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ABSTRACT

Deep networks typically learn concepts via classifiers, which involves setting up a model and train-
ing it via gradient descent to fit the concept-labeled data. We will argue instead that learning a
concept could be done by looking at its moment statistics matrix to generate a concrete representa-
tion or signature of that concept. These signatures can be used to discover structure across the set of
concepts and could recursively produce higher-level concepts by learning this structure from those
signatures. Concepts can be ’intersected’ to find a common theme in a number of related concepts.
This process could be used to keep a dictionary of concepts so that inputs could correctly identify
and be routed to the set of concepts involved in the (latent) generation of the input.

1 INTRODUCTION

Deep networks typically learn concepts via classifiers Qi et al. (2017); Allen-Zhu & Li (2020); Längkvist et al. (2014);
Zhong et al. (2016); Jing & Tian (2020); Guo (2021), which involves setting up a model and training it via gradient
descent to fit the concept-labeled data. However, this does not provide a general understanding of what a concept
should be and how they may be discovered and represented. In this work, we attempt to provide a formalism of
concepts that addresses these issues. Intuitively, we understand a concept to be a collection of objects with a shared
set of properties. In the paper, we consider such properties as defined by a polynomial manifold, i.e., the zero set of
polynomial equations.

While there has been work on learning manifolds Izenman (2012); Caterini et al. (2021); Bashiri et al. (2018); Pe-
dronette et al. (2018); Wang et al. (2018); Lin & Zha (2008); Brehmer & Cranmer (2020); Brosch et al. (2013); Han
et al. (2022); Cayton et al. (2008); Ma & Fu (2011); Zhu et al. (2018); Lunga et al. (2013); Talwalkar et al. (2008),
our goal here is to find simple ways to automatically group points into collections of manifolds and obtain simple
representations of these manifolds. We show that by simply taking the moment statistics corresponding to such points
and looking at the null-space of these statistics (arranged as a matrix), we can identify the manifold. In other words,
these elementary statistics can serve as a signature of the concept. Thus, we are learning a concept by tracking its
elementary statistics. This signature can serve as a classifier and as a representation or signature of that concept.

Importantly, these signatures can be used to discover structure across the set of concepts and could recursively produce
higher-level concepts by learning this structure from those signatures. Concepts may be “intersected” to find a common
theme across a number of related concepts. For a simple illustration of this abstraction, see Figure 1.

We also map the process of concept discovery to the transformer architecture Vaswani et al. (2017) at an intuitive level.
We view a generalized transformer architecture with attention blocks that are used to group inputs that are part of the
same concept. The MLP layers could then be used to compute the moment statistics and the corresponding null-space
leading to the signature of manifolds. We also augment each layer with a dictionary of already discovered concept
signatures (viewed as a memory table of concepts). These tables can be looked up to identify known concepts that are
present in a given input. This process is repeated iteratively producing a hierarchy of concepts.

While there have been many interesting experimental works showing that the feedforward networks encode concept
information Geva et al. (2022), visualizing the feed-forward network as a key-value memory unit Geva et al. (2021)
or keeping the explicit memory component to store the knowledge Lewis et al. (2020); Wu et al. (2022), they fail to
explain how the concepts are discovered and how the lower level concepts are combined to obtain the higher-level
concepts.
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1.1 OUR CONTRIBUTION

Our main results can be summarized as follows:
Proposition 1.1. (Informal summary of results) Given a collection of concepts where each concept corresponds to a
(latent) low dimensional, low curvature manifold, there is a simple method to compute concept signatures such that

1 The concept signature is obtained by taking moment statistics of a few points within the manifold, followed
by applying a power iteration-like transform that results in a signature that is invariant across different regions
in the manifold. That is, regardless of which region in the manifold the points may be distributed from, the
resulting concept signature will be the same as long as the distribution has a “well-conditioned” structure
(Proposition 2.1).

2 A simple attention mechanism may be used to identify a set of points from the same manifold (Proposi-
tion 3.1). This simply involves looking at the inner product of the two points after a simple kernel transform.
Membership in a manifold is also a simple inner product check between the concept signature and this kernel
transform representation of the point (Theorem 2.1).

3 If there is structure across a collection of concepts, then this structure is also present in the concept signatures.
For example, a concept may be the intersection of two other concepts; that is the manifold is the intersection
of the two corresponding manifolds; then this structure can be easily inferred from the concept signatures. If
several similar concepts share a common underlying (latent) concept, the common concept signature can be
easily obtained from a few of those related concepts (Proposition 3.2).

If there is a dictionary of atomic concepts and all concepts are unions of these atomic concepts, then the
signature of the atomic concepts can be inferred (Lemma 3.2).

4 Higher-level concepts may be obtained when concept signatures of lower level concepts lie in a manifold and
as long as the dimension of manifold of each lower–level concept is constant and can be parameterized by
constant degree polynomial, the signature sizes of the higher level concept will be constant up the hierarchy.

For example, a single rectangle is a concept that includes the concept of the four line segments. Each line
segment has a concept signature and these four signatures line a subspace. The general concept of a cir-
cle/rectangle is obtained by taking signatures of several circles/rectangles that all lie on a single abstract
manifold and computing the concept signature of that manifold (see Lemma 4.1 for circle).

The video of an object moving in a specific motion pattern – for example, a car turning right will result in a
concept signature that will be related to that of any other object moving in the same pattern. By intersecting
the two concept signatures we obtain the concept of ”moving right” (see Lemma 4.4).

Similarly rotated copies of an image result in concept signatures that lie in a manifold. These manifolds
corresponding to rotations of different images share a common rotation manifold that captures the concept
of rotating any image. The concept signature of rotation can be used to take the signature of an image and
convert it into a rotation invariant signature which is the signature of the manifold that includes all rotations
of that object (Lemma 4.3).

5 There are simple instantiations of a transformer network with mostly random set of parameters and a few
learned projections that can be used to group together and compute concept signatures of latent manifolds
present in the input data (see Section 6).

Our analysis points towards an architecture that is very similar to the transformer but in addition also has a dictionary
of concepts signatures at each layer that are produced over time in a system that is receiving a continuous stream of
inputs (similar to the experimental works that keep an explicit memory unit to store the knowledge Lewis et al. (2020);
Wu et al. (2022)); this set of signatures is looked up as new inputs arrive into the system.

2 CONCEPTS AS SUBSPACE SIGNATURES

In this section, we define our main notion of a signature for a set of points that is meant to capture the notion of
concepts. We then show that when the underlying points lie on an algebraic manifold (see definition below), the
signature we define satisfies the conceptual requirements outlined in the introduction.
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(a) Several lines on a 2-d plane, each with a separate signature. (b) A rectangle with 4 segments whose signatures are related.
The signatures of these four signatures form a signature of the
full rectangle. Similarly for the person.

(c) Several concentric circles of varying radius: the signatures of
the individual circles all lie on a manifold that is the signature of
the concept of a circle.

(d) Two groups each traveling along a different trajectory. The
trajectory of each object produces a signature; all objects in one
group have related signatures that lie in a manifold.

Figure 1: Examples and properties of the signatures.

We will use the following notational conventions: For two tensors A,B of the same dimension, we use A.B to denote
⟨A,B⟩ ∈ R. For any vector x, x.l denotes the l’th tensor power of x.
Definition 2.1. Given a feature mapping ϕ : Rd → Rm and a collection of points x1, x2, · · · , xN ∈ Rd, we define
the kernel signature of X = (x1, · · · , xN ) as:

M = M(X) =
1

N

∑
i∈[N ]

ϕ(xi)ϕ(xi)
⊤ ∈ Rm×m

For a single point, we also define S(x) = ϕ(x)ϕ(x)⊤.

Given UΣU⊤ be the Singular Value Decomposition (SVD) of M , where Σ1 ≥ Σ2 ≥ Σk > 0,Σk+1, · · · ,Σm = 0,
we define the null-space signature as T (X) = Uk:mU⊤

k:m. We define the ϵ-approximate null-space signature as
Tϵ(X) = Uk′:mU⊤

k′:m, where Σk′ ≤ ϵ and Σk′−1 > ϵ.

Definition 2.2 (Signature). A signature of a set of points is defined as (M(X), T (X), Tϵ(X)) for some prescribed ϵ.1

Definition 2.3 (Algebraic Manifold). A set M ⊆ Rd is an algebraic manifold if M = {x : P (x) = 0} where
P : Rd → Rd−k is a set of d− k polynomial maps. The manifold in this case is k-dimensional and we say the degree
of the manifold is the max degree of the polynomials Pi.

Throughout, we adopt the convention that the defining polynomial equations satisfy the normalization
Ey∈Sd−1 [Pi(y)

2] = 1 for i ∈ [d− k] where the notation Sd−1 denotes the unit-sphere in d-dimensions.

1We keep Tϵ(X) so in the later section, we will discuss if X only approximately lies on the manifold M, but not exactly.
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Given a k-dimensional manifold as above, if it exists, we call G : Rk → Rd a generative representation of M if the
following holds: for all x ∈ Rd, x ∈ M if and only if there exists z ∈ Rk such that x = G(z).

More generally an analytic manifold is obtained when the functions G are analytic (possibly in a bounded region).

We will look at manifolds where the dimensionality k and the degree are small constants – as a simple example a circle
is a 1-d manifold of degree 2. We will argue later how rich concepts can be formed by combining several such simple
concepts hierarchically.
Definition 2.4 (Non-degenerate distribution). We will say that a distribution of points from manifold is non-degenerate
if for any subset of features in ϕ(x) that are linearly independent over the entire manifold are also linearly independent
over the support of the distribution. For example, if ϕ a polynomial kernel, and the manifold is analytic, a distribution
supported on a (even a small) ball on the manifold is non-degenerate (this is because if a polynomial is identically zero
within a ball then it is identically zero over the entire analytic manifold)
Proposition 2.1. [Moments null space is zero polynomials on the manifold] Let X = {x1, . . . , xn} be random points
drawn from a k-dimensional algebraic manifold M of degree ℓ.

Under suitable non-degeneracy conditions on M, for sufficiently large n, if we compute the signature T (X) with ϕ
being the degree ℓ-polynomial feature mapping (i.e., ϕ(x) contains all monomials of x of up to degree ℓ), then the
signature T (X) as in Definition 2.1 uniquely identifies the manifold M. Membership check: A point x ∈ M iff
S(x).T (X) = 0, otherwise S(x).T (X) > 0.

Proof. Let p : Rn → R be a polynomial that vanishes on the manifold M. Then, for any point x, p(x) = ⟨w, ϕ(x)⟩
(here we view w as the coefficient vector of the polynomial p(x)). Thus, if p(x) = 0 for all x ∈ M, then w is in the
null-space of M(X) as wTϕ(xi)ϕ(xi)

Tw = 0 for all xi.

For large enough n, assuming M is non-degenerate, any polynomial that is non-zero on a ball of the manifold
will not be in the null-space of M(X) (with high probability). Thus, a point x is in the null-space if and only if
ϕ(x)TT (X)ϕ(x) = 0, i.e., S(x).T (X) is 0.

For constant dimensional manifolds with a generative representation with constant degree polynomials, the sample-
size required in the statement above can be reduced to a constant size (independent of the ambient dimension). The
signature size can also be reduced to a constant size.
Proposition 2.2. [Invariant concept signatures] Suppose X lies in a k-dimensional polynomial manifold with a degree
r generative representation. Suppose ϕ(x) is a degree s monomial feature mapping, then T (X) is uniquely defined by
the signature as long as X is non-degenerate and N = Ω

((
kr+s

s

))
.

Proof. We can write all the monomials of x as a vector, whose coordinates are the coefficients in terms of t ∈ Rk,
where t are the generative variables. We know that for degree q monomials, there are at least

(
d
q

)
such terms. On the

other hand, we can write the degree rq polynomials p of t as a vector in dimension at most krq . Taking s = 1, we
know that the manifold lies in a kr dimensional subspace U .

We now need to prove that T (X) is uniquely defined. To see this, let us consider a w such that ⟨w, ϕ(xi)⟩ = 0 for all
i ∈ [N ]. We need to show that ⟨w, ϕ(x)⟩ = 0 for all x ∈ Y . Note that by our previous conclusion,

ϕ(x) = ϕ(UU⊤x)

Therefore we can restrict ourself to polynomials g(z) = ϕ(Uz), where z ∈ Rkr

.

Now, for each polynomial g(z), we know that g(U⊤p(t)) is of degree rs. Therefore, for non-degenerate t1, · · · , tN
where N = Ω(rs), g(U⊤p(ti)) = 0,∀i ∈ [N ] =⇒ g(U⊤p(t)) = 0. Note that the VC dimension of g is at most(
kr+s

s

)
since g is a polynomial of degree at most s over input dimension kr, so we know that the sample complexity is

O
((

kr+s
s

))
.

Now we want to quantitatively show that the signature can be used to do a membership check if the points lie in a
manifold, thus the signature of those points will precisely describe the manifold.
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We also show that we can reduce the sample complexity to rÕ(k2) by using a random projection to a lower-dimensional
space. The following follows easily from Theorem 1.6 in Clarkson (2008) (the statement there is about a k-dimensional
manifold; we can view adding an extra point as a (k + 1)-dimensional manifold).

Lemma 2.1 (Reducing sample complexity using projection, Clarkson (2008)). Let M ⊆ Rd be a connected, compact,
orientable, differentiable manifold M with dimension k, constant curvature and bounded diameter. Then, for any
ϵ, δ > 0 and a point x,Rd, if A : Rd → Rm is a random linear map for m = O((k + log(1/δ))/ϵ2), with probability
at least 1− δ, the following hold:

• For all y, z ∈ M, ∥Ay − z∥2 = (1± ϵ)∥y − z∥2.

• For all y ∈ M, ∥Ax−Ay∥ = (1± ϵ)∥x− y∥2.

We use the projection lemma to obtain the following.

Theorem 2.1. [k-dim manifold generated by degree r polynomials] A k-dim manifold with generative representation
G that are polynomials of degree r, can be represented by a signature T of size rÕ(k2) (independent of ambient
dimension d). Such a signature can be computed by projecting the points to a lower dimensional space and computing
the signature as before. This signature can be used to test the membership of a point x with high probability by
checking the value of S(x).T : S(x).T = 0 if x is on the manifold. In addition, for any point y on the manifold, if
we choose z ∈ {x : ∥x − y∥2 = ∆} at random, then S(z).T ≥ fk,r(∆), where f is an increasing function in ∆ in a
bounded region.

Proof. We first note that if there is a generative representation of a k-dimensional manifold by polynomials of degree
r, then the degree of the manifold is at most ℓ = kr - see Theorem 5.1.

Note that any manifold with generative representation of degree r continues to have a generative representation of
same degree after a projection.

Thus, if we use a random projection to project the space to m = O((k + log(1/δ))/ϵ2), then by Lemma 2.1, all
distances on the manifold and the test point x are preserved with probability at least 1− δ.

Let us work in the projected space of dimension m. Now, the number of monomials involved in the monomial map
is

(
m+ℓ
ℓ

)
which is at most (m + ℓ)m. Since ℓ is at most rk, the dimension of the monomial map is rkm. Now,

note that to approximate T (X), we need a spectral approximation to M(X). Recall that for any distribution on
vectors in dimension D with bounded covariance, the number of samples needed for the empirical covariance matrix
to approximate the true covariance matrix is Õ(D). By applying this to ϕ(x) (in the projected space), the number
of samples needed for M(X) to approximate the true moment matrix is Õ(rkm). Thus, the size of the signature is
Õ(rkm) = rÕ(k2).

Finally, for the last part, consider the polynomial Q(x) = S(x).T (in the projected space). By our assumptions, the
sum-of-squares of the coefficients of Q is exactly the dimension of the null-space of T . The final part of the lemma
now follows by Lemma C.4.

3 LEARNING ARCHITECTURE AUGMENTED WITH TABLE OF CONCEPT SIGNATURES AT
EACH LAYER

We envision an architecture that is composed of mainly two modules - concept discovery module and concept storage
module. The concept discovery module computes the null space signature on the current input and is composed of the
standard transformer architecture whereas the concept storage module stores a dictionary of signatures Tℓ,1, Tℓ,2 . . . ,
at each layer ℓ (Figure 2) based on recent past inputs. The attention module at layer ℓ in our concept discovery module
also attends to the stored concept at layer ℓ. Additionally, the concept storage unit combines similar concepts stored
at layer ℓ to obtain the concept at layer ℓ+ 1. Using this idea, we propose the following learning method:

1. Given an input vector xt at time t.

2. For each layer ℓ ∈ [L], we store a sequence of m past signatures Tℓ,1, Tℓ,2, · · · , Tℓ,m, where T1,i = xt+1−i.
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3. We compute the attention (as described later) of Tℓ(xt) and Tℓ,1, Tℓ,2, · · · , Tℓ,m−1, obtain the
Tℓ,i1 , Tℓ,i2 , · · · , Tℓ,iK with the highest K attention score, then compute the signature of them to get Tℓ+1(xt).
We then update Tℓ+1,i = Tℓ+1,i−1 for i ≥ 2 and Tℓ+1,1 = Tℓ+1(xt) to maintain m signatures per layer.

When the points lie in a low-dimensional manifold, 
they are likely to attend each other

When the signature corresponds to the transformation of the
same object, they are likely to attend each other.

Create signature of the set of points

Create signature from the set of signature

Layer 1
(inputs)

Layer 2
(Signatures)

Layer 3
(Signatures of the signatures)

Attention

Feedforward network

Attention

Attention

Feedforward network

Concept Storage: Dictionary of nullspaces Attend to similar objects from the
past and combining lower level concepts to get the higher level concept

Concept discovery: Compute null space signatures.

Figure 2: Overview of our learning architecture.

The mechanism behind the learning method. Here, the attention is simply based on ⟨x,y⟩
∥x∥2∥y∥2

. We will discuss the
mechanism of attention in the next section, at a high level, our results show that:

1. Points lying in a low dimensional manifold are more likely to attend to each other ( Proposition 3.1), so
Tℓ+1(xt) will more likely be a signature for the low dimension manifold that is spanned by a subset of
Tℓ,i1 , Tℓ,i2 , · · · , Tℓ,iK . Thus, if there is a subset of signatures in {Tℓ,2, Tℓ,3, ..., Tℓ,m} that lies on a low
dimension manifold that contains Tℓ(xt), then Tℓ+1(xt) is more likely to be the signature of that manifold.

2. Signatures corresponding to the transformation of the same object are more likely to lie in a low-dimensional
manifold.

As an example, if there is a set of K − 1 points xi1 , xi2 , · · · , xiK−1
and xt that lies in the same manifold, then T2(xt)

is more likely to be the signature of that manifold.

3.1 STRUCTURE ACROSS CONCEPTS IS PRESENT IN THE SIGNATURES

We first show how attention based on distance between points can be used to group points from the same concept. We
also show for linear manifolds (specifically subspaces) that similar concepts have similar signatures and the signature
of intersection of multiple linear manifolds can be obtained from the individual signatures of the manifold.
Proposition 3.1. [Attention based on cosine similarity] Given a k dimensional manifold X with constant distortion,
for every ε > 0, N ∈ Z+, for every set of Ω(N(log(k)/ε)k) points in {x | ∥x∥2 ≤ 1}, there must be a set S of N
points such that for every x, x′ ∈ S, ⟨x,x′⟩

∥x∥2∥x′∥2
≥ 1− ε.

Note that different attention heads could apply attention at different scales of granularity ε.

Proof. First, we can consider a k-dimensional subspace, then the unit ball in the k-dimensional subspace can be
covered by O((log(k)/ε)k) rays of angles at most ε. By pigeon-hole principle, we complete the proof. For a general
k-dimensional manifold with constant distortion, we can map it back to k-dimensional subspace which preserves
distance up to a constant multiplicative factor.
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The proposition implies that random points on low-dimensional manifolds are much closer to each other in general,
compared to random points over the entire space. Thus, as we will show later, points on a single low-dimension
manifold are more likely to attend to each other in an attention layer.

Next we show how two the intersection of two concepts can be learned just from the signatures of the undelying
concepts. We also show that for two linear manifolds that are subspaces, their signatures have a high dot product if the
subspaces have a higher overlap (i.e., the common subspace is of higher dimension).

Proposition 3.2. Given two concepts with manifolds U1 and U2, the intersection of the two concepts is given by the
intersection of the manifolds U1 ∩ U2. The signature of this intersection can be easily computed as follows. Define
F (U) = I − T (U). Then,

F (U1 ∩ U2) = (F (U1).F (U2))
∞

Here by the ∞ in the power can be thought of as taking a very high power.

Further if they are linear manifolds that are subspaces of dimension k then the similarity between their signatures
increases with the dimensionality dim(U1 ∩ U2) of their intersection.

1.
F (U1).F (U2) ≥ dim(U1 ∩ U2)

Note that T (U1).T (U2) = F (U1).F (U2) + d− dim(U1)− dim(U2).

2. In contrast two random subspaces U1 and U2 of dimension k in d-dimensional space have a small dot product
if k2 << d.

EU1,U2 [F (U1).F (U2)] = k2/d

Lemma 3.1 (Similar Manifolds). Consider a manifold specified by a degree l equation written in the form c.Φ(x) = 0
where c is a (normalized) coefficient vector Given two manifolds U1, U2 specified by two such coefficient vectors
c1, c2 T (U1).T (U2) = (c1.c2)

2

Next we show that if concepts have a dictionary structure formed from atomic concepts then such a structure can be
discovered easily

Lemma 3.2. [A Dictionary of Concepts] If the concepts have a structural relationship of the form that there is a set
of latent atomic concepts and all concepts are obtained by taking sparse unions of these atomic subspaces, then this
structure can easily be discovered from the concept signatures.

Proof. This follows from the fact that the signature of the intersection of two concepts can be obtained from the
signatures of the individual concepts Proposition 3.2. By repeated taking intersections we get the set of atomic
concepts.

3.2 CONCEPTS THAT ARE UNION OF A FEW SIMPLER CONCEPTS

Remark 3.1. A stick figure human would consists of about 6 curves drawn on a 2d plane. At the first level we would
get signatures for each of those curves. at the second level we would get a signature of the curve signatures. This
would become the signature of the entire stick figure. Even though the total degrees of the freedom here is large, one
can easily identify the common invariant part of the human stick figure concept from just a few examples.

The following Lemma demonstrates how a higher level concept obtained by combining a few simpler concepts can
be represented by the signature of the signatures of the underlying concepts; for example, a rectangle is obtained by a
union of four line segments and the human stick figure would consist of six curves.

Lemma 3.3 (Moment statistics memorize a small set of points). For k points, the signature obtained by the O(k)th
moment statistic uniquely identifies exactly the set of k points.

Proof. This follows from the fact that there is a polynomial of degree 2k whose zero’s coincide with the set of given
k points. This polynomial must be in the null space of the moments statistic matrix.
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4 SIGNATURE OF SIGNATURES

As outlined in the introduction, the right notion of signatures and concepts should allow us to build higher-level
concepts from lower-level concepts and allow us to identify common traits in objects by even simply intersecting
concepts. In this section, we show that our idea of building signatures from statistics can be used to learn simple
higher-level concepts from lower-level concepts. We defer the proofs of technical results of the section to Appendix B.

We start with learning the concept of a given circle by looking at the null-space formed by the points on the circle.
Next, by looking at the signatures of several circles and the null-space of the moments of these signatures we learn the
general concept of a circle. Similarly, we show that rotated versions of an image lie on a manifold which can be used
to obtain a rotation invariant representation of images.

Further, the idea of intersecting concepts can be used to define a common direction of motion from several moving
objects that share the direction of motion (i.e., we identify the direction of motion as a common concept for these
different objects).

4.1 SIGNATURE OF A CONCEPT OF A CIRCLE

Lemma 4.1. By setting S(x) = (ϕ(x)).2, where ϕ(x) = [1;x].2, we obtain an invariant signature of a unit circle
T (X) = I −ww⊤ where w = [−1, 0, 0, 1, 0, 1]. This signature can be obtained even from random points from an arc
of the circle.

Lemma 4.2. Individual signatures T (X) of several concentric circles lie in a 1-d manifold of degree 2; the signature
of these signature corresponds to the the concept of a circle (centered at a origin).

4.2 ROTATION INVARIANT SIGNATURE

In this section, we show how rotating an image produces the signatures on an analytic manifold which means we can
use Theorem 5.2 to obtain a signature of this manifold.

Lemma 4.3. Let X denote the point cloud of the pixels of image (each pixel can be viewed as concatenation of
position and color coordinates) and let Xθ denote the rotation of the image under rotation θ. Then, S(Xθ) can be
written as a Taylor series in θ and therefore, we can obtain the rotation invariant signature of X from the signature of
signatures {S(Xθ)}θ.

See Appendix B.2 for the Taylor series approximation of the rotation and an additional example of translation invariant
signature of X .

4.3 SIGNATURE OF A OBJECT MOVING IN A SPECIFIC MOTION PATTERN

Lemma 4.4. The signatures of the motion of two objects moving with the same velocity function is sufficient to obtain
the signature of that velocity function. Any other object with same velocity function will match that signature. Given
a set of points X1, X2 each moving along separate velocity functions v1(t), v2(t), will result in a collection of concept
signatures for each point’s trajectory. All the concept signature of point trajectories from one set will intersect in the
corresponding velocity concept signature.

5 PROPERTIES OF MANIFOLDS

In this section, we study properties of manifolds and show auxiliary results for polynomials. In particular, we consider
the manifold that is implicitly represented by a generator of k−dimensional space and show that there exists a poly-
nomial H(x) that represents the manifold. We first start with the case when the generator of the data is low degree
polynomial, i.e., X = G(z) where Generator G : Rk → Rd is a degree r polynomial. We also show that polynomials
with non-trivial norm are unlikely to be very close to zero; this is useful for checking membership on manifolds. Due
to space constraints, we only provide theorem statements in this section and provide proofs in Appendix C.
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5.1 EXPLICIT POLYNOMIAL REPRESENTATION FROM IMPLICIT POLYNOMIALS

Theorem 5.1 (Explicit polynomials from implicit polynomials). Suppose X ∈ Rd lies in a k−dimensional manifold
and is represented as a degree r implicit polynomial by X = G(z) where z ∈ Rk. Then, the manifold can be written
as zero sets of d− k polynomials H(X) and the degree of each of the polynomials is at most rk.

The proof uses the fact that when the data generator equation X = G(z) is raised to the sufficiently high tensor power
u to obtain X .u = G(z).u, then there will be more different monomials in X .u than G(z).u because X has more
number of variables than z. Therefore, one can eliminate the implicit variables z to obtain a polynomial representation
corresponding to the manifold.

5.2 APPROXIMATE POLYNOMIAL REPRESENTATION FOR ANALYTIC MANIFOLDS

Next, we show that even if G(z) is not a polynomial but a general analytic function, then the manifold can be approx-
imated as d− k polynomials of high-enough degree.
Theorem 5.2. Suppose a k−dimensional manifold of the data X ∈ [−1, 1]d is given by X = G(z) where G :
[−1, 1]k → [−1, 1]d is an analytic function and ∥∇(m)G(z)∥2 ≤ 1 for any m. Then, there exists a polynomial in X ,

H(X) of degree r such that for points on the manifold, ∥H(X)∥∞ ≤ r−
r(1+1/k)

2ckk for some absolute constant c.

6 CONNECTION TO TRANSFORMER ARCHITECTURE

Our learning architecture includes attention mechanism that groups from the same concept together and MLP layer
which computes the signature of the concept and a memory table which keeps track of moment signature seen so
far. Even though we presented the signatures as matrices, we will argue how this signatures will arise from flattened
vectors from random MLP layers with small amount of trained projection.

On a high level, we envision that a feedforward network can contain the signature S(x) = ϕ(x)ϕ(x)⊤ for each token
and attention can be used to combine tokens from the same concept together to obtain M(X) = 1

|X|
∑

x∈X S(x)

and the subsequent feedforward network can be used to obtain T (X) using M(X) because T (X) is the null space of
M(X) and it can be obtained by taking by repeated multiplication of (I − M(X)). See Figure 3 for the high-level
overview of the connection and see Appendix D for the detailed discussion.

In particular, we show that a two-layer neural network with random weights can obtain M(X)2 upto rotation, i.e.,
there exists a fixed projection of representation produced by the MLP layers that equals M(X)2. One can use this
two-layer neural network as a building block to obtain the higher powers of M(X) and the null-space of a high enough
powers of M(X) defines the null-space signature of the concept.

We denote the data matrix X ∈ RN×d where ith row is given by xi. We consider the square activation and the follow-
ing two-layer neural network with m hidden units whose weights are initialized using standard Gaussian N (0, I):

G1,j(xi) = σ(xi · rj), Ĝ1,j =
1

N

N∑
i=1

G1,j(xi) and G2,j = σ(Ĝ1,j)

where σ is an element-wise square activation. For wide enough MLP layers, we show that Ĝ1,j is equivalent to M(X)
by a projection and G2,j is equivalent to M(X)2 upto a projection.

Theorem 6.1. There exists a projection of Ĝ1,j that gives M(X):

Er∼N (0,I)[r
(.2)
j Ĝ1,j ]− (d+ 1)I = M(X).

Similarly, there exists a projection of the representation generated by first and second layer such that

Er∼N (0,I)[r
⊗2
j Ĝ1,j + β1r

⊗2
j G2,j ] + β2I = M(X)2

where β1 and β2 only depend on d.

The full proof can be found in Appendix D.
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A PROOFS FOR SECTION 3

A.1 PROOF FOR LEMMA 3.1

Proof. If a manifold U is specified by a polynomial equation of degree l and we use lth moments, there will be exactly
one eigenvector in the null space specified by c. Thus T (U) = cc′. So T (U1).T (U2) = c1c

′
1c2c

′
2 = (c1.c2)

2

Corollary A.1. [Similar Manifolds]

Consider random hyperplanes and spheres in d dimensions where all coefficient’s of hyperplanes are chosen as normal
random variables and for spheres the coordinates and radius chosen as unit normal random variables. By looking at
the similarity T (U1).T (U2) we get

1. The expected similarity between two random lines is 1/d

2. Between two parallel lines is 1−O(1/d)

3. Between two random spheres is 1/5

4. Between two concentric spheres is 1

5. Between a random line and a random sphere is O(1/d)

A.2 PROOF OF PROPOSITION 3.2

Proof. For the signature of U1 ∩ U2, first consider the case when they linear manifolds that are subpaces. Then
F (U) = I − T (U) is the projection matrix for the subspace. T (U1 ∩ U2) will be the union of the null spaces
T (U1),T (U2) – this is because the intersection of the concepts will satisfy any polynomial equation satisfied by either
of the two concepts. To obtain the projection matrix F (U1 ∩ U2) we note that repeated multiplication of a vector by
F (U1) and F (U2) will nullify any component vector outside intersection of U1 and U2; if a vector is in the intersection
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then the multiplications keeps it unchanged; otherwise its length keeps decreasing till it ends up getting projected into
U1 ∩ U2. The same argument when applied on subspaces formed over ϕ(x) which extends this to general manifolds.

Next, let v1, .., vk1
be a basis for U1 subspace and w1, .., wk2

be a basis for U2 subspace. Then F (U1) =
∑

viv
⊤
i and

F (U2) =
∑

wiw
⊤
i . Thus, F (U1).F (U2) =

∑
i,j(vi.wj)

2. If U1 and U2 intersect in dim(U1 ∩ U2), then we can find
basis that share dim(U1 ∩ U2) basis vectors. This gives

F (U1).F (U2) ≥ dim(U1 ∩ U2).

For random vi and wj , E[vi.wj ] = 1
d which proves the result for random subspaces U1 and U2 (i.e.,

E[F (U1).F (U2)] = k2/d).

The result for T (U) follow from the fact that T (U) = I − F (U).

B APPENDIX FOR SECTION 4

B.1 OMITTED PROOFS OF SECTION 4

In this section, we provide the omitted proofs of Section 4.

B.1.1 PROOF OF LEMMA 4.1

Proof. Note that ϕ(x) includes all monomials of degree 2 (that is ϕ(x) = [1, x1, x2, x
2
1, x1x2, x

2
2]). The circle sig-

nature is given by T (X) = I − ww⊤ where w = [−1, 0, 0, 1, 0, 1]. This corresponds to the equation of the circle
T (X).S(x) = 0 or ϕ(x).w = 0 or x2

1 + x2
2 − 1 = 0. This is because points from the arc can only satisfy this one

equation of degree 2. Instead of ϕ(x) = [1;x].2, if we had used a higher power l, then too any polynomial equation
satisfied by an arc must be satisfied by the circle and must have x2

1 + x2
2 − 1 as a factor.

B.1.2 PROOF OF LEMMA 4.2

Proof. The nullspace of a circle of radius r is given by the equation x2
1+x2

2−r2 = 0 which corresponds to the singular
vector w = [−r2, 0, 0, 1, 0, 1]. Thus, the signature Cr of a circle of radius r is I −ww⊤ where w = [−r2, 0, 0, 1, 0, 1]

Thus Cr = a1 + a2r + a3r
2 where a1, a2, a3 are constant vectors when flattened. Thus we can think of Cr as

isomorphic to [z0, z1, z2] = [1, r2, r4]. Thus under this isomorphic view Cr is the intersection of the polynomial
equations: z0 − 1 = 0, z2 − z21 = 0

Thus T (z) = T (C .2
r ) = z.2(I −w1w

′
1−w2w

′
2) where w1.z = 0 and w2.z = 0 capture the above two equations. This

is because if we take [1, r2, r4] for a few different values of r any degree 4 equation z.2 satisfies is satisfied by all such
[1, r2, r4].

B.1.3 PROOF OF LEMMA 4.4

Proof. Different objects moving with same velocity can be viewed as subspaces that intersect in the common velocity
subspace. For e.g. an object moving in 3d space can be viewed as 1d manifold. And if the velocity is common these
are parallel manifolds. By appending a 1 coordinate these can be seen as 2d manifolds that intersect in the common
velocity manifold. By Proposition 3.2 two such signatures are sufficient to obtain the signature F (V ) of the velocity
manifold. Checking if another object motion F (O) has the same velocity is also easy: check if F (O)F (V ) == F (V ).

B.2 SIGNATURE OF TRANSLATED AND ROTATED IMAGE MANIFOLD

In this section, we show how rotating an image produces the signatures on an analytic manifold which means we can
use Theorem 5.2 to obtain a signature of this manifold. Here, we explicitly show the Taylor series that transforms
signatures under rotation θ.
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Lemma B.1. Let X denote the point cloud of the pixels of image (each pixel can be viewed as concatenation of
position and color coordinates) and let Xθ denote the rotation of the image under rotation θ. Then, S(Xθ) can be
written as a Taylor series in θ. (We derive this Taylor series upto the second order approximation).

Proof. Note that each point goes through following transformation:

x′ = x · cosθ + y · sin θ and y′ = −x · sin θ + y · cos θ,
where point x′ is obtained by applying the rotation matrix corresponding to θ angle on point x. The second degree
moment can be computed as

Mx′ = E[x′] = Mx′ cos θ +My′ sin θ

My′ = E[y′] = −Mx sin θ +My cos θ

Mx′2 = E[x′2] = Mx2 cos2 θ +My2 sin2 θ + 2MxMy cos θ sin θ.

My′2 = E[y′2] = Mx2 sin2 θ +My2 cos2 θ − 2MxMy cos θ sin θ

Mx′y′ = E[x′y′] = −Mx2 sin θ cos θ +My2 sin θ cos θ +MxMy(cos
2 θ − sin2 θ)

For small rotation θ, we can approximate sin θ ≈ θ and cos θ ≈ 1 − θ2

2 using taylor series with approximation error
of O(θ3). Using this approximation, we obtain:

Mx′ = Mx

(
1− θ2

2

)
+Myθ

My′ = −Mxθ +My

(
1− θ2

2

)
Mx′2 = Mx2(1− θ2) +My2θ2 + 2Mxyθ

My′2 = Mx2θ2 +My2(1− θ2)− 2Mxyθ

Mx′y′ = −Mx2θ +My2θ +Mxy(1− 2θ2).

This second order moment allows us to use the power transformation to get the signature of the rotated data manifold.
Simplifying above equations, we obtain

Mx′

My′

Mx′2

My′2

Mx′y′

 ≈


Mx

My

Mx2

My2

Mxy

+ θ


My

−Mx

Mxy

−Mxy

My2 −Mx2

+
θ2

2


−Mx

My

2My2 − 2Mx2

2Mx2 − 2My2

−4Mxy



Next, we describe the manifold obtained by translation of a given image.
Lemma B.2 (Signature of translated image manifold). Let S(X(u,v)) be the signature of an image shifted by (u, v).
Then, all such signatures S(X(u,v)) over different shifts lies on an analytic manifold.

Proof. Suppose each point goes through the following transformation:

x′ = x+ u and y′ = y + v

The moments after the translation is given by

Mx′ = Mx + u

My′ = My + v

Mx′2 = Mx2 + 2Mxu+ u2

My′2 = My2 + 2Myv + v2

Mx′y′ = Mxy +Mxv +Myu+ u · v
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Suppose the translation u and v are small such that the second order terms are neglible (e.g., u2, v2 and u · v are negli-
gible), then we can obtain the second order moment statistics as a linear approximation with quadratic approximation
error as follows: 

Mx′

My′

Mx′2

My′2

Mx′y′

 ≈


Mx

My

Mx2

My2

Mxy

+ u


1
0

2 ·Mx

0
My

+ v


0
1
0

2 ·My

Mx



C PROOFS FROM SECTION 5

C.1 EXPLICIT POLYNOMIAL REPRESENTATION FROM IMPLICIT POLYNOMIALS

We will first prove the case when X is a k−dimensional manifold in (k + 1)−dimensional space.
Lemma C.1. Suppose X ∈ Rk+1 can be represented as a degree l polynomial in terms of implicit random variables
z ∈ Rk. i.e., X = G(z) where the degree of p is r, then there exists a polynomial in X , H(X), of the degree (cr)k

for some absolute constant c such that H(X) = 0 for points on the manifold.

Proof of Lemma C.1. Let u be the upper bound on the degree of H(X). We show that there exists a polynomial
constructed from the entries of X⊗u such that H(X) = 0 for points on the manifold.

We have X⊗u = G(z)⊗u by taking uth tensor power of X = G(z) equality. Denote the number of different monomial
entries in X⊗u with X ∈ Rk+1 by m(u, k + 1). Observe that X⊗u = G(z)⊗u has m(u, k + 1) different equalities
from because X⊗u has m(u, k + 1) different monomials. The right side G(z)⊗u has at most m(u · r, k) different
monomial terms, and when m(u, k + 1) > m(u · r, k), we can eliminate the implicit variables in the remaining
m(u, k + 1)−m(u · r, k) equations. The remaining equations are consistent because X is generated using G(z).

The degree of the polynomial ϕ(X) is the smallest u such that m(u, k + 1) > m(u · r, k). The number of monomials
of degree u in k + 1 variables is given by m(u, k + 1) = Cu+k

u . The degree of ϕ(X) is smallest u such that
Cu+k

k > Cr·u+k−1
k−1 . This inequality satisfies when u > (cr)k−1 for some absolute constant c.

Cr·u+k−1
k−1 ≤ ek−1(r · u+ k − 1)k−1

(k − 1)k−1
≤ (2e)k−1(r · u)k−1

(k − 1)k−1
≤

( 2e

c(k − 1)

)k−1

uk

≤
( 1

kk

)
(u+ k)k ≤ Cu+k

k

The second inequality follows from k − 1 ≤ r · u.

Proof of Theorem 5.1. For extending the Lemma C.1 to X ∈ Rd case, we start by identifying k direction along a local
neighbourhood of any point on the neighbourhood. Note that this can be done by looking at the tangent direction of
the manifold of the points in the neighbourhood. After determining the tangent direction, we can rotate the points so
that {X1, X2, . . . , Xk} in the neighbourhood.

Assuming {X1, X2, . . . , Xk} covers a k−dimensional space, we use Lemma C.1 for each of {Xk+1, . . . , Xd} as
k + 1-th coordinate and obtain d − k polynomials of the degree (cl)k for some absolute constant c. Note that each
of the polynomials contains a feature mapping H(X) that depends on the first k coordinates of X and one of the last
d− k coordinates such that H(X) = 0 for points on the manifold.

C.2 APPROXIMATE POLYNOMIAL REPRESENTATION FOR ANALYTIC MANIFOLDS

We will first prove for the case when X is a k−dimensional manifold in a (k + 1)−dimensional space given by the
analytic function.
Lemma C.2. Suppose the data X ∈ [−1, 1]k+1 lies in a k−dimensional manifold by equation X = G(z) where
G : [−1, 1]k → [1, 1]k+1 is an analytic function with bounded gradient ∥∇(m)G(x)∥ ≤ 1. Then, there exists a

polynomial in X , H(X) of degree u such that for points on the manifold, |H(X)| ≤ u−u(1+1/k)

2ckk .
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Proof of Lemma C.2. Since G(z) is an analytic function with the bounded derivatives so we can approximate G(z)
using a degree q Taylor approximation G′(z) within the ball of a unit radius of z with the approximation error 1

q! . Now,
instead of Taylor expanding each term in G(z), we can expand each term in G(z)⊗l. Suppose for any multi-index
α = (α1, . . . , αl), the Taylor approximation of Gα(z) =

∏l
i=1 Gαi(z) of degree q is given by G̃α(z) as follows:

G̃α(z) = Gα(0) +

q−1∑
i=1

⟨∇(i)Gα(0), z
.i⟩

i!
.

where 0 represents the zero vector. Using the remainder theorem of the Taylor series, we have

|G̃α(z)−Gα(z)| ≤
∥∇(i)Gα(0)∥

q!
≤ lq

q!
.

where the last inequality follows from the fact that the ith derivative of G̃α(z) for any α can be written as a sum of li

terms with each term bounded by 1. Hence, we can approximate each term in G(z)⊗l with G̃ within the ball of the
unit radius with the approximation error lq/q! where each element of G̃(z)(.u) is a degree q−polynomial obtained by
Taylor expansion.
Recall that the m(l, k) is defined as the number of different monomials of degree l in k variables. The total number
of variables in G̃(z) is given by m(q, k) and the total number of different equations in X .u = G(z).u is m(u, k + 1).
The degree of polynomial H(X) is the smallest l such that m(u, k + 1) > m(q, k). This inequality reduces to
Cu+k

k > Cq+k−1
k−1 . Choosing u = ck−1q

k−1
k for some absolute constant c, then this inequality holds.

Cq+k−1
k−1 ≤

(e(q + k − 1)

(k − 1)

)k−1

≤ uk

kk
≤ (u+ k)k

kk
≤ Cu+k

k

Next, we show that the polynomial is close to zero for the points on the manifold. The polynomial obtained by a
Taylor expansion of the analytic function G with the truncation at qth degree has approximation uq

q! . Putting the value

of q = uk/(k−1)

ck
, we obtain the approximation error to be uq

q! ≤ cquq

qq = cqu− q
k = u−u(1+1/k)

2ckk .

Proof of Theorem 5.2. Similar to proof of Theorem 5.1, we start by rotating the coordinates at each point such that the
first k coordinates {X1, X2, . . . , Xk} in the neighbourhood covers k dimensional space. Then, we use Lemma C.2 for
each of {Xk+1, . . . , Xd} as k + 1-th coordinate and obtain d− k polynomials that satisfies the given property.

C.3 QUANTITATIVE BOUNDS FOR CHECKING MEMBERSHIP

We will use the following classical result about multi-variate polynomials:
Lemma C.3 (Anti-concentration for polynomials, Carbery & Wright (2001)). Let P : Rn → R be a degree at most d
polynomial. Let x be a random point in the unit ball. Let ∥P∥2 = Ex[P (x)2]1/2. Then, for any t, ϵ,

Prx[|P (x)− t| < ϵ∥P∥2] = O(ϵ1/d).

The following lemma says if we start from a polynomial with non-trivial norm, then for any ball that is centered not
too far from the origin, the polynomial is unlikely to be very small. It will be important that this probability goes to
zero as the radius of the ball increases.
Lemma C.4. Let Q : Rk → R be a degree s polynomial such that the sum of squares of the coefficients is 1. Then,
for any y ∈ Rk, if ∥y∥ ≤ R, and z a uniformly random point in the unit ball of Rk,

Pr[|Q(y +∆z)| > ϵ] < (ks)ϵ1/sα1/s,

where α = max((1 + ∥y∥∞)/∆, ((1 + ∥y∥∞)/∆)s).

Proof Sketch for Lemma C.4. Let P (z) = Q(y + ∆z). We first argue that Ez[P (z)2] is non-trivially large. First,
observe that E[Q(z)2] = s−O(s) as Q’s sum-of-squares of coefficients is 1.
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Without loss of generality, let us suppose P has no constant term. Now, suppose that E[P (z)]2 = δ. Let
P (z) =

∑
S cShS(z) where hS are the Legendre polynomials that form an orthonormal basis for polynomials under

the uniform distribution on the sphere. Thus,
∑

S c2S = δ2.

Now, for z′ uniformly random on the unit ball, let Q(z′) = P ((z′ − y)/∆). Therefore, E[Q(z′)2] =
E[(

∑
S cShS((z

′ − y)/∆))2].

However, note that the Legendre polynomials of degree s are bounded: in particular for any point x, and hS of degree
s, we have |hS(x)| ≤ sO(s)(∥x∥∞ + ∥x∥s∞).

Therefore, if we let α = max((1 + ∥y∥∞)/∆, ((1 + ∥y∥∞)/∆)s), we get

E[Q(z′)2] ≤ (
∑
S

|cS |) · sO(s)α ≤ kO(s)sO(s)αδ.

Therefore, we get δ > (ks)−O(s)/α.

Finally, applying the previous lemma, we get
Prz[|P (z)| < ϵ] = O((ϵ/δ)1/s).

Therefore, Prz[|Q(y +∆z)| < ϵ] < (ks) · α1/sϵ1/s.

Finally, note that α = max((1 + ∥y∥∞)/∆, ((1 + ∥y∥∞)/∆)s) is a decreasing function in ∆.

D APPENDIX FOR CONNECTION TO TRANSFORMER ARCHITECTURE

We showed that keeping track of signature matrices for concepts allows an easy way to manipulate the concepts and
also obtain signatures of higher-level concepts. In this section, we provide details about the connection of our learning
architecture to the transformer model and proof of Theorem 6.1.

A feedforward network can be thought of transforming the input x to obtain the feature transform ϕ(x). In Propo-
sition 3.1, we showed that the cosine similarity of points from the same manifold is high. A similar argument also
holds for the feature transform ϕ(x) therefore cosine similarity-based attention mechanism will group points from the
same concept together and therefore will obtain average across points from the same manifold Ĝ1,j . In Theorem 6.1,
we show that the Ĝ1,j(X) contains the flattened version of the kernel signature M(X). Recall that the null-space
signature T (X) can be obtained using repeated multiplication of (I − M(X)) therefore, in Theorem 6.1, we prove
that the subsequent feedforward network contains M(X)2 matrix. Combining the output of attention and feedforward
network, we can obtain (I−M(X))2. Repeating such operations will help in obtaining higher powers of (I−M(X))
and hence, the null-space signature T (X).

Next, we provide the proof of Theorem 6.1.

Proof. Without loss of generality, we assume that E[X2
i ] = 1. By definition, Ĝ1,j = 1

N

∑N
i=1 σ(xi · rj) =

1
N

∑N
i=1(r

⊤
j xix

⊤
i rj) = r⊤j M(X)rj . The expectation of Ĝ1,j with respect to random Gaussian weights rj can be

simplified using Stein’s lemma. Therefore, we have
Er[r

⊗2(r⊤M(X)r)] = Er[∇(2)(r⊤M(X)r) + (r⊤M(X)r)I] = M(X) + (d+ 1)I.

Similarly, simplifying r⊗2
j Ĝ2,j with respect to random Gaussian weights rj ∼ N (0, I), we have

E[r⊗2Ĝ2,j ] = E[∇(2)(r⊤M(X)r)2 + (r⊤M(X)r)2]

= E[2(r⊤M(X)r)(M(x) + I) + (M(X) + I)rr⊤(M(X) + I) + (r⊤M(X)r)2I].

= 2d(M(X) + I) +M(X)2 + 2M(X) + I + 3

d∑
i=1

Mi,i(X)2I +
∑
i ̸=j

Mi,i(X)Mj,j(X)I

= M(X)2 + (2d+ 2)M(X) + (d2 + 4d+ 1)I

Setting β1 = −(2d+ 2) and β2 = d2 + 1, we obtain the result.
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Attention

Feedforward network
(Random)

Feedforward network
(Random)

Random feedforward network contains 

Points from same manifold are more likely to attend to each
other and therefore, creates 

Additional feedforward layers to compute higher powers
 which encodes to the null-space of 

Figure 3: Connection of our learning architecture to the original transformers. A combination of feedforward network
and attention module will generate M(X) and a subsequent feedforward layer can generate the nullspace signature
T (X) by taking higher power of I −M(X). See Theorem 6.1 for more details.

E EXPERIMENTS

In this section, we show the effectiveness of keeping the concept storage unit to represent and manipulate the concepts
at different layers using synthetic data.

Experimental setup. We experiment using two synthetic datasets – 1) n-circles and 2) n-circles+n-parabolas. The
n-circles dataset contains n concentric circles of radius {1, 2, . . . , n}. The n-parabolas dataset contains n parabolas
with the same axis of symmetry but the shift along the axis is {0.5, 1.5, . . . , n − 0.5}. The n-circles+n-parabolas
contain 2n shapes (n from each of the circle and parabola) and the number of points from each shape is equally divided.
In our synthetic dataset, a circle with a given radius (similarly parabola with a given shift) denotes a lower-level concept
and all circles with different radius (or parabolas with different shifts) are part of a higher-level concept of the circle
shape (or the parabola shape). Note that we chose the shifts of the parabola such that there is an intersection/overlap
between the circles and the parabola. See Figure 4a for the example of the 4-circles + 4-parabolas dataset.

As the novelty of our work from the architecture perspective mainly lies in manipulating concepts from the concept
discovery module, we focus on experimenting with the concept discovery module with the predefined features ϕ(·).
For all our experiments, the feature vector contains ϕ(x) all monomials up to degree 2. Then, we pass ϕ(x) as an
input to our learning architecture mentioned in Section 3. We use cosine similarity-based attention on the signatures
to combine signatures from the same concept and obtain a higher-level signature.

In experiments of n-circles dataset, we use concept storage unit with 2 layers and in experiments of n-circles+n-
parabolas dataset, we use the concept storage unit with 3 layers. In all our experiments, we use K = 5. We vary the
signature storage size in {4× 103, 4.5× 103, 5× 103, 5.5× 103} and the number of concept n in set {4, 6, 8}. For all
the experiments, we used 100 test samples to calculate all the metrics. All the experimental results are averaged over
5 independent iterations.

Questions and evaluation. We perform experiments to answer the following three questions:

1. To obtain a higher-level concept signature, do signatures only attend to the signatures from the same con-
cept? To answer this question, we measure the percentage of signatures from the same concept in the top K
signatures for each data point at all layers in the concept discovery unit where K is the number of signatures
to attend to and we present experimental results in Table 1.

2. How does the performance change as we increase we increase the number of concepts? To answer this
question, we measure the percentage of the same concept signatures during the attention by increasing n in
both synthetic data. We present the findings of our experiments in Table 1.
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Dataset Layer Percentage (%) Percentage (%)
(Signature storage=4000) (signature storage=5000)

4-circles
Layer 2

98.8 99.0
6-circles 96.2 98.0
8-circles 96.0 97.6

4-circles+4-parabolas
Layer 2

97.9 98.3
6-circles+6-parabolas 97.2 98.9
8-circles+8-parabolas 96.9 97.2

4-circles+4-parabolas
Layer 3

99.5 99.7
6-circles+6-parabolas 99.4 99.3
8-circles+8-parabolas 98.9 98.7

Table 1: Percentage of signatures from the same concept in the top K signatures with high attention.

(a) 4-circles + 4-parabolas dataset. Each circle corresponds to a
lower-level concept. All four circles are part of a general higher-
level concept of circles (similarly for parabola).

(b) We plot the percentage of top-K signatures with the highest
attention which corresponds to the signature of a general circle
for a new unseen circle signature.

Figure 4: Synthetic dataset of type n-circles+n-parabola and experimental findings on it.

3. Can a higher-level signature of a concept generalize to unseen concepts from the same lower-level concepts?
To be specific, in the n-circles + n-parabolas dataset, the general signature of a circle is created using signa-
tures of circles with radius {1, 2, . . . , n}. Now, we ask the following question: does the signature of a circle
with a radius outside of the training radius set have high attention to the general signature of a circle than the
general signature of the parabola? To answer this question, we randomly sample a radius from [1, 10] and
create a signature of the circle with this radius. Then, we find the top-K signatures with the highest attention
in layer 3 and calculate the percentage of them that correspond to the signature of a general circle and report
it in Figure 4b.

Results. In Table 1, we see that our proposed architecture only attends to the signatures from the same concept class
not only in the second layer but also in the third layer. This shows that signatures of circles with different radius
only attends to each other and creates a general signature of the circles with different radius (See Figure 2 for details
about the architecture). We also see that increasing the number of concepts by increasing n only mildly degrades the
performance. Figure 4b shows that having a modular architecture for each concept helps in associating a new unseen
lower-level concept to the correct higher-level concept and quickly learning about the new concept.
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