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Abstract: Robotic manipulation is challenging due to discontinuous dynamics,
as well as high-dimensional state and action spaces. Data-driven approaches that
succeed in manipulation tasks require large amounts of data and expert demonstra-
tions, typically from humans. Existing planners are restricted to specific systems
and often depend on specialized algorithms for using demonstrations. Therefore,
we introduce a flexible motion planner tailored to dexterous and whole-body ma-
nipulation tasks. Our planner creates readily usable demonstrations for reinforce-
ment learning algorithms, eliminating the need for additional training pipeline
complexities. With this approach, we can efficiently learn policies for complex
manipulation tasks, where traditional reinforcement learning alone only makes
little progress. Furthermore, we demonstrate that learned policies are transferable
to real robotic systems for solving complex dexterous manipulation tasks.
Project website: https://jacta-manipulation.github.io/
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1 Introduction

Dexterous and whole-body robotic manipulation in high-dimensional state-action space with non-
smooth dynamics is challenging, but learning-based approaches have shown encouraging results for
such tasks. However, they require loads of high-quality data [1, 2] or extensive exploration to find
solutions. Yet, robot data is scarce and expensive; human demonstrations are costly and confined
to human capabilities. Moreover, using dense rewards or curriculum learning to guide the policy
search potentially imposes a sub-optimal solution structure and necessitates lengthy reward shaping.

A promising solution to these issues is to leverage motion planners to automatically generate demon-
strations for learning instead of relying on humans [3, 4, 5]. This approach addresses the challenge
of scaling data collection. However, existing manipulation planners are often designed for specific
end effectors and single tasks such as pushing [6, 7], pick-and-place, [8, 9, 10] or in-hand manipu-
lation [11, 12]. Further, using the demonstrations generated by these motion planners is non-trivial
because they assume quasi-static dynamics [13, 14, 15] or only explicitly provide state trajectories
[12]. This paper shows that robotic manipulation must not be limited in this manner. A planner can
combine highly dexterous capabilities to precisely manipulate small items and whole-body interac-
tions to maneuver large objects, with contact occurring not just at the end effector.

To address these issues, we introduce a novel planner and learning pipeline for dexterous and whole-
body robotic manipulation, shown in Fig. 1. The planner finds solutions to manipulation tasks
through sampling-based and gradient-based actions for global and goal-directed exploration. It is
not limited to quasi-static systems, nor does it need to explicitly reason about the contact modes. The
aim is not to use the planner directly in a receding horizon fashion akin to model predictive control
but to leverage planner-generated demonstrations to bootstrap policy learning. Thus, when using the
planner, one is not bound to human demonstrations and human-like robotic systems. Instead, one

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://jacta-manipulation.github.io/


Figure 1: Our manipulation planner generates a search tree of dynamically feasible state-action
trajectories. During simulation training, planner trajectories are fed to the replay buffer of a rein-
forcement learning algorithm. The resulting simulation-trained policies are deployed on real robotic
systems for different manipulation tasks.

can build on learning methods that are bootstrapped with the planner’s solutions. Surprisingly, we
find that simply adding a small number of planner demonstrations to the replay buffer is enough to
drastically improve learning performance and generate successful policies for complex tasks.

In summary, our contributions are the following:

• Design of a novel motion planner generating dynamically feasible state-action trajectories
for dexterous and whole-body manipulation tasks.

• Identification of a simple yet efficient learning pipeline for using the planner’s demonstra-
tions in reinforcement learning.

• Transfer of trained policies to real systems to demonstrate the feasibility of complex tasks
covering both dexterous and whole-body manipulation.

2 Related work

Guiding Manipulation Learning with Demonstrations Data-driven approaches are state-of-the-
art for solving complex manipulation tasks. Imitation learning (IL) leverages expert demonstrations
of such tasks to train policies for robots. Recent results show the great potential of IL in advanced
tasks, such as unseen object manipulation [16, 17], door opening [18], or manipulation of liquids and
fabrics [19]. Yet, IL requires large amounts of expert demonstrations to deliver working policies,
which is a bottleneck for quickly learning new skills, especially since human demonstrations are
inherently limited to human capabilities and costly to collect. Reinforcement learning (RL) does
not necessarily require demonstrations due to its noisy exploration. However, the initially random
exploration in large state-action spaces has a low chance of success. Accordingly, demonstrations
have also been used to guide RL with additional offline data. Two different ways of incorporating
demonstrations into RL have found popularity: directly adding the demonstrations to the replay
buffer with minor modifications to the underlying learning algorithm [20, 21, 22] or pre-training
an imitation policy from the demonstrations [23, 24, 25]. Still, the advanced manipulation tasks
investigated in [23, 24] only cover anthropomorphic systems and require human demonstrations. In
contrast, we propose a pipeline with a planner that is not limited to anthropomorphic systems and
eliminates the need for costly human data collection, thus offering greater scalability.

Planning for Robotic Manipulation Learning While robotic motion planning has seen great
success, especially with sampling-based methods [26, 27], manipulation planning remains partic-
ularly difficult due to the multitude of contacts in general settings. Thus, most methods focus on
motion planning for low-dexterity grippers and specialized tasks such as pushing or fixed grasping
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[6, 7, 8, 28, 29]. More advanced techniques plan dexterous manipulation assuming quasi-static con-
tact dynamics [15, 14] and myopic sampling-based planning offers compelling results but only on
short-horizon tasks [30]. Manipulation planning based on optimal control often requires smoothed
contact dynamics [31] or scheduled contact sequences [32, 33] since contact-implicit schemes are
limited to simple tasks in practice [34, 35, 36]. In contrast, our proposed planner is designed to solve
dexterous and whole-body robotic manipulation tasks without restrictions to specific end effectors
or contact locations. We allow contact on all parts of a robot and plan with full contact dynamics to
generate readily usable demonstrations for manipulation learning.

Since manipulation planners are not fast enough to be directly deployed on the robot systems, they
have been combined with learning methods. Collision-free motion planners have been used as an
alternative to RL’s random exploration, but the applications have been limited to simple manipula-
tion tasks [4, 3]. Moreover, motion-planner actions do not overcome the lack of reward signals in
sparse reward settings [37, 38]. Demonstrations from motion planners have served as expert data for
IL with pick-and-place tasks [5] and for RL with basic reaching tasks rather than full-scale manipu-
lation [39, 40]. Planner-based demonstrations for manipulation have been used to find an informed
start-state distribution for the RL exploration for simple object rearrangement tasks [13], and a sim-
ilar approach has been developed for dexterous in-hand manipulation [12]. However, these methods
implement task-specialized planners and are not directly portable to generic manipulation settings.
Additionally, they only provide state trajectories without associated actions, making it difficult to
use the demonstrations directly for RL. Both of these issues are addressed with our planner, which
produces dynamically feasible state-action demonstrations for general robotic manipulation tasks.

3 Background

This section describes the robotic manipulation scenario solved by our motion planner and the rein-
forcement learning algorithm used to optimize policies for the manipulation tasks.

Robotic manipulation scenario We consider one or multiple robots with joint configuration qr ∈
Rnr and joint velocity1 q̇r ∈ Rnr that interact with one or multiple objects with configuration
qo ∈ Rno and velocity q̇o ∈ Rno . These quantities form the state s = [qT

r q̇T
r qT

o q̇T
o ]

T ∈ Rns .
The actions a ∈ Rnr are position commands for the robots’ actuated joints. The position commands
a are tracked by a low-level controller (cf. Appendix A). The potentially non-smooth dynamics
for this system are st+1 = f(st,at) at time t and contain bounds on the robots’ and objects’
states. The planner’s task is to find a state-action trajectory that minimizes the weighted distance
d(s, sg) = ∥s− sg∥Qd

to a desired goal state sg. The weight matrix Qd ∈ Rns×ns is used to
prioritize certain dimensions of the state, e.g., of the objects, and ignore others, e.g., of the robots.

Reinforcement learning algorithm Manipulation policies are found with value-based reinforce-
ment learning [41, 42]. A goal-oriented value function Q(s,a, sg) ∈ R for the system’s state-
action-goal space is learned from rewards r. The sparse reward function r(·) ∈ {−1, 0} is 0 if the
relative distance d of a state st to the start state s0 is below a threshold ϵ, and −1 otherwise:

r(st, sg) =

{
0 if d(st,sg)

d(s0,sg)
≤ ϵ

−1 otherwise
. (1)

The optimal value function given this reward function is

Q⋆(st,at, sg) = E
st+1

[
r(st, sg) + γmax

at+1

Q⋆(st+1,at+1, sg)

]
, (2)

where γ ∈ [0, 1) is a discount factor. Approximating the value function with a network Qϕ enables
learning the network’s parameters ϕ from tuples (st,at, sg, rt, st+1) in continuous spaces. The
optimal policy a = π⋆(s, sg) maximizes the value function:

π⋆(s, sg) = argmax
a

Q⋆(s,a, sg), (3)

1If the robot state contains a quaternion, the joint velocity is lower dimensional than the joint configuration.
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and is also approximated by a network πθ with parameters θ, which provides a continuous policy
representation. Since we want to use demonstrations from our motion planner for learning, we use
the off-policy learning algorithm deep deterministic policy gradients (DDPG) [41].

4 Dexterous and whole-body manipulation planner

Algorithm 1 Manipulation Planner
1: Choose ng, ni, β, ne, pa, ∆t, s1; Set nn = 1
2: for ig in 1 : ng do
3: sg = goal sampling(bg, smin, smax)▷ Sec. 4.1
4: reward update(sg) ▷ Sec. 4.2
5: for ii in 1 : ni do
6: in, ne = node selection(β, ne) ▷ Sec. 4.3
7: for ie in 1 : ne do
8: ann+1 = action sampling(pa) ▷ Sec. 4.4
9: snn+1 = extension(snn

,ann+1) ▷ Sec. 4.5
10: nn = nn + 1
11: in = nn

We design a motion planner to generate
dynamically feasible state-action trajecto-
ries for dexterous and whole-body manip-
ulation. These solutions serve as demon-
strations to bootstrap policy learning. The
planner builds a tree starting from a sin-
gle start state by taking actions towards the
goal. For each action taken, a new node is
added to the tree, as shown in Fig. 1. In
this way, the search space is explored until
a viable trajectory to the goal is found.

Robotic manipulation has discontinuous
contact dynamics and rugged optimization landscapes [43]. Thus, the planner involves several com-
ponents. Gradient-based actions for locally optimal search are combined with random actions for
global exploration and avoiding local minima. Reward heuristics are used to make progress in high-
dimensional spaces. The resulting planner is applicable to general robots and manipulation tasks.
We only assume the availability of a simulator for dynamics and gradients, e.g., Mujoco [44]. The
search algorithm is stated in Alg. 1, and the components of the planner are introduced in the subsec-
tions below. Ablations for the planner’s parameters are given in Appendix C.

4.1 Goal sampling

Manipulation settings have highly constrained non-convex search spaces with many local minima.
Inspired by rapidly exploring random trees [26], ng different goal states are sampled during the
search to escape local minima and enable global exploration. A bias bg ∈ [0, 1] is set to sample with
a certain probability the actual goal for a given task stask. Otherwise, a random state is sampled
uniformly in a box srandom ∈ [smin, smax] with upper and lower bounds smin and smax:

sg =

{
stask if pg ≤ bg
srandom otherwise

, with pg ∼ U(0, 1), srandom ∼ U(smin, smax). (4)

Sampled non-unit-length orientation representations, i.e., quaternions, are normalized. Infeasible
states, i.e., states with contact penetration, are discarded and resampled.

4.2 Reward metric

Exploration in high-dimensional spaces is challenging due to the combinatorial explosion. Thus,
each node in the tree is assigned a value to permit a heuristic selection of promising nodes during
the search, similar to Monte Carlo tree search [45]. Instead of a discounted value, directly using a
node’s reward yields satisfactory results for us and removes the need for value back-propagation up
the tree. When the goal state sg is changed, the total reward (value) of a node with state s,

r(s, sg) = rd(s, sg) + rp(s) + rm(s, sg), (5)

is computed from the three following reward components.

Distance The actual closeness to the desired manipulation goal is formulated as a distance reward,

rd(s, sg) = −∥s− sg∥Qd
, (6)

with weight matrix Qd ∈ Rns×ns . It encourages a small-scaled distance between a node’s state and
the goal. Note that for quaternions, the three-dimensional orientation difference is used [46].
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Proximity For manipulation, robot-object interactions must occur. Such interactions are more
likely if the robot is close to the object and a reward is given for such states. The distance between
robots and objects is measured by np virtual proximity sensors. Sensor i ∈ {0, . . . , np} consists of
a pair of points with pr,i attached to the robot hardware and po,i attached to the object. It returns a
distance di = ∥pr,i − po,i∥. The proximity reward for a node is

rp(d) = −∥d∥Qp
, (7)

where Qp ∈ Rnp×np is a weight matrix and d = [d1, . . . , dnp ]
T ∈ Rnp consists of all stacked

sensor values. Close proximity between the robot and the object ensures frequent whole-body in-
teractions but may prevent exploration because moving away from the object to change the robot’s
configuration is penalized. The weight matrix Qp is responsible for achieving a good trade-off.

Reachability When being close to an object, a robot needs to be in a configuration where moving
the object towards the goal is easily possible. Given an object’s state difference from the goal
∆so = so − sg,o, a measure m for the difficulty of reaching the goal can be calculated with the
local Mahalanobis metric defined in [14] as

m = ∆sToM∆so, with M =
(
BoB

T
o + µI

)−1

∈ Rno×no , Bo =
∂fo

∂a
∈ Rno×na . (8)

Here, Bo is the control Jacobian of the object dynamics fo with respect to the action a, µ ∈ R is a
regularization parameter to ensure the invertibility of M , and I ∈ Rno×no is the identity matrix. A
small m indicates that moving the object towards the goal is easy in the current robot configuration.
The reachability reward based on m is defined as

rm(m) = −qm log(m), (9)
with weight qm. In practice, m can be clipped to avoid overly large rewards (cf. Appendix A).

4.3 Node selection and extension horizon

At the beginning of each of the ni iterations, a node with index in ∈ N+ must be selected. A trade-
off is required between selecting the currently best node for greedy exploitation and selecting worse
nodes for exploration. To this end, the tree’s nn nodes are ranked from highest to lowest reward,
and the index in = [x ∼ P(nn, β)] is the rounded sample from a truncated Pareto distribution [47]
with bounds [1, nn] and exponent β ∈ R+. Larger values for the parameter β lead to a more greedy
node selection. After the first node is selected, given the extension horizon ne, the remaining ne − 1
node indices for the current iteration are the last extended nodes’ indices. In practice, β and ne can
be varied when the search is progressing well or poorly (cf. Appendix A).

4.4 Actions

Exploration is based on a mix of globally exploring random actions to avoid local minima and locally
optimal actions for precise fine-grained manipulation. Once a node is selected, a step size ∆ta and an
action a = â◦α is generated with element-wise multiplication of the direction â ∈ {Rna | ∥â∥ = 1}
and magnitude α ∈ {Rna | 0 ≤ α ≤ αmax}, where αmax is the maximum magnitude. The action
corresponds to a relative position command and is calculated using one of the methods listed below.
The method used is sampled according to a user-specified discrete probability distribution pa. In
practice, the step size ∆ta for each action can vary (cf. Appendix A).

Random To ensure global exploration, a random action can be taken. This action samples a
uniformly distributed direction â, and the magnitude α is sampled uniformly within the magnitude
bounds.

Continuation Obtaining a promising search direction is challenging, so instead of discarding a
successful action after one step, it can prove beneficial to keep going in this direction. Accordingly,
the continuation action takes the same action direction that leads to the currently selected node, i.e.,
âin = âjn , where in and jn are the current and parent node indices, respectively. The magnitude α
is sampled uniformly within the magnitude bounds.
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Proximity As explained for the proximity reward, closeness of robot and object is necessary for
manipulation. Therefore, the values d of the virtual proximity sensors are also used to compute the
proximity action. The action direction aims to minimize 1

2d
Td and points in the opposite direction

of the gradient g = (∂d/∂a)Td, i.e., â = −g/∥g∥. The magnitude α is sampled uniformly within
the magnitude bounds.

Goal-direction Besides random actions for global exploration, goal-directed actions are required
to make meaningful progress. Locally-optimized actions are computed by linearizing the dynamics
around the reference values s∗0 = s0 and a∗

0 = a0 −∆a0, with the fixed reference state s0:

f(s0,a0) ≈ f∗
0 +B∆a0, with f∗

0 = f(s∗0,a
∗
0), B =

∂f

∂a

∣∣∣∣
s∗
0 ,a

∗
0

∈ Rn×m. (10)

The linearized dynamics are used to solve the one-step optimal control problem

min
∆a0

1

2
(s1 − sg)

T
Q (s1 − sg) +

1

2
(a∗

0 +∆a0)
T
R (a∗

0 +∆a0) (11a)

s.t. s1 = f∗
0 +B∆a0, (11b)

with a closed-form solution for ∆a0 (cf. Appendix A). The resulting action direction is â = (a∗
0 +

∆a0)/∥a∗
0 + ∆a0∥, where a∗

0 can be chosen as, for example, the action used to reach the current
node. The action magnitude is set to the maximum value, i.e., α = αmax.

4.5 Tree extension

Once the action is computed for a selected node, a dynamics rollout is performed. The reached state
is appended to the search tree as a new node. Details on the rollout are given in Appendix A.

5 Bootstrapping reinforcement learning with demonstrations

Our planner can find solutions for challenging manipulation tasks but provides demonstrations only
for a single start state. Accordingly, we do not deploy the planner directly as an online policy
but instead use the demonstrations to bootstrap reinforcement Learning (RL). This approach allows
us to generalize beyond the planner’s demonstrations and perform additional online exploration to
exceed the planner’s suboptimal performance stemming from partially random actions. By distilling
a policy, we also no longer require the planner during policy training or execution. For the best
inclusion of demonstration, we investigate several different methods, which can be grouped into the
two main strategies outlined below. Further details are provided in Appendix B. Foreshadowing
the results, we find that using a fixed ratio of demonstrations in the replay buffer provides the best
performance of all investigated methods. This result aligns with the core idea of off-policy RL [48]
and findings in [22]. It is a welcoming result due to the simplicity of implementing this strategy.

5.1 Filling the replay buffer with demonstrations

During each training epoch, nr = np + nπ rollouts, consisting of np offline planner demonstrations
and nπ online policy rollouts, are appended to the replay buffer. Afterward, training data is sampled
randomly from the entire replay buffer. Similar to [22], we investigate three different approaches
for filling the replay buffer: (1) using a fixed ratio np/nπ in each epoch, (2) using a decreasing ratio
as the policy’s success rate increases, and (3) adding only planner demonstrations in the first epoch
and only online policy rollouts afterward.

5.2 Pre-training policies and value functions

Following the concepts outlined in [25], we investigate three different approaches for using demon-
strations for pre-training: (1) pre-training an imitation policy πIL from demonstrations and using it
as a fixed policy alongside the RL-trained policy πRL, (2) pre-training πIL and initializing the value
function Q from demonstrations, and (3) pre-training πIL as well as initializing Q and additionally
adding a fixed ratio of demonstrations to the replay buffer as described above.
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6 Experiments

Given our motion planning and learning setup, we investigate three main questions:

A) Can the planner generate solutions for dexterous and whole-body manipulation tasks?
B) Can the solution demonstrations bootstrap manipulation learning?
C) Can the learned policies be transferred to real systems?

These questions are evaluated for the six tasks displayed in Fig. 1 and 2. Note that additional tasks,
baseline comparisons, and ablations, as well as details on systems, parameters, and experiment
setups, are given in Appendix C. For each evaluation run, five random seeds are used.

A) Manipulation planning The planner’s ability to solve the manipulation tasks is measured as
the search progress = 1 − rd(st, sg)/rd(s0, sg), i.e., the scaled relative closeness to the goal (cf.
(6)). This progress is plotted for the six tasks in Fig. 2. Despite the varying tasks and complexity of
the settings, the planner consistently finds solutions for all scenarios, demonstrating that the rewards
and actions are general enough to treat high-dimensional spaces and multi-contact dynamics.
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Figure 2: Left: the performance of the Manipulation Planner (Alg. 1) on six tasks. Relative close-
ness to the goal for the best node in the tree so far vs. the total number of nodes (simulation steps).
Right: the three additional tasks used for evaluation besides the tasks shown in Fig. 1.

B) Learning with Demonstrations We compare the following approaches for demonstration in-
clusion in Fig. 3: pure DDPG as a baseline, using a fixed ratio of np/nr = 25% demonstrations for
the replay buffer (cf. Sec. 5.1), and pre-training an imitation policy as a secondary policy (cf. Sec.
5.2). For comparability with the planner, the learning progress is plotted over the total actions taken.
Using demonstrations always leads to an improvement over pure reinforcement learning, sometimes
drastically, while pre-training an imitation policy performs inconsistently. Even though the demon-
strations are limited to a single start state, they provide enough reward signals to learn successful
policies faster and more robustly for all runs. At the same time, the demonstrations are not good
enough to directly train and use an imitation policy, as adding this policy does not yield satisfactory
results as it is slower and does not make any learning progress for some of the runs.

Trials Success

Box grasp 27 93%
Ball turn 20 50%
Stool lift 25 76%

Table 1: Success rate on real systems.

C) Transfer to real systems We transfer policies from
training in simulation directly to the hardware for the
three tasks shown in Fig. 1. For each setting, we pick a
policy with good performance in simulation but perform
no additional training in the real world. Table 1 shows the
evaluation success rates on an initial-state grid, and Fig. 4
shows the progression of the stool-lift task as an example.
The trained policies for the box-grasp and stool-lift tasks work well, given the direct policy deploy-
ment. It is worth noting that in the stool-lift task, contact occurs on the robot arms, not just the
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Figure 3: The performance of reinforcement learning for manipulation on six tasks. Comparison of
our approach of adding demonstrations to the replay buffer (blue), RL with an additional imitation
policy pre-training (red), and pure RL (black). Further baseline comparisons are in Appendix C.

end effectors. Transferring the ball-turn task to the real world is more challenging due to modeling
approximations, as the yoga ball is simulated as a perfectly rigid object.

Figure 4: Left: the successful and failed initial positions for the stool-lift tasks. Right: deployment
of the trained policy for two Spots lifting and placing a stool in the upright position.

7 Conclusions

We present a versatile planner for dexterous and whole-body manipulation tasks. The planner gener-
ates demonstrations that are used to bootstrap reinforcement learning, leading to significant learning
improvements. It is robust against increasing task complexity, making it a valuable tool for gen-
eral and complex manipulation scenarios. Similarly, aiding reinforcement learning with synthetic
demonstrations from the planner is simple to implement yet gives strong results, providing a promis-
ing architecture choice for general manipulation learning, also in combination with other methods.

Limitations Our method has limitations. (1) Like any automated search, the planner requires hy-
perparameter tuning. However, the planner can provide results within seconds compared to learning
algorithms that often require minutes or hours before success can be assessed. This fast process
drastically reduces the iteration loop and allows manual tuning at interactive rates and quick param-
eter sweeps. (2) Both the planner and policies rely on state information, which requires a motion
capture system in the real world to acquire such state information. There are several ways to extend
this work to synthesize vision-based policies. One could transfer planner data to convert state-action
trajectories to image-action trajectories. A second option would be to apply a teacher-student frame-
work [49, 50, 51, 52, 38] by training a student policy that only has access to vision sensors to mimic
our expert state-based policy. (3) Finally, we use a relatively simple pre-training setup, and the
reported performance of imitation pre-training could change with more sophisticated IL methods.
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A Manipulation Planner implementation details

Implementation details and parameters for the manipulation planner are given in this section.

A.1 Rewards

The three reward types of the manipulation planner are visualized in Fig. 5.

Figure 5: Low and high reward states for the three rewards of the manipulation planner.

Reachability reward clipping The reachability measure m defined in (8) is clipped from below
to a lower bound value mmin ∈ R+ in our implementation to prevent overly large rewards, i.e.,
m = max(m,mmin), and the reward calculation (9) is updated to

rm(m) = −qm log

(
m

mmin

)
. (12)

A.2 Node selection and extension horizon

Pareto distribution The continuous truncated Pareto distribution is defined as

p(x;nn, β) =
βx−(β+1)

1− n−β
n

, (13)

for any x ∈ [1, nn], and β determines the width of the distribution. The probability of sampling a
specific node index in = i is

P (in = i;nn, β) =

∫ i+1

i

p(x;nn, β) dx =
i−β − (i+ 1)−β

1− n−β
n

. (14)

Algorithm 2 Node Extension Parameter Update
1: · · ·
2: in, ne = node selection(β, ne) ▷ Alg. 1, ln. 6
3: better node = false
4: for ie in 1 : ne do ▷ Alg. 1, ln. 7
5: ann+1 = action sampling(pa)
6: snn+1 = extension(snn

,ann+1)
7: if is best node(snn+1) then
8: β = βmax

9: ne = 0.95ne + 0.05(ie + 1)
10: better node = true
11: nn = nn + 1
12: in = nn

13: if better node = false then
14: β = max(0.99β, βmin)
15: ne = min(0.95ne + 0.05(ne + 1), ne,max)

16: nn = nn + 1 ▷ Alg. 1, ln. 10
17: · · ·

Varying search parameters Instead of
using fixed values for the Pareto distribu-
tion parameter β (greediness of the node
selection) and the extension horizon (re-
lated to the task complexity), these val-
ues are modified during the search. The
values are updated depending on whether
the search progresses or not. The greed-
iness of the node selection should be re-
duced when stuck in a local minima, and
the extension horizon can be interpreted
as a measure of task complexity. An in-
tuitive example of the meaning of the ex-
tension horizon is the Rubik’s cube, where
one must execute a sequence of actions to
improve the cube’s configuration. Here,
some worse intermediate states are neces-
sary to improve the overall configuration.

We bound β ∈ [βmin, βmax] with lower and upper bound βmin, βmax ∈ R+, respectively, and we
bound ne ∈ [1, ne,max] with upper bound ne,max ∈ N+. In the inner-most for-loop of Alg. 1 (ln.
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7), we check if the search progresses, i.e., if a new node with the overall highest reward is found.
In this case, we update the parameters so the node selection is greedier and the extension horizon
approaches the number of extensions required for search progress. If no new best node is found, we
update the parameters so that the node selection is less greedy and the extension horizon approaches
the upper horizon bound. These updates to Alg. 1 are stated in Alg. 2.

A.3 Actions

The four action types of the manipulation planner are visualized in Fig. 6.

Figure 6: Visualization of the four action types of the manipulation planner.

Varying action step size It can be helpful to have actions with different time step sizes to allow
both short, precise motions and long, far-reaching motions. We randomly sample the action step
size as an integer multiple of the base step size ∆ta, i.e.,

∆ta = k∆ta, with k ∼ U(1, kmax), (15)

where kmax ∈ N is the upper bound for the step size scaling. After the planner’s search is finished,
we split all actions to the base step size to obtain one common action step size for learning.

Closed-form solution for goal-directed action The closed-form solution for the optimal control
problem (11) is

∆a0 = −
(
BTQB +R

)−1 (
BTQ (f∗

0 − sg) +Ra∗
0

)
. (16)

A.4 Tree extension

Dynamics rollout The actions of the planner are position commands tracked by a low-level PD
controller ut = −Kp(qr,t − at) − Kdq̇r,t with controller gains Kp and Kd. A low-level control
step size ∆tc ≤ ∆ta smaller than the action step size is used to generate a position reference

aref,t =
(
qr,jn + ajn

) ∆ta − t∆tc
∆t

+
(
qr,in + ain

) t∆tc
∆t

. (17)

The reference is a linear interpolation between the last commanded position for the parent node,
qr,jn + ajn , and the last actual position plus the newly computed relative action, qr,in + ain , which
creates a continuous control input. The same control scheme is used for RL policy actions.

A.5 Parameters

The planner’s parameters that are not task-specific are listed in Table 2.

Parameter Value Parameter Value

goal bias bg 0.0 Pareto parameter upper bound βmax 1.2
number of goals ng 30 Pareto parameter lower bound βmin 0.2
number of extensions ne 30 extension horizon bound ne,max 10
reachability reward bound mmin 0.001 base action time step ∆ta 0.4s
action time step scale bound kmax 3

Table 2: Planner parameters.
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B Reinforcement learning implementation details

Implementation details and parameters for reinforcement learning are given in this section.

B.1 Pure DDPG

Hyperparameter Value

policy layers 4
value function layers 4
neurons per layer 256
policy learning rate 0.001
value function learning rate 0.001
Polyak averaging factor τ 0.05
random action chance η 0.3
discount factor γ 0.98
epochs nepochs task specific
cycles ncycles 50
rollouts nrollouts 2
rollout horizon nsteps task specific
training episodes nepisode 40
training batch size nbatch 256
replay buffer size 10000N
evaluation runs per epoch 10

Table 3: Training hyperparameters.

Our reinforcement learning setup largely fol-
lows the algorithm outlined in [53]. The pol-
icy network consists of four hidden layers with
256 neurons each. We use ReLU and tanh out-
put activation functions to ensure the actions lie
within [-1, 1]. The value function network also
uses four hidden layers with 256 nodes each
and ReLU activations but no output activation.
We clip the value function’s objective to the
minimum value possible for the rollout horizon
to avoid the unbounded divergence of value es-
timates. To improve stability during training,
we employ target networks with Polyak aver-
aging updates for both the policy and the value
function. A normalizer estimates the mean and
standard deviation for each input and normal-
izes all input values to zero mean and unit vari-
ance. The exploration noise consists of actions
chosen uniformly at random with a probability
of η and additive Gaussian noise for the actions chosen by the policy. A complete list of hyperpa-
rameters is given in Table 3, and the whole algorithm is stated in Alg. 3. We stop the training if the
policy achieves a success rate of 1.0 or if the maximum number of epochs has been reached.

Algorithm 3 DDPG Algorithm
1: Initialize policy πθ and value function Q with random weights
2: Initialize targets Q′ and π′ with weights ϕ′ = ϕ, θ′ = θ
3: Initialize replay buffer B
4: for epoch in 1 : nepochs do
5: for cycle in 1 : ncycles do
6: for rollout in 1 : nrollouts do
7: Sample start state s0 and goal state sg
8: for t in 1 : nsteps do ▷ policy rollout
9: if rand() ≤ η then

10: Sample uniformly random action at

11: else
12: Compute action at = πθ(s, sg) +Nt, with exploration noise Nt

13: Take action at and obtain new state st+1

14: Store transition (st,at, sg,t, rt, st+1) in B

15: Update normalizer with new samples ▷ normalizer update
16: for episode in 1 : nepisode do ▷ network training
17: Sample minibatch of nbatch transitions (st,at, sg,t, rt, st+1) from B
18: Compute value target vi = ri + γQ′

ϕ′(si+1, π
′
θ′(si+1, sg,i+1), sg,i+1)

19: Compute value function gradient gQ for lQ = 1
nbatch

∑
i(vi −Qθ(si,ai, sg,i))

2

20: Compute policy gradient gπ for lπ = 1
nbatch

∑
i Qθ(si, πϕ(si, sg,i), sg,i)

21: Apply the update to πϕ and Qθ

22: Update the target networks: ϕ′ = τϕ+ (1− τ)ϕ′, θ′ = τθ + (1− τ)θ′

23: Evaluate policy and stop if success rate = 1.0
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B.2 Demonstrations in replay buffer

Algorithm 4 Planner Rollout
1: · · ·
2: for rollout in 1 : nrollouts do ▷ Alg. 3, ln. 6
3: if rand() ≤ bp then
4: Sample goal state sg
5: Find node closest to sg
6: Find path from root node to closest node
7: Clip or pad trajectory if necessary
8: Store all transitions in B
9: else

10: Sample s0 and sg ▷ Alg. 3, ln. 7
11: for t in 1 : N do ▷ Alg. 3, ln. 8
12: · · ·

Instead of generating all data with an on-
line policy rollout, data from the plan-
ner’s search tree can be used with a bias
bp ∈ [0, 1]. Accordingly, the rollout loop
of Alg. 3 (ln. 6) is modified to use both
the policy and the planner to generate tra-
jectories, as stated in Alg. 4.

Planner demonstration lengths vary and
can be shorter or longer than the rollout
horizon nsteps. For long trajectories, the
beginning is cut so that only the last nsteps

transitions remain since these transitions
are most likely to contain reward signals.
Short trajectories are padded by repeating the planner’s start state to reach a length of nsteps. The
action commands for the padded start states are the initial joint states of the robot.

B.3 Pre-training

Algorithm 5 Pre-training
1: for demo in ndemos do ▷ demo generation
2: Sample goal state sg
3: Find node closest to sg
4: Find path from root node to closest node
5: Store all transitions in B if goal reached
6: Compute value for all transition
7: for episode in 1 : nepisode do ▷ network training
8: Sample minibatch of nbatch tuples

(st,at, sg,t, vt) from B
9: Compute value function gradient gQ for lQ =

1
nbatch

∑
i(vi −Qθ(si,ai, sg,i))

2

10: Compute policy gradient gπ for lπ =
1

nbatch

∑
i∥ai − πϕ(si, sg,i)∥2

11: Apply the update to πϕ and Qθ

A policy network πθIL
of the same size

as πθ can be trained with imitation learn-
ing from planner demonstrations. The pol-
icy is trained with input (s, sg) and out-
put (a) from the demonstrations. Simi-
larly, the value function is trained with in-
put (s, sg,a) and output (v), where the
discounted value v for an input tuple can
be calculated trivially from the rewards (1)
for all states in a demonstration trajectory.
Algorithm 5 states the pre-training proce-
dure. Note that the policy and the value
function can be pre-trained separately.

The pre-trained policy and value function
are used as described in [25]. In sum-
mary, during the policy rollout and net-
work training phase, the better one of the two policies, as evaluated by the value function, is used.
Note that we use the same value function for pre-training and online training.

C Experiment details

The evaluation systems are described in this section. Afterward, several ablations and comparisons
for the manipulation planner and reinforcement learning are provided.

C.1 Evaluation systems

Table 4 provides the task-specific parameters for the evaluation systems. Note that all object velocity
states have a scaling Qd,o,q = 0.1I and the robot state scaling is zero: Qd,r = 0I . A description of
each system is provided below.

Box push The box push task is a one-dimensional pushing task where one actuated pusher box
(robot) must push a second unactuated box (object) to a goal position on a line. Due to its simplicity,
this task can give valuable insight into the general properties of planning and learning. Moreover,
only pushing but no pulling is possible, which creates an interesting manipulation challenge.

16



System nepochs nsteps pa Qd,o,q Qp qm

Box push 150 75 [1 1 2 2] diag(1) I 1
Box push 2D 150 100 [6 2 2 1] diag(1, 1) 0.001I 0.001
Planar hand 150 80 [1 1 2 2] diag(1, 1, π/2) 0.01I 0.01
Floating hand 150 100 [1 1 1 1] diag(1, 2, π/2) 0.01I 0.01
Allegro hand 300 50 [1 3 2 2] diag(100, 100, 100, 1, 1, 10) 0.01I 0.01
Box grasp 300 50 [0 1 1 1] diag(1, 1, 10, 0, 0, 0) 0.01I 0.01
Ball turn 300 75 [2 1 3 3] diag(1, 1, 1, 2, 2, 0) 0.1I 0.1
Stool lift 300 75 [1 1 1 1] diag(1, 1, 1, 2, 2, 0) I 0.1

Table 4: Task parameters.

Box push 2D The two-dimensional box push task is the direct extension of the one-dimensional
box push task. Just as the one-dimensional box push task, it is an illustrative example. The com-
plexity of the task is increased by placing the pusher box between the object box and the goal. This
setup requires the pusher to move around the obstacle before pushing it towards the goal.

Planar hand The planar hand is a simplified representation of in-hand manipulation in a two-
dimensional plane. A hand with two two-link fingers is used to rotate and lift a box. Even with the
restriction to a plane, this task requires dexterous manipulation and gives insight into the planner’s
ability to solve in-hand manipulation tasks.

Floating hand The floating hand has the same kinematic as the planar hand and is also limited to
a two-dimensional plane. However, instead of a fixed wrist, the floating hand can move in the plane.
The task is to reorient a box and move it in space. This task combines dexterous manipulation as
well as picking and placing an object, two commonly required skills.

Allegro hand The Allegro hand is a robotic hand by Wonik Robotics with four fingers, sixteen
actuated finger joints, and two actuated wrist joints. The task is to reorient a cube by turning it
around the upright z-axis. In-hand manipulation is a commonly investigated robotic skill due to its
high dimensionality and required dexterity.

Box grasp The box grasp task uses a stationary quadrupedal robot with a mounted arm to grasp
and lift a box with a handle. It is a classic pick-and-place task, where finding a proper grasp is the
main challenge. This task demonstrates our method’s ability to solve pick-and-place scenarios on
real systems.

Ball turn The ball turn task involves a quadrupedal robot on its back that is using its legs to reorient
a ball. This setup resembles in-hand manipulation tasks where multiple multi-joint fingers (legs) are
used to reorient an object. We use this setup to demonstrate our method’s ability to perform in-hand
manipulation on real systems.

Stool lift The stool lift task comprises two stationary quadrupedal robots with mounted arms that
lift a bar stool into an upright configuration. The robots are deliberately prevented from grasping
the stool by fixing their grippers in a closed state. In this manner, whole-body and bimanual manip-
ulation of the stool is required, with contact occurring on multiple parts of the robot arms. We use
this task as an exemplary real-world cleaning scenario, where robots can help put moved or fallen
furniture back into desired configurations. By forcing whole-body contact, we also demonstrate our
method’s ability to perform whole-body manipulation on real systems.

C.2 Manipulation Planner

We present additional search results for two tasks and several studies on the planner’s components
and parameters.
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C.2.1 Additional tasks

Box push and box push 2D results Extending the results presented in Fig. 2, we show the search
progress for the two additional tasks, box push and box push in 2D. The results are in line with the
reported results for the other tasks.
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Figure 7: The performance of the Manipulation Planner on two additional tasks. Relative closeness
to the goal for the best node in the tree so far vs. the total number of nodes (simulation steps).

C.2.2 Baseline comparison

A comparison of three manipulation tasks with increasing difficulty based on the planar hand is
given in Fig. 8. The tasks are (1) in-hand reorientation of a box by 90◦, in-hand reorientation of a
box by 180◦, and throwing the box onto a shelf. The 90◦ turn can be achieved by simply tipping
over the box. For 180◦, regrasping is required. Throwing the box onto the shelf requires highly
dynamic movements to overcome the gap between the hand and the shelf. We compare our planner
to the quasi-static planner in [14].
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Figure 8: Performance comparison of our planner with the state-of-the-art planner introduced in
[14] for using the planar hand to reorient a box 90◦, 180◦, and throw the box into a desired location.
Relative closeness to the goal for the best node in the tree so far vs. the total number of nodes
(simulation steps).

We outperform the quasi-static planner across all three tasks. It is important to note that, for the
throwing task, the search progress does not fully capture performance. While our planner consis-
tently succeeds in throwing the box onto the shelf, the quasi-static planner fails to find this solution.
These results underscore the necessity of dynamic planning for advanced manipulation tasks and
highlight our planner’s superior capability to solve such tasks, thereby outperforming a state-of-the-
art planner.

C.2.3 Ablations

Extension horizon The extension horizon specifies how many sequential actions are taken once
a node has been selected to extend the tree. We assume that tasks of different complexity require
different extension horizons. We evaluate different but fixed extension horizons for all tasks to
measure the influence on the planner’s search progress in Fig. 9. We also evaluate the automatically
varying horizon that we use in our implementation as described in Appendix A.2. We measure
the average closeness to the goal over the full search duration, which is larger for quicker search
progress and higher final closeness. While a longer extension horizon tends to improve performance
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overall, there is no strong correlation. At the same time, the varying horizon performs well in all
cases with reduced variance compared to the fixed horizons.
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Figure 9: The performance of the Manipulation Planner for different extension horizons measured
as the average closeness to the goal during the search. Comparison of different fixed horizons (blue)
and variable horizon (black).

Pareto distribution exponent The Pareto distribution parameter β modifies how greedily nodes
with high rewards are extended. We evaluate different but fixed Pareto parameters for all tasks to
investigate how the parameter influences the planner’s search progress in Fig. 10. We also evaluate
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Figure 10: The performance of the Manipulation Planner for different Pareto parameters measured
as the average closeness to the goal during the search. Comparison of different fixed parameters
(blue) and variable parameter (black).
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the automatically varying parameter that we use in our implementation as described in Appendix
A.2. For intuition, a parameter β = 0.05 means that the currently best node will be selected with
a probability of roughly P = 10%, whereas β = 2.0 means a probability of P = 75%. There
is a consistent trend that the planner’s performance decreases as the node selection becomes more
greedy (the parameter increases). This effect could be caused by the node selection becoming so
greedy that the search gets stuck in local minima by repeatedly selecting the same few nodes. Using
an automatically varying range for the parameter does not lead to an improvement over always
choosing a low parameter. Apparently, the Pareto distribution with a low β already has a good
tradeoff between exploitation and exploration.

Sub-goal ratio To assess the usefulness of having sub-goals during the planner’s search, as in
rapidly exploring random trees, we evaluate different ratios of sub-goals to node extensions in Fig.
11. A goals/extensions ratio of 1/900 means we choose one goal and do 900 extensions for this
single goal, whereas a ratio of 900/1 means we choose 900 goals and do one extension for each
of these goals. Note that in this evaluation, we always do a total of 900 extensions. There is
no consistent trend indicating that more or less sub-goals improve search performance. Multiple
explanations exist for these results: Our tasks could have very few local minima. However, since the
Pareto parameter does influence search performance (cf. Fig. 10), there may be many local minima,
but our node selection strategy is already good enough to avoid these. Yet another possibility is that
the difference in sub-goals is too small to provide a benefit over searching with just a single goal.
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Figure 11: The performance of the Manipulation Planner for different ratios of goals/extensions
measured as the average closeness to the goal during the search.

Action types We investigate the effectiveness of different combinations of action types with just
random actions as a baseline in Fig. 12. The fact that purely random actions already lead to good
results in many tasks indicates that the other components of the planner, such as the heuristic node
selection and specific rewards, lead to meaningful search progress. Still, proximity and goal-directed
actions alongside random actions in the search further improve the performance for some tasks.

Proximity and reachability reward scaling The effect of different proximity and reachability
reward scalings is shown in Fig. 13. For most tasks, the search fails once the proximity reward
becomes too high, potentially because the necessary distance between the robot and the object for
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Figure 12: The performance of the Manipulation Planner for different combinations of action types
measured as the average closeness to the goal during the search. Comparison of the following action
types (blue): goal-directed (g), random+goal-directed (rg), random+proximity+goal-directed (rpg),
random+proximity (rp), proximity (p), proximity+goal-directed (pg), and random (black).

reconfiguration is punished too severely. The reachability reward scaling shows a similar, although
weaker, trend. Especially for the more complex tasks involving the Allegro hand or robot arms, it
is difficult to clearly state how to scale the rewards, and a parameter sweep is necessary to find the
optimal value. It can be assumed that the same effect would occur for dense-reward reinforcement
learning, highlighting one of the benefits of the planner, as parameter sweeps can be executed much
faster with the planner than with learning.
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Figure 13: The performance of the Manipulation Planner for different combinations of action types
measured as the average closeness to the goal during the search. Comparison of different proximity
and reachability reward scalings. Purple is bad, yellow is good.
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C.3 Reinforcement learning

We present additional learning results for two tasks and several comparisons for different learning
methods and demonstration usage.

C.3.1 Additional tasks

Box push and box push 2D results Extending the results presented in Fig. 3, we show the training
progress for the two additional tasks, box push and box push in 2D. The results are in line with the
reported results for the other tasks.
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Figure 14: The performance of reinforcement learning for manipulation on two additional tasks.
Comparison of our approach of adding demonstrations to the replay buffer (blue), RL with an addi-
tional imitation policy pre-training (red), and pure RL (black).

C.3.2 Planner and policy comparison

While the planner is able to solve the manipulation tasks presented in this paper, distilling a policy
from planner demonstrations leads to more optimal and faster solutions (after training).

Task Planner Policy

Box push 80.4 59.4
Box push 2D 110.6 37.6
Planar hand 72.6 17.0
Floating hand 81.2 47.8
Allegro hand 41.0 30.4
Box grasp 43.4 21.2
Ball turn 34.0 21.2
Stool lift 57.8 28.4

Table 5: Solution trajectory lengths (in
steps) of planner and trained policies for
different manipulation tasks.

Solution length comparison The trajectory lengths (in
steps) for planning and learning are given in Tab. 5. We
list the average trajectory lengths for five seeds.

The results show that both the planner and the trained
policies are able to find solutions. However, the policies
always require significantly fewer steps to solve the tasks,
indicating a more optimized performance.

Timing comparison The wall-clock times for planning
and learning, as well as dimensions for the manipulation
tasks, are given in Tab. 6. We list the average time for
five seeds. Single sol. refers to finding a single trajectory
leading to one goal. Multiple sol. refers to finding mul-
tiple solutions leading to different goal locations in order to generate a set of demonstrations for
policy learning. Policy training refers to training the policy where demonstrations are fed to the
replay buffer. The planner is no longer used at this stage. Observation dim. refers to the combined
dimensions of state and goal space. Action dim. refers to the dimension of the action space.

The results show that both planning and policy learning scales to high-dimensional tasks with only
a moderate increase in computation time.

C.3.3 Baseline comparison

We provide a comparison to the state-of-the-art manipulation learning algorithm MoPA-RL [37] for
the same three planar hand tasks described in Appendix C.2.2 and for a complex assembly task.
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Task Single sol. Multiple sol. Policy training Observation dim. Action dim.

Box push 3.1s 15.3s 19.6min 8 1
Box push 2D 7.6s 13.9s 19.5min 16 2
Planar hand 6.7s 15.9s 5.9min 28 4
Floating hand 8.6s 17.5s 16.4min 36 6
Allegro hand 3.8s 43.7s 67.0min 98 18
Box grasp 7.7s 40.0s 68.9min 54 7
Ball turn 4.1s 57.6s 58.1min 74 12
Stool lift 8.5s 56.2s 46.4min 84 14

Table 6: Wall clock times and dimensions for planning and policy learning of different manipulation
tasks.

Planar hand We use sparse rewards for the baseline comparison on the planar-hand tasks and
show the results in Fig. 15.
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Figure 15: Performance comparison of our full algorithm with MoPA-RL [37] for using the planar
hand to turn a box 90◦, 180◦, and throw the box into a desired location.

We outperform MoPA-RL for all three tasks. While the MoPA-RL is also able to quickly and consis-
tently find solutions to the 90◦-reorientation task, it has more difficulty with the 180◦ reorientation.
Finally, MoPA-RL is not able to find any solution to the throwing task, whereas our method achieves
a success rate of more than 50%. As before, the results demonstrate the need for dynamic planning
and our planner’s ability to solve highly dynamic tasks.

Sawyer assembly With the Sawyer assembly task described in [37], we demonstrate our ability to
solve complex assembly tasks that require precise manipulation in cluttered environments. The task
is challenging because colliding with the movable table prevents assembly. Accordingly, collisions
must be avoided. We evaluate five seeds for our method, and we reuse the results shown in [37] for
MoPA-RL.
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Figure 16: Left: The performance of our planner for solving the Sawyer assembly task presented in
[37]. Relative closeness to the goal for the best node in the tree so far vs. the total number of nodes
(simulation steps). Right: Performance comparison of our full algorithm with MoPA-RL [37] for
the Sawyer assembly task. Results for MoPA-RL are taken from [37].

In the majority of cases, our planner is able to find solutions for this assembly task. Policy learning
is successful in these cases with good planner demonstrations. While we achieve a similar average
performance for policy learning as MoPA-RL, we have a higher variance due to the reliance on the
planner’s demonstrations. While our planner is designed for contact-rich manipulation, it can also
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solve this assembly task where contacts must be avoided. Our method implicitly takes collision
avoidance into account and matches the performance of MoPA-RL.

C.3.4 Ablations

Demonstration ratio Adding demonstrations to the RL replay buffer improves performance com-
pared to pure online learning, but pure offline learning with the demonstration data does not yield
good results. Accordingly, there must be a tradeoff between online exploration and offline data. We
investigate this tradeoff by varying the ratio of demonstrations in the replay buffer in Fig. 17. We
measure the average reward over the entire training duration, which is larger for quicker learning
progress and a higher final success rate. It appears that a small amount of demonstrations gives
enough reward signals to bootstrap RL and enable exploration from a sub-optimal solution. Already
having a low ratio of roughly 10% yields satisfactory results, and we use 25% as it gives the most
robust performance for all tasks.
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Figure 17: The performance of reinforcement learning (RL) for manipulation measured as the
average success during training on eight tasks. Comparison of different demonstration-to-online-
exploration ratios in the replay buffer. A ratio of 0.0 is pure online RL, 1.0 is pure offline RL.

Demonstration inclusion comparison Three different methods for adding demonstrations to the
replay buffer are investigated. (1) Use a fixed ratio of demonstrations to online exploration. (2) Use
a variable ratio, where the ratio decreases as the learning success rate increases. (3) Add a fixed
number of demonstrations from the planner’s tree only initially. As can be seen in Fig. 18, the spe-
cific method of introducing demonstrations into the replay buffer does not make a large difference.
However, just adding demonstrations in the beginning is sometimes not enough to bootstrap learning
successfully.

Pre-training comparison Directly using the pre-trained policy only works for the most simple
box push task with a success rate of 0.10± 0.13. For all other tasks, the success rate was zero. We
evaluated ten runs for each task. Apparently, the data generated by the planner is not good enough
to directly perform imitation learning with it, and online exploration with RL is required to find
successful policies.
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Figure 18: The performance of reinforcement learning for manipulation with demonstrations on
eight tasks. Comparison of adding a constant ratio of demonstrations to the replay buffer (blue),
adding fewer demonstrations with increasing success rate (dark blue), and adding demonstrations
only at the beginning (purple).

Accordingly, we compare three different pre-training settings in Fig. 19. (1) Only pre-training
a policy πIL and using it alongside the online RL policy. (2) Pre-training a policy and the value
function. (3) Pre-training the policy and value function as well as adding a fixed ratio of demonstra-
tions to the replay buffer. While adding a pre-trained policy to RL improves performance over pure
DDPG, it does not significantly and consistently perform much better. Only once demonstrations
are added to the replay buffer does the performance with a pre-trained policy improve significantly.
Since the performance of adding demonstrations alongside pre-training is not better than just adding
demonstrations, we attribute this improvement to using demonstrations and not to the pre-trained
policy.

HER comparison For reference, we provide a comparison to hindsight experience replay (HER)
in RL since this method can improve learning performance in sparse-reward settings. The results are
shown in Fig. 20. While using HER improves the learning performance for some tasks compared to
pure DDPG, it does not lead to any improvement for others and almost always performs worse than
adding demonstrations to the replay buffer.

C.4 Hardware evaluation

Setup We use the quadrupedal Spot robot by Boston Dynamics with an arm arm mounted for
certain tasks. Control and communication with the robot are achieved via the bosdyn software de-
velopment kit. Accurate state estimation is achieved by using the OptiTrack motion capture system
and placing markers on the objects. Communication between the Optitrack System and the robots
was handled via ROS2, while gRPC was used to command policy actions with the Spot robots.
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Figure 19: The performance of reinforcement learning for manipulation with pre-training on eight
tasks. Comparison of pre-training just the policy (light red), pre-training the policy and value func-
tion (red), and pre-training the policy and value function as well as adding demonstrations (dark
red).
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Figure 20: The performance of reinforcement learning for manipulation with hindsight experience
replay on eight tasks. Comparison of our approach of adding demonstrations to the replay buffer
(blue), RL with 50% HER relabeling (light green), RL with 80% HER relabeling (dark green), and
pure RL (black).
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Box grasp The box grasp task evaluates if the robot is able to grasp and lift the box. A trial is
considered successful if the box is lifted off the ground. We evaluate 27 different starting locations
by building a grid of start positions and orientations for the box:

x ∈ {−0.1, 0.0, 0.1} × y ∈ {−0.25, 0.00, 0.25} × θz ∈ {−45◦, 0◦, 45◦}. (18)

Fig. 21 shows the progression of the box-grasp task. The challenge in this task is to learn that in
order to lift the box, the handle must be grasped. Our trained policy is able to consistently grasp the
handle and performs well.

Figure 21: Left: the successful and failed initial configuration for the box-grasp tasks. Right:
deployment of the trained policy for one Spot grasping and lifting the box.

Ball turn The ball-turn task is used as an in-hand-manipulation-equivalent example. A trial is
considered successful if the box is rotated such that the angle deviation from the upright z-axis is
below 40◦. We evaluate 20 different starting locations by testing a sequence of start rotations around
the y-axis for the ball with increments of 15◦:

θy ∈ {±180◦,±165◦, · · · ,±60◦,±45◦}. (19)

Fig. 22 shows the progression of the ball-turn task. The robot can successfully perform some of the
desired orientations. We attribute failures to the sim2real gap, with a rigid ball in simulation training
and a soft yoga ball in the real-system setting.

Figure 22: Left: the successful and failed initial orientations for the ball-turn tasks. Right: deploy-
ment of the trained policy for one Spot turning the ball to the upright position.

Stool lift The stool-lift task requires whole-body manipulation and is a bimanual task representa-
tive of a real-world cleaning task. A trial is considered successful if the robots maneuver the stool in
the upright position. We evaluate 25 different starting locations by building a grid of start positions
for the stool:

x ∈ {−0.2,−0.1, 0.0, 0.1, 0.2} × y ∈ {−0.2,−0.1, 0.0, 0.1, 0.2}. (20)

Fig. 4 shows the progression of the stool-lift task. Despite the challenging whole-body and bimanual
setup, the robots frequently manage to lift the stool in the upright configuration. Failures can be
attributed to a lack of measuring the robots’ body positions. When contact forces occur, the robots’
bodies are displaced (which we do not measure), leading to position offsets for the robot arms. In
such cases, the policy has false state measurements and produces unsuccessful actions.
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