

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 WEAK CORRELATIONS AS THE UNDERLYING PRINCIPLE FOR LINEARIZATION OF GRADIENT-BASED LEARNING SYSTEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep learning models, such as wide neural networks, can be viewed as nonlinear dynamical systems composed of numerous interacting degrees of freedom. When such systems approach the limit of infinite number of degrees of freedom, their dynamics tend to simplify. This paper investigates gradient descent-based learning algorithms that exhibit linearization in their parameters. We establish that this apparent linearity, arises from weak correlations between the first, and higher-order derivatives of the hypothesis function with respect to the parameters, at initialization. Our findings indicate that these weak correlations fundamentally underpin the observed linearization phenomenon of wide neural networks. Leveraging this connection, we derive bounds on the deviation from linearity during stochastic gradient descent training. To support our analysis, we introduce a novel technique for characterizing the asymptotic behavior of random tensors. We validate our theoretical insights through empirical studies, comparing the linearized dynamics to the observed correlations.

1 INTRODUCTION

Deep learning in general, and particularly over-parameterized neural networks, revolutionized various fields Graves et al. (2013); He et al. (2016); Krizhevsky et al. (2012); Silver et al. (2016), and they are likely to do much more. Yet, the underlying reason for their unprecedented success remains elusive. These systems can be interpreted as non-linear dynamical physical systems, characterized by a multitude of interacting degrees of freedom, which makes an exact description of their behavior exceedingly hard. However, it is well established that dynamical physical systems, when expanded to an infinite number of degrees of freedom tend to exhibit a simplified form of dynamics Anderson (1972), therefore, it seems plausible to consider such a limit in the context of deep learning systems.

A seminal study in 2018 Jacot et al. (2018), demonstrated that wide, fully connected neural networks, undergoing deterministic gradient descent, behave as though they were linear with respect to their parameters, (while maintaining a highly non-linear structure in their inputs). This structure has been denoted as the neural tangent kernel (NTK). The result sparked a plethora of subsequent research, generalizing it to other architectures, investigating the rate of convergence towards this linear limit, exploring the deviation of the parameters themselves from their initial configuration, decoding the structure of the kernels, and leveraging this knowledge to enhance our understanding of wide neural networks in general Lee et al. (2019); Li et al. (2019); Cao & Gu (2019); Karniadakis et al. (2021); Huang et al. (2021); Bartlett et al. (2021); Woodworth et al. (2020).

Subsequent discussions arose regarding the role of this limit in the exemplary performance of wide neural networks. Several studies have demonstrated that in certain contexts, infinitely wide neural networks converge to their global minimum at an exponential rate Jacot et al. (2018); Lee et al. (2019); Du et al. (2019); Allen-Zhu et al. (2019a;b); Daniely (2017); Li & Liang (2018); Du et al. (2018); Xu et al. (2020). Moreover, wide neural networks have been posited as effective tools for generalization, with connections drawn to the double descent phenomenon Belkin et al. (2019); Nakkiran et al. (2021); Mei & Montanari (2022). Although simplified, first-order approximations were shown to capture many of the critical properties of finite-width neural networks, making it a

054 valuable framework for understanding neural networks behavior in general Li et al. (2019); Littwin
 055 et al. (2021); Yang & Hu (2020).

056 These conclusions however encounter some contention when juxtaposed with empirical evidence.
 057 Notably, several experiments indicate that for real-world data, NTK-based learning is less effective
 058 than its wide (albeit finite) neural network counterparts Lee et al. (2020); Fort et al. (2020). This
 059 apparent "*NTK inferiority paradox*" suggests that the relationship between the NTK limit and the
 060 success of finite neural networks may be more intricate than initially presumed.

061 A relatively understudied aspect within the framework of the neural tangent kernel pertains to the
 062 fundamental mechanisms underpinning the phenomenon of linearization. Previous research, such
 063 as Chizat et al. (2019), suggests that any gradient-based learning algorithm inherently possesses an
 064 intrinsic scale dictating its linearization behavior. Furthermore, incorporating an external parameter
 065 can modify this intrinsic scale, thereby directly influencing the extent to which linearization manifests.

066 In a related context, Liu et al. (2020) demonstrated that the ratio between the spectral norm of the
 067 Hessian and the Euclidean norm of the gradient governs the rate of linearization. Their analysis
 068 also established that, for wide neural networks, this ratio typically remains small, thus facilitating
 069 linearization.

070 Another relevant result in this field presented by Liu et al. (2022), who proposed that the linear
 071 behavior observed in wide neural networks emerges fundamentally due to their structural composition
 072 as ensembles of numerous weak sub-models.

073 The closest study to this work is that of Dyer & Gur-Ari (2019), which introduced a methodology
 074 grounded in Feynman diagrams to systematically analyze wide neural networks. Their technique
 075 enables precise computation of the asymptotic behavior of correlation functions, notably the NTK, in
 076 the limit of infinite network width. By leveraging methods from theoretical physics, their work derives
 077 finite-width corrections to training dynamics, thus providing deeper insights into the evolutionary
 078 behavior of wide neural networks beyond the infinite-width approximation. However, their results
 079 are limited, as their setup is restricted and only considers the average values of these correlations.

081 1.1 OUR CONTRIBUTIONS

- 084 1. We establish that for gradient descent-based learning, linearity is equivalent to weak correlations
 085 between the first and subsequent derivatives of the hypothesis function, concerning its
 086 parameters at their initial values (3.3). This equivalence is suggested as the fundamental
 087 cause for the linearization observed in wide neural networks.
- 088 2. We prove directly that wide neural networks display this weak derivative correlations
 089 structure. By relying and extending the tensor programs formalism Yang & Littwin (2021),
 090 our approach uniformly addresses a broader spectrum of architectures at once than any other
 091 proof we are aware of (4.2).
- 092 3. Drawing from the same concepts, we demonstrate how modifications in the architecture
 093 of linearizing learning systems, and more specifically, wide neural networks, affect the
 094 rate of linearization. This finding is juxtaposed Chizat et al. (2019)'s result, regarding the
 095 implications of the introduction of an external scale (3.3.2,4.2).
- 096 4. Harnessing the formalism of weak derivatives correlations, we derive a bound on the
 097 deviation from linearization over time during learning, when utilizing stochastic gradient
 098 descent (4.1). This is a generalization of the traditional result for deterministic gradient
 099 descent Lee et al. (2019). This is crucial, as in most practical scenarios, stochastic gradient
 100 descent generalize better than deterministic gradient descent Lee et al. (2020); Fort et al.
 101 (2020).
- 102 5. We introduce the notion of *random tensor asymptotic behavior*, as an effective analytical tool
 103 to describe the asymptotic behavior of random tensors (2). Such tensors are not only integral
 104 to machine learning, but also serve a pivotal role in diverse mathematical and physical
 105 frameworks. Understanding the typical asymptotic behavior of these tensors is relevant for
 106 addressing many questions across these fields.

108 The overarching simplicity and broad applicability of our findings suggest that weak derivatives
 109 correlations could very well be the foundational cause for the prevalent linearization attributes
 110 observed in wide neural networks, and possibly for other linearizing systems.

112 2 RANDOM TENSOR ASYMPTOTIC BEHAVIOR

114 Random tensors play a fundamental role in machine learning in general, and in this work in particular.
 115 In this section, we demonstrate the effectiveness of employing the stochastic big O notation of the
 116 subordinate norm, to characterize the *asymptotic behavior* of a general random tensor sequence
 117 (hereinafter referred to as a random tensor). Addressing the asymptotic behavior of such tensors
 118 involves two inherent challenges: the complexity arising from their multitude of components, and the
 119 stochastic nature of these components. In this part, we will define an effective way to characterize
 120 their asymptotic behavior.

121 Our primary norm in this work will be the *Subordinate Tensor Norm*, defined as in Kreyszig (1991):

$$123 \quad \|M\| = \sup \{ M \cdot (v^1 \times \dots \times v^r) \mid v^1, \dots, v^r \in S_{N_1}, \dots, S_{N_r} \} . \quad (1)$$

124 We provide a detailed explanation of this definition and discuss its advantages in Appendix B.1.

126 We combine this concept with the *Stochastic Big-O Notation*, introduced in Appendix B.2, which is
 127 defined for a sequence of random tensors, denoted by $M \equiv \{M_n\}_{n=1}^{\infty}$. Henceforth, we regard M as
 128 a random tensor depending on a limiting parameter $n \in \mathbb{N}^1$. This leads us to the definition of a new
 129 asymptotic upper bound for random tensors.

130 Denoting $\mathcal{N} = \{f : \mathbb{N} \rightarrow \mathbb{R}^{0+}\}$ as the set of all functions from \mathbb{N} to the non-negative real numbers,
 131 we introduce the following definition:

132 **Definition 2.1** (Asymptotic Upper Bound of Random Tensors). A random tensor M , as defined
 133 above, is said to be asymptotically upper bounded by $f \in \mathcal{N}$ as follows:

$$135 \quad M = O(f) , \quad (2)$$

136 if and only if:

$$137 \quad \forall g \in \mathcal{N} \text{ s.t } f = o(g) : \lim_{n \rightarrow \infty} P(\|M_n\| \leq g(n)) = 1 . \quad (3)$$

139 The lower asymptotic bound, $f = \Omega(M)$, is defined analogously but with the inequality reversed and
 140 $g = o(f)$.

141 Like with an infinite number of deterministic sequences, where pointwise convergence often falls
 142 short and uniform convergence is required, we demand a definition of a uniform asymptotic bound for
 143 discussing an infinite number of random tensors. This concept is rigorously defined in appendix C.1.

144 **Remark 2.1.** For a finite number of tensors, it can simply be demonstrated that the uniform bound
 145 aligns with the pointwise asymptotic bound, analogous to sequences convergence.

147 We demonstrate in lemma C.6 that this notation inherits many of the norm's properties it is defined
 148 above, including all of the properties of the subordinate norm, delineated in lemma C.1. Furthermore,
 149 it satisfies several other useful properties, outlined in appendix C.3.

151 2.1 PROPRIETIES

153 **Remark 2.2.** We denote $f \leq g$ or $O(f) \leq O(g)$ iff $f = O(g)$. We also denote $f < g$ or
 154 $O(f) < O(g)$ iff $f = O(g)$ and $f \not\sim g$, where $f \sim g \Leftrightarrow O(f) = O(g) \Leftrightarrow f = O(g) \wedge g = O(f)$.
 155 It is important to note that $f < g$ can hold without necessitating $f = o(g)$.

156 It can be readily shown that for any random tensor M , there exist upper and lower bounds such
 157 that $O(h_-) \leq O(M) \leq O(h_+)$, and that they satisfy $h_- \leq h_+$. Furthermore, if h_+ and h_-
 158 satisfy $h_+ \sim h_-$, their asymptotic behavior is unique. Meaning that for any other pair h'_+, h'_- , the
 159 relationship $h_+ \sim h'_+ \sim h'_- \sim h_-$ still holds (C.5). In such scenarios, we assert that M possesses
 160 an exact asymptotic behavior, denoted as $O(h_+) = O(h_-)$.

161 ¹The results are applicable not only to \mathbb{N} , but also to any other set endowed with a total order.

The existence of such a pair however is not guaranteed, as illustrated by a random variable that for every $n \in \mathbb{N}$, has equal probability of one-half to yield either 1 or n . For this variable, the optimal upper bound is $O(n)$, and the optimal lower bound is $O(1)$, but these do not exhibit the same limiting behavior. Analogously, deterministic sequence may exhibit similar behavior, featuring multiple distinct partial limits. However, in the deterministic case, the *limsup* and *liminf* serve as the appropriate upper and lower limits respectively. This observation leads to the question of whether an appropriate asymptotic bound exists for the random case. It turns out, it does.

Theorem 2.1 (Definite Asymptotic Bounds for Tensors). Consider a random tensor M with a limiting parameter n as described earlier. There exists $f \in \mathcal{N}$ serving as a tight/definite upper bound for M , satisfying:

$$M = O(f) \wedge \forall f \not\prec g : M \neq O(g) . \quad (4)$$

Furthermore, the asymptotic behavior of f is unique.

Explanation. Although the theorem's result is intuitive, the challenge arises from the fact that our order above \mathcal{N} is not a total one, even when considering only the asymptotic behavior of the functions. For example, none of the following equations hold true:

$$\sin(\pi n) < \cos(\pi n), \quad \cos(\pi n) < \sin(\pi n), \quad \sin(\pi n) \sim \cos(\pi n) . \quad (5)$$

We address this issue by employing Zorn's lemma, as demonstrated in appendix C.2. \square

Since every such random tensor M has precisely one definite asymptotic bound f , we can consider this bound as the *random tensor's asymptotic behavior*, represented as:

$$O(M) = O(f) . \quad (6)$$

3 WEAK CORRELATIONS AND LINEARIZATION

3.1 NOTATIONS FOR SUPERVISED LEARNING

3.1.1 GENERAL NOTATIONS

Supervised learning involves learning a *classifier*: a function $\hat{y} : X \rightarrow Y$ that maps an input set (here $X \subseteq \mathbb{R}^{d_X}$), to an output set (here $Y \subseteq \mathbb{R}^{d_Y}$), given a dataset of its values $X' \subseteq X$, denoted as the "*target function*". This is achieved by using an *hypothesis function*, in our case of the form $F : \mathbb{R}^N \rightarrow \{f : X \rightarrow Y\}$ which depends on certain parameters $\theta \in \mathbb{R}^N$ (in the case of fully connected neural networks for example, the weights and biases). The objective of supervised learning is to find the optimal values for these parameters such that F captures \hat{y} best, with respect to a cost function \mathcal{C} assumed here convex. We use $x \in X$ to denote elements in the input set, and $i, j = 1 \dots d_Y$ to denote the output vector indices. The parameters θ are enumerated as $\theta_\alpha, \alpha = 1, \dots, |\theta| = N$, and their initial values are denoted by $\theta_0 = \theta(0)$.

We work within the optimization framework of single input batches gradient descent-based training, which is defined such that for every learning step $s \in \mathbb{N}$:

$$\begin{aligned} \Delta^{x_s} \theta(s) &= \theta(s+1) - \theta(s) = -\eta \nabla \mathcal{C}(F(\theta)(x_s), \hat{y}(x_s))|_{\theta=\theta(s)} = \\ &= -\eta \nabla F(\theta(s))(x_s) \mathcal{C}'(F(\theta(s))(x_s), \hat{y}(x_s)) . \end{aligned} \quad (7)$$

Here, $\nabla_\alpha = \frac{\partial}{\partial \theta_\alpha}$ represents the gradient operator, x_s denotes the $s \in \mathbb{N}$ th input data, and $\mathcal{C}'(y) = \nabla_y \mathcal{C}(y)$ refers to the derivative of the cost function. The derivative matrix/the Jacobian ∇F is defined such that for every indices i, α , $(\nabla F)_{\alpha i} = \nabla_\alpha F_i$. We denote η as the learning rate and $(x_s, \hat{y}(x_s))$ as the inputs and labels, respectively. The training path is defined as the sequence of inputs upon which we trained our system, represented by $\{x_s \in X'\}_{s=0}^\infty$. We assume that each input along this path is drawn from the same random distribution \mathcal{P} , neglecting the possibility of drawing the same input multiple times. The same distribution will be used for both training and testing. Moreover, we assume that the hypothesis function and the cost function F, \mathcal{C} are analytical in their parameters. We study learning in the limit where the number of parameters $N \equiv |\theta| \rightarrow \infty$, with $N \equiv N(n)$ being a function of some other parameter $n \in \mathbb{N}$, denoted as the "*limiting parameter*". For neural networks, n is typically chosen as the width of the smallest layer, but we can choose any parameter governs the system's linearization.

Remark 3.1. This framework can be greatly generalised, as we discussed in appendix I.

216 3.1.2 NEURAL TANGENT KERNEL NOTATIONS
217218 Numerous gradient descent learning systems (GDML) with different neural network architectures,
219 display a linear-like structure in their parameters in the large width limit. In this linear limit, the
220 hypothesis function takes the following form:

221
$$\begin{aligned} F_{lin}(0) &= F(\theta_0), \forall s \in \mathbb{N}_0 : F_{lin}(s+1) = \\ 222 &F_{lin}(s) - \Theta_0(\cdot, x_s) \mathcal{C}'(F_{lin}(s))(x_s), \hat{y}(x_s) \end{aligned} \quad (8)$$

223 with the kernel Θ defined such as:

225
$$\forall x, x' \in X : \Theta(\theta)(x, x') = \eta \nabla F(\theta)(x)^T \nabla F(\theta)(x'), \Theta_0 \equiv \Theta(\theta_0), \quad (9)$$

226 where ∇F^T is the transpose of ∇F , the Jacobian.228 3.2 THE DERIVATIVES CORRELATIONS
229230 3.2.1 THE DERIVATIVES CORRELATIONS DEFINITION
231232 In the following, we prove that linearization is equivalent to having weak correlations between the
233 first, and higher derivatives of the hypothesis function, with respect to the initial parameters. We
234 define the *derivative correlations* as follows:235 **Definition 3.1** (Derivatives Correlations). We define the derivatives correlations of the hypothesis
236 function for any positive integer $d \in \mathbb{N}$ and non-negative integer $D \in \mathbb{N}^0$ as:

237
$$\mathfrak{C}^{D,d}(\theta) = \frac{\eta^{\frac{D}{2}+d}}{D!d!} \nabla^{\times D+d} F(\theta)^T (\nabla F(\theta))^{\times d}, \quad (10)$$

240 where the higher order derivatives defined such that for every $d \in \mathbb{N}$ and indices $i, \alpha_1 \dots \alpha_d$,
241 $(\nabla^{\times d} F)_{\alpha_1 \dots \alpha_d, i} = \nabla_{\alpha_1} \dots \nabla_{\alpha_d} F_i$.

242 More explicitly, presenting the inputs and indices of these tensors:

243
$$\begin{aligned} \mathfrak{C}^{D,d}(\theta)_{i_0, i_1 \dots i_d}^{\alpha_1+d \dots \alpha_D+d} (x_0, x_1 \dots x_d) = \\ 244 &\frac{\eta^{\frac{D}{2}+d}}{D!d!} \sum_{\alpha_1 \dots \alpha_d=1}^N \nabla^{\times D+d}_{\alpha_1 \dots \alpha_{D+d}} F_{i_0}(\theta)(x_0) \cdot (\nabla_{\alpha_1} F_{i_1}(\theta)(x_1) \dots \nabla_{\alpha_d} F_{i_d}(\theta)(x_d)) \end{aligned} \quad (11)$$

247 The objects in (10) are the correlation of the derivatives in the sense that $\alpha_1 \dots \alpha_d$ can be viewed
248 as random variables, drawn from a uniform distribution of $\{1 \dots N\}$, while θ and all other indices
249 are fixed instances and hence deterministic. In this context, $\nabla^{\times D+d} F$ and $\nabla F \times \dots \times \nabla F$ in (10)
250 can be viewed as random vectors of the variables $\alpha_1 \dots \alpha_d$, and the summation in (10) represents
251 the (unnormalized) form of the "Pearson correlation" between the two random vectors. The overall
252 coefficient of the learning rate $\eta^{\frac{D}{2}+d}$ serves as the appropriate normalization, as we will demonstrate
253 in appendix E and F. We will also denote: $\mathfrak{C}^d(\theta) \equiv \mathfrak{C}^{0,d}(\theta)$, $\mathfrak{C}^{D,d} \equiv \mathfrak{C}^{D,d}(\theta_0)$, $\mathfrak{C}^d \equiv \mathfrak{C}^d(\theta_0)$.254 Essentially, $D + d$ represents the degree of the derivative under consideration when interacting with
255 the first derivative, whereas d specifies the number of copies of the first derivative involved in the
256 interaction.258 An example for these correlations is the $D = 0, d = 1$ correlation, the correlation of the first
259 derivative with itself, the kernel (9):

260
$$\mathfrak{C}^1(\theta) = \eta \nabla F(\theta)^T \nabla F(\theta) = \Theta(\theta). \quad (12)$$

262 The definition for the asymptotic behavior for these derivative correlations is slightly nuanced due to
263 the many different potential combinations of distinct inputs. We rigorously define it in appendix D.1.265 In the remainder of the paper we will show how these correlations serve as an effective tool for the
266 theoretical analysis of the linearization of wide neural networks. While this is their main purpose,
267 they can also be used to evaluate linearization rate numerically.

At first glance, this may seem computationally impractical, as computing the D, d -th derivative requires summing $O(N^d)$ elements. However, we do not actually need to compute the full d -th gradient of F to obtain its correlation. Instead, we can use the chain rule:

$$\mathfrak{C}^{D,d}(\theta)_{i_0, i_1 \dots i_d}^{\alpha_1+d \dots \alpha_D+d}(x_0, x_1 \dots x_d) = \frac{\eta^{\frac{D}{2}+d}}{D!d!} \partial_{a_1} \dots \partial_{a_{D+d}} F_{i_0} \left(\begin{array}{c} \theta_0 + a_1 \nabla F_{i_1}(\theta_0, x_1) + \dots + a_d \nabla F_{i_d}(\theta_0, x_D) + \\ a_{1+d} e_{\alpha_1+d} + \dots + a_{D+d} e_{\alpha_{D+d}}, x_0 \end{array} \right). \quad (13)$$

computed for $a_1 = \dots = a_D = 0$, where e_α is the the α -th standard basis vector. This approach reduces the computation to summing only $O(N)$ elements.

3.3 EQUIVALENCE OF LINEARITY AND WEAK DERIVATIVES CORRELATIONS

Our main theorems concern the equivalence of linearity and weak derivative correlations. In other words, weak correlations can be regarded as the fundamental reason for the linear structure of wide neural networks. These theorems are applicable for systems that are properly scaled in the initial condition, meaning that when taking $n \rightarrow \infty$ the different components of the system remain finite. We define in rigour exactly what it means in appendix D.2. We denote such systems as properly normalised GDMLs or PGDMLs.

3.3.1 OUR MAIN THEOREMS

The relationship between linearization and weak derivative correlations, is formalized through the equivalence theorems, which characterized by a monotonically increasing sequence $m(n)$, where $\lim_{n \rightarrow \infty} m(n) = \infty$. This sequence captures the rate of linearization or correlation decay, and constitutes an intrinsic parameter of the system. For instance, in the case of wide neural networks, one typically has $m(n) = \sqrt{n}$. Nevertheless, $m(n)$ may take any form that satisfies the stated conditions, with its mathematical role lying in defining the equivalence relation.

Theorem 3.1 (Fixed Weak Correlations and Linearization Equivalence). *Given the setup described in this section, for a sufficiently small learning rate $\eta < \eta_{the}$, the two properties are equivalent, where the asymptotic bounds are uniform for every $d, D \in \mathbb{N}$:*

1. $m(n)$ - fixed weak derivatives correlation:

$$\mathfrak{C}^d = O\left(\frac{1}{m(n)}\right), \mathfrak{C}^{D,d} = O\left(\frac{1}{\sqrt{m(n)}}\right) \quad (14)$$

2. Simple linearity: for every fixed training step $s \in \mathbb{N}$:

$$F(\theta(s)) - F_{lin}(s) = O\left(\frac{1}{m(n)}\right), \quad (15)$$

$$\eta^{\frac{D}{2}} (\nabla^{\times D} F(\theta(s)) - \nabla^{\times D} F(\theta_0)) = O\left(\frac{1}{\sqrt{m(n)}}\right). \quad (16)$$

η_{the} is defined such as all the correlations are uniformly bounded by $O(1)$, to ensure the sum converges, as shown in Appendix E.2. Any system that does not satisfy this condition will diverge within only a few training steps, as we show in Appendix E.2. For fully connected networks for example, $\eta_{the} \sim \frac{1}{n}$.

The next theorem delineates an even stronger equivalence, which is also relevant for wide neural networks. It also encompasses the scaling of the learning rate.

Theorem 3.2 (Exponential Weak Correlations and Linearization Equivalence). *Given the setup described in this section, the two properties are equivalent, where the asymptotic bounds are uniform for every $D \in \mathbb{N}_0, d \in \mathbb{N}$:*

1. $m(n)$ - power weak derivatives correlation: for $(D, d) \neq (0, 1)$:

$$\mathfrak{C}^{D,d} = O\left(\frac{1}{\sqrt{m(n)}}\right)^d. \quad (17)$$

324 2. Strong linearity: for every reparametrisation of the learning rate $\eta \rightarrow r(n)\eta$, $r(n) > 0$ and
 325 for every fixed training step $s \in \mathbb{N}$:

326

$$327 F(\theta(s)) - F_{lin}(s) = O\left(\frac{r(n)}{m(n)}\right), \quad (18)$$

328

329 and for every $D \in \mathbb{N}$:

330

$$331 \left(\frac{\eta}{r(n)}\right)^{\frac{D}{2}} (\nabla^{\times D} F(\theta(s)) - \nabla^{\times D} F(\theta_0)) = O\left(\frac{r(n)}{\sqrt{m(n)}}\right). \quad (19)$$

332

333 **Explanation.** We prove the theorems by considering for a general learning step $s \in \mathbb{N}$, the hypothesis
 334 function and its derivatives' Taylor series expansion around the $s - 1$ step. Utilizing equations 7,11,
 335 we can find that the evolution of the derivatives of F and its derivatives during learning, is governed
 336 by a linear combination of the correlations of the form:

337

$$338 \Delta \frac{\eta^{\frac{D}{2}}}{D!} \nabla^{\times D} F(\theta) = \sum_{d=1}^{\infty} \mathfrak{C}^{D,d}(\theta) (-\mathcal{C}'(F(\theta), \hat{y}))^{\times d}, \quad (20)$$

339

340 for every $D \in \mathbb{N}_0$, where $\Delta \nabla^{\times D} F$ is the change of $\nabla^{\times D} F$. For deterministic functions it is now
 341 straightforward to prove the equivalences by employing the arithmetic properties of the big O notation,
 342 and that [i] One can choose any $F - \hat{y}$ (as long as its asymptotic behavior is appropriate). [ii] Different
 343 components in our sum cannot cancel each other, since we can change η continuously; thus, for
 344 the sum to be small, all of the components must be small. The adjustments needed for our case
 345 of stochastic functions are minor, as, as we show in appendix C.3, our tensor asymptotic behavior
 346 notation satisfies many of the same properties of the deterministic big O notation. The complete
 347 proofs are in appendix E. We demonstrate empirically that linearizing systems have weak correlations
 348 in appendix A.

349 \square

350

351 **3.3.2 RELATION TO RELATED RESULTS**

352

353 As shown in theorem 3.2, a rescaling of η , such as $\eta \rightarrow r(n)\eta$, can either promote or impede the
 354 process of linearization. This observation remains valid for theorem 3.2 as long as $\eta < \eta_{\text{the}}$. This
 355 insight offers a deeper understanding of the findings presented by Chizat et al. (2019), specifically
 356 elucidating how an alteration of an external scale influences linearization, by affecting the scales of
 357 higher-order correlations differently from those of lower-order correlations.

358 A notable connection to another principal work, Liu et al. (2020), concerns the definition of derivative
 359 correlations themselves. In Liu et al. (2020), the authors established that linearization results from a
 360 small ratio between the spectral norm of the Hessian, and the norm of the gradient. The derivative
 361 correlations can be interpreted as a spectral norm, but concerning solely the gradient when considered
 362 as a vector. This interpretation refines the results presented in Liu et al. (2020). Unlike their
 363 approach, which required this ratio to be small within a neighborhood (ball), our framework demands
 364 its minimization specifically at the initialization point. Consequently, it necessitates the decay of
 365 higher-order correlations as well.

366 **Another related work is the work of Huang & Yau (2020).** In their work, they characterize the
 367 dynamics of wide neural networks using a hierarchy of kernels, where higher-order kernels evolve
 368 on slower time scales. Similarly to our paper, these time scales are proportional to $\frac{1}{\sqrt{n}}$, effectively
 369 capturing the deviation from the NTK limit. The relation of their work to ours is most evident in the
 370 gradient flow case, where their kernels can be expressed as linear combinations of our correlations.
 371 However, our result is more general, as it does not rely on the structural assumptions of wide neural
 372 networks, and also generalizes to finite learning rate GD. The most immediate benefit of that is
 373 that our framework applies to learning systems which are not captured by Huang & Yau (2020)'s
 374 framework. More fundamentally, by avoiding restricting ourselves only to neural networks, and
 375 instead introducing these new correlations, we obtain not only a sufficient condition for linearization,
 376 but an equivalence, providing a universal criterion applicable to generic learning systems.

377 The connection to Liu et al. (2022) is more abstract. Their argument, that the linear behavior observed
 378 in wide neural networks fundamentally emerges from their structural composition as ensembles of

378 numerous weak sub-models is related to our work via the concept that neurons become independent
 379 in the infinite-width limit, precisely manifesting the absence of correlation that we emphasize.
 380

381 The most closely related paper we are aware of is Dyer & Gur-Ari (2019). in this work the authors
 382 introduced a method using Feynman diagrams, to analyze wide neural networks. This approach
 383 systematically computes the asymptotic behavior of correlation functions, such as the Neural Tangent
 384 Kernel, in the large-width limit. The main difference between Our and their approach is that they
 385 measure the asymptotic behavior of correlations directly, rather than averaging their values. This
 386 distinction significantly restricts their setup, rendering many of their conclusions more conjectural,
 387 and less practical, compared to our findings.
 388

388 3.3.3 THE CHICKEN AND THE EGG OF LINEARIZATION AND WEAK CORRELATIONS

390 The relationship between linearization and weak correlations in over-parameterized systems can be
 391 comprehended from two different viewpoints. The first perspective suggests that effective learning
 392 in such systems necessitates a form of implicit regularization, which inherently favors simplicity
 393 Belkin et al. (2019). This preference can be directly incorporated by imposing a linear (or at
 394 least approximately linear), structure in the highly over-parameterized regimes. Notably, in certain
 395 scenarios, linearization can facilitate exponential convergence rates, especially with respect to the
 396 training datasets, but in some instances, even with respect to the testing datasets Jacot et al. (2018);
 397 Lee et al. (2019); Du et al. (2019); Allen-Zhu et al. (2019b); Daniely (2017); Li & Liang (2018); Du
 398 et al. (2018); Xu et al. (2020); Allen-Zhu et al. (2019a). Hence, weak derivative correlations can be
 399 interpreted as a pragmatic approach for achieving linearization.

400 An alternative interpretation, aligning more closely with the spirit of this paper, suggests that weak
 401 derivative correlations do not primarily serve as a dynamic mechanism for linearization, but rather,
 402 as its underlying cause. In this context, persisting derivative correlations may indicate an inherent
 403 bias within the system, typically an undesirable one. Therefore, linearization can be viewed as a
 404 consequence of our attempt to avoid counterproductive biases, by demanding weak correlations.
 405

406 This interpretation suggests that the prevalent perception of kernel learning as biased, and neural
 407 networks as unbiased, is a result-based fallacy. Had kernel learning empirically outperformed neural
 408 networks, it would seem natural to interpret linear learning in the function space, (assigning large
 409 eigenvalues to simpler functions and smaller ones to complex functions), as unbiased. In other words,
 410 we interpret linear learning as overly unbiased, while finite neural networks (through mechanisms not
 411 fully understood) prioritize the inherent bias of realistic data.
 412

413 Moreover, if we possess some prior knowledge about an inherent biases in our problem, it might be
 414 advantageous to allow some non-decaying correlations, counteracting the process of linearization.
 415 Furthermore, as certain biases can enhance general learning algorithms (in the form of implicit and
 416 explicit regularization), this perspective might provide valuable insights into the "NTK inferiority
 417 paradox" introduced in the introduction (1). The reason why linear learning underperforms in
 418 comparison to finite neural networks, might be that it lack some beneficial biases, in the form of non
 419 vanishing correlations.
 420

421 We elaborate on this point in appendix H.
 422

420 4 PROPERTIES OF WEAKLY CORRELATED PGDMLs

421 4.1 APPLICATION: DEVIATION FROM LINEARITY DURING LEARNING

422 Multiple studies have examined the deviation of the hypothesis function F from its linear approxi-
 423 mation F_{lin} (8), as a function of n for a fixed learning step (especially in the context of wide neural
 424 networks). Yet, it seems that no research has explored the deviation between these functions with
 425 respect to the learning step for stochastic GD (7). This aspect is crucial since even if $F - F_{lin}$
 426 vanishes for the initial learning steps, if it deviates too fast during learning, the linearization may not
 427 be evident for realistic large n .
 428

429 To study how learning systems deviate from their linearization during the training process, we
 430 examine the case of an exponentially $m(n)$ -weakly correlated PGDML, with learning rate satisfying
 431 $\eta < \eta_{cor}$. Here, η_{cor} is the standard critical learning rate, ensuring that the system are stable in the

NTK limit, as explained in Appendix F. We consider the problem over the span of $S \in \mathbb{N}$ learning steps, and assume that within this phase the linear solution approaches the true solution exponentially fast for some typical time $0 < T$, such that for every $s = 1 \dots S$:

$$\mathcal{C}'(F_{lin}(s), \hat{y}) = O(e^{-\frac{s}{T}}), \mathcal{C}''(F_{lin}(s), \hat{y}) = O(1), \quad (21)$$

As we show in Appendix F, this is not a restrictive assumption, especially at the beginning of training, where the deviation from linearization matters the most.

Corollary 4.1 (Weakly Correlated PGDML Deviation Over Time). Given the conditions described above, we obtain that for every $s = 1, \dots, S$:

$$F(\theta(s)) - F_{lin}(s) = O\left(\frac{s^0}{m(n)}\right). \quad (22)$$

where the asymptotic bounds are uniform in s , and s^0 denotes s in the power of zero.

While this result addresses single-input batches stochastic GD, as we explained in appendix I, this it can be greatly generalized. Notably, the analysis for stochastic GD may be more relevant even for deterministic GD, than the conventional approaches that presuppose a training dataset. This is because, while the batch might be fixed, its initial selection is from a stochastic distribution.

Explanation. We prove the corollary by using a similar induction process as in theorems 3.1,3.2. However, here we also consider the dependency in the learning step, as detailed in appendix F. We are able to bound the deviation over time, by leveraging the fact that in the NTK limit, during the initial phases of the learning process, the system converges towards the target function exponentially fast² Jacot et al. (2018); Lee et al. (2019); Du et al. (2019); Allen-Zhu et al. (2019b); Daniely (2017); Li & Liang (2018); Du et al. (2018); Xu et al. (2020); Allen-Zhu et al. (2019a). We believe that subsequent research will be able to produce more refined bounds. \square

4.2 EXAMPLE: WIDE NEURAL NETWORKS

Numerous studies have demonstrated that a wide range of neural networks architectures exhibit linearization as they approach the infinite width limit. However, the existing proofs tend to be specific to particular architectures, and are often intricate in nature. The most comprehensive proof we aware of that uniformly encompasses a diverse set of architectures, is presented in Yang & Littwin (2021); Yang (2020). These works employed the tensor product formalism Yang (2019), which can describe most relevant variants of wide neural network architectures, as the composition of global linear operations, and point-wise non linear functions.

1. Relying on the semi-linear structure of FCNNs we were able show explicitly by induction that for appropriate activation functions wide neural networks are \sqrt{n} weakly correlated, and power weakly correlated as shown in appendix G.
2. The framework of low correlations proves effective in discerning how modifications to our network influence its linearization. For instance, it is evident that $\sup_{n \in \mathbb{N}} \frac{\phi^{[n]}}{(n+1)!}$, governs the rate of linearization in FCNNs (G). This observation is why we demand for FCNNs, that over the relevant domain, the activation function satisfy:

$$\phi^{[n]} \leq O((n+1)!), \quad (23)$$

where $\phi^{[n]}$ is the n -th derivative of the network's activation function - ϕ .

3. Our proof for FCNNs can simply be generalised for any wide network, described by the tensor programs formalism (G.5.1). This is because, similarly to FCNNs, all such systems exhibit a wide semi-linear form by definition. Demonstrating that the linearization of these systems arises from weak correlations, allow us to utilize all of the insights we've found for weakly correlated systems in general. We were also been able to conceive linearizing network-based systems, that fall outside the scope of the tensor programs formalism (G.5.2). Leveraging the notation of the asymptotic tensor behavior, our proof accommodates a broad spectrum of initialization schemes, extending beyond the Gaussian initialization predominantly employed in other studies.

²The known bounds for $\mathcal{C}'(F_{lin}, \hat{y})$ are typically bounds over the variance. In appendix C.4, we discuss how an average exponential bound can be translated into a uniform probabilistic bound.

486 5 DISCUSSION AND OUTLOOK
487488 The linearization of large and complex learning systems is a widespread phenomenon, but our
489 comprehension of it remains limited. We propose the weak derivatives correlations (3.1), is the
490 underlying structure behind this phenomenon. We demonstrated that this formalism is natural for
491 analyzing this linearization: [i] It allows for the determination of if, and how fast a general system
492 undergoes linearization (3.3.1,4.2). [ii] It aids us in analyzing the deviations from linearization during
493 learning (4.1).494 The strength of our approach is that it does not rely on the structure of wide neural networks.
495 This allows us to describe not only a sufficient condition for linearization, but a true equivalence.
496 Furthermore, it enables us to identify precisely the structural properties that generate linearization.
497 With this, we were able to provide new insights into the linearization of wide neural networks,
498 accounting for factors such as training duration and activation function properties. Many of these
499 findings were previously unknown or difficult to derive using existing methods.500 These insights carry a practical implications. Effective systems should neither remain too close to
501 their linear limits, nor deviate excessively. A cohesive framework that relates convergence behavior
502 to network width, training dynamics, and activation function characteristics can guide the design of
503 more robust and efficient future models.504 Our approach raise a pivotal question (3.3.3): Is the emergence of the weak correlations structure
505 simply a tool to ensure a linear limit for overparameterized systems? Or does weak correlations
506 indicate an absence of inherent biases, leading to linearization? If the latter is true, it suggests that in
507 systems with pre-existing knowledge, specific non-linear learning methodologies reflecting those
508 biases might be beneficial. That could partially explain why the NTK limit falls short in comparison
509 to finite neural networks.510 At the core of our weak derivatives correlation framework, is the random tensor asymptotic behavior
511 formalism, outlined in section 2. We have showcased its efficacy in characterizing the asymptotic
512 behavior of random tensors, and we anticipate its utility to extend across disciplines that involve such
513 tensors.514 We demonstrate our results empirically in appendix A, and further discuss generalizations and
515 limitations in appendix I.517 REFERENCES
518519 Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized
520 neural networks, going beyond two layers. *Advances in neural information processing systems*, 32,
521 2019a.523 Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
524 parameterization. In *International conference on machine learning*, pp. 242–252. PMLR, 2019b.525 Philip W Anderson. More is different: broken symmetry and the nature of the hierarchical structure
526 of science. *Science*, 177(4047):393–396, 1972.528 Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint.
529 *Acta numerica*, 30:87–201, 2021.530 Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
531 practice and the classical bias–variance trade-off. *Proceedings of the National Academy of Sciences*,
532 116(32):15849–15854, 2019.534 Yvonne M Bishop, Stephen E Fienberg, and Paul W Holland. *Discrete multivariate analysis: Theory
535 and practice*. Springer Science & Business Media, 2007.536 Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and deep
537 neural networks. *Advances in neural information processing systems*, 32, 2019.538 Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
539 *Advances in neural information processing systems*, 32, 2019.

540 Amit Daniely. Sgd learns the conjugate kernel class of the network. *Advances in Neural Information*
 541 *Processing Systems*, 30, 2017.

542

543 Yadolah Dodge. *The Oxford dictionary of statistical terms*. OUP Oxford, 2003.

544 Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
 545 minima of deep neural networks. In *International conference on machine learning*, pp. 1675–1685.
 546 PMLR, 2019.

547

548 Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
 549 over-parameterized neural networks. *arXiv preprint arXiv:1810.02054*, 2018.

550 Ethan Dyer and Guy Gur-Ari. Asymptotics of wide networks from feynman diagrams. *arXiv preprint*
 551 *arXiv:1909.11304*, 2019.

552

553 Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
 554 and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
 555 geometry and the time evolution of the neural tangent kernel. *Advances in Neural Information*
 556 *Processing Systems*, 33:5850–5861, 2020.

557

558 Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recurrent
 559 neural networks. In *2013 IEEE international conference on acoustics, speech and signal processing*,
 560 pp. 6645–6649. Ieee, 2013.

561

562 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 563 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 564 pp. 770–778, 2016.

565

566 Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut
 567 Neven, and Jarrod R McClean. Power of data in quantum machine learning. *Nature communications*,
 568 12(1):2631, 2021.

569

570 Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent hierarchy.
 571 In *International conference on machine learning*, pp. 4542–4551. PMLR, 2020.

572

573 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
 574 generalization in neural networks. *Advances in neural information processing systems*, 31, 2018.

575

576 George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
 577 Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.

578

579 Erwin Kreyszig. *Introductory functional analysis with applications*, volume 17. John Wiley & Sons,
 580 1991.

581

582 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
 583 neural networks. *Advances in neural information processing systems*, 25, 2012.

584

585 Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
 586 Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
 587 under gradient descent. *Advances in neural information processing systems*, 32, 2019.

588

589 Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak, and
 590 Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. *Advances in*
591 Neural Information Processing Systems, 33:15156–15172, 2020.

592

593 Sanjeev Li, Arora, Simon S Du, Zhiyuan Hu, Wei, Russ R Salakhutdinov, and Ruosong Wang. On
 594 exact computation with an infinitely wide neural net. *Advances in neural information processing*
 595 *systems*, 32, 2019.

596

597 Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
 598 descent on structured data. *Advances in neural information processing systems*, 31, 2018.

599

600 Etai Littwin, Tomer Galanti, and Lior Wolf. On random kernels of residual architectures. In
 601 *Uncertainty in Artificial Intelligence*, pp. 897–907. PMLR, 2021.

594 Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when
 595 and why the tangent kernel is constant. *Advances in Neural Information Processing Systems*, 33:
 596 15954–15964, 2020.

597

598 Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Transition to linearity of wide neural networks is an
 599 emerging property of assembling weak models. *arXiv preprint arXiv:2203.05104*, 2022.

600

601 Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
 602 asymptotics and the double descent curve. *Communications on Pure and Applied Mathematics*, 75
 603 (4):667–766, 2022.

604

605 Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
 606 double descent: Where bigger models and more data hurt. *Journal of Statistical Mechanics: Theory
 607 and Experiment*, 2021(12):124003, 2021.

608

609 David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
 610 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
 611 the game of go with deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.

612

613 Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
 614 Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
 615 *Conference on Learning Theory*, pp. 3635–3673. PMLR, 2020.

616

617 Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
 618 How neural networks extrapolate: From feedforward to graph neural networks. *arXiv preprint
 619 arXiv:2009.11848*, 2020.

620

621 Greg Yang. Wide feedforward or recurrent neural networks of any architecture are gaussian processes.
 622 *Advances in Neural Information Processing Systems*, 32, 2019.

623

624 Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. *arXiv preprint
 625 arXiv:2006.14548*, 2020.

626

627 Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. *arXiv preprint
 628 arXiv:2011.14522*, 2020.

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

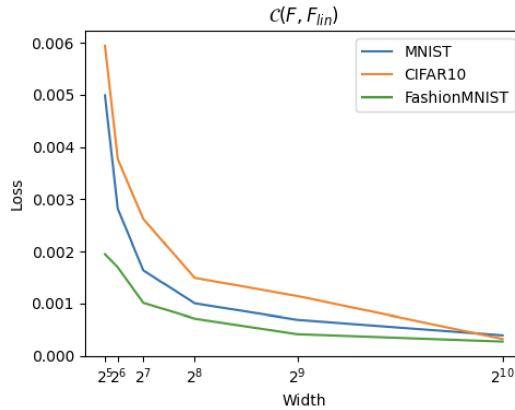
644

645

646

647

648
649
650
651
652
653
654
655
656
657
658
659
660
661



662 Figure 1: Relative loss between the neural network and its linear approximation versus the width, for
663 three datasets. We used learning rate of 1, with 1160 samples, Relu activation, and 1000 epochs.
664

665 A EXPERIMENTAL RESULTS

666 To support our arguments, we present here empirical numerical experiments. We show the training
667 and testing dynamics of neural network, and its linearized approximation for varying network width.
668 We consider a fully-connected architecture with mini-batch gradient descent, using learning rates
669 according to the NTK normalization Lee et al. (2019), where we chose $\eta_0 = 1$. From computational
670 considerations viewpoint, we focus on 10 classes classification, a total of 160 training samples and
671 32 test samples. MSE loss function is used for the training, where each class is represented by a
672 different one-hot vector (10 dimensional vector).
673

674 We perform the analysis for three datasets: CIFAR10, MNIST and FMNIST, for different activation
675 functions: Relu, Sigmoid, Erf, and for different numbers of layers L : 1, 2, and 3 (in addition to the
676 output layer). For instance, 1 layer, and width of 128 in MNIST means: $784 \rightarrow 128 \rightarrow 10$.
677

678 The simulation were done in JAX packaged, and were based on Lee et al. (2019) work. We share our
679 code in GitHub. All the results were obtained on CPU of a Apple M1 Pro 32GB, the running time is
680 about 1 hour in total.

681 The difference function between f and f_{lin} was taken to be:

$$682 C(f, f_{lin}) = \frac{1}{10|X|} \sqrt{\sum_{x \in X} \sum_{i=1}^{10} (f_i(x) - f_{i,lin}(x))^2}, \quad (24)$$

683 where the sub-index represents the output vector index (it depends on the class), and X is the set of
684 the data samples, which consists of 32 samples.
685

686 Calculating high order derivatives is very costly in terms of computational resources. Therefore, we
687 estimated the high order partial derivatives by a random sampling of set D weights at each layer, and
688 averaged over a batch of samples X . Practically, we set $|D| = 60$ and $|X| = 160$, $d_y = 10$:
689

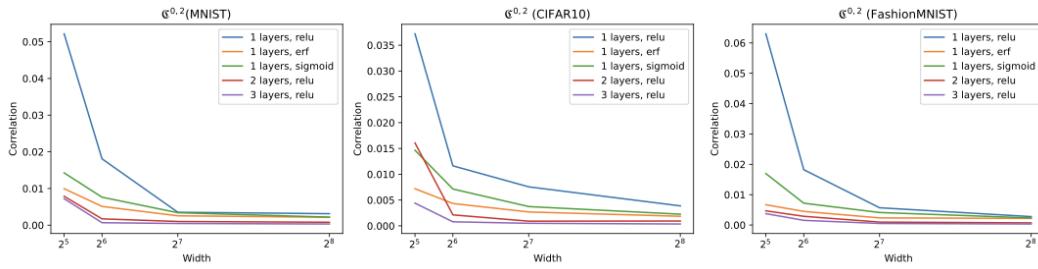
$$690 \mathfrak{C}^{0,2} \approx \frac{1}{S} \sqrt{\frac{1}{d_y} \sum_{i=1}^{10} \sum_{x \in X} \left(\frac{1}{|D|^2} \sum_{\alpha_1, \alpha_2 \in D} \partial_{\alpha_1} f_i(x) \partial_{\alpha_2} f_i(x) \partial_{\alpha_1} \partial_{\alpha_2} f_i(x) \right)^2}, \quad (25)$$

691 and the same goes for $\mathfrak{C}^{0,3}$
692

693 B ADDITIONAL MATHEMATICAL BACKGROUND

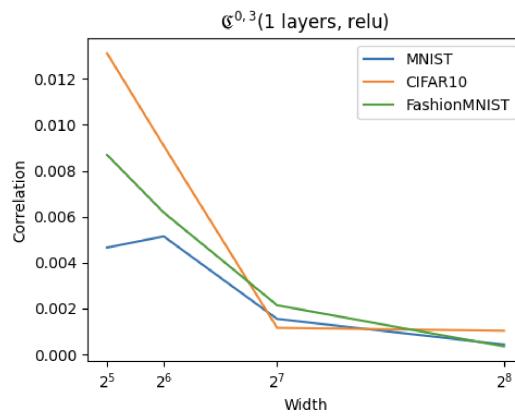
694 In this section, we elaborate on several mathematical concepts that form the foundation for the ideas
695 introduced in Section 2. We begin by defining the subordinate tensor norm and its key properties,
696 then introduce a stochastic variant of "Big O" notation to characterize the asymptotic behavior of
697 random tensors.
698

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716



717 Figure 2: A comparison of the second order correlation approximation versus the width of the
718 network, for different datasets (MNIST, CIFAR10 and FMNIST) and for different activation function
719 (relu, erf, sigmoid) and number of layers (1,2,3). For all of these experiment, we used learning rate of
720 1, 160 samples, and 1000 epochs comparison of the second order correlation approximation versus
721 the width of the network, for different datasets (MNIST, CIFAR10 and FMNIST), and for different
722 activation function (Relu, Erf, Sigmoid) and number of layers (1,2,3). For all of these experiment, we
723 used learning rate of 1, 1160 samples, and 1000 epochs.

724
725
726
727
728
729
730
731
732
733
734



749 Figure 3: Third order correlation approximation function versus different widths, for three datasets.
750 We used learning rate of 1, 1160 samples, Relu activation and 1000 epochs.

751
752
753
754
755

756 B.1 THE SUBORDINATE TENSOR NORM
757

758 Let M be a tensor of rank $r \in \mathbb{N}_0$. Denote all its indices using the vector \vec{i} , such that each
759 i_e for $e = 1 \dots r$ can assume values $i_e = 1 \dots N_e$. Consequently, the tensor comprises a total of
760 $N = N_1 \dots N_r$ elements.

761 We will use the *subordinate norm*, defined as Kreyszig (1991):
762

$$763 \quad \|M\| = \sup \left\{ M \cdot (v^1 \times \dots \times v^r) \mid v^{1 \dots r} \in S_{N_1 \dots r} \right\} = \\ 764 \quad \sup \left\{ \sum_{i_1 \dots i_r=1}^{N_1 \dots N_r} (M_{i_1 \dots i_r} v_{i_1}^1 \dots v_{i_r}^r) \mid v^{1 \dots r} \in S_{N_1 \dots r} \right\}, \quad (26)$$

765 where $S_{N_k} = \{v \in \mathbb{R}^{N_k} : v \cdot v = 1\}$ represents the unit vectors of the appropriate dimensions.
766 This norm satisfies certain algebraic properties outlined in lemma C.1, including: [i] the triangle
767 inequality; [ii] for a tensor M and vectors $v_1 \dots v_q$ with appropriately defined product, the condition
768 $\|M \cdot (v^1 \times \dots \times v^r)\| \leq \|M\| \|v^1\| \dots \|v^r\|$ holds; [iii] Given two tensors $M_{\vec{i}_1}^{(1)}, M_{\vec{i}_2}^{(2)}$ defining
769 $M_{\vec{i}_1, \vec{i}_2} = M_{\vec{i}_1}^{(1)} M_{\vec{i}_2}^{(2)}$ then, $\|M\| = \|M^{(1)}\| \|M^{(2)}\|$.
770

771 Also, one has $\|M\| \leq \|M\|_F$ (with equality for vectors) (C.2) where the Frobenius norm is:
772

$$773 \quad \|M\|_F^2 = \sum_{\vec{i}} M_{\vec{i}}^2. \quad (27)$$

776 B.2 EFFECTIVENESS OF THE STOCHASTIC "BIG O" NOTATION
777

778 Consider a general random tensor sequence, denoted by $M \equiv \{M_n\}_{n=1}^{\infty}$, which henceforth we will
779 consider as a random tensor that depend on a limiting parameter $n \in \mathbb{N}^3$.
780

781 Our objective in this section is to identify a method to describe and bound the asymptotic behavior of
782 such a tensor, which adheres to elementary algebraic properties. Specifically, we aim for the product
783 of multiple bounded random tensors to be constrained by the product of their respective bounds.
784

785 Employing our defined norm (26), we can simplify our problem from general random tensors to
786 positive random variables (rank zero tensors), as our norm satisfies the elementary algebraic properties
787 established in Lemma C.1. This reduction is substantial; however, the challenge of addressing the
788 non-deterministic nature of our variable remains.
789

790 One might initially consider the expectation value of the tensor's norm as a solution. This approach
791 unfortunately falls short, because that for two positive random variables M_1, M_2 their product
792 variance is not bounded by the product of their variance. In fact, for $M_1 = M_2$, the converse is true:
793

$$794 \quad \text{Var}(M_1 M_2) \geq \text{Var}(M_2) \text{Var}(M_1) \quad (28)$$

795 This issue becomes more pronounced when considering the product of multiple such variables, a
796 frequent occurrence in this work. For instance, even with a basic zero-mean normal distribution with
797 standard deviation σ , the higher moments of this distribution factor as $p!! = p(p-2)(p-4) \dots$:
798

$$799 \quad \forall p \in \mathbb{N} : \langle M^p \rangle = p!! \sigma^p. \quad (29)$$

800 When multiplying multiple such variables, these factors can accumulate in the lower moments,
801 rendering this definition impractical for our purposes. Similarly, any attempt to define asymptotic
802 behavior using the variable's moments will encounter similar difficulties.
803

804 To circumvent these challenges, we adopt the stochastic big O notation Dodge (2003); Bishop et al.
805 (2007)⁴.
806

807 C RANDOM TENSORS ASYMPTOTIC BEHAVIOR
808

809 In the following sections, we utilize the results of this section throughout our analyses repeatedly. Due
810 to their intuitive nature, we may not consistently specify when we do so, and which lemma/theorem
811 we are employing.

³The results are applicable not only for \mathbb{N} , but for any other set possessing an absolute order above it

⁴Our definition slightly differs from the standard definition for big O in probability notation, but it is
812 straightforward to show its equivalence

810 C.1 PROPERTIES OF OUR NORM
811812 In this subsection, we explore the properties satisfied by the subordinate norm. We omit the proofs as
813 these properties are either well-known, or straightforward to prove, (and also enjoyable to derive).814 **Lemma C.1** (Algebraic properties of the subordinate norm). The subordinate tensor norm (26)
815 satisfies the following algebraic properties:
816817 1. Given a tensor sequence $\{M^{(d)}\}_{d=1}^D$ where $D \in \mathbb{N} \cup \{\infty\}$, it satisfies the triangle inequality:
818

819
$$\left\| \sum_{d=1}^D M^{(d)} \right\| \leq \sum_{d=1}^D \|M^{(d)}\|, \quad (30)$$

820
821

822 where equality holds when the tensors are positively linearly dependent.
823824 2. Given a tensor $M_{i_1 \dots i_r}$, $1 \leq i_k \leq N_k$ for $1 \leq k \leq r$, and $q \leq r \in \mathbb{N}$ vectors $v_{i_1}^1 \dots v_{i_q}^q$
825 (with the same range of indices), then:
826

827
$$\|M \cdot v^1 \times \dots \times v^q\| \leq \|M\| \|v^1\| \dots \|v^q\|. \quad (31)$$

828 3. Given two tensors $M_{\vec{i}_1}^{(1)}$ and $M_{\vec{i}_2}^{(2)}$, their direct product $M_{\vec{i}_1 \vec{i}_2} = (M^{(1)} * M^{(2)})_{\vec{i}_1 \vec{i}_2} =$
829 $M_{\vec{i}_1}^{(1)} M_{\vec{i}_2}^{(2)}$, satisfies:
830

831
$$\|M\| = \|M^{(1)}\| \|M^{(2)}\|. \quad (32)$$

832

833 The generalization an arbitrary finite number of tensors is trivial.
834835 **Remark C.1.** Parts 1 and 3 are also satisfied by the Frobenius norm.
836837 **Lemma C.2** (Relation to the Frobenius Norm). Given a tensor M of rank $r \in \mathbb{N}$, the following holds:
838839 1. For any tensor M :
840

841
$$\|M\| \leq \|M\|_F, \quad (33)$$

842 and if $r = 1$ (i.e., the tensor is a vector), then:
843

844
$$\|M\| = \|M\|_F = \sqrt{\sum_i M_i^2}. \quad (34)$$

845

846 2. For every $r' = 1 \dots r$:
847

848
$$\|M\| = \sup \left\{ \left\| M \cdot \begin{pmatrix} v^1 \times \dots \times v^{r'-1} \times \\ v^{r'+1} \times \dots \times v^r \end{pmatrix} \right\|_F \mid \begin{array}{l} v^1 \in S_{N_1} \dots v^{r'-1} \in S_{N_{r'-1}} \\ v^{r'+1} \in S_{N_{r'+1}} \dots v^r \in S_{N_r} \end{array} \right\}. \quad (35)$$

849

850 The first part of the lemma demonstrates that our norm is always bounded by the Frobenius norm,
851 and the two norms coincide for vectors. The second part generalizes the first, indicating that when
852 reducing any tensor to a vector, the two norms once again agree.
853854 **Lemma C.3** (Properties of the Maximizing Vectors). Given a tensor M of rank $r \in \mathbb{N}$, there exist
855 vectors $v^1 \dots v^r$ of norm 1 such that:
856

857
$$\|M\| = M \cdot v^1 \times \dots \times v^r. \quad (36)$$

858 This result indicates that the supremum is indeed a maximum. The vectors $v^1 \dots v^{r'-1}, v^{r'+1} \dots v^r$
859 are also the ones that maximize the cases demonstrated in the previous lemma.
860861 Moreover, if the tensor is symmetric with respect to the permutation of the indices i_1, i_2, \dots, i_q and
862 is non-zero, then:
863

864
$$v^{i_1} = v^{i_2} = \dots = v^{i_q}. \quad (37)$$

865 **Remark C.2.** For $M = 0$, any set of vectors maximizes our result, irrespective of whether the
866 vectors are identical or distinct.
867

864 C.2 EXISTENCE AND UNIQUENESS OF THE TENSOR ASYMPTOTIC BEHAVIOR
865

866 In this section, we discuss some of the more general properties that the tensor asymptotic behavior
867 notation satisfies, regardless of the norm it is defined with respect to. The first lemma we present is a
868 useful equivalent definition for bounding tensor asymptotic behavior. This equivalent definition will
869 be beneficial for our later discussion:

870 **Lemma C.4** (Equivalent Definitions for Tensor's Asymptotic Bound). For any random tensor M
871 and $f \in \mathcal{N}$, the two definitions for bounding the tensor's asymptotic behavior $O(M) \leq O(f)$ are
872 equivalent (the first is the original definition, (2.1)):

873 1.

$$874 \quad 875 \quad 876 \quad 877 \quad 878 \quad 879 \quad \forall g \in \mathcal{N} \text{ s.t } f = o(g) : \lim_{n \rightarrow \infty} P(\|M_n\| \leq g(n)) = 1. \quad (38)$$

2.

$$874 \quad 875 \quad 876 \quad 877 \quad 878 \quad 879 \quad \lim_{c \rightarrow \infty} \lim_{n \rightarrow \infty} P(\|M_n\| \leq cf(n)) = 1. \quad (39)$$

880 (The same applies for $O(f) \leq O(M)$).

881 The order in which we take the limits in equation 39 is crucial, as any random tensor satisfies the
882 equation for any f , if we take first the limit of c .

883 It is straightforward to show that any random tensor M has lower and upper bounds:

884 **Lemma C.5** (Bounding Tensor Asymptotic Behavior). Given a random tensor M , there exist
885 $h_-, h_+ \in \mathcal{N}$ such that:

$$886 \quad 887 \quad 888 \quad O(h_-) \leq O(M) \leq O(h_+). \quad (40)$$

889 To prove the asymptotic tensor behavior has meaning, we need to show that bounds not only always
890 exist, but that **there is always one well-defined "best" upper bound - theorem 2.1**. We prove this
891 theorem after lemma C.5 by using Zorn's lemma.

892 **Remark C.3.** It is simple to show that if there exist lower and upper bounds such that $h_+ = h_-$ and
893 the exact asymptotic behavior is well defined, they are the "definite bound" of theorem 2.1.

894 **Proof - Lemma C.4.**

895 We will prove the two directions of the lemma separately.

896 Assuming the second condition in equation 39 is satisfied:

897 Given some $0 < p < 1$, we know using equation 39 that there is some $0 < c$ such that for sufficiently
898 large $n \in \mathbb{N}$:

$$900 \quad 901 \quad 902 \quad p \leq P(\|M_n\| \leq cf(n)). \quad (41)$$

903 Given some $g \in \mathcal{N}$ such that $f = o(g)$, we know that for sufficiently large $n \in \mathbb{N}$:

$$904 \quad 905 \quad 906 \quad cf(n) \leq g(n), \quad (42)$$

907 which means that for sufficiently large $n \in \mathbb{N}$:

$$908 \quad 909 \quad 910 \quad p \leq P(\|M_n\| \leq cf(n)) \leq P(\|M_n\| \leq g(n)). \quad (43)$$

911 As we proved that for any $0 < p < 1$ we get that:

$$912 \quad 913 \quad 914 \quad \lim_{n \rightarrow \infty} (P(\|M_n\| \leq g(n))) = 1. \quad (44)$$

915 And as we proved that for any arbitrary $g \in \mathcal{N}$ such that $f = o(g)$, we proved the first part of the
916 lemma.

917 Assuming the first condition in equation 38, is satisfied:

918 If we assume in contradiction that equation 39 is not satisfied, we get that there is some $0 < p < 1$
919 such as:

$$920 \quad 921 \quad 922 \quad \forall n_0 \in \mathbb{N} \quad 0 < c \exists n_0 \leq n \in \mathbb{N} : P(\|M_n\| \leq cf(n)) < p. \quad (45)$$

918 In particular that means that if we choose the sequence $\{c_i = i\}_{i=1}^{\infty}$, there are $\tilde{n}_1 < \tilde{n}_2 < \tilde{n}_3 \dots \in \mathbb{N}$
 919 such as:

$$920 \quad \forall i \in \mathbb{N} : P(\|M_{\tilde{n}_i}\| \leq i f(\tilde{n}_i)) < p. \quad (46)$$

921 The reason that we can require that $\{\tilde{n}_i\}_{i=1}^{\infty}$ is rising, is that we know that we can find such n -s for
 922 any sufficiently large n_0 and for any c . So by induction we can require every time that every \tilde{n}_i is
 923 bigger than all previous \tilde{n} -s.

924 Assuming the second condition of equation 39 is satisfied:

925 Suppose, by contradiction, that equation 38 is not satisfied. Then, there exists some $0 < p < 1$ such
 926 that:

$$928 \quad \forall n_0 \in \mathbb{N}, 0 < c, \exists n_0 \leq n \in \mathbb{N} : P(\|M_n\| \leq c f(n)) < p. \quad (47)$$

929 In particular, if we choose the sequence $\forall i \in \mathbb{N} : c_i = i$, there exist $\tilde{n}_1 < \tilde{n}_2 < \tilde{n}_3 \dots \in \mathbb{N}$ such that:

$$931 \quad \forall i \in \mathbb{N} : P(\|M_{\tilde{n}_i}\| \leq i f(\tilde{n}_i)) < p. \quad (48)$$

932 Since we can find such n -values for any sufficiently large n_0 and any c , and we can require by
 933 induction that each \tilde{n}_i is greater than all previous \tilde{n} -values.

934 We can now define the function:

$$936 \quad \forall n \in \mathbb{N} : g(n) = (\max\{i \in \mathbb{N} \mid \tilde{n}_i \leq n\}) f(n). \quad (49)$$

937 Since $\{\tilde{n}_i\}_{i=1}^{\infty}$ is increasing, we know by the Archimedean property that $\max\{i \in \mathbb{N} \mid \tilde{n}_i \leq n\}$ is
 938 also increasing and unbounded, which implies:

$$940 \quad \lim_{n \rightarrow \infty} \frac{g(n)}{f(n)} = \lim_{n \rightarrow \infty} \max\{i \in \mathbb{N} \mid \tilde{n}_i \leq n\} = \infty. \quad (50)$$

942 However, by using equations 46 and 49, we also have:

$$944 \quad \forall n_0 \in \mathbb{N}, \exists n_0 \leq n \in \mathbb{N} : P(\|M_n\| \leq g(n)) < p, \quad (51)$$

945 which means that:

$$946 \quad \lim_{n \rightarrow \infty} P(\|M_n\| \leq g(n)) \neq 1. \quad (52)$$

948 This contradicts our assumption in equation 38. Therefore, by reductio ad impossibile, equation 39
 949 must be satisfied, completing the proof for the second direction. \square

950 **Proof - Lemma C.5.**

952 For a trivial lower bound, we choose h_- such that $\forall n \in \mathbb{N} : h_-(n) = 0$.

953 We define h_+ as follows:

$$955 \quad \forall n \in \mathbb{N} : h_+(n) = \inf \left\{ m \in \mathbb{R} \mid 1 - \frac{1}{n} \leq P(\|M_n\| \leq m) \right\}. \quad (53)$$

958 The infimum and the function are well defined because:

- 960 1. The set is well defined.
- 961 2. The set is non-empty; if it were empty, it would imply that there is some probability that
 $962 \quad \|M\|$, which is a positive number, is larger than any real number, which is impossible.
- 963 3. The set is defined with a total order " $<$ " and has a lower bound, $m = 0$.

966 Since for any $0 < p < 1$, there exists some $n_0 \in \mathbb{N}$ such that:

$$967 \quad \forall n_0 \leq n \in \mathbb{N} : p \leq P(\|M_n\| \leq m), \quad (54)$$

969 we know that for any $h_+ < g \in \mathcal{N}$, this is also true, which implies:

$$970 \quad O(M) \leq O(h_+), \quad (55)$$

971 completing the proof. \square

972 **Proof - Theorem 2.1.**973 General Idea of the Proof:

974 The proof proceeds as follows:

975

- 976 • We consider the set of all upper bounds for M , denoted by \mathcal{Z} , and use Zorn's lemma to
977 show that every chain⁵ in this set has a lower bound within \mathcal{Z} .
- 978 • Applying Zorn's lemma again, we demonstrate that \mathcal{Z} has a minimum.
- 979 • We then show that the limiting behavior of this minimum is unique.

980 Existence of an Infimum for the Upper Bound Set:

981 We begin by defining the set:

982
$$\mathcal{Z} = \{h \in \mathcal{N} \mid O(M) \leq O(h)\} . \quad (56)$$

983 This set is:

984

- 985 1. Well defined.
- 986 2. Non-empty (as proven in lemma C.5).
- 987 3. Defined with a partial order $h_1 < h_2 \Leftrightarrow O(h_1) < O(h_2)$.

988 According to Zorn's lemma, if all chains in this set have a lower bound in \mathcal{Z} , then \mathcal{Z} has at least one
989 minimum.990 Given some chain in the set, $\mathcal{C} \subseteq \mathcal{Z}$, we know it is lower bounded by the function h_- , which means
991 (by using Zorn's lemma) it has at least one infimum (a lower bound without any larger lower bounds).
992 We will choose such an infimum and denote it by $I \in \mathcal{N}$.993 Proving that the Infimum is in \mathcal{Z} :994 We assume, by contradiction, that this infimum is not in \mathcal{Z} , which means there exists some $g \in \mathcal{N}$
995 such that $I = o(g)$ and for every $0 < p < 1$, $n_0 \in \mathbb{N}$, there exists $n_0 \leq n \in \mathbb{N}$ such that:

996
$$P(\|M_n\| \leq g(n)) < p . \quad (57)$$

997 Since $I = o(g)$, we know that for any $c \in \mathbb{R}$ and sufficiently large $n \in \mathbb{N}$:

998
$$cI(n) \leq g(n) . \quad (58)$$

999 Combining these equations, we obtain:

1000
$$\forall 0 < c, n_0 \in \mathbb{N} \exists n_0 \leq n \in \mathbb{N} : P(\|M_n\| \leq cI(n)) < p . \quad (59)$$

1001 In particular, if we choose the sequence $\forall i \in \mathbb{N} : c_i = i^2$, there exist $\tilde{n}_1 < \tilde{n}_2 < \tilde{n}_3 \dots \in \mathbb{N}$ such that:

1002
$$\forall i \in \mathbb{N} : P(\|M_{\tilde{n}_i}\| \leq i^2 I(\tilde{n}_i)) < p . \quad (60)$$

1003 We can require that $\{\tilde{n}_i\}_{i=1}^{\infty}$ is increasing for the same reason as before, as we know that we can find
1004 such arbitrarily large n -values for any sufficiently large n_0 and for any c , so we can, by induction,
1005 demand that each \tilde{n}_i is greater than all previous $\tilde{n}_1 \dots \tilde{n}_{i-1}$.

1006 Now, we define the function:

1007
$$J(n) = \begin{cases} iI(n) : \exists i \in \mathbb{N} : n = \tilde{n}_i \\ I(n) : \text{else} \end{cases} . \quad (61)$$

1008 This function is well defined because there is only one i for any n such that $n = \tilde{n}_i$, as it is an
1009 increasing sequences.1010 ⁵A chain, as defined in set theory, is a subset for which the given partial order becomes a total order.

1026 Using equations 60,61, we find that the subsequence $\{\tilde{n}_i\}_{i=1}^{\infty}$ satisfies:
 1027

$$1028 \forall i \in \mathbb{N} : P(\|M(q)_{\tilde{n}_i}\| \leq iJ(\tilde{n}_i)) < p. \quad (62)$$

1030 Applying lemma C.4 for the equivalency of the asymptotic bound definition, we conclude that above
 1031 this subsequence $J \notin \mathcal{Z}$, which implies that above this subsequence J is a lower bound of \mathcal{Z} and
 1032 consequently, also of \mathcal{C} . Moreover, for all other n , we have $J = I$, and since I is a lower bound of
 1033 \mathcal{C} , so is J . Since every $n \in \mathbb{N}$ belongs to one of these subsequences, we conclude that J is a lower
 1034 bound of \mathcal{C} in general.

1035 Furthermore, for every $i \in \mathbb{N}$ as $1 \leq c_i$, we have:

$$1036 \forall n : I(n) \leq J(n) \rightarrow O(I) \leq O(J). \quad (63)$$

1038 However, since $\{\tilde{n}_i\}_{i=1}^{\infty}$ is increasing and unbounded, we know that there exists at least one subse-
 1039 quence such that:

$$1040 \lim_{\tilde{n}_i \rightarrow \infty} \frac{J(\tilde{n}_i)}{I(\tilde{n}_i)} = \lim_{i \rightarrow \infty} c_i = \infty \rightarrow O(J) \neq O(I). \quad (64)$$

1043 This implies:

$$1044 O(I) < O(J) \rightarrow I < J. \quad (65)$$

1046 We have discovered that J is greater than I , but smaller than all functions in \mathcal{C} , which implies that it is
 1047 a larger lower bound than the infimum, which is impossible! and implies by "reductio ad impossibile"
 1048 that every chain in \mathcal{Z} , has a lower bound in \mathcal{Z} .

1049 Existence and Uniqueness of the Minimum:

1051 Using Zorn's lemma, we now know that \mathcal{Z} has at least one minimum, denoted by $f \in \mathcal{N}$. Our
 1052 remaining task is to show that all other minima in \mathcal{Z} exhibit the same limiting behavior as f , which
 1053 implies the uniqueness of the minimal limiting behavior.

1054 Let $g \in \mathcal{N}$ be another minimum. We define:

$$1056 \forall n \in \mathbb{N} : h(n) = \min\{f(n), g(n)\}. \quad (66)$$

1057 We know that $h \leq f, g$ (as all of its elements are smaller or equal to those of f, g), and we also know
 1058 that $h \in \mathcal{Z}$ since $f, g \in \mathcal{Z}$ and for every $0 < p < 1$ we can choose the maximal n_0 from f and g .
 1059 Thus, $h \in \mathcal{Z}$, but $h \leq f, g$ as well, where f, g are minima themselves. This implies:

$$1061 O(f) = O(h) = O(g) \rightarrow O(f) = O(g). \quad (67)$$

1063 Therefore, there exists a unique minimal limiting behavior, which implies that the tensor's asymptotic
 1064 behavior is always well-defined. \square

1065 **Remark C.4.** In our proof, we employed Zorn's lemma twice. First, we used it to demonstrate the
 1066 existence of an infimum for every chain, and then, after showing that these infima belong to \mathcal{Z} , we
 1067 employed it again to establish that \mathcal{Z} has a minimum. At first glance, it may seem perplexing that we
 1068 needed to rely on Zorn's lemma, an incredibly abstract and powerful tool equivalent to the somewhat
 1069 controversial axiom of choice, to prove that the tensor's asymptotic behavior, which has a much more
 1070 grounded and intuitive meaning, is well-defined.

1072 One possible explanation for this discrepancy is that we may not have actually required the full power
 1073 of the axiom of choice, and our structures could be simple enough that an alternative approach could
 1074 have been taken to prove our theorem without using Zorn's lemma. We believe, however, that in
 1075 the most general case, Zorn's lemma was indeed necessary, but it was only relevant for extreme
 1076 distributions lacking any tangible "physical meaning." For any well-defined set of distributions with
 1077 a clear underlying meaning, one could potentially find an alternative method for demonstrating the
 1078 existence of a tight bound without invoking Zorn's lemma.

1079 In any case, as we demonstrated in Lemma C.5, there is no need for any of these high-level tools to
 prove the existence of an upper bound.

1080 C.3 PROPERTIES OF THE ASYMPTOTIC BEHAVIOR NOTATION
1081

1082 Having established that our notation is meaningful, we now aim to demonstrate its usefulness. First,
1083 we need to address our earlier issue and define "uniform asymptotic bound." Once again, we omit the
1084 proofs in this (and next) sections.

1085 **Definition C.1** (Uniform Tensors Asymptotic Bound). Given a sequence of random tensors
1086 $\{M^{(d)}\}_{d=1}^D$, where $D \in \mathbb{N} \cup \{\infty\}$ (or, more precisely, a sequence of random tensor sequence)
1087 with a limiting parameter n , we say that it is uniformly asymptotically upper bounded by $f \in \mathcal{N}$
1088 under some rising monotonic function $\mathcal{K}^{1 \dots D} : \mathbb{R} \rightarrow \mathbb{R}$:

$$1090 \forall d = 1 \dots D : O(M^{(d)}) \leq O(\mathcal{K}^d \circ f) \quad \text{Uniformly}, \quad (68)$$

1091 if and only if:

$$1094 \forall g \in \mathcal{N} \text{ s.t } f = o(g) : \lim_{n \rightarrow \infty} P\left(\forall d = 1 \dots D : \|M_n^{(d)}\| \leq \mathcal{K}^d \circ g(n)\right) = 1. \quad (69)$$

1095 The definition for a uniform lower asymptotic bound is analogous with reversed directions.

1096 **Remark C.5.** As discussed in definition 2.1, it is clear that if D is finite, then a uniform bound is
1097 equivalent to a point-wise bound.

1098 **Lemma C.6** (Asymptotic Notation Inherits its Norm Properties). Given a random tensor M and a
1099 sequence of jointly distributed random tensors $\{M^{(d)}\}_{d=1}^D$ (with M as well), where $D \in \mathbb{N} \cup \{\infty\}$,
1100 such that they are all uniformly bounded:

$$1103 \forall d = 1 \dots D : O(M^{(d)}) \leq O(\mathcal{K}^d \circ f) \quad \text{Uniformly}, \quad (70)$$

1104 then:

1107 1. If some positive linear combination of $M^{(d)}$'s norms satisfies an inequality of the form:

$$1109 \|M\| \leq \sum_{\tilde{d}=1}^{\tilde{D}} \lambda_{\tilde{d}} \prod_{d=D_{\tilde{d}-1}+1}^{D_{\tilde{d}}} \|M_d\|, \quad (71)$$

1112 where all of the coefficients are positive: $\forall d = 1 \dots \tilde{D} : 0 \leq \lambda_{\tilde{d}}$ and we divided $1 \dots D$ into a
1113 sequence of finite intervals: $0 = D_1 < D_2 < \dots < D_{\tilde{D}} = D$. Then the asymptotic behavior
1114 of all the tensors satisfies the same inequality as well for every $h \sim f$:

$$1116 O(M) \leq O\left(\sum_{\tilde{d}=1}^{\tilde{D}} \lambda_{\tilde{d}} \prod_{d=D_{\tilde{d}-1}+1}^{D_{\tilde{d}}} \mathcal{K}^d \circ h\right), \quad (72)$$

1119 and if the inequality is an equality for the norm, it is also an equality for the "large O -s."

1121 2. Our asymptotic notation inherits all of the properties presented in lemma C.1.

1122 **Remark C.6.** The lemma still holds even if the tensor have additional indices, as we will see in
1123 section (G.4), provided the number of additional index possibilities remains finite in n .

1125 C.4 EXPLORING THE RELATIONSHIP BETWEEN ASYMPTOTIC BEHAVIOR NOTATION AND THE
1126 TENSORS' MOMENTS
1127

1128 The final aspect of the asymptotic behavior notation we wish to explore is the relationship between
1129 this notation and the moments of our tensors' norm or variables. This relationship is relatively
1130 intuitive and straightforward, and will be useful in Section (G). We first need to introduce a simple
1131 notation for every tensor $M_{\vec{i}}$ that will assist in examining tensor moments, the norm expectation
1132 value, defined as:

$$1133 [M] = \sqrt{\frac{1}{N} \left\langle \|M\|^2 \right\rangle}, \quad (73)$$

1134 **Lemma C.7** (Asymptotic Behavior and Tensor Moments Equivalency). Given a random tensor M
 1135 and a function $f \in \mathcal{N}$, then:

$$1136 \quad O(M) \leq O(f) , \quad (74)$$

1137 if and only if with probability arbitrarily close to 1:

$$1139 \quad [M] = O(f) . \quad (75)$$

1140 The lemma is also applicable for the uniform bound in the case of infinite number random tensors.
 1141

1142 In (4.1), we highlighted that most assertions concerning the convergence of $\mathcal{C}'(F - \hat{y})$ relates to its
 1143 expected value. However, we can now also associate it with its asymptotic behavior throughout the
 1144 entire training trajectory. This association stems from the understanding that, if our system exhibits a
 1145 known average decay, the likelihood of significant deviations from this typical variance range must
 1146 also decrease, and exponentially (at any decaying rate that is slower than our original rate). Given
 1147 that decaying geometric sums are convergent, we can infer that the overall probability of the system
 1148 defying our predicted asymptotic behavior is likewise convergent. Given that we can choose the
 1149 scaling of this probability arbitrarily, we can set conditions such that the cumulative probability of
 1150 any deviation is arbitrary small. We introduce this notion for the reader's consideration and propose a
 1151 detailed formulation as a future exercise.

1152 D ADDITIONAL DEFINITIONS

1154 D.1 DERIVATIVES CORRELATIONS ASYMPTOTIC BEHAVIOR

1156 In our main text (3.2.1), we discussed that the definition for the asymptotic behavior of the derivatives
 1157 correlations is slightly nuanced, due to the many different potential combinations of distinct inputs.
 1158 Here we define it rigorously.

1159 **Definition D.1** (Derivatives Correlations Asymptotic Behavior). For every $D \in \mathbb{N}^0$, $d \in \mathbb{N}$, and
 1160 $d_1 \leq d_2 \leq \dots \leq d_{\tilde{d}} \in \mathbb{N}$ such that $d_1 + \dots + d_{\tilde{d}} = d$:

$$1162 \quad O_{d_1 \dots d_{\tilde{d}}}(\mathcal{C}^{D,d}) \equiv O_{x_0, x_1 \dots x_{\tilde{d}} \in \mathcal{P}} \left(\mathcal{C}^{D,d} \left(x_0, x_1^{\times d_1} \dots x_{\tilde{d}}^{\times d_{\tilde{d}}} \right) \right) . \quad (76)$$

1164 Inputs order doesn't matter as correlations are symmetric concerning their first derivatives. The factor
 1165 $\frac{d!}{d_1! \dots d_{\tilde{d}}!}$ accounts for the possible combinations. If $f \in \mathcal{N}$, we say:

$$1166 \quad \mathcal{C}^{D,d} = O(f) , \quad (77)$$

1168 if and only if all combinations are uniformly bound by f . In the continuous limit (extended training
 1169 time), only $d_1 = \dots = d_d = 1$ remains relevant.

1171 D.2 PROPERLY NORMALISED GDML

1173 Our main theorems (3.1, 3.2) and corollary (4.1) are applicable for systems that are properly scaled
 1174 in the initial condition where $n \rightarrow \infty$, defined as follows.

1175 **Definition D.2** (PGDML). Given a GDML as described in section 3.1, we will say it is properly
 1176 normalized and denote it as PGDML if and only if:

$$1177 \quad F(\theta_0) = O(n^0) \quad (78)$$

$$1179 \quad \Delta F(\theta_0) = F(\theta(1)) - F(\theta_0) = O(n^0) \quad (79)$$

$$1180 \quad \mathcal{C}^1 = (N\eta) O(\nabla F(\theta_0))^2 \quad (80)$$

$$1182 \quad \forall d \in \mathbb{N} : O(\nabla^{\times d} F(\theta_0)) \leq O(\nabla F(\theta_0))^d \quad \text{Uniformly.} \quad (81)$$

1183 Where n^0 symbolizes n in the power of zero.

1185 The first two conditions (78, 79) ensure that our system scale remains finite for the initial condition.
 1186 Condition 80 stipulates that the asymptotic behavior of the kernel is maximal, given the asymptotic
 1187 behavior of the first derivative. This condition ensures that our system is genuinely learning and
 1188 not only memorizing. This is because the kernel for different inputs is responsible for extrapolation,

1188 while the kernel with the same input twice responsible for memorization⁶. Condition 81 asserts that
 1189 none of the higher derivatives dominate the first for $n \rightarrow \infty$, a property that most realistic scalable
 1190 GDMLs satisfy, because if it is not satisfied, gradient descent becomes irrelevant. We show that wide
 1191 neural networks in general satisfy that property in appendix G.5.
 1192

1193 E PROOF OF THEOREMS 3.1,3.2

1195 We can now proceed with the proofs of theorems 3.1 and 3.2. The general idea has been outlined at
 1196 the end of section 3.3.1.
 1197

1198 E.1 FIRST DIRECTION OF THEOREMS 3.1,3.2

1200 Now that we understand how to work with the asymptotic behavior of random tensors, we can proceed
 1201 to prove our main theorems and corollary. We will begin with the first direction of the theorems.
 1202

1203 **Lemma E.1** (Linearization Requires Weak Correlation).

- 1204 1. In theorem 3.1, if condition 1 is satisfied, then condition 2 is satisfied as well.
- 1205 2. In theorem 3.2, if condition 1 is satisfied, then condition 2 is satisfied as well.

1207 **Proof.** We only demonstrate that the $O_1(\mathcal{C})$ are bounded; The proof the rest are bounded is the same,
 1208 by considering more learning steps after the initial condition.
 1209

1210 For the initial condition, we know that any reparameterization $0 < r$ satisfies (8,20):
 1211

$$\begin{aligned}
 & F(\theta(1)) - F_{lin}(1) = \\
 & \sum_{d=1}^{\infty} \frac{(r\eta)^d}{d!} \left(\nabla^{\times d} F(\theta_0) \left(\nabla F(\theta_0)(x_1)^T \right)^{\times d} \right) (-\mathcal{C}'(F(\theta_0)(x_1), \hat{y}(x_1)))^{\times d} - \\
 & \quad \left(-(r\eta) \nabla F(\theta_0) \nabla F(\theta_0)(x_1)^T (-\mathcal{C}'(F(\theta_0)(x_1), \hat{y}(x_1))) \right) = \\
 & \sum_{d=2}^{\infty} r^d \left(\frac{\eta^d}{d!} \nabla^{\times d} F(\theta_0) \left(\nabla F(\theta_0)(x_1)^T \right)^{\times d} \right) (-\mathcal{C}'(F(\theta_0)(x_1), \hat{y}(x_1)))^{\times d} = \\
 & \quad \sum_{d=2}^{\infty} r^d (\mathcal{C}^d)^{\cdot, x_1^{\times d}} (-\mathcal{C}'(F(\theta_0)(x_1), \hat{y}(x_1)))^{\times d},
 \end{aligned} \tag{82}$$

1220 and in the same way for every $D \in \mathbb{N}$:

$$\begin{aligned}
 & \frac{(r\eta)^{\frac{D}{2}}}{D!} \nabla^{\times D} F(\theta(1)) - \frac{(r\eta)^{\frac{D}{2}}}{D!} \nabla^{\times D} F_{lin}(\theta(1)) = \\
 & \sum_{d=1}^{\infty} r^{\frac{D}{2}+d} (\mathcal{C}^{D,d})^{\cdot, x_1^{\times d}} (-\mathcal{C}'(F(\theta_0)(x_1), \hat{y}(x_1)))^{\times d}.
 \end{aligned} \tag{83}$$

1225 Utilizing lemma C.6, it becomes evident that for properly normalized gradient descent-based systems:
 1226

$$O\left(\mathcal{C}^{D,d} \mathcal{C}'(F(\theta_0), \hat{y})^{\times d}\right) \leq O(\mathcal{C}^{D,d}) O\left(\mathcal{C}'(F(\theta_0), \hat{y})^{\times d}\right) = O(\mathcal{C}^{D,d}). \tag{84}$$

1229 However, since our theorem should work for any \hat{y} , we can choose $U = F(\theta_0) + c$, and obtain:
 1230

$$O\left(\mathcal{C}^{D,d} \mathcal{C}'(F(\theta_0), \hat{y})^{\times d}\right) \propto O\left(\mathcal{C}^{D,d} \mathcal{C}'(c)^{\times d}\right) = O(\mathcal{C}^{D,d}), \tag{85}$$

1233 as we can choose c such that $\mathcal{C}'(c)$ is the vector that maximizes the correlation, as \mathcal{C}' is convex and
 1234 the correlations are symmetrical.

1235 Given that we can choose an open set of different scalings of r , we know the different elements in the
 1236 series cannot cancel each other out. Consequently, for $F - F_{lin}$ to decay, all the distinct elements
 1237 must decay.

1238 Assuming condition 1 in theorem 3.1:

1239
 1240 ⁶This is a direct consequence of the NTK equation of motion (8). For example, in the case of a single input
 1241 point, the system behaves like a memorization algorithm for that one input. However, the term $\Theta(x, x')$ governs
 how the value of the function at x is influenced by its values at other points x' .

Given that $O(F(\theta(1)) - F_{lin}(1)) = O\left(\frac{1}{m(n)}\right)$ and for every $D \in \mathbb{N}$ we have $O\left(\eta^{\frac{D}{2}} \nabla^{\times D} F(\theta(1)) - \eta^{\frac{D}{2}} \nabla^{\times D} F(\theta_0)\right) = O\left(\frac{1}{\sqrt{m(n)}}\right)$, it follows that each correlation must decay at least like:

$$\forall 2 \leq d \in \mathbb{N} : O(\mathfrak{C}^d) \leq O\left(\frac{1}{m(n)}\right) \text{ Uniformly,} \quad (86)$$

and

$$\forall D, d \in \mathbb{N} : O(\mathfrak{C}^{D,d}) \leq O\left(\frac{1}{\sqrt{m(n)}}\right) \text{ Uniformly.} \quad (87)$$

This completes the first part of the proof.

Assuming condition 1 in theorem 3.2:

By taking $r(n)$ arbitrarily close to $m(n)$, we find that for $F(\theta(1)) - F_{lin}(1)$ to decay, $r^d \mathfrak{C}^d$ must decay as well, which implies that:

$$\forall d \in \mathbb{N} : O(\mathfrak{C}^d) \leq O\left(\frac{1}{m(n)}\right)^d, \quad (88)$$

and

$$\forall D \in \mathbb{N}^0, d \in \mathbb{N} : O(\mathfrak{C}^{D,d}) \leq O\left(\frac{1}{\sqrt{m(n)}}\right)^d. \quad (89)$$

This concludes our proof. \square

E.2 SECOND DIRECTION OF THEOREMS 3.1,3.2

We will now prove the other direction of the theorems, focusing on theorem 3.1 since the proofs for the other theorems are essentially the same. It should also be noted that the corollary 4.1, which will be proven next, is almost a generalization of this direction, except that it is only applicable for sufficiently small learning rates.

Lemma E.2 (Asymptotic Behavior Normalization for weakly Correlated PGDML). Consider a weakly correlated PGDML as described in theorems 3.1,3.2 then we have:

$$\forall D \in \mathbb{N} : \eta^D O\left(\nabla^{\times D} F(\theta_0)\right)^2 \leq O(1) \text{ Uniformly.} \quad (90)$$

With Lemma E.2 at hand, we can now demonstrate the second direction of the theorem by proving a slightly stronger version of it.

Lemma E.3 (Weak Correlations Create Linearization - First Theorem). Assuming the conditions of theorem 3.1 part 1, then for every $s = 1 \dots S$:

1.

$$O(F(\theta(s)) - F_{lin}(s)) \leq O\left(\frac{1}{m(n)}\right). \quad (91)$$

2.

$$O\left(\eta^{\frac{1}{2}} \nabla F(\theta(s)) - \eta^{\frac{1}{2}} \nabla F(\theta_0)\right) \leq \gamma. \quad (92)$$

3. For every $2 \leq D \in \mathbb{N}$

$$O\left(\eta^{\frac{D}{2}} \nabla^{\times D} F(\theta(s)) - \eta^{\frac{D}{2}} \nabla^{\times D} F(\theta_0)\right) \leq O\left(\frac{1}{\sqrt{m(n)}}\right) \text{ uniformly.} \quad (93)$$

1296 Here, γ is an asymptotic notation such that $\gamma = O\left(\frac{1}{\sqrt{m(n)}}\right)$, and when multiplied with a first
 1297 derivative of the hypothesis function in its initial condition, it exhibits an asymptotic behavior of
 1298 $O\left(\gamma_t \eta^{\frac{1}{2}} \nabla F(\theta_0)\right) \leq O\left(\frac{1}{m(n)}\right)$.
 1299

1300
 1301 From proving lemmas E.1,E.3, we can conclude that theorems 3.1,3.2 have been proven.
 1302

1303 **Proof of Lemma E.2.**
 1304

1305 Assume that the lemma is not satisfied, i.e.,

$$1306 \eta O(\nabla F(\theta_0))^2 \not\leq O(1), \quad (94)$$

1307 then for some probability $0 < p < 1$, we have:
 1308

$$1309 O(1) < \eta O(\nabla F(\theta_0))^2. \quad (95)$$

1310 Utilizing the third property of PGDML systems (80), we conclude that for some relevant probability:
 1311

$$1312 O(1) < O(\mathfrak{C}^1). \quad (96)$$

1313 However, for the reasons discussed earlier, the different elements in the equation of motion cannot
 1314 cancel each other out, as η can be chosen from an open set. This implies that the second property of
 1315 PGDML systems (79) cannot be satisfied, leading to the conclusion that:
 1316

$$1317 \eta O(\nabla F(\theta_0))^2 \leq O(1), \quad (97)$$

1318 must hold.
 1319

1320 By employing the fourth property (81) of PGDML systems, we obtain the desired result.
 1321 \square
 1322

1323 **Proof of Lemma E.3.**
 1324

We will prove the lemma using induction over the learning steps (of course). The induction base for
 1325 the "zero" step, where $\theta = \theta_0$, is trivial. Assuming the lemma holds for $s \in \mathbb{N}^0$, we observe that for
 1326 every $(D \in \mathbb{N}^0, d \in \mathbb{N}) \neq (0, 1)$, the d, D correlation satisfies the following for sufficiently small
 1327 learning rate η :

$$\begin{aligned} 1328 \mathfrak{C}^{D,d}(\theta(s)) &= \eta^{\frac{D}{2}+d} \nabla^{D+d} F(\theta(s))^T \nabla F(\theta(s))^{\times d} \\ 1329 &= \\ 1330 \left(\eta^{\frac{D+d}{2}} \nabla^{D+d} F(\theta_0) + \gamma\right)^T \left(\eta^{\frac{1}{2}} \nabla F(\theta_0) + \gamma\right)^{\times d} \\ 1331 &= \\ 1332 \mathfrak{C}^{D,d} + \gamma^T \left(\eta^{\frac{1}{2}} \nabla F(\theta_0)\right)^{\times d} + \gamma^T \left(\gamma \times \left(\eta^{\frac{1}{2}} \nabla F(\theta_0)\right)^{\times d-1}\right) + \\ 1333 & \quad \eta^{\frac{D+d}{2}} \nabla^{D+d} F(\theta_0) \left(\gamma \times \left(\eta^{\frac{1}{2}} \nabla F(\theta_0)\right)^{\times d-1}\right) + \text{comb} + O\left(\frac{1}{m(n)}\right) \\ 1334 &= \\ 1335 \mathfrak{C}^{D,d} + O\left(\frac{1}{m(n)}\right) + O\left(\frac{1}{m(n)}\right) + d\mathfrak{C}^{D+1,d-1} \times \gamma + O\left(\frac{1}{m(n)}\right) \\ 1336 &= \\ 1337 \mathfrak{C}^{D,d} + O\left(\frac{1}{m(n)}\right). \end{aligned} \quad (98)$$

1342 Here, we used the derivatives correlation definition, lemmas, the induction hypothesis, the bound of
 1343 the correlations from condition 1, and the definition of γ .
 1344

1345 By employing the derivative's correlation definition and condition 1, we observe that:
 1346

$$\begin{aligned} 1347 \forall 2 \leq d \in \mathbb{N} : O(\mathfrak{C}^d) &= O\left(\frac{1}{m(n)}\right), \\ 1348 \forall d \in \mathbb{N} : O(\mathfrak{C}^{1,d}) &= \gamma, \\ 1349 \forall 2 \leq D \in \mathbb{N}, d \in \mathbb{N} : O(\mathfrak{C}^{D,d}) &= O\left(\frac{1}{\sqrt{m(n)}}\right). \end{aligned} \quad (99)$$

1350 Furthermore:

$$\begin{aligned} 1352 \quad & \mathfrak{C}^{1,d} \eta^{\frac{1}{2}} \nabla F(\theta_0) = \eta^{\frac{1}{2}+d} \nabla^{d+1} F(\theta_0)^T \left(\eta^{\frac{1}{2}} \nabla F(\theta_0) \right)^{\times d} = \\ 1353 \quad & \eta^{d+1} \nabla^{d+1} F(\theta_0)^T (\nabla F(\theta_0))^{\times d+1} = \mathfrak{C}^{d+1}. \end{aligned} \quad (100)$$

1355 Hence, using this equation, we can deduce that $\mathfrak{C}^{D,d}(\theta(s+1))$ satisfies the given conditions as
 1356 well. By incorporating this equation into our equation of motion and employing the lemmas, we find
 1357 that for a sufficiently small learning rate, $F(\theta(s+1))$ also satisfies the lemma. Consequently, by
 1358 induction, the lemma holds for all $s \in \mathbb{N}$. \square

1359

1360 F PROOF OF COROLLARY 4.1

1361

1362 In this section, we prove corollary 4.1. The general approach for this proof is akin to that of the first
 1363 direction of theorems 3.1 and 3.2, albeit with an additional focus on the evolution of the deviation
 1364 throughout the induction process.

1365

1366 Given the complexity of tracking all the derivatives simultaneously, our strategy involves monitoring
 1367 the difference between the parameters and their linearization, as expressed in Equation (107). A
 1368 significant challenge arises in solving the equation of motion that these parameters must satisfy.

1369

1370 To circumvent this issue, we establish a link between this deviation and the deviation of the general-
 1371 ization function from its linearization (107) up to the highest order, as outlined in equation 112. By
 1372 considering only the lowest order terms, we obtain an equation of motion (119). In cases where the
 1373 cost function decays exponentially, and we are able to bound the deviation of this equation.

1374

1375 F.1 RELATIONS BETWEEN DIFFERENT LINEARIZATIONS

1376

1377 In the main text, we linearised F as F_{lin} (8), by first considering only the linear part of F , and then
 1378 examining how it changes over time for a given training path. However, there are alternative ways to
 1379 linearise F that can be useful to consider. One such method involves taking only the linear part of F ,
 1380 without considering the training path:

1381

$$\hat{F}(\theta) = F(\theta_0) + \nabla F(\theta_0)^T (\theta - \theta_0). \quad (101)$$

1382

1383 Another useful definition is to examine how θ would develop over time under the linear approximation
 1384 for our training path:

1385

$$\begin{aligned} & \theta_{lin}(0) = \theta_0 \quad \forall s \in \mathbb{N} : \\ & \theta_{lin}(s+1) = \theta_{lin}(s) - \nabla F(\theta_0)(x_s) \mathcal{C}'(F_{lin}(s))(x_s) - \hat{y}(x_s). \end{aligned} \quad (102)$$

1386

1387 It can be observed that F_{lin} , \hat{F} , θ_{lin} satisfy the following relation:

1388

$$\forall s \in \mathbb{N}^0 : F_{lin}(s) = \hat{F}(\theta_{lin}(s)). \quad (103)$$

1389

1390 A more refined relation is the one between $F(\theta_{lin})$ and $F_{lin}(\theta)$, defined for every $s = 0 \dots S$ as
 1391 follows:

1392

$$O(F(\theta_{lin}(s)) - F_{lin}(s)) \leq O\left(\frac{\varrho^2(s)}{m(n)}\right), \quad (104)$$

1393

1394 where ϱ is defined as:

1395

1396 **Definition F.1** (Typical Linear Cumulative Deviation). We define the typical linear cumulative
 1397 deviation as the bound of the cumulative deviation of F_{lin} from \hat{y} :

1398

$$O(\varrho(s)) = \sum_{s'=0}^{s-1} O(\mathcal{C}'(F_{lin}(s') - \hat{y})), \quad (105)$$

1399

1400 and in our case:

1401

$$O(\varrho(s)) \leq O\left(\frac{1 - e^{-\frac{s}{T}}}{1 - e^{-\frac{1}{T}}}\right) \leq O(1). \quad (106)$$

1402

1403 This implies that $\varrho(s) = o(m(n))$, which is essential for proving (104). We will not provide this
 1404 proof here, as we will not use it directly in the remainder of this paper, and we will soon prove many
 1405 similar identities.

1404 **F.2 SMALL PERTURBATION FROM THE LINEAR SOLUTION**
 1405

1406 The initial approach of the proof aimed to demonstrate that F only deviates slightly from F_{lin} , and
 1407 that also its derivatives deviate slightly at the initial conditions. The intention was to use induction to
 1408 show that this holds at each time step. This method is effective if the goal is merely to prove that F
 1409 converges to F_{lin} at a rate of $O\left(\frac{1}{m(n)}\right)$ for a fixed time step. However, it poses challenges when
 1410 attempting to understand how the two functions deviate from each other over time. This is due to the
 1411 necessity of simultaneously tracking the evolution of all derivatives and the changes in correlations
 1412 over time, which is nearly impossible.

1413 To circumvent this issue, rather than tracking all derivatives, we will calculate how $F(\theta(s))$ deviates
 1414 from $F_{lin}(s)$ by utilizing a similar relationship to the one we discovered between θ_{lin} and F_{lin} . This
 1415 will allow us to establish bounds on $F - F_{lin}$. Although the two approaches are equivalent, and the
 1416 first one is more intuitively clear, the second approach simplifies accurate and simple calculations by
 1417 focusing on a single object, $F - F_{lin}$.

1418 In the following lemma, we demonstrate how a small perturbation at a given step ($s = 0 \dots S - 1$)
 1419 results in a small perturbation at the subsequent step ($s + 1$). Then, we will use these results to
 1420 inductively show the deviation in time between the hypothesis function and its linear approximation.
 1421

1422 We denote:

$$1423 \delta(s) = F(\theta(s)) - F_{lin}(s), \eta^{\frac{1}{2}}\zeta(s) = \theta(s) - \theta_{lin}(s), \quad (107)$$

1424 and assume that the deviation from linearity is small, hence:

$$1425 1426 O(\delta(s)) \leq O\left(\frac{f(s)}{m(n)}\right), O(\zeta(s)) \leq O(g(s))\gamma, \quad (108)$$

1428 where

$$1429 1430 f(s), g(s)^2, \varrho(s)^2 = o(m(n)). \quad (109)$$

1431 For some parts of our lemma, it will also be relevant to separate the deviation of the parameters into
 1432 two components:

$$1433 1434 \zeta(s) = \zeta_\gamma(s) + \zeta_m(s), \quad (110)$$

1435 such that:

$$1436 1437 O(\zeta_\gamma(s)) \leq O(g_\gamma(s))\gamma, O(\zeta_m(s)) \leq O\left(\frac{g_m(s)}{m(n)}\right). \quad (111)$$

1438 **Remark F.1.** Here, we consider the case of a general rate of convergence for $\mathcal{C}'(F_{lin}, \hat{y})$, rather than
 1439 exclusively focusing on an exponential one. This is done to simplify the generalization of our results
 1440 for reader.

1441 **Remark F.2.** In the following lemma and its proof, we use the symbol " \simeq " to denote higher-order
 1442 terms of the expressions. This is justified by our assumption that we are working within the framework
 1443 of analytic functions, where the sum of all higher-order terms still converges.

1444 **Lemma F.1** (Deviation of the parameters and of the hypothesis function relations). Given the
 1445 conditions described above, then up to the leading order:

1446 1.

$$1447 1448 \delta(s) = F(\theta(s)) - F_{lin}(s) \simeq \eta^{\frac{1}{2}} \nabla F(\theta_0)^T \zeta_m(s) + \eta^{\frac{1}{2}} \nabla F(\theta_0)^T \zeta_\gamma(s) + \\ 1449 1450 \sum_{s_1, s_2=0}^{s-1} \mathfrak{C}^2 \mathcal{C}'(F_{lin}(s_1), \hat{y}) \times \mathcal{C}'(F_{lin}(s_2), \hat{y}) + \\ 1451 2 \sum_{s'=0}^{s-1} \mathfrak{C}^{1,1} \zeta_\gamma(s) \mathcal{C}'(F_{lin}(s'), \hat{y}) + \eta \nabla^{\times 2} F(\theta_0)^T \zeta_\gamma(s)^{\times 2}, \quad (112)$$

1452 which means:

$$1453 1454 O(\delta(s)) = O(F(\theta(s)) - F_{lin}(s)) \leq \\ 1455 O\left(\frac{g_m(s)}{m(n)}\right) + O\left(\frac{(g_\gamma(s) + \varrho(s))^2}{m(n)}\right) \leq O\left(\frac{(g(s) + \varrho(s))^2}{m(n)}\right). \quad (113)$$

1456 2.

$$1457 O\left(\eta^{\frac{1}{2}} \nabla F(\theta(s))^T - \eta^{\frac{1}{2}} \nabla F(\theta_0)^T\right) \leq O(g(s) + \varrho(s))\gamma. \quad (114)$$

1458 3.

$$\mathcal{C}'(F(\theta(s)), \hat{y}) - \mathcal{C}'(F_{lin}(s), \hat{y}) \simeq \mathcal{C}''(F_{lin}(s), \hat{y}) \delta(s) . \quad (115)$$

1459 where, $\mathcal{C}''(F_{lin}(s), \hat{y})$ denotes a positive random matrix such that, if the asymptotic behavior
 1460 of $\mathcal{C}'(F_{lin}(s), \hat{y})$ is bounded, then $\mathcal{C}''(F_{lin}(s), \hat{y})$ is bounded as well (as is in our setting).
 1461

1462 4.

$$\begin{aligned} 1463 \quad & \eta^{\frac{1}{2}}\zeta(s+1) - \eta^{\frac{1}{2}}\zeta(s) = \theta(s+1) - \theta_{lin}(s+1) - \eta^{\frac{1}{2}}\zeta(s) \simeq \\ 1464 \quad & - \eta \nabla F(\theta_0) \mathcal{C}''(F_{lin}(s'), \hat{y}) \delta(s) + O(g(s) + \varrho(s)) \mathcal{C}'(F_{lin}(s), \hat{y}) \eta^{\frac{1}{2}}\gamma , \end{aligned} \quad (116)$$

1465 which means:
 1466

$$O(\zeta(s+1) - \zeta(s)) \leq O\left(\frac{f(s)}{m(n)}\right) + O(\mathcal{C}'(F_{lin}(s), \hat{y})) O(g(s) + \varrho(s)) \gamma . \quad (117)$$

1467 5.

$$\begin{aligned} 1468 \quad & O(\delta(s+1) - \delta(s) + \Theta_0 \mathcal{C}''(F_{lin}(s), \hat{y}) \delta(s)) \leq \\ 1469 \quad & O\left(\frac{(g(s) + \varrho(s))^2}{m(n)}\right) O(\mathcal{C}'(F_{lin}(s), \hat{y})) . \end{aligned} \quad (118)$$

1470 **Remark F.3.** An important note for our proofs is that all of these components can be generalized to
 1471 the case where $\zeta(s), \delta(s)$ are not the "original" deviations, as long as they satisfy equation 108.
 1472

1473 We can now use this result to prove corollary 4.1 by induction. In fact, for the conditions of the
 1474 corollary at $s = 0$, the induction hypothesis is trivially satisfied as $F(\theta)(0) = F_{lin}(0), \theta(0) = \theta_{lin}(0)$.
 1475 It is straightforward to show that the contributions of the part multiplied by $O(\mathcal{C}'(F_{lin}(s), \hat{y}))$ are
 1476 irrelevant for the possible deviation, as $\mathcal{C}'(F_{lin}(s), \hat{y}) \rightarrow 0, O(\varrho(s)) \leq O(1)$. Consequently, we
 1477 are left with equations of motion for the asymptotic behavior of the form:
 1478

$$O(\zeta(s+1) - \zeta(s)) \leq O\left(\frac{f(s)}{m(n)}\right) \quad \delta(s+1) - \delta(s) + \Theta_0 \mathcal{C}''(F_{lin}(s), \hat{y}) \delta(s) \simeq 0 . \quad (119)$$

1479 However, Θ_0, \mathcal{C}'' are positively defined bound matrices, so for a learning rate that is sufficiently
 1480 small (which would be of the same order of magnitude as the learning rate needed for our system to
 1481 consistently learn, and for the case where $\mathcal{C}(x) = \frac{1}{2}x^2$, exactly the same), we find that on average
 1482 this term can only contribute to the shrinkage of $\delta(s)$. This means that neglecting this term for large s
 1483 would provide an upper bound for the rate of deviation. Thus, we have discovered that the asymptotic
 1484 behavior of δ (and consequently, ζ) with respect to time is for large s is bounded by:
 1485

$$\delta(s+1) - \delta(s) \simeq 0 . \quad (120)$$

1486 **This proves our corollary.**

1487 **Proof.**

1488 Part - (1):

$$\begin{aligned} 1489 \quad & F(\theta(s)) = F\left(\theta_{lin}(s) + \eta^{\frac{1}{2}}\zeta(s)\right) =_1 \\ 1490 \quad & F\left(\theta_0 - \eta \sum_{s'=0}^{s-1} \nabla F(\theta_0) \mathcal{C}'(F_{lin}(s'), \hat{y}) + \eta^{\frac{1}{2}}\zeta(s)\right) =_2 \\ 1491 \quad & F(\theta_0) - \sum_{s'=0}^{s-1} \mathfrak{C}^1 \mathcal{C}'(F_{lin}(s'), \hat{y}) + \eta^{\frac{1}{2}} \nabla F(\theta_0)^T \zeta(s) + \\ 1492 \quad & \sum_{s_1, s_2=0}^{s-1} \mathfrak{C}^2 \mathcal{C}'(F_{lin}(s_1), \hat{y}) \times \mathcal{C}'(F_{lin}(s_2), \hat{y}) + \\ 1493 \quad & 2 \sum_{s'=0}^{s-1} \mathfrak{C}^{1,1} \zeta(s) \mathcal{C}'(F_{lin}(s'), \hat{y}) + \eta \nabla^{\times 2} F(\theta_0)^T \zeta(s)^{\times 2} + \dots \simeq_3 \\ 1494 \quad & F_{lin}(s) + \eta^{\frac{1}{2}} \nabla F(\theta_0)^T \zeta(s) + \sum_{s_1, s_2=0}^{s-1} \mathfrak{C}^2 \mathcal{C}'(F_{lin}(s_1), \hat{y}) \times \mathcal{C}'(F_{lin}(s_2), \hat{y}) + \\ 1495 \quad & 2 \sum_{s'=0}^{s-1} \mathfrak{C}^{1,1} \zeta(s) \mathcal{C}'(F_{lin}(s'), \hat{y}) + \eta \nabla^{\times 2} F(\theta_0)^T \zeta(s)^{\times 2} , \end{aligned} \quad (121)$$

1512 where in (1) we used equation (102) the definition of θ_{lin} , in (2) we expanded our generalization
 1513 function as a Taylor sires, and the definition of the derivatives correlations (3.1). In (3) we used the
 1514 fact that under our assumptions our system is exponentially weakly correlated. Using this result we
 1515 get our desired identity.

1516 Subtracting F_{lin} we get using the weak derivatives correlations property that up to the leading order:
 1517

$$\begin{aligned}
 & F(\theta(s)) - F_{lin}(s) \simeq \\
 & \eta^{\frac{1}{2}} \nabla F(\theta_0)^T \zeta(s) + \sum_{s_1, s_2=0}^{s-1} \mathcal{C}^2 \mathcal{C}'(F_{lin}(s_1), \hat{y}) \times \mathcal{C}'(F_{lin}(s_2), \hat{y}) + \\
 & 2 \sum_{s'=0}^{s-1} \mathcal{C}^{1,1} \zeta(s) \mathcal{C}'(F_{lin}(s'), \hat{y}) + \eta \nabla^{\times 2} F(\theta_0)^T \zeta(s)^{\times 2} \simeq \\
 & \eta^{\frac{1}{2}} \nabla F(\theta_0)^T \zeta_m(s) + \eta^{\frac{1}{2}} \nabla F(\theta_0)^T \zeta_\gamma(s) + \\
 & \sum_{s_1, s_2=0}^{s-1} \mathcal{C}^2 \mathcal{C}'(F_{lin}(s_1), \hat{y}) \times \mathcal{C}'(F_{lin}(s_2), \hat{y}) + \\
 & 2 \sum_{s'=0}^{s-1} \mathcal{C}^{1,1} \zeta_\gamma(s) \mathcal{C}'(F_{lin}(s'), \hat{y}) + \eta \nabla^{\times 2} F(\theta_0)^T \zeta_\gamma(s)^{\times 2} = \\
 & O\left(\frac{g_m(s) + g_\gamma(s)}{m(n)}\right) + O\left(\frac{\varrho(s)^2}{m(n)}\right) + 2O\left(\frac{\varrho(s)g_\gamma(s)}{m(n)}\right) + O\left(\frac{g_\gamma^2(s)}{m(n)}\right) = \\
 & O\left(\frac{g_m(s)}{m(n)}\right) + O\left(\frac{(g_\gamma(s) + \varrho(s))^2}{m(n)}\right) \leq O\left(\frac{(g(s) + \varrho(s))^2}{m(n)}\right), \tag{122}
 \end{aligned}$$

1530 which finishes our proof.
 1531

1532 Part 2:

1533 Using the same ideas we get:
 1534

$$\begin{aligned}
 & \eta^{\frac{1}{2}} \nabla F(\theta_0)^T = \eta^{\frac{1}{2}} \nabla F\left(\theta_{lin}(s) + \eta^{\frac{1}{2}} \zeta(s)\right)^T = \\
 & \eta^{\frac{1}{2}} \nabla_T F\left(\theta_0 - \eta \sum_{s'=0}^{s-1} \nabla F(\theta_0) \mathcal{C}'(F_{lin}(s'), \hat{y}) + \eta^{\frac{1}{2}} \zeta(s)\right) = \\
 & \eta^{\frac{1}{2}} \nabla F(\theta_0)^T - \sum_{s'=0}^{s-1} \mathcal{C}^{1,1} \mathcal{C}'(F_{lin}(s'), \hat{y}) + \eta \nabla^{\times 2} F(\theta_0)^T \zeta(s) + \dots = \\
 & \eta^{\frac{1}{2}} \nabla F(\theta_0)^T + O(\varrho(s)) \gamma_t + O(g(s)) \gamma_t. \tag{123}
 \end{aligned}$$

1541 Taking transpose on both sides we get finish our proof.
 1542

1543 Part 3:

1544 Using the definition of δ and the fact that \mathcal{C} is analytical we know that up to the highest order:
 1545

$$\mathcal{C}'(F(\theta(s)), \hat{y}) = \mathcal{C}'(F_{lin}(s) + \delta(s), \hat{y}) \simeq \mathcal{C}'(F_{lin}(s), \hat{y}) + \mathcal{C}''(F_{lin}(s), \hat{y}) \delta(s) \tag{124}$$

1546 and as \mathcal{C} is convex (3), we know that it's second derivative is always a positive matrix. And that if the
 1547 first derivative is bound, so is the second one.
 1548

1549 Part 4:

1550 Using the equation of motion for θ (102), and parts 2,3 of this lemma we get that up to leading order:
 1551

$$\begin{aligned}
 & \theta(s+1) = \theta(s) - \eta \nabla F(\theta(s)) \mathcal{C}'(F(\theta(s)), \hat{y}) \simeq \\
 & \theta(s) - \eta \left(\begin{array}{c} \nabla F(\theta_0) + \\ O(g(s) + \varrho(s)) \eta^{\frac{1}{2}} \gamma \end{array} \right) \left(\begin{array}{c} \mathcal{C}'(F_{lin}(s), \hat{y}) + \\ \mathcal{C}''(F_{lin}(s'), \hat{y}) \delta(s) \end{array} \right) \simeq \\
 & \theta(s) - \eta \nabla F(\theta_0) \mathcal{C}'(F_{lin}(s), \hat{y}) - \eta \nabla F(\theta_0) \mathcal{C}''(F_{lin}(s'), \hat{y}) \delta(s) + \\
 & O(g(s) + \varrho(s)) \mathcal{C}'(F_{lin}(s), \hat{y}) \eta^{\frac{1}{2}} \gamma \tag{125}
 \end{aligned}$$

1559 and as:
 1560

$$\begin{aligned}
 & \theta(s) - \eta \nabla F(\theta(s)) \mathcal{C}'(F(\theta(s)), \hat{y}) = \\
 & \theta_{lin}(s) + \eta^{\frac{1}{2}} \zeta(s) - \eta \nabla F(\theta(s)) \mathcal{C}'(F(\theta(s)), \hat{y}) = \theta_{lin}(s+1) + \eta^{\frac{1}{2}} \zeta(s), \tag{126}
 \end{aligned}$$

1564 we get the desired result.
 1565

1566 Part 5:

1566 Using the equation of motion for θ , one can see that:
1567

$$\begin{aligned}
1568 \quad F(\theta(s+1)) &= F\left(\frac{\theta_{lin}(s+1) - \eta \nabla F(\theta_0) \mathcal{C}''(F_{lin}(s'), \hat{y}) \delta(s) +}{\eta^{\frac{1}{2}} \zeta(s) + O(g(s) + \varrho(s)) \mathcal{C}'(F_{lin}(s), \hat{y}) \eta^{\frac{1}{2}} \gamma}\right) \\
1569 &\stackrel{\simeq_1}{=} \\
1570 &\quad F_{lin}(s+1) - \eta \nabla F(\theta_0)^T \nabla F(\theta_0) \mathcal{C}''(F_{lin}(s'), \hat{y}) \delta(s) + \\
1571 &\quad \eta^{\frac{1}{2}} \nabla F(\theta_0)^T \zeta(s) + O(g(s) + \varrho(s)) \mathcal{C}'(F_{lin}(s), \hat{y}) \eta^{\frac{1}{2}} \nabla F(\theta_0)^T \gamma + \\
1572 &\quad \sum_{s_1, s_2=0}^{s-1} \mathfrak{C}^2 \mathcal{C}'(F_{lin}(s_1), \hat{y}) \times \mathcal{C}'(F_{lin}(s_2), \hat{y}) + \\
1573 &\quad 2 \sum_{s'=0}^{s-1} \mathfrak{C}^{1,1} \zeta(s) \mathcal{C}'(F_{lin}(s'), \hat{y}) + \\
1574 &\quad 2O(g(s) + \varrho(s)) \mathcal{C}'(F_{lin}(s), \hat{y}) \sum_{s'=0}^{s-1} \mathfrak{C}^{1,1} \gamma \mathcal{C}'(F_{lin}(s'), \hat{y}) + \\
1575 &\quad \eta \nabla^{\times 2} F(\theta_0)^T \zeta(s)^{\times 2} + O(g(s) + \varrho(s))^2 \mathcal{C}'(F_{lin}(s), \hat{y})^2 \eta \nabla^{\times 2} F(\theta_0)^T \gamma^{\times 2} + \\
1576 &\quad 2O(g(s) + \varrho(s)) \mathcal{C}'(F_{lin}(s), \hat{y}) \eta \nabla^{\times 2} F(\theta_0)^T (\gamma \times \zeta(s)) \\
1577 &\stackrel{\simeq_2}{=} \\
1578 &\quad F_{lin}(s+1) - \Theta_0 \mathcal{C}''(F_{lin}(s'), \hat{y}) \delta(s) + \delta(s) + \\
1579 &\quad 2O\left(\frac{g(s) + \varrho(s)}{m(n)}\right) O(\mathcal{C}'(F_{lin}(s), \hat{y})) + O\left(\frac{(g(s) + \varrho(s))^2}{m(n)}\right) O(\mathcal{C}'(F_{lin}(s), \hat{y}))^2 + \\
1580 &\quad 2O\left(\frac{g^2(s) + \varrho(s)g(s)}{m(n)}\right) O(\mathcal{C}'(F_{lin}(s), \hat{y})). \tag{127}
\end{aligned}$$

1581 where in (1) We use part 1 of the lemma, when we remembered that $O(\delta) \leq O\left(\frac{1}{m(n)}\right)$ so it can be
1582 consider as ζ_m . In part (2) we use the definition of F_{lin} , Θ_0 and part 1 once again where we gathered
1583 all of the components that have only $\zeta(s)$ to get $\delta(s)$. Then we just used the asymptotic behavior of
1584 all of the components and took the "worst case scenario" to get equation 118. \square
1585

1592 G WIDE NEURAL NETWORKS ARE WEAKLY CORRELATED PGDML SYSTEMS

1593 G.1 GENERAL IDEA

1594 We start with fully connected neural networks. Although the proof is technically intricate, its
1595 underlying concept is straightforward: For the first layer, we observe that all higher correlations
1596 exhibit the appropriate asymptotic behavior. We then proceed to prove by induction that all layers
1597 manifest the same asymptotic behavior. Consider the second correlation, for instance, which we
1598 analyze as follows:

1599 For any general layer $l = 1, \dots, L$, defining ∇_{-l} as the derivatives with respect to parameters from
1600 layers 1 to $l-1$ (G.2), we employ the equation for fully connected neural networks (133):
1601

$$\begin{aligned}
1602 \quad l = 0, \dots, L : F^{(l)} &= \theta^{(l, l-1)} \phi(F^{(l-1)}) + \theta^{(l)}, \\
1603 \quad \forall x \in X : F(\theta)(x) &= F^{(L)}(x), \quad F^{(0)}(x) = a, \tag{128}
\end{aligned}$$

1604 to demonstrate that:
1605

$$\begin{aligned}
1606 \quad \nabla_{(-l)}^{\times 2} F^{(l)} &= \nabla_{(-l)}^{\times 2} (\theta^{(l, l-1)} \phi(F^{(l-1)}) + \theta^{(l)}) = \\
1607 \quad \nabla_{(-l)} \times \nabla_{(-l)} (\theta^{(l, l-1)} \phi(F^{(l-1)}) + \theta^{(l)}) &= \nabla_{(-l)} \times (\theta^{(l, l-1)} \nabla_{(-l)} \phi(F^{(l-1)})) = \\
1608 \quad \nabla_{(-l)} \times (\theta^{(l, l-1)} \phi'(F^{(l-1)}) \nabla_{(-l)} F^{(l-1)}) &= \\
1609 \quad \theta^{(l, l-1)} \phi''(F^{(l-1)}) \nabla_{(-l)} F^{(l-1)} \times \nabla_{(-l)} F^{(l-1)} + \theta^{(l, l-1)} \phi'(F^{(l-1)}) \nabla_{(-l)}^{\times 2} F^{(l-1)} & \tag{129}
\end{aligned}$$

1610 Consequently, the contribution to the l -th correlation (10) from this part is proportional to:
1611

$$\theta^{(l, l-1)} \phi''(F^{(l-1)}) \mathfrak{C}_{(l-1)}^1 \times \mathfrak{C}_{(l-1)}^1 + \theta^{(l, l-1)} \phi'(F^{(l-1)}) \mathfrak{C}_{(l-1)}^2. \tag{130}$$

1620 Here we have two terms. We can show the right-hand term is small simply by induction. The proof
 1621 that the left-hand term is also small is more complex, involving the demonstration that for all hidden
 1622 layers, the relevant contribution from the first correlation originates from its diagonal terms, i.e.,
 1623 $(\mathcal{C}_{(-l)}^1)_{ii}$.

1624 We can now show that in the term, the left index is identical for both correlations, which follows that
 1625 for most indices, the relevant terms are offset by the irrelevant ones, keeping our expression small.
 1626

1627 For the case that one of the derivative does not belong to layers $l = 1$ to $l - 1$, we explicitly show
 1628 this term to be negligible, as for most indices it simply resets:

$$1629 \quad 1630 \quad \nabla_{i^l i^{l-1}} F_i^{(l)} \propto \delta_{i^l i} \quad (131)$$

1631 In the general case of the D -th correlation, while there is some complexity in tracing the combinatorial
 1632 terms from various combinations of derivatives, the fundamental principle remains consistent.
 1633

1634 The generalization of this approach for other architectures is discussed in Section G.5.

1635 G.2 ASYMPTOTIC BEHAVIOR OF WIDE FCN AT INITIALISATION

1637 **Remark G.1.** Throughout this paper we considered $\|M\|$ or $O(M)$ as our way to evaluate the size
 1638 of our random tensors. But here we mainly consider the normalised terms instead:
 1639

$$1640 \quad 1641 \quad \frac{1}{\sqrt{N}} \|M\| \quad \text{and} \quad \frac{1}{\sqrt{N}} O(M) . \quad (132)$$

1642 This is because, in practice, what we are interested of is the average asymptotic behavior of a tensor,
 1643 and not the accumulative one.

1644 Fully connected neural networks of depth $2 \leq L \in \mathbb{N}$, characterized by L parameter vectors (the
 1645 biases $\theta^{(1)}, \dots, \theta^{(L)}$), and L parameter matrices (the weights $\theta^{(L, L-1)}, \dots, \theta^{(1, 0)}$), such as:

$$1647 \quad 1648 \quad l = 0, \dots, L : F^{(l)} = \theta^{(l, l-1)} \phi(F^{(l-1)}) + \theta^{(l)}, \quad (133) \\ \forall x \in X : F(\theta)(x) = F^{(L)}(x), \quad F^{(0)}(x) = a .$$

1649 In this representation, $F^{(0)}, F^{(1)}, \dots, F^{(L-1)}$, and $F^{(L)}$ constitute the input, inner, and output layers,
 1650 respectively. The activation function ϕ is analytical, and all of its derivatives are bounded as described
 1651 in (23).

1653 **Remark G.2.** Generally when working with FCNN we do not operate the activation function over
 1654 the zero layer, the input. But to make the induction slightly easier, we will simplify our expression
 1655 such as ϕ operates over all layers. It makes no real difference

1656 We focus on "wide" neural networks where the depth L is fixed. As long as $L = O(\log(n))$, we
 1657 can expect an NTK-like behavior for large n , but for simplicity, we focus on the scenario where
 1658 L remains constant in n . We introduce a limiting parameter $n \in \mathbb{N}$ such that the width of all the
 1659 hidden layers satisfies $n \leq n_1, \dots, n_{L-1}$. To simplify our work, we will amend this assumption
 1660 by postulating that all layers exhibit the same asymptotic behavior of $n - n_1, \dots, n_{L-1} \sim n$. This
 1661 modification does not affect our theorems and lemmas, as it merely establishes a lower bound of our
 1662 original assumption. As the sizes of the zeroth and last layer are constant (the dimensions of the input
 1663 and output layers stay fixed in n of course), we arrive at:

$$1664 \quad n_1, \dots, n_{L-1} \sim n \quad \text{and} \quad n_0, n_L \sim 1 . \quad (134)$$

1665 Back in the 1960s, it was demonstrated that with Gaussian initialization, we can keep our layers
 1666 normalised by selecting initial parameters as follows:

$$1668 \quad 1669 \quad \forall l = 1, \dots, L : \theta_0^{(l, l-1)} \sim \mathcal{N}\left(0, \frac{1}{n_l}\right), \theta_0^{(l)} \sim \mathcal{N}(0, 1) . \quad (135)$$

1671 Despite the specificity of this initialization algorithm, it contradicts the broader spirit of this paper.
 1672 It's not only overly restrictive but also complicates our work by colliding with our framework of
 1673 tensor's asymptotic behavior. Rather than focusing on a particular initialization scheme like the
 normal distribution, we will identify and utilize the relevant properties inherent in the distribution.

1674
 1675 **Definition G.1** (Appropriate Initialization scheme for Wide Neural Networks). Given a wide neural
 1676 network as defined above, we characterize the distribution for the initial condition θ as appropriate if
 1677 and only if for every probability arbitrarily close to 1, the following properties hold:
 1678

- 1678 1. Different elements of θ are independent. And for each layer $l = 1, \dots, L$, $\theta^{(l,l-1)}$'s and $\theta^{(l)}$'s
 1679 elements share the same distribution.
- 1680 2. θ is symmetric around 0 (implying that all odd moments are nullified):

$$1682 \quad \forall D \in \mathbb{N} \setminus 2\mathbb{N} : \langle \theta^D \rangle = 0. \quad (136)$$

- 1683 3. For every layer $l = 1, \dots, L$, all moments of θ are uniformly normalized:

$$1685 \quad \forall D \in \mathbb{N} : \begin{aligned} O(1)^D &\leq \frac{1}{\sqrt{n_l}} O\left(\left(\theta^{(l)}\right)^D\right) \leq D! O(1)^D, \\ 1686 \quad O\left(\frac{1}{\sqrt{n_{l-1}}}\right)^D &\leq \frac{1}{\sqrt{N_l}} O\left(\left(\theta^{(l,l-1)}\right)^D\right) \leq D! O\left(\frac{1}{\sqrt{n_{l-1}}}\right)^D, \end{aligned} \quad \text{Uniformly} \\ 1687 \quad 1688 \quad (137)$$

1689 where $N_l = n_l n_{l-1}$ is the total number of parameters in the l -th layer.

1690 where the elemental tensor power defined such as:

$$1692 \quad \forall D \in \mathbb{N} : (M^D)_{\vec{i}} = M_{\vec{i}}^D. \quad (138)$$

1694 The first two conditions ensure that our system is unbiased, while the third condition guarantees that
 1695 our system will not be dominated by a disproportionate probabilistic "tail."

1696 We delegate to the reader the verification that Gaussian initialization qualifies as an appropriate
 1697 initialization.

1698 **Remark G.3.** Conditions 1,2 can be generalized to be fulfilled in the limit of large n , provided this
 1699 convergence occurs rapidly enough. Nevertheless, any complexities arising from this generalization
 1700 are technical and do not affect our analysis.

1702 **For the remainder of this section, we will omit the biases from our discussion, as they do not add
 1703 any substantial insights or implications for the points under consideration and won't change
 1704 any of our results.**

1705 **Lemma G.1** (Normalization of Layers in Proper Wide Neural Networks). Given a wide neural
 1706 network, if the initial condition is appropriately set, then all the moments across every layer $l = 1 \dots L$
 1707 are well normalized:

$$1708 \quad \frac{1}{\sqrt{n_l}} O(F^{(l)}) = O(1). \quad (139)$$

1710 The final parameter that we need to normalize in our system is the dynamic one - the learning rate,
 1711 denoted by η . In an attempt to generalize Gaussian initialization, we will adopt the standard method
 1712 of normalization for η :

$$1713 \quad \eta \sim \frac{1}{n}. \quad (140)$$

1716 This condition, coupled with the demand for an appropriate initialization strategy, is sufficient to
 1717 demonstrate that wide neural networks are exponentially weakly correlated PGDML-s.

1718 **In the remainder of this section, we will proceed under the assumption that our parameters are
 1719 initialized appropriately and that $\eta \sim \frac{1}{n}$.**

1720 We can now use this result to find the asymptotic behavior of the layers derivatives:

1721 **Lemma G.2** (Asymptotic Behavior of Layer's Derivatives). Given our established conditions and
 1722 initialisation, all derivatives are uniformly bound for each natural number D and layer $l = 1 \dots L$.
 1723 Specifically, we have:

$$1724 \quad \frac{\eta^{\frac{D}{2}}}{\sqrt{N_D}} O\left(\nabla^{\times D} F^{(l)}\right) \leq O(1) \quad \text{Uniformly} \quad (141)$$

1727 Here, $N_D = n_l n_{l-1}^D n^D$ represents the asymptotic behavior of the number of elements in the
 1728 derivatives.

1728 **Proof of lemma G.1.**
1729

1730 We approach the proof by induction, across the entire proof we use lemma C.7 to show equivalence
1731 between the asymptotic behavior of the system and its tensorial average (73). It is known that the
1732 base case, the zeroth layer, naturally satisfies the lemma. By inductive assumption, let us presume
1733 that the $l - 1$ layer adheres to the lemma. Our task is to establish the lemma's validity for the l -th
1734 layer for all $l = 1 \dots L$:

$$\begin{aligned}
 1735 [F^{(l)}]^2 &= \frac{1}{n_l} \sum_i \left\langle \left(\sum_j \theta_{ij}^{(l,l-1)} F_j^{(l-1)} \right) \left(\sum_k \theta_{ik}^{(l,l-1)} F_k^{(l-1)} \right) \right\rangle = \\
 1736 &\frac{1}{n_l} \sum_i \left\langle \left(\sum_{j,k} \theta_{ij}^{(l,l-1)} \theta_{ik}^{(l,l-1)} F_j^{(l-1)} F_k^{(l-1)} \right) \right\rangle =_2 \\
 1737 &\frac{1}{n_l} \sum_i \sum_{j,k} \left\langle \theta_{ij}^{(l,l-1)} \theta_{ik}^{(l,l-1)} \right\rangle \left\langle F_j^{(l-1)} F_k^{(l-1)} \right\rangle = \\
 1738 &\frac{1}{n_l} \sum_i \sum_{j \neq k} \left\langle \theta_{ij}^{(l,l-1)} \theta_{ik}^{(l,l-1)} \right\rangle \left\langle F_j^{(l-1)} F_k^{(l-1)} \right\rangle + \frac{1}{n_l} \sum_i \sum_j \left\langle \left(\theta_{ij}^{(l,l-1)} \right)^2 \right\rangle \left\langle \left(F_j^{(l-1)} \right)^2 \right\rangle =_3 \\
 1739 &\sum_i \sum_j \frac{1}{n_l} \left\langle \left(\theta_{ij}^{(l,l-1)} \right)^2 \right\rangle \left\langle \left(F_j^{(l-1)} \right)^2 \right\rangle =_4 \sum_{i,j} \frac{1}{n_l} \left\langle \left(\theta_{ij}^{(l,l-1)} \right)^2 \right\rangle \sum_k \frac{1}{n_{l-1}} \left\langle \left(F_k^{(l-1)} \right)^2 \right\rangle =_5 \\
 1740 &n_{l-1} \left[\theta^{(l,l-1)} \right]^2 [F^{(l-1)}]^2 =_6 O(1) O(1) = O(1) . \tag{142}
 \end{aligned}$$

1745 Throughout these equalities, we rely on the premise of a proper initialization. Specifically:
1746

- 1748 • In "1" and "5", we employ the structure of neural networks and the definition of the moment's
1749 norm.
- 1750 • In "2" and "4", we note that $F^{(l-1)}$ is dependent only on the inner parameters of l , which
1751 are independent of $\theta^{(l,l-1)}$. This is enabled by the proper initialization ensuring $\theta^{(l,l-1)}$ is
1752 uniformly distributed.
- 1753 • In "3", we invoke the fact that different elements of $\theta^{(l,l-1)}$ are independent and symmetric.
1754 Hence, for every $i, j \neq k$:

$$\left\langle \theta_{ij}^{(l,l-1)} \theta_{ik}^{(l,l-1)} \right\rangle = \left\langle \theta_{ij}^{(l,l-1)} \right\rangle \left\langle \theta_{ik}^{(l,l-1)} \right\rangle = 0 . \tag{143}$$

- 1759 • In "6", we apply the induction hypothesis and observe that for a proper initialization (G.1-3):

$$\forall l = 1 \dots L : \left[\theta^{(l,l-1)} \right] = O \left(\frac{1}{\sqrt{n_{l-1}}} \right) . \tag{144}$$

1763 Through the application of the principle of mathematical induction, we conclude the lemma holds for
1764 all $l = 1 \dots L$.
1765

1766 Using lemma C.7 again, we get that $O(F^l) \leq O(1)$, but as we know that even if we neglect a small
1767 part of the probability distribution the proof should still hold, we get that:

$$O(F^l) = O(1) . \tag{145}$$

1770 exactly. □
1771

1773 **Proof of lemma G.2.** Given ω , drawn from another proper initialisation, we can observe that $\theta + \omega$
1774 is also properly initialised or sub-properly initialised. Hence, assuming we initialise $F^{(l)}$ accordingly,
1775 we find:

$$\frac{1}{\sqrt{n_l}} O(F^{(l)}) \leq O(1) . \tag{146}$$

1778 Since $F^{(l)}$ is analytical, we can apply its Taylor expansion around θ to get:
1779

$$\frac{1}{\sqrt{n_l}} O \left(\sum_{D=0}^{\infty} \nabla^{\times D} F^{(l)}(\theta) \omega^{\times D} \right) \leq O(1) . \tag{147}$$

1782 By continuously rescaling ω without violating the proper property, we see that all of the component
 1783 of the expression must be uniformly bounded:

$$1785 \forall D \in \mathbb{N} : \frac{1}{\sqrt{n_l}} O\left(\nabla^{\times D} F^{(l)}(\theta) \omega^{\times D}\right) \leq O(1) \quad \text{Uniformly.} \quad (148)$$

1787 This is because, all the terms are scaled differently by *omega*, meaning that the only way to ensure
 1788 the expression remains bounded under any finite scaling of ω is to bound each of its terms separately
 1789 and uniformly.

1790 Considering the symmetry of the derivative in its components, and by invoking lemma C.3, we can
 1791 identify a vector of size 1 that maximises it, yielding a vector with a size equal to its norm. By setting
 1792 ω as this vector and rescaling it to be proper, we obtain using lemma C.7 that:

$$1794 \forall D \in \mathbb{N} : \frac{1}{\sqrt{n_l}} O\left(\nabla^{\times D} F^{(l)}(\theta)\right) = \frac{1}{\sqrt{n_l}} \frac{1}{\sqrt{n_{l-1}^D}} O\left(\nabla^{\times D} F^{(l)}(\theta) \omega^{\times D}\right) \leq O(1) \quad \text{Uniformly.} \\ 1795 \quad (149)$$

1797 Given that:

$$1799 \frac{1}{\sqrt{n_l}} \frac{1}{\sqrt{n_{l-1}^D}} = \frac{1}{\sqrt{n_l n_{l-1}^D}} \sim \frac{\eta^{\frac{D}{2}}}{\sqrt{n_l n_{l-1}^D n^D}} = \frac{\eta^{\frac{D}{2}}}{\sqrt{N_D}}, \quad (150)$$

1802 we arrive at the desired result. \square

1804 G.3 REPRESENTATION OF THE NETWORK'S LAYERS AS A COMPOSITION OF PREVIOUS 1805 LAYER COMPONENTS

1806 In this part we use the semilinear structure of wide neural network to establish a linear relation
 1807 between the correlations of the l -th layer to the one of the $l-1$ layer. We will then use this relation
 1808 next part to show by induction the correlations are weak. For that will define the following useful
 1809 notation:

1810 **Definition G.2** (Inner and Outer Derivatives). Given a layer $l = 1 \dots L$. We denote the l -th layer's
 1811 outer parameters, which includes its weights (and biases), as follows:

$$1813 \theta_{i^l, i^{l-1}}^{(l, l-1)}. \quad (151)$$

1814 Meanwhile, the inner parameters are defined as any of the weights (and biases) from the layers
 1815 spanning $1 \dots l-1$, and are denoted by:

$$1816 \theta \in \theta^{(-l)}. \quad (152)$$

1818 Following the same notation, we denote the gradient of the outer parameters as $\nabla_{(l)}$, and the gradient
 1819 of the inner parameters as $\nabla_{(-l)}$. The same applies for the correlations, denoted as $\mathcal{C}_{(l)}$, $\mathcal{C}_{(-l)}$.

1820 **Remark G.4.** It is important to note that, as $F^{(l-1)}$ depends only in the inner parameters of the l -th
 1821 layer, the following relationship holds:

$$1822 \nabla_{(-l)} F^{(l-1)} = \nabla F^{(l-1)}. \quad (153)$$

1824 This notation can be employed to express the derivative of the l -th layer as a combination of derivatives
 1825 from the $l-1$ -th layer.

1826 **Lemma G.3** (Representation of the l -th layer derivative, as a combination of its previous layer's
 1827 derivatives). Given a fully connected wide neural network as specified above, for each $l = 1 \dots L$
 1828 layer, the $D \in \mathbb{N}$ -th derivative can be presented as follows:

1830 1. When all the derivatives are inner, the expression is:

$$1831 \left(\nabla^{(-l)}\right)^{\times D} F^{(l)} = \theta^{(l, l-1)} \tilde{\nabla}^{\times D} F^{(l-1)}. \quad (154)$$

1834 2. When one derivative is outer, and the rest are inner, the expression becomes:

$$1835 \nabla_{i_l i_{l-1}}^{(l)} \times \left(\nabla^{(-l)}\right)^{\times D-1} F_i^{(l)} = \delta_{i_l i_l} \tilde{\nabla}^{\times D-1} F_{i_{l-1}}^{(l-1)}. \quad (155)$$

1836 3. When $2 \leq D$, and for $2 \leq d \in \mathbb{N} \leq D$ where the derivatives are outer, the expression
 1837 simplifies to:

$$\left(\nabla^{(l)}\right)^{\times d} \times \left(\nabla^{(-l)}\right)^{\times D-d} F^{(l)} = 0. \quad (156)$$

1840 Here, $\tilde{\nabla}^{\times D} F^{(l-1)}$ is the compound derivative, defined such as for $D \in \mathbb{N}$:

$$1842 \tilde{\nabla}^{\times D} F^{(l)} = \sum_{d=1}^D \sum_{d_1 \dots d_d \in \mathbb{N}}^{\sum d_1 + \dots + d_d = D} \phi^{[d]} \left(F^{(l)} \right) \left(\nabla^{\times d_1} F^{(l)} \times \dots \times \nabla^{\times d_d} F^{(l)} \right) + \text{comb} \quad (157)$$

1845 and for $D = 0$:

$$1846 \tilde{\nabla}_{ij}^{\times 0} F_k^{(l)} = \delta_{ik} \phi(F_j). \quad (158)$$

1848 The "comb" term refers to all possible combinations of the derivatives' indices. For instance, if we
 1849 consider one term of the third derivative as follows:

$$1850 \theta^{(l,l-1)} \left(\phi^{[2]} \left(F^{(l-1)} \right) \left(\nabla F^{(l-1)} \times \nabla^{\times 2} F^{(l-1)} \right) \right) \quad (159)$$

1852 then, for every three distinct derivative indices $\alpha_1, \alpha_2, \alpha_3$, there are three unique ways to arrange the
 1853 indices, disregarding irrelevant parts:

$$1854 \nabla_{\alpha_1} F^{(l-1)} \times \nabla_{\alpha_2 \alpha_3}^{\times 2} F^{(l-1)}, \nabla_{\alpha_2} F^{(l-1)} \times \nabla_{\alpha_1 \alpha_3}^{\times 2} F^{(l-1)}, \nabla_{\alpha_3} F^{(l-1)} \times \nabla_{\alpha_1 \alpha_2}^{\times 2} F^{(l-1)}. \quad (160)$$

1856 While the first combination naturally arises from our expression, the "comb" term accounts for the
 1857 other two.

1858 It should be mentioned that only unique terms are counted, even if they originate from dif-
 1859 ferent orders of the derivatives. Therefore, for another component of the third derivative,
 1860 $\theta^{(l,l-1)} (\phi^{[3]}(F^{(l-1)}) \nabla F^{(l-1)} \times \nabla F^{(l-1)} \times \nabla F^{(l-1)})$, and distinct $\alpha_1, \alpha_2, \alpha_3$:

$$1861 \nabla_{\alpha_1} F^{(l-1)} \nabla_{\alpha_2} F^{(l-1)} \nabla_{\alpha_3} F^{(l-1)}, \nabla_{\alpha_1} F^{(l-1)} \nabla_{\alpha_3} F^{(l-1)} \nabla_{\alpha_2} F^{(l-1)} \dots \quad (161)$$

1863 are identical, hence should only be counted once.

1864 We can use this result to construct the l -th layer correlations using the correlations from the $l-1$
 1865 layer:

1866 **Lemma G.4** (Representation of the l -th layer correlations, as a combination of its previous layer's
 1867 correlations). Given the same condition as in lemma G.3, then:

$$1869 \mathfrak{C}_{(l)}^{D,d} = \theta^{(l,l-1)} \times \left(\tilde{\theta}^{(l,l-1)} \right)^{\times d} \tilde{\mathfrak{C}}_{(l-1)}^{D,d} + \\ 1870 \eta^{\frac{1}{2}} I \times \eta^{\frac{1}{2}} \phi(F^{(l-1)}) \times \left(\tilde{\theta}^{(l,l-1)} \right)^{\times d-1} \tilde{\mathfrak{C}}_{(l-1)}^{D,d-1} + \text{comb} + \\ 1871 \left(\tilde{\theta}^{(l,l-1)} \right)^{\times d} \hat{\mathfrak{C}}_{(l-1)}^{D-1,d} + \text{comb}. \quad (162)$$

1874 or when showing the indices explicitly, using Einstein's notation for summation:

$$1876 \left(\mathfrak{C}_{(l)}^{D,d} \right)_{i_0 i_1 \dots i_d} = \theta_{i_0 j_0}^{(l,l-1)} \tilde{\theta}_{i_1 j_1}^{(l,l-1)} \dots \tilde{\theta}_{i_d j_d}^{(l,l-1)} \left(\tilde{\mathfrak{C}}_{(l-1)}^{D,d} \right)_{j_0, j_1 \dots j_d} + \\ 1877 \eta^{\frac{1}{2}} \delta_{i_0 i_1} \eta^{\frac{1}{2}} \phi(F_{j_0}^{(l-1)}) \tilde{\theta}_{i_2 j_2}^{(l,l-1)} \dots \tilde{\theta}_{i_d j_d}^{(l,l-1)} \left(\tilde{\mathfrak{C}}_{(l-1)}^{D,d-1} \right)_{j_0, j_2 \dots j_d} + \text{comb} + \\ 1878 \tilde{\theta}_{i_1 j_1}^{(l,l-1)} \dots \tilde{\theta}_{i_d j_d}^{(l,l-1)} \left(\hat{\mathfrak{C}}_{(l-1)}^{D-1,d} \right)_{i_0, j_1 \dots j_d}, \quad (163)$$

1881 where the "comb" term includes all index pairings with the zero index, i.e., $(i_0, i_2) \dots (i_0, i_D)$, and
 1882 the θ defined as:

$$1884 \tilde{\theta}_{ij}^{(l,l-1)} = \theta_{ij}^{(l,l-1)} \phi' \left(F_j^{(l-1)} \right). \quad (164)$$

1886 The first compound derivative defined such as for $D \in \mathbb{N}_0, d \in \mathbb{N}$:

$$1887 \tilde{\mathfrak{C}}_{(l)}^{D,d} = \sum_{d'=1}^{D+d} \left\{ C_{\vec{d}, \vec{D}} \phi^{[d']} \left(F^{(l)} \right) \mathfrak{C}_{(l)}^{D_1, d_1} \times \dots \times \mathfrak{C}_{(l)}^{D_{d'}, d_{d'}} \middle| \begin{array}{l} d_1 + \dots + d_{d'} = d \\ D_1 + \dots + D_{d'} = D \end{array} \right\} + \text{Comb} \quad (165)$$

where:

$$C_{\vec{d}, \vec{D}} = \frac{(D_1! \cdots D_{d'}!) (d_1! \cdots d_{d'}!)}{D! d!} . \quad (166)$$

Also for $D \in \mathbb{N}_0$, $d = 0$:

$$\tilde{\mathfrak{C}}_{(l)}^{D,0} = \eta^{\frac{D}{2}} \tilde{\nabla}_t^{\times D} F^{(l)} . \quad (167)$$

The second compound derivative defined such as for $D \in \mathbb{N}, d \in \mathbb{N}$:

$$\left(\hat{\mathfrak{C}}_{(l)}^{D-1,d}\right)_{i_0,j_1\dots j_d}^{\alpha_{d+1}\dots\alpha_{d+D}} = \eta^{\frac{1}{2}} \delta_{(i_0j_0)}^{\alpha_{d+1}} \left(\tilde{\mathfrak{C}}_{(l)}^{D-1,d}\right)_{j_0,j_1\dots j_d}^{\alpha_{d+2}\dots\alpha_{d+D}} + \text{comb} , \quad (168)$$

where the "comb" term is defined as before. For $D = 0$ this compound derivative vanishes.

Remark G.5. For the following lemma and the subsequent section, we make the assumption that $D \ll n$. This assumption is permissible even though, in considering the limit, the limit of D should technically be taken prior to that over n . This is because higher order derivatives typically exert a decreasing influence over system behavior, leading us to essentially consider them negligible beyond a certain point.

It is important to note that this assumption is not strictly necessary. We could directly address the intricate combinatorial factors without it. Despite this, we prefer to make this assumption to avoid introducing unnecessary complications into our analysis.

Lemma G.5 (Counting combinations of the derivatives and correlations).

1. For the conditions of lemma G.3, for every $d_1 \dots d_d$, the number of combinations of the derivatives indices is:

$$\frac{1}{d!} \frac{D!}{d_1! \cdots d_d!}, \quad (169)$$

and the total number of combinations above all possible $d = 1 \dots D$ -s is the D -th "bell number" (which is very close to $D!$).

2. For the conditions of lemma G.4, for every $d_1 \dots d_{d'}$ and $D_1 \dots D_{d'}$, the number of combinations of the compound correlations is:

$$\frac{1}{d'!} \frac{d!}{d_1! \cdots d_{d'}!} \frac{D!}{D_1! \cdots D_{d'}!} . \quad (170)$$

We assume for this lemma the indices are different, as $D \ll n$.

Proof - lemmas G.3 G.4

We will prove the lemma by induction for a general layer $l = 1 \dots L-1$ starting with $l = 1$.

The induction base is simple, as this is a direct consequence of taking a derivative over our equation for neural networks (133). This calculation hinges on the concept that, by definition, the inner derivatives are independent of the outer parameters.

$$\nabla_{(l)} F^{(l)} = \nabla_{(l)} \theta^{(l, l-1)} \phi(F^{(l-1)}) = \theta^{(l, l-1)} \nabla_{(l)} \phi(F^{(l-1)}) = \theta^{(l, l-1)} (\phi^{[1]}(F^{(l-1)}) \nabla_{(l)} F^{(l-1)}) \quad (171)$$

which gives us the induction base

Assuming by induction our lemma is satisfied for some $D - 1 \in \mathbb{N}$: the inner D -th derivative satisfies:

$$\begin{aligned}
& \nabla_{(-l)}^{\times D} F^{(l)} = \nabla_{(-l)} \times \nabla_{(-l)}^{\times D-1} F^{(l)} = \\
& \nabla_{(-l)} \times \theta^{(l, l-1)} \sum_{d=1}^{D-1} \sum_{d_1 \dots d_d \in \mathbb{N}}^{d_1 + \dots + d_d = D-1} \phi^{[d]}(F^{(l-1)}) (\nabla^{\times d_1} F^{(l-1)} \times \dots \times \nabla^{\times d_d} F^{(l-1)}) \\
& \quad + \text{comb} \\
& = \\
& \theta^{(l, l-1)} \sum_{d=1}^{D-1} \sum_{d_1 \dots d_d \in \mathbb{N}}^{d_1 + \dots + d_d = D-1} \nabla \times \phi^{[d]}(F^{(l-1)}) (\nabla^{\times d_1} F^{(l-1)} \times \dots \times \nabla^{\times d_d} F^{(l-1)}) \\
& \quad + \\
& \theta^{(l, l-1)} \sum_{d=1}^{D-1} \sum_{d_1 \dots d_d \in \mathbb{N}}^{d_1 + \dots + d_d = D-1} \phi^{[d]}(F^{(l-1)}) (\nabla \times \nabla^{\times d_1} F^{(l-1)} \times \dots \times \nabla^{\times d_d} F^{(l-1)}) \\
& \quad + \\
& \text{comb}
\end{aligned} \tag{1}$$

1944

We have here a sum of two two different summations, we will analyse each one separably:

1945

Starting from the first one:

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

We have here a sum of two two different summations, we will analyse each one separably:

Starting from the first one:

$$\begin{aligned}
 & \sum_{d=1}^{D-1} \sum_{d_1 \dots d_d \in \mathbb{N}}^{d_1 + \dots + d_d = D-1} \nabla \times \phi^{[d]}(F^{(l-1)}) (\nabla^{\times d_1} F^{(l-1)} \times \dots \times \nabla^{\times d_d} F^{(l-1)}) \\
 & \quad = \\
 & \sum_{d=1}^{D-1} \sum_{d_1 \dots d_d \in \mathbb{N}}^{d_1 + \dots + d_d = D-1} \phi^{[d+1]}(F^{(l-1)}) (\nabla F^{(l-1)} \times \nabla^{\times d_1} F^{(l-1)} \times \dots \times \nabla^{\times d_d} F^{(l-1)}) \\
 & \quad = \\
 & \sum_{d=1}^{D-1} \sum_{d_1=1, d_2 \dots d_{d+1} \in \mathbb{N}}^{d_1 + d_2 + \dots + d_{d+1} = D} \phi^{[d+1]}(F^{(l-1)}) (\nabla^{\times d_1} F^{(l-1)} \times \nabla^{\times d_2} F^{(l-1)} \times \dots \times \nabla^{\times d_{d+1}} F^{(l-1)}) \\
 & \quad = \\
 & \sum_{d=2}^D \sum_{d_1=1, d_2 \dots d_d \in \mathbb{N}}^{d_1 + d_2 + \dots + d_d = D} \phi^{[d]}(F^{(l-1)}) (\nabla^{\times d_1} F^{(l-1)} \times \nabla^{\times d_2} F^{(l-1)} \times \dots \times \nabla^{\times d_d} F^{(l-1)}). \tag{173}
 \end{aligned}$$

The second term can be represented as:

$$\begin{aligned}
 & \sum_{d=1}^{D-1} \sum_{d_1 \dots d_d \in \mathbb{N}}^{d_1 + \dots + d_d = D-1} \phi^{[d]}(F^{(l-1)}) (\nabla \times \nabla^{\times d_1} F^{(l-1)} \times \dots \times \nabla^{\times d_d} F^{(l-1)}) \\
 & \quad = \\
 & \sum_{d=1}^{D-1} \sum_{d_1 \dots d_d \in \mathbb{N}}^{(d_1+1) + \dots + d_d = D} \phi^{[d]}(F^{(l-1)}) (\nabla^{\times d_1+1} F^{(l-1)} \times \dots \times \nabla^{\times d_d} F^{(l-1)}) \\
 & \quad = \\
 & \sum_{d=1}^{D-1} \sum_{1 < d_1 \in \mathbb{N}, d_2 \dots d_d \in \mathbb{N}}^{d_1 + \dots + d_d = D} \phi^{[d]}(F^{(l-1)}) (\nabla^{\times d_1} F^{(l-1)} \times \dots \times \nabla^{\times d_d} F^{(l-1)}). \tag{174}
 \end{aligned}$$

Combining the two sums we get exactly the form that we were searching for, which finishes the proof of the lemma's first case.

Lemma (G.4) is a direct result. \square

Proof - lemma (G.5).

Proving the lemma's first part:

The number of way to sort into d distinct sets with $d_1 \dots d_d$ objects is:

$$\frac{(d_1 + \dots + d_d)!}{d_1! \dots d_d!} = \frac{D!}{d_1! \dots d_d!}, \tag{175}$$

but our sets are not distinct, so we need to divide by the appropriate coefficient. But if the sets are not the same, they repeat in different arrangements, so we get the $\frac{1}{d!}$. summing over all of these options we get the definition of the D -th bell number.

The second part is the same. \square

G.4 WIDE FCNNs ARE WEAKLY CORRELATED PGDML SYSTEMS

Here we will show a detailed heuristic proof of why wide neural networks are weakly correlated PGDML as described in lemma G.2.

Remark G.6. For this section we assume that the width of the last layer, i.e the L -th layer is exactly $L = 1$. That won't impact any of our results of the system asymptotic behavior as L is fixed in n as discussed in remark C.6.

Remark G.7. In the entire section we will use Einstein's summation notation (liberally).

We initiate our exploration of wide neural network correlations (and derivatives) by focusing on the most critical one - the kernel - \mathfrak{C}^1 .

For the final layer $l = L$, the kernel norm is simply expressed as:

$$\|\mathfrak{C}_{(L)}\| = |\mathfrak{C}_{(L)}|. \tag{176}$$

Given that $n_L = 1$, the kernel is merely a scalar.

Leveraging lemma G.4, we can construct the L -th layer kernel from the components of the preceding layer:

$$\mathfrak{C}_{(L)}^1 = \theta_i^{(L, L-1)} \theta_j^{(L, L-1)} \left(\mathfrak{C}_{(L-1)}^1 \right)_{ij} + \eta \phi \left(F_j^{(L-1)} \right)^2. \tag{177}$$

1998 Applying lemma (G.1) and the Lipschitz property of ϕ , we discern that the right term has the
 1999 asymptotic behavior of $\eta\phi(F_j)^2 \sim O(1)$. Concerning the left term, lemma (G.4) once again
 2000 provides:
 2001

$$\left(\mathfrak{C}_{(L-1)}^1\right)_{ij} = \theta_{ip}^{(L,L-1)} \theta_{jq}^{(L,L-1)} \left(\mathfrak{C}_{(L-2)}^1\right)_{pq} + \delta_{ij} \eta \phi \left(F_k^{(L-2)}\right)^2. \quad (178)$$

2002 This means we have an $O(1)$ term and another that depends on the previous term. Continuing
 2003 this process by induction and employing the fact that everything is symmetric, hence positive, we
 2004 conclude that the kernel's asymptotic behavior is precisely $O(1)$. **In combination with (G.2), we**
 2005 **find that our system satisfies the criteria of a PGDML (D.2)!**
 2006

2007 Let's now consider a general $D \in \mathbb{N}_0$, $d \in \mathbb{N}$ final correlation. By invoking lemma C.3, we know that
 2008 there exists a vector $v \in S_N$ achieving the norm:
 2009

$$\left\| \mathfrak{C}_{(L)}^{D,d} \right\| = \left| \mathfrak{C}_{(L)}^{D,d} \cdot v^{\times D} \right|. \quad (179)$$

2010 Applying lemma G.4, we find that this expression can be constructed from $D - 1$ correlations.
 2011 Considering only the first term among the three in the equation, (the treatment for others would be
 2012 the same), and focusing solely on the first correlations, we obtain (up to $\frac{1}{d!}$ when omitting the $\frac{1}{D!}$ as
 2013 we do not consider the different combinations):
 2014

$$\left(\phi^{[d+D]} \left(F^{(L-1)} \right) \left(\theta^{(L,L-1)} \right) \right) \times \left(\tilde{\theta}^{(L,L-1)} \right)^{\times d} \cdot \left(\left(\mathfrak{C}_{(L-1)}^1 \right)^{\times d} \times \left(\eta^{\frac{1}{2}} \nabla F^{(L-1)} \right)^{\times D} \cdot v^{\times D} \right). \quad (180)$$

2015 Using (23), and that the $L - 1$ layer and L are independent at initialization, we can dismiss the ϕ -s,
 2016 leaving the asymptotic behavior unchanged (we would discuss the $d!$ later):
 2017

$$\left(\theta^{(L,L-1)} \right)^{\times d+1} \cdot \left(\left(\mathfrak{C}_{(L-1)}^1 \right)^{\times d} \times \left(\eta^{\frac{1}{2}} \nabla F^{(L-1)} \right)^{\times D} \cdot v^{\times D} \right). \quad (181)$$

2018 When constructing the kernels from the preceding layer, as each one consists of two terms (177),
 2019 resulting in 2^d terms in total. This factor of 2^d does not alter the system's asymptotic behavior, so
 2020 instead, we can consider only the maximal terms, which are the ones with only one kind of first
 2021 correlation terms. We will choose the first kind of terms, dealing with the others via induction:
 2022

$$\theta_{i_0}^{(L,L-1)} \theta_{i_1}^{(L,L-1)} \dots \theta_{i_d}^{(L,L-1)} \left(\delta_{i_0 i_1} \eta \phi \left(F_k^{(L-2)} \right)^2 \right) \dots \left(\delta_{i_0 i_d} \eta \phi \left(F_k^{(L-2)} \right)^2 \right) \cdot \left(\left(\eta^{\frac{1}{2}} \nabla F_{i_0}^{(L-2)} \right)^{\times D} \cdot v^{\times D} \right). \quad (182)$$

2023 As $\eta \phi \left(F_k^{(L-2)} \right)^2 \sim O(1)$, after reducing the deltas, we obtain an asymptotic behavior of at most:
 2024

$$\left(\theta_i^{(L,L-1)} \right)^{d+1} \left(\left(\eta^{\frac{1}{2}} \nabla F_{i_0}^{(L-2)} \right)^{\times D} \cdot v^{\times D} \right). \quad (183)$$

2025 Now, as we already have that $O \left(\eta^{\frac{1}{2}} \nabla F_{i_0}^{(L-2)} \right) \leq O(1)$, if $D \in \mathbb{N}$ we find multiplied by a vector
 2026 of at most size $O(1)$. In the worst case, this object will have an asymptotic behavior of:
 2027

$$\left(\theta_i^{(L,L-1)} \right)^{d+2}. \quad (184)$$

2028 We know from our proper initialization that it is uniformly bounded for all d -s by:
 2029

$$d! O \left(\frac{1}{\sqrt{n}} \right)^d. \quad (185)$$

2030 which means that by reintroducing the $\frac{1}{d!}$ we get:
 2031

$$O \left(\frac{1}{\sqrt{n}} \right)^d. \quad (186)$$

2052 If $D = 0$ however, the $\left(\eta^{\frac{1}{2}} \nabla F_{i_0}^{(L-2)}\right)^{\times D} \cdot v^{\times D}$ term disappears and we are left with:

2053
$$\left(\theta_i^{(L,L-1)}\right)^{d+1}. \quad (187)$$

2054 For odd d -s, we still have $O\left(\frac{1}{\sqrt{n}}\right)^d$ as θ is symmetric. However, for even ones, we find:

2055
$$O\left(\frac{1}{\sqrt{n}}\right)^{d-1}. \quad (188)$$

2056 **This explains why, while our system is \sqrt{n} weakly and power correlated.** Nonetheless, for the time deviation, one can easily confirm that this term remains negligible as $n \rightarrow \infty$.

2057 Of course, there are many other terms rather than the first derivatives ones. But they can be treated similarly.

2058 Assuming that for $l-1$ layer:

2059
$$\phi^{[d']}\left(F^{(l-1)}\right) \mathfrak{C}_{(l-1)}^{D_1, d_1} \times \cdots \times \mathfrak{C}_{(l-1)}^{D_{d'}, d_{d'}}. \quad (189)$$

2060 contributes at most:

2061
$$O\left(\frac{1}{\sqrt{n}}\right)^{d \text{ or } d-1}. \quad (190)$$

2062 We get utilizing lemma G.5, and replacing $\phi^{[d']}\left(F^{(l-1)}\right) \rightarrow d'!$ (as warranted by equation 23), we find that the total contribution is bounded by:

2063
$$\sum_{d'=1}^{D+d} \sum \sum \frac{1}{d'!} \frac{d!}{d_1! \cdots d_{d'}!} \frac{D!}{D_1! \cdots D_{d'}!} d'! \frac{d_1! \cdots d_{d'}!}{d!} \frac{D_1! \cdots D_{d'}!}{D!} O\left(\frac{1}{\sqrt{n}}\right)^{d \text{ or } d-1}$$

$$\sim 2^{D+d} O\left(\frac{1}{\sqrt{n}}\right)^{d \text{ or } d-1} \sim O\left(\frac{1}{\sqrt{n}}\right)^{d \text{ or } d-1}. \quad (191)$$

2064 In a similar vein, it can be demonstrated that multiple correlations taken together exhibit the same behavior at the l -th layer. Which means that we can prove by induction in the same way we did for the first correlations, that all of them behave the same, **thereby concluding our (heuristic) proof.**

2065 G.5 GENERALIZATION BEYOND FCNNs

2066 G.5.1 TENSOR PROGRAMS

2067 While FCNNs are the prototypical network architecture, numerous other architectures are utilized practice as we discussed in section 4.2. The tensor programs formalism, as detailed in Yang & Littwin (2021), offers a unified language to encapsulate most relevant neural network architectures, by viewing them as a composites of global linear operations and pointwise nonlinear functions. This formalism encompasses an extensive array of neural network architectures, including recurrent neural networks and attention-based networks. In their work they demonstrated that any wide network described by this formalism exhibit linearization.

2068 Our weak correlation approach naturally aligns with the tensor programs framework, simplifying the proof that such networks not only exhibit linearization, but also are low correlated PGDMLs. This comes with all of the additional implications that, like deviations over learning and the influence of network augmentation on the linearization rate.

2069 Our proof for FCNNs can be simply generalised for any wide network described by this formalism, because, similarly to FCNNs, all such systems exhibit a wide semi-linear form by definition.

2070 G.5.2 BEYOND TENSOR PROGRAMS

2071 Given the broad generality of the tensor programs formalism, it's challenging to devise linearizing networks that fall outside its scope. However, here we suggest two network-based architectures that demonstrate linearization and, to our belief, stand outside this formalism.

2106 The first is FCNN as outlined in equation 133, but where each neuron possesses a unique activation
 2107 function:

$$2108 \quad 2109 \quad 2110 \quad F_i^{(l)} = \sum_{j=1}^{n_{l-1}} \theta_{ij}^{(l,l-1)} \phi_j \left(F_j^{(l-1)} \right) + \theta_i^{(l)} . \quad (192)$$

2111 The proof of the linearization of this system, assuming ϕ_i satisfies condition 23, simply parallels our
 2112 proof for FCNNs.

2113 Not all such systems are outside the random tensor formalism's purview, if we can represent ϕ_i as a
 2114 function of two distinct inputs - F_i and another external input given by the index $j \in \mathbb{N}$, such as:
 2115

$$2116 \quad 2117 \quad \forall j = 1 \dots n_{l-1} : \phi_j \left(F_j^{(l-1)} \right) = \phi \left(F_j^{(l-1)}, j \right) . \quad (193)$$

2118 However, since ϕ and all its derivatives must remain bounded by some polynomial to fit within the
 2119 theorems of Yang & Littwin (2021); Yang (2020) for wide neural networks, if ϕ_i is exceedingly
 2120 diverse, pinpointing a suitable ϕ could be very challenging or even impossible.

2121 A more definite (albeit synthetic) example of a linearizing network-based system outside the tensor
 2122 programs realm can be formulated as:
 2123

$$2124 \quad 2125 \quad z(x) = \sum_{i=1}^n \theta_i f_i(x) + \sum_{i,j=1}^n \theta_i \theta_j g_i(x) g_j(x) \quad g = Af , \quad (194)$$

2126 initialized by $\theta = 0$, where A is a 90° rotating matrix across the relevant axis as $n \rightarrow \infty$, and f_i are
 2127 chosen as the eigenfunctions of some external kernel.
 2128

2129 This system can be viewed just an NTK approximation, but with a non-trivial second derivative that
 2130 is perpendicular to the first. Hence, our system will still behave linearly as $n \rightarrow \infty$. It's also not
 2131 evident how this system can be derived from the tensor programs framework.

2132 While one might contend that this example seems artificially contrived to the point of limiting its
 2133 significance, it underscores the existence of weakly correlated, network-based systems that are not
 2134 encapsulated by the tensor programs formalism.

2135 Furthermore, in line with our discourse in section 3.3.3, if we manage to discern the types of effective
 2136 correlations that could prove advantageous, such systems might find practical applications.
 2137

2138 H THE CHICKEN AND THE EGG - ELABORATED

2141 In this section, we aim to elaborate on the points made in section 3.3.3. We begin by discussing why
 2142 we argue that the derivatives correlations represent a form of bias in the system.

2143 The simplest way to see the equivalence between weak derivative correlations and an inherent bias
 2144 within the system, is by considering the case of wide neural networks. In our demonstration that
 2145 wide neural networks exhibit weak derivative correlations (appendix G), we assumed the absence of
 2146 correlations in the initial distribution of θ in the infinite width limit. If we introduce such correlations
 2147 in θ , then these correlations contribute to the derivative correlations, such that they do not vanish.
 2148 This relation also holds true the other way around, meaning persisting derivative correlations are
 2149 equivalent to correlations in the initial distribution of θ in the large width limit. Such correlations
 2150 in the initial distribution of θ , indicate an inherent bias in the initial hypothesis function, since they
 2151 imply a predisposition towards specific regions in the parameter space. Therefor, weak derivatives
 2152 correlations are a manifestation of an inherent bias in our initial hypothesis function.

2153 Finite neural networks, by their very nature of having a finite number of parameters, are limited
 2154 to a small subset of the parameter space. This is because they can be considered as infinite neural
 2155 networks, with multiple parameters set to zero (and not allowed to change during learning). This
 2156 explains why even when drawing the initial parameters from an iid distribution, finite neural networks
 2157 still exhibit non-vanishing derivative correlations, which are minimized when expanding the width.

2158 The equivalence between weak derivative correlations and inherent bias in the system is also mani-
 2159 fested in the process of gradient descent (equation 7). When considering this equation, one observes
 that there are two objects that the optimisation process attempts to minimize: the first is the derivative

2160 of the cost function, $\mathcal{C}'(F(\theta), \hat{y})$, and the second is the gradient of the hypothesis function, $\nabla F(\theta)$.
 2161 Minimizing the norm of the first term signifies the learning of the data, as this term is minimized
 2162 when the hypothesis function most effectively fit the target function. On the other hand, minimizing
 2163 the gradient of the hypothesis function's norm, signifies the system's learning its own structure,
 2164 independently of the data, hence a bias. To be able to minimize the second term via gradient descent,
 2165 we need the higher derivative correlations to have the same asymptotic behaviour as the gradient, as
 2166 seen in equation 11 for $1 \leq D$. Thus, weak derivative correlations impede the system's ability to
 2167 learn its own structure instead of learning the data, which effectively minimizes the bias.

2168 Furthermore, we argue that this interpretation explains both why linear learning is so common, and
 2169 why linear systems are generally outperformed by their non-linear counterparts. We argue that the
 2170 derivative correlations represent an inherent bias in the system, and that linear learning should be
 2171 understood as a consequence of our attempt to minimize this bias. However, in some contexts certain
 2172 bias can facilitate learning, as exemplified by explicit and implicit regularization. Thus, having weak
 2173 but nonzero derivative correlations can be beneficial, which explains why near-linear learning is
 2174 generally better than linear learning. In other words, strict linear learning takes the weak correlations
 2175 principle to an unproductive extreme.

2176 I LIMITATIONS, FURTHER DISSECTION AND GENERALIZATION

2179 In this section, we enumerate the key assumptions that underpin our analysis and propose potential
 2180 extensions to our findings beyond these stipulated preconditions. Additionally, we identify potential
 2181 avenues for related further research.

2182 I.1 SECTION 2

2184 Our analysis here did not rely on any hidden or nontrivial assumptions, except for those explicitly
 2185 stated during the tensor definition. Our findings are generalizable and applicable to any random
 2186 tensor or variable that is dependent on some limiting parameter $n \in \mathbb{N}$. Extending our results to any
 2187 set with a total order is straightforward.

2189 We anticipate this analytical tool to be beneficial not only for the investigation of wide neural networks
 2190 but also for the learning of random tensors and variables in general, particularly when focusing on
 2191 their limiting behavior, for reasons delineated in this paper. It upholds several useful algebraic
 2192 properties C.3, provides a well-defined, optimal asymptotic bound for any tensor 2.1, and harmonizes
 2193 naturally with the notion of "convergence in distribution". Further, owing to its inherent generality, it
 2194 offers widespread applicability. We recommend further exploration into the utilization of this tool in
 2195 solving other problems.

2196 I.2 SECTIONS 3,4

2198 I.2.1 ASSUMPTIONS

- 2199 1. We presuppose that F , \mathcal{C} , and ϕ are analytical in their parameters, that is, they are smooth,
 2200 and their Taylor series converges.
- 2202 2. All of ϕ derivatives are bounded such as in equation 23.
- 2203 3. Our analysis is constrained to the case of single-batch stochastic gradient descent, and we
 2204 assume that our training and testing distributions coincide.
- 2205 4. We assume that \mathcal{C} is convex, that is, \mathcal{C}'' is positive definite.
- 2206 5. Our theorems 3.1,3.2 and corollary 4.1 are exclusively applicable to PGDML systems, as
 2207 defined in D.2.
- 2208 6. theorem 3.1 and corollary 4.1 are valid only for sufficiently small η that is of the same order
 2209 of magnitude as the η necessary for effective linear studies.
- 2211 7. Corollary 4.1 stipulates that the first derivative of \mathcal{C} decays exponentially, and the second
 2212 derivative remains bounded over time for the linear solution.
- 2213 8. The equivalence showed in theorems 3.1,3.2 demand that all of the derivatives stay fixed.
 But one can describe a more nuanced equivalence, where the derivatives do significantly

2214 change, but the network itself do behaves linearly, if this change is perpendicular to $\nabla F(\theta_0)$.
 2215 However, given the fact that neural networks satisfy our simpler conditions we will remain
 2216 with the above stated version of the equivalence.
 2217

2218 **I.2.2 GENERALIZATIONS OF THE ASSUMPTIONS**

2219
 2220 For condition 1, while we typically deal with smooth analytical functions, non-continuous hypothesis
 2221 functions are common, as with the "ReLU" activation function in neural networks. If our system
 2222 can be represented as a linear approximation plus a function that is analytical over patches, with the
 2223 understanding that non-smooth points are of zero measure, then the techniques presented herein can
 2224 be applied.
 2225

2226 Regarding the bound imposed on the derivatives of ϕ , 2, this bound is relatively non-restrictive.
 2227 Especially considering that ϕ should be analytic and this condition only needs to hold over an
 2228 arbitrarily large probability set, not the entire probability space.
 2229

2230 Extending the single-input batch gradient descent case 3 to other batch schemes, such as multiple-
 2231 input batches or deterministic single batch GD, is straightforward. This extension simply involves
 2232 replicating our work while adjusting the specifics of the optimization algorithm of interest. The
 2233 generalization for more complex gradient-based algorithms follows similar lines, albeit with more
 2234 nuances.
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267