translation. In *Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 311–318, 2002.
 - Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri. Asleep at the keyboard? assessing the security of github copilot's code contributions. In *IEEE Symposium on Security and Privacy (S&P)*, pp. 754–768, 2022.

- Hung Pham, Huyen Ha, Van Tong, Dung Hoang, Duc Tran, and Tuyen Ngoc Le. Magecode: Machine-generated code detection method using large language models. *IEEE Access*, 2024.
 - Sundar Pichai, Demis Hassabis, and Koray Kavukcuoglu. Introducing gemini 2.0: our new ai model for the agentic era, 2024. URL https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#ceo-message.
 - Juan Ramos et al. Using tf-idf to determine word relevance in document queries. In *Proceedings of the first instructional conference on machine learning*, volume 242, pp. 29–48. Citeseer, 2003.
 - Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis. *arXiv preprint arXiv:2009.10297*, 2020.
 - Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. *Psychological review*, 65(6):386, 1958.
 - Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias Nießner. Faceforensics: A large-scale video dataset for forgery detection in human faces. *arXiv* preprint arXiv:1803.09179, 2018.
 - Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi. Can ai-generated text be reliably detected? *arXiv preprint arXiv:2303.11156*, 2023.
 - Timur Sağlam, Sebastian Hahner, Larissa Schmid, and Erik Burger. Automated detection of aiobfuscated plagiarism in modeling assignments. In *International Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET)*, pp. 297–308, 2024.
 - Yuling Shi, Hongyu Zhang, Chengcheng Wan, and Xiaodong Gu. Between lines of code: Unraveling the distinct patterns of machine and human programmers. In *International Conference on Software Engineering (ICSE)*, pp. 51–62, 2025.
 - Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In *International Conference on Machine Learn-ing (ICML)*, pp. 2256–2265. pmlr, 2015.
 - Stack Overflow. 2024 Stack Overflow Developer Survey, 2024. URL https://survey.stackoverflow.co/2024/.
 - Trevor Stalnaker, Nathan Wintersgill, Oscar Chaparro, Laura A Heymann, Massimiliano Di Penta, Daniel M German, and Denys Poshyvanyk. Developer perspectives on licensing and copyright issues arising from generative ai for coding. *arXiv preprint arXiv:2411.10877*, 2024.
 - Aiste Steponenaite and Basel Barakat. Plagiarism in ai empowered world. In *International Conference on Human-Computer Interaction*, pp. 434–442, 2023.
 - Hyunjae Suh, Mahan Tafreshipour, Jiawei Li, Adithya Bhattiprolu, and Iftekhar Ahmed. An empirical study on automatically detecting ai-generated source code: How far are we? In *International Conference on Software Engineering (ICSE)*, 2025.
 - Florian Tambon, Arghavan Moradi-Dakhel, Amin Nikanjam, Foutse Khomh, Michel C Desmarais, and Giuliano Antoniol. Bugs in large language models generated code: An empirical study. *Empirical Software Engineering*, 30(3):1–48, 2025.
 - Norbert Tihanyi, Tamas Bisztray, Mohamed Amine Ferrag, Ridhi Jain, and Lucas C Cordeiro. How secure is ai-generated code: a large-scale comparison of large language models. *Empirical Software Engineering*, 30(2):1–42, 2025.
 - Rebeka Tóth, Tamas Bisztray, and László Erdődi. Llms in web development: Evaluating Ilmgenerated php code unveiling vulnerabilities and limitations. In *International Conference on Computer Safety, Reliability, and Security*, pp. 425–437, 2024.

- Adaku Uchendu, Zeyu Ma, Thai Le, Rui Zhang, and Dongwon Lee. Turingbench: A benchmark environment for turing test in the age of neural text generation. In *Findings of the Association for Computational Linguistics: EMNLP 2021*, pp. 2001–2016, 2021.
 - Jaideep Vaidya and Hafiz Asif. A critical look at ai-generate software: Coding with the new ai tools is both irresistible and dangerous. *IEEE Spectrum*, 60(7):34–39, 2023.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing Systems (NeurIPS)*, 30, 2017.
 - Jiexin Wang, Xitong Luo, Liuwen Cao, Hongkui He, Hailin Huang, Jiayuan Xie, Adam Jatowt, and Yi Cai. Is your ai-generated code really safe? evaluating large language models on secure code generation with codeseceval. *arXiv preprint arXiv:2407.02395*, 2024.
 - Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software developers as generalist agents. In *International Conference on Learning Representations (ICLR)*, 2025.
 - Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Junnan Li, and Steven Hoi. Codet5+: Open code large language models for code understanding and generation. In *Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 1069–1088, 2023.
 - Yunkai Xiao, Soumyadeep Chatterjee, and Edward Gehringer. A new era of plagiarism the danger of cheating using ai. In *International Conference on Information Technology Based Higher Education and Training (ITHET)*, pp. 1–6, 2022.
 - Jialiang Xu, Shenglan Li, Zhaozhuo Xu, and Denghui Zhang. Do llms know to respect copyright notice? In *Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 20604–20619, 2024a.
 - Jinwei Xu, He Zhang, Yanjin Yang, Zeru Cheng, Jun Lyu, Bohan Liu, Xin Zhou, Lanxin Yang, Alberto Bacchelli, Yin Kia Chiam, et al. Investigating efficacy of perplexity in detecting llm-generated code. *arXiv preprint arXiv:2412.16525*, 2024b.
 - Weiwei Xu, Kai Gao, Hao He, and Minghui Zhou. Licoeval: Evaluating Ilms on license compliance in code generation. *arXiv preprint arXiv:2408.02487*, 2024c.
 - Xiaodan Xu, Chao Ni, Xinrong Guo, Shaoxuan Liu, Xiaoya Wang, Kui Liu, and Xiaohu Yang. Distinguishing llm-generated from human-written code by contrastive learning. *ACM Transactions on Software Engineering and Methodology*, 34(4):1–31, 2025.
 - Zhenyu Xu and Victor S Sheng. Detecting ai-generated code assignments using perplexity of large language models. In *AAAI Conference on Artificial Intelligence (AAAI)*, volume 38, pp. 23155–23162, 2024.
 - Shenao Yan, Shen Wang, Yue Duan, Hanbin Hong, Kiho Lee, Doowon Kim, and Yuan Hong. An {LLM-Assisted}{Easy-to-Trigger} backdoor attack on code completion models: Injecting disguised vulnerabilities against strong detection. In *USENIX Security Symposium (USENIX Security)*, pp. 1795–1812, 2024.
 - Xianjun Yang, Kexun Zhang, Haifeng Chen, Linda Petzold, William Yang Wang, and Wei Cheng. Zero-shot detection of machine-generated codes. *arXiv preprint arXiv:2310.05103*, 2023.
 - Tong Ye, Yangkai Du, Tengfei Ma, Lingfei Wu, Xuhong Zhang, Shouling Ji, and Wenhai Wang. Uncovering llm-generated code: A zero-shot synthetic code detector via code rewriting. In *AAAI Conference on Artificial Intelligence (AAAI)*, volume 39, pp. 968–976, 2025.
 - Zhiyuan Yu, Yuhao Wu, Ning Zhang, Chenguang Wang, Yevgeniy Vorobeychik, and Chaowei Xiao. Codeipprompt: intellectual property infringement assessment of code language models. In *International Conference on Machine Learning (ICML)*, pp. 40373–40389, 2023.

Binqi Zeng, Quan Zhang, Chijin Zhou, Gwihwan Go, Yu Jiang, and Heyuan Shi. Inducing vulnera-ble code generation in llm coding assistants. arXiv preprint arXiv:2504.15867, 2025. Ying Zhang, Wenjia Song, Zhengjie Ji, Na Meng, et al. How well does llm generate security tests? arXiv preprint arXiv:2310.00710, 2023. Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li, Zhijun Tu, Hailin Hu, Jie Hu, and Yunhe Wang. Genimage: A million-scale benchmark for detecting ai-generated image. Advances in Neural Information Processing Systems (NeurIPS), 36:77771–77782, 2023. Bojia Zi, Minghao Chang, Jingjing Chen, Xingjun Ma, and Yu-Gang Jiang. Wilddeepfake: A chal-lenging real-world dataset for deepfake detection. In Proceedings of the 28th ACM international conference on multimedia, pp. 2382–2390, 2020.

APPENDIX

To further support and validate our *CodeMirage* benchmark, we provide the following supplementary materials:

- Appendix A: Detailed ethical and bias statement for human code collection and preprocessing in CodeMirage.
- Appendix B: Detailed descriptions of the production-level LLMs used in *CodeMirage* and their corresponding generation settings.
- Appendix C: Prompts used in the code summarization phase and representative examples.
- Appendix D: The rationale behind our BLEU-based data filtration.
- Appendix E: Prompts used in the code generation phase and representative examples.
- Appendix F: Domain-specific transformation rules, prompts, used in the code paraphrasing phase with representative examples.
- Appendix G: Introduction and results with three advanced perturbation techniques.
- Appendix H: Comprehensive statistics and distributions of the *CodeMirage* dataset.
- Appendix I: Detailed descriptions of the baseline detectors included in our evaluation.
- Appendix J: Supplementary results based on TPR@FPR metrics.
- Appendix K: Extended and detailed experimental results across all evaluation settings.
- Appendix L: T-test across all the tasks' results to show the steadiness of our key findings.
- Appendix M: Additional discussion on the limitations and future improvement directions.
- Appendix N: LLM usage declaration.

A ADDITIONAL ETHICAL INFORMATION FOR HUMAN CODE IN CodeMirage

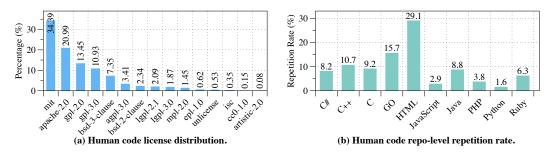


Figure 7: CodeMirage's human source code license and diversity information.

As described in our main text and ethical statement, *CodeMirage* does not directly collect human-written code from GitHub. Instead, it relies on the CodeParrot GitHub-Code-Clean dataset (CodeParrot, 2022b), a curated and moderated subset from a larger public GitHub dataset maintained by Google and GitHub. This ensures a high-quality and privacy-conscious data source.

All human-written code samples in our *CodeMirage* are hence from open-source projects with licenses permitting redistribution and research use. As shown in Figure 7 (a), the license distribution includes widely used licenses such as MIT, Apache-2.0, and GPL variants. For licenses requiring license notices (e.g., GPL-3.0), we retain the original license headers.

Besides, the ten programming languages in *CodeMirage* were selected based on their frequency in the GitHub-Code-Clean dataset (CodeParrot, 2022b), which contains over 850GB of curated code from open-source projects on GitHub. We chose the top 10 most widely used languages in this corpus, prioritizing those with high practical relevance and widespread exposure to LLM-generated code in current development workflows.

Table 2: Detailed configurations of the production-level LLMs used in *CodeMirage*.

LLM Name	API / Model Path	Hyper-Parameter		
Claude-3.5-Haiku (Anthropic, 2024) GPT-4o-mini (OpenAI, 2024)	Anthropic/claude-3-5-haiku-20241022 OpenAI/gpt-4o-mini-2024-07-18	temperature = 1.0 temperature = 1.0		
GPT-o3-mini (OpenAI, 2025)	OpenAI/o3-mini-2025-01-31	temperature = 1.0 reasoning_effort = medium		
Gemini-2.0-Flash (Pichai et al., 2024)	Google/gemini-2.0-flash	temperature = 1.0		
Gemini-2.0-Flash-Thinking (Kane, 2025)	Google/gemini-2.0-flash-thinking-exp-01-21	temperature = 1.0		
Gemini-2.0-Pro (Kavukcuoglu, 2025)	Google/gemini-2.0-pro-exp-02-05	temperature = 1.0		
DeepSeek-V3 (Liu et al., 2024a)	deepseek-ai/DeepSeek-V3	temperature = 1.0		
DeepSeek-R1 (Guo et al., 2025)	deepseek-ai/DeepSeek-R1	temperature = 1.0		
Llama-3.3-70B (Meta, 2024)	meta-llama/Llama-3.3-70B-Instruct	temperature = 0.6		
Qwen-2.5-Coder-32B (Hui et al., 2024)	Qwen/Qwen2.5-Coder-32B-Instruct	temperature = 0.7		

We acknowledge that CodeMirage may not yet cover certain emerging or underrepresented languages, as expanding to all possible languages would require substantial additional resources. However, to the best of our knowledge, our language coverage already exceeds that of existing benchmarks in this area, as shown in Table 1.

Moreover, we mitigate repository-specific bias by sampling from a broad set of projects. As shown in Figure 7 (b), our repo-level repetition rate analysis reveals that, for most languages, fewer than 10% of human-written code samples originate from the same repository. In total, the 10,000 human-written code files in *CodeMirage* are sourced from 9,037 unique repositories, effectively minimizing the risk of dominance by any single repository.

B DETAILS OF GENERATIVE MODELS AND GENERATION SETTINGS

In *CodeMirage*, we leverage ten production-level LLMs from six leading companies to generate code samples, covering the majority of LLMs commonly used for real-world coding tasks. Among these ten models, four are open-source and three are designed with reasoning capabilities. Specifically, *CodeMirage* includes GPT-40-mini (OpenAI, 2024), o3-mini (OpenAI, 2025), Claude-3.5-Haiku (Anthropic, 2024), Gemini-2.0-Flash (Pichai et al., 2024), Gemini-2.0-Flash-Thinking-Experimental (Kane, 2025), Gemini-2.0-Pro-Experimental (Kavukcuoglu, 2025), DeepSeek-V3 (Liu et al., 2024a), DeepSeek-R1 (Guo et al., 2025), Llama-3.3-70B (Meta, 2024), and Qwen-2.5-Coder-32B (Hui et al., 2024). We access all ten LLMs via API-based services with default temperatures. Detailed configurations and generation settings for these models are presented in Table 2. For key generation hyper-parameters such as temperature and reasoning_effort, we use either default values or officially recommended settings to reflect realistic usage. Importantly, we avoid setting temperature to zero, as doing so would produce overly deterministic outputs that are easier to detect. Instead, we adopt general-purpose settings for high-quality while more diverse and less predictable code generation.

C ADDITIONAL DETAILS OF AI CODE SUMMARIZATION

To generate high-quality and representative summaries that comprehensively describe the characteristics of a code sample while preventing the leakage of concrete code, we design a structured summarization prompt covering eight key aspects. We then prompt the LLMs to act as summarizers, generating summaries based on the input code file using this carefully crafted prompt. The full summarization prompt used in *CodeMirage* is as follows:

Summarization Prompt

Analyze the provided code snippet and generate a concise and informative description of its functionality, purpose, and design. Avoid directly including or mirroring the given code. Focus on abstracting the logic, functionality, and intent.

Follow the output format:

1. **Purpose:** A high-level summary of what the code is intended to achieve.

- 972973
- 973974975
- 976 977
- 978 979 980
- 981982983984
- 985 986 987
- 988 989 990
- 991 992 993
- 995 996 997

- 9989991000
- 1000 1001 1002
- 1003 1004 1005
- 1006 1007 1008
- 1009 1010 1011
- 1012 1013 1014
- 1014 1015 1016
- 1017 1018 1019 1020
- 1021 1022 1023
- 1024 1025

- 2. **Functionality:** Describe the main tasks performed by the code, including inputs, outputs, and their roles, without referencing exact code or variable names.
- 3. **Logic Overview:** Explain the key logic, algorithms, or patterns conceptually, avoiding specific code structures or syntax.
- Key Features: Highlight unique approaches or techniques without mentioning explicit implementation details.
- 5. **Key Libraries:** Include the key libraries used in the code snippet.
- 6. **Key Functions:** Include the key function names used in the code snippet.
- 7. **Key Class, Structure, Variable:** Include the key class, structure, and variable names used in the code snippet.
- 8. Contextual Notes (optional): Any assumptions, dependencies, or inferred background information.

Below, we present a concrete Python code example with the summary generated by GPT-o3-mini (OpenAI, 2025), illustrating the consistency and descriptive quality of the summarization process in *CodeMirage*.

Python Summary Example

Human-Written Code

```
import logging
import voluptuous as vol
from homeassistant.components.binary_sensor import
    (BinarySensorDevice, PLATFORM_SCHEMA, SENSOR_CLASSES_SCHEMA)
from homeassistant.components import enocean
from homeassistant.const import (CONF_NAME, CONF_ID, CONF_SENSOR_CLASS)
import homeassistant.helpers.config_validation as cv
 LOGGER = logging.getLogger(_
DEPENDENCIES = ['enocean']
DEFAULT_NAME = 'EnOcean binary sensor'
PLATFORM SCHEMA = PLATFORM SCHEMA.extend({
})
def setup_platform(hass, config, add_devices, discovery_info=None):
class EnOceanBinarySensor(enocean.EnOceanDevice, BinarySensorDevice):
    def __init__(self, dev_id, devname, sensor_class):
    @property
    def name(self):
    @property
    def sensor_class(self):
    def value_changed(self, value, value2):
```

GPT-o3-mini Generated Summary

- Purpose: The code integrates binary sensors that communicate using an EnOcean protocol into a larger home automation framework. It enables sensor events to be received, processed, and dispatched within the automation system.
- 2. Functionality: The implementation defines a platform component for binary sensors. It validates configuration inputs, creates ...
- 3. Logic Overview: The code establishes a configuration schema to ensure correct setup parameters. It then creates a ...
- 4. Key Features: Validates configuration using a dedicated schema to ensure data consistency. Leverages inheritance to ...
- 5. Key Libraries: Logging, Voluptuous for configuration validation, ...
- 6. Key Functions: ... An event handler method that processes changes in sensor values and triggers events ...
- $7. \ \ \textbf{Key Class, Structure, Variable:} \ A \ sensor \ class \ that \ ... \ , Variables \ for \ device \ identification, \ sensor \ naming, \ ... \ ...$
- 8. Contextual Notes: The design assumes integration within a home automation ecosystem where components communicate via ...

1027

1028 1029

1030 1031 1032

1033 1034

1035

1036 1037

1038 1039

1040 1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

105210531054

1055 1056

1057

1058 1059

1061 1062

1063

1064 1065

1066

1067

1068

1069

1070

1071

1072

1073

1074 1075

1077

1078

1079

For more examples and summaries across different programming languages and generative models, please refer to our *CodeMirage* dataset.

D ADDITIONAL DETAILS OF THE BLEU-BASED DATA FILTRATION

To filter potentially memorized AI-generated code, we use a BLEU-based inspector and set a conservative threshold of 0.5. This section explains the rationale behind this choice.

Specifically, to filter potentially memorized AI-generated code, we use a BLEU-based inspector and set a conservative threshold of 0.5. This section explains the rationale behind this choice.

```
🖟 Human-Written Code Example
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
       Check if in given list of numbers, are any two numbers closer to each other than
   given threshold.
    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
   False
    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
    True
    for idx, elem in enumerate(numbers):
        for idx2, elem2 in enumerate(numbers):
            if idx != idx2:
                distance = abs(elem - elem2)
                if distance < threshold:</pre>
                    return True
    return False
```

```
♣ AI-generated Code Example
BLEU = 0.57 (Filtered Out)
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
   Check if any two elements in the list are closer than the specified threshold.
        numbers: List of floating-point numbers to compare
        threshold: Maximum allowed distance between two numbers
        Boolean indicating presence of close elements
    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
    >>> has_close_elements([1.0, 2.1, 3.0], 1.0)
   True
    for idx, elem in enumerate(numbers):
        for idx2, elem2 in enumerate(numbers):
            if idx != idx2:
                distance = abs(elem - elem2)
                if distance < threshold:</pre>
                    return True
    return False
```

As shown above, this AI-generated example shares substantial overlap in structure, variable naming, and logic with the human-written version. Despite being technically valid, it lacks sufficient novelty and is filtered out to avoid near-duplicates.

```
1080
            ♣ AI-generated Code Example
1081
1082
           BLEU = 0.45 (Kept)
1083
            from typing import List
1084
           def has_close_elements(numbers: List[float], threshold: float) -> bool:
1085
1086
               Determines if any two elements in the list are closer than the threshold.
1087
               Args:
1088
                    numbers: List of floating point numbers to check
                    threshold: Maximum allowed distance between elements
1089
1090
               Returns:
                   Boolean indicating presence of closely positioned numbers
1092
               >>> has_close_elements([1.0, 2.0, 3.0], 1.5)
1093
               >>> has_close_elements([1.0, 2.1, 3.0], 1.0)
1094
               True
1095
               for idx, elem in enumerate(numbers):
1096
                    for idx2, elem2 in enumerate(numbers[idx+1:], start=idx+1):
                        distance = abs(elem - elem2)
                        if distance < threshold:</pre>
                            return True
               return False
1099
1100
1101
```

In contrast, this version introduces meaningful variation, such as an optimized iteration and rewritten documentation. While functionally correct, it is not semantically identical to the original, and thus retained.

Furthermore, as shown in Figure 2 (e)-(f), the majority of AI-generated and paraphrased samples naturally fall well below the 0.5 BLEU threshold. This indicates that our generation pipeline already reduces memorization risk, and the BLEU filter acts as a conservative safeguard rather than a strict enforcement mechanism.

E ADDITIONAL DETAILS OF AI CODE GENERATION

After generating a comprehensive yet concise summary of the human-written code, we prompt LLMs to produce corresponding AI-generated versions. To preserve structural consistency, we explicitly include the statistical properties (*e.g.*, line of code and character length) of the original code in the prompt. The complete code generation prompt used in *CodeMirage* is presented below:

```
Generate a {Language} code snippet with around {Line_of_Code} lines and {Char_Length} character length following the description. Only output the code, no any other information.

{Summary}
```

The generated code is then passed through a rule-based inspector, as described in subsection 3.2, to filter out overly short, overly long, or null outputs. Below, we show a Python code example generated by GPT-o3-mini (OpenAI, 2025), based on the summary presented in Appendix C:

```
GPT-03-mini Code Generation

import logging
import voluptuous as vol
from homeassistant.const import CONF_NAME, CONF_DEVICE_ID
...

DOMAIN = "enocean_binary_sensor"
```

```
1134
1135
           CONF_SENSOR_TYPE = "sensor_type"
1136
           class EventBus:
1137
               def fire(self, event_type, event_data):
1138
           class EnOceanDevice:
1139
               def __init__(self, device_id):
1140
               def send_message(self, message):
1141
1142
           class BinarySensorDevice:
1143
           class EnOceanBinarySensor(EnOceanDevice, BinarySensorDevice):
1144
1145
            if __name__ == "__main__":
1146
               logging.basicConfig(level=logging.DEBUG)
               hass = Hass()
               config = {
1148
                   CONF_DEVICE_ID: "enocean_001",
1149
1150
               setup_platform(hass, config)
1151
1152
1153
```

We observe that though the detailed implementation of the AI-generated code differs from the human-written version, it employs the same key libraries and similar variables to achieve comparable functionality, illustrating the quality of the AI-generated code. More examples are presented in *CodeMirage* dataset.

F ADDITIONAL DETAILS OF AI CODE PARAPHRASING

We further evaluate the robustness of detectors under adversarial paraphrasing, a prevalent and practical challenge in real-world applications. Our adversarial setup is grounded in prompt-based paraphrasing, which represents one of the most accessible and commonly used evasion strategies in practice. Unlike prior works on natural language paraphrasing (Krishna et al., 2023; Sadasivan et al., 2023), which rely on generic and concise prompts, we propose a code-specific paraphrasing prompt tailored to the programming domain. This prompt incorporates seven transformation strategies specifically designed for source code. The full prompt is provided below:

Paraphrasing Prompt

Transform the given code to bypass AI-generated code detectors by mimicking human coding styles. Make structural, stylistic, and naming changes while preserving exact functionality. Apply the following:

- 1. Rename variables, functions, and classes with meaningful, human-like names.
- 2. Adjust formatting (indentation, spacing, line breaks) and reorganize imports logically.
- 3. Rewrite logic with equivalent constructs (e.g., refactor loops, conditionals).
- 4. Replace common standard library functions with alternatives or custom helpers.
- 5. Vary expressions $(e.g., 'a + b' \rightarrow 'sum([a, b])')$ and simplify inline logic into reusable functions.
- 6. Transform literals (e.g., single vs. double quotes, '10' → '0xA') and reorder independent code blocks.
- 7. Add subtle redundancies (e.g., intermediate variables) to resemble human-written code.

Keep the line of code and character length similar to the original code and only output the transformed code. No any other additional text and information.

We then apply the paraphrasing prompt to the AI-generated code sample and obtain its paraphrased version. Below, we present the paraphrased code example produced by GPT-o3-mini (OpenAI, 2025), based on the AI-generated example provided in Appendix E.

```
1188
            AI-Paraphrased Python Example
1189
1190
           GPT-o3-mini Paraphrased Code
1191
            import logging
1192
           import voluptuous as schema_validator
1193
           from homeassistant.const import CONF_NAME, CONF_DEVICE_ID
1194
            import homeassistant.helpers.config_validation as config_val
1195
           logger = logging.getLogger(__name_
1196
           SENSOR_DOMAIN = 'enocean_binary_sensor'
           KEY_SENSOR_KIND = 'sensor_type'
1197
1198
           SensorConfigSchema = schema_validator.Schema({
1199
           })
1200
           class SimulatedEventBus:
1201
               def trigger(self, event category, particulars):
1202
1203
1204
           class BaseEnOceanDevice:
               def __init__(self, dev_identifier):
1206
               def dispatch_message(self, msg_payload):
1207
           class BasicBinarySensor:
1208
           class EnOceanSensorClient (BaseEnOceanDevice, BasicBinarySensor):
1209
1210
                name == ' main ':
1211
               logging.basicConfig(level=logging.DEBUG)
1212
               simulated hass = SimulatedHomeAssistant()
               input_configuration = {
1213
1214
               initialize_platform(simulated_hass, input_configuration)
1215
1216
1217
```

Compared to the original AI-generated code, the paraphrased version uses different aliases for imported libraries, introduces redundant classes and variables, and modifies function and class names with different implementations, while preserving the overall program functionality. Additional examples can be found in the full *CodeMirage* dataset.

G ROBUSTNESS EXPLORATION WITH MORE ADVANCED ATTACKS

Additional to the paraphrasing technique introduced in the main text, we further incorporate three advanced adversarial strategies to stress test AI-generated code detectors on a controlled subset of data. These techniques emulate more sophisticated manipulations that could realistically be employed by motivated adversaries, thereby enhancing both the realism and diversity of our benchmark.

Multi-Round Paraphrasing: We design an LLM-based feedback loop in which an auxiliary model evaluates whether paraphrased code satisfies predefined transformation rules. When violations are detected, the auxiliary model provides refinement suggestions, and another paraphrasing round is triggered. This iterative process yields increasingly sophisticated and evasive adversarial samples.

DeepWordBug (Gao et al., 2018): We adapt this well-established obfuscation method, originally proposed for text classification, to the code detection setting. Specifically, we implement a multiround variant that directly targets our RoBERTa-based detector, thereby simulating realistic, targeted attacks on learning-based detection models.

AST-based Perturbation: As an untargeted variant of DeepWordBug, this technique applies character-level perturbations to non-functional code elements (e.g., comments, function names) identified through AST analysis. Importantly, these transformations do not alter program semantics, but they increase surface-level variability and obfuscation.

Table 3: Performance of baseline detectors under three advanced attacks and their combinations.

Attack	LogRank	Entropy	Binoculars	Embed- Code	Embed- AST	GPTSniffer	CodeT5+	RoBERTa	Raidar	BiScope
One-round Paraphrasing	0.5271	0.5858	0.1914	0.7112	0.8314	0.9398	0.9684	0.9495	0.8243	0.6514
Multi-round Paraphrasing	0.4516	0.5161	0.1253	0.7112	0.8314	0.9630	0.9769	0.9532	0.8464	0.5676
DeepWordBug	0.3713	0.4531	0.5104	0.7081	0.8071	0.7140	0.9474	0.6667	0.6874	0.4871
Paraphrasing + DeepWordBug	0.1907	0.2659	0.0329	0.7097	0.8159	0.6550	0.9456	0.6667	0.6033	0.2398
AST-based Perturbation	0.0364	0.0514	0.0916	0.7081	0.8228	0.9000	0.9562	0.7721	0.4279	0.4507
Paraphrasing + AST-based Perturbation	0.0074	0.0099	0.0144	0.7050	0.8331	0.8507	0.9384	0.6667	0.2021	0.5120

Table 4: CodeMirage's data quantity statistics across different LLMs and programming languages.

LLM	Paraphrase	Python	Java	JavaScript	C++	C	C#	Go	Ruby	PHP	HTML
Human	Х	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Claude-3.5-Haiku	Х	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	✓	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
DeepSeek-R1	X	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	✓	1,000	1,000	1,000	999	1,000	999	1,000	1,000	1,000	1,000
DeepSeek-V3	X	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	✓	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Gemini-2.0-Flash	X	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	✓	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Gemini-2.0-Flash-Thinking	X	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	✓	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Gemini-2.0-Pro	X	1,000	1,000	1,000	1,000	1,000	998	1,000	1,000	998	999
	✓	1,000	1,000	1,000	1,000	1,000	998	1,000	1,000	998	999
GPT-4o-mini	X	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	✓	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Llama-3.3-70B	X	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
		1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
GPT-o3-mini	X	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	✓	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Qwen-2.5-Coder-32B	X	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	✓	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

Beyond these single techniques, we also construct hybrid adversarial attacks by combining one-round paraphrasing with either DeepWordBug or AST-based perturbations, thereby producing more complex and challenging examples. All experiments are conducted on Python code generated by o3-mini, with results presented in Table 3.

The results demonstrate that these advanced attacks substantially degrade detection performance across all baselines compared to one-round paraphrasing alone. Detectors that rely heavily on pretrained language model signals — such as LogRank, Entropy, and BiScope — are particularly vulnerable, while embedding-based detectors exhibit greater resilience. Notably, CodeT5+ achieves the highest robustness overall.

Importantly, these findings reinforce our core observation: current detectors lack robustness against adversarial manipulations. Even lightweight paraphrasing already causes a marked performance drop, and the addition of stronger adversarial strategies further highlights their fragility under realistic and evolving attack scenarios.

H ADDITIONAL STATISTICS OF *CodeMirage*'s DATASET

In subsection 3.4, we present detailed data quality statistics of the *CodeMirage* dataset across eight metrics. Here, we additionally report the dataset's quantity statistics, as summarized in Table 4. For both human-written code and most AI-perturbed code, we collect or synthesize 1,000 samples per programming language, with a standard 700/300 split for training and testing, respectively.

However, for some LLMs and specific languages, such as Gemini-2.0-Pro (Kavukcuoglu, 2025) on C#, we fall slightly short of the 1,000-sample target due to repeated generation refusals, typically caused by the model's built-in output filtering mechanisms. Despite these occasional gaps, the overall data quality and balance of the *CodeMirage* dataset remain unaffected.

Furthermore, we also evaluate the impact of three additional advanced adversarial attacks and their combinations on a representative subset of the dataset. Details are provided in Appendix G.

I Additional Details of Baseline Detectors

In this section, we provide additional introduction and implementation details for each of the ten baseline detectors evaluated in *CodeMirage*.

LogRank (Gehrmann et al., 2019) & Entropy (Lavergne et al., 2008). These two baseline detectors represent classic zero-shot detection approaches that rely on pretrained LLMs. The underlying intuition is that LLMs are more familiar with AI-generated text or code, resulting in lower token-level log-rank or entropy values compared to human-written content. Both methods compute the average token-level statistic (log-rank or entropy) over the input, which is then used as the detection score. In CodeMirage, we implement these detectors using the state-of-the-art open-source pre-trained model Llama-3.2-3B-Instruct (meta-llama/Llama-3.2-3B-Instruct) as the scoring backbone.

Binoculars (Hans et al., 2024). Binoculars is a state-of-the-art zero-shot detector based on the insight that AI-generated text or code tends to receive more consistent scores across different LLMs than human-written content. To exploit this property, the method feeds the input simultaneously into two distinct LLMs and computes a novel *cross-perplexity* metric as the detection score. In **CodeMirage**, we adopt the official implementation of **Binoculars** to ensure reproducibility and optimized performance.

Embed-Code (Suh et al., 2025) & *Embed-AST* (Suh et al., 2025). These two embedding-based methods leverage pretrained code embedding models to extract semantic representations of entire code files. *Embed-Code* encodes the raw source code directly, while *Embed-AST* first parses the code into its abstract syntax tree (AST) using *tree-sitter*², and then encodes the AST. The embeddings are then passed to a supervised classifier for detection. In *CodeMirage*, we employ the latest *CodeXEmbed-2B* (Liu et al., 2024b) model as the embedding model and use a *Random Forest* (Breiman, 2001) classifier as the downstream detector.

GPTSniffer (Nguyen et al., 2023; 2024). GPTSniffer is a state-of-the-art fine-tuning-based detector that leverages the code-related capability of CodeBERT (Feng et al., 2020). It is fine-tuned on a labeled dataset consisting of both human-written and AI-generated code samples, and evaluated on unseen test data. In CodeMirage, we adopt training hyperparameters consistent with prior work (Orel et al., 2025): 5 training epochs, a learning rate of 3e-4, weight decay of 1e-3, and a warmup ratio of 0.1. We train GPTSniffer on CodeMirage's training set and evaluate on CodeMirage's test set.

CodeT5+ (Wang et al., 2023) & RoBERTa (Liu et al., 2019). These two fine-tuning-based detectors follow the same training pipeline as GPTSniffer, but utilize different backbone models: the latest CodeT5+ (Wang et al., 2023) and the classic RoBERTa (Liu et al., 2019). In CodeMirage, we use the same training hyperparameters and evaluation settings as those employed for GPTSniffer to ensure a fair comparison.

Raidar (Mao et al., 2024). Raidar is based on the observation that LLMs tend to modify a greater proportion of human-written content compared to AI-generated content. It hence uses multiple prompts to instruct an LLM to rewrite the input and then computes a set of numerical features (e.g., Bag-of-Words edit distance and Levenshtein score). These features are used to train a downstream classifier as the final detector. In **CodeMirage**, we adopt the latest *GPT-4.1-nano*³ as the rewriting model, which is stronger than the original *GPT-3.5-Turbo* used in *Raidar*. We also follow the official implementation⁴ to extract features and train the detection model.

BiScope (**Guo et al., 2024**). **BiScope** is a state-of-the-art detector that leverages a pre-trained LLM to extract bi-directional entropy features, which are then used to train a lightweight downstream classifier. The bi-directional entropy is designed to capture both next-token prediction (forward entropy) and previous-token memorization (backward entropy) from the model's output logits. In **CodeMirage**, we use **Llama-3.2-3B-Instruct** (meta-llama/Llama-3.2-3B-Instruct) as the feature

¹https://github.com/ahans30/Binoculars

²https://github.com/tree-sitter/tree-sitter

³https://platform.openai.com/docs/models/gpt-4.1-nano

⁴https://github.com/cvlab-columbia/raidarllmdetect

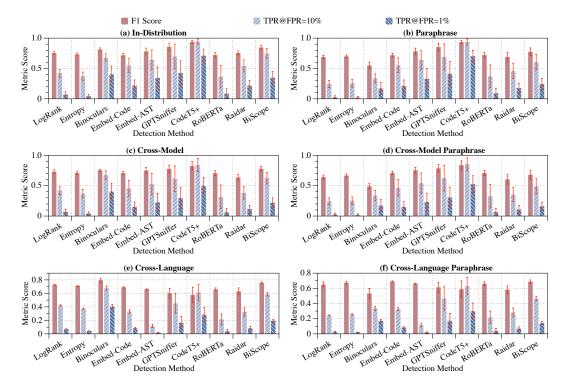


Figure 8: **Comparison Between Different Evaluation Metrics.** The bar charts illustrate the average F1 scores of baseline detectors on different LLMs across programming languages.

extractor for *BiScope*, consistent with the scoring model used in *LogRank* and *Entropy*. A *Random Forest* (Breiman, 2001) classifier is employed as the downstream detector.

J EVALUATION RESULTS OF ADDITIONAL METRICS

The results appear in Figure 8, where the x-axis lists the detection methods and the y-axis shows their metric values. As before, each bar reflects the mean performance across ten programming languages and ten LLMs, with error bars indicating one standard deviation. The figure is divided into six panels, each corresponding to a different evaluation task. Despite decent F1 scores across the board, all detectors suffer a dramatic drop in true-positive rate once the false-positive rate is constrained (e.g., TPR@FPR=1% is generally lower than 0.3), showing that they fail to catch enough positives under realistic, low false alarm requirements and are therefore less practical.

K Additional Evaluation Results

In this section, we present the complete F1 scores of all baseline detectors evaluated across different LLMs and programming languages. Specifically, Figure 9 shows the results under the in-distribution task, while Figure 10 reports the scores under the adv. perturb task. Figure 11 illustrates the results under the cross-model task, and Figure 12 presents the scores under the cross-model perturb task. The results of cross-language task and cross-language perturb task are presented in Figure 13 and Figure 14, respectively.

These comprehensive results are consistent with the trends discussed in section 5, further validating the key findings derived from the *CodeMirage* evaluation.

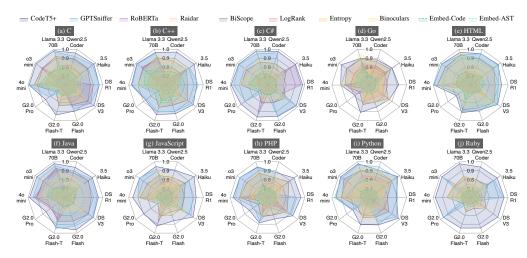


Figure 9: Complete F1 scores of all baseline detectors across various LLMs and programming languages under the in-distribution configuration.

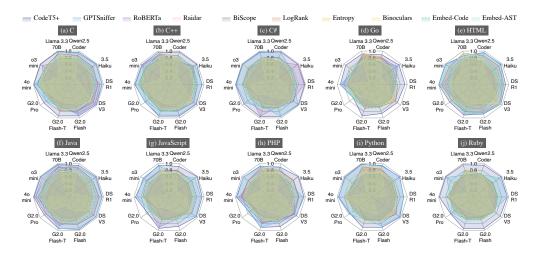


Figure 10: Complete F1 scores of all baseline detectors across various LLMs and programming languages under the paraphrase configuration.

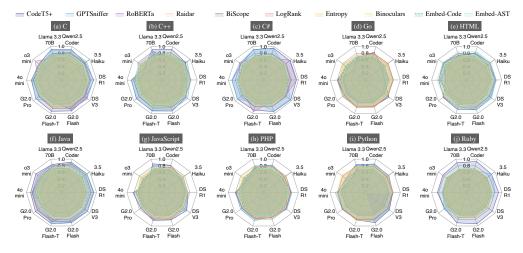


Figure 11: Complete F1 scores of all baseline detectors across various LLMs and programming languages under the cross-model configuration.

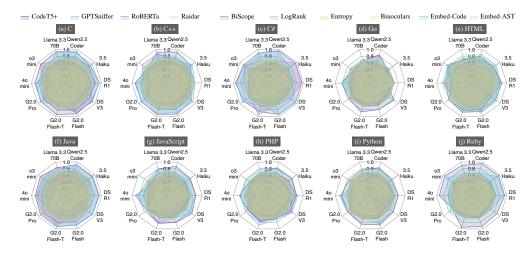


Figure 12: Complete F1 scores of all baseline detectors across various LLMs and programming languages under the cross-model paraphrase configuration.

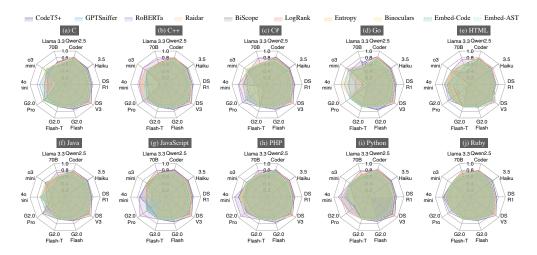


Figure 13: Complete F1 scores of all baseline detectors across various LLMs and programming languages under the cross-language configuration.

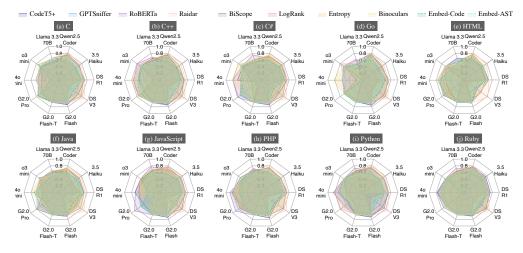


Figure 14: Complete F1 scores of all baseline detectors across various LLMs and programming languages under the cross-language paraphrase configuration.

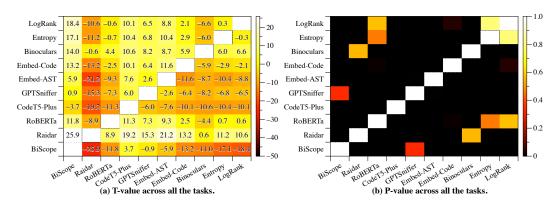


Figure 15: T-test result across all the evaluation tasks.

L T-TEST ACROSS ALL THE TASKS

To further evaluate how consistent and general of our key findings based on our evaluation, we further conduct the t-test across all the tasks' results, shown in Figure 15, across all 10 baselines over 600 distinct evaluation settings (10 languages \times 10 generative models \times 6 tasks). This analysis quantifies the statistical significance of observed performance differences. The results align well with our key findings in the main text. For example, fine-tuned methods such as CodeT5-Plus and GPTSniffer consistently outperform other baselines, as reflected in large-magnitude t-values and very low p-values when compared to other types of detectors. The generaly low p-value across all the pair-wise comparisons also illustrate the steadiness of our key finds in the main text.

M LIMITATIONS AND FUTURE WORK

While *CodeMirage* represents a significant step toward a more comprehensive evaluation of AI-generated code detectors, several limitations remain and could be addressed in future work.

First, though *CodeMirage* includes a broad set of programming languages, LLMs, and detectors, it does not exhaustively cover all possibilities. Additional languages, particularly those less commonly used in mainstream software development but still important in specific domains, remain unexplored. Similarly, many emerging LLMs and detection techniques are not included in the current benchmark. Future work could expand *CodeMirage* to incorporate these newly emerged models and underrepresented languages, enabling broader and more inclusive evaluations.

Second, *CodeMirage* focuses primarily on document-level detection. With the rapid advancement and increasing adoption of sophisticated coding assistants, extending AI-generated code detection to multi-file or project-level contexts represents an important and meaningful direction. While our benchmark does not yet capture this dimension, we highlight it as a valuable direction for future exploration.

Despite these limitations, *CodeMirage* advances the field by offering a more comprehensive and realistic evaluation benchmark compared to prior work (Suh et al., 2025; Pan et al., 2024; Demirok & Kutlu, 2024; Pham et al., 2024; Orel et al., 2025; Xu et al., 2024b). We believe the insights obtained and evaluation platform established by *CodeMirage* will serve as a strong foundation for developing more robust and generalizable AI-generated code detectors.

N USE OF LARGE LANGUAGE MODELS (LLMS)

We employed LLMs only for copyediting (grammar and style). They did not contribute to the research design, analyses, writing of technical content, or interpretation of results. While our benchmark includes code generated by LLMs as test data, LLMs were not used to write or structure the paper. All scientific content and conclusions are by the authors.