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ABSTRACT

Reinforcement learning (RL) finetuning has become a key technique for enhanc-
ing the reasoning abilities of large language models (LLMs). However, its ef-
fectiveness critically depends on the selection of training data. Recent advances
underscore the importance of online prompt selection methods, which typically
concentrate training on partially solved or moderately challenging examples un-
der the current policy, thereby yielding more effective model updates. While
significantly accelerating RL finetuning in terms of training steps, they also in-
cur substantial computational overhead by requiring extensive LLM rollouts over
large candidate batches to identify informative samples, an expense that can out-
weigh the finetuning process itself. To address this challenge, this work proposes
Dynamics-Predictive Sampling (DPS), which online predicts and selects informa-
tive prompts by inferring their learning dynamics prior to costly rollouts. Specifi-
cally, we introduce a new perspective by modeling each prompt’s solving progress
during RL finetuning as a dynamical system, where the extent of solving is repre-
sented as the state and the transition is characterized by a hidden Markov model.
Using historical rollout reward signals, we perform online Bayesian inference to
estimate evolving state distributions, and the inference outcome provides a predic-
tive prior for efficient prompt selection without rollout-intensive filtering. Empir-
ical results across diverse reasoning tasks, including mathematics, planning, and
visual geometry, demonstrate that DPS substantially reduces redundant rollouts,
accelerates the training process, and achieves superior reasoning performance.

1 INTRODUCTION

Reinforcement learning (RL) finetuning has emerged as a crucial technique to enhance the reason-
ing capabilities of large language models (LLMs) (Lightman et al., 2023; Jaech et al., 2024; Guo
et al., 2025; Team et al., 2025). These finetuned models, often referred to as large reasoning mod-
els (LRMs), generate chain-of-thoughts (CoTs) to perform multi-step structured inference and have
achieved remarkable progress across a wide range of knowledge-intensive applications, including
scientific question answering (He et al., 2024), symbolic mathematics (Luo et al., 2025b), logical
deduction (Xie et al., 2025), and program synthesis (Luo et al., 2025a).

While RL finetuning has demonstrated substantial progress, its effectiveness depends heavily on the
quality of training data (Guo et al., 2025; Yang et al., 2024b), prompting increasing attention to data
curation (Wen et al., 2025; Hu et al., 2025). A common practice is to perform offline data filtering,
in which prompts are ranked or selected prior to training using static heuristics such as estimated
difficulty, domain balance, or diversity (Ye et al., 2025; Li et al., 2025; Wang et al., 2025). Al-
though beneficial, this approach fails to adapt to the model’s evolving competence during training.
To improve adaptivity, recent work has explored online prompt selection strategies that dynamically
adjust to the model’s evolving behavior. These methods typically operate on a per-step or per-epoch
basis, selecting informative prompts that provide stronger training signals (Yu et al., 2025; Zhang
et al., 2025; Cui et al., 2025). A representative state-of-the-art (SoTA) approach is Dynamic Sam-
pling (DS) (Yu et al., 2025), which expands candidate prompt batches, generates multiple responses
per prompt, discards uninformative prompts with consistent rewards, and uses the retained subset
for finetuning. This strategy improves training sample quality and significantly accelerates RL fine-
tuning in terms of training steps. However, for reasoning-intensive tasks, generating responses with
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Figure 1: Dynamics-Predictive Sampling (DPS) framework. DPS models each prompt’s solving
progress in RL finetuning as a dynamical system, treating solving extent as the state with transitions
characterized by a hidden Markov model. By employing lightweight inference, it predicts and se-
lects informative (partially solved) prompts online, without requiring rollout-intensive filtering.

long CoTs is computationally expensive. As a result, DS incurs substantial overhead from extensive
LLM generation on enlarged batches, which in practice often outweighs the cost of finetuning itself.

This work aims to preserve the adaptivity of online prompt selection while avoiding redundant roll-
outs. To this end, we propose Dynamics-Predictive Sampling (DPS), which online predicts informa-
tive prompts by inferring their learning dynamics. Specifically, we introduce a new perspective by
formalizing each prompt’s solving progress during RL finetuning as a dynamical system. The solv-
ing extent of each prompt is treated as the state of the system, while the distribution of these states
evolves as LRM updates. Technically, this process is instantiated as a hidden Markov model (HMM),
which serves as a tractable tool for tracking the prompt-solving dynamics. Given the constructed
dynamical system, we perform online Bayesian inference to estimate the evolving state distributions
from historical rollout reward signals. The inference outcome offers a predictive prior for adaptive
prompt selection, thereby improving sample efficiency without rollout-intensive filtering.

Empirically, we evaluate the proposed DPS across diverse reasoning downstream tasks, including
competition-level mathematics, numerical planning, and visual geometry. The results demonstrate
that DPS can accurately predict prompts’ evolving solving states and consistently select a higher
proportion of informative samples compared to baseline methods. Leveraging this capability, DPS
substantially accelerates RL finetuning, achieving performance comparable or even superior to the
oracle rollout-intensive strategy DS with significantly fewer rollouts.

2 PRELIMINARY

RL Finetuning for LRMs. Given a prompt τ sampled from a datasetD and a response y generated
from the model’s policy πθ(y|τ), the objective of RL finetuning is to maximize the expected return:

max
θ∈Θ

Eτ∼D, y∼πθ(·|τ) [r(τ, y)] , (1)

where the reward function r(τ, y) typically verifies the correctness of responses, with binary signals
commonly used in domains such as mathematics (i.e., 1 for correct and 0 for incorrect).

Group Relative Policy Optimization (GRPO). To solve the above optimization problem, a num-
ber of policy gradient methods have been proposed. GRPO (Shao et al., 2024) is a recent and widely
adopted variant that eliminates the need for explicit value function estimation, making it particularly
suitable for finetuning LLMs. Formally, for an arbitrary prompt τ and its corresponding k sampled
responses {yτi }ki=1, GRPO maximizes the following objective:

J GRPO(θ) = Eτ∼D, {yτ
i }k

i=1∼πθold (·|τ)[
1

k

k∑
i=1

(
min

(
πθ(y

τ
i |τ)

πθold(y
τ
i |τ)

Âτ
i , clip

(
πθ(y

τ
i |τ)

πθold(y
τ
i |τ)

, 1− ϵ, 1 + ϵ

)
Âτ

i

)
− βDKL(πθ||πref)

)]
,
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where the clipped policy ratio prevents πθ from deviating excessively from the previous policy πθold ,
while the regularization coefficient β penalizes divergence from a fixed reference model πref. GRPO
employs a group-based normalization scheme to estimate the advantages Âτ

i :

Âτ
i =

r(τ, yτi )−mean({r(τ, yτj )}kj=1)

std({r(τ, yτj )}kj=1)
. (2)

This strategy significantly reduces training complexity and has demonstrated strong empirical per-
formance across diverse LLM reasoning tasks (Shao et al., 2024; Guo et al., 2025).

Dynamic Sampling for Online Prompt Selection. In RL finetuning of LLMs, training examples
contribute unequally to policy improvement. When the model consistently answers a problem either
correctly or incorrectly, a phenomenon frequently observed during training (Zhang et al., 2025), the
reward provides limited optimization signals (Chen et al., 2025; Yu et al., 2025). For algorithms such
as GRPO, this situation causes the normalized advantages to vanish, effectively halting optimization.

To mitigate this issue, online prompt selection strategies are proposed to dynamically curate prompts
under specific rules (Zhang et al., 2025; Yu et al., 2025). A representative SoTA method is Dynamic
Sampling (DS) (Yu et al., 2025). At each training step t, DS rolls out with a larger, randomly sampled
candidate prompt batch B̂t, and discards uninformative prompts with identical rewards across the k
responses, forming the final training batch Bt:

Bt =
{
τ ∈ B̂t

∣∣∣ std
(
{r(τ, yτi )}ki=1

)
> 0

}
. (3)

Despite its effectiveness, DS introduces significant computational overhead due to repeated LLM
rollouts and evaluations over the enlarged candidate batch. In many cases, the candidate batch is
several times larger than the final batch, resulting in a proportional increase in LLM generation
costs. This burden is particularly pronounced in reasoning tasks requiring long CoT generation.

For extended discussions on related work, we refer the reader to Appendix A.

3 DYNAMICS-PREDICTIVE SAMPLING FOR ACTIVE RL FINETUNING

This section formalizes the prompt-solving progress as a dynamical system, develops an inference
strategy for solving extent prediction, and proposes an efficient pipeline for online prompt selection.

3.1 GENERATIVE MODELING OF PROMPT-SOLVING DYNAMICS

Problem Formulation. Prior research has revealed the existence of prompt-solving states for ef-
ficient policy optimization. Specifically, History Resampling (HR) (Zhang et al., 2025) categorizes
prompts into fully solved ones and others, whereas DS (Yu et al., 2025) distinguishes partially solved
prompts from the rest. Both theoretical analyses and empirical findings (Bae et al., 2025; Chen et al.,
2025) suggest that prompts yielding both successful and failed responses are more informative, as
they provide stronger gradient signals for updates. In light of this, this work defines an implicit state
zτt ∈ {1, 2, 3} for each prompt τ ∈ D, indicating its rollout outcome at training step t:

• State 1 (fully unsolved): All responses are incorrect,
∑k

i=1 r(τ, yi) = 0;

• State 2 (partially solved): Some responses are correct and some incorrect, 0 <
∑k

i=1 r(τ, yi) < k;

• State 3 (fully solved): All responses are correct,
∑k

i=1 r(τ, yi) = k.

According to prior work (Bae et al., 2025; Chen et al., 2025), State 2 prompts are the most informa-
tive and therefore should be prioritized during training. However, at each training step, the solving
state of any given prompt is unknown prior to rollout and evaluation. In the batch training setting,
solving states are only observed intermittently, when certain prompts are selected for rollout. Con-
sequently, each prompt yields an intermittent observation sequence, with the observation of prompt
τ at step t denoted as yτt (where yτt = ∅ if no observation made). Our objective is to estimate the
filtered prior belief of the solving state at step t before observation, denoted by µτ,prior

t :

µτ,prior
t (i) := P(zτt = i | yτ1:t−1), ∀i ∈ {1, 2, 3}. (4)

3
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Prompt Solving as Dynamical Systems. We formalize the evolution of each prompt’s solving
state using a Hidden Markov Model (HMM), which captures how the LLM’s ability to solve a given
prompt evolves during training. For clarity, we omit the superscript τ in this section and Section 3.2,
describing the generative and inference process for a single prompt, which applies to all others.

Formally, the initial solving state z1 is drawn from a categorical prior µprior
1 ∈ ∆3. In the absence of

prior knowledge, we adopt a uniform distribution:

z1 ∼ Categorical(µprior
1 ), µprior

1 =
[
1
3 ,

1
3 ,

1
3

]
. (5)

Subsequent states evolve according to a Markov process with a column-stochastic transition matrix
Φ ∈ R3×3, where entry Φ(i, j) represents the probability of transitioning from state j to state i:

zt | zt−1 ∼ Categorical(Φ(·, zt−1)), Φ(i, j) = P(zt = i | zt−1 = j),
∑3

i=1 Φ(i, j) = 1. (6)

At each timestep, if the prompt is selected for training, the observation yt reveals the current state
exactly; otherwise, the state remains unobserved. This yields a degenerate emission model:

p(yt | zt) =
{
δ(yt, zt), if yt ∈ {1, 2, 3},
1, if yt = ∅,

(7)

where δ(·, ·) denotes the Kronecker delta function. Assigning emission probability 1 to missing
observations preserves marginal consistency while imposing no constraint on zt. Putting these com-
ponents together, the solving progress for each prompt can be represented as a dynamical system.
Specifically, the joint distribution over states z1:T and observations y1:T factorizes as:

p(z1:T , y1:T ) =

∫
p(z1)

T∏
t=2

p(zt | zt−1,Φ)

T∏
t=1

p(yt | zt)dΦ, (8)

where the transition matrix Φ is treated as a random variable. This formulation specifies the under-
lying generative process, thereby enabling subsequent Bayesian inference over the solving states.

3.2 ONLINE INFERENCE AND TRANSITION LEARNING

We perform online Bayesian inference to track the solving states for a given prompt during training.
The procedure follows a three-stage pipeline at each training step t: (i) update the prior µprior

t to a
posterior µpost

t , using the observation yt if available, otherwise setting the posterior to the prior; (ii)
if yt is observed, refine the transition model; and (iii) propagate the posterior forward through the
transition model to generate the next-step prior µprior

t+1 .

Observation Update. If yt is observed, Bayes’ rule updates the prior µprior
t to the posterior µpost

t :

µpost
t (i) =

p(yt | zt = i) µprior
t (i)∑

k p(yt | zt = k) µprior
t (k)

=
δ(yt, i) · µprior

t (i)∑
k δ(yt, k) · µ

prior
t (k)

, if yt ∈ {1, 2, 3}. (9)

If yt is unobserved, the Bayesian update defaults to µpost
t = µprior

t without new evidence.

Transition Update. We place independent Dirichlet priors on the columns of transition matrix:

Φt(·, j) ∼ Dirichlet(αt(1, j), αt(2, j), αt(3, j)), ∀j ∈ {1, 2, 3}, (10)

where αt(i, j) specify the distribution over the transition probabilities. We initialize the transition
matrix with an uninformative prior by setting α0(i, j) = 1. As observations arrive sequentially, the
parameters αt(i, j) are updated online. Specifically, when yt is observed at step t, a Bayesian update
is applied to αt(i, j) using the soft transition statistics:

αt(i, j) = αt−1(i, j) + ξt(i, j), (11)

where ξt(i, j) denotes the posterior transition pseudo-count:

ξt(i, j) := P(zt−1 = j, zt = i | y1:t), if yt ∈ {1, 2, 3}. (12)

4
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This update rule follows from the conjugacy between the Dirichlet and Categorical distributions.
Observing a transition from state j to i adds one pseudo-count to the corresponding parameters of
the Dirichlet prior. As the transition is uncertain, the expected contribution is given by ξt(i, j). By
the Markov property and the conditional independence of observations given states, we obtain:

P(zt−1 = j, zt = i | y1:t) =
µpost
t−1(j) · Φt−1(i, j) · p(yt | zt = i)∑

j′ µ
post
t−1(j

′)
∑

i′ Φt−1(i′, j′) · p(yt | zt = i′)
. (13)

with derivations deferred to Appendix C. Using the deterministic emission model in Eq. (7), and
setting ξt = 0 when yt is unobserved (so the Bayesian update defaults to the prior), ξt simplifies to:

ξt(i, j) =


µpost
t−1(j) · Φt−1(i, j)∑

j′ µ
post
t−1(j

′) · Φt−1(i, j′)
, if i = yt,

0, otherwise.
(14)

Non-stationary Extension. The standard Bayesian HMM assumes stationary transition dynamics.
However, prompt-solving states in LRMs may evolve non-stationarily due to the complex learning
process. To accommodate changing transition dynamics, we propose a lightweight extension that
applies an exponentially decayed Dirichlet posterior update to the transition model:

αt(i, j) = λ · αt−1(i, j) + (1− λ) · α0(i, j) + ξt(i, j), λ ∈ (0, 1). (15)

This mechanism introduces forgetting by emphasizing recent transition statistics while gradually
discounting outdated patterns. Smaller values of λ yield faster adaptation to evolving dynamics.
The prior α0 serves as a regularizer: it prevents collapse when recent evidence is sparse and also
enables the encoding of domain knowledge about plausible transition structures.

Next-state Prediction. After the observation and transition updates at step t, we use the posterior
belief µpost

t and the inferred transition matrix Φt to form the predictive prior for the next step:

µprior
t+1 = Φt µ

post
t , i.e., µprior

t+1(i) =
∑3

j=1 Φt(i, j) · µpost
t (j). (16)

This prior µprior
t+1 represents our forecast of the prompt-solving state at training step t + 1 before its

observation, and serves as the initial belief for the subsequent inference iteration. Unlike classical
HMM smoothing methods (e.g., Forward-Backward (Baum et al., 1972)), which require access to
full trajectories, our approach updates both the state belief and transition posterior in an online man-
ner. Moreover, the computational cost of this inference framework is typically negligible compared
to response rollout or model finetuning, as it involves only very low-dimensional matrix operations.

3.3 PROMPT SAMPLING WITH PREDICTED DYNAMICS

The central goal of modeling prompt-solving dynamics is to online predict which prompts should be
prioritized for training at each step, before conducting costly rollouts. Given the predictive solving-
state belief µτ,prior

t = P(zt | y1:t−1) for each prompt τ , we prioritize prompts according to their
predicted probability of being partially solved (State 2), denoted µτ,prior

t (2). Crucially, we rely on
the prior belief µτ,prior

t rather than the posterior µτ,post
t , since selection must occur before outcomes

at step t are observed via rollouts. Formally, the B prompts with the highest State 2 probabilities are
selected to constitute the training batch at step t:

Bt = TopB

({
τ ∈ D | µτ,prior

t (2)
})

. (17)

Overall Algorithm. Integrating these components, we present the complete algorithm DPS in
Algorithm 1, with a framework overview shown in Fig. 1. A detailed analysis of the time complexity
of DPS and its implicit connection to curriculum learning is provided in Appendix B.

4 EXPERIMENTS

In this section, we conduct several experiments to examine the validity of DPS. Appendices D, E,
and F provide implementation details, additional results, and data examples, respectively.

5
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Algorithm 1: Dynamics-Predictive Sampling (DPS) for Active RL Finetuning

Input: Prompt dataset D; Dirichlet prior α0; Initial state belief µprior
1 ; Batch size B; Decay

ratio λ; Large language model πθ; Total training steps T .
Output: Finetuned large reasoning model πθ.
for t = 1 to T do

// Select most likely informative prompts for training

Sample a batch of prompts Bt ← TopB

({
τ ∈ D | µτ,prior

t (2)
})

;

foreach τ ∈ Bt do
Generate k responses using πθ and evaluate to obtain yτt ∈ {1, 2, 3};

Update the LLM πθ using trajectories from Bt with RL algorithm;
// Update solving-state beliefs and transition dynamics
foreach τ ∈ D do

if yτt is observed (i.e., τ ∈ Bt) then
Compute posterior belief µτ,post

t via Bayes’ rule by Eq. (9);
Compute posterior transition pseudo-count ξτt by Eq. (14);
Update Dirichlet transition posterior: ατ

t = λ · ατ
t−1 + (1− λ) · ατ

0 + ξτt ;
else

Set posterior belief µτ,post
t to the prior belief µτ,prior

t ;
Decay Dirichlet transition posterior: ατ

t = λ · ατ
t−1 + (1− λ) · ατ

0 ;

Generate prior belief µτ,prior
t+1 for the next step by Eq. (16);

4.1 EXPERIMENTAL SETUP

Tasks. We evaluate DPS across three challenging reasoning domains, training separate models on
their respective datasets: competition-level mathematics (MATH dataset (Hendrycks et al., 2021)),
numerical planning (Countdown dataset (Pan et al., 2025)), and visual geometric reasoning (Geom-
etry3k dataset (Lu et al., 2021; Hiyouga, 2025)). To further assess its generality, we test a range of
large language and multi-modal models that vary in capacity and architecture. Models are finetuned
with the GRPO algorithm within the verl framework (Sheng et al., 2024) and evaluated by average
Pass@1 accuracy over 16 completions per prompt. Details of the training datasets, test benchmarks,
and base models are reported in Appendix D, with illustrative data examples in Appendix F.

Baselines. We compare against three sampling strategies: (i) Uniform Sampling (US): the default
strategy that randomly selects prompts without preference. (ii) Dynamic Sampling (DS): a compute-
intensive oracle approach that oversamples and filters prompts using rollout feedback (Yu et al.,
2025). Here, “oracle” refers to sampling a batch of all partially solved prompts, instead of achieving
the best performance by training on sampled prompts. (iii) History Resampling (HR): an heuristic
method that excludes prompts from the dataset if they yield all correct responses in the current
epoch (Zhang et al., 2025), effectively treating the fully solved state as absorbing at the epoch level.

4.2 PREDICTION ACCURACY OF PROMPT-SOLVING STATES

A key component of DPS is online prediction of each prompt’s solving state, which enables adaptive
prioritization of partially solved examples during training. We evaluate the accuracy of this predic-
tion mechanism by treating it as an online classification task. In Fig. 2, overall prediction accuracy is
reported to assess general performance across the three classes, while precision, recall, and F1 score
are additionally reported for Class 2 (partially solved), the state most critical for training efficiency.
Throughout training, the predictor maintains high overall accuracy and achieves strong precision and
recall for Class 2. Fig. 2 also shows the proportion of partially solved prompts in sampled batches.
Compared with US and HR, DPS consistently yields a significantly higher concentration of such
prompts, reaching approximately 90% in many tasks.

To further illustrate predictive behavior, Fig. 3 visualizes confusion matrices over training steps,
where each cell gives the raw count for each (true, predicted) label pairs. Additional visualizations

6
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Figure 2: Proportion of partially solved prompts (Effective Sample Ratio) within sampled batches
under different data sampling strategies, along with prediction metrics of DPS.
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Figure 3: Confusion Matrix (CM) for DPS predictions at different training steps across tasks.

on more steps are deferred to Fig. 7. As training progresses, diagonal entries strengthen while off-
diagonal errors diminish, showing improved discriminability. Notably, the center cell grows more
prominent in both predictions and ground truth, indicating that the predictor increasingly emphasizes
partially solved prompts. We also report the number of fully solved and unsolved prompts in batches
across tasks in Fig. 8. Overall, these results demonstrate that DPS reliably tracks solving progress
through lightweight inference and concentrates training on informative prompts.

4.3 RL FINETUNING EFFICIENCY AND PERFORMANCE

Training Progress. Fig. 4 presents the training curves of different sampling methods across tasks
and models, where performance is tracked on AIME24 for MATH and on the respective test sets for
Countdown and Geometry. DPS exhibits substantially faster policy improvement than US and HR
and reaches higher final performance, benefiting from reliable prediction and a greater proportion
of informative samples. In contrast, US and HR suffer degradation on MATH, likely due to entropy
collapse (Liu et al., 2025a) arising from too few effective samples per batch. We attribute HR’s less
favorable performance to two factors: (i) its epoch-level absorbing transition assumption is overly
rigid, limiting adaptability during training; and (ii) it only filters out fully solved prompts, which are
often rare in early and middle stages of training. Relative to the oracle DS baseline, DPS achieves
comparable overall performance across tasks and even slightly surpasses it on MATH. This advan-
tage may stem from differences in sampling criteria: while DS samples randomly from evaluated
partially solved prompts, DPS consistently selects the top-B prompts with the highest predicted
probability of being partially solved, which might be more beneficial for policy improvement.

Generalization Performance. We evaluate the trained models across multiple challenging bench-
marks to assess their generalization capabilities. Table 1 reports results for models trained on MATH,
evaluated on AIME24, AMC23, MATH500, MinervaMath, and OlympiadBench. Table 2 presents
evaluations on Countdown, where models trained on a subset of the Countdown-34 dataset are tested
on both the held-out split (CD-34) and a harder generalization variant Countdown-4 (CD-4). Table 3
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Figure 4: Training curves of different methods across reasoning tasks with varying model sizes. The
curves in Math are smoothed with a window size of 5. DS serves as a high-resource oracle baseline.

Table 1: Evaluation across mathematics benchmarks. ‘+’ represents finetuning with the method.
Method AIME24 AMC23 MATH500 Minerva. Olympiad. Avg. ↑ Rollouts↓ Runtime↓

R1-Distill-1.5B 18.33 51.73 76.64 23.83 35.31 41.17 - -
+US 26.46 63.18 82.78 27.46 43.00 48.57 737k 27h
+HR 28.13 64.61 82.88 27.37 43.15 49.23 737k 28h
+DS (Oracle) 31.88 67.32 84.79 29.18 46.83 52.00 2933k 89h
+DPS (Ours) 32.71 67.77 84.95 29.09 46.11 52.13 737k 32h

R1-Distill-7B 37.71 68.45 86.94 34.74 46.94 54.95 - -
+US 45.83 73.57 89.06 37.68 50.42 59.31 287k 30h
+HR 46.46 75.98 90.01 37.94 51.50 60.38 287k 36h
+DS (Oracle) 49.79 78.99 90.96 37.89 54.45 62.42 1147k 73h
+DPS (Ours) 51.04 80.35 91.13 37.82 55.32 63.13 287k 39h

shows evaluations on Geometry. Across tasks, DPS consistently outperforms US and HR, while
matching or exceeding DS in generalization performance.

Table 2: Evaluation on Countdown.
Method CD-34 CD-4 Rollouts

Qwen2.5-3B - - -
+US 69.87 39.42 246k
+HR 70.19 42.10 246k
+DS (Oracle) 74.95 47.67 1141k
+DPS (Ours) 74.27 47.78 246k
Qwen2.5-7B - - -
+US 77.84 53.27 246k
+HR 78.15 54.54 246k
+DS (Oracle) 81.26 60.77 1006k
+DPS (Ours) 81.15 59.61 246k

Rollout and Runtime Efficiency. We also compare
methods in terms of rollout usage and runtime. Ta-
bles 1, 2 and 3 report the total number of rollouts,
while Fig. 9 plots the model performance as a function
of rollout counts. The results demonstrate that DPS
achieves strong performance with significantly fewer
rollouts than DS, typically using less than 30% of DS’s
rollout budget to match or exceed its results. More-
over, as shown in Table 1, DPS incurs substantially
lower runtime than DS when trained on the standard
MATH dataset, generally using about half of DS’s run-
time. While DPS exhibits slightly longer runtime than
US and HR, this difference is not due to its prediction
and selection operations, which are negligible in our experiments. Instead, it arises from longer
response generations associated with higher performance, as illustrated in Fig. 11.

4.4 ABLATION STUDY

Effects of Non-stationary Decay. The non-stationary decay ratio λ ∈ [0, 1] controls the extent
to which older observations are gradually discounted. As shown in Fig. 5, DPS maintains strong
performance over a wide range of λ across tasks. Notably, removing non-stationary decay (i.e.,
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Figure 5: Performance and prediction accuracy of DPS under varying non-stationary decay ratios λ.
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Figure 6: Performance and effective sample ratios of DPS under different solving-state partitions.

λ = 1, which assigns equal weight to all past observations) results in a decline in both performance
and prediction accuracy. This suggests that the solving-state dynamics is indeed non-stationary and
that adaptation to recent observations is crucial. Conversely, setting λ = 0, which relies solely on
the most recent feedback while discarding all past information, also leads to degraded performance
and reduced prediction accuracy. A moderate decay ratio strikes a balance, allowing the model to
remain responsive to recent trends while retaining sufficient historical context for robust estimation.

Effects of Different Solving-State Partitions. We examine the impact of coarser or finer parti-
tions of solving states. With two states, prompts are divided into partially solved versus all others.
With more than three states, the success rate interval [0, 1] is uniformly partitioned, and prompts
predicted to lie near 0.5 accuracy are prioritized, as prior work (Bae et al., 2025) suggests these
yield the most informative signals. Fig. 6 presents performance and effective sample ratios under
different partitions, where the latter is still defined as the proportion of partially solved prompts in
each batch. Overall, both metrics decline under either coarser or finer partitions. We attribute this
to two factors: (i) coarse partitions that merge fully unsolved and fully solved prompts obscure their
distinct dynamics, making transitions harder to model; and (ii) finer partitions distribute limited
training observations across more states, resulting in sparsity and reduced prediction reliability.

Effects of Transition Priors. The transition prior α0 allows flexible incorporation of domain-
specific knowledge about plausible transition patterns. The effects of different transition priors on
prediction accuracy and training efficiency are analyzed in Appendix E.4.

5 CONCLUSION AND LIMITATIONS

This work models each prompt’s solving progress during RL finetuning as a dynamical system, rep-
resenting the solving extent as the state and characterizing its transition with a hidden Markov model.
A lightweight inference strategy is developed to online predict and select informative prompts with-
out rollout-intensive filtering. Empirical results across diverse reasoning tasks demonstrate that DPS
reduces redundant rollouts, accelerates training, and achieves superior reasoning performance.

A limitation of this work lies in its reliance on correctness-based rewards to define solving states.
Nevertheless, the DPS framework naturally extends to more complex reward structures, such as
dense or process-based rewards, by partitioning cumulative return intervals. Furthermore, the use
of the straightforward top-k selection strategy may not be optimal. Future work will explore more
sophisticated criteria, such as entropy-based prioritization of uncertain samples.
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REPRODUCIBILITY STATEMENT
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and we are committed to releasing the complete code to support exact reproduction.

REFERENCES

Sanghwan Bae, Jiwoo Hong, Min Young Lee, Hanbyul Kim, JeongYeon Nam, and Donghyun
Kwak. Online difficulty filtering for reasoning oriented reinforcement learning. arXiv preprint
arXiv:2504.03380, 2025.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Leonard E Baum et al. An inequality and associated maximization technique in statistical estimation
for probabilistic functions of markov processes. Inequalities, 3(1):1–8, 1972.
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A RELATED WORK

RL for LLM Optimization. Reinforcement learning (RL) has become a pivotal technique for
adapting large language models (LLMs) to complex tasks and desired behaviors. In particular, Re-
inforcement Learning with Human Feedback (RLHF) has proven effective for aligning LLMs with
human preferences and safety constraints (Ouyang et al., 2022; Dong et al., 2024; Rafailov et al.,
2023; Dai et al., 2023; Sun et al., 2023; Sheng et al., 2024). In domains where reward signals are
verifiable, such as mathematics, code generation, and symbolic planning, Reinforcement Learning
with Verifiable Rewards (RLVR) has been shown to substantially enhance the reasoning capacity of
LLMs (Jaech et al., 2024; Shao et al., 2024; Team et al., 2025; Chu et al., 2025; Guo et al., 2025).
From an algorithmic perspective, Proximal Policy Optimization (PPO) (Schulman et al., 2017), a
foundational policy gradient method in RL, is directly applicable to LLM finetuning. More recently,
Group Relative Policy Optimization (GRPO) (Shao et al., 2024) eliminates the computational over-
head of PPO’s value network by introducing a lightweight, group-normalized advantage estimator,
and has rapidly become one of the most widely used RL finetuning algorithms. Subsequent refine-
ments have focused on mitigating gradient bias, reducing training instability, and lowering compu-
tational cost (Yuan et al., 2025; Yue et al., 2025; Liu et al., 2025b; Yu et al., 2025; Kazemnejad et al.,
2024; Hu, 2025). On the application side, substantial efforts have extend RL finetuning to broader
task domains and increasingly large-scale models (Luo et al., 2025b; Dang & Ngo, 2025; Luo et al.,
2025a; Zeng et al., 2025; Meng et al., 2025; Xu et al., 2024). At the same time, infrastructure-level
advances have developed scalable frameworks for distributed and compute-efficient RL training tai-
lored to LLMs (Sheng et al., 2024; Hu et al., 2025).

Data Selection for RL Finetuning. A growing body of work emphasizes that the effectiveness of
RL finetuning critically depends on the quality of training data (Guo et al., 2025; Yang et al., 2024b),
which has motivated growing interest in data curation as a driver of efficient learning (Hu et al., 2025;
Wen et al., 2025). A common approach is offline data filtering, which ranks or selects prompts prior
to training based on static heuristics such as estimated difficulty, domain balance, or diversity (Ye
et al., 2025; Li et al., 2025; Zhou et al., 2023; Wen et al., 2025; Hu et al., 2025; Yang et al., 2024b;
Fatemi et al., 2025; Wang et al., 2025). While beneficial, this approach introduces preprocessing
overhead for ranking or clustering and, more importantly, fails to adapt to the model’s evolving
competence during training. To address this limitation, recent work has investigated online selection
strategies that dynamically choose prompts in response to the model’s current behavior (Yu et al.,
2025; Zhang et al., 2025). One class of methods performs per-step selection, either by filtering out
uninformative prompts (Yu et al., 2025; Liu et al., 2025a; Cui et al., 2025; Meng et al., 2025) or by
focusing on examples of intermediate difficulty (Bae et al., 2025). While these strategies improve the
quality of training samples, they remain hindered by the high computational cost of rollout-intensive
filtering or by limited accuracy in difficulty estimation. Alternative approaches adopt per-epoch data
selection, updating the sample set periodically (Zhang et al., 2025; Zheng et al., 2025). However,
these methods typically rely on coarse heuristics or empirical trends observed over epochs, which
limits their responsiveness and often introduces high estimation error. Our approach formalizes
prompt-solving progress as a dynamical system and introduces a tractable inference strategy for
step-wise prompt selection with negligible computational overhead, achieving accurate prediction,
fast convergence, and superior performance under a low rollout budget.

B DISCUSSIONS

Time Complexity. We analyze the time complexity of Uniform Sampling (US), DS (Yu et al.,
2025), and DPS. DS repeatedly samples candidate prompts, performs LLM rollouts, and discards
those that fail to meet predefined constraints until |B| prompts are retained. Let pkeep denote the
expected probability that a sampled prompt is retained in DS, Cllm the expected cost for generating
and evaluating k LLM rollouts per prompt, Cpred the expected cost of inference per prompt in DPS,
and Ctopk the expected cost of top-k selection over the dataset in DPS.

The expected time complexity for prompt selection and evaluation per step is: O (|B|Cllm) for
US, O

(
⌈ 1
pkeep
⌉|B|Cllm

)
for DS, and O (|D|Cpred + Ctopk + |B|Cllm) for DPS. Since our method

involves only very low-dimensional matrix operations (Cpred, Ctopk ≪ Cllm), it holds that
O (|D|Cpred + Ctopk + |B|Cllm) ≈ O (|B|Cllm). Therefore, DPS significantly reduces computational
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overhead compared to DS while typically adding negligible cost relative to the default US. The pre-
diction and selection overhead in DPS scales approximately linearly with the dataset size |D|. For
existing popular datasets, this overhead is negligible. However, for potential extremely large datasets
where the cost may become non-trivial, one can approximate the full-dataset updates and selection
using a randomly sampled candidate subset B̂ (|B| < |B̂| < |D|) at each step.

Implicit Curriculum Learning. Beyond maximizing learning signals, this selection strategy in-
duces an implicit form of curriculum learning (Bengio et al., 2009). Early in training, prompts with
high State 2 probability are typically easier ones, for which the model begins to show partial success.
As training progresses and the model improves, these prompts may transition to the fully solved state
(State 3) and are no longer selected. Conversely, harder prompts that were initially always incorrect
(State 1) may begin to yield partially correct responses, making them eligible for sampling.

This mechanism creates a self-paced progression from easier to harder prompts: beginning with
tractable examples to bootstrap learning, then gradually shifting to more challenging cases as model
capacity grows. Moreover, by targeting prompts in the partially solved regime, the method avoids
both trivial and unsolvable cases, which provide little training benefit and may waste resources.
Crucially, this adaptive curriculum is not manually curated but emerges naturally from the method,
providing a principled and scalable alternative to handcrafted curricula.

C PROOF AND DERIVATION

Derivation of the Transition Update. The posterior transition pseudo-count ξt(i, j) is defined for
observed emissions yt ∈ {1, 2, 3} as:

ξt(i, j) := P(zt−1 = j, zt = i | y1:t), if yt ∈ {1, 2, 3}. (18)

The joint posterior distribution can be expressed as:

P(zt−1 = j, zt = i | y1:t) =
P(zt−1 = j, zt = i, y1:t)

P(y1:t)
(19)

Using the Markov property zt ⊥ y1:t−1 | zt−1 and the conditional independence of observations
yt ⊥ y1:t−1, zt−1 | zt, the numerator factorizes as:

P(zt−1 = j, zt = i, y1:t) = P(y1:t−1, zt−1 = j) · P(zt = i | zt−1 = j) · P(yt | zt = i). (20)

Substituting into the posterior expression yields:

P(zt−1 = j, zt = i | y1:t) =
P(y1:t−1, zt−1 = j) · P(zt = i | zt−1 = j) · P(yt | zt = i)

P(y1:t)
(21)

=
P(zt−1 = j | y1:t−1) · P(zt = i | zt−1 = j) · P(yt | zt = i)

P(yt | y1:t−1)
(22)

(23)

Using the notation µpost
t−1(j) := P(zt−1 = j | y1:t−1), Φt−1(i, j) := P(zt = i | zt−1 = j), and

p(yt | zt = i) := P(yt | zt = i), we obtain:

P(zt−1 = j, zt = i | y1:t) =
µpost
t−1(j) · Φt−1(i, j) · p(yt | zt = i)

P(yt | y1:t−1)
. (24)

The normalizing denominator P(yt | y1:t−1) can be obtained by marginalization:

P(yt | y1:t−1) =
∑
j′

µpost
t−1(j

′)
∑
i′

Φt−1(i
′, j′) · p(yt | zt = i′). (25)

Therefore, the full expression becomes:

P(zt−1 = j, zt = i | y1:t) =
µpost
t−1(j) · Φt−1(i, j) · p(yt | zt = i)∑

j′ µ
post
t−1(j

′)
∑

i′ Φt−1(i′, j′) · p(yt | zt = i′)
. (26)
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Under the deterministic emission model in Equation (7), we have p(yt | zt = i) = δ(yt, i) for
yt ∈ {1, 2, 3}, where δ denotes the Kronecker delta function. Substituting gives:

P(zt−1 = j, zt = i | y1:t) =
µpost
t−1(j) · Φt−1(i, j) · δ(yt, i)∑

j′ µ
post
t−1(j

′)
∑

i′ Φt−1(i′, j′) · δ(yt, i′)
, if yt ∈ {1, 2, 3}. (27)

Note that δ(yt, i′) is non-zero only when i′ = yt, so the inner sum over i′ reduces to Φt−1(yt, j
′).

Thus, the expression simplifies to:

P(zt−1 = j, zt = i | y1:t) =


µpost
t−1(j) · Φt−1(i, j)∑

j′ µ
post
t−1(j

′) · Φt−1(i, j′)
if i = yt, yt ∈ {1, 2, 3},

0 if i ̸= yt, yt ∈ {1, 2, 3}.
(28)

Setting ξt = 0 for unobserved yt so that the Bayesian update in Equations (11) and (15) defaults to
the prior without new evidence, the expression of ξt simplifies to:

ξt(i, j) =


µpost
t−1(j) · Φt−1(i, j)∑

j′ µ
post
t−1(j

′) · Φt−1(i, j′)
, if i = yt,

0, otherwise.
(29)

D EXPERIMENTAL DETAILS

D.1 DETAILS OF TASKS AND MODELS

We evaluate DPS across three distinct and challenging reasoning domains: competition-level math-
ematics, numerical planning, and visual geometric reasoning. To verify its broad applicability, we
experiment with a range of large language and multi-modal models with varying capacities and ar-
chitectures. We adopt the popular GRPO algorithm implemented within the verl framework (Sheng
et al., 2024) to fine-tune models. Evaluation is based on average pass@1 accuracy computed over
16 independent completions per example. Training datasets, test benchmarks, and base models in
each domain are detailed as follows, with illustrative data examples provided in Appendix F.

D.1.1 MATHEMATICS

Training Dataset. For mathematics, we train large reasoning models on the training split
of MATH dataset (Hendrycks et al., 2021), consisting of 7,500 problems designed to reflect
competition-level difficulty. Specifically, we use the Hugging Face release from https://
huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval, consistent
with prior work (Sheng et al., 2024).

Test Benchmarks. We assess performance across diverse mathematics benchmarks including
AIME24, AMC23, MATH500 (Lightman et al., 2023), Minerva Math (Lewkowycz et al., 2022),
and OlympiadBench (He et al., 2024), with all the datasets obtained from DeepScaler (Luo et al.,
2025b). In particular, AIME24 is used to monitor training progress and plot the training curves.

Base Models. Following prior work (Luo et al., 2025b), two base models from DeepSeek (Guo
et al., 2025) are used: DeepSeek-R1-Distill-Qwen-1.5B from Hugging Face repository
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
and DeepSeek-R1-Distill-Qwen-7B from https://huggingface.co/
deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.

D.1.2 NUMERICAL PLANNING

Training Dataset. For arithmetic planning, we use the Countdown Number Game, where
agents must construct the target number using basic operations over a given number set (Pan
et al., 2025). Training is carried out on a 2,000-item subset of the complete Countdown-34
dataset at Hugging Face repository https://huggingface.co/datasets/Jiayi-Pan/
Countdown-Tasks-3to4.
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Test Benchmarks. Models are evaluated on two benchmarks: (i) CD-34, containing 512 held-out
problems from Countdown-34; (ii) CD-4, including 512 problems from Countdown-4, a harder
generalization version that operates 4 numbers, accessible at https://huggingface.co/
datasets/Jiayi-Pan/Countdown-Tasks-4. In particular, CD-34 is used to monitor
training progress and plot the training curves.

Base Models. Following prior work Chen et al. (2025), we test with two base models from
Qwen (Yang et al., 2024a): Qwen2.5-3B from https://huggingface.co/Qwen/Qwen2.
5-3B and Qwen2.5-7B from https://huggingface.co/Qwen/Qwen2.5-7B.

D.1.3 VISUAL GEOMETRY

Training Dataset. Visual geometry experiments leverage the training split of the Geome-
try3k dataset (Lu et al., 2021; Hiyouga, 2025), accessible from https://huggingface.co/
datasets/hiyouga/geometry3k. The dataset comprises 2,101 diagram-based geometry
questions, requiring both image understanding and symbolic reasoning.

Test Benchmarks. We evaluate trained models on the benchmark test set comprising 601 visual
reasoning problems.

Base Models. For visual geometric reasoning, we adopt two vision-language models from
Qwen (Bai et al., 2025): Qwen2.5-VL-3B-Instruct from https://huggingface.
co/Qwen/Qwen2.5-VL-3B-Instruct and Qwen2.5-VL-7B-Instruct from https:
//huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct.

D.2 IMPLEMENTATION DETAILS

RL Finetuning Implementations. Our method and all sampling baselines shared the same RL
finetuning implementations, detailed as follows. We adopt the popular GRPO algorithm (Shao et al.,
2024) implemented within the verl framework (Sheng et al., 2024) to fine-tune models. Evaluation is
based on average pass@1 accuracy computed over 16 independent completions per prompt sampled
with temperature 0.6 and nucleus sampling parameter top p = 0.95, following the setup of Luo
et al. (2025b). For each training step, we generate k = 8 responses per prompt under temperature 1.0
and top p = 1.0 to compute advantage estimates and finetune models. An entropy regularization
term with weight 0.001 is introduced, consistent with Luo et al. (2025b). Models is optimized
with Adam (Kingma & Ba, 2014), using a constant learning rate of 1e−6, momentum parameters
(0.9, 0.999), no warm-up, and weight decay of 0.01. We further adopt the Clip-Higher scheme in
DAPO (Yu et al., 2025), which employs asymmetric clipping bounds, ϵlow = 0.2 and ϵhigh = 0.28.

Task-specific training configurations are as follows: batch size is set to 256 for MATH (mini-batch
128) and Countdown (mini-batch 64), and to 512 for Geometry3k (mini-batch 256). The maximum
output length is set to 8192 tokens for MATH and 1024 tokens for Countdown and Geometry3k.
The KL-divergence penalty is omitted in actor loss for MATH and Countdown, following (Yu et al.,
2025), but preserved in Geometry3k to maintain stable optimization, with a coefficient of 0.01 for 3B
models and 0.03 for 7B models. For MATH, we use a binary reward function that assigns a reward
of 1 for a correct answer and 0 otherwise, following the default setup in verl (Sheng et al., 2024),
while for Countdown and Geometry3k, we include a format bonus of 0.1 in the reward function if
the response is incorrect but with correct formatting, following the setup in Pan et al. (2025).

All experiments are executed on 8 NVIDIA A100 GPUs with 80GB memory.

Sampling Method Implementations. For Dynamic Sampling (DS) (Yu et al., 2025), we directly
use the implementation from verl (Sheng et al., 2024), where prompts with zero variance in rewards
are filtered out at each training step. For History Resampling (HR) (Zhang et al., 2025), we imple-
ment it within the verl framework by excluding prompts from the training dataset if they yield all
correct responses in the current epoch. For DPS, we initialize the state belief as µprior

1 (i) = 1/3 and
set the Dirichlet prior as α0(i, j) = 1, assuming no prior knowledge about both the initial prompt-
solving states and the transition probabilities. Thus, the only hyperparameter in DPS that requires

17

https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-4
https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-4
https://huggingface.co/Qwen/Qwen2.5-3B
https://huggingface.co/Qwen/Qwen2.5-3B
https://huggingface.co/Qwen/Qwen2.5-7B
https://huggingface.co/datasets/hiyouga/geometry3k
https://huggingface.co/datasets/hiyouga/geometry3k
https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

tuning is the non-stationary decay ratio λ, which is set to 0.7 for MATH and 0.5 for Countdown and
Geometry3k.

E EXTENDED EXPERIMENTAL RESULTS

E.1 ADDITIONAL PREDICTION RESULTS
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(a) Math 1.5B

Pred1 Pred2 Pred3

Tr
ue

1
Tr

ue
2

Tr
ue

3

18 0 0

44 0 0

194 0 0

CM at Step 1

Pred1 Pred2 Pred3

Tr
ue

1
Tr

ue
2

Tr
ue

3

14 2 0

29 98 4

80 28 1

CM at Step 5

Pred1 Pred2 Pred3

Tr
ue

1
Tr

ue
2

Tr
ue

3

10 3 0

17 133 4

51 35 3

CM at Step 10

Pred1 Pred2 Pred3

Tr
ue

1
Tr

ue
2

Tr
ue

3

3 6 0

3 191 10

11 24 8

CM at Step 50

Pred1 Pred2 Pred3

Tr
ue

1
Tr

ue
2

Tr
ue

3

2 5 0

1 215 7

0 22 4

CM at Step 100

Pred1 Pred2 Pred3

Tr
ue

1
Tr

ue
2

Tr
ue

3

1 11 0

1 224 4

0 13 2

CM at Step 140

0

50

100

150

0

20

40

60

80

0

50

100

0

50

100

150

0

50

100

150

200

0

50

100

150

200

(b) Math 7B
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(c) Countdown 3B
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(d) Countdown 7B
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(e) Geometry 3B
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(f) Geometry 7B

Figure 7: Confusion Matrix (CM) for DPS prediction at different training steps across tasks.
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Figure 8: Number of ineffective prompts (i.e., fully unsolved or fully solved) in sampled batches
during training across tasks.

A key component of DPS is the real-time prediction of each prompt’s solving state, which enables
adaptive prioritization of partially solved examples during training. We evaluate the accuracy of this
prediction mechanism by treating it as a dynamic classification task. This section provides additional
analysis to complement Section 4.2.

Confusion Matrix. Figure 7 visualizes confusion matrices over training steps across tasks, where
each cell shows the raw count for each (true, predicted) label pair. As training progresses, diagonal
entries strengthen while off-diagonal errors diminish, indicating improved discriminability. Notably,
the center cell becomes increasingly prominent in both predictions and ground truth, suggesting that
the predictor places greater emphasis on the target region.

Number of Fully Solved and Unsolved Prompts. Figure 8 reports the number of fully solved
and fully unsolved prompts in batches across tasks. The results show that DPS consistently and
significantly yields fewer fully solved and fully unsolved prompts than US across all tasks. In
addition, HR treats the fully solved state as absorbing, which is much stricter than that of DPS. As
a result, HR produces the fewest fully solved prompts across tasks but also the largest number of
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fully unsolved prompts. Overall, this leads to a substantially lower effective sample ratio for HR
compared to DPS, as shown in Figure 2.

Overall, these results demonstrate that DPS reliably tracks solving progress through lightweight
inference and concentrates training on desired prompts.

E.2 ADDITIONAL EVALUATION RESULTS

To compare prompt selection strategies, we evaluate their trained models across multiple challenging
benchmarks to assess the generalization ability. Table 1 reports results of models trained on MATH,
evaluated on AIME24, AMC23, MATH500, MinervaMath, and OlympiadBench. Table 2 presents
evaluations on Countdown, where models trained on a subset of the Countdown-34 dataset are tested
on both the held-out Countdown-34 split (CD-34) and a harder generalization version Countdown-
4 (CD-4). Table 3 shows evaluations on Geometry, where models are trained and tested on the
respective official Geometry3k datasets. The results show that DPS achieves substantial gains over
US and HR with the same rollout budget. On the other hand, DPS matches or surpasses DS across
tasks while requiring significantly fewer rollouts, making it more scalable in practical settings.

Table 3: Evaluation results on Geometry.

Method
Qwen2.5-VL-3B-Instruct Qwen2.5-VL-7B-Instruct
Test Score ↑ Rollouts ↓ Test Score ↑ Rollouts ↓

US 40.69 492k 46.22 328k
HR 40.44 492k 46.52 328k
DS (Oracle) 44.33 1262k 48.11 782k
DPS (Ours) 44.47 492k 47.78 328k

We further explore generalization by conducting an out-of-distribution study: MATH models,
trained with a maximum response length of 8k, are tested under an extended 32k response budget.
The results are reported in Table 4. DPS not only continues to surpass US and HR, but also outper-
forms DS, showing clear advantages from the increased response length. These results highlight the
scalability and generalization capacity of DPS in large-context settings.

Table 4: Evaluation across mathematics benchmarks under a maximum response length of 32k. ’+’
represents finetuning with the method. Evaluation is based on average Pass@1 accuracy over 16
responses per prompt.

Method AIME24 AMC23 MATH500 Minerva. Olympiad. Avg. ↑ Rollouts ↓ Runtime ↓

R1-Distill-1.5B 28.12 61.67 83.18 26.54 43.33 48.57 - -
+US 31.46 67.70 84.22 27.94 45.06 51.28 737k 27h
+HR 30.42 66.49 84.30 27.53 45.06 50.76 737k 28h
+DS (Oracle) 32.92 69.95 86.44 30.26 49.66 53.85 2933k 89h
+DPS (Ours) 37.92 71.16 85.84 29.14 48.32 54.48 737k 32h

E.3 ROLLOUT EFFICIENCY

Figure 4 demonstrates that DPS and DS significantly accelerate RL finetuning over US and HR in
terms of training steps. Yet, such comparisons overlook the cost of LLM rollout inference, which
often exceeds finetuning itself. Because DS depends on oversampling, it rolls out a larger batch of
prompts per training step, which substantially increases LLM inference overhead. Figure 9 plots
performance against rollout numbers during training. The results show that DPS reaches strong
performance with far fewer rollouts than DS, typically requiring less than 30% of DS’s rollout
budget to match or surpass its results.
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Figure 9: Training curves over the number of rollouts generated by LLM during training.

E.4 EFFECTS OF TRANSITION PRIORS

Our approach allows flexible incorporation of inductive bias by modifying the Dirichlet prior over
the transition matrix. While the default configuration uses an uninformative prior α0(i, j) = 1 for
all (i, j), many real-world scenarios may exhibit structural regularities in their solving dynamics.
This section investigates how certain priors affect prediction accuracy and training efficiency.

We evaluate several representative priors, each encoding a different structural assumption: (i) Sta-
bility prior (stability-promoting): Assigns larger pseudo-counts to self-transitions (α0(i, i) = 1,
α0(i, j) = 0.5 for i ̸= j), which suppresses frequent state changes and reflects a belief that solving
states tend to persist across steps. (ii) Progress prior (anti-regression): Sets lower pseudo-counts
for regression transitions (α0(i, j) = 0.5 for i < j), imposing a preference against regressing from
a more solved state to a less solved one. (iii) Local prior (local-transition): Sets α0(i, j) = 0 for
|i− j| > 1, suppressing long-range transitions while retaining flexibility for adjacent-state updates.
This encodes an assumption of smooth, gradual evolution in solving dynamics.
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Figure 10: Performance and prediction accuracy of DPS under different transition priors.

These priors are evaluated under identical training settings, with results shown in Figure 10. We
report both task performance and prediction accuracy. We find that certain structured priors can lead
to slight improvements over the uninformative baseline, particularly during early training stages
where data is limited (see Countdown for example). As training progresses and more data becomes
available, the advantages of structural priors diminish with degraded prediction accuracy, due to a
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potential mismatch between the prior’s bias and the actual dynamics. This highlights the tradeoff
between introducing prior structure and maintaining long-term flexibility.

E.5 RESPONSE AND PROMPT LENGTH

Response Length. Response length has been identified as a strong correlate of reasoning abil-
ity (Yu et al., 2025). Figure 11 illustrates how different strategies influence this metric during
MATH training. The average response length of DPS initially aligns with US and HR but quickly
increases, following a trajectory similar to DS. This also suggests that DPS rapidly learns the under-
lying prompt-solving dynamics. Both DPS and DS generate responses that are consistently longer
than those from US. Longer outputs provide opportunities for deeper exploration and enable the
model to engage in more complex reasoning processes, which may partly explain the observed per-
formance gap (Yu et al., 2025). Notably, in the MATH 7B setting, HR exhibits a sharp increase in
response length during later training stages. We attribute this to HR’s rigid exclusion rule: once a
prompt is fully solved at some epoch, it is permanently removed, even if errors may occur later. Un-
der the stronger 7B model, this removes too many relatively easy problems, substantially raising the
average difficulty of the remaining set. Faced with unsolvable inputs, the model tends to generate
excessively long responses, often approaching the length limit (Hou et al., 2025).
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Figure 11: Average response length in the sampled batch during MATH training.

Prompt Length. Figure 12 tracks the average length of sampled prompts throughout MATH train-
ing. Compared with US, all of DPS, HR, and DS tend to select longer prompts, and the average
prompt length increases slightly as training progresses. This trend can be explained as follows.
Since DS and DPS target partially solved prompts, improvements in trained model competence shift
the training batches toward more difficult prompts, which are statistically often longer. Likewise,
HR’s exclusion of already fully solved examples leaves a progressively harder pool of prompts, also
corresponding to greater length on average.
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Figure 12: Average prompt length in the sampled batch during MATH training.
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E.6 EMPIRICAL ANALYSIS ON COMPUTATIONAL SCALING BEHAVIOR

We conduct additional experiments to examine how the computational cost of different operations
scales with both dataset size and LLM size.

(1) Computational scaling with dataset size. We construct pseudo-datasets (with arbitrary size |D|)
to more systematically evaluate the cost of DPS sampling and updates. Specifically, at each step
t, we randomly generate |D| transition posterior matrices ατ

t and belief vectors µτ,post
t and µτ,prior

t
corresponding to all |D| pseudo-samples. In the sampling stage, we perform top-B selection on
µτ,prior
t (2); in the HMM-update stage, we assign random observations to the batch of B samples and

apply independent HMM updates to all |D| samples. For comparison, the per-step costs of LLM
training and generation, which are independent of dataset size, are obtained by finetuning the 7B
model on MATH. Table 5 reports the per-step costs of different operations for dataset sizes ranging
from 104 to 107. The runtime and memory usage of DPS scale approximately linearly with dataset
size, yet even for a very large dataset of size |D| = 107, DPS requires only 2.4s of runtime and 0.9
GiB of memory. In contrast, LLM training and generation together require about 1100s of runtime
and 600 GiB of GPU memory.

Given its linear scaling, the computational overhead of DPS could become non-negligible at a suf-
ficiently large scale (|D| > 108), though such dataset sizes are beyond typical practical settings.
For these cases, Appendix B also discusses a scheme that approximates the full-dataset updates and
selection using a randomly sampled candidate subset B̂ satisfying B < |B̂| ≪ |D|.

Table 5: Computational cost of different operations across varying dataset sizes, measured by per-
step runtime and memory usage during the finetuning of DeepSeek-R1-Distill-Qwen-7B (8 A100
GPUs, batch size 256). The results for LLM training and generation are evaluated on the MATH
dataset, while those for DPS are obtained on pseudo-datasets that emulate large-scale scenarios.

LLM train LLM generation DPS (sample + update)

Dataset size any any 104 (MATH) 105 106 107

Runtime (s) 580 520 0.0005+0.002 0.004+0.02 0.06+0.2 0.6+1.8
Memory (GiB) ≈600 (GPU) ≈600 (GPU) ≈0.0009 ≈0.009 ≈0.09 ≈0.9

(2) Computational scaling with LLM size. The cost of LLM training and generation scales with
model size. In particular, the additional rollout cost of DS also grows with LLM size, whereas DPS,
as a rollout-free alternative to DS, incurs no such dependence. Table 6 compares the per-step costs
of different operations for 1.5B and 7B models. The total runtime of LLM training and generation
increases from roughly 370s to 1100s as the model size increases from 1.5B to 7B. At the 7B scale,
the additional overhead introduced by DS versus DPS is approximately 1500s vs. 0.003s. Therefore,
the advantage of DPS can become increasingly significant as LLM size grows.

Table 6: Computational cost of different operations across varying LLM sizes, measured by per-
step runtime for finetuning on the MATH dataset (8 A100 GPUs, batch size 256). The 1.5B and 7B
models refer to DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-Qwen-7B, respectively.

LLM train LLM generation DS sample (baseline) DPS (sample + update)

Model size 1.5B 7B 1.5B 7B 1.5B 7B any
Runtime (s) 170 580 200 520 ≈ 3×200 ≈ 3×520 0.0005+0.002

E.7 SENSITIVITY ANALYSIS ON THE RESPONSE GROUP SIZE

We conduct additional experiments using DPS and US under different response group sizes k ∈
{4, 8, 16}. Figures 13 and 14 present the learning curves of test accuracy, effective sample ratio, and
DPS prediction accuracy. The results show that DPS consistently outperforms US with both higher
performance and effective sample ratios, and the advantage of DPS is the most pronounced when
k = 4. For US, the performance with k = 4 drops substantially compared to k = 8 and 16 (falling
to less than half), whereas DPS exhibits only a slight decrease (about 4%). In particular, for k = 4,
the test accuracy of DPS is more than twice that of US.
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We attribute this to the fact that for smaller k, the probability that the same policy produces a mix
of correct and incorrect responses for the same prompt becomes lower (given a fixed success rate p,
the probability of generating mixed responses is 1 − pk − (1 − p)k). Hence, with a smaller k, the
default US is much less likely to sample effective prompts (reflected in the extremely low effective
sample ratio of US at k = 4 in Figure 14). This creates greater potential for improvement when
using DPS, which actively selects effective prompts. On the other hand, a smaller k may lead to
more frequent state transitions and make the underlying dynamics harder to estimate. Nevertheless,
as shown in Figure 14, DPS maintains high prediction accuracy at the small-yet-practical value of
k = 4, leading to substantial performance gains. Consequently, in scenarios where the response
group size is constrained, such as under limited training resources, applying DPS is likely to be
particularly advantageous.
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Figure 13: Performance of DPS and Uniform Sampling (US) under different response group sizes
on the Countdown 3B task.
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Figure 14: Effective sample ratios and prediction accuracies under different response group sizes on
the Countdown 3B task.

E.8 ENTROPY REGULARIZED SELECTION SCHEME

Introducing exploration into sample selection could potentially improve the model’s robustness.
Prior to settling on the final DPS design, we actually tested a variant called DPS+Entropy, which
explicitly balances exploitation and exploration by combining the entropy of the predicted distribu-
tion with the State-2 probability for Top-B sampling. We conducted experiments on Countdown and
tuned the entropy regularization coefficient in {0.01, 0.1, 1, 10}. The training curves are shown in
Figure 15. DPS+Entropy performs best when the coefficient is 0.1, but it does not yield a noticeably
stronger improvement over DPS in either test accuracy or effective sample ratio. We provide further
analysis below.

While the Top-B selection strategy is purely exploitative, it exploits an objective (i.e., the predicted
probability) that already incorporates a degree of exploration. The non-stationary decay mechanism
in DPS (Eq. (15)), although originally designed to accommodate non-stationary dynamics, also
implicitly introduces exploration. It gradually decays the transition posterior and drifts the predicted
states of under-sampled prompts (i.e., those predicted to be in State 1 or 3) toward a more uniform
distribution, increasing their likelihood of being selected and updated. This behavior is supported
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by Figure 16, which shows that a smaller decay parameter λ leads to more uniform sample counts,
with a lower variance and a higher minimum across the dataset. Hence, the additional entropy term
partly overlaps with this built-in exploration effect, which may account for the limited improvement.

Finally, the core contribution of our method lies in modeling and predicting the dynamics of solving
states. Once the state distribution is predicted, any selection criterion, such as softmax selection or
entropy-based sampling, can be applied. Therefore, the specific choice of selection criterion is not
the primary focus of this work. DPS adopts a simple criterion and introduces as few hyperparameters
as possible (with only λ) while already achieving strong performance.
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Figure 15: Evaluation of the entropy regularized selection scheme for DPS on Countdown 3B task.

E.9 SAMPLING BEHAVIOR AND PREDICTION ACCURACY ON REPRESENTATIVE PROMPTS

Infrequently sampled prompts can have relatively inaccurate state predictions, which, without inter-
vention, may reduce their chance of being sampled and create a negative feedback loop. However,
the non-stationary decay mechanism of DPS (Eq. (15)), although originally designed to accommo-
date potentially non-stationary dynamics, effectively introduces an exploratory behavior that miti-
gates this risk. By gradually decaying the transition posterior, the state predictions of under-sampled
prompts (typically those in State 1 or 3) drift toward a uniform distribution. When the model can no
longer identify informative prompts with clearly higher probabilities of being partially solved, these
under-sampled prompts naturally get selected again, allowing their state predictions to be updated.
This behavior is supported by Figure 16, which shows that a smaller decay parameter λ leads to
more uniform sample counts, with a lower variance and a higher minimum across the dataset. Thus,
DPS inherently prevents the dynamics and state predictions of persistently under-sampled prompts
from stagnating; instead, their transition posteriors gradually decay and discount outdated patterns,
increasing the likelihood that they will be resampled and updated.
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Figure 16: Statistics of sample counts across the dataset on the Countdown 3B task. A smaller
non-stationary decay parameter λ yields a lower standard deviation and a higher minimum number
of sample counts across the dataset. The non-stationary decay mechanism introduces a degree of
exploration into DPS.
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Figure 17: DPS prediction accuracies
for different types of prompts on the
Countdown 3B task.

To further examine how DPS estimates states for persis-
tently under-sampled or difficult prompts, we conducted
the following diagnostic evaluation after each training
step. We sampled: (a) the 256 prompts with the fewest
past sample counts (under-sampled prompts), (b) the 256
prompts with the highest DPS-estimated probability of
being fully unsolved (most likely persistently difficult
prompts), and (c) 256 randomly selected prompts. We
then rolled out these prompts without training the policy
and without updating the HMM, purely to measure pre-
diction accuracy. Figure 17 shows their prediction accu-
racies on Countdown. We observe that difficult prompts
achieve even higher prediction accuracy than uniform
prompts, likely because the difficult ones often have sim-
pler or more stable state distributions and transitions,
making them easier to predict even with fewer observa-
tions. Under-sampled prompts typically show slightly lower accuracy than uniform prompts, but the
gap is small. We hypothesize that the same reason applies here: under-sampled prompts in DPS
correspond to those confidently predicted to be in State 1 or 3, and thus may consist largely of very
hard or very easy problems, which are generally easier to predict. In this sense, the prompts most
susceptible to estimation error under infrequent sampling are, under DPS’s mechanism, often those
whose states are inherently easier to infer. This provides an additional perspective on why DPS
could mitigate the impact of data sparsity.

E.10 COMPARISON WITH ADDITIONAL BASELINES

Simple non-probabilistic heuristic. We implemented a simple predictive baseline, denoted
Var+EMA, that tracks an exponential moving average of the reward variance for each prompt and
samples the prompts with the top-B values across the dataset. We conduct experiments on Count-
down with Var+EMA, tuning the EMA smoothing factor in {0, 0.1, 0.5, 0.9} and choosing 0.5 as it
yields relatively better performance. The comparative results in Figure 18 show that DPS outper-
forms Var+EMA with higher test accuracy and effective sample ratios. The following analyzes the
necessity and advantages of the HMM framework over this simple predictive heuristic. (i) Dynam-
ics estimation. Var+EMA implicitly assumes that the solving extent of each prompt tends to persist
across steps, which resembles maintaining a fixed, stability-promoting transition model in DPS.
Therefore, this heuristic is less flexible than DPS in capturing more complex underlying dynamics
that may arise in practice. (ii) State prediction. Due to the infrequent sampling of a given prompt, its
reward-variance observations are unavailable on most steps. Under this setting, Var+EMA lacks a re-
liable mechanism to extrapolate and predict variance during these unobserved intervals. In contrast,
a core advantage of the HMM framework is its ability to model state transitions and, crucially, to
extrapolate under missing observations. Regarding hyperparameters, DPS uses only one parameter,
the non-stationary decay parameter λ, whereas Var+EMA uses an EMA smoothing factor.
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Figure 18: Comparison with additional baselines in terms of performance and effective sample ratio.
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Diversity-based sampling. We also implement a baseline that performs active sampling based
on batch-level sample diversity. Specifically, we first pre-sample a candidate batch that is n times
larger than the actual training batch, and embed each prompt into a 1024-dimensional vector using
WordLlama. We then iteratively select the candidate whose embedding maximizes the cumulative
pairwise L2 distance to previously selected samples, thereby greedily constructing a batch with high
dispersion in the embedding space. We evaluate this variant on Countdown and tune the candidate
batch size multiplier n ∈ {2, 4, 8}, ultimately selecting n = 4 as it yields slightly better perfor-
mance. As shown in Figure 18, diversity-based sampling offers only marginal improvements over
US, and both its test accuracy and effective sample ratio remain far below those of DPS. Since our
work approaches active sampling from the perspective of the connection between rewards and sam-
ple informativeness, DS corresponds to an ”oracle” strategy aligned with this perspective; thus, our
comparisons focus mainly on DS. DPS achieves comparable performance while requiring signifi-
cantly fewer rollouts.

E.11 EVALUATION ON GENERAL REASONING BENCHMARKS

We additionally evaluate the MATH-trained models on general reasoning benchmarks, including
ARC-c (Clark et al., 2018) and MMLU-Pro (Wang et al., 2024). We follow the evaluation setup in
Yan et al. (2025) and adopt PRIME’s prompt template for evaluation. The results are provided in
Table 7. On these general (OOD) reasoning tasks, DPS also shows consistent improvements over
the baseline methods.

Table 7: Evaluation on general reasoning benchmarks for models trained on the MATH dataset.
Performance is measured by pass@1 accuracy with a maximum response length of 8k tokens. ’+’
represents finetuning with the method.

Method ARC-c MMLU-Pro Avg. ↑ Rollouts ↓ Runtime ↓

R1-Distill-1.5B 41.81 21.02 31.42 - -
+US 43.17 21.24 32.21 737k 27h
+HR 42.83 21.03 31.93 737k 28h
+DS (Oracle) 44.88 23.25 34.07 2933k 89h
+DPS (Ours) 46.16 23.41 34.79 737k 32h

R1-Distill-7B 74.32 50.44 62.38 - -
+US 75.09 50.59 62.84 287k 30h
+HR 74.57 51.56 63.07 287k 36h
+DS (Oracle) 77.05 51.43 64.24 1147k 73h
+DPS (Ours) 78.67 52.37 65.52 287k 39h

E.12 EVALUATION WITH THE ADDITIONAL MODEL

Beyond Qwen-series models, we further train Llama-3.2-3B-Instruct on Countdown to evaluate dif-
ferent sampling methods. Figure 19 compares the resulting test accuracies and effective sample
ratios. The results show that, with Llama-3.2-3B-Instruct, DPS also performs comparably to DS
and surpasses HR and US in both test accuracy and effective sample ratios, with even larger relative
gains than those observed with the Qwen models.

E.13 PRELIMINARY EXPLORATION OF EXTENSIONS TO CONTINUOUS PROCESS REWARDS

We first discuss the main challenges of applying active sampling in process-reward settings, and
then present our preliminary exploration of extending DPS to continuous process rewards.

Our focus on binary rewards reflects their practical prevalence and their well-understood connec-
tion with sample informativeness, which enables principled sampling strategies. In contrast, how
process rewards relate to informativeness remains unclear in the field. To our knowledge, existing
methods that incorporate process rewards still rely on binary outcome rewards when applying active
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Figure 19: Comparisons of different sampling methods using the additional model Llama-3.2-3B-
Instruct. (a) Performance and effective sample ratios. (b) Prediction metrics of DPS.

sampling; for instance, PRIME (Cui et al., 2025) uses process rewards for RL finetuning but applies
an accuracy-based sampling filter as in DS. Thus, a key open challenge in process-reward settings
is to first establish a meaningful link between process rewards and sample informativeness, which
would enable DPS or other sampling strategies to be applied in a principled way.

We conduct a preliminary investigation of applying DPS to continuous process rewards based on
a simple hypothesis: prompts whose average trajectory returns fall into an intermediate range may
be more informative. Specifically, we compute a return for each response by summing its process
rewards, and then categorize each prompt’s average return into one of three intervals defined by two
boundaries, aiming to prioritize prompts in the middle interval. Using PRIME (Cui et al., 2025) as
the testbed, we explore two DPS variants. The first uses fixed boundaries: since PRIME augments
outcome rewards with small implicit process rewards, we simply set the boundaries to 0 and 1. The
second uses dynamic, quantile-based boundaries, estimated from observed returns using quantiles
0.2 and 0.8, and updated via an exponential moving average (smoothing factor 0.9). As shown in
Figure 20, the dynamic-boundary variant outperforms both the fixed-boundary variant and US on
Countdown and also increases the proportion of partially solved prompts in training batches. This
improvement is likely due to the ability of dynamic boundaries to mitigate potential issues such as
interval mismatches and sparse observations that may arise under fixed boundaries. We leave the
development of more refined process-reward-based active sampling strategies for future work.
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Figure 20: Evaluation in a precess reward setting on the Countdown 3B task. Sampling strategies
are applied to the PRM-based method PRIME (response group k = 4, base RL algorithm RLOO).
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F DATA EXAMPLES

We provide below the illustrative data examples for each of the tasks in our experiments. Prompt
templates for MATH and Geometry3k are drawn from verl (Sheng et al., 2024), whereas Countdown
employs the template in Pan et al. (2025).

MATH Data Example

Prompt:
Given a prime p and an integer a, we say that a is a primitive root (mod p) if the set
{a, a2, a3, . . . , ap−1} contains exactly one element congruent to each of 1, 2, 3, . . . , p − 1
(mod p).
For example, 2 is a primitive root (mod 5) because {2, 22, 23, 24} ≡ {2, 4, 3, 1} (mod 5),
and this list contains every residue from 1 to 4 exactly once.
However, 4 is not a primitive root (mod 5) because {4, 42, 43, 44} ≡ {4, 1, 4, 1} (mod 5),
and this list does not contain every residue from 1 to 4 exactly once.
What is the sum of all integers in the set {1, 2, 3, 4, 5, 6} that are primitive roots (mod 7)?
Let’s think step by step and output the final answer within \boxed{}.
Answer:
8

Countdown Data Example

Prompt:
A conversation between User and Assistant. The user asks a question, and the Assistant
solves it. The assistant first thinks about the reasoning process in the mind and then provides
the user with the answer.
User: Using the numbers [63, 95, 96], create an equation that equals 64. You can use basic
arithmetic operations (+, -, *, /) and each number can only be used once. Show your work in
<think> < /think> tags. And return the final answer in <answer> < /answer> tags, for
example <answer> (1 + 2)/3 </answer>.
Assistant: Let me solve this step by step.
<think>

Geometry3k Data Example

Prompt:

In △RST , Z is the centroid and RZ = 18. Find ZV . You FIRST
think about the reasoning process as an internal monologue and then provide the final an-
swer. The reasoning process MUST BE enclosed within <think> < /think> tags. The final
answer MUST BE put in \boxed{}.
Answer:
9

G STATEMENT ON LLM USAGE

This work was completed without any substantive contribution of large language models (LLMs).
The authors used LLMs exclusively for post-writing refinement. All core aspects of this work,
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including research ideation, methodology development, theoretical derivation, code implementation,
experiments execution, and results analysis, were conceived and conducted solely by the authors.
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