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Abstract

In-Context Learning (ICL) emerges as a key
feature for Large Language Models (LLMs), al-
lowing them to adapt to new tasks by leveraging
task-specific examples without updating model
parameters. However, ICL faces challenges
with increasing numbers of examples due to
performance degradation and quadratic compu-
tational costs. In this paper, we propose Logit
Arithmetic Reweighting Approach (LARA ), a
novel framework that enhances ICL by using
logit-based ensembling of multiple demonstra-
tions. Our approach divides long input demon-
strations into parallelizable shorter inputs to
significantly reduce memory requirements, and
then effectively aggregate the information by
reweighting logits of each group via a non-
gradient optimization approach. We further
introduce Binary LARA (B-LARA ), a variant
that constrains weights to binary values to sim-
plify the search space and reduces memory us-
age by filtering out less informative demonstra-
tion groups. Experiments on BBH and MMLU
demonstrate that LARA and B-LARA outper-
form all baseline methods in both accuracy and
memory efficiency. We also conduct extensive
analysis to show that LARA generalizes well
to scenarios of varying numbers of examples,
from limited to many-shot demonstrations. Our
codes can be found in https://anonymous.
4open.science/r/LARA-F55B.

1 Introduction

In-Context Learning (ICL) (Brown et al., 2020) is
one of the emergent abilities of Large Language
Models (LLMs) as they are scaled to billions of pa-
rameters (Wei et al., 2022). ICL enables LLMs
to adapt to new tasks by utilizing task-specific
examples within the input context (Dong et al.,
2023), and does not require any updates to or ac-
cess to model parameters. While ICL has achieved
impressive performance across various domains,
it encounters significant challenges when dealing

with an increasing number of examples. Longer
context window size often leads to performance
degradation (Xiong et al., 2023). This is due to
the low density of useful information within longer
prompts, and the reduced sensitivity to positional
information, both of which diminish the capabil-
ity of the model to effectively capture and utilize
key content. Additionally, the quadratic growth of
computational cost with the input length makes it
particularly expensive for large models.

Previous works primarily focus on two directions
to address these challenges. The first direction is
input compression, which aims to shorten the input
length (Jiang et al., 2023b; Pan et al., 2024; Xu
et al., 2023a; Wingate et al., 2022) or selectively
retrieve relevant portions of demonstrations to be
included in the prompt (an Luo et al., 2024). How-
ever, these methods risk losing critical information,
which may negatively impact model performance.
The second direction involves aggregating hidden
states within LLMs to simulate the effect of in-
context demonstrations (Hao et al., 2022; Li et al.,
2023b; Hendel et al., 2023). These methods, how-
ever, are not applicable to closed-source models
like GPT-4, as they require direct access to the
model internal weights. Additionally, they con-
tradict the core advantage of in-context learning,
which is the ability to operate without modifica-
tions to hidden states or model parameters.

In this study, we propose a novel framework,
Logit Arithmetic Reweighting Approach (LARA),
which aims to combine the strengths of both in-
put compression and hidden state approaches. Our
method first divides demonstrations into subgroups
to allow LLMs to focus on shorter inputs and re-
duce computational requirements. We then design
a weighted sum aggregation approach to combine
the output logits from the language model given
each subgroup of examples. This ensures that the
relevant information from each subgroup could
potentially be captured by the language model.
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One key innovation in LARA is that we use a
non-gradient approach to optimize the weights of
logits for each subgroup. We employ the Covari-
ance Matrix Adaptive Evolution Strategy (CMA-
ES) (Hansen and Ostermeier, 1996) to efficiently
explore the weight vector space via resampling
based on best-performing candidates. This allows
us to optimize the contribution of each subgroup
without any gradient updates. We further develop
Binary-LARA (B-LARA ) by constraining the
weight values to {0, 1}, which can be interpreted
as a process of subgroup selection. This not only re-
duces the computational cost but more importantly,
leads to better performance due to the simplified
search space for the binary weight vector.

Our experiments on BBH and MMLU bench-
marks show that both LARA and B-LARA con-
sistently outperform direct in-context learning
and simple retrieval-based demonstration selection
across various models, with the additional bene-
fit of lower GPU memory usage. Further anal-
ysis reveals that the method excels in both low-
resource scenarios with few examples and settings
with abundant demonstrations, consistently deliver-
ing superior performance. Moreover, our ablation
study highlights the critical role of the reweighting
steps, although even logit averaging alone outper-
forms standard in-context learning.

To summarize, our main contributions are as
follows:

* To the best of our knowledge, we are the first
to propose ensembling information through
logit arithmetic from different ICL demonstra-
tions. This approach also enables usage with
closed-source models and can be applied to
generative tasks as well. We introduce LARA ,
a non-gradient optimization framework that
reweights the information of different demon-
stration groups to improve ICL performance.

* We conduct extensive experiments on
Llama3.1-8B (Dubey et al., 2024), Mistral-
7B (Jiang et al., 2023a), and Gemma-
7B (Mesnard et al., 2024) on BBH (Srivastava
et al., 2022) and MMLU (Hendrycks et al.,
2021), and show that LARA outperforms all
baseline methods across all three models.

* Our comprehensive analysis reveals the broad
applicability and efficiency of LARA and B-
LARA . We demonstrate that our methods con-
sistently outperform baselines across a wide

range of example quantities, from fewer than
5 to more than 200. We also demonstrate
the applicability of our methods to black-box
LLMs.

2 Methodology

In this section, we provide an overview of LARA .
Figure 2 illustrates the overall framework of our
approach. Unlike directly concatenating Dy, into
a single sequence, we first divide the [V examples
into subgroups, which are used as inputs to the
LLM. The output logits from these subgroups are
then aggregated, and we assign weights to each sub-
group using a non-gradient search algorithm. Dur-
ing inference, the precomputed weights are used to
combine the logits from each group.

In Sec. 2.1, we explain the partition strategy to di-
vide examples into subgroups. Then we introduce
how the outputs are aggregated across different sub-
groups in Sec. 2.2, and the reweighting strategy for
optimal combination in Sec. 2.3. Furthermore, we
show in Sec. 2.4 that imposing a hard constraint for
our reweighting strategy could further reduce mem-
ory usage and computational resources. Finally, we
discuss in Sec. 2.5 the inference efficiency brought
by our proposed approach.

2.1 Partition Strategy

Given N-shot in-context examples, we first
split Dy,in into k disjoint subsets each contain-
ing L in-context examples, such that Dy, =
S1US U...US, with |S;| = L for all i €
{1,...,k}. When inputting a subgroup S; to an
LLM, we concatenate all of its elements to get
Ci=di1rr1 ©di_1yp12® - @®dip, and the
complete input for the ¢-th subgroup to LLM is
C; @ Tiest- We assume that N is divisible by k in
our experiments, so that L = N/k. In practice,
in cases where N is not divisible by k&, we could
truncate the last subset and only retain L(k — 1)
examples.

2.2 Logit-Arithmetic Decoding

Previous studies (Li et al., 2022; Liu et al., 2024,
Dekoninck et al., 2023) have utilized logit offsets
to control the outputs of large language models for
better generation quality or instruction following.
Inspired by these work, we propose a novel method
that combines information from multiple in-context
demonstrations through logit-arithmetic decoding.
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Figure 1: Illustration of the differences between few-shot in-context learning and LARA (ours) during inference.
Unlike few-shot in-context learning, which concatenates all demonstrations as a prefix to the input, our method
splits the in-context examples into different groups. The next token is then generated based on a weighted average
of logits, with weights precomputed using the framework described in Sec. 2.3.

Specifically, our approach focuses on aggregating
the logits produced by the language model out-
puts for various contextual inputs. Compared with
ensembling only the final outputs (Khalifa et al.,
2023), this approach can be more naturally applied
to open-ended generation tasks or tasks requiring
detailed reasoning paths.

With the input query x5 and the example sub-
set being S;, we can compute the logit outputs
of the language model, denoted as fy(S;, Tiest) =
logp(y | Si, Tiest)- We then combine these logits
using a weighted sum to get the generation proba-
bility over the output token:

k
P(y | Tiest, w) = softmax (Z w; - fo(S;, w>>

i=1
ey
where k is the number of example subsets, and w;
are weights that indicate the importance of the con-
tribution of each subset, with Zle w; = 1. Asa
baseline approach, we could set uniform weighting,
where w; = 1/k. However, this may not be optimal
for all tasks, as the quality and relevance of differ-
ent subgroups may vary. In the following section,
we introduce a reweighting strategy to optimize
these weights to enhance model performance.

2.3 Reweighting Logits by Non-Gradient
Optimization

To further enhance the model performance, we em-
ploy non-gradient optimization methods to opti-
mize the weights w; based on the loss calculated
from p(y | @ya). Given the combined probability
p(y | ®va), our objective is to minimize a cross-
entropy loss function £(w) over the predicted prob-
abilities and the ground truth. Specifically, we uti-
lize the following cross-entropy loss function for

the generation model:

T
E(w) = — Z Zlogp(yt ‘ Lyal, w)

(wval 7yval)eD t=1

where D represents the validation dataset, 1" is
the length of the sequence, y; is the true word at
time step ¢, x4 is the input sequence, w denotes
the weight vector, and p(y; | @va, w) represents
the predicted probability of the true word y; at time
step ¢, given the input sequence v, and the weight
vector w.

To avoid introducing additional labeled data, we
employ a cross-validation strategy. We partition the
demonstration set S into two subsets: S4 = S1 U
SyU... USUC/ZJ and Sp = 8Lk-/2j+1 US[k/2J+2 U
... U Sk. When optimizing weights for S; € Sa,
we use Sp as the validation set, and vice versa.

We choose non-gradient optimization meth-
ods over gradient-based alternatives due to two
key factors: (1) The loss function £(w) is non-
differentiable, since updating the weight vector w
affects the logits of subsequent tokens, leading to
possibly different decoding results of subsequent
tokens. (2) The dimensionality of the weight vec-
tor w is relatively low, specifically equalled to the
number of groups k.

In our empirical experiments, we refer to Liu
et al. (2020) and employ the Covariance Matrix
Adaptive Evolution Strategy (CMA-ES) (Hansen
and Ostermeier, 1996). CMA-ES is a stochas-
tic, derivative-free optimization algorithm. During
each iteration, CMA-ES samples a set of candi-
dates in the space of the weight vector w from a
multivariate normal distribution, evaluates £(w)
for each candidate, and then updates the mean and
covariance matrix of the distribution based on the
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Figure 2: Illustration of the LARA framework. The
81,82, ..., Sk, which are further split into two groups:

input demonstration set Dy, is divided into subsets
one for candidate examples and the other for valida-

tion examples. For each token, logits are generated using Logit-Arithmetic Decoding, which aggregates the output
logits from all subsets. After generating all tokens, the cross-entropy loss is computed based on the weighted-average
logits and the ground truth from the validation subset. The subset weights are then resampled and adjusted to
minimize the loss. This process of token generation, loss calculation, and weight resampling is repeated iteratively.
After optimizing the weights for the first group of candidate examples, the roles of the candidate and validation

examples are swapped.

best-performing candidates. This allows for an
efficient exploration over the weight space.

We also use the loss to decide the hyperparam-
eter L. We compare the minimum validation loss
across different settings of L to determine the opti-
mal configuration, including L and corresponding
w, for the final inference phase.

2.4 Binary Constraints for LARA

We further propose a variant of LARA , named as
B-LARA , by imposing a hard constraint on the
weight vector w to binary values {0, 1}. This bi-
nary constraint offers two key advantages: first, it
simplifies the search space and potentially leads to
faster convergence; second, it allows for direct elim-
ination of demonstration groups with zero weight,
thereby improving inference efficiency. Intuitively,
the binary optimization of w can be seen as a form
of subset selection to identify the most relevant
demonstrations in Dy, benefitting model perfor-

mance on specific tasks.

To solve this binary optimization problem, we
employ the simplest evolution strategy (1+1)-
ES (Rechenberg, 1973). The overall sampling pro-
cedure is shown in Appendix G. The simplicity
of this method in repeated mutation and selection
makes it particularly suitable for B-LARA.

2.5 Computational Complexity

We analyze the computational complexity of
LARA and B-LARA compared to standard ICL.
During inference, the self-attention mechanism in
Transformer models is the primary bottleneck for
GPU memory requirement, with the memory com-
plexity being O(n?), where n is the input sequence
length. This quadratic scaling is due to the pairwise
interactions between tokens in the attention matrix.

Since we focus on scenarios with a large num-
ber of in-context demonstrations, we neglect the



length of task descriptions and test queries. By
splitting the input sequence into k groups, each of
length around %, LARA and B-LARA can lever-
age parallel computing resources more effectively.
The complexity for LARA becomes O(%2 * k)=

O(%Z) B-LARA further reduces computational

complexity by selecting only a subset of examples.

If m out of k subgroups are assigned non-zero

weights, then the complexity of B-LARA becomes
2

O("fz). We show the empirical GPU memory

usage in Sec. 4.2.

3 Experiments

In this section, we provide details of our main ex-
periments. We first give an overview of the exper-
imental setup and implementation details in Ap-
pendix F, and then present our findings along with
the results in Sec. 3.2.

3.1 Compared Methods.

We introduce several primary baseline meth-
ods: Direct In-Context Learning (ICL), KNN-
Augmented In-ConText Example Selection (Liu
et al., 2022) (KATE), Rationale-Augmented En-
sembles (RAE) (Wang et al., 2022) and In-context
Vector (ICV) (Liu et al., 2023) and StructICL (Hao
et al., 2022) as the representative of parameter ac-
cess methods. We use the same 32 in-context ex-
amples as inputs to all baseline methods as our
proposed method. For Direct ICL, all 32 examples
are concatenated with the prompt. For KATE, we
apply the Top-K selection from Liu et al. (2022)
that uses a smaller model' to retrieve the most
similar input-output pairs from Dy, as in-context
demonstrations. We evaluate KATE with 2, 4, and
8 demonstrations as baselines. For RAE, we divide
the examples into different groups and use each
group as in-context examples to generate separate
results. The final output is determined by apply-
ing majority voting across these individual group-
based results, which is similar to ensembling (Khal-
ifa et al., 2023). For StructICL, we also present the
results with varying numbers of groups: 2, 4, and 8.
In ICV, we follow the original paper to set A = 0.1
and average the ICV given by all 32 examples. We
report results with group sizes of 2, 4, and 8 to
ensure the same memory usage as our method.

1h'ctps ://huggingface.co/sentence-transformers/
all-distilroberta-vi

3.2 Main Results

Results from Table 1 demonstrate the effective-
ness of our proposed methods, LARA , and B-
LARA , across BBH and MMLU benchmarks. B-
LARA consistently outperforms most of the base-
line methods across three model architectures. No-
tably, B-LARA achieves the highest accuracy and
improves over direct ICL by 2.05, 5.67, and 2.12
points on BBH dataset across three models respec-
tively. Moreover, our methods can consistently
outperform retrieval or simple ensemble baselines
like KATE and RAE, indicating that our method is
more effective in combining information from mul-
tiple demonstration subgroups. Compared to the
ICV and StructICL baseline, which has the advan-
tage of access to model parameters, our methods
still achieve better performance without access to
the hidden state, which further demonstrates the
efficacy of our methods in aggregating information
without direct access to model internal parameters.

An interesting finding is that B-LARA performs
better than LARA despite a more constrained
search space for the weight vector. We believe
this is because we only use 20 iterations for weight
optimization, and the binary constraint brings more
benefits by introducing a simplified optimization
landscape and providing a regularization effect to
prevent overfitting.

4 Analysis

In this section, we present a deep analysis of
LARA under various conditions. Due to the space
limit, some additional analysis is deferred to Ap-
pendix A.

4.1 Can LARA Perform Well with More
Examples?

We investigate the performance of LARA with
an increased number of demonstrations, leverag-
ing the LongIlCLBench (Li et al., 2024), a bench-
mark tailored for addressing challenges in long
in-context learning. For our experiments, we select
two datasets: GoEmotion and TacRED. Follow-
ing the LongICLBench setup, we employ multiple
rounds of examples, where each round includes
several examples, each labeled with a distinct class.
To align with the input limit constraints of ICL, we
sampled 8 rounds (224 examples) of examples for
GoEmotions and 4 rounds (164 examples) for Ta-
cRED. For LARA and B-LARA , we choose 4, 8,
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BBHave'I‘age

MMLUH/UE'I‘age

Llama3.1-8B  Gemma-7B  Mistral-7B  Llama3.1-8B  Gemma-7B  Mistral-7B

Black-Box Method.:

ICL 45.64 37.08 42.91 65.63 61.44 62.84
KATE- 43.60 37.07 43.16 66.62 56.28 63.99
KATE, 44.03 38.83 43.16 66.75 55.78 63.48
KATEg 44.47 37.03 42.96 67.19 54.13 63.93
RAE, 44.59 40.24 43.95 66.88 65.18 62.99
RAE, 45.23 40.44 44.49 66.40 65.01 62.99
RAEjg 44.06 39.85 44.07 67.09 64.80 63.61
LARA (ours) 47.46 41.77 44.77 66.54 64.36 63.93
B-LARA (ours) 47.69 42.75 45.03 67.80 65.56 64.12
White-Box Method.:
ICV 45.93 42.16 44.50 66.97 64.99 64.02
StructICL, 46.64 39.54 44.68 66.78 64.34 63.52
StructICL4 46.98 40.53 44.89 66.97 64.46 63.99
StructICLsg 46.57 41.46 43.99 66.56 65.16 63.46

Table 1: Accuracy of all methods on BBH and MMLU. The results shown are the average performance across
datasets within each benchmark. Please refer to Appendix H.2 for breakdown results of each dataset. The subscript
indicates the number of selected ICL demonstrations as input to LLMs.

GoEmotion

TacRED

Llama3.1-8B  Gemma-7B  Mistral-7B  Llama3.1-8B  Gemma-7B  Mistral-7B

Black-Box Method:

ICL 18.60 15.60 17.80 38.20 43.80 55.40
RAE; 22.20 22.20 21.60 43.80 45.40 55.40
RAE, 21.00 22.40 21.40 45.60 45.00 52.40
RAEjg 21.20 19.00 20.40 36.20 39.00 49.20
LARA (ours) 21.00 20.80 19.20 48.60 47.40 54.20
B-LARA (ours) 24.00 22.80 23.80 48.60 49.00 59.00
White-Box Method:
ICV 18.80 20.80 18.40 44.40 46.80 54.40
StructICL» 19.00 21.00 18.60 46.60 47.60 55.80
StructICL4 19.80 21.40 19.00 47.60 48.00 56.40
StructICLg 20.60 22.00 19.80 44.80 48.60 56.20

Table 2: Accuracy of methods on GoEmotion and TacRED. The subscript indicates the number of selected ICL

demonstrations as input to LLMs.

and 16 as the potential candidate number of groups.
We report the accuracy of different methods on
these datasets in Table 2.

The experimental results clearly highlight the
advantages of LARA , which demonstrates consis-
tent improvements over baseline methods across
both GoEmotion and TacRED datasets, showcasing
its effectiveness in diverse tasks. Notably, the B-
LARA variant further amplifies this performance,
outperforming all competing approaches on both
datasets and across various models. This suggests
that B-LARA can work well in many-shot settings.
4.2 How Does LARA Enhance Memory
Efficiency?

We empirically evaluate the computational effi-
ciency of LARA by measuring GPU memory us-
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Figure 3: GPU Memory usage of LARA in gigabytes on
a single A100 80GB GPU with different input sequence
lengths and number of subgroups. Note that when the
number of subgroups equals to 1, the setting is the same
as ICL. The sequence length is denoted in thousands of
tokens. We set the batch size equal to 4. Data points
indicating Out-Of-Memory (OOM) are omitted.



ICL LARA B-LARA
53.17 56.06 57.41

Table 3: Average performance of various methods of
GPT-40-mini on the BBH benchmark.

age with different input sequence lengths and sub-
group configurations. We set the number of groups
k with 1,2,4,8. Specifically, when k is set as 1,
LARA will degrade to ICL.

Results in Figure 3 demonstrate that LARA is
more memory-efficient compared to standard ICL,
especially when handling long sequences. Stan-
dard ICL results in Out-of-Memory (OOM) errors
when the input length exceeds 10k tokens on a
Mistral-7B model with a batch size of 4 on an A100
80GB GPU. In contrast, our method handles input
lengths over 25k tokens with 4 and 8 subgroups,
demonstrating that LARA efficiently utilizes larger
amounts of training data.

4.3 Is LARA Applicable to Black-Box LLMs?

One advantage of our method is that it could also
be applied to LLM APIs, since it only uses out-
put logits for example reweighting or selection. In
these scenarios, techniques such as in-context vec-
tor or task vector, which often rely on internal state
visibility, cannot be applied.

We evaluate our method with GPT-40-mini 2 on
BBH dataset. The results in Table 3 demonstrate
that LARA and B-LARA outperform ICL. We
note that the OpenAl API only provides top 20
logits for each output token, while our methods
are still able to achieve competitive results. This
indicates that our method generalizes well to black-
box LLMs, and can be applied to situations where
internal weights of models are restricted and only
output logits are available.

4.4 How does the Reweighting Step
Affect Model Performance?

We conduct an ablation study to assess the effec-
tiveness of the reweighting step, denoted as “w/o
reweight” which simply averages over the output
logits of the LLLM across different demonstration
groups.

In our ablation study, removing the reweighting
step used in LARA also demonstrated its value by
outperforming traditional baseline methods. For in-
stance, it achieved a notable 67.58 with Llama3.1-
8B in the MMLU benchmark, which is better than

2 gpt-40-mini-2024-07-18

Method BBH MMLU

LARA 4746  66.54

B-LARA 47.69 67.80
w/o reweighto 43.33  67.23
w/o reweighty 44.50  67.58
w/o reweights 43.02  67.43

Table 4: Average performance of Llama3.1-8B our
methods without reweighting. For the ablation “w/o
reweight”, the subscript means the size L of each group
of demonstrations. The results for other models are
shown in Appendix H.1

Llama-3 LongChat Vicuna
ICL 66.64 9.93 16.30
EarlyStop 71.21 11.14 17.44
StructICL 69.43 11.25 17.12
FocusICL 71.89 12.28 17.74
B-LARA 73.86 12.23 18.12

Table 5: Accuracy across different models on GSMS8K.

directly ICL (65.63). This performance highlights
that logit-arithmetic can successfully combine the
information in different groups of demonstrations.

4.5 How Does LARA Extend to Generation
Tasks?

In previous experiments, we mainly focus on the
classification or single token generation tasks. Here
we extend our experiments to generation tasks
like GSM8K (Cobbe et al., 2021) for math rea-
soning. We follow the experimental setting used
in FocusICL (Yuan et al., 2024) and evaluate our
method against Llama-3-8B-Instruct, LongChat-
7B-V1.5-32K (Li et al., 2023a) and Vicuna-7B-
V1.5-16K (Dong et al., 2023). Following Focu-
sICL, we randomly select 80 examples from the
training set and split them into 10 groups for our
methods.

The results in Table 5 show B-LARA outper-
forms FocusICL, which is the previous state-of-the-
art method, in 2 out of 3 models. Notably, this
is achieved without relying on hidden states, high-
lighting the simplicity and efficiency of our method
on generation tasks. Additional experiments on
summary and translation tasks are provided in the
Appendix D.

4.6 Do We Need Trainable Weights with
Supervision?

We compare our method with Mixtures of In-
Context Learners (MoICL) (Hong et al., 2024),



Method Hate RTE QNLI
Mixture of ICL (uniform) 59.12 77.26  88.66
Mixture of ICL (scalar) 6345 79.93 90.11
Mixture of ICL (hyper) 70.02 - -

LARA 67.20 7830 89.00
B-LARA 65.31 79.50 90.66

Table 6: Comparison with Mixture of ICL on selected
classification tasks. Full results are shown in Ap-
pendix E.

which also enhances in-context learning by ag-
gregating predictions from multiple demonstra-
tion groups. While MoICL learns group-specific
weights using external training data or a trained
hypernetwork, LARA operates in a fully self-
contained manner. LARA also jointly tunes the
number of groups, enabling adaptive reweighting
without any additional supervision.

As shown in Table 6, LARA and its binary vari-
ant B-LARA outperform MolICL across several
classification benchmarks. On the Hate and PAWS
datasets, LARA achieves 67.20 and 78.20 accuracy
respectively, surpassing the best MoICL variant by
significant margins.

5 Related Work

5.1 Long In-Context Learning

Recent studies on long-context learning problems
in LLLMs can be categorized into two main strate-
gies: enhancing the impact of in-context exam-
ples and compressing input sequences. Structured
prompting leverages rescaled attention mechanisms
to effectively integrate grouped examples (Hao
et al., 2022). Methods such as task vectors (Hen-
del et al., 2023) and function vectors (Todd et al.,
2023) further refine this strategy by generating vec-
tors that assess the contribution of each example
based on the offset of hidden state, which improves
model adaptability. (Liu et al., 2023) generate task-
specific vectors that steer model behavior in latent
space based on the in-context examples. For many-
shot in-context learning problems, previous studies
have proposed group-based methods, such as Struc-
tICL (Hao et al., 2022) and FocusICL (Yuan et al.,
2024), which refine attention maps by utilizing sub-
group structures within the demonstrations.

5.2 Logit Arithmetic

Several works have employed logit arithmetic
across various domains and downstream tasks.
Contrastive decoding (Li et al., 2022) improves
performance by utilizing the difference in logits

from models of different sizes. Proxy tuning (Liu
et al., 2024) enhances a larger model’s capabilities
by adding the logit differences of a smaller model,
recorded before and after training, to simulate train-
ing effects. In model arithmetic (Dekoninck et al.,
2023), logits adjusted with various prompts steer
the generation processes of large language models.
(Huang et al., 2024) propose using logit subtraction
to facilitate the selective forgetting of knowledge
in LLMs. Additionally, logit arithmetic has been
leveraged to enhance the safety of generated out-
puts (Xu et al., 2024).

5.3 Non-gradient Optimization of LLMs

Due to the high memory requirements associated
with gradient-based optimization methods, recent
research has shifted towards non-gradient tech-
niques for neural network optimization. (Zhang
et al., 2024; Malladi et al., 2023) propose training
large language models (LLMs) using non-gradient
methods to mitigate these memory constraints.
These approaches have also been applied in fed-
erated learning, exploring their effectiveness in dis-
tributed settings (Xu et al., 2023b). Additionally,
a gradient-free method has been used to optimize
manifold neural networks (Zhang et al., 2022). Sim-
ilarly, LoraHub (Huang et al., 2023) utilizes non-
gradient techniques to dynamically reweight differ-
ent LORA modules, enhancing adaptation to new
downstream tasks. (Guo et al., 2023) also intro-
duces non-gradient methods to prompt engineering
to search for better prompts.

6 Conclusion

We proposed LARA , a novel framework that en-
hances in-context learning by ensembling logits
from multiple demonstrations, improving perfor-
mance without requiring parameter updates. Our
method reduces computational complexity while
achieving better accuracy. Additionally, Binary
LARA further optimizes efficiency by selectively
removing less informative demonstrations. Exper-
iments on BBH and MMLU benchmarks show
that both LARA and B-LARA outperform tra-
ditional ICL methods in terms of efficiency and
performance. Future research directions include
extending our study to combine logits from differ-
ent sources beyond just in-context learning (ICL)
examples—such as different models or varying in-
structions—and building a distributed inference
system based on LARA .



Limitations

In scenarios where only a few inferences are re-
quired, the additional overhead introduced by opti-
mizing in-context combinations may outweigh the
computational cost of the downstream inference
tasks. This limitation restricts the applicability of
our method to situations involving many similar
downstream tasks. For some closed-source mod-
els like Claude that only provide output responses
without exposing internal mechanisms, our method
remains inapplicable due to the lack of necessary
access for optimization.

References

an Luo, Xin Xu, Yue Liu, Panupong Pasupat, and
Mehran Kazemi. 2024. In-context learning with re-
trieved demonstrations for language models: A sur-
vey. ArXiv preprint, abs/2401.11624.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Jasper Dekoninck, Marc Fischer, Luca Beurer-Kellner,
and Martin T. Vechev. 2023. Controlled text genera-
tion via language model arithmetic. ArXiv preprint,
abs/2311.14479.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey for in-context learning.
ArXiv, abs/2301.00234.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, and 8
others. 2024. The llama 3 herd of models. ArXiv,
abs/2407.21783.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao
Song, Xu Tan, Guoqing Liu, Jiang Bian, Yujiu Yang,
Tsinghua University, and Microsoft Research. 2023.

Connecting large language models with evolutionary
algorithms yields powerful prompt optimizers. ArXiv
preprint, abs/2309.08532.

Nikolaus Hansen and Andreas Ostermeier. 1996. Adapt-
ing arbitrary normal mutation distributions in evo-
lution strategies: the covariance matrix adaptation.
Proceedings of IEEE International Conference on
Evolutionary Computation.

Yaru Hao, Yutao Sun, Li Dong, Zhixiong Han, Yuxian
Gu, and Furu Wei. 2022. Structured prompting: Scal-
ing in-context learning to 1, 000 examples. ArXiv,
abs/2212.06713.

Roee Hendel, Mor Geva, and Amir Globerson. 2023. In-
context learning creates task vectors. ArXiv preprint,
abs/2310.15916.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In Proc. of ICLR. OpenReview.net.

Giwon Hong, Emile van Krieken, Edoardo Ponti,
Nikolay Malkin, and Pasquale Minervini. 2024.
Mixtures of in-context learners. arXiv preprint
arXiv:2411.02830.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2023. Lorahub: Effi-
cient cross-task generalization via dynamic lora com-
position. ArXiv preprint, abs/2307.13269.

James Y. Huang, Wenxuan Zhou, Fei Wang, Fred
Morstatter, Sheng Zhang, Hoifung Poon, and Muhao
Chen. 2024. Offset unlearning for large language
models. ArXiv preprint, abs/2404.11045.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur
Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de Las Casas, Florian Bressand, Gi-
anna Lengyel, Guillaume Lample, Lucile Saulnier,
L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre
Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2023a.
Mistral 7b. ArXiv preprint, abs/2310.06825.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023b. Llmlingua: Compressing
prompts for accelerated inference of large language
models. In Conference on Empirical Methods in
Natural Language Processing.

Muhammad Khalifa, Lajanugen Logeswaran, Moontae
Lee, Honglak Lee, and Lu Wang. 2023. Exploring
demonstration ensembling for in-context learning.
ArXiv, abs/2308.08780.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lian-
min Zheng, Joseph Gonzalez, Ion Stoica, Xuezhe Ma,
and Hao Zhang. 2023a. How long can context length
of open-source LLMs truly promise? In NeurlPS
2023 Workshop on Instruction Tuning and Instruction
Following.


https://arxiv.org/abs/2401.11624
https://arxiv.org/abs/2401.11624
https://arxiv.org/abs/2401.11624
https://arxiv.org/abs/2401.11624
https://arxiv.org/abs/2401.11624
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2311.14479
https://arxiv.org/abs/2311.14479
https://arxiv.org/abs/2311.14479
https://api.semanticscholar.org/CorpusID:263886074
https://api.semanticscholar.org/CorpusID:271571434
https://arxiv.org/abs/2309.08532
https://arxiv.org/abs/2309.08532
https://arxiv.org/abs/2309.08532
https://api.semanticscholar.org/CorpusID:254591686
https://api.semanticscholar.org/CorpusID:254591686
https://api.semanticscholar.org/CorpusID:254591686
https://arxiv.org/abs/2310.15916
https://arxiv.org/abs/2310.15916
https://arxiv.org/abs/2310.15916
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2307.13269
https://arxiv.org/abs/2307.13269
https://arxiv.org/abs/2307.13269
https://arxiv.org/abs/2307.13269
https://arxiv.org/abs/2307.13269
https://arxiv.org/abs/2404.11045
https://arxiv.org/abs/2404.11045
https://arxiv.org/abs/2404.11045
https://arxiv.org/abs/2310.06825
https://api.semanticscholar.org/CorpusID:261030492
https://api.semanticscholar.org/CorpusID:261030492
https://api.semanticscholar.org/CorpusID:261030492
https://openreview.net/forum?id=LywifFNXV5
https://openreview.net/forum?id=LywifFNXV5
https://openreview.net/forum?id=LywifFNXV5

Mukai Li, Shansan Gong, Jiangtao Feng, Yiheng Xu,
Jinchao Zhang, Zhiyong Wu, and Lingpeng Kong.
2023b. In-context learning with many demonstration
examples. ArXiv preprint, abs/2302.04931.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and
Wenhu Chen. 2024. Long-context llms struggle

with long in-context learning. ArXiv preprint,
abs/2404.02060.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang,
Jason Eisner, Tatsunori Hashimoto, Luke Zettle-
moyer, and Mike Lewis. 2022. Contrastive decoding:
Open-ended text generation as optimization. In An-
nual Meeting of the Association for Computational
Linguistics.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia
Tsvetkov, Yejin Choi, and Noah A. Smith. 2024.
Tuning language models by proxy. ArXiv preprint,
abs/2401.08565.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (Deel 10
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100-114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Jialin Liu, A. Moreau, Mike Preuss, Baptiste Roziere,
Jérémy Rapin, Fabien Teytaud, and Olivier Teytaud.
2020. Versatile black-box optimization. Proceedings
of the 2020 Genetic and Evolutionary Computation
Conference.

Sheng Liu, Haotian Ye, Lei Xing, and James Y. Zou.
2023. In-context vectors: Making in context learning
more effective and controllable through latent space
steering. ArXiv preprint, abs/2311.06668.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alexan-
dru Damian, Jason D. Lee, Dangi Chen, and Sanjeev
Arora. 2023. Fine-tuning language models with just
forward passes. ArXiv preprint, abs/2305.17333.

Gemma Team Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
L. Sifre, Morgane Riviere, Mihir Kale, J Christo-
pher Love, Pouya Dehghani Tafti, L'eonard Hussenot,
Aakanksha Chowdhery, Adam Roberts, Aditya
Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone,
Am’elie H’eliou, and et al. 2024. Gemma: Open
models based on gemini research and technology.
ArXiv preprint, abs/2403.08295.

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin
Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor
Riihle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao,
Lili Qiu, and et al. 2024. Llmlingua-2: Data distil-
lation for efficient and faithful task-agnostic prompt
compression. ArXiv preprint, abs/2403.12968.

Ingo Rechenberg. 1973. Evolutionsstrategie : Opti-
mierung technischer systeme nach prinzipien der bi-
ologischen evolution.

10

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,

Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R. Brown, Adam Santoro, Aditya Gupta, and
et al. 2022. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models.
ArXiv preprint, abs/2206.04615.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron

Mueller, Byron C. Wallace, and David Bau. 2023.
Function vectors in large language models. ArXiv
preprint, abs/2310.15213.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,

Ed Huai hsin Chi, and Denny Zhou. 2022. Rationale-
augmented ensembles in language models. ArXiv
preprint, abs/2207.00747.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raf-

fel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Met-
zler, Ed Huai hsin Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus.
2022. Emergent abilities of large language models.
ArXiv preprint, abs/2206.07682.

David Wingate, Mohammad Shoeybi, and Taylor

Sorensen. 2022. Prompt compression and contrastive
conditioning for controllability and toxicity reduction
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
5621-5634, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang,

Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi
Rungta, Karthik Abinav Sankararaman, Barlas Oguz,
Madian Khabsa, Han Fang, Yashar Mehdad, Sharan
Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale,
Sergey Edunov, Mike Lewis, and 2 others. 2023. Ef-
fective long-context scaling of foundation models.
ArXiv preprint, abs/2309.16039.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2023a. Re-

comp: Improving retrieval-augmented Ims with com-
pression and selective augmentation. ArXiv preprint,
abs/2310.04408.

Mengwei Xu, Dongqi Cai, Yaozong Wu, Xiang Li,

and Shangguang Wang. 2023b. Fwdllm: Effi-
cient fedllm using forward gradient. arXiv preprint
arXiv:2308.13894.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Jinyuan

Jia, Bill Yuchen Lin, and Radha Poovendran.
2024. Safedecoding: Defending against jailbreak
attacks via safety-aware decoding. ArXiv preprint,
abs/2402.08983.

Peiwen Yuan, Shaoxiong Feng, Yiwei Li, Xinglin Wang,

Yueqi Zhang, Chuyi Tan, Boyuan Pan, Heda Wang,
Yao Hu, and Kan Li. 2024. Focused large lan-
guage models are stable many-shot learners. ArXiv,
abs/2408.13987.

Liang Zhang, Bingcong Li, Kiran Koshy Thekumpara-

mpil, Sewoong Oh, and Niao He. 2024. Dpzero:


https://arxiv.org/abs/2302.04931
https://arxiv.org/abs/2302.04931
https://arxiv.org/abs/2302.04931
https://arxiv.org/abs/2404.02060
https://arxiv.org/abs/2404.02060
https://arxiv.org/abs/2404.02060
https://arxiv.org/abs/2401.08565
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://arxiv.org/abs/2311.06668
https://arxiv.org/abs/2311.06668
https://arxiv.org/abs/2311.06668
https://arxiv.org/abs/2311.06668
https://arxiv.org/abs/2311.06668
https://arxiv.org/abs/2305.17333
https://arxiv.org/abs/2305.17333
https://arxiv.org/abs/2305.17333
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.12968
https://arxiv.org/abs/2403.12968
https://arxiv.org/abs/2403.12968
https://arxiv.org/abs/2403.12968
https://arxiv.org/abs/2403.12968
https://api.semanticscholar.org/CorpusID:60975248
https://api.semanticscholar.org/CorpusID:60975248
https://api.semanticscholar.org/CorpusID:60975248
https://api.semanticscholar.org/CorpusID:60975248
https://api.semanticscholar.org/CorpusID:60975248
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2310.15213
https://arxiv.org/abs/2207.00747
https://arxiv.org/abs/2207.00747
https://arxiv.org/abs/2207.00747
https://arxiv.org/abs/2206.07682
https://aclanthology.org/2022.findings-emnlp.412
https://aclanthology.org/2022.findings-emnlp.412
https://aclanthology.org/2022.findings-emnlp.412
https://aclanthology.org/2022.findings-emnlp.412
https://aclanthology.org/2022.findings-emnlp.412
https://arxiv.org/abs/2309.16039
https://arxiv.org/abs/2309.16039
https://arxiv.org/abs/2309.16039
https://arxiv.org/abs/2310.04408
https://arxiv.org/abs/2310.04408
https://arxiv.org/abs/2310.04408
https://arxiv.org/abs/2310.04408
https://arxiv.org/abs/2310.04408
https://arxiv.org/abs/2402.08983
https://arxiv.org/abs/2402.08983
https://arxiv.org/abs/2402.08983
https://api.semanticscholar.org/CorpusID:271957090
https://api.semanticscholar.org/CorpusID:271957090
https://api.semanticscholar.org/CorpusID:271957090

—e— |CL
45 LARA on
=< B-LARA (Train) ,/’
> —+— B-LARA (Inference) o
= —— ighti -
E 44 LARA (w/o rewighting)
>
|9}
<
43
42
0 5 10 15

Total Examples Used

Figure 4: Accuracy of LARA on BBH using different
numbers of examples. B-LARA uses different settings
due to differences in example usage during training
and inference. We use two lines to highlight this dif-

ference. The accuracy means the average accuracy on
BBH dataset.
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on Machine Learning.
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A Additional Analysis

A.1 Can LARA Perform Well with Limited
In-Context Examples?

In previous experiments, we primarily explore the
many-shot in-context learning (ICL) setting. In
this subsection, we focus on a more constrained
scenario, where only a limited number of in-
context examples are available. This analysis
aims to understand the relationship between the
number of demonstrations and the performance of
LARA compared to baseline methods with limited
examples.

We set the number of examples N within
{2,4,8,16} and compare our proposed method
with ICL on the BBH dataset with Mistral-7B.
Figure 4 demonstrates that both LARA and B-
LARA consistently outperform the baseline ICL,
and the performance gap increases with the number
of examples used. Note that we do not plot the per-
formance of LARA and B-LARA under N = 2.
This is because LARA and B-LARA are sim-
plified to our non-reweighting ablation when the
size of each subgroup becomes 1 and no reweight-
ing is required. We also show the performance of
performance without reweighing here. We set the
number of group k£ as 2 in this experiment. While
there is a significant gap between the non-reweight
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version and B-LARA , the non-reweight version
still demonstrates effectiveness compared to ICL.
Since B-LARA has a weight constraint of {0, 1},
subgroups with zero-weights are pruned during in-
ference for efficiency. As shown in Figure 4, the
real number of examples used by B-LARA in infer-
ence is substantially lower than other methods. In
the 32-shot setting, only about 45% of subgroups
of B-LARA are assigned non-zero weights, re-
ducing more than half of the computational load
without compromising performance. Additionally,
as the total number of examples increases, the pro-
portion of examples used in inference decreases,
indicating that B-LARA is particularly suitable for
resource-constrained environments.

B Dataset Details

B.1 Prompts for Inference

Here we show the prompt we use in the experi-
ments in Table 7.

B.2 Dataset Statistics

Here we show the stat of the dataset in Table 8.

C Comparision to Previous Methods
D Summary and Translation Results

We include results on two additional genera-
tion tasks from different categories: NL2Bash, a
language-to-bash task, and CNN/DailyMail sum-
marization. These are evaluated with BLEU and
ROUGE-L, respectively. As shown in Table 10,
both LARA and B-LARA consistently outper-
form standard ICL and IRE baselines across all
three models.

E Additional Results: Comparison with
MolICL

Table 11 provides the full comparison between
our method and Mixtures of In-Context Learners
(MoICL) across seven classification datasets. As
shown, both LARA and B-LARA achieve compet-
itive or superior results compared to all MoICL
variants, without relying on external training data.

Since the official code for MoICL is not publicly
available, we report their results as directly stated
in their original paper.

F Experimental Details



Dataset Prompt

BBH Question: {question}

Answer: {answer}

Question: {question}
Answer:

MMLU

The following are multiple choice questions (with answers) about {subject}.

Question: {question} Answer: {answer}

Question: {question} Answer:

GoEmotion

Given a comment, please predict the emotion category of this comment. The predict

answer must come from the demonstration examples with the exact format.

The examples are as follows:
comment: {question}
emotion category: {answer}
comment: {question}
emotion category:

TacRED

Given a sentence and a pair of subject and object entities within the sentence, please

predict the relation between the given entities.
You can only select from the following words: {potential relation}

sentence: {question}

the relation between the two entities is: {answer}

sentence: {question}

the relation between the two entities is:

Table 7: Prompt examples for each dataset in One-shot learning.

F.1 Datasets and Evaluation.

We evaluate our methods using two well-
established benchmarks: Big-Bench Hard
(BBH) (Srivastava et al., 2022) and Mas-
sive  Multitask  Language  Understanding
(MMLU) (Hendrycks et al., 2021). BBH
tests models on challenging reasoning tasks
across domains including arithmetic reasoning,
commonsense reasoning, and linguistics. MMLU
measures generalization across 57 diverse subjects,
covering both humanities and STEM fields,
offering a comprehensive evaluation of knowledge
and problem-solving abilities of LLMs. For
both benchmarks, we use exact match (EM) as
our evaluation criterion, which requires model
predictions to perfectly match the correct answers.
We report the accuracy scores in our experiment
results. The details about dataset analysis and
prompts can be found in App. B.
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F.2 Models.

Our proposed LARA for in-context learning is ap-
plicable to any LLM. To demonstrate its generality,
we evaluate it on three open-source, decoder-only
models: Llama3.1-8B (Dubey et al., 2024), Mistral-
7B (Jiang et al., 2023a), and Gemma-7B (Mesnard
et al., 2024). Llama-3.1-8B is known for strong
performance across various NLP tasks, Mistral-7B
is optimized for efficiency and is balanced between
computational cost and accuracy. Gemma-7B fo-
cuses on advanced reasoning and language compre-
hension. These models represent diverse architec-
tures and training strategies, allowing us to test the
adaptability of our methods. By using open-source
models in evaluation, we ensure the reproducibil-
ity of our proposed method and validate its broad
applicability across state-of-the-art model architec-
tures.



Dataset #Tokens/Shot Description

BBH 55 A collection of challenging tasks from the BIG-Bench Hard benchmark.
MMLU 65 Multiple-choice questions across various subjects.

GoEmotion 28 Annotated Reddit comments for emotion classification.

TacRED 80 A dataset for relation extraction tasks.

Table 8: Dataset Statistics.

Model Llama-3-8B-Instruct LongChat-7B-V1.5-32K Vicuna-7B-V1.5-16K
ARC GSMSK ARC GSMSK ARC GSMSK
ICL 90.00 66.64 62.43 9.93 77.11 16.30
EarlyStop 90.47 71.21 62.43 11.14 78.14 17.44
StructICL  90.70 69.43 64.05 11.25 78.05 17.12
FocusICL  91.02 71.89 64.55 12.28 78.51 17.74
B-LARA  90.89 73.86 64.27 12.23 78.79 18.12

Table 9: Performance Comparison Across Models and Methods

F.3 Hyperparameter Setting.

In our main experiment, we use Dy, consisting
of N = 32 in-context examples for our methods.
The baseline methods also use the same Dy, as
input. For our method and all baselines, we set the
temperature to 0 to enforce greedy decoding. Our
experiments are conducted on a single A100 80GB
GPU.
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G Algorithm
H Full Results
H.1 Full Ablation Study

Here we show the results of the ablation study in
Table 12.

H.2 Full Main Results

Here we will show the full results of our three mod-
els in BBH and MMLU benchmark. The methods
include LARA , B-LARA , KATE, ICL, LAG(logit-
average-generation which is the ablation study in
our paper, together with RAE and ICV.



NL2Bash (BLEU 1) CNN/DailyMail (ROUGE-L 1)
LLaMA3.1-8B  Gemma-7B  Mistral-7B  LLaMA3.1-8B Gemma-7B  Mistral-7B

ICL 27.80 22.00 26.00 23.79 18.76 21.54
IRE4 22.20 22.20 21.60 25.24 20.23 22.63
LARA 29.20 26.00 28.80 25.45 20.09 22.90
B-LARA 29.80 26.60 29.40 26.03 20.97 22.78

Table 10: Performance on two generation tasks: NL2Bash (measured by BLEU) and CNN/DailyMail summarization
(measured by ROUGE-L). Both LARA and B-LARA outperform standard baselines across all model backbones.

Method Offensive = Hate SST2 RTE FEVER PAWS QNLI
Mixture of ICL (uniform) 73.37 59.12 9417 177.26 79.46 65.29  88.66
Mixture of ICL (scalar) 81.3 63.45 9479 79.93 82.66 79.50  90.11
Mixture of ICL (hyper) 76.65 70.02 - - - - -

LARA 79.01 6720 9535 78.30 81.42 7820  89.00
B-LARA 80.65 65.31 9475 79.50 82.19 78.95  90.66

Table 11: Full comparison with Mixture of ICL variants on seven classification datasets. “Hyper” results are only
reported in their paper for a subset of tasks. Due to the lack of released code, we use reported numbers from the
original paper.

Algorithm 1 B-LARA Optimization Algorithm
with Updated Index
Input: Dy,in:  In-context examples Dyin =
{(zi, i) }iL .
Parameter: k: Number of subgroups. J: Number
of iterations.
Output: w*: Optimized binary weight vector.
Split Dyrain into k groups: {S1, S, ..., Sk} Sa
{S1,--,Siks21} SB +— {S[k/2)415-- > Sk}
forr € {A, B} do
Initialize w(®) as a random binary vector of
length |S;|
for j =110 Jdo
for m = 1 ro dim(w=1) do
Uy, <— Uniform(0, 1)
wh, wg_l) & I(um <
1/dim(wU—1))

end
Compute £(w') using S,, where 1’ # r
if L(w') < L(wU~Y)) then
| w@) — w
else
end

end
w’ — w)

end
w* + [w), w]
return w*
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BBH(E’UETGQE MMLUG.’UC’V‘(de
Llama3.1-8B  Gemma-7B  Mistral-7B  Llama3.1-8B  Gemma-7B  Mistral-7B

ICL 45.64 37.08 4291 65.63 61.44 62.84
KATE» 43.60 37.07 43.16 66.62 56.28 63.99
KATE, 44.03 38.83 43.16 66.75 55.78 63.48
KATEsg 44.47 37.03 42.96 67.19 54.13 63.93
RAE; 44.59 40.24 43.95 66.88 65.18 62.99
RAE4 45.23 40.44 44.49 66.40 65.01 62.99
RAEg 44.06 39.85 44.07 67.09 64.80 63.61
Icv 45.93 42.16 44.50 66.97 64.99 64.02
LARA 47.46 41.77 44.77 66.54 64.36 63.93
B-LARA 47.69 42.75 45.03 67.80 65.56 64.12

w/o reweights 43.33 43.56 42.83 67.23 65.61 62.95

w/o reweighty 44.50 41.98 44.78 67.58 65.87 63.32

w/o reweights 43.02 39.35 44.84 67.43 65.04 63.55

Table 12: Ablation Study Results.
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