

000 001 002 003 004 005 DYNAMICS-PREDICTIVE SAMPLING FOR ACTIVE RL 006 FINETUNING OF LARGE REASONING MODELS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Reinforcement learning (RL) finetuning has become a key technique for enhancing
032 the reasoning abilities of large language models (LLMs). However, its effectiveness
033 critically depends on the selection of training data. Recent advances underscore the importance of online prompt selection methods, which typically
034 concentrate training on partially solved or moderately challenging examples under the current policy, thereby yielding more effective model updates. While
035 significantly accelerating RL finetuning in terms of training steps, they also incur substantial computational overhead by requiring extensive LLM rollouts over
036 large candidate batches to identify informative samples, an expense that can outweigh the finetuning process itself. To address this challenge, this work proposes
037 Dynamics-Predictive Sampling (DPS), which online predicts and selects informative
038 prompts by inferring their learning dynamics prior to costly rollouts. Specifically, we introduce a new perspective by modeling each prompt’s solving progress
039 during RL finetuning as a dynamical system, where the extent of solving is represented as the state and the transition is characterized by a hidden Markov model.
040 Using historical rollout reward signals, we perform online Bayesian inference to
041 estimate evolving state distributions, and the inference outcome provides a predictive
042 prior for efficient prompt selection without rollout-intensive filtering. Empirical
043 results across diverse reasoning tasks, including mathematics, planning, and
044 visual geometry, demonstrate that DPS substantially reduces redundant rollouts,
045 accelerates the training process, and achieves superior reasoning performance.
046

1 INTRODUCTION

047 Reinforcement learning (RL) finetuning has emerged as a crucial technique to enhance the reasoning
048 capabilities of large language models (LLMs) (Lightman et al., 2023; Jaech et al., 2024; Guo
049 et al., 2025; Team et al., 2025). These finetuned models, often referred to as large reasoning models
050 (LRMs), generate chain-of-thoughts (CoTs) to perform multi-step structured inference and have
051 achieved remarkable progress across a wide range of knowledge-intensive applications, including
052 scientific question answering (He et al., 2024), symbolic mathematics (Luo et al., 2025b), logical
053 deduction (Xie et al., 2025), and program synthesis (Luo et al., 2025a).

054 While RL finetuning has demonstrated substantial progress, its effectiveness depends heavily on the
055 quality of training data (Guo et al., 2025; Yang et al., 2024b), prompting increasing attention to data
056 curation (Wen et al., 2025; Hu et al., 2025). A common practice is to perform offline data filtering,
057 in which prompts are ranked or selected prior to training using static heuristics such as estimated
058 difficulty, domain balance, or diversity (Ye et al., 2025; Li et al., 2025; Wang et al., 2025). Al-
059 though beneficial, this approach fails to adapt to the model’s evolving competence during training.
060 To improve adaptivity, recent work has explored online prompt selection strategies that dynamically
061 adjust to the model’s evolving behavior. These methods typically operate on a per-step or per-epoch
062 basis, selecting informative prompts that provide stronger training signals (Yu et al., 2025; Zhang
063 et al., 2025; Cui et al., 2025). A representative state-of-the-art (SoTA) approach is Dynamic Sam-
064 pling (DS) (Yu et al., 2025), which expands candidate prompt batches, generates multiple responses
065 per prompt, discards uninformative prompts with consistent rewards, and uses the retained subset
066 for finetuning. This strategy improves training sample quality and significantly accelerates RL fine-
067 tuning in terms of training steps. However, for reasoning-intensive tasks, generating responses with
068

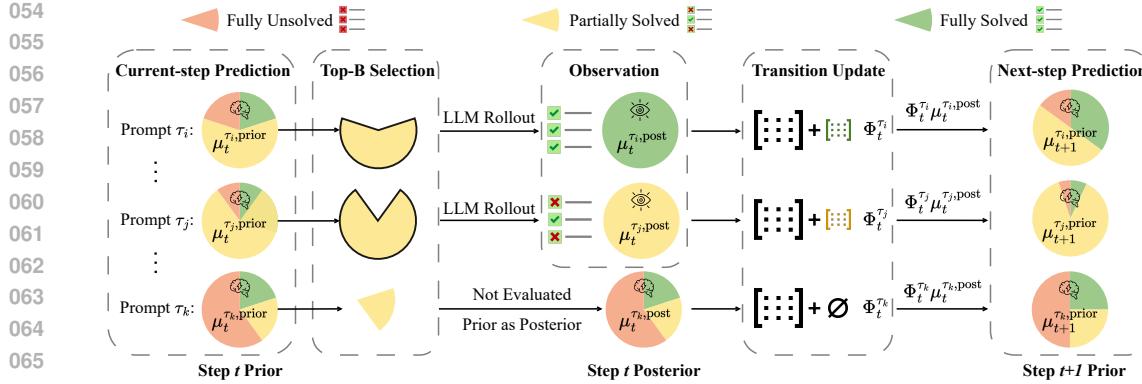


Figure 1: Dynamics-Predictive Sampling (DPS) framework. DPS models each prompt’s solving progress in RL finetuning as a dynamical system, treating solving extent as the state with transitions characterized by a hidden Markov model. By employing lightweight inference, it predicts and selects informative (partially solved) prompts online, without requiring rollout-intensive filtering.

long CoTs is computationally expensive. As a result, DS incurs substantial overhead from extensive LLM generation on enlarged batches, which in practice often outweighs the cost of finetuning itself.

This work aims to preserve the adaptivity of online prompt selection while avoiding redundant rollouts. To this end, we propose Dynamics-Predictive Sampling (DPS), which online predicts informative prompts by inferring their learning dynamics. Specifically, we introduce a new perspective by formalizing each prompt’s solving progress during RL finetuning as a dynamical system. The solving extent of each prompt is treated as the state of the system, while the distribution of these states evolves as LRM updates. Technically, this process is instantiated as a hidden Markov model (HMM), which serves as a tractable tool for tracking the prompt-solving dynamics. Given the constructed dynamical system, we perform online Bayesian inference to estimate the evolving state distributions from historical rollout reward signals. The inference outcome offers a predictive prior for adaptive prompt selection, thereby improving sample efficiency without rollout-intensive filtering.

Empirically, we evaluate the proposed DPS across diverse reasoning downstream tasks, including competition-level mathematics, numerical planning, and visual geometry. The results demonstrate that DPS can accurately predict prompts’ evolving solving states and consistently select a higher proportion of informative samples compared to baseline methods. Leveraging this capability, DPS substantially accelerates RL finetuning, achieving performance comparable or even superior to the oracle rollout-intensive strategy DS with significantly fewer rollouts.

2 PRELIMINARY

RL Finetuning for LRMs. Given a prompt τ sampled from a dataset \mathcal{D} and a response y generated from the model’s policy $\pi_\theta(y|\tau)$, the objective of RL finetuning is to maximize the expected return:

$$\max_{\theta \in \Theta} \mathbb{E}_{\tau \sim \mathcal{D}, y \sim \pi_\theta(\cdot|\tau)} [r(\tau, y)], \quad (1)$$

where the reward function $r(\tau, y)$ typically verifies the correctness of responses, with binary signals commonly used in domains such as mathematics (i.e., 1 for correct and 0 for incorrect).

Group Relative Policy Optimization (GRPO). To solve the above optimization problem, a number of policy gradient methods have been proposed. GRPO (Shao et al., 2024) is a recent and widely adopted variant that eliminates the need for explicit value function estimation, making it particularly suitable for finetuning LLMs. Formally, for an arbitrary prompt τ and its corresponding k sampled responses $\{y_i^\tau\}_{i=1}^k$, GRPO maximizes the following objective:

$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{\tau \sim \mathcal{D}, \{y_i^\tau\}_{i=1}^k \sim \pi_{\theta_{\text{old}}}(\cdot|\tau)}$$

$$\left[\frac{1}{k} \sum_{i=1}^k \left(\min \left(\frac{\pi_\theta(y_i^\tau|\tau)}{\pi_{\theta_{\text{old}}}(y_i^\tau|\tau)} \hat{A}_i^\tau, \text{clip} \left(\frac{\pi_\theta(y_i^\tau|\tau)}{\pi_{\theta_{\text{old}}}(y_i^\tau|\tau)}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}_i^\tau \right) - \beta D_{KL}(\pi_\theta || \pi_{\text{ref}}) \right) \right],$$

108 where the clipped policy ratio prevents π_θ from deviating excessively from the previous policy $\pi_{\theta_{\text{old}}}$,
 109 while the regularization coefficient β penalizes divergence from a fixed reference model π_{ref} . GRPO
 110 employs a group-based normalization scheme to estimate the advantages \hat{A}_i^τ :

$$112 \quad \hat{A}_i^\tau = \frac{r(\tau, y_i^\tau) - \text{mean}(\{r(\tau, y_j^\tau)\}_{j=1}^k)}{\text{std}(\{r(\tau, y_j^\tau)\}_{j=1}^k)}. \quad (2)$$

114 This strategy significantly reduces training complexity and has demonstrated strong empirical per-
 115 formance across diverse LLM reasoning tasks (Shao et al., 2024; Guo et al., 2025).
 116

117 **Dynamic Sampling for Online Prompt Selection.** In RL finetuning of LLMs, training examples
 118 contribute unequally to policy improvement. When the model consistently answers a problem either
 119 correctly or incorrectly, a phenomenon frequently observed during training (Zhang et al., 2025), the
 120 reward provides limited optimization signals (Chen et al., 2025; Yu et al., 2025). For algorithms such
 121 as GRPO, this situation causes the normalized advantages to vanish, effectively halting optimization.

122 To mitigate this issue, online prompt selection strategies are proposed to dynamically curate prompts
 123 under specific rules (Zhang et al., 2025; Yu et al., 2025). A representative SoTA method is Dynamic
 124 Sampling (DS) (Yu et al., 2025). At each training step t , DS rolls out with a larger, randomly sampled
 125 candidate prompt batch $\hat{\mathcal{B}}_t$, and discards uninformative prompts with identical rewards across the k
 126 responses, forming the final training batch \mathcal{B}_t :

$$127 \quad \mathcal{B}_t = \left\{ \tau \in \hat{\mathcal{B}}_t \mid \text{std}(\{r(\tau, y_i^\tau)\}_{i=1}^k) > 0 \right\}. \quad (3)$$

129 Despite its effectiveness, DS introduces significant computational overhead due to repeated LLM
 130 rollouts and evaluations over the enlarged candidate batch. In many cases, the candidate batch is
 131 several times larger than the final batch, resulting in a proportional increase in LLM generation
 132 costs. This burden is particularly pronounced in reasoning tasks requiring long CoT generation.

133 For extended discussions on related work, we refer the reader to Appendix A.
 134

136 3 DYNAMICS-PREDICTIVE SAMPLING FOR ACTIVE RL FINETUNING

138 This section formalizes the prompt-solving progress as a dynamical system, develops an inference
 139 strategy for solving extent prediction, and proposes an efficient pipeline for online prompt selection.

141 3.1 GENERATIVE MODELING OF PROMPT-SOLVING DYNAMICS

142 **Problem Formulation.** Prior research has revealed the existence of prompt-solving states for ef-
 143 ficient policy optimization. Specifically, History Resampling (HR) (Zhang et al., 2025) categorizes
 144 prompts into fully solved ones and others, whereas DS (Yu et al., 2025) distinguishes partially solved
 145 prompts from the rest. Both theoretical analyses and empirical findings (Bae et al., 2025; Chen et al.,
 146 2025) suggest that prompts yielding both successful and failed responses are more informative, as
 147 they provide stronger gradient signals for updates. In light of this, this work defines an implicit state
 148 $z_t^\tau \in \{1, 2, 3\}$ for each prompt $\tau \in \mathcal{D}$, indicating its rollout outcome at training step t :

- 150 • State 1 (fully unsolved): All responses are incorrect, $\sum_{i=1}^k r(\tau, y_i) = 0$;
- 151 • State 2 (partially solved): Some responses are correct and some incorrect, $0 < \sum_{i=1}^k r(\tau, y_i) < k$;
- 153 • State 3 (fully solved): All responses are correct, $\sum_{i=1}^k r(\tau, y_i) = k$.

154 According to prior work (Bae et al., 2025; Chen et al., 2025), State 2 prompts are the most infor-
 155 mative and therefore should be prioritized during training. However, at each training step, the solving
 156 state of any given prompt is unknown prior to rollout and evaluation. In the batch training setting,
 157 solving states are only observed intermittently, when certain prompts are selected for rollout. Con-
 158 sequently, each prompt yields an intermittent observation sequence, with the observation of prompt
 159 τ at step t denoted as y_t^τ (where $y_t^\tau = \emptyset$ if no observation made). Our objective is to estimate the
 160 filtered prior belief of the solving state at step t before observation, denoted by $\mu_t^{\tau, \text{prior}}$:

$$161 \quad \mu_t^{\tau, \text{prior}}(i) := \mathbb{P}(z_t^\tau = i \mid y_{1:t-1}^\tau), \quad \forall i \in \{1, 2, 3\}. \quad (4)$$

Prompt Solving as Dynamical Systems. We formalize the evolution of each prompt’s solving state using a Hidden Markov Model (HMM), which captures how the LLM’s ability to solve a given prompt evolves during training. For clarity, we omit the superscript τ in this section and Section 3.2, describing the generative and inference process for a single prompt, which applies to all others.

Formally, the initial solving state z_1 is drawn from a categorical prior $\mu_1^{\text{prior}} \in \Delta^3$. In the absence of prior knowledge, we adopt a uniform distribution:

$$z_1 \sim \text{Categorical}(\mu_1^{\text{prior}}), \quad \mu_1^{\text{prior}} = \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right]. \quad (5)$$

Subsequent states evolve according to a Markov process with a column-stochastic transition matrix $\Phi \in \mathbb{R}^{3 \times 3}$, where entry $\Phi(i, j)$ represents the probability of transitioning from state j to state i :

$$z_t | z_{t-1} \sim \text{Categorical}(\Phi(\cdot, z_{t-1})), \quad \Phi(i, j) = \mathbb{P}(z_t = i | z_{t-1} = j), \quad \sum_{i=1}^3 \Phi(i, j) = 1. \quad (6)$$

At each timestep, if the prompt is selected for training, the observation y_t reveals the current state exactly; otherwise, the state remains unobserved. This yields a degenerate emission model:

$$p(y_t | z_t) = \begin{cases} \delta(y_t, z_t), & \text{if } y_t \in \{1, 2, 3\}, \\ 1, & \text{if } y_t = \emptyset, \end{cases} \quad (7)$$

where $\delta(\cdot, \cdot)$ denotes the Kronecker delta function. Assigning emission probability 1 to missing observations preserves marginal consistency while imposing no constraint on z_t . Putting these components together, the solving progress for each prompt can be represented as a dynamical system. Specifically, the joint distribution over states $z_{1:T}$ and observations $y_{1:T}$ factorizes as:

$$p(z_{1:T}, y_{1:T}) = \int p(z_1) \prod_{t=2}^T p(z_t | z_{t-1}, \Phi) \prod_{t=1}^T p(y_t | z_t) d\Phi, \quad (8)$$

where the transition matrix Φ is treated as a random variable. This formulation specifies the underlying generative process, thereby enabling subsequent Bayesian inference over the solving states.

3.2 ONLINE INFERENCE AND TRANSITION LEARNING

We perform online Bayesian inference to track the solving states for a given prompt during training. The procedure follows a three-stage pipeline at each training step t : (i) update the prior μ_t^{prior} to a posterior μ_t^{post} , using the observation y_t if available, otherwise setting the posterior to the prior; (ii) if y_t is observed, refine the transition model; and (iii) propagate the posterior forward through the transition model to generate the next-step prior μ_{t+1}^{prior} .

Observation Update. If y_t is observed, Bayes’ rule updates the prior μ_t^{prior} to the posterior μ_t^{post} :

$$\mu_t^{\text{post}}(i) = \frac{p(y_t | z_t = i) \mu_t^{\text{prior}}(i)}{\sum_k p(y_t | z_t = k) \mu_t^{\text{prior}}(k)} = \frac{\delta(y_t, i) \cdot \mu_t^{\text{prior}}(i)}{\sum_k \delta(y_t, k) \cdot \mu_t^{\text{prior}}(k)}, \quad \text{if } y_t \in \{1, 2, 3\}. \quad (9)$$

If y_t is unobserved, the Bayesian update defaults to $\mu_t^{\text{post}} = \mu_t^{\text{prior}}$ without new evidence.

Transition Update. We place independent Dirichlet priors on the columns of transition matrix:

$$\Phi_t(\cdot, j) \sim \text{Dirichlet}(\alpha_t(1, j), \alpha_t(2, j), \alpha_t(3, j)), \quad \forall j \in \{1, 2, 3\}, \quad (10)$$

where $\alpha_t(i, j)$ specify the distribution over the transition probabilities. We initialize the transition matrix with an uninformative prior by setting $\alpha_0(i, j) = 1$. As observations arrive sequentially, the parameters $\alpha_t(i, j)$ are updated online. Specifically, when y_t is observed at step t , a Bayesian update is applied to $\alpha_t(i, j)$ using the soft transition statistics:

$$\alpha_t(i, j) = \alpha_{t-1}(i, j) + \xi_t(i, j), \quad (11)$$

where $\xi_t(i, j)$ denotes the posterior transition pseudo-count:

$$\xi_t(i, j) := \mathbb{P}(z_{t-1} = j, z_t = i | y_{1:t}), \quad \text{if } y_t \in \{1, 2, 3\}. \quad (12)$$

This update rule follows from the conjugacy between the Dirichlet and Categorical distributions. Observing a transition from state j to i adds one pseudo-count to the corresponding parameters of the Dirichlet prior. As the transition is uncertain, the expected contribution is given by $\xi_t(i, j)$. By the Markov property and the conditional independence of observations given states, we obtain:

$$\mathbb{P}(z_{t-1} = j, z_t = i \mid y_{1:t}) = \frac{\mu_{t-1}^{\text{post}}(j) \cdot \Phi_{t-1}(i, j) \cdot p(y_t \mid z_t = i)}{\sum_{j'} \mu_{t-1}^{\text{post}}(j') \sum_{i'} \Phi_{t-1}(i', j') \cdot p(y_t \mid z_t = i')}. \quad (13)$$

with derivations deferred to Appendix C. Using the deterministic emission model in Eq. (7), and setting $\xi_t = 0$ when y_t is unobserved (so the Bayesian update defaults to the prior), ξ_t simplifies to:

$$\xi_t(i, j) = \begin{cases} \frac{\mu_{t-1}^{\text{post}}(j) \cdot \Phi_{t-1}(i, j)}{\sum_{j'} \mu_{t-1}^{\text{post}}(j') \cdot \Phi_{t-1}(i, j')}, & \text{if } i = y_t, \\ 0, & \text{otherwise.} \end{cases} \quad (14)$$

Non-stationary Extension. The standard Bayesian HMM assumes stationary transition dynamics. However, prompt-solving states in LRM may evolve non-stationarily due to the complex learning process. To accommodate changing transition dynamics, we propose a lightweight extension that applies an exponentially decayed Dirichlet posterior update to the transition model:

$$\alpha_t(i, j) = \lambda \cdot \alpha_{t-1}(i, j) + (1 - \lambda) \cdot \alpha_0(i, j) + \xi_t(i, j), \quad \lambda \in (0, 1). \quad (15)$$

This mechanism introduces forgetting by emphasizing recent transition statistics while gradually discounting outdated patterns. Smaller values of λ yield faster adaptation to evolving dynamics. The prior α_0 serves as a regularizer: it prevents collapse when recent evidence is sparse and also enables the encoding of domain knowledge about plausible transition structures.

Next-state Prediction. After the observation and transition updates at step t , we use the posterior belief μ_t^{post} and the inferred transition matrix Φ_t to form the predictive prior for the next step:

$$\mu_{t+1}^{\text{prior}} = \Phi_t \mu_t^{\text{post}}, \quad \text{i.e.,} \quad \mu_{t+1}^{\text{prior}}(i) = \sum_{j=1}^3 \Phi_t(i, j) \cdot \mu_t^{\text{post}}(j). \quad (16)$$

This prior μ_{t+1}^{prior} represents our forecast of the prompt-solving state at training step $t + 1$ before its observation, and serves as the initial belief for the subsequent inference iteration. Unlike classical HMM smoothing methods (e.g., Forward-Backward (Baum et al., 1972)), which require access to full trajectories, our approach updates both the state belief and transition posterior in an online manner. Moreover, the computational cost of this inference framework is typically negligible compared to response rollout or model finetuning, as it involves only very low-dimensional matrix operations.

3.3 PROMPT SAMPLING WITH PREDICTED DYNAMICS

The central goal of modeling prompt-solving dynamics is to online predict which prompts should be prioritized for training at each step, before conducting costly rollouts. Given the predictive solving-state belief $\mu_t^{\tau, \text{prior}} = \mathbb{P}(z_t \mid y_{1:t-1})$ for each prompt τ , we prioritize prompts according to their predicted probability of being partially solved (State 2), denoted $\mu_t^{\tau, \text{prior}}(2)$. Crucially, we rely on the prior belief $\mu_t^{\tau, \text{prior}}$ rather than the posterior $\mu_t^{\tau, \text{post}}$, since selection must occur before outcomes at step t are observed via rollouts. Formally, the B prompts with the highest State 2 probabilities are selected to constitute the training batch at step t :

$$\mathcal{B}_t = \text{Top}_B \left(\left\{ \tau \in \mathcal{D} \mid \mu_t^{\tau, \text{prior}}(2) \right\} \right). \quad (17)$$

Overall Algorithm. Integrating these components, we present the complete algorithm DPS in Algorithm 1, with a framework overview shown in Fig. 1. A detailed analysis of the time complexity of DPS and its implicit connection to curriculum learning is provided in Appendix B.

4 EXPERIMENTS

In this section, we conduct several experiments to examine the validity of DPS. Appendices D, E, and F provide implementation details, additional results, and data examples, respectively.

270

Algorithm 1: Dynamics-Predictive Sampling (DPS) for Active RL Finetuning

271

Input: Prompt dataset \mathcal{D} ; Dirichlet prior α_0 ; Initial state belief μ_1^{prior} ; Batch size B ; Decay ratio λ ; Large language model π_θ ; Total training steps T .

272

Output: Finetuned large reasoning model π_θ .

273

for $t = 1$ **to** T **do**

274

// Select most likely informative prompts for training

275

 Sample a batch of prompts $\mathcal{B}_t \leftarrow \text{Top}_B \left(\left\{ \tau \in \mathcal{D} \mid \mu_t^{\tau, \text{prior}}(2) \right\} \right)$;

276

foreach $\tau \in \mathcal{B}_t$ **do**

277

 Generate k responses using π_θ and evaluate to obtain $y_t^\tau \in \{1, 2, 3\}$;

278

 Update the LLM π_θ using trajectories from \mathcal{B}_t with RL algorithm;

279

// Update solving-state beliefs and transition dynamics

280

foreach $\tau \in \mathcal{D}$ **do**

281

if y_t^τ is observed (i.e., $\tau \in \mathcal{B}_t$) **then**

282

 Compute posterior belief $\mu_t^{\tau, \text{post}}$ via Bayes' rule by Eq. (9);

283

 Compute posterior transition pseudo-count ξ_t^τ by Eq. (14);

284

 Update Dirichlet transition posterior: $\alpha_t^\tau = \lambda \cdot \alpha_{t-1}^\tau + (1 - \lambda) \cdot \alpha_0^\tau + \xi_t^\tau$;

285

else

286

 Set posterior belief $\mu_t^{\tau, \text{post}}$ to the prior belief $\mu_t^{\tau, \text{prior}}$;

287

 Decay Dirichlet transition posterior: $\alpha_t^\tau = \lambda \cdot \alpha_{t-1}^\tau + (1 - \lambda) \cdot \alpha_0^\tau$;

288

 Generate prior belief $\mu_{t+1}^{\tau, \text{prior}}$ for the next step by Eq. (16);

289

290

291

292

293

294

4.1 EXPERIMENTAL SETUP

295

Tasks. We evaluate DPS across three challenging reasoning domains, training separate models on their respective datasets: competition-level mathematics (MATH dataset (Hendrycks et al., 2021)), numerical planning (Countdown dataset (Pan et al., 2025)), and visual geometric reasoning (Geometry3k dataset (Lu et al., 2021; Hiyouga, 2025)). To further assess its generality, we test a range of large language and multi-modal models that vary in capacity and architecture. Models are finetuned with the GRPO algorithm within the verl framework (Sheng et al., 2024) and evaluated by average Pass@1 accuracy over 16 completions per prompt. Details of the training datasets, test benchmarks, and base models are reported in Appendix D, with illustrative data examples in Appendix F.

296

Baselines. We compare against three sampling strategies: (i) Uniform Sampling (US): the default strategy that randomly selects prompts without preference. (ii) Dynamic Sampling (DS): a compute-intensive oracle approach that oversamples and filters prompts using rollout feedback (Yu et al., 2025). Here, “oracle” refers to sampling a batch of all partially solved prompts, instead of achieving the best performance by training on sampled prompts. (iii) History Resampling (HR): an heuristic method that excludes prompts from the dataset if they yield all correct responses in the current epoch (Zhang et al., 2025), effectively treating the fully solved state as absorbing at the epoch level.

297

4.2 PREDICTION ACCURACY OF PROMPT-SOLVING STATES

298

A key component of DPS is online prediction of each prompt’s solving state, which enables adaptive prioritization of partially solved examples during training. We evaluate the accuracy of this prediction mechanism by treating it as an online classification task. In Fig. 2, overall prediction accuracy is reported to assess general performance across the three classes, while precision, recall, and F1 score are additionally reported for Class 2 (partially solved), the state most critical for training efficiency. Throughout training, the predictor maintains high overall accuracy and achieves strong precision and recall for Class 2. Fig. 2 also shows the proportion of partially solved prompts in sampled batches. Compared with US and HR, DPS consistently yields a significantly higher concentration of such prompts, reaching approximately 90% in many tasks.

299

To further illustrate predictive behavior, Fig. 3 visualizes confusion matrices over training steps, where each cell gives the raw count for each (true, predicted) label pairs. Additional visualizations

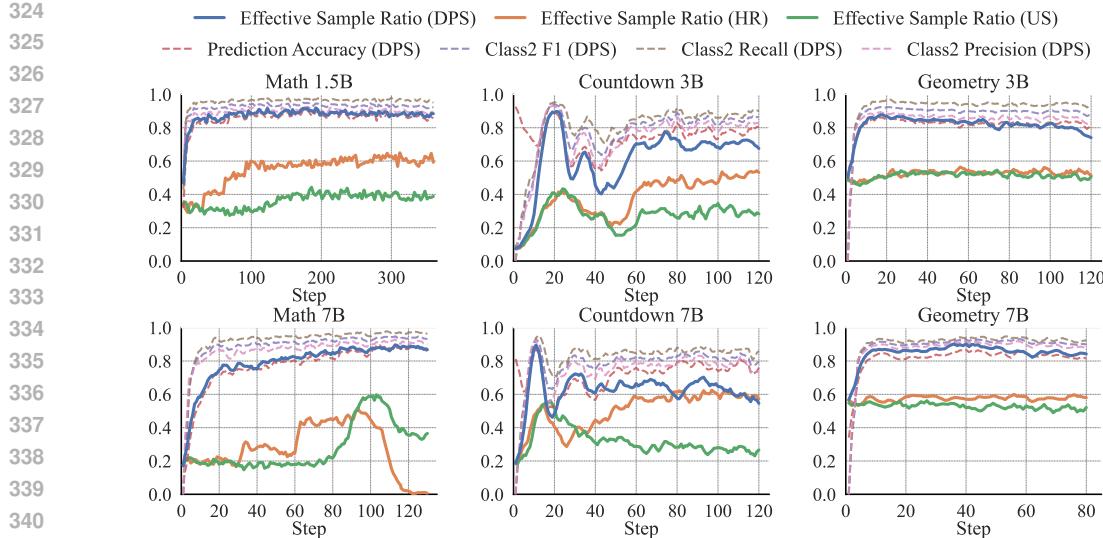


Figure 2: Proportion of partially solved prompts (Effective Sample Ratio) within sampled batches under different data sampling strategies, along with prediction metrics of DPS.

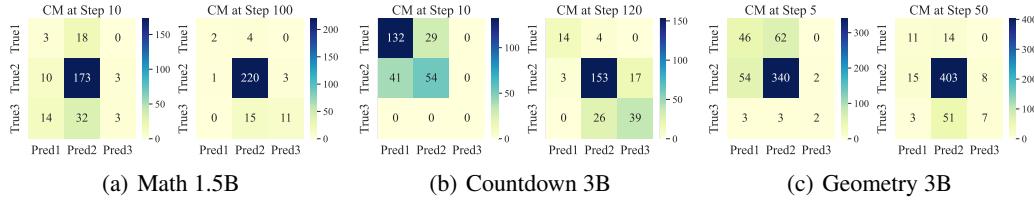


Figure 3: Confusion Matrix (CM) for DPS predictions at different training steps across tasks.

on more steps are deferred to Fig. 7. As training progresses, diagonal entries strengthen while off-diagonal errors diminish, showing improved discriminability. Notably, the center cell grows more prominent in both predictions and ground truth, indicating that the predictor increasingly emphasizes partially solved prompts. We also report the number of fully solved and unsolved prompts in batches across tasks in Fig. 8. Overall, these results demonstrate that DPS reliably tracks solving progress through lightweight inference and concentrates training on informative prompts.

4.3 RL FINETUNING EFFICIENCY AND PERFORMANCE

Training Progress. Fig. 4 presents the training curves of different sampling methods across tasks and models, where performance is tracked on AIME24 for MATH and on the respective test sets for Countdown and Geometry. DPS exhibits substantially faster policy improvement than US and HR and reaches higher final performance, benefiting from reliable prediction and a greater proportion of informative samples. In contrast, US and HR suffer degradation on MATH, likely due to entropy collapse (Liu et al., 2025a) arising from too few effective samples per batch. We attribute HR’s less favorable performance to two factors: (i) its epoch-level absorbing transition assumption is overly rigid, limiting adaptability during training; and (ii) it only filters out fully solved prompts, which are often rare in early and middle stages of training. Relative to the oracle DS baseline, DPS achieves comparable overall performance across tasks and even slightly surpasses it on MATH. This advantage may stem from differences in sampling criteria: while DS samples randomly from evaluated partially solved prompts, DPS consistently selects the top- B prompts with the highest predicted probability of being partially solved, which might be more beneficial for policy improvement.

Generalization Performance. We evaluate the trained models across multiple challenging benchmarks to assess their generalization capabilities. Table 1 reports results for models trained on MATH, evaluated on AIME24, AMC23, MATH500, MinervaMath, and OlympiadBench. Table 2 presents evaluations on Countdown, where models trained on a subset of the Countdown-34 dataset are tested on both the held-out split (CD-34) and a harder generalization variant Countdown-4 (CD-4). Table 3

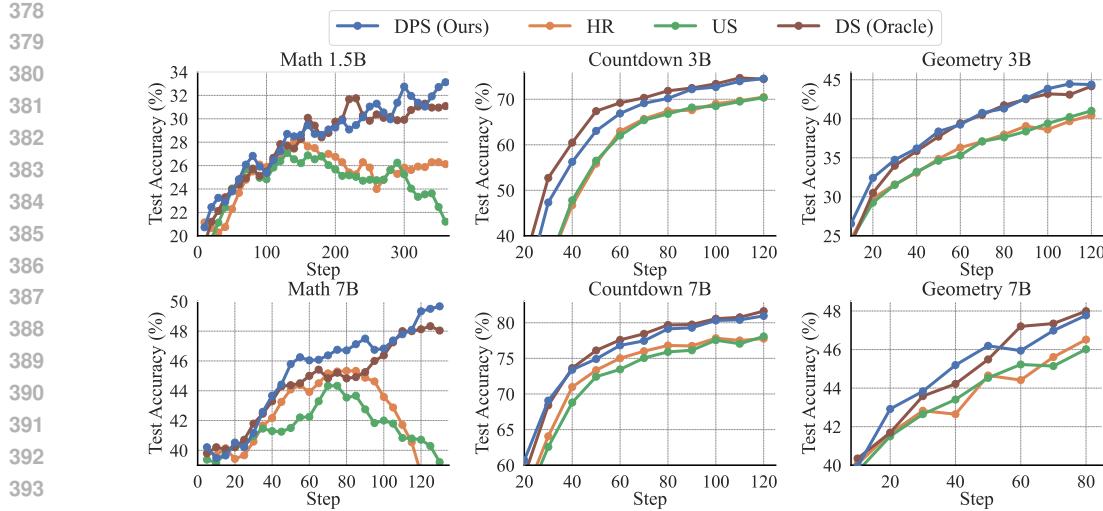


Figure 4: Training curves of different methods across reasoning tasks with varying model sizes. The curves in Math are smoothed with a window size of 5. DS serves as a high-resource oracle baseline.

Table 1: Evaluation across mathematics benchmarks. ‘+’ represents finetuning with the method.

Method	AIME24	AMC23	MATH500	Minerva.	Olympiad.	Avg. \uparrow	Rollouts \downarrow	Runtime \downarrow
R1-Distill-1.5B	18.33	51.73	76.64	23.83	35.31	41.17	-	-
+US	26.46	63.18	82.78	27.46	43.00	48.57	737k	27h
+HR	28.13	64.61	82.88	27.37	43.15	49.23	737k	28h
+DS (Oracle)	31.88	67.32	84.79	29.18	46.83	52.00	<u>2933k</u>	<u>89h</u>
+DPS (Ours)	32.71	67.77	84.95	29.09	46.11	52.13	737k	32h
R1-Distill-7B	37.71	68.45	86.94	34.74	46.94	54.95	-	-
+US	45.83	73.57	89.06	37.68	50.42	59.31	287k	30h
+HR	46.46	75.98	90.01	37.94	51.50	60.38	287k	36h
+DS (Oracle)	49.79	78.99	90.96	37.89	54.45	62.42	<u>1147k</u>	<u>73h</u>
+DPS (Ours)	51.04	80.35	91.13	37.82	55.32	63.13	287k	39h

shows evaluations on Geometry. Across tasks, DPS consistently outperforms US and HR, while matching or exceeding DS in generalization performance.

Rollout and Runtime Efficiency. We also compare methods in terms of rollout usage and runtime. Tables 1, 2 and 3 report the total number of rollouts, while Fig. 9 plots the model performance as a function of rollout counts. The results demonstrate that DPS achieves strong performance with significantly fewer rollouts than DS, typically using less than 30% of DS’s rollout budget to match or exceed its results. Moreover, as shown in Table 1, DPS incurs substantially lower runtime than DS when trained on the standard MATH dataset, generally using about half of DS’s runtime. While DPS exhibits slightly longer runtime than US and HR, this difference is not due to its prediction and selection operations, which are negligible in our experiments. Instead, it arises from longer response generations associated with higher performance, as illustrated in Fig. 11.

4.4 ABLATION STUDY

Effects of Non-stationary Decay. The non-stationary decay ratio $\lambda \in [0, 1]$ controls the extent to which older observations are gradually discounted. As shown in Fig. 5, DPS maintains strong performance over a wide range of λ across tasks. Notably, removing non-stationary decay (i.e.,

Table 2: Evaluation on Countdown.

Method	CD-34	CD-4	Rollouts
Qwen2.5-3B	-	-	-
+US	69.87	39.42	246k
+HR	70.19	42.10	246k
+DS (Oracle)	74.95	47.67	<u>1141k</u>
+DPS (Ours)	74.27	47.78	246k
Qwen2.5-7B	-	-	-
+US	77.84	53.27	246k
+HR	78.15	54.54	246k
+DS (Oracle)	81.26	60.77	<u>1006k</u>
+DPS (Ours)	81.15	59.61	246k

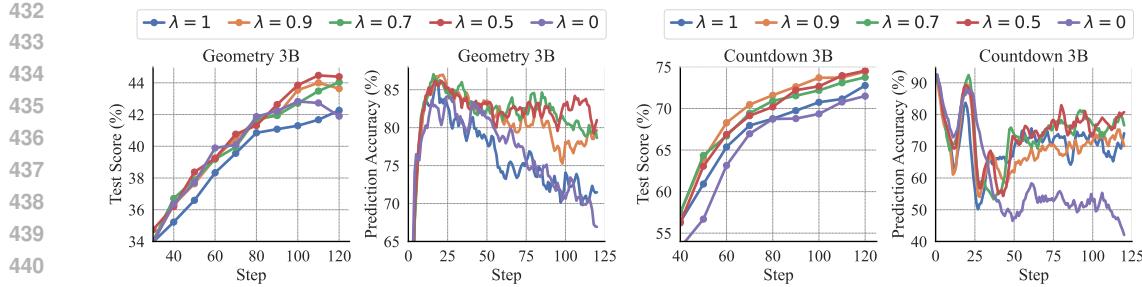
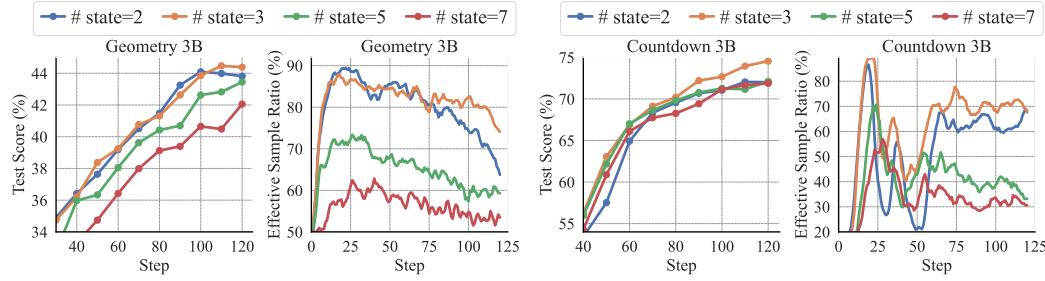
Figure 5: Performance and prediction accuracy of DPS under varying non-stationary decay ratios λ .

Figure 6: Performance and effective sample ratios of DPS under different solving-state partitions.

$\lambda = 1$, which assigns equal weight to all past observations) results in a decline in both performance and prediction accuracy. This suggests that the solving-state dynamics is indeed non-stationary and that adaptation to recent observations is crucial. Conversely, setting $\lambda = 0$, which relies solely on the most recent feedback while discarding all past information, also leads to degraded performance and reduced prediction accuracy. A moderate decay ratio strikes a balance, allowing the model to remain responsive to recent trends while retaining sufficient historical context for robust estimation.

Effects of Different Solving-State Partitions. We examine the impact of coarser or finer partitions of solving states. With two states, prompts are divided into partially solved versus all others. With more than three states, the success rate interval $[0, 1]$ is uniformly partitioned, and prompts predicted to lie near 0.5 accuracy are prioritized, as prior work (Bae et al., 2025) suggests these yield the most informative signals. Fig. 6 presents performance and effective sample ratios under different partitions, where the latter is still defined as the proportion of partially solved prompts in each batch. Overall, both metrics decline under either coarser or finer partitions. We attribute this to two factors: (i) coarse partitions that merge fully unsolved and fully solved prompts obscure their distinct dynamics, making transitions harder to model; and (ii) finer partitions distribute limited training observations across more states, resulting in sparsity and reduced prediction reliability.

Effects of Transition Priors. The transition prior α_0 allows flexible incorporation of domain-specific knowledge about plausible transition patterns. The effects of different transition priors on prediction accuracy and training efficiency are analyzed in Appendix E.4.

5 CONCLUSION AND LIMITATIONS

This work models each prompt’s solving progress during RL finetuning as a dynamical system, representing the solving extent as the state and characterizing its transition with a hidden Markov model. A lightweight inference strategy is developed to online predict and select informative prompts without rollout-intensive filtering. Empirical results across diverse reasoning tasks demonstrate that DPS reduces redundant rollouts, accelerates training, and achieves superior reasoning performance.

A limitation of this work lies in its reliance on correctness-based rewards to define solving states. Nevertheless, the DPS framework naturally extends to more complex reward structures, such as dense or process-based rewards, by partitioning cumulative return intervals. Furthermore, the use of the straightforward top-k selection strategy may not be optimal. Future work will explore more sophisticated criteria, such as entropy-based prioritization of uncertain samples.

486 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics. All experiments use publicly available datasets, and
489 no private, sensitive, or human-subject data are involved. The proposed methods focus on improving
490 training efficiency and do not introduce additional ethical risks beyond standard LLM finetuning. We
491 follow dataset licenses and ensure no privacy, safety, or fairness concerns arise.
492493 REPRODUCIBILITY STATEMENT
494495 All theoretical derivations are provided in Appendix C. Full experimental details, including datasets,
496 benchmarks, model configurations, evaluation metrics, RL finetuning procedures, sampling method
497 implementations, and hyperparameters, are provided in Appendix D. All datasets used are public,
498 and we are committed to releasing the complete code to support exact reproduction.
499500 REFERENCES
501502 Sanghwan Bae, Jiwoo Hong, Min Young Lee, Hanbyul Kim, JeongYeon Nam, and Donghyun
503 Kwak. Online difficulty filtering for reasoning oriented reinforcement learning. *arXiv preprint*
504 *arXiv:2504.03380*, 2025.505 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
506 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
507 2025.509 Leonard E Baum et al. An inequality and associated maximization technique in statistical estimation
510 for probabilistic functions of markov processes. *Inequalities*, 3(1):1–8, 1972.512 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
513 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.515 Xiaoyin Chen, Jiarui Lu, Minsu Kim, Dinghuai Zhang, Jian Tang, Alexandre Piché, Nicolas Gontier,
516 Yoshua Bengio, and Ehsan Kamalloo. Self-evolving curriculum for llm reasoning. *arXiv preprint*
517 *arXiv:2505.14970*, 2025.518 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
519 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
520 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.522 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
523 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
524 *arXiv preprint arXiv:1803.05457*, 2018.525 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
526 Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv preprint*
527 *arXiv:2502.01456*, 2025.529 Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and
530 Yaodong Yang. Safe rlhf: Safe reinforcement learning from human feedback. *arXiv preprint*
531 *arXiv:2310.12773*, 2023.532 Quy-Anh Dang and Chris Ngo. Reinforcement learning for reasoning in small llms: What works
533 and what doesn't. *arXiv preprint arXiv:2503.16219*, 2025.535 Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
536 Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
537 *arXiv preprint arXiv:2405.07863*, 2024.538 Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise reasoning via
539 reinforcement learning. *arXiv preprint arXiv:2504.05185*, 2025.

540 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 541 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 542 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

543

544 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 545 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
 546 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint*
 547 *arXiv:2402.14008*, 2024.

548 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 549 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 550 *preprint arXiv:2103.03874*, 2021.

551

552 Hiyouga. Geometry3K: A large-scale multi-modal geometry reasoning dataset. <https://huggingface.co/datasets/hiyouga/geometry3k>, 2025.

553

554 Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
 555 Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. *arXiv preprint*
 556 *arXiv:2504.01296*, 2025.

557

558 Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. *arXiv*
 559 *preprint arXiv:2501.03262*, 2025.

560

561 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
 562 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
 563 model. *arXiv preprint arXiv:2503.24290*, 2025.

564

565 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 566 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
 567 *preprint arXiv:2412.16720*, 2024.

568

569 Amirsossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
 570 Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through
 571 refined credit assignment. *arXiv preprint arXiv:2410.01679*, 2024.

572

573 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 574 *arXiv:1412.6980*, 2014.

575

576 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 577 masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 578 reasoning problems with language models. *Advances in Neural Information Processing Systems*,
 579 35:3843–3857, 2022.

580

581 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling. *arXiv preprint*
 582 *arXiv:2502.11886*, 2025.

583

584 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 585 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth*
 586 *International Conference on Learning Representations*, 2023.

587

588 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
 589 Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
 590 *arXiv preprint arXiv:2505.24864*, 2025a.

591

592 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
 593 and Min Lin. Understanding rl-zero-like training: A critical perspective. *arXiv preprint*
 594 *arXiv:2503.20783*, 2025b.

595

596 Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-Chun Zhu.
 597 Inter-gps: Interpretable geometry problem solving with formal language and symbolic reasoning.
 598 In *The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics*
 599 and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP
 600 2021), 2021.

594 Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
 595 Rachel Xin, Colin Cai, Maurice Weber, et al. Deepcoder: A fully open-source 14b coder at
 596 o3-mini level. *Notion Blog*, 2025a.

597 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
 598 Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a 1.5 b
 599 model by scaling rl. *Notion Blog*, 2025b.

600 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Botian Shi,
 601 Wenhui Wang, Junjun He, Kaipeng Zhang, et al. Mm-eureka: Exploring visual aha moment with
 602 rule-based large-scale reinforcement learning. *CoRR*, 2025.

603 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 604 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 605 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 606 27730–27744, 2022.

607 Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
 608 <https://github.com/Jiayi-Pan/TinyZero>, 2025. Accessed: 2025-01-24.

609 Rafael Rafailev, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 610 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 611 *in neural information processing systems*, 36:53728–53741, 2023.

612 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 613 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

614 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 615 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 616 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

617 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 618 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*
 619 *arXiv: 2409.19256*, 2024.

620 Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan,
 621 Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with
 622 factually augmented rlhf. *arXiv preprint arXiv:2309.14525*, 2023.

623 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 624 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with
 625 llms. *arXiv preprint arXiv:2501.12599*, 2025.

626 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
 627 He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
 628 models with one training example. *arXiv preprint arXiv:2504.20571*, 2025.

629 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 630 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 631 task language understanding benchmark. *Advances in Neural Information Processing Systems*,
 632 37:95266–95290, 2024.

633 Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
 634 Tang, Xiaowei Lv, et al. Light-rl: Curriculum sft, dpo and rl for long cot from scratch and beyond.
 635 *arXiv preprint arXiv:2503.10460*, 2025.

636 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 637 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
 638 learning. *arXiv preprint arXiv:2502.14768*, 2025.

639 Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and Li Yuan. Llava-o1: Let vision language
 640 models reason step-by-step. *arXiv preprint arXiv:2411.10440*, 2024.

648 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
 649 Learning to reason under off-policy guidance. *arXiv preprint arXiv:2504.14945*, 2025.
 650

651 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 652 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv e-prints*, pp.
 653 arXiv–2412, 2024a.

654 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 655 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
 656 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.
 657

658 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
 659 for reasoning. *arXiv preprint arXiv:2502.03387*, 2025.

660 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 661 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at
 662 scale. *arXiv preprint arXiv:2503.14476*, 2025.

663 Yufeng Yuan, Yu Yue, Ruofei Zhu, Tiantian Fan, and Lin Yan. What’s behind ppo’s collapse in
 664 long-cot? value optimization holds the secret. *arXiv preprint arXiv:2503.01491*, 2025.
 665

666 Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
 667 Wang, TianTian Fan, Zhengyin Du, et al. Vapo: Efficient and reliable reinforcement learning for
 668 advanced reasoning tasks. *arXiv preprint arXiv:2504.05118*, 2025.

669 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
 670 zoo: Investigating and taming zero reinforcement learning for open base models in the wild. *arXiv*
 671 *preprint arXiv:2503.18892*, 2025.
 672

673 Xiaojiang Zhang, Jinghui Wang, Zifei Cheng, Wenhao Zhuang, Zheng Lin, Minglei Zhang, Shaojie
 674 Wang, Yinghan Cui, Chao Wang, Junyi Peng, et al. Srpo: A cross-domain implementation of
 675 large-scale reinforcement learning on llm. *arXiv preprint arXiv:2504.14286*, 2025.

676 Haizhong Zheng, Yang Zhou, Brian R Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and
 677 Beidi Chen. Act only when it pays: Efficient reinforcement learning for llm reasoning via selective
 678 rollouts. *arXiv preprint arXiv:2506.02177*, 2025.
 679

680 Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
 681 Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. *Advances in Neural Information*
 682 *Processing Systems*, 36:55006–55021, 2023.
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 A RELATED WORK
703

704 **RL for LLM Optimization.** Reinforcement learning (RL) has become a pivotal technique for
705 adapting large language models (LLMs) to complex tasks and desired behaviors. In particular, Reinforcement Learning with Human Feedback (RLHF) has proven effective for aligning LLMs with
706 human preferences and safety constraints (Ouyang et al., 2022; Dong et al., 2024; Rafailov et al.,
707 2023; Dai et al., 2023; Sun et al., 2023; Sheng et al., 2024). In domains where reward signals are
708 verifiable, such as mathematics, code generation, and symbolic planning, Reinforcement Learning
709 with Verifiable Rewards (RLVR) has been shown to substantially enhance the reasoning capacity of
710 LLMs (Jaech et al., 2024; Shao et al., 2024; Team et al., 2025; Chu et al., 2025; Guo et al., 2025).
711 From an algorithmic perspective, Proximal Policy Optimization (PPO) (Schulman et al., 2017), a
712 foundational policy gradient method in RL, is directly applicable to LLM finetuning. More recently,
713 Group Relative Policy Optimization (GRPO) (Shao et al., 2024) eliminates the computational over-
714 head of PPO’s value network by introducing a lightweight, group-normalized advantage estimator,
715 and has rapidly become one of the most widely used RL finetuning algorithms. Subsequent refine-
716 ments have focused on mitigating gradient bias, reducing training instability, and lowering compu-
717 tational cost (Yuan et al., 2025; Yue et al., 2025; Liu et al., 2025b; Yu et al., 2025; Kazemnejad et al.,
718 2024; Hu, 2025). On the application side, substantial efforts have extended RL finetuning to broader
719 task domains and increasingly large-scale models (Luo et al., 2025b; Dang & Ngo, 2025; Luo et al.,
720 2025a; Zeng et al., 2025; Meng et al., 2025; Xu et al., 2024). At the same time, infrastructure-level
721 advances have developed scalable frameworks for distributed and compute-efficient RL training tai-
722 lored to LLMs (Sheng et al., 2024; Hu et al., 2025).

723 **Data Selection for RL Finetuning.** A growing body of work emphasizes that the effectiveness of
724 RL finetuning critically depends on the quality of training data (Guo et al., 2025; Yang et al., 2024b),
725 which has motivated growing interest in data curation as a driver of efficient learning (Hu et al., 2025;
726 Wen et al., 2025). A common approach is offline data filtering, which ranks or selects prompts prior
727 to training based on static heuristics such as estimated difficulty, domain balance, or diversity (Ye
728 et al., 2025; Li et al., 2025; Zhou et al., 2023; Wen et al., 2025; Hu et al., 2025; Yang et al., 2024b;
729 Fatemi et al., 2025; Wang et al., 2025). While beneficial, this approach introduces preprocessing
730 overhead for ranking or clustering and, more importantly, fails to adapt to the model’s evolving
731 competence during training. To address this limitation, recent work has investigated online selection
732 strategies that dynamically choose prompts in response to the model’s current behavior (Yu et al.,
733 2025; Zhang et al., 2025). One class of methods performs per-step selection, either by filtering out
734 uninformative prompts (Yu et al., 2025; Liu et al., 2025a; Cui et al., 2025; Meng et al., 2025) or by
735 focusing on examples of intermediate difficulty (Bae et al., 2025). While these strategies improve the
736 quality of training samples, they remain hindered by the high computational cost of rollout-intensive
737 filtering or by limited accuracy in difficulty estimation. Alternative approaches adopt per-epoch data
738 selection, updating the sample set periodically (Zhang et al., 2025; Zheng et al., 2025). However,
739 these methods typically rely on coarse heuristics or empirical trends observed over epochs, which
740 limits their responsiveness and often introduces high estimation error. Our approach formalizes
741 prompt-solving progress as a dynamical system and introduces a tractable inference strategy for
742 step-wise prompt selection with negligible computational overhead, achieving accurate prediction,
743 fast convergence, and superior performance under a low rollout budget.

744 B DISCUSSIONS
745

746 **Time Complexity.** We analyze the time complexity of Uniform Sampling (US), DS (Yu et al.,
747 2025), and DPS. DS repeatedly samples candidate prompts, performs LLM rollouts, and discards
748 those that fail to meet predefined constraints until $|\mathcal{B}|$ prompts are retained. Let p_{keep} denote the
749 expected probability that a sampled prompt is retained in DS, C_{llm} the expected cost for generating
750 and evaluating k LLM rollouts per prompt, C_{pred} the expected cost of inference per prompt in DPS,
751 and C_{topk} the expected cost of top-k selection over the dataset in DPS.

752 The expected time complexity for prompt selection and evaluation per step is: $\mathcal{O}(|\mathcal{B}|C_{\text{llm}})$ for
753 US, $\mathcal{O}\left(\lceil\frac{1}{p_{\text{keep}}}\rceil|\mathcal{B}|C_{\text{llm}}\right)$ for DS, and $\mathcal{O}(|\mathcal{D}|C_{\text{pred}} + C_{\text{topk}} + |\mathcal{B}|C_{\text{llm}})$ for DPS. Since our method
754 involves only very low-dimensional matrix operations ($C_{\text{pred}}, C_{\text{topk}} \ll C_{\text{llm}}$), it holds that
755 $\mathcal{O}(|\mathcal{D}|C_{\text{pred}} + C_{\text{topk}} + |\mathcal{B}|C_{\text{llm}}) \approx \mathcal{O}(|\mathcal{B}|C_{\text{llm}})$. Therefore, DPS significantly reduces computational

overhead compared to DS while typically adding negligible cost relative to the default US. The prediction and selection overhead in DPS scales approximately linearly with the dataset size $|\mathcal{D}|$. For existing popular datasets, this overhead is negligible. However, for potential extremely large datasets where the cost may become non-trivial, one can approximate the full-dataset updates and selection using a randomly sampled candidate subset $\hat{\mathcal{B}}$ ($|\mathcal{B}| < |\hat{\mathcal{B}}| < |\mathcal{D}|$) at each step.

Implicit Curriculum Learning. Beyond maximizing learning signals, this selection strategy induces an implicit form of curriculum learning (Bengio et al., 2009). Early in training, prompts with high State 2 probability are typically easier ones, for which the model begins to show partial success. As training progresses and the model improves, these prompts may transition to the fully solved state (State 3) and are no longer selected. Conversely, harder prompts that were initially always incorrect (State 1) may begin to yield partially correct responses, making them eligible for sampling.

This mechanism creates a self-paced progression from easier to harder prompts: beginning with tractable examples to bootstrap learning, then gradually shifting to more challenging cases as model capacity grows. Moreover, by targeting prompts in the partially solved regime, the method avoids both trivial and unsolvable cases, which provide little training benefit and may waste resources. Crucially, this adaptive curriculum is not manually curated but emerges naturally from the method, providing a principled and scalable alternative to handcrafted curricula.

C PROOF AND DERIVATION

Derivation of the Transition Update. The posterior transition pseudo-count $\xi_t(i, j)$ is defined for observed emissions $y_t \in \{1, 2, 3\}$ as:

$$\xi_t(i, j) := \mathbb{P}(z_{t-1} = j, z_t = i \mid y_{1:t}), \quad \text{if } y_t \in \{1, 2, 3\}. \quad (18)$$

The joint posterior distribution can be expressed as:

$$\mathbb{P}(z_{t-1} = j, z_t = i \mid y_{1:t}) = \frac{\mathbb{P}(z_{t-1} = j, z_t = i, y_{1:t})}{\mathbb{P}(y_{1:t})} \quad (19)$$

Using the Markov property $z_t \perp y_{1:t-1} \mid z_{t-1}$ and the conditional independence of observations $y_t \perp y_{1:t-1}, z_{t-1} \mid z_t$, the numerator factorizes as:

$$\mathbb{P}(z_{t-1} = j, z_t = i, y_{1:t}) = \mathbb{P}(y_{1:t-1}, z_{t-1} = j) \cdot \mathbb{P}(z_t = i \mid z_{t-1} = j) \cdot \mathbb{P}(y_t \mid z_t = i). \quad (20)$$

Substituting into the posterior expression yields:

$$\mathbb{P}(z_{t-1} = j, z_t = i \mid y_{1:t}) = \frac{\mathbb{P}(y_{1:t-1}, z_{t-1} = j) \cdot \mathbb{P}(z_t = i \mid z_{t-1} = j) \cdot \mathbb{P}(y_t \mid z_t = i)}{\mathbb{P}(y_{1:t})} \quad (21)$$

$$= \frac{\mathbb{P}(z_{t-1} = j \mid y_{1:t-1}) \cdot \mathbb{P}(z_t = i \mid z_{t-1} = j) \cdot \mathbb{P}(y_t \mid z_t = i)}{\mathbb{P}(y_t \mid y_{1:t-1})} \quad (22)$$

$$(23)$$

Using the notation $\mu_{t-1}^{\text{post}}(j) := \mathbb{P}(z_{t-1} = j \mid y_{1:t-1})$, $\Phi_{t-1}(i, j) := \mathbb{P}(z_t = i \mid z_{t-1} = j)$, and $p(y_t \mid z_t = i) := \mathbb{P}(y_t \mid z_t = i)$, we obtain:

$$\mathbb{P}(z_{t-1} = j, z_t = i \mid y_{1:t}) = \frac{\mu_{t-1}^{\text{post}}(j) \cdot \Phi_{t-1}(i, j) \cdot p(y_t \mid z_t = i)}{\mathbb{P}(y_t \mid y_{1:t-1})}. \quad (24)$$

The normalizing denominator $\mathbb{P}(y_t \mid y_{1:t-1})$ can be obtained by marginalization:

$$\mathbb{P}(y_t \mid y_{1:t-1}) = \sum_{j'} \mu_{t-1}^{\text{post}}(j') \sum_{i'} \Phi_{t-1}(i', j') \cdot p(y_t \mid z_t = i'). \quad (25)$$

Therefore, the full expression becomes:

$$\mathbb{P}(z_{t-1} = j, z_t = i \mid y_{1:t}) = \frac{\mu_{t-1}^{\text{post}}(j) \cdot \Phi_{t-1}(i, j) \cdot p(y_t \mid z_t = i)}{\sum_{j'} \mu_{t-1}^{\text{post}}(j') \sum_{i'} \Phi_{t-1}(i', j') \cdot p(y_t \mid z_t = i')}. \quad (26)$$

Under the deterministic emission model in Equation (7), we have $p(y_t \mid z_t = i) = \delta(y_t, i)$ for $y_t \in \{1, 2, 3\}$, where δ denotes the Kronecker delta function. Substituting gives:

$$\mathbb{P}(z_{t-1} = j, z_t = i \mid y_{1:t}) = \frac{\mu_{t-1}^{\text{post}}(j) \cdot \Phi_{t-1}(i, j) \cdot \delta(y_t, i)}{\sum_{j'} \mu_{t-1}^{\text{post}}(j') \sum_{i'} \Phi_{t-1}(i', j') \cdot \delta(y_t, i')}, \quad \text{if } y_t \in \{1, 2, 3\}. \quad (27)$$

Note that $\delta(y_t, i')$ is non-zero only when $i' = y_t$, so the inner sum over i' reduces to $\Phi_{t-1}(y_t, j')$. Thus, the expression simplifies to:

$$\mathbb{P}(z_{t-1} = j, z_t = i \mid y_{1:t}) = \begin{cases} \frac{\mu_{t-1}^{\text{post}}(j) \cdot \Phi_{t-1}(i, j)}{\sum_{j'} \mu_{t-1}^{\text{post}}(j') \cdot \Phi_{t-1}(i, j')} & \text{if } i = y_t, y_t \in \{1, 2, 3\}, \\ 0 & \text{if } i \neq y_t, y_t \in \{1, 2, 3\}. \end{cases} \quad (28)$$

Setting $\xi_t = 0$ for unobserved y_t so that the Bayesian update in Equations (11) and (15) defaults to the prior without new evidence, the expression of ξ_t simplifies to:

$$\xi_t(i, j) = \begin{cases} \frac{\mu_{t-1}^{\text{post}}(j) \cdot \Phi_{t-1}(i, j)}{\sum_{j'} \mu_{t-1}^{\text{post}}(j') \cdot \Phi_{t-1}(i, j')} & \text{if } i = y_t, \\ 0 & \text{otherwise.} \end{cases} \quad (29)$$

D EXPERIMENTAL DETAILS

D.1 DETAILS OF TASKS AND MODELS

We evaluate DPS across three distinct and challenging reasoning domains: competition-level mathematics, numerical planning, and visual geometric reasoning. To verify its broad applicability, we experiment with a range of large language and multi-modal models with varying capacities and architectures. We adopt the popular GRPO algorithm implemented within the verl framework (Sheng et al., 2024) to fine-tune models. Evaluation is based on average pass@1 accuracy computed over 16 independent completions per example. Training datasets, test benchmarks, and base models in each domain are detailed as follows, with illustrative data examples provided in Appendix F.

D.1.1 MATHEMATICS

Training Dataset. For mathematics, we train large reasoning models on the training split of MATH dataset (Hendrycks et al., 2021), consisting of 7,500 problems designed to reflect competition-level difficulty. Specifically, we use the Hugging Face release from <https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval>, consistent with prior work (Sheng et al., 2024).

Test Benchmarks. We assess performance across diverse mathematics benchmarks including AIME24, AMC23, MATH500 (Lightman et al., 2023), Minerva Math (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024), with all the datasets obtained from DeepScaler (Luo et al., 2025b). In particular, AIME24 is used to monitor training progress and plot the training curves.

Base Models. Following prior work (Luo et al., 2025b), two base models from DeepSeek (Guo et al., 2025) are used: DeepSeek-R1-Distill-Qwen-1.5B from Hugging Face repository <https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B> and DeepSeek-R1-Distill-Qwen-7B from <https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B>.

D.1.2 NUMERICAL PLANNING

Training Dataset. For arithmetic planning, we use the Countdown Number Game, where agents must construct the target number using basic operations over a given number set (Pan et al., 2025). Training is carried out on a 2,000-item subset of the complete Countdown-34 dataset at Hugging Face repository <https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4>.

864 **Test Benchmarks.** Models are evaluated on two benchmarks: (i) CD-34, containing 512 held-out
 865 problems from Countdown-34; (ii) CD-4, including 512 problems from Countdown-4, a harder
 866 generalization version that operates 4 numbers, accessible at <https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-4>. In particular, CD-34 is used to monitor
 867 training progress and plot the training curves.
 868

870 **Base Models.** Following prior work [Chen et al. \(2025\)](#), we test with two base models from
 871 Qwen ([Yang et al., 2024a](#)): Qwen2.5-3B from <https://huggingface.co/Qwen/Qwen2.5-3B> and
 872 Qwen2.5-7B from <https://huggingface.co/Qwen/Qwen2.5-7B>.
 873

874 D.1.3 VISUAL GEOMETRY

876 **Training Dataset.** Visual geometry experiments leverage the training split of the Geometry3k dataset ([Lu et al., 2021; Hiyouga, 2025](#)), accessible from <https://huggingface.co/datasets/hiyouga/geometry3k>. The dataset comprises 2,101 diagram-based geometry
 877 questions, requiring both image understanding and symbolic reasoning.
 878

880 **Test Benchmarks.** We evaluate trained models on the benchmark test set comprising 601 visual
 881 reasoning problems.
 882

884 **Base Models.** For visual geometric reasoning, we adopt two vision-language models from
 885 Qwen ([Bai et al., 2025](#)): Qwen2.5-VL-3B-Instruct from <https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct> and Qwen2.5-VL-7B-Instruct from <https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct>.
 886

888 D.2 IMPLEMENTATION DETAILS

889 **RL Finetuning Implementations.** Our method and all sampling baselines shared the same RL
 890 finetuning implementations, detailed as follows. We adopt the popular GRPO algorithm ([Shao et al.,
 891 2024](#)) implemented within the verl framework ([Sheng et al., 2024](#)) to fine-tune models. Evaluation is
 892 based on average `pass@1` accuracy computed over 16 independent completions per prompt sampled
 893 with temperature 0.6 and nucleus sampling parameter `top_p` = 0.95, following the setup of [Luo
 894 et al. \(2025b\)](#). For each training step, we generate $k = 8$ responses per prompt under temperature 1.0
 895 and `top_p` = 1.0 to compute advantage estimates and finetune models. An entropy regularization
 896 term with weight 0.001 is introduced, consistent with [Luo et al. \(2025b\)](#). Models is optimized
 897 with Adam ([Kingma & Ba, 2014](#)), using a constant learning rate of 1e-6, momentum parameters
 898 (0.9, 0.999), no warm-up, and weight decay of 0.01. We further adopt the Clip-Higher scheme in
 899 DAPO ([Yu et al., 2025](#)), which employs asymmetric clipping bounds, $\epsilon_{\text{low}} = 0.2$ and $\epsilon_{\text{high}} = 0.28$.
 900

901 Task-specific training configurations are as follows: batch size is set to 256 for MATH (mini-batch
 902 128) and Countdown (mini-batch 64), and to 512 for Geometry3k (mini-batch 256). The maximum
 903 output length is set to 8192 tokens for MATH and 1024 tokens for Countdown and Geometry3k.
 904 The KL-divergence penalty is omitted in actor loss for MATH and Countdown, following ([Yu et al.,
 905 2025](#)), but preserved in Geometry3k to maintain stable optimization, with a coefficient of 0.01 for 3B
 906 models and 0.03 for 7B models. For MATH, we use a binary reward function that assigns a reward
 907 of 1 for a correct answer and 0 otherwise, following the default setup in verl ([Sheng et al., 2024](#)),
 908 while for Countdown and Geometry3k, we include a format bonus of 0.1 in the reward function if
 909 the response is incorrect but with correct formatting, following the setup in [Pan et al. \(2025\)](#).
 910

911 All experiments are executed on 8 NVIDIA A100 GPUs with 80GB memory.

912 **Sampling Method Implementations.** For Dynamic Sampling (DS) ([Yu et al., 2025](#)), we directly
 913 use the implementation from verl ([Sheng et al., 2024](#)), where prompts with zero variance in rewards
 914 are filtered out at each training step. For History Resampling (HR) ([Zhang et al., 2025](#)), we imple-
 915 ment it within the verl framework by excluding prompts from the training dataset if they yield all
 916 correct responses in the current epoch. For DPS, we initialize the state belief as $\mu_1^{\text{prior}}(i) = 1/3$ and
 917 set the Dirichlet prior as $\alpha_0(i, j) = 1$, assuming no prior knowledge about both the initial prompt-
 918 solving states and the transition probabilities. Thus, the only hyperparameter in DPS that requires

918 tuning is the non-stationary decay ratio λ , which is set to 0.7 for MATH and 0.5 for Countdown and
 919 Geometry3k.
 920

921 E EXTENDED EXPERIMENTAL RESULTS

922 E.1 ADDITIONAL PREDICTION RESULTS

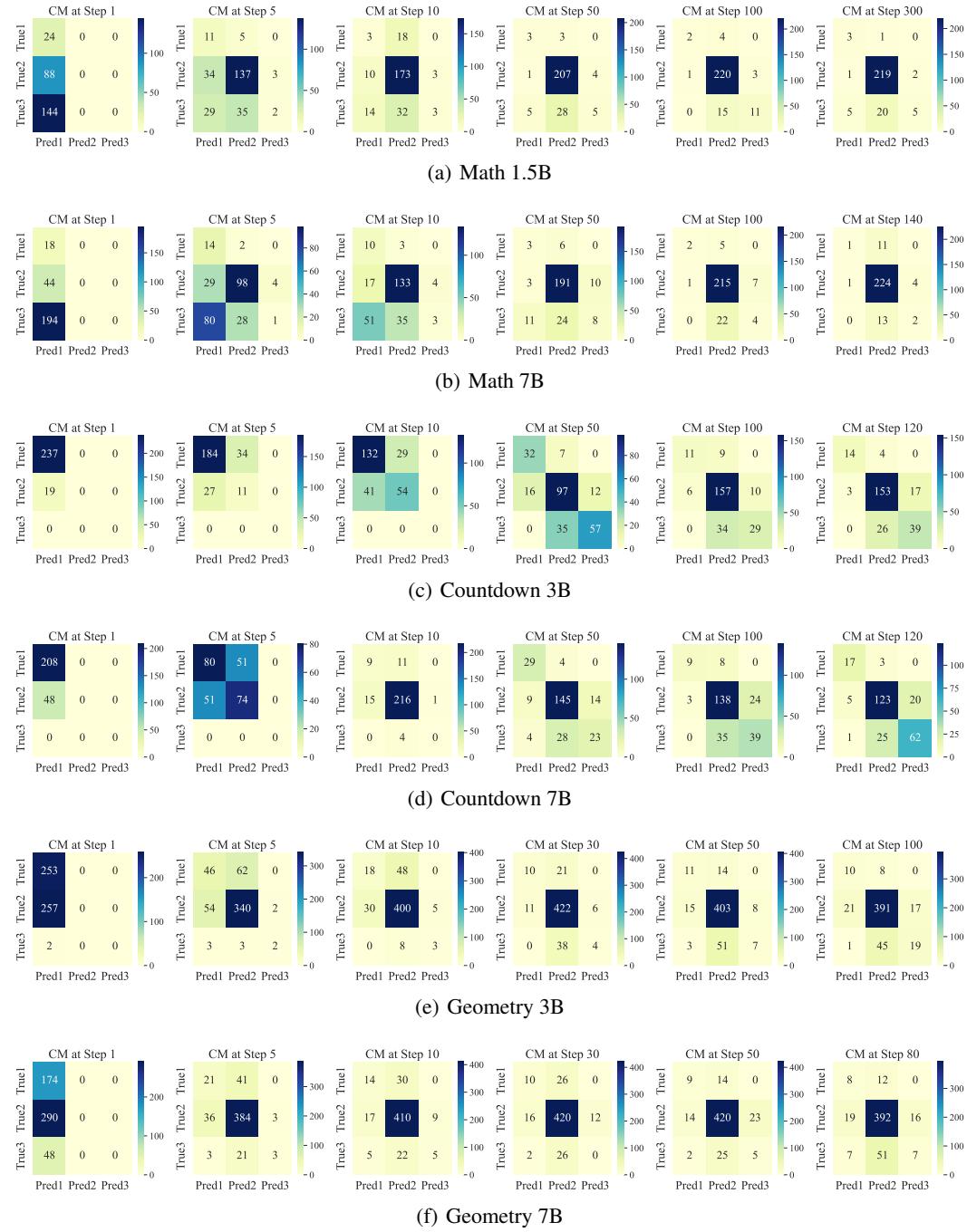


Figure 7: Confusion Matrix (CM) for DPS prediction at different training steps across tasks.

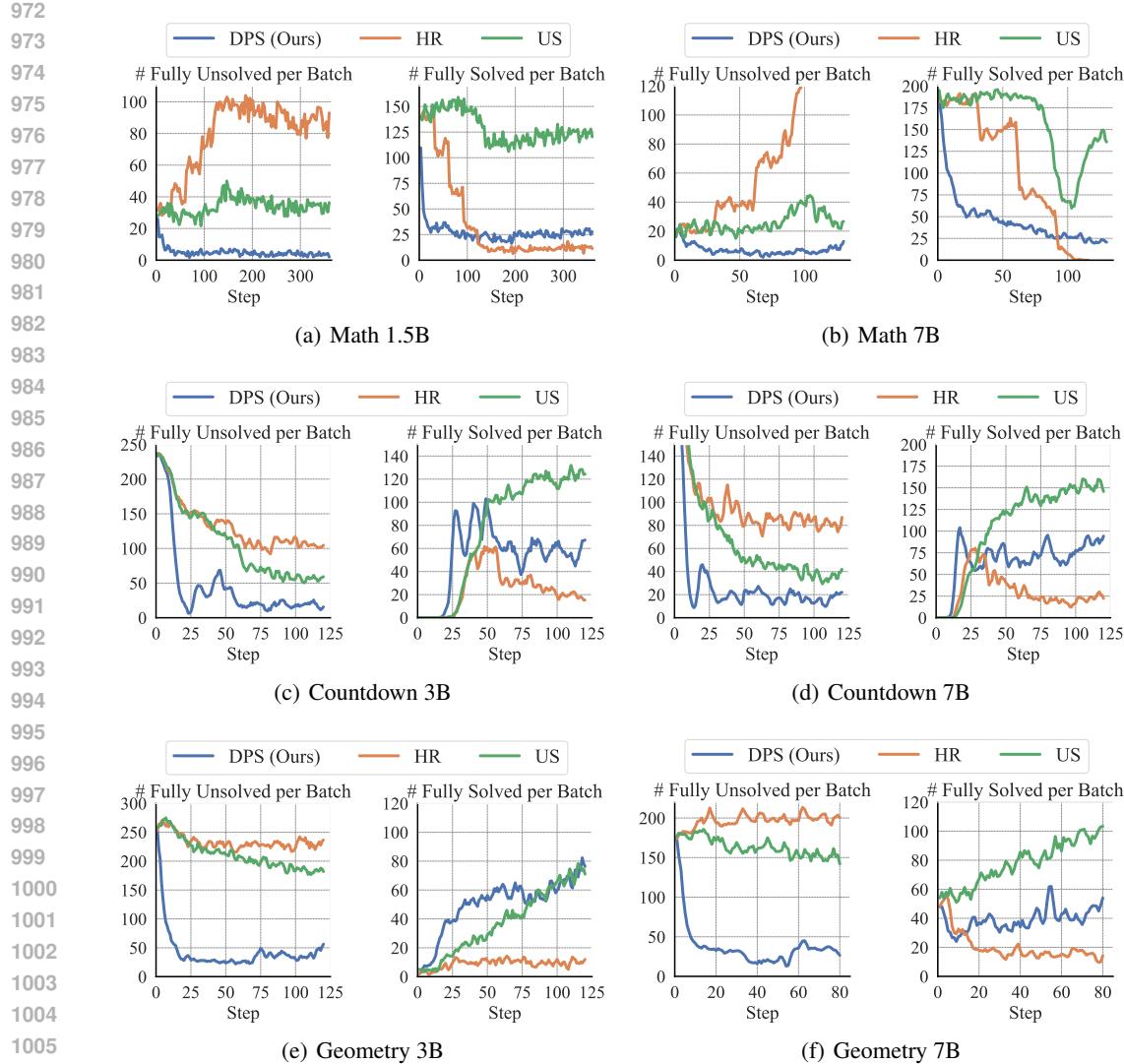


Figure 8: Number of ineffective prompts (i.e., fully unsolved or fully solved) in sampled batches during training across tasks.

A key component of DPS is the real-time prediction of each prompt’s solving state, which enables adaptive prioritization of partially solved examples during training. We evaluate the accuracy of this prediction mechanism by treating it as a dynamic classification task. This section provides additional analysis to complement Section 4.2.

Confusion Matrix. Figure 7 visualizes confusion matrices over training steps across tasks, where each cell shows the raw count for each (true, predicted) label pair. As training progresses, diagonal entries strengthen while off-diagonal errors diminish, indicating improved discriminability. Notably, the center cell becomes increasingly prominent in both predictions and ground truth, suggesting that the predictor places greater emphasis on the target region.

Number of Fully Solved and Unsolved Prompts. Figure 8 reports the number of fully solved and fully unsolved prompts in batches across tasks. The results show that DPS consistently and significantly yields fewer fully solved and fully unsolved prompts than US across all tasks. In addition, HR treats the fully solved state as absorbing, which is much stricter than that of DPS. As a result, HR produces the fewest fully solved prompts across tasks but also the largest number of

1026 fully unsolved prompts. Overall, this leads to a substantially lower effective sample ratio for HR
 1027 compared to DPS, as shown in Figure 2.

1028 Overall, these results demonstrate that DPS reliably tracks solving progress through lightweight
 1029 inference and concentrates training on desired prompts.

1032 E.2 ADDITIONAL EVALUATION RESULTS

1034 To compare prompt selection strategies, we evaluate their trained models across multiple challenging
 1035 benchmarks to assess the generalization ability. Table 1 reports results of models trained on MATH,
 1036 evaluated on AIME24, AMC23, MATH500, MinervaMath, and OlympiadBench. Table 2 presents
 1037 evaluations on Countdown, where models trained on a subset of the Countdown-34 dataset are tested
 1038 on both the held-out Countdown-34 split (CD-34) and a harder generalization version Countdown-
 1039 4 (CD-4). Table 3 shows evaluations on Geometry, where models are trained and tested on the
 1040 respective official Geometry3k datasets. The results show that DPS achieves substantial gains over
 1041 US and HR with the same rollout budget. On the other hand, DPS matches or surpasses DS across
 1042 tasks while requiring significantly fewer rollouts, making it more scalable in practical settings.

1043 **Table 3: Evaluation results on Geometry.**

Method	Qwen2.5-VL-3B-Instruct		Qwen2.5-VL-7B-Instruct	
	Test Score \uparrow	Rollouts \downarrow	Test Score \uparrow	Rollouts \downarrow
US	40.69	492k	46.22	328k
HR	40.44	492k	46.52	328k
DS (Oracle)	44.33	<u>1262k</u>	48.11	<u>782k</u>
DPS (Ours)	44.47	492k	47.78	328k

1053 We further explore generalization by conducting an out-of-distribution study: MATH models,
 1054 trained with a maximum response length of 8k, are tested under an extended 32k response budget.
 1055 The results are reported in Table 4. DPS not only continues to surpass US and HR, but also outper-
 1056 forms DS, showing clear advantages from the increased response length. These results highlight the
 1057 scalability and generalization capacity of DPS in large-context settings.

1059 **Table 4: Evaluation across mathematics benchmarks under a maximum response length of 32k.** '+'
 1060 represents finetuning with the method. Evaluation is based on average Pass@1 accuracy over 16
 1061 responses per prompt.

Method	AIME24	AMC23	MATH500	Minerva.	Olympiad.	Avg. \uparrow	Rollouts \downarrow	Runtime \downarrow
R1-Distill-1.5B	28.12	61.67	83.18	26.54	43.33	48.57	-	-
+US	31.46	67.70	84.22	27.94	45.06	51.28	737k	27h
+HR	30.42	66.49	84.30	27.53	45.06	50.76	737k	28h
+DS (Oracle)	32.92	69.95	86.44	30.26	49.66	53.85	<u>2933k</u>	<u>89h</u>
+DPS (Ours)	37.92	71.16	85.84	29.14	48.32	54.48	737k	32h

1072 E.3 ROLLOUT EFFICIENCY

1074 Figure 4 demonstrates that DPS and DS significantly accelerate RL finetuning over US and HR in
 1075 terms of training steps. Yet, such comparisons overlook the cost of LLM rollout inference, which
 1076 often exceeds finetuning itself. Because DS depends on oversampling, it rolls out a larger batch of
 1077 prompts per training step, which substantially increases LLM inference overhead. Figure 9 plots
 1078 performance against rollout numbers during training. The results show that DPS reaches strong
 1079 performance with far fewer rollouts than DS, typically requiring less than 30% of DS's rollout
 budget to match or surpass its results.

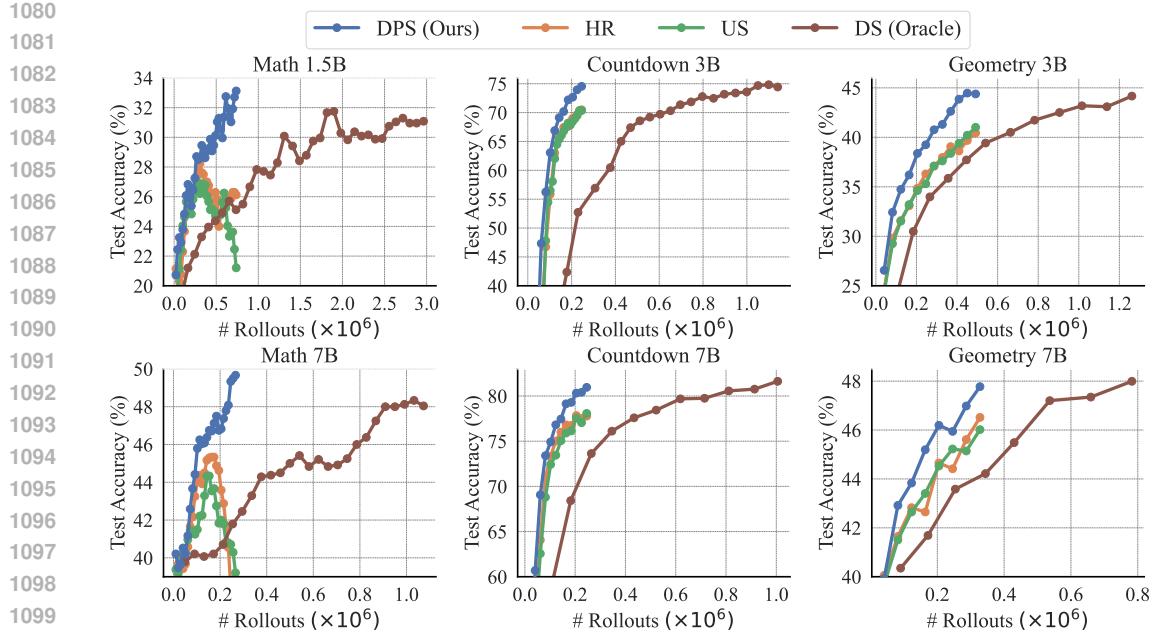


Figure 9: Training curves over the number of rollouts generated by LLM during training.

E.4 EFFECTS OF TRANSITION PRIORS

Our approach allows flexible incorporation of inductive bias by modifying the Dirichlet prior over the transition matrix. While the default configuration uses an uninformative prior $\alpha_0(i, j) = 1$ for all (i, j) , many real-world scenarios may exhibit structural regularities in their solving dynamics. This section investigates how certain priors affect prediction accuracy and training efficiency.

We evaluate several representative priors, each encoding a different structural assumption: (i) Stability prior (stability-promoting): Assigns larger pseudo-counts to self-transitions ($\alpha_0(i, i) = 1$, $\alpha_0(i, j) = 0.5$ for $i \neq j$), which suppresses frequent state changes and reflects a belief that solving states tend to persist across steps. (ii) Progress prior (anti-regression): Sets lower pseudo-counts for regression transitions ($\alpha_0(i, j) = 0.5$ for $i < j$), imposing a preference against regressing from a more solved state to a less solved one. (iii) Local prior (local-transition): Sets $\alpha_0(i, j) = 0$ for $|i - j| > 1$, suppressing long-range transitions while retaining flexibility for adjacent-state updates. This encodes an assumption of smooth, gradual evolution in solving dynamics.

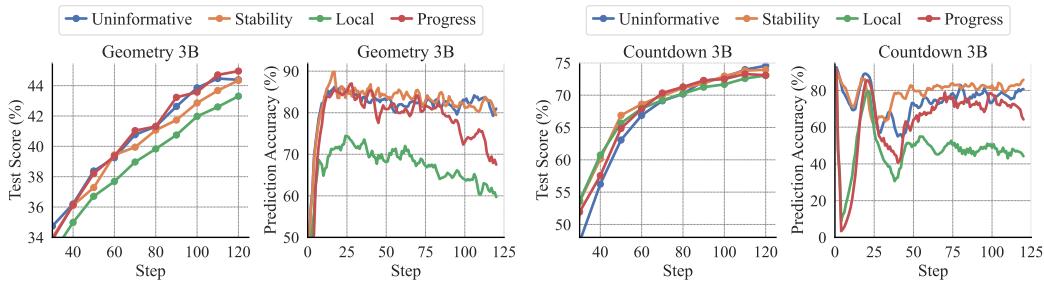


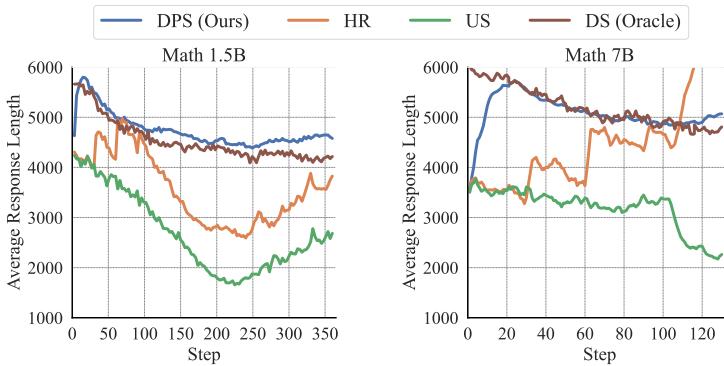
Figure 10: Performance and prediction accuracy of DPS under different transition priors.

These priors are evaluated under identical training settings, with results shown in Figure 10. We report both task performance and prediction accuracy. We find that certain structured priors can lead to slight improvements over the uninformative baseline, particularly during early training stages where data is limited (see Countdown for example). As training progresses and more data becomes available, the advantages of structural priors diminish with degraded prediction accuracy, due to a

1134 potential mismatch between the prior’s bias and the actual dynamics. This highlights the tradeoff
 1135 between introducing prior structure and maintaining long-term flexibility.
 1136

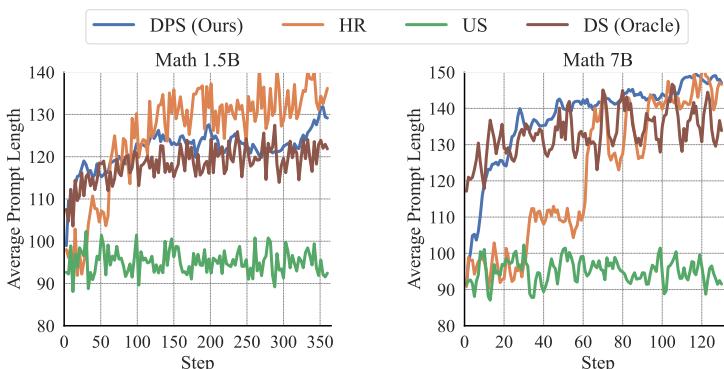
1137 E.5 RESPONSE AND PROMPT LENGTH

1138
 1139 **Response Length.** Response length has been identified as a strong correlate of reasoning ability
 1140 (Yu et al., 2025). Figure 11 illustrates how different strategies influence this metric during
 1141 MATH training. The average response length of DPS initially aligns with US and HR but quickly
 1142 increases, following a trajectory similar to DS. This also suggests that DPS rapidly learns the under-
 1143 lying prompt-solving dynamics. Both DPS and DS generate responses that are consistently longer
 1144 than those from US. Longer outputs provide opportunities for deeper exploration and enable the
 1145 model to engage in more complex reasoning processes, which may partly explain the observed per-
 1146 formance gap (Yu et al., 2025). Notably, in the MATH 7B setting, HR exhibits a sharp increase in
 1147 response length during later training stages. We attribute this to HR’s rigid exclusion rule: once a
 1148 prompt is fully solved at some epoch, it is permanently removed, even if errors may occur later. Un-
 1149 der the stronger 7B model, this removes too many relatively easy problems, substantially raising the
 1150 average difficulty of the remaining set. Faced with unsolvable inputs, the model tends to generate
 1151 excessively long responses, often approaching the length limit (Hou et al., 2025).
 1152



1164 Figure 11: Average response length in the sampled batch during MATH training.
 1165

1166
 1167 **Prompt Length.** Figure 12 tracks the average length of sampled prompts throughout MATH train-
 1168 ing. Compared with US, all of DPS, HR, and DS tend to select longer prompts, and the average
 1169 prompt length increases slightly as training progresses. This trend can be explained as follows.
 1170 Since DS and DPS target partially solved prompts, improvements in trained model competence shift
 1171 the training batches toward more difficult prompts, which are statistically often longer. Likewise,
 1172 HR’s exclusion of already fully solved examples leaves a progressively harder pool of prompts, also
 1173 corresponding to greater length on average.
 1174



1186 Figure 12: Average prompt length in the sampled batch during MATH training.
 1187

1188 E.6 EMPIRICAL ANALYSIS ON COMPUTATIONAL SCALING BEHAVIOR
11891190 We conduct additional experiments to examine how the computational cost of different operations
1191 scales with both dataset size and LLM size.1192 (1) Computational scaling with dataset size. We construct pseudo-datasets (with arbitrary size $|\mathcal{D}|$)
1193 to more systematically evaluate the cost of DPS sampling and updates. Specifically, at each step
1194 t , we randomly generate $|\mathcal{D}|$ transition posterior matrices α_t^τ and belief vectors $\mu_t^{\tau,\text{post}}$ and $\mu_t^{\tau,\text{prior}}$
1195 corresponding to all $|\mathcal{D}|$ pseudo-samples. In the sampling stage, we perform top- B selection on
1196 $\mu_t^{\tau,\text{prior}}$ (2); in the HMM-update stage, we assign random observations to the batch of B samples and
1197 apply independent HMM updates to all $|\mathcal{D}|$ samples. For comparison, the per-step costs of LLM
1198 training and generation, which are independent of dataset size, are obtained by finetuning the 7B
1199 model on MATH. Table 5 reports the per-step costs of different operations for dataset sizes ranging
1200 from 10^4 to 10^7 . The runtime and memory usage of DPS scale approximately linearly with dataset
1201 size, yet even for a very large dataset of size $|\mathcal{D}| = 10^7$, DPS requires only 2.4s of runtime and 0.9
1202 GiB of memory. In contrast, LLM training and generation together require about 1100s of runtime
1203 and 600 GiB of GPU memory.1204 Given its linear scaling, the computational overhead of DPS could become non-negligible at a suf-
1205 ficiently large scale ($|\mathcal{D}| > 10^8$), though such dataset sizes are beyond typical practical settings.
1206 For these cases, Appendix B also discusses a scheme that approximates the full-dataset updates and
1207 selection using a randomly sampled candidate subset $\hat{\mathcal{B}}$ satisfying $B < |\hat{\mathcal{B}}| \ll |\mathcal{D}|$.
12081209 Table 5: Computational cost of different operations across varying dataset sizes, measured by per-
1210 step runtime and memory usage during the finetuning of DeepSeek-R1-Distill-Qwen-7B (8 A100
1211 GPUs, batch size 256). The results for LLM training and generation are evaluated on the MATH
1212 dataset, while those for DPS are obtained on pseudo-datasets that emulate large-scale scenarios.

	LLM train	LLM generation	DPS (sample + update)			
Dataset size	any	any	10^4 (MATH)	10^5	10^6	10^7
Runtime (s)	580	520	0.0005+0.002	0.004+0.02	0.06+0.2	0.6+1.8
Memory (GiB)	≈ 600 (GPU)	≈ 600 (GPU)	≈ 0.0009	≈ 0.009	≈ 0.09	≈ 0.9

1218 (2) Computational scaling with LLM size. The cost of LLM training and generation scales with
1219 model size. In particular, the additional rollout cost of DS also grows with LLM size, whereas DPS,
1220 as a rollout-free alternative to DS, incurs no such dependence. Table 6 compares the per-step costs
1221 of different operations for 1.5B and 7B models. The total runtime of LLM training and generation
1222 increases from roughly 370s to 1100s as the model size increases from 1.5B to 7B. At the 7B scale,
1223 the additional overhead introduced by DS versus DPS is approximately 1500s vs. 0.003s. Therefore,
1224 the advantage of DPS can become increasingly significant as LLM size grows.
12251226 Table 6: Computational cost of different operations across varying LLM sizes, measured by per-
1227 step runtime for finetuning on the MATH dataset (8 A100 GPUs, batch size 256). The 1.5B and 7B
1228 models refer to DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-Qwen-7B, respectively.

	LLM train	LLM generation	DS sample (baseline)	DPS (sample + update)
Model size	1.5B	7B	1.5B	7B
Runtime (s)	170	580	200	520
			$\approx 3 \times 200$	$\approx 3 \times 520$
				any
				0.0005+0.002

1234 E.7 SENSITIVITY ANALYSIS ON THE RESPONSE GROUP SIZE
12351236 We conduct additional experiments using DPS and US under different response group sizes $k \in$
1237 $\{4, 8, 16\}$. Figures 13 and 14 present the learning curves of test accuracy, effective sample ratio, and
1238 DPS prediction accuracy. The results show that DPS consistently outperforms US with both higher
1239 performance and effective sample ratios, and the advantage of DPS is the most pronounced when
1240 $k = 4$. For US, the performance with $k = 4$ drops substantially compared to $k = 8$ and 16 (falling
1241 to less than half), whereas DPS exhibits only a slight decrease (about 4%). In particular, for $k = 4$,
the test accuracy of DPS is more than twice that of US.

We attribute this to the fact that for smaller k , the probability that the same policy produces a mix of correct and incorrect responses for the same prompt becomes lower (given a fixed success rate p , the probability of generating mixed responses is $1 - p^k - (1 - p)^k$). Hence, with a smaller k , the default US is much less likely to sample effective prompts (reflected in the extremely low effective sample ratio of US at $k = 4$ in Figure 14). This creates greater potential for improvement when using DPS, which actively selects effective prompts. On the other hand, a smaller k may lead to more frequent state transitions and make the underlying dynamics harder to estimate. Nevertheless, as shown in Figure 14, DPS maintains high prediction accuracy at the small-yet-practical value of $k = 4$, leading to substantial performance gains. Consequently, in scenarios where the response group size is constrained, such as under limited training resources, applying DPS is likely to be particularly advantageous.

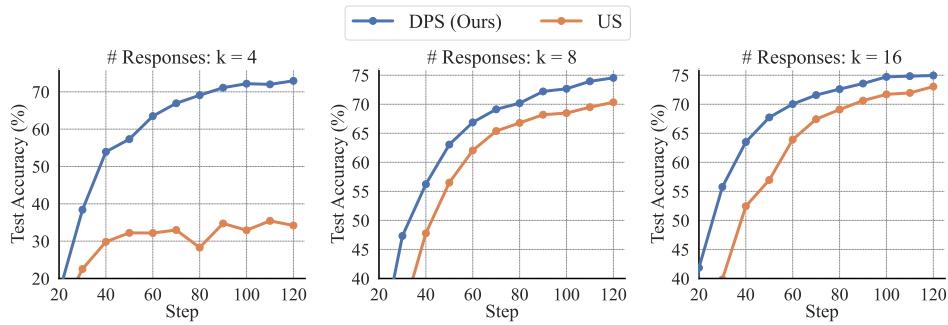


Figure 13: Performance of DPS and Uniform Sampling (US) under different response group sizes on the Countdown 3B task.

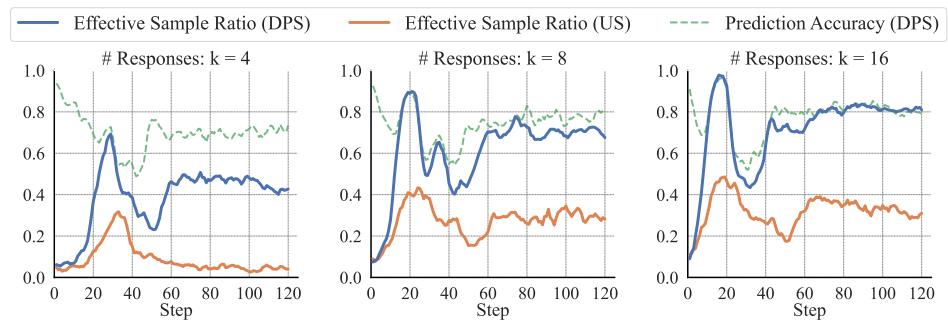


Figure 14: Effective sample ratios and prediction accuracies under different response group sizes on the Countdown 3B task.

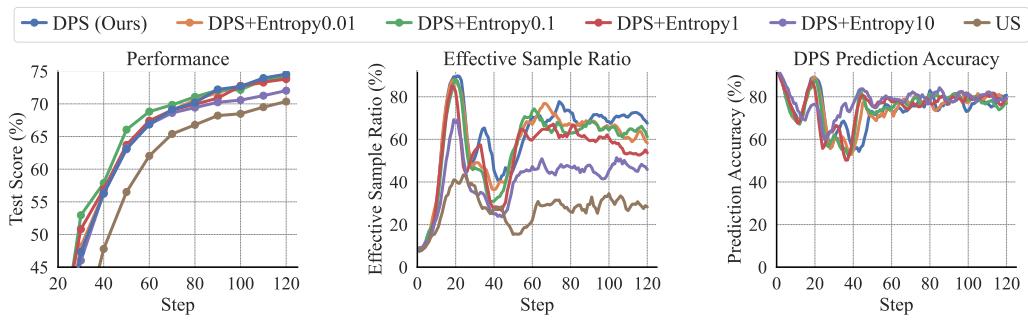
E.8 ENTROPY REGULARIZED SELECTION SCHEME

Introducing exploration into sample selection could potentially improve the model’s robustness. Prior to settling on the final DPS design, we actually tested a variant called DPS+Entropy, which explicitly balances exploitation and exploration by combining the entropy of the predicted distribution with the State-2 probability for Top-B sampling. We conducted experiments on Countdown and tuned the entropy regularization coefficient in $\{0.01, 0.1, 1, 10\}$. The training curves are shown in Figure 15. DPS+Entropy performs best when the coefficient is 0.1, but it does not yield a noticeably stronger improvement over DPS in either test accuracy or effective sample ratio. We provide further analysis below.

While the Top-B selection strategy is purely exploitative, it exploits an objective (i.e., the predicted probability) that already incorporates a degree of exploration. The non-stationary decay mechanism in DPS (Eq. (15)), although originally designed to accommodate non-stationary dynamics, also implicitly introduces exploration. It gradually decays the transition posterior and drifts the predicted states of under-sampled prompts (i.e., those predicted to be in State 1 or 3) toward a more uniform distribution, increasing their likelihood of being selected and updated. This behavior is supported

1296 by Figure 16, which shows that a smaller decay parameter λ leads to more uniform sample counts,
 1297 with a lower variance and a higher minimum across the dataset. Hence, the additional entropy term
 1298 partly overlaps with this built-in exploration effect, which may account for the limited improvement.
 1299

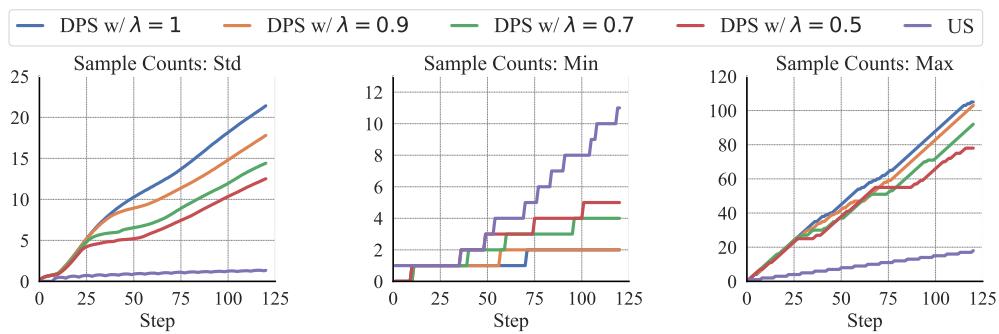
1300 Finally, the core contribution of our method lies in modeling and predicting the dynamics of solving
 1301 states. Once the state distribution is predicted, any selection criterion, such as softmax selection or
 1302 entropy-based sampling, can be applied. Therefore, the specific choice of selection criterion is not
 1303 the primary focus of this work. DPS adopts a simple criterion and introduces as few hyperparameters
 1304 as possible (with only λ) while already achieving strong performance.



1316 Figure 15: Evaluation of the entropy regularized selection scheme for DPS on Countdown 3B task.
 1317
 1318

1319 E.9 SAMPLING BEHAVIOR AND PREDICTION ACCURACY ON REPRESENTATIVE PROMPTS 1320

1321 Infrequently sampled prompts can have relatively inaccurate state predictions, which, without intervention,
 1322 may reduce their chance of being sampled and create a negative feedback loop. However,
 1323 the non-stationary decay mechanism of DPS (Eq. (15)), although originally designed to accommodate
 1324 potentially non-stationary dynamics, effectively introduces an exploratory behavior that mitigates this risk.
 1325 By gradually decaying the transition posterior, the state predictions of under-sampled
 1326 prompts (typically those in State 1 or 3) drift toward a uniform distribution. When the model can no
 1327 longer identify informative prompts with clearly higher probabilities of being partially solved, these
 1328 under-sampled prompts naturally get selected again, allowing their state predictions to be updated.
 1329 This behavior is supported by Figure 16, which shows that a smaller decay parameter λ leads to
 1330 more uniform sample counts, with a lower variance and a higher minimum across the dataset. Thus,
 1331 DPS inherently prevents the dynamics and state predictions of persistently under-sampled prompts
 1332 from stagnating; instead, their transition posteriors gradually decay and discount outdated patterns,
 1333 increasing the likelihood that they will be resampled and updated.



1345 Figure 16: Statistics of sample counts across the dataset on the Countdown 3B task. A smaller
 1346 non-stationary decay parameter λ yields a lower standard deviation and a higher minimum number
 1347 of sample counts across the dataset. The non-stationary decay mechanism introduces a degree of
 1348 exploration into DPS.
 1349

1350
 1351 To further examine how DPS estimates states for per-
 1352 sistently under-sampled or difficult prompts, we con-
 1353 ducted the following diagnostic evaluation after each training
 1354 step. We sampled: (a) the 256 prompts with the fewest
 1355 past sample counts (under-sampled prompts), (b) the 256
 1356 prompts with the highest DPS-estimated probability of
 1357 being fully unsolved (most likely persistently difficult
 1358 prompts), and (c) 256 randomly selected prompts. We
 1359 then rolled out these prompts without training the policy
 1360 and without updating the HMM, purely to measure pre-
 1361 diction accuracy. Figure 17 shows their prediction accu-
 1362 racies on Countdown. We observe that difficult prompts
 1363 achieve even higher prediction accuracy than uniform
 1364 prompts, likely because the difficult ones often have sim-
 1365 pler or more stable state distributions and transitions,
 1366 making them easier to predict even with fewer observa-
 1367 tions. Under-sampled prompts typically show slightly lower accuracy than uniform prompts, but the
 1368 gap is small. We hypothesize that the same reason applies here: under-sampled prompts in DPS
 1369 correspond to those confidently predicted to be in State 1 or 3, and thus may consist largely of very
 1370 hard or very easy problems, which are generally easier to predict. In this sense, the prompts most
 1371 susceptible to estimation error under infrequent sampling are, under DPS’s mechanism, often those
 1372 whose states are inherently easier to infer. This provides an additional perspective on why DPS
 1373 could mitigate the impact of data sparsity.

E.10 COMPARISON WITH ADDITIONAL BASELINES

1374 **Simple non-probabilistic heuristic.** We implemented a simple predictive baseline, denoted
 1375 Var+EMA, that tracks an exponential moving average of the reward variance for each prompt and
 1376 samples the prompts with the top-B values across the dataset. We conduct experiments on Count-
 1377 down with Var+EMA, tuning the EMA smoothing factor in $\{0, 0.1, 0.5, 0.9\}$ and choosing 0.5 as it
 1378 yields relatively better performance. The comparative results in Figure 18 show that DPS outper-
 1379 forms Var+EMA with higher test accuracy and effective sample ratios. The following analyzes the
 1380 necessity and advantages of the HMM framework over this simple predictive heuristic. (i) Dynam-
 1381 ics estimation. Var+EMA implicitly assumes that the solving extent of each prompt tends to persist
 1382 across steps, which resembles maintaining a fixed, stability-promoting transition model in DPS.
 1383 Therefore, this heuristic is less flexible than DPS in capturing more complex underlying dynamics
 1384 that may arise in practice. (ii) State prediction. Due to the infrequent sampling of a given prompt, its
 1385 reward-variance observations are unavailable on most steps. Under this setting, Var+EMA lacks a re-
 1386 liable mechanism to extrapolate and predict variance during these unobserved intervals. In contrast,
 1387 a core advantage of the HMM framework is its ability to model state transitions and, crucially, to
 1388 extrapolate under missing observations. Regarding hyperparameters, DPS uses only one parameter,
 1389 the non-stationary decay parameter λ , whereas Var+EMA uses an EMA smoothing factor.

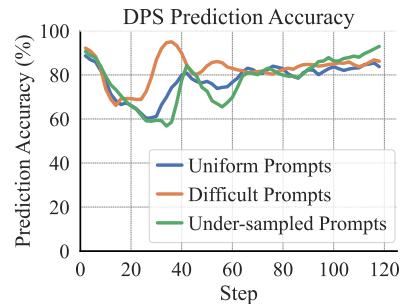


Figure 17: DPS prediction accuracies for different types of prompts on the Countdown 3B task.

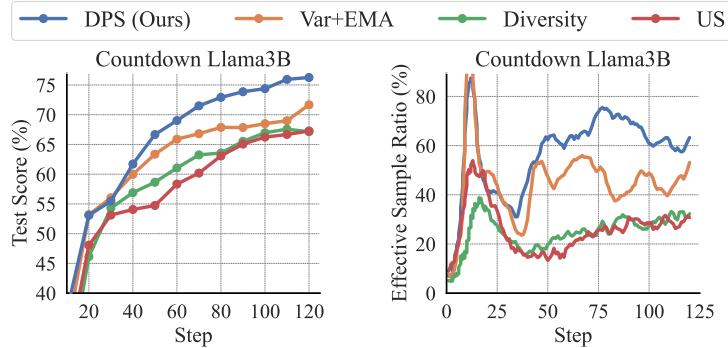


Figure 18: Comparison with additional baselines in terms of performance and effective sample ratio.

1404
 1405 **Diversity-based sampling.** We also implement a baseline that performs active sampling based
 1406 on batch-level sample diversity. Specifically, we first pre-sample a candidate batch that is n times
 1407 larger than the actual training batch, and embed each prompt into a 1024-dimensional vector using
 1408 WordLlama. We then iteratively select the candidate whose embedding maximizes the cumulative
 1409 pairwise L_2 distance to previously selected samples, thereby greedily constructing a batch with high
 1410 dispersion in the embedding space. We evaluate this variant on Countdown and tune the candidate
 1411 batch size multiplier $n \in \{2, 4, 8\}$, ultimately selecting $n = 4$ as it yields slightly better perfor-
 1412 mance. As shown in Figure 18, diversity-based sampling offers only marginal improvements over
 1413 US, and both its test accuracy and effective sample ratio remain far below those of DPS. Since our
 1414 work approaches active sampling from the perspective of the connection between rewards and sam-
 1415 ple informativeness, DS corresponds to an "oracle" strategy aligned with this perspective; thus, our
 1416 comparisons focus mainly on DS. DPS achieves comparable performance while requiring signifi-
 1417 cantly fewer rollouts.
 1418

E.11 EVALUATION ON GENERAL REASONING BENCHMARKS

1419 We additionally evaluate the MATH-trained models on general reasoning benchmarks, including
 1420 ARC-c (Clark et al., 2018) and MMLU-Pro (Wang et al., 2024). We follow the evaluation setup in
 1421 Yan et al. (2025) and adopt PRIME’s prompt template for evaluation. The results are provided in
 1422 Table 7. On these general (OOD) reasoning tasks, DPS also shows consistent improvements over
 1423 the baseline methods.

1424 Table 7: Evaluation on general reasoning benchmarks for models trained on the MATH dataset.
 1425 Performance is measured by pass@1 accuracy with a maximum response length of 8k tokens. '+'
 1426 represents finetuning with the method.
 1427

Method	ARC-c	MMLU-Pro	Avg. \uparrow	Rollouts \downarrow	Runtime \downarrow
R1-Distill-1.5B	41.81	21.02	31.42	-	-
+US	43.17	21.24	32.21	737k	27h
+HR	42.83	21.03	31.93	737k	28h
+DS (Oracle)	44.88	23.25	34.07	<u>2933k</u>	<u>89h</u>
+DPS (Ours)	46.16	23.41	34.79	737k	32h
R1-Distill-7B	74.32	50.44	62.38	-	-
+US	75.09	50.59	62.84	287k	30h
+HR	74.57	51.56	63.07	287k	36h
+DS (Oracle)	77.05	51.43	64.24	<u>1147k</u>	<u>73h</u>
+DPS (Ours)	78.67	52.37	65.52	287k	39h

E.12 EVALUATION WITH THE ADDITIONAL MODEL

1443 Beyond Qwen-series models, we further train Llama-3.2-3B-Instruct on Countdown to evaluate dif-
 1444 ferent sampling methods. Figure 19 compares the resulting test accuracies and effective sample
 1445 ratios. The results show that, with Llama-3.2-3B-Instruct, DPS also performs comparably to DS
 1446 and surpasses HR and US in both test accuracy and effective sample ratios, with even larger relative
 1447 gains than those observed with the Qwen models.
 1448

E.13 PRELIMINARY EXPLORATION OF EXTENSIONS TO CONTINUOUS PROCESS REWARDS

1450 We first discuss the main challenges of applying active sampling in process-reward settings, and
 1451 then present our preliminary exploration of extending DPS to continuous process rewards.
 1452

1453 Our focus on binary rewards reflects their practical prevalence and their well-understood connec-
 1454 tion with sample informativeness, which enables principled sampling strategies. In contrast, how
 1455 process rewards relate to informativeness remains unclear in the field. To our knowledge, existing
 1456 methods that incorporate process rewards still rely on binary outcome rewards when applying active
 1457

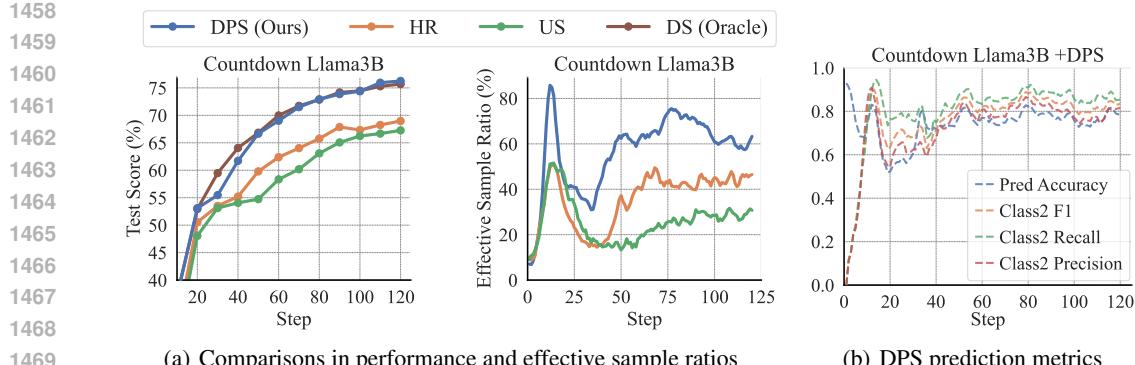


Figure 19: Comparisons of different sampling methods using the additional model Llama-3.2-3B-Instruct. (a) Performance and effective sample ratios. (b) Prediction metrics of DPS.

sampling; for instance, PRIME (Cui et al., 2025) uses process rewards for RL finetuning but applies an accuracy-based sampling filter as in DS. Thus, a key open challenge in process-reward settings is to first establish a meaningful link between process rewards and sample informativeness, which would enable DPS or other sampling strategies to be applied in a principled way.

We conduct a preliminary investigation of applying DPS to continuous process rewards based on a simple hypothesis: prompts whose average trajectory returns fall into an intermediate range may be more informative. Specifically, we compute a return for each response by summing its process rewards, and then categorize each prompt’s average return into one of three intervals defined by two boundaries, aiming to prioritize prompts in the middle interval. Using PRIME (Cui et al., 2025) as the testbed, we explore two DPS variants. The first uses fixed boundaries: since PRIME augments outcome rewards with small implicit process rewards, we simply set the boundaries to 0 and 1. The second uses dynamic, quantile-based boundaries, estimated from observed returns using quantiles 0.2 and 0.8, and updated via an exponential moving average (smoothing factor 0.9). As shown in Figure 20, the dynamic-boundary variant outperforms both the fixed-boundary variant and US on Countdown and also increases the proportion of partially solved prompts in training batches. This improvement is likely due to the ability of dynamic boundaries to mitigate potential issues such as interval mismatches and sparse observations that may arise under fixed boundaries. We leave the development of more refined process-reward-based active sampling strategies for future work.

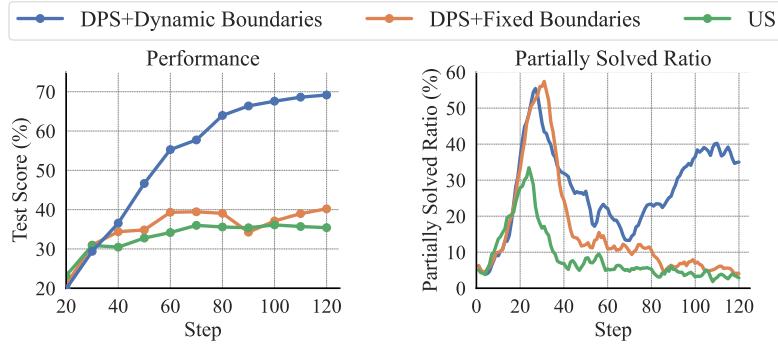
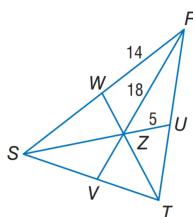


Figure 20: Evaluation in a precess reward setting on the Countdown 3B task. Sampling strategies are applied to the PRM-based method PRIME (response group $k = 4$, base RL algorithm RLOO).

1512 **F DATA EXAMPLES**
15131514 We provide below the illustrative data examples for each of the tasks in our experiments. Prompt
1515 templates for MATH and Geometry3k are drawn from verl (Sheng et al., 2024), whereas Countdown
1516 employs the template in Pan et al. (2025).
15171518 **MATH Data Example**
15191520 **Prompt:**1521 Given a prime p and an integer a , we say that a is a *primitive root* $(\bmod p)$ if the set
1522 $\{a, a^2, a^3, \dots, a^{p-1}\}$ contains exactly one element congruent to each of $1, 2, 3, \dots, p-1$
1523 $(\bmod p)$.1524 For example, 2 is a primitive root $(\bmod 5)$ because $\{2, 2^2, 2^3, 2^4\} \equiv \{2, 4, 3, 1\} (\bmod 5)$,
1525 and this list contains every residue from 1 to 4 exactly once.1526 However, 4 is not a primitive root $(\bmod 5)$ because $\{4, 4^2, 4^3, 4^4\} \equiv \{4, 1, 4, 1\} (\bmod 5)$,
1527 and this list does not contain every residue from 1 to 4 exactly once.1528 What is the sum of all integers in the set $\{1, 2, 3, 4, 5, 6\}$ that are primitive roots $(\bmod 7)$?
1529 Let's think step by step and output the final answer within $\boxed{\text{}}$.1530 **Answer:**
1531

8

1532 **Countdown Data Example**
15331534 **Prompt:**1535 A conversation between User and Assistant. The user asks a question, and the Assistant
1536 solves it. The assistant first thinks about the reasoning process in the mind and then provides
1537 the user with the answer.1538 User: Using the numbers [63, 95, 96], create an equation that equals 64. You can use basic
1539 arithmetic operations (+, -, *, /) and each number can only be used once. Show your work in
1540 $\langle \text{think} \rangle \langle / \text{think} \rangle$ tags. And return the final answer in $\langle \text{answer} \rangle \langle / \text{answer} \rangle$ tags, for
1541 example $\langle \text{answer} \rangle (1 + 2)/3 \langle / \text{answer} \rangle$.1542 Assistant: Let me solve this step by step.
15431544 **Geometry3k Data Example**
15451546 **Prompt:**1548 In $\triangle RST$, Z is the centroid and $RZ = 18$. Find ZV . You FIRST
1549 think about the reasoning process as an internal monologue and then provide the final
1550 answer. The reasoning process MUST BE enclosed within $\langle \text{think} \rangle \langle / \text{think} \rangle$ tags. The final
1551 answer MUST BE put in $\boxed{\text{}}$.
15521553 **Answer:**
1554

9

1561 **G STATEMENT ON LLM USAGE**
15621563 This work was completed without any substantive contribution of large language models (LLMs).
1564 The authors used LLMs exclusively for post-writing refinement. All core aspects of this work,
1565

1566 including research ideation, methodology development, theoretical derivation, code implementation,
1567 experiments execution, and results analysis, were conceived and conducted solely by the authors.
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619