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ABSTRACT

Deep learning models, such as wide neural networks, can be viewed as nonlinear
dynamical systems composed of numerous interacting degrees of freedom. When
such systems approach the limit of infinite number of degrees of freedom, their
dynamics tend to simplify. This paper investigates gradient descent-based learning
algorithms that exhibit linearization in their parameters. We establish that this
apparent linearity, arises from weak correlations between the first, and higher-order
derivatives of the hypothesis function with respect to the parameters, at initialization.
Our findings indicate that these weak correlations fundamentally underpin the
observed linearization phenomenon of wide neural networks. Leveraging this
connection, we derive bounds on the deviation from linearity during stochastic
gradient descent training. To support our analysis, we introduce a novel technique
for characterizing the asymptotic behavior of random tensors. We validate our
theoretical insights through empirical studies, comparing the linearized dynamics
to the observed correlations.

1 INTRODUCTION

Deep learning in general, and particularly over-parameterized neural networks, revolutionized various
fields Graves et al. (2013); He et al. (2016); Krizhevsky et al. (2012); Silver et al. (2016), and they
are likely to do much more. Yet, the underlying reason for their unprecedented success remains
elusive. These systems can be interpreted as non-linear dynamical physical systems, characterized by
a multitude of interacting degrees of freedom, which makes an exact description of their behavior
exceedingly hard. However, it is well established that dynamical physical systems, when expanded to
an infinite number of degrees of freedom tend to exhibit a simplified form of dynamics Anderson
(1972), therefore, it seems plausible to consider such a limit in the context of deep learning systems.

A seminal study in 2018 Jacot et al. (2018), demonstrated that wide, fully connected neural networks,
undergoing deterministic gradient descent, behave as though they were linear with respect to their
parameters, (while maintaining a highly non-linear structure in their inputs). This structure has been
denoted as the neural tangent kernel (NTK). The result sparked a plethora of subsequent research,
generalizing it to other architectures, investigating the rate of convergence towards this linear limit,
exploring the deviation of the parameters themselves from their initial configuration, decoding the
structure of the kernels, and leveraging this knowledge to enhance our understanding of wide neural
networks in general Lee et al. (2019); Li et al. (2019); Cao & Gu (2019); Karniadakis et al. (2021);
Huang et al. (2021); Bartlett et al. (2021); Woodworth et al. (2020).

Subsequent discussions arose regarding the role of this limit in the exemplary performance of wide
neural networks. Several studies have demonstrated that in certain contexts, infinitely wide neural
networks converge to their global minimum at an exponential rate Jacot et al. (2018); Lee et al.
(2019); Du et al. (2019); Allen-Zhu et al. (2019a;b); Daniely (2017); Li & Liang (2018); Du et al.
(2018); Xu et al. (2020). Moreover, wide neural networks have been posited as effective tools for
generalization, with connections drawn to the double descent phenomenon Belkin et al. (2019);
Nakkiran et al. (2021); Mei & Montanari (2022). Although simplified, first-order approximations
were shown to capture many of the critical properties of finite-width neural networks, making it a
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valuable framework for understanding neural networks behavior in general Li et al. (2019); Littwin
et al. (2021); Yang & Hu (2020).

These conclusions however encounter some contention when juxtaposed with empirical evidence.
Notably, several experiments indicate that for real-world data, NTK-based learning is less effective
than its wide (albeit finite) neural network counterparts Lee et al. (2020); Fort et al. (2020). This
apparent "NTK inferiority paradox" suggests that the relationship between the NTK limit and the
success of finite neural networks may be more intricate than initially presumed.

A relatively understudied aspect within the framework of the neural tangent kernel pertains to the
fundamental mechanisms underpinning the phenomenon of linearization. Previous research, such
as Chizat et al. (2019), suggests that any gradient-based learning algorithm inherently possesses an
intrinsic scale dictating its linearization behavior. Furthermore, incorporating an external parameter
can modify this intrinsic scale, thereby directly influencing the extent to which linearization manifests.

In a related context, Liu et al. (2020) demonstrated that the ratio between the spectral norm of the
Hessian and the Euclidean norm of the gradient governs the rate of linearization. Their analysis
also established that, for wide neural networks, this ratio typically remains small, thus facilitating
linearization.

Another relevant result in this field presented by Liu et al. (2022), who proposed that the linear
behavior observed in wide neural networks emerges fundamentally due to their structural composition
as ensembles of numerous weak sub-models.

The closest study to this work is that of Dyer & Gur-Ari (2019), which introduced a methodology
grounded in Feynman diagrams to systematically analyze wide neural networks. Their technique
enables precise computation of the asymptotic behavior of correlation functions, notably the NTK, in
the limit of infinite network width. By leveraging methods from theoretical physics, their work derives
finite-width corrections to training dynamics, thus providing deeper insights into the evolutionary
behavior of wide neural networks beyond the infinite-width approximation. However, their results
are limited, as their setup is restricted and only considers the average values of these correlations.

1.1 OUR CONTRIBUTIONS

1. We establish that for gradient descent-based learning, linearity is equivalent to weak correla-
tions between the first and subsequent derivatives of the hypothesis function, concerning its
parameters at their initial values (3.3). This equivalence is suggested as the fundamental
cause for the linearization observed in wide neural networks.

2. We prove directly that wide neural networks display this weak derivative correlations
structure. By relying and extending the tensor programs formalism Yang & Littwin (2021),
our approach uniformly addresses a broader spectrum of architectures at once than any other
proof we are aware of (4.2).

3. Drawing from the same concepts, we demonstrate how modifications in the architecture
of linearizing learning systems, and more specifically, wide neural networks, affect the
rate of linearization. This finding is juxtaposed Chizat et al. (2019)’s result, regarding the
implications of the introduction of an external scale (3.3.2,4.2).

4. Harnessing the formalism of weak derivatives correlations, we derive a bound on the
deviation from linearization over time during learning, when utilizing stochastic gradient
descent (4.1). This is a generalization of the traditional result for deterministic gradient
descent Lee et al. (2019). This is crucial, as in most practical scenarios, stochastic gradient
descent generalize better than deterministic gradient descent Lee et al. (2020); Fort et al.
(2020).

5. We introduce the notion of random tensor asymptotic behavior, as an effective analytical tool
to describe the asymptotic behavior of random tensors (2). Such tensors are not only integral
to machine learning, but also serve a pivotal role in diverse mathematical and physical
frameworks. Understanding the typical asymptotic behavior of these tensors is relevant for
addressing many questions across these fields.
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The overarching simplicity and broad applicability of our findings suggest that weak derivatives
correlations could very well be the foundational cause for the prevalent linearization attributes
observed in wide neural networks, and possibly for other linearizing systems.

2 RANDOM TENSOR ASYMPTOTIC BEHAVIOR

Random tensors play a fundamental role in machine learning in general, and in this work in particular.
In this section, we demonstrate the effectiveness of employing the stochastic big O notation of the
subordinate norm, to characterize the asymptotic behavior of a general random tensor sequence
(hereinafter referred to as a random tensor). Addressing the asymptotic behavior of such tensors
involves two inherent challenges: the complexity arising from their multitude of components, and the
stochastic nature of these components. In this part, we will define an effective way to characterize
their asymptotic behavior.

Our primary norm in this work will be the Subordinate Tensor Norm, defined as in Kreyszig (1991):

∥M∥ = sup
{
M ·

(
v1 × . . .× vr

) ∣∣ v1, . . . , vr ∈ SN1
, . . . , SNr

}
. (1)

We provide a detailed explanation of this definition and discuss its advantages in Appendix B.1.

We combine this concept with the Stochastic Big-O Notation, introduced in Appendix B.2, which is
defined for a sequence of random tensors, denoted by M ≡ {Mn}∞n=1. Henceforth, we regard M as
a random tensor depending on a limiting parameter n ∈ N1. This leads us to the definition of a new
asymptotic upper bound for random tensors.

Denoting N = {f : N → R0+} as the set of all functions from N to the non-negative real numbers,
we introduce the following definition:
Definition 2.1 (Asymptotic Upper Bound of Random Tensors). A random tensor M , as defined
above, is said to be asymptotically upper bounded by f ∈ N as follows:

M = O (f) , (2)

if and only if:
∀g ∈ N s.t f = o (g) : lim

n→∞
P (∥Mn∥ ≤ g (n)) = 1 . (3)

The lower asymptotic bound, f = Ω(M), is defined analogously but with the inequality reversed and
g = o(f).

Like with an infinite number of deterministic sequences, where pointwise convergence often falls
short and uniform convergence is required, we demand a definition of a uniform asymptotic bound for
discussing an infinite number of random tensors. This concept is rigorously defined in appendix C.1.
Remark 2.1. For a finite number of tensors, it can simply be demonstrated that the uniform bound
aligns with the pointwise asymptotic bound, analogous to sequences convergence.

We demonstrate in lemma C.6 that this notation inherits many of the norm’s properties it is defined
above, including all of the properties of the subordinate norm, delineated in lemma C.1. Furthermore,
it satisfies several other useful properties, outlined in appendix C.3.

2.1 PROPRIETIES

Remark 2.2. We denote f ≤ g or O(f) ≤ O(g) iff f = O(g). We also denote f < g or
O(f) < O(g) iff f = O(g) and f ̸∼ g, where f ∼ g ⇔ O (f) = O (g) ⇔ f = O (g) ∧ g = O (f).
It is important to note that f < g can hold without necessitating f = o(g).

It can be readily shown that for any random tensor M , there exist upper and lower bounds such
that O (h−) ≤ O (M) ≤ O (h+), and that they satisfy h− ≤ h+. Furthermore, if h+ and h−
satisfy h+ ∼ h−, their asymptotic behavior is unique. Meaning that for any other pair h′

+, h
′
−, the

relationship h+ ∼ h′
+ ∼ h′

− ∼ h− still holds (C.5). In such scenarios, we assert that M possesses
an exact asymptotic behavior, denoted as O (h+) = O (h−).

1The results are applicable not only to N, but also to any other set endowed with a total order.
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The existence of such a pair however is not guaranteed, as illustrated by a random variable that
for every n ∈ N, has equal probability of one-half to yield either 1 or n. For this variable, the
optimal upper bound is O(n), and the optimal lower bound is O(1), but these do not exhibit the
same limiting behavior. Analogously, deterministic sequence may exhibit similar behavior, featuring
multiple distinct partial limits. However, in the deterministic case, the limsup and liminf serve as the
appropriate upper and lower limits respectively. This observation leads to the question of whether an
appropriate asymptotic bound exists for the random case. It turns out, it does.
Theorem 2.1 (Definite Asymptotic Bounds for Tensors). Consider a random tensor M with a limiting
parameter n as described earlier. There exists f ∈ N serving as a tight/definite upper bound for M ,
satisfying:

M = O (f) ∧ ∀f ̸< g : M ̸= O (g) . (4)
Furthermore, the asymptotic behavior of f is unique.

Explanation. Although the theorem’s result is intuitive, the challenge arises from the fact that our
order above N is not a total one, even when considering only the asymptotic behavior of the functions.
For example, none of the following equations hold true:

sin (πn) < cos (πn) , cos (πn) < sin (πn) , sin (πn) ∼ cos (πn) . (5)
We address this issue by employing Zorn’s lemma, as demonstrated in appendix C.2.

Since every such random tensor M has precisely one definite asymptotic bound f , we can consider
this bound as the random tensor’s asymptotic behavior, represented as:

O(M) = O(f) . (6)

3 WEAK CORRELATIONS AND LINEARIZATION

3.1 NOTATIONS FOR SUPERVISED LEARNING

3.1.1 GENERAL NOTATIONS

Supervised learning involves learning a classifier: a function ŷ : X → Y that maps an input set
(here X ⊆ RdX ), to an output set (here Y ⊆ RdY ), given a dataset of its values X ′ ⊆ X , denoted
as the "target function". This is achieved by using an hypothesis function, in our case of the form
F : RN → {f : X → Y } which depends on certain parameters θ ∈ RN (in the case of fully
connected neural networks for example, the weights and biases). The objective of supervised learning
is to find the optimal values for these parameters such that F captures ŷ best, with respect to a cost
function C assumed here convex. We use x ∈ X to denote elements in the input set, and i, j = 1...dY
to denote the output vector indices. The parameters θ are enumerated as θα, α = 1, ..., |θ| = N , and
their initial values are denoted by θ0 = θ(0).

We work within the optimization framework of single input batches gradient descent-based training,
which is defined such that for every learning step s ∈ N:

∆xsθ (s) = θ (s+ 1)− θ (s) = −η∇C (F (θ) (xs) , ŷ (xs))|θ=θ(s) =
−η∇F (θ (s)) (xs) C′ (F (θ (s)) (xs) , ŷ (xs)) .

(7)

Here, ∇α = ∂
∂θα

represents the gradient operator, xs denotes the s ∈ Nth input data, and C′ (y) =

∇yC (y) refers to the derivative of the cost function. The derivative matrix/the Jacobian ∇F is
defined such that for every indices i, α, (∇F )αi = ∇αFi. We denote η as the learning rate and
(xs, ŷ (xs)) as the inputs and labels, respectively. The training path is defined as the sequence of
inputs upon which we trained our system, represented by {xs ∈ X ′}∞s=0. We assume that each input
along this path is drawn from the same random distribution P , neglecting the possibility of drawing
the same input multiple times. The same distribution will be used for both training and testing.
Moreover, we assume that the hypothesis function and the cost function F, C are analytical in their
parameters. We study learning in the limit where the number of parameters N ≡ |θ| → ∞, with
N ≡ N(n) being a function of some other parameter n ∈ N, denoted as the "limiting parameter".
For neural networks, n is typically chosen as the width of the smallest layer, but we can choose any
parameter governs the system’s linearization.
Remark 3.1. This framework can be greatly generalised, as we discussed in appendix I.
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3.1.2 NEURAL TANGENT KERNEL NOTATIONS

Numerous gradient descent learning systems (GDML) with different neural network architectures,
display a linear-like structure in their parameters in the large width limit. In this linear limit, the
hypothesis function takes the following form:

Flin (0) = F (θ0) ,∀s ∈ N0 : Flin (s+ 1) =
Flin (s)−Θ0 (·, xs) C′ (Flin (s) (xs) , ŷ (xs)) ,

(8)

with the kernel Θ defined such as:

∀x, x′ ∈ X : Θ (θ) (x, x′) = η∇F (θ) (x)
T ∇F (θ) (x′) ,Θ0 ≡ Θ(θ0) , (9)

where ∇FT is the transpose of ∇F , the Jacobian.

3.2 THE DERIVATIVES CORRELATIONS

3.2.1 THE DERIVATIVES CORRELATIONS DEFINITION

In the following, we prove that linearization is equivalent to having weak correlations between the
first, and higher derivatives of the hypothesis function, with respect to the initial parameters. We
define the derivative correlations as follows:
Definition 3.1 (Derivatives Correlations). We define the derivatives correlations of the hypothesis
function for any positive integer d ∈ N and non-negative integer D ∈ N0 as:

CD,d (θ) =
η

D
2 +d

D!d!
∇×D+dF (θ)

T
(∇F (θ))

×d
, (10)

where the higher order derivatives defined such that for every d ∈ N and indices i, α1...αd,(
∇×dF

)
α1...αd,i

= ∇α1
· · · ∇αd

Fi.

More explicitly, presenting the inputs and indices of these tensors:

CD,d (θ)
α1+d...αD+d

i0,i1...id
(x0, x1 . . . xd) =

η
D
2

+d

D!d!

∑N
α1...αd=1 ∇×D+d

α1...αD+d
Fi0 (θ) (x0) · (∇α1

Fi1 (θ) (x1) · · · ∇αd
Fid (θ) (xd)) .

(11)

The objects in (10) are the correlation of the derivatives in the sense that α1 . . . αd can be viewed
as random variables, drawn from a uniform distribution of {1...N}, while θ and all other indices
are fixed instances and hence deterministic. In this context, ∇×D+dF and ∇F × . . .×∇F in (10)
can be viewed as random vectors of the variables α1 . . . αd, and the summation in (10) represents
the (unnormalized) form of the "Pearson correlation" between the two random vectors. The overall
coefficient of the learning rate η

D
2 +d serves as the appropriate normalization, as we will demonstrate

in appendix E and F. We will also denote: Cd (θ) ≡ C0,d (θ) ,CD,d ≡ CD,d (θ0) ,C
d ≡ Cd (θ0).

Essentially, D + d represents the degree of the derivative under consideration when interacting with
the first derivative, whereas d specifies the number of copies of the first derivative involved in the
interaction.

An example for these correlations is the D = 0, d = 1 correlation, the correlation of the first
derivative with itself, the kernel (9):

C1 (θ) = η∇F (θ)
T ∇F (θ) = Θ (θ) . (12)

The definition for the asymptotic behavior for these derivative correlations is slightly nuanced due to
the many different potential combinations of distinct inputs. We rigorously define it in appendix D.1.

In the remainder of the paper we will show how these correlations serve as an effective tool for the
theoretical analysis of the linearization of wide neural networks. While this is their main purpose,
they can also be used the evaluate linearization rate numerically.

5
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At first glance, this may seem computationally impractical, as computing the D, d-th derivative
requires summing O

(
Nd
)

elements. However, we do not actually need to compute the full d-th
gradient of F to obtain its correlation. Instead, we can use the chain rule:

CD,d (θ)
α1+d...αD+d

i0,i1...id
(x0, x1 . . . xd) =

η
D
2

+d

D!d! ∂a1
· · · ∂aD+d

Fi0

(
θ0 + a1∇Fi1 (θ0, x1) + . . .+ ad∇Fid (θ0, xD)+

a1+deα1+d
+ . . .+ aD+deαD+d

, x0

)
.

(13)

computed for a1 = ... = aD = 0, where eα is the the α-th standard basis vector. This approach
reduces the computation to summing only O (N) elements.

3.3 EQUIVALENCE OF LINEARITY AND WEAK DERIVATIVES CORRELATIONS

Our main theorems concern the equivalence of linearity and weak derivative correlations. In other
words, weak correlations can be regarded as the fundamental reason for the linear structure of wide
neural networks. These theorems are applicable for systems that are properly scaled in the initial
condition, meaning that when taking n → ∞ the different components of the system remain finite.
We define in rigour exactly what it means in appendix D.2. We denote such systems as properly
normalised GDMLs or PGDMLs.

3.3.1 OUR MAIN THEOREMS

The relationship between linearization and weak derivative correlations, is formalized through the
equivalence theorems, which characterized by a monotonically increasing sequence m(n), where
limn→∞ m(n) = ∞. This sequence captures the rate of linearization or correlation decay, and
constitutes an intrinsic parameter of the system. For instance, in the case of wide neural networks, one
typically has m(n) =

√
n. Nevertheless, m(n) may take any form that satisfies the stated conditions,

with its mathematical role lying in defining the equivalence relation.
Theorem 3.1 (Fixed Weak Correlations and Linearization Equivalence). Given the setup described
in this section, for a sufficiently small learning rate η < ηthe, the two properties are equivalent, where
the asymptotic bounds are uniform for every d,D ∈ N:

1. m(n) - fixed weak derivatives correlation:

Cd = O

(
1

m (n)

)
,CD,d = O

(
1√
m (n)

)
(14)

2. Simple linearity: for every fixed training step s ∈ N:

F (θ (s))− Flin (s) = O

(
1

m (n)

)
, (15)

η
D
2

(
∇×DF (θ (s))−∇×DF (θ0)

)
= O

(
1√
m (n)

)
. (16)

ηthe is defined such as all the correlations are uniformly bounded by O(1), to ensure the sum
converges, as shown in Appendix E.2. Any system that does not satisfy this condition will diverge
within only a few training steps, as we show in Appendix E.2. For fully connected networks for
example, ηthe ∼ 1

n .

The next theorem delineates an even stronger equivalence, which is also relevant for wide neural
networks. It also encompasses the scaling of the learning rate.
Theorem 3.2 (Exponential Weak Correlations and Linearization Equivalence). Given the setup
described in this section, the two properties are equivalent, where the asymptotic bounds are uniform
for every D ∈ N0, d ∈ N:

1. m(n) - power weak derivatives correlation: for (D, d) ̸= (0, 1):

CD,d = O

(
1√
m (n)

)d

. (17)

6
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2. Strong linearity: for every reparametrisation of the learning rate η → r(n)η, r(n) > 0 and
for every fixed training step s ∈ N:

F (θ (s))− Flin (s) = O

(
r (n)

m (n)

)
, (18)

and for every D ∈ N:(
η

r(n)

)D
2 (∇×DF (θ (s))−∇×DF (θ0)

)
= O

(
r(n)√
m(n)

)
. (19)

Explanation. We prove the theorems by considering for a general learning step s ∈ N, the hypothesis
function and its derivatives’ Taylor series expansion around the s− 1 step. Utilizing equations 7,11,
we can find that the evolution of the derivatives of F and its derivatives during learning, is governed
by a linear combination of the correlations of the form:

∆
η

D
2

D!
∇×DF (θ) =

∞∑
d=1

CD,d (θ) (−C′ (F (θ) , ŷ))
×d

, (20)

for every D ∈ N0, where ∆∇×DF is the change of ∇×DF . For deterministic functions it is now
straightforward to prove the equivalences by employing the arithmetic properties of the big O notation,
and that [i] One can choose any F − ŷ (as long as its asymptotic behavior is appropriate). [ii] Different
components in our sum cannot cancel each other, since we can change η continuously; thus, for
the sum to be small, all of the components must be small. The adjustments needed for our case
of stochastic functions are minor, as, as we show in appendix C.3, our tensor asymptotic behavior
notation satisfies many of the same properties of the deterministic big O notation. The complete
proofs are in appendix E. We demonstrate empirically that linearizing systems have weak correlations
in appendix A.

3.3.2 RELATION TO RELATED RESULTS

As shown in theorem 3.2, a rescaling of η, such as η → r(n)η, can either promote or impede the
process of linearization. This observation remains valid for theorem 3.2 as long as η < ηthe. This
insight offers a deeper understanding of the findings presented by Chizat et al. (2019), specifically
elucidating how an alteration of an external scale influences linearization, by affecting the scales of
higher-order correlations differently from those of lower-order correlations.

A notable connection to another principal work, Liu et al. (2020), concerns the definition of derivative
correlations themselves. In Liu et al. (2020), the authors established that linearization results from a
small ratio between the spectral norm of the Hessian, and the norm of the gradient. The derivative
correlations can be interpreted as a spectral norm, but concerning solely the gradient when considered
as a vector. This interpretation refines the results presented in Liu et al. (2020). Unlike their
approach, which required this ratio to be small within a neighborhood (ball), our framework demands
its minimization specifically at the initialization point. Consequently, it necessitates the decay of
higher-order correlations as well.

Another related work is the work of Huang & Yau (2020). In their work, they characterize the
dynamics of wide neural networks using a hierarchy of kernels, where higher-order kernels evolve
on slower time scales. Similarly to our paper, these time scales are proportional to 1√

n
, effectively

capturing the deviation from the NTK limit. The relation of their work to ours is most evident in the
gradient flow case, where their kernels can be expressed as linear combinations of our correlations.
However, our result is more general, as it does not rely on the structural assumptions of wide neural
networks, and also generalizes to finite learning rate GD. The most immediate benefit of that is
that our framework applies to learning systems which are not captured by Huang & Yau (2020)’s
framework. More fundamentally, by avoiding restricting ourselves only to neural networks, and
instead introducing these new correlations, we obtain not only a sufficient condition for linearization,
but an equivalence, providing a universal criterion applicable to generic learning systems.

The connection to Liu et al. (2022) is more abstract. Their argument, that the linear behavior observed
in wide neural networks fundamentally emerges from their structural composition as ensembles of

7
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numerous weak sub-models is related to our work via the concept that neurons become independent
in the infinite-width limit, precisely manifesting the absence of correlation that we emphasize.

The most closely related paper we are aware of is Dyer & Gur-Ari (2019). in this work the authors
introduced a method using Feynman diagrams, to analyze wide neural networks. This approach
systematically computes the asymptotic behavior of correlation functions, such as the Neural Tangent
Kernel, in the large-width limit. The main difference between Our and their approach is that they
measure the asymptotic behavior of correlations directly, rather than averaging their values. This
distinction significantly restricts their setup, rendering many of their conclusions more conjectural,
and less practical, compared to our findings.

3.3.3 THE CHICKEN AND THE EGG OF LINEARIZATION AND WEAK CORRELATIONS

The relationship between linearization and weak correlations in over-parameterized systems can be
comprehended from two different viewpoints. The first perspective suggests that effective learning
in such systems necessitates a form of implicit regularization, which inherently favors simplicity
Belkin et al. (2019). This preference can be directly incorporated by imposing a linear (or at
least approximately linear), structure in the highly over-parameterized regimes. Notably, in certain
scenarios, linearization can facilitate exponential convergence rates, especially with respect to the
training datasets, but in some instances, even with respect to the testing datasets Jacot et al. (2018);
Lee et al. (2019); Du et al. (2019); Allen-Zhu et al. (2019b); Daniely (2017); Li & Liang (2018); Du
et al. (2018); Xu et al. (2020); Allen-Zhu et al. (2019a). Hence, weak derivative correlations can be
interpreted as a pragmatic approach for achieving linearization.

An alternative interpretation, aligning more closely with the spirit of this paper, suggests that weak
derivative correlations do not primarily serve as a dynamic mechanism for linearization, but rather,
as its underlying cause. In this context, persisting derivative correlations may indicate an inherent
bias within the system, typically an undesirable one. Therefore, linearization can be viewed as a
consequence of our attempt to avoid counterproductive biases, by demanding weak correlations.

This interpretation suggests that the prevalent perception of kernel learning as biased, and neural
networks as unbiased, is a result-based fallacy. Had kernel learning empirically outperformed neural
networks, it would seem natural to interpret linear learning in the function space, (assigning large
eigenvalues to simpler functions and smaller ones to complex functions), as unbiased. In other words,
we interpret linear learning as overly unbiased, while finite neural networks (through mechanisms not
fully understood) prioritize the inherent bias of realistic data.

Moreover, if we possess some prior knowledge about an inherent biases in our problem, it might be
advantageous to allow some non-decaying correlations, counteracting the process of linearization.
Furthermore, as certain biases can enhance general learning algorithms (in the form of implicit and
explicit regularization), this perspective might provide valuable insights into the "NTK inferiority
paradox" introduced in the introduction (1). The reason why linear learning underperforms in
comparison to finite neural networks, might be that it lack some beneficial biases, in the form of non
vanishing correlations.

We elaborate on this point in appendix H.

4 PROPERTIES OF WEAKLY CORRELATED PGDMLS

4.1 APPLICATION: DEVIATION FROM LINEARITY DURING LEARNING

Multiple studies have examined the deviation of the hypothesis function F from its linear approxi-
mation Flin (8), as a function of n for a fixed learning step (especially in the context of wide neural
networks). Yet, it seems that no research has explored the deviation between these functions with
respect to the learning step for stochastic GD (7). This aspect is crucial since even if F − Flin

vanishes for the initial learning steps, if it deviates too fast during learning, the linearization may not
be evident for realistic large n.

To study how learning systems deviate from their linearization during the training process, we
examine the case of an exponentially m(n)-weakly correlated PGDML, with learning rate satisfying
η < ηcor. Here, ηcor is the standard critical learning rate, ensuring that the system are stable in the
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NTK limit, as explained in Appendix F. We consider the problem over the span of S ∈ N learning
steps, and assume that within this phase the linear solution approaches the true solution exponentially
fast for some typical time 0 < T , such that for every s = 1 . . . S:

C′ (Flin (s) , ŷ) = O
(
e−

s
T

)
, C′′ (Flin (s) , ŷ) = O (1) , (21)

As we show in Appendix F, this is not a restrictive assumption, especially at the beginning of training,
where the deviation from linearization matters the most.
Corollary 4.1 (Weakly Correlated PGDML Deviation Over Time). Given the conditions described
above, we obtain that for every s = 1, . . . , S:

F (θ (s))− Flin (s) = O

(
s0

m (n)

)
. (22)

where the asymptotic bounds are uniform in s, and s0 denotes s in the power of zero.

While this result addresses single-input batches stochastic GD, as we explained in appendix I, this
it can be greatly generalized. Notably, the analysis for stochastic GD may be more relevant even
for deterministic GD, than the conventional approaches that presuppose a training dataset. This is
because, while the batch might be fixed, its initial selection is from a stochastic distribution.

Explanation. We prove the corollary by using a similar induction process as in theorems 3.1,3.2.
However, here we also consider the dependency in the learning step, as detailed in appendix F. We
are able to bound the deviation over time, by leveraging the fact that in the NTK limit, during the
initial phases of the learning process, the system converges towards the target function exponentially
fast2 Jacot et al. (2018); Lee et al. (2019); Du et al. (2019); Allen-Zhu et al. (2019b); Daniely (2017);
Li & Liang (2018); Du et al. (2018); Xu et al. (2020); Allen-Zhu et al. (2019a). We believe that
subsequent research will be able to produce more refined bounds.

4.2 EXAMPLE: WIDE NEURAL NETWORKS

Numerous studies have demonstrated that a wide range of neural networks architectures exhibit
linearization as they approach the infinite width limit. However, the existing proofs tend to be specific
to particular architectures, and are often intricate in nature. The most comprehensive proof we aware
of that uniformly encompasses a diverse set of architectures, is presented in Yang & Littwin (2021);
Yang (2020). These works employed the tensor product formalism Yang (2019), which can describe
most relevant variants of wide neural network architectures, as the composition of global linear
operations, and point-wise non linear functions.

1. Relying on the semi-linear structure of FCNNs we were able show explicitly by induction
that for appropriate activation functions wide neural networks are

√
n weakly correlated,

and power weakly correlated as shown in appendix G.
2. The framework of low correlations proves effective in discerning how modifications to our

network influence its linearization. For instance, it is evident that supn∈N
ϕ[n]

(n+1)! , governs
the rate of linearization in FCNNs (G). This observation is why we demand for FCNNs, that
over the relevant domain, the activation function satisfy:

ϕ[n] ≤ O ((n+ 1)!) , (23)

where ϕ[n] is the n-th derivative of the network’s activation function - ϕ.
3. Our proof for FCNNs can simply be generalised for any wide network, described by the

tensor programs formalism (G.5.1). This is because, similarly to FCNNs, all such systems
exhibit a wide semi-linear form by definition. Demonstrating that the linearization of these
systems arises from weak correlations, allow us to utilize all of the insights we’ve found
for weakly correlated systems in general. We were also been able to conceive linearizing
network-based systems, that fall outside the scope of the tensor programs formalism (G.5.2).
Leveraging the notation of the asymptotic tensor behavior, our proof accommodates a
broad spectrum of initialization schemes, extending beyond the Gaussian initialization
predominantly employed in other studies.

2The known bounds for C′ (Flin, ŷ) are typically bounds over the variance. In appendix C.4, we discuss how
an average exponential bound can be translated into a uniform probabilistic bound.
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5 DISCUSSION AND OUTLOOK

The linearization of large and complex learning systems is a widespread phenomenon, but our
comprehension of it remains limited. We propose the weak derivatives correlations (3.1), is the
underlying structure behind this phenomenon. We demonstrated that this formalism is natural for
analyzing this linearization: [i] It allows for the determination of if, and how fast a general system
undergoes linearization (3.3.1,4.2). [ii] It aids us in analyzing the deviations from linearization during
learning (4.1).

The strength of our approach is that it does not rely on the structure of wide neural networks.
This allows us to describe not only a sufficient condition for linearization, but a true equivalence.
Furthermore, it enables us to identify precisely the structural properties that generate linearization.
With this, we were able to provide new insights into the linearization of wide neural networks,
accounting for factors such as training duration and activation function properties. Many of these
findings were previously unknown or difficult to derive using existing methods.

These insights carry a practical implications. Effective systems should neither remain too close to
their linear limits, nor deviate excessively. A cohesive framework that relates convergence behavior
to network width, training dynamics, and activation function characteristics can guide the design of
more robust and efficient future models.

Our approach raise a pivotal question (3.3.3): Is the emergence of the weak correlations structure
simply a tool to ensure a linear limit for overparameterized systems? Or does weak correlations
indicate an absence of inherent biases, leading to linearization? If the latter is true, it suggests that in
systems with pre-existing knowledge, specific non-linear learning methodologies reflecting those
biases might be beneficial. That could partially explain why the NTK limit falls short in comparison
to finite neural networks.

At the core of our weak derivatives correlation framework, is the random tensor asymptotic behavior
formalism, outlined in section 2. We have showcased its efficacy in characterizing the asymptotic
behavior of random tensors, and we anticipate its utility to extend across disciplines that involve such
tensors.

We demonstrate our results empirically in appendix A, and further discuss generalizations and
limitations in appendix I.
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Figure 1: Relative loss between the neural network and its linear approximation versus the width, for
three datasets. We used learning rate of 1, with 1160 samples, Relu activation, and 1000 epochs.

A EXPERIMENTAL RESULTS

To support our arguments, we present here empirical numerical experiments. We show the training
and testing dynamics of neural network, and its linearized approximation for varying network width.
We consider a fully-connected architecture with mini-batch gradient descent, using learning rates
according to the NTK normalization Lee et al. (2019), where we chose η0 = 1. From computational
considerations viewpoint, we focus on 10 classes classification, a total of 160 training samples and
32 test samples. MSE loss function is used for the training, where each class is represented by a
different one-hot vector (10 dimensional vector).

We perform the analysis for three datasets: CIFAR10, MNIST and FMNIST, for different activation
functions: Relu, Sigmoid, Erf, and for different numbers of layers L: 1, 2, and 3 (in addition to the
output layer). For instance, 1 layer, and width of 128 in MNIST means: 784 → 128 → 10.

The simulation were done in JAX packaged, and were based on Lee et al. (2019) work. We share our
code in GitHub. All the results were obtained on CPU of a Apple M1 Pro 32GB, the running time is
about 1 hour in total.

The difference function between f and flin was taken to be:

C (f, flin) =
1

10 |X|

√√√√∑
x∈X

10∑
i=1

(fi(x)− fi,lin(x))
2
, (24)

where the sub-index represents the output vector index (it depends on the class), and X is the set of
the data samples, which consists of 32 samples.

Calculating high order derivatives is very costly in terms of computational resources. Therefore, we
estimated the high order partial derivatives by a random sampling of set D weights at each layer, and
averaged over a batch of samples X . Practically, we set |D| = 60 and |X| = 160, dy = 10:

C0,2 ≈ 1

S

√√√√√ 1

dy

10∑
i=1

∑
x∈X

 1

|D|2
∑

α1,α2∈D

∂α1fi (x) ∂α2fi (x) ∂α1∂α2fi (x)

2

, (25)

and the same goes for C0,3

B ADDITIONAL MATHEMATICAL BACKGROUND

In this section, we elaborate on several mathematical concepts that form the foundation for the ideas
introduced in Section 2. We begin by defining the subordinate tensor norm and its key properties,
then introduce a stochastic variant of "Big O" notation to characterize the asymptotic behavior of
random tensors.
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Figure 2: A comparison of the second order correlation approximation versus the width of the
network, for different datasets (MNIST, CIFAR10 and FMNIST) and for different activation function
(relu, erf, sigmoid) and number of layers (1,2,3). For all of these experiment, we used learning rate of
1, 160 samples, and 1000 epochs comparison of the second order correlation approximation versus
the width of the network, for different datasets (MNIST, CIFAR10 and FMNIST), and for different
activation function (Relu, Erf, Sigmoid) and number of layers (1,2,3). For all of these experiment, we
used learning rate of 1, 1160 samples, and 1000 epochs.

Figure 3: Third order correlation approximation function versus different widths, for three datasets.
We used learning rate of 1, 1160 samples, Relu activation and 1000 epochs.
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B.1 THE SUBORDINATE TENSOR NORM

Let M be a tensor of rank r ∈ N0. Denote all its indices using the vector i⃗, such that each
ie for e = 1...r can assume values ie = 1...Ne. Consequently, the tensor comprises a total of
N = N1 · · ·Nr elements.

We will use the subordinate norm, defined as Kreyszig (1991):

∥M∥ = sup
{
M ·

(
v1 × . . .× vr

)∣∣ v1...r ∈ SN1...r

}
=

sup
{∑N1...Nr

i1...ir=1

(
Mi1...irv

1
i1
· · · vrir

)∣∣∣ v1...r ∈ SN1...r

}
,

(26)

where SNk
=
{
v ∈ RNk : v · v = 1

}
represents the unit vectors of the appropriate dimensions.

This norm satisfies certain algebraic properties outlined in lemma C.1, including: [i] the triangle
inequality; [ii] for a tensor M and vectors v1 . . . vq with appropriately defined product, the condition∥∥M ·

(
v1 × . . .× vr

)∥∥ ≤ ∥M∥
∥∥v1∥∥ · · · ∥vr∥ holds; [iii] Given two tensors M

(1)

i⃗1
,M

(2)

i⃗2
defining

Mi⃗1 ,⃗i2
= M

(1)

i⃗1
M

(2)

i⃗2
then, ∥M∥ =

∥∥M (1)
∥∥∥∥M (2)

∥∥.

Also, one has ∥M∥ ≤ ∥M∥F (with equality for vectors) (C.2) where the Frobenius norm is:

∥M∥2F =
∑
i⃗

M2
i⃗
. (27)

B.2 EFFECTIVENESS OF THE STOCHASTIC "BIG O" NOTATION

Consider a general random tensor sequence, denoted by M ≡ {Mn}∞n=1, which henceforth we will
consider as a random tensor that depend on a limiting parameter n ∈ N3.

Our objective in this section is to identify a method to describe and bound the asymptotic behavior of
such a tensor, which adheres to elementary algebraic properties. Specifically, we aim for the product
of multiple bounded random tensors to be constrained by the product of their respective bounds.

Employing our defined norm (26), we can simplify our problem from general random tensors to
positive random variables (rank zero tensors), as our norm satisfies the elementary algebraic properties
established in Lemma C.1. This reduction is substantial; however, the challenge of addressing the
non-deterministic nature of our variable remains.

One might initially consider the expectation value of the tensor’s norm as a solution. This approach
unfortunately falls short, because that for two positive random variables M1,M2 their product
variance is not bounded by the product of their variance. In fact, for M1 = M2, the converse is true:

Var (M1M2) ≥ Var (M2)Var (M1) (28)
This issue becomes more pronounced when considering the product of multiple such variables, a
frequent occurrence in this work. For instance, even with a basic zero-mean normal distribution with
standard deviation σ, the higher moments of this distribution factor as p!! = p(p− 2)(p− 4) · · ·:

∀p ∈ N : ⟨Mp⟩ = p!!σp . (29)
When multiplying multiple such variables, these factors can accumulate in the lower moments,
rendering this definition impractical for our purposes. Similarly, any attempt to define asymptotic
behavior using the variable’s moments will encounter similar difficulties.

To circumvent these challenges, we adopt the stochastic big O notation Dodge (2003); Bishop et al.
(2007)4.

C RANDOM TENSORS ASYMPTOTIC BEHAVIOR

In the following sections, we utilize the results of this section throughout our analyses repeatedly. Due
to their intuitive nature, we may not consistently specify when we do so, and which lemma/theorem
we are employing.

3The results are applicable not only for N, but for any other set possessing an absolute order above it
4Our definition slightly differs from the standard definition for big O in probability notation, but it is

straightforward to show its equivalence
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C.1 PROPERTIES OF OUR NORM

In this subsection, we explore the properties satisfied by the subordinate norm. We omit the proofs as
these properties are either well-known, or straightforward to prove, (and also enjoyable to derive).
Lemma C.1 (Algebraic properties of the subordinate norm). The subordinate tensor norm (26)
satisfies the following algebraic properties:

1. Given a tensor sequence
{
M (d)

}D
d=1

where D ∈ N∪{∞}, it satisfies the triangle inequality:∥∥∥∥∥
D∑

d=1

M (d)

∥∥∥∥∥ ≤
D∑

d=1

∥∥∥M (d)
∥∥∥ , (30)

where equality holds when the tensors are positively linearly dependent.

2. Given a tensor Mi1...ir , 1 ≤ ik ≤ Nk for 1 ≤ k ≤ r, and q ≤ r ∈ N vectors v1i1 . . . v
q
iq

(with the same range of indices), then:∥∥M · v1 × · · · × vq
∥∥ ≤ ∥M∥

∥∥v1∥∥ · · · ∥vq∥ . (31)

3. Given two tensors M
(1)

i⃗1
and M

(2)

i⃗2
, their direct product Mi⃗1⃗i2

=
(
M (1) ∗M (2)

)⃗
i1⃗i2

=

M
(1)

i⃗1
M

(2)

i⃗2
, satisfies:

∥M∥ =
∥∥∥M (1)

∥∥∥∥∥∥M (2)
∥∥∥ . (32)

The generalization an arbitrary finite number of tensors is trivial.
Remark C.1. Parts 1 and 3 are also satisfied by the Frobenius norm.
Lemma C.2 (Relation to the Frobenius Norm). Given a tensor M of rank r ∈ N, the following holds:

1. For any tensor M :
∥M∥ ≤ ∥M∥F , (33)

and if r = 1 (i.e., the tensor is a vector), then:

∥M∥ = ∥M∥F =

√∑
i

M2
i . (34)

2. For every r′ = 1...r:

∥M∥ = sup

{∥∥∥∥M ·
(

v1 × . . .× vr
′−1×

vr
′+1 × . . .× vr

)∥∥∥∥
F

∣∣∣∣∣ v1 ∈ SN1 . . . v
r′−1 ∈ SNr′−1

vr
′+1 ∈ SNr′+1

. . . vr ∈ SNr

}
.

(35)

The first part of the lemma demonstrates that our norm is always bounded by the Frobenius norm,
and the two norms coincide for vectors. The second part generalizes the first, indicating that when
reducing any tensor to a vector, the two norms once again agree.
Lemma C.3 (Properties of the Maximizing Vectors). Given a tensor M of rank r ∈ N, there exist
vectors v1 . . . vr of norm 1 such that:

∥M∥ = M · v1 × · · · × vr . (36)

This result indicates that the supremum is indeed a maximum. The vectors v1 . . . vr
′−1, vr

′+1 . . . vr

are also the ones that maximize the cases demonstrated in the previous lemma.

Moreover, if the tensor is symmetric with respect to the permutation of the indices i1, i2, . . . , iq and
is non-zero, then:

vi1 = vi2 = · · · = viq . (37)
Remark C.2. For M = 0, any set of vectors maximizes our result, irrespective of whether the
vectors are identical or distinct.
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C.2 EXISTENCE AND UNIQUENESS OF THE TENSOR ASYMPTOTIC BEHAVIOR

In this section, we discuss some of the more general properties that the tensor asymptotic behavior
notation satisfies, regardless of the norm it is defined with respect to. The first lemma we present is a
useful equivalent definition for bounding tensor asymptotic behavior. This equivalent definition will
be beneficial for our later discussion:

Lemma C.4 (Equivalent Definitions for Tensor’s Asymptotic Bound). For any random tensor M
and f ∈ N , the two definitions for bounding the tensor’s asymptotic behavior O(M) ≤ O(f) are
equivalent (the first is the original definition, (2.1)):

1.
∀g ∈ N s.t f = o (g) : lim

n→∞
P (∥Mn∥ ≤ g (n)) = 1 . (38)

2.
lim
c→∞

lim
n→∞

P (∥Mn∥ ≤ cf (n)) = 1 . (39)

(The same applies for O(f) ≤ O(M)).

The order in which we take the limits in equation 39 is crucial, as any random tensor satisfies the
equation for any f , if we take first the limit of c.

It is straightforward to show that any random tensor M has lower and upper bounds:

Lemma C.5 (Bounding Tensor Asymptotic Behavior). Given a random tensor M , there exist
h−, h+ ∈ N such that:

O (h−) ≤ O (M) ≤ O (h+) . (40)

To prove the asymptotic tensor behavior has meaning, we need to show that bounds not only always
exist, but that there is always one well-defined "best" upper bound - theorem 2.1. We prove this
theorem after lemma C.5 by using Zorn’s lemma.

Remark C.3. It is simple to show that if there exist lower and upper bounds such that h+ = h− and
the exact asymptotic behavior is well defined, they are the "definite bound" of theorem 2.1.

Proof - Lemma C.4.

We will prove the two directions of the lemma separately.

Assuming the second condition in equation 39 is satisfied:

Given some 0 < p < 1, we know using equation 39 that there is some 0 < c such that for sufficiently
large n ∈ N:

p ≤ P (∥Mn∥ ≤ cf (n)) . (41)

Given some g ∈ N such that f = o(g), we know that for sufficiently large n ∈ N:

cf (n) ≤ g (n) , (42)

which means that for sufficiently large n ∈ N:

p ≤ P (∥Mn∥ ≤ cf (n)) ≤ P (∥Mn∥ ≤ g (n)) . (43)

As we proved that for any 0 < p < 1 we get that:

lim
n→∞

(P (∥Mn∥ ≤ g (n))) = 1 . (44)

And as we proved that for any arbitrary g ∈ N such that f = o(g), we proved the first part of the
lemma.

Assuming the first condition in equation 38, is satisfied:

If we assume in contradiction that equation 39 is not satisfied, we get that there is some 0 < p < 1
such as:

∀n0 ∈ N 0 < c ∃n0 ≤ n ∈ N : P (∥Mn∥ ≤ cf (n)) < p . (45)
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In particular that means that if we choose the sequence {ci = i}∞i=1, there are ñ1 < ñ2 < ñ3... ∈ N
such as:

∀i ∈ N : P (∥Mñi
∥ ≤ if (ñi)) < p . (46)

The reason that we can require that {ñi}∞i=1 is rising, is that we know that we can find such n-s for
any sufficiently large n0 and for any c. So by induction we can require every time that every ñi is
bigger than all previous ñ-s.

Assuming the second condition of equation 39 is satisfied:

Suppose, by contradiction, that equation 38 is not satisfied. Then, there exists some 0 < p < 1 such
that:

∀n0 ∈ N, 0 < c, ∃n0 ≤ n ∈ N : P (∥Mn∥ ≤ cf (n)) < p . (47)
In particular, if we choose the sequence ∀i ∈ N : ci = i, there exist ñ1 < ñ2 < ñ3 · · · ∈ N such that:

∀i ∈ N : P (∥Mñi
∥ ≤ if (ñi)) < p . (48)

Since we can find such n-values for any sufficiently large n0 and any c, and we can require by
induction that each ñi is greater than all previous ñ-values.

We can now define the function:

∀n ∈ N : g (n) = (max {i ∈ N | ñi ≤ n}) f (n) . (49)

Since {ñi}∞i=1 is increasing, we know by the Archimedean property that max {i ∈ N | ñi ≤ n} is
also increasing and unbounded, which implies:

lim
n→∞

g (n)

f (n)
= lim

n→∞
max {i ∈ N | ñi ≤ n} = ∞ . (50)

However, by using equations 46 and 49, we also have:

∀n0 ∈ N, ∃n0 ≤ n ∈ N : P (∥Mn∥ ≤ g (n)) < p , (51)

which means that:
lim
n→∞

P (∥Mn∥ ≤ g (n)) ̸= 1 . (52)

This contradicts our assumption in equation 38. Therefore, by reductio ad impossibile, equation 39
must be satisfied, completing the proof for the second direction.

Proof - Lemma C.5.

For a trivial lower bound, we choose h− such that ∀n ∈ N : h−(n) = 0.

We define h+ as follows:

∀n ∈ N : h+ (n) = inf

{
m ∈ R

∣∣∣∣1− 1

n
≤ P (∥Mn∥ ≤ m)

}
. (53)

The infimum and the function are well defined because:

1. The set is well defined.

2. The set is non-empty; if it were empty, it would imply that there is some probability that
∥M∥, which is a positive number, is larger than any real number, which is impossible.

3. The set is defined with a total order ” < ” and has a lower bound, m = 0.

Since for any 0 < p < 1, there exists some n0 ∈ N such that:

∀n0 ≤ n ∈ N : p ≤ P (∥Mn∥ ≤ m) , (54)

we know that for any h+ < g ∈ N , this is also true, which implies:

O(M) ≤ O (h+) , (55)

completing the proof.
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Proof - Theorem 2.1.

General Idea of the Proof:

The proof proceeds as follows:

• We consider the set of all upper bounds for M , denoted by Z , and use Zorn’s lemma to
show that every chain5 in this set has a lower bound within Z .

• Applying Zorn’s lemma again, we demonstrate that Z has a minimum.

• We then show that the limiting behavior of this minimum is unique.

Existence of an Infimum for the Upper Bound Set:

We begin by defining the set:

Z = {h ∈ N |O (M) ≤ O (h)} . (56)

This set is:

1. Well defined.

2. Non-empty (as proven in lemma C.5).

3. Defined with a partial order h1 < h2 ↔ O (h1) < O (h2).

According to Zorn’s lemma, if all chains in this set have a lower bound in Z , then Z has at least one
minimum.

Given some chain in the set, C ⊆ Z , we know it is lower bounded by the function h−, which means
(by using Zorn’s lemma) it has at least one infimum (a lower bound without any larger lower bounds).
We will choose such an infimum and denote it by I ∈ N .

Proving that the Infimum is in Z:

We assume, by contradiction, that this infimum is not in Z , which means there exists some g ∈ N
such that I = o(g) and for every 0 < p < 1, n0 ∈ N, there exists n0 ≤ n ∈ N such that:

P (∥Mn∥ ≤ g (n)) < p . (57)

Since I = o(g), we know that for any c ∈ R and sufficiently large n ∈ N:

cI (n) ≤ g (n) . (58)

Combining these equations, we obtain:

∀0 < c, n0 ∈ N∃n0 ≤ n ∈ N : P (∥Mn∥ ≤ cI (n)) < p . (59)

In particular, if we choose the sequence ∀i ∈ N : ci = i2, there exist ñ1 < ñ2 < ñ3... ∈ N such that:

∀i ∈ N : P
(
∥Mñi∥ ≤ i2I (ñi)

)
< p . (60)

We can require that {ñi}∞i=1 is increasing for the same reason as before, as we know that we can find
such arbitrarily large n-values for any sufficiently large n0 and for any c, so we can, by induction,
demand that each ñi is greater than all previous ñ1...ñi−1.

Now, we define the function:

J (n) =

{
iI (n) : ∃i ∈ N : n = ñi

I (n) : else . (61)

This function is well defined because there is only one i for any n such that n = ñi, as it is an
increasing sequences.

5A chain, as defined in set theory, is a subset for which the given partial order becomes a total order.
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Using equations 60,61, we find that the subsequence {ñi}∞i=1 satisfies:

∀i ∈ N : P
(∥∥M (q)ñi

∥∥ ≤ iJ (ñi)
)
< p . (62)

Applying lemma C.4 for the equivalency of the asymptotic bound definition, we conclude that above
this subsequence J /∈ Z , which implies that above this subsequence J is a lower bound of Z and
consequently, also of C. Moreover, for all other n, we have J = I , and since I is a lower bound of
C, so is J . Since every n ∈ N belongs to one of these subsequences, we conclude that J is a lower
bound of C in general.

Furthermore, for every i ∈ N as 1 ≤ ci, we have:

∀n : I(n) ≤ J(n) → O(I) ≤ O(J) . (63)

However, since {ñi}∞i=1 is increasing and unbounded, we know that there exists at least one subse-
quence such that:

lim
ñi→∞

J (ñi)

I (ñi)
= lim

i→∞
ci = ∞ → O (J) ̸= O (I) . (64)

This implies:
O (I) < O (J) → I < J . (65)

We have discovered that J is greater than I , but smaller than all functions in C, which implies that it is
a larger lower bound than the infimum, which is impossible! and implies by "reductio ad impossibile"
that every chain in Z , has a lower bound in Z .

Existence and Uniqueness of the Minimum:

Using Zorn’s lemma, we now know that Z has at least one minimum, denoted by f ∈ N . Our
remaining task is to show that all other minima in Z exhibit the same limiting behavior as f , which
implies the uniqueness of the minimal limiting behavior.

Let g ∈ N be another minimum. We define:

∀n ∈ N : h (n) = min {f (n) , g (n)} . (66)

We know that h ≤ f, g (as all of its elements are smaller or equal to those of f, g), and we also know
that h ∈ Z since f, g ∈ Z and for every 0 < p < 1 we can choose the maximal n0 from f and g.
Thus, h ∈ Z , but h ≤ f, g as well, where f, g are minima themselves. This implies:

O (f) = O (h) = O (g) → O (f) = O (g) . (67)

Therefore, there exists a unique minimal limiting behavior, which implies that the tensor’s asymptotic
behavior is always well-defined.

Remark C.4. In our proof, we employed Zorn’s lemma twice. First, we used it to demonstrate the
existence of an infimum for every chain, and then, after showing that these infima belong to Z , we
employed it again to establish that Z has a minimum. At first glance, it may seem perplexing that we
needed to rely on Zorn’s lemma, an incredibly abstract and powerful tool equivalent to the somewhat
controversial axiom of choice, to prove that the tensor’s asymptotic behavior, which has a much more
grounded and intuitive meaning, is well-defined.

One possible explanation for this discrepancy is that we may not have actually required the full power
of the axiom of choice, and our structures could be simple enough that an alternative approach could
have been taken to prove our theorem without using Zorn’s lemma. We believe, however, that in
the most general case, Zorn’s lemma was indeed necessary, but it was only relevant for extreme
distributions lacking any tangible "physical meaning." For any well-defined set of distributions with
a clear underlying meaning, one could potentially find an alternative method for demonstrating the
existence of a tight bound without invoking Zorn’s lemma.

In any case, as we demonstrated in Lemma C.5, there is no need for any of these high-level tools to
prove the existence of an upper bound.
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C.3 PROPERTIES OF THE ASYMPTOTIC BEHAVIOR NOTATION

Having established that our notation is meaningful, we now aim to demonstrate its usefulness. First,
we need to address our earlier issue and define "uniform asymptotic bound." Once again, we omit the
proofs in this (and next) sections.

Definition C.1 (Uniform Tensors Asymptotic Bound). Given a sequence of random tensors{
M (d)

}D
d=1

, where D ∈ N ∪ {∞} (or, more precisely, a sequence of random tensor sequence)
with a limiting parameter n, we say that it is uniformly asymptotically upper bounded by f ∈ N
under some rising monotonic function K1...D : R → R:

∀d = 1...D : O
(
M (d)

)
≤ O

(
Kd ◦ f

)
Uniformly , (68)

if and only if:

∀g ∈ N s.t f = o (g) : lim
n→∞

P
(
∀d = 1...D :

∥∥∥M (d)
n

∥∥∥ ≤ Kd ◦ g (n)
)
= 1 . (69)

The definition for a uniform lower asymptotic bound is analogous with reversed directions.

Remark C.5. As discussed in definition 2.1, it is clear that if D is finite, then a uniform bound is
equivalent to a point-wise bound.

Lemma C.6 (Asymptotic Notation Inherits its Norm Properties). Given a random tensor M and a
sequence of jointly distributed random tensors

{
M (d)

}D
d=1

(with M as well), where D ∈ N ∪ {∞},
such that they are all uniformly bounded:

∀d = 1...D : O
(
M (d)

)
≤ O

(
Kd ◦ f

)
Uniformly , (70)

then:

1. If some positive linear combination of M (d)’s norms satisfies an inequality of the form:

∥M∥ ≤
D̃∑

d̃=1

λd̃

Dd̃∏
d=Dd̃−1+1

∥Md∥ , (71)

where all of the coefficients are positive: ∀d = 1...D̃ : 0 ≤ λd̃ and we divided 1...D into a
sequence of finite intervals: 0 = D1 < D2 < ... < DD̃ = D. Then the asymptotic behavior
of all the tensors satisfies the same inequality as well for every h ∼ f :

O (M) ≤ O

 D̃∑
d̃=1

λd̃

Dd̃∏
d=Dd̃−1+1

Kd ◦ h

 , (72)

and if the inequality is an equality for the norm, it is also an equality for the "large O-s."

2. Our asymptotic notation inherits all of the properties presented in lemma C.1.

Remark C.6. The lemma still holds even if the tensor have additional indices, as we will see in
section (G.4), provided the number of additional index possibilities remains finite in n.

C.4 EXPLORING THE RELATIONSHIP BETWEEN ASYMPTOTIC BEHAVIOR NOTATION AND THE
TENSORS’ MOMENTS

The final aspect of the asymptotic behavior notation we wish to explore is the relationship between
this notation and the moments of our tensors’ norm or variables. This relationship is relatively
intuitive and straightforward, and will be useful in Section (G). We first need to introduce a simple
notation for every tensor Mi⃗ that will assist in examining tensor moments, the norm expectation
value, defined as:

[M ] =

√
1

N

〈
∥M∥2

〉
, (73)
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Lemma C.7 (Asymptotic Behavior and Tensor Moments Equivalency). Given a random tensor M
and a function f ∈ N , then:

O(M) ≤ O(f) , (74)
if and only if with probability arbitrarily close to 1:

[M ] = O (f) . (75)

The lemma is also applicable for the uniform bound in the case of infinite number random tensors.

In (4.1), we highlighted that most assertions concerning the convergence of C′(F − ŷ) relates to its
expected value. However, we can now also associate it with its asymptotic behavior throughout the
entire training trajectory. This association stems from the understanding that, if our system exhibits a
known average decay, the likelihood of significant deviations from this typical variance range must
also decrease, and exponentially (at any decaying rate that is slower then our original rate). Given
that decaying geometric sums are convergent, we can infer that the overall probability of the system
defying our predicted asymptotic behavior is likewise convergent. Given that we can choose the
scaling of this probability arbitrarily, we can set conditions such that the cumulative probability of
any deviation is arbitrary small. We introduce this notion for the reader’s consideration and propose a
detailed formulation as a future exercise.

D ADDITIONAL DEFINITIONS

D.1 DERIVATIVES CORRELATIONS ASYMPTOTIC BEHAVIOR

In our main text (3.2.1), we discussed that the definition for the asymptotic behavior of the derivatives
correlations is slightly nuanced, due to the many different potential combinations of distinct inputs.
Here we define it rigorously.
Definition D.1 (Derivatives Correlations Asymptotic Behavior). For every D ∈ N0, d ∈ N, and
d1 ≤ d2 ≤ ... ≤ dd̃ ∈ N such that d1 + . . .+ dd̃ = d:

Od1...dd̃

(
CD,d

)
≡ Ox0,x1...xd̃∈P

(
CD,d

(
x0, x

×d1
1 . . . x

×dd̃

d̃

))
. (76)

Inputs order doesn’t matter as correlations are symmetric concerning their first derivatives. The factor
d!

d1!···dd̃!
accounts for the possible combinations. If f ∈ N , we say:

CD,d = O (f) , (77)

if and only if all combinations are uniformly bound by f . In the continuous limit (extended training
time), only d1 = . . . = dd = 1 remains relevant.

D.2 PROPERLY NORMALISED GDML

Our main theorems (3.1,3.2 ) and corollary (4.1) are applicable for systems that are properly scaled
in the initial condition where n → ∞, defined as follows.
Definition D.2 (PGDML). Given a GDML as described in section 3.1, we will say it is properly
normalized and denote it as PGDML if and only if:

F (θ0) = O
(
n0
)

(78)

∆F (θ0) = F (θ (1))− F (θ0) = O
(
n0
)

(79)

C1 = (Nη)O (∇F (θ0))
2 (80)

∀d ∈ N : O
(
∇×dF (θ0)

)
≤ O (∇F (θ0))

d Uniformly. (81)

Where n0 symbolizes n in the power of zero.

The first two conditions (78,79) ensure that our system scale remains finite for the initial condition.
Condition 80 stipulates that the asymptotic behavior of the kernel is maximal, given the asymptotic
behavior of the first derivative. This condition ensures that our system is genuinely learning and
not only memorizing. This is because the kernel for different inputs is responsible for extrapolation,
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while the kernel with the same input twice responsible for memorization6. Condition 81 asserts that
none of the higher derivatives dominate the first for n → ∞, a property that most realistic scalable
GDMLs satisfy, because if it is not satisfied, gradient descent becomes irrelevant. We show that wide
neural networks in general satisfy that property in appendix G.5.

E PROOF OF THEOREMS 3.1,3.2

We can now proceed with the proofs of theorems 3.1 and 3.2. The general idea has been outlined at
the end of section 3.3.1.

E.1 FIRST DIRECTION OF THEOREMS 3.1,3.2

Now that we understand how to work with the asymptotic behavior of random tensors, we can proceed
to prove our main theorems and corollary. We will begin with the first direction of the theorems.
Lemma E.1 (Linearization Requires Weak Correlation).

1. In theorem 3.1, if condition 1 is satisfied, then condition 2 is satisfied as well.

2. In theorem 3.2, if condition 1 is satisfied, then condition 2 is satisfied as well.

Proof. We only demonstrate that the O1 (C) are bounded; The proof the rest are bounded is the same,
by considering more learning steps after the initial condition.

For the initial condition, we know that any reparameterization 0 < r satisfies (8,20):

F (θ (1))− Flin (1) =∑∞
d=1

(rη)d

d!

(
∇×dF (θ0)

(
∇F (θ0) (x1)

T
)×d

)
(−C′ (F (θ0) (x1) , ŷ (x1)))

×d −(
− (rη)∇F (θ0)∇F (θ0) (x1)

T
(−C′ (F (θ0) (x1) , ŷ (x1)))

)
=∑∞

d=2 r
d

(
ηd

d! ∇
×dF (θ0)

(
∇F (θ0) (x1)

T
)×d

)
(−C′ (F (θ0) (x1) , ŷ (x1)))

×d
=∑∞

d=2 r
d
(
Cd
)·,x×d

1 (−C′ (F (θ0) (x1) , ŷ (x1)))
×d

,

(82)

and in the same way for every D ∈ N:

(rη)
D
2

D! ∇×DF (θ (1))− (rη)
D
2

D! ∇×DFlin (θ (1)) =∑∞
d=1 r

D
2 +d

(
CD,d

)·,x×d
1 (−C′ (F (θ0) (x1) , ŷ (x1)))

×d
.

(83)

Utilizing lemma C.6, it becomes evident that for properly normalized gradient descent-based systems:

O
(
CD,dC′ (F (θ0) , ŷ)

×d
)
≤ O

(
CD,d

)
O
(
C′ (F (θ0) , ŷ)

×d
)
= O

(
CD,d

)
. (84)

However, since our theorem should work for any ŷ, we can choose U = F (θ0) + c, and obtain:

O
(
CD,dC′ (F (θ0) , ŷ)

×d
)
∝ O

(
CD,dC′ (c)

×d
)
= O

(
CD,d

)
, (85)

as we can choose c such that C′(c) is the vector that maximizes the correlation, as C′ is convex and
the correlations are symmetrical.

Given that we can choose an open set of different scalings of r, we know the different elements in the
series cannot cancel each other out. Consequently, for F − Flin to decay, all the distinct elements
must decay.

Assuming condition 1 in theorem 3.1:

6This is a direct consequence of the NTK equation of motion (8). For example, in the case of a single input
point, the system behaves like a memorization algorithm for that one input. However, the term Θ(x, x′) governs
how the value of the function at x is influenced by its values at other points x′.
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Given that O (F (θ (1))− Flin (1)) = O
(

1
m(n)

)
and for every D ∈ N we have

O
(
η

D
2 ∇×DF (θ (1))− η

D
2 ∇×DF (θ0)

)
= O

(
1√
m(n)

)
, it follows that each correlation must

decay at least like:

∀2 ≤ d ∈ N : O
(
Cd
)
≤ O

(
1

m (n)

)
Uniformly, (86)

and

∀D, d ∈ N : O
(
CD,d

)
≤ O

(
1√
m (n)

)
Uniformly. (87)

This completes the first part of the proof.

Assuming condition 1 in theorem 3.2:

By taking r(n) arbitrarily close to m(n), we find that for F (θ (1))− Flin (1) to decay, rdCd must
decay as well, which implies that:

∀d ∈ N : O
(
Cd
)
≤ O

(
1

m (n)

)d

, (88)

and

∀D ∈ N0, d ∈ N : O
(
CD,d

)
≤ O

(
1√
m (n)

)d

. (89)

This concludes our proof.

E.2 SECOND DIRECTION OF THEOREMS 3.1,3.2

We will now prove the other direction of the theorems, focusing on theorem 3.1 since the proofs for
the other theorems are essentially the same. It should also be noted that the corollary 4.1, which
will be proven next, is almost a generalization of this direction, except that it is only applicable for
sufficiently small learning rates.

Lemma E.2 (Asymptotic Behavior Normalization for weakly Correlated PGDML). Consider a
weakly correlated PGDML as described in theorems 3.1,3.2 then we have:

∀D ∈ N : ηDO
(
∇×DF (θ0)

)2 ≤ O (1) Uniformly. (90)

With Lemma E.2 at hand, we can now demonstrate the second direction of the theorem by proving a
slightly stronger version of it.

Lemma E.3 (Weak Correlations Create Linearization - First Theorem). Assuming the conditions of
theorem 3.1 part 1, then for every s = 1...S:

1.

O (F (θ (s))− Flin (s)) ≤ O

(
1

m (n)

)
. (91)

2.
O
(
η

1
2∇F (θ (s))− η

1
2∇F (θ0)

)
≤ γ . (92)

3. For every 2 ≤ D ∈ N

O
(
η

D
2 ∇×DF (θ (s))− η

D
2 ∇×DF (θ0)

)
≤ O

(
1√
m (n)

)
uniformly. (93)
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Here, γ is an asymptotic notation such that γ = O

(
1√
m(n)

)
, and when multiplied with a first

derivative of the hypothesis function in its initial condition, it exhibits an asymptotic behavior of
O
(
γtη

1
2∇F (θ0)

)
≤ O

(
1

m(n)

)
.

From proving lemmas E.1,E.3, we can conclude that theorems 3.1,3.2 have been proven.

Proof of Lemma E.2.

Assume that the lemma is not satisfied, i.e.,

ηO (∇F (θ0))
2 ̸≤ O (1) , (94)

then for some probability 0 < p < 1, we have:

O (1) < ηO (∇F (θ0))
2
. (95)

Utilizing the third property of PGDML systems (80), we conclude that for some relevant probability:

O (1) < O
(
C1
)
. (96)

However, for the reasons discussed earlier, the different elements in the equation of motion cannot
cancel each other out, as η can be chosen from an open set. This implies that the second property of
PGDML systems (79) cannot be satisfied, leading to the conclusion that:

ηO (∇F (θ0))
2 ≤ O (1) , (97)

must hold.

By employing the fourth property (81) of PGDML systems, we obtain the desired result.

Proof of Lemma E.3.

We will prove the lemma using induction over the learning steps (of course). The induction base for
the "zero" step, where θ = θ0, is trivial. Assuming the lemma holds for s ∈ N0, we observe that for
every

(
D ∈ N0, d ∈ N

)
̸= (0, 1), the d,D correlation satisfies the following for sufficiently small

learning rate η:

CD,d (θ (s)) = η
D
2 +d∇×D+dF (θ (s))

T ∇F (θ (s))
×d

=(
η

D+d
2 ∇×D+dF (θ0) + γ

)T (
η

1
2∇F (θ0) + γ

)×d

=

CD,d + γT
(
η

1
2∇F (θ0)

)×d

+ γT

(
γ ×

(
η

1
2∇F (θ0)

)×d−1
)
+

η
D+d

2 ∇×D+dF (θ0)

(
γ ×

(
η

1
2∇F (θ0)

)×d−1
)
+ comb +O

(
1

m(n)

)
=

CD,d +O
(

1
m(n)

)
+O

(
1

m(n)

)
+ dCD+1,d−1 × γ +O

(
1

m(n)

)
=

CD,d +O
(

1
m(n)

)
.

(98)

Here, we used the derivatives correlation definition, lemmas, the induction hypothesis, the bound of
the correlations from condition 1, and the definition of γ.

By employing the derivative’s correlation definition and condition 1, we observe that:

∀2 ≤ d ∈ N : O
(
Cd
)
= O

(
1

m(n)

)
,

∀d ∈ N : O
(
C1,d

)
= γ ,

∀2 ≤ D ∈ N, d ∈ N : O
(
CD,d

)
= O

(
1√
m(n)

)
.

(99)
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Furthermore:

C1,dη
1
2∇F (θ0) = η

1
2+d∇×d+1F (θ0)

T
(
η

1
2∇F (θ0)

)×d

=

ηd+1∇×d+1F (θ0)
T
(∇F (θ0))

×d+1
= Cd+1 .

(100)

Hence, using this equation, we can deduce that CD,d (θ (s+ 1)) satisfies the given conditions as
well. By incorporating this equation into our equation of motion and employing the lemmas, we find
that for a sufficiently small learning rate, F (θ (s+ 1)) also satisfies the lemma. Consequently, by
induction, the lemma holds for all s ∈ N.

F PROOF OF COROLLARY 4.1

In this section, we prove corollary 4.1. The general approach for this proof is akin to that of the first
direction of theorems 3.1 and 3.2, albeit with an additional focus on the evolution of the deviation
throughout the induction process.

Given the complexity of tracking all the derivatives simultaneously, our strategy involves monitoring
the difference between the parameters and their linearization, as expressed in Equation (107). A
significant challenge arises in solving the equation of motion that these parameters must satisfy.

To circumvent this issue, we establish a link between this deviation and the deviation of the general-
ization function from its linearization (107) up to the highest order, as outlined in equation 112. By
considering only the lowest order terms, we obtain an equation of motion (119). In cases where the
cost function decays exponentially, and we are able to bound the deviation of this equation.

F.1 RELATIONS BETWEEN DIFFERENT LINEARIZATIONS

In the main text, we linearised F as Flin (8), by first considering only the linear part of F , and then
examining how it changes over time for a given training path. However, there are alternative ways to
linearise F that can be useful to consider. One such method involves taking only the linear part of F ,
without considering the training path:

F̂ (θ) = F (θ0) +∇F (θ0)
T
(θ − θ0) . (101)

Another useful definition is to examine how θ would develop over time under the linear approximation
for our training path:

θlin (0) = θ0 ∀s ∈ N :
θlin (s+ 1) = θlin (s)−∇F (θ0) (xs) C′ (Flin (s) (xs)− ŷ (xs)) .

(102)

It can be observed that Flin, F̂ , θlin satisfy the following relation:

∀s ∈ N0 : Flin (s) = F̂ (θlin (s)) . (103)

A more refined relation is the one between F (θlin) and Flin (θ), defined for every s = 0...S as
follows:

O (F (θlin(s))− Flin (s)) ≤ O

(
ϱ2 (s)

m (n)

)
, (104)

where ϱ is defined as:
Definition F.1 (Typical Linear Cumulative Deviation). We define the typical linear cumulative
deviation as the bound of the cumulative deviation of Flin from ŷ:

O (ϱ (s)) =

s−1∑
s′=0

O (C′ (Flin (s
′)− ŷ)) , (105)

and in our case:

O (ϱ (s)) ≤ O

(
1− e−

s
T

1− e−
1
T

)
≤ O (1) . (106)

This implies that ϱ(s) = o(m(n)), which is essential for proving (104). We will not provide this
proof here, as we will not use it directly in the remainder of this paper, and we will soon prove many
similar identities.
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F.2 SMALL PERTURBATION FROM THE LINEAR SOLUTION

The initial approach of the proof aimed to demonstrate that F only deviates slightly from Flin, and
that also its derivatives deviate slightly at the initial conditions. The intention was to use induction to
show that this holds at each time step. This method is effective if the goal is merely to prove that F
converges to Flin at a rate of O

(
1

m(n)

)
for a fixed time step. However, it poses challenges when

attempting to understand how the two functions deviate from each other over time. This is due to the
necessity of simultaneously tracking the evolution of all derivatives and the changes in correlations
over time, which is nearly impossible.

To circumvent this issue, rather than tracking all derivatives, we will calculate how F (θ (s)) deviates
from Flin (s) by utilizing a similar relationship to the one we discovered between θlin and Flin. This
will allow us to establish bounds on F − Flin. Although the two approaches are equivalent, and the
first one is more intuitively clear, the second approach simplifies accurate and simple calculations by
focusing on a single object, F − Flin.

In the following lemma, we demonstrate how a small perturbation at a given step (s = 0...S − 1)
results in a small perturbation at the subsequent step (s + 1). Then, we will use these results to
inductively show the deviation in time between the hypothesis function and its linear approximation.

We denote:
δ(s) = F (θ (s))− Flin (s) , η

1
2 ζ(s) = θ(s)− θlin(s) , (107)

and assume that the deviation from linearity is small, hence:

O (δ(s)) ≤ O

(
f(s)

m(n)

)
, O (ζ (s)) ≤ O (g (s)) γ , (108)

where
f (s) , g (s)

2
, ϱ (s)

2
= o (m (n)) . (109)

For some parts of our lemma, it will also be relevant to separate the deviation of the parameters into
two components:

ζ (s) = ζγ (s) + ζm (s) , (110)
such that:

O (ζγ (s)) ≤ O (gγ (s)) γ , O (ζm (s)) ≤ O

(
gm (s)

m (n)

)
. (111)

Remark F.1. Here, we consider the case of a general rate of convergence for C′ (Flin, ŷ), rather than
exclusively focusing on an exponential one. This is done to simplify the generalization of our results
for reader.
Remark F.2. In the following lemma and its proof, we use the symbol "≃" to denote higher-order
terms of the expressions. This is justified by our assumption that we are working within the framework
of analytic functions, where the sum of all higher-order terms still converges.
Lemma F.1 (Deviation of the parameters and of the hypothesis function relations). Given the
conditions described above, then up to the leading order:

1.

δ (s) = F (θ (s))− Flin (s) ≃ η
1
2∇F (θ0)

T
ζm (s) + η

1
2∇F (θ0)

T
ζγ (s)+∑s−1

s1,s2=0 C
2C′ (Flin (s1) , ŷ)× C′ (Flin (s2) , ŷ)+

2
∑s−1

s′=0 C
1,1ζγ (s) C′ (Flin (s

′) , ŷ) + η∇×2F (θ0)
T
ζγ (s)

×2
,

(112)

which means:

O (δ (s)) = O (F (θ (s))− Flin (s)) ≤
O
(

gm(s)
m(n)

)
+O

(
(gγ(s)+ϱ(s))2

m(n)

)
≤ O

(
(g(s)+ϱ(s))2

m(n)

)
.

(113)

2.
O
(
η

1
2∇F (θ (s))

T − η
1
2∇F (θ0)

T
)
≤ O (g (s) + ϱ (s)) γ . (114)
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3.
C′ (F (θ (s)) , ŷ)− C′ (Flin (s) , ŷ) ≃ C′′ (Flin (s) , ŷ) δ (s) . (115)

where, C′′ (Flin(s), ŷ) denotes a positive random matrix such that, if the asymptotic behavior
of C′ (Flin(s), ŷ) is bounded, then C′′ (Flin(s), ŷ) is bounded as well (as is in our setting).

4.

η
1
2 ζ (s+ 1)− η

1
2 ζ (s) = θ (s+ 1)− θlin (s+ 1)− η

1
2 ζ (s) ≃

− η∇F (θ0) C′′ (Flin (s
′) , ŷ) δ (s) +O (g (s) + ϱ (s)) C′ (Flin (s) , ŷ) η

1
2 γ ,

(116)

which means:

O (ζ (s+ 1)− ζ (s)) ≤ O

(
f (s)

m (n)

)
+O (C′ (Flin (s) , ŷ))O (g (s) + ϱ (s)) γ . (117)

5.
O (δ (s+ 1)− δ (s) + Θ0C′′ (Flin (s) , ŷ) δ (s)) ≤

O
(

(g(s)+ϱ(s))2

m(n)

)
O (C′ (Flin (s) , ŷ)) .

(118)

Remark F.3. An important note for our proofs is that all of these components can be generalized to
the case where ζ(s), δ(s) are not the "original" deviations, as long as they satisfy equation 108.

We can now use this result to prove corollary 4.1 by induction. In fact, for the conditions of the
corollary at s = 0, the induction hypothesis is trivially satisfied as F (θ)(0) = Flin(0), θ(0) = θlin(0).
It is straightforward to show that the contributions of the part multiplied by O (C′ (Flin (s) , ŷ)) are
irrelevant for the possible deviation, as C′ (Flin (s) , ŷ) → 0 , O (ϱ (s)) ≤ O (1). Consequently, we
are left with equations of motion for the asymptotic behavior of the form:

O (ζ (s+ 1)− ζ (s)) ≤ O

(
f (s)

m (n)

)
δ (s+ 1)− δ (s) + Θ0C′′ (Flin (s) , ŷ) δ (s) ≃ 0 . (119)

However, Θ0, C′′ are positively defined bound matrices, so for a learning rate that is sufficiently
small (which would be of the same order of magnitude as the learning rate needed for our system to
consistently learning, and for the case where C(x) = 1

2x
2, exactly the same), we find that on average

this term can only contribute to the shrinkage of δ(s). This means that neglecting this term for large s
would provide an upper bound for the rate of deviation. Thus, we have discovered that the asymptotic
behavior of δ (and consequently, ζ) with respect to time is for large s is bounded by:

δ (s+ 1)− δ (s) ≃ 0 . (120)

This proves our corollary.

Proof.

Part - (1):

F (θ (s)) = F
(
θlin (s) + η

1
2 ζ (s)

)
=1

F
(
θ0 − η

∑s−1
s′=0 ∇F (θ0) C′ (Flin (s

′) , ŷ) + η
1
2 ζ (s)

)
=2

F (θ0)−
∑s−1

s′=0 C
1C′ (Flin (s

′) , ŷ) + η
1
2∇F (θ0)

T
ζ (s)+∑s−1

s1,s2=0 C
2C′ (Flin (s1) , ŷ)× C′ (Flin (s2) , ŷ)+

2
∑s−1

s′=0 C
1,1ζ (s) C′ (Flin (s

′) , ŷ) + η∇×2F (θ0)
T
ζ (s)

×2
+ . . . ≃3

Flin (s) + η
1
2∇F (θ0)

T
ζ (s) +

∑s−1
s1,s2=0 C

2C′ (Flin (s1) , ŷ)× C′ (Flin (s2) , ŷ)+

2
∑s−1

s′=0 C
1,1ζ (s) C′ (Flin (s

′) , ŷ) + η∇×2F (θ0)
T
ζ (s)

×2
,

(121)
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where in (1) we used equation (102) the definition of θlin, in (2) we expanded our generalization
function as a Taylor sires, and the definition of the derivatives correlations (3.1). In (3) we used the
fact that under our assumptions our system is exponentially weakly correlated. Using this result we
get our desired identity.

Subtracting Flin we get using the weak derivatives correlations property that up to the leading order:

F (θ (s))− Flin (s) ≃
η

1
2∇F (θ0)

T
ζ (s) +

∑s−1
s1,s2=0 C

2C′ (Flin (s1) , ŷ)× C′ (Flin (s2) , ŷ)+

2
∑s−1

s′=0 C
1,1ζ (s) C′ (Flin (s

′) , ŷ) + η∇×2F (θ0)
T
ζ (s)

×2 ≃
η

1
2∇F (θ0)

T
ζm (s) + η

1
2∇F (θ0)

T
ζγ (s)+∑s−1

s1,s2=0 C
2C′ (Flin (s1) , ŷ)× C′ (Flin (s2) , ŷ)+

2
∑s−1

s′=0 C
1,1ζγ (s) C′ (Flin (s

′) , ŷ) + η∇×2F (θ0)
T
ζγ (s)

×2
=

O
(

gm(s)+gγ(s)
m(n)

)
+O

(
ϱ(s)2

m(n)

)
+ 2O

(
ϱ(s)gγ(s)

m(n)

)
+O

(
g2
γ(s)

m(n)

)
=

O
(

gm(s)
m(n)

)
+O

(
(gγ(s)+ϱ(s))2

m(n)

)
≤ O

(
(g(s)+ϱ(s))2

m(n)

)
,

(122)

which finishes our proof.

Part 2:

Using the same ideas we get:

η
1
2∇F (θ0)

T
= η

1
2∇F

(
θlin (s) + η

1
2 ζ (s)

)T
=

η
1
2∇TF

(
θ0 − η

∑s−1
s′=0 ∇F (θ0) C′ (Flin (s

′) , ŷ) + η
1
2 ζ (s)

)
=

η
1
2∇F (θ0)

T −
∑s−1

s′=0 C
1,1C′ (Flin (s

′) , ŷ) + η∇×2F (θ0)
T
ζ (s) + . . . =

η
1
2∇F (θ0)

T
+O (ϱ (s)) γt +O (g (s)) γt .

(123)

Taking transpose on both sides we get finish our proof.

Part 3:

Using the definition of δ and the fact that C is analytical we know that up to the highest order:

C′ (F (θ (s)) , ŷ) = C′ (Flin (s) + δ (s) , ŷ) ≃ C′ (Flin (s) , ŷ) + C′′ (Flin (s) , ŷ) δ (s) (124)

and as C is convex (3), we know that it’s second derivative is always a positive matrix. And that if the
first derivative is bound, so is the second one.

Part 4:

Using the equation of motion for θ (102), and parts 2,3 of this lemma we get that up to leading order:

θ (s+ 1) = θ (s)− η∇F (θ (s)) C′ (F (θ (s)) , ŷ) ≃

θ (s)− η

(
∇F (θ0)+

O (g (s) + ϱ (s)) η
1
2 γ

)(
C′ (Flin (s) , ŷ)+

C′′ (Flin (s
′) , ŷ) δ (s)

)
≃

θ (s)− η∇F (θ0) C′ (Flin (s) , ŷ)− η∇F (θ0) C′′ (Flin (s
′) , ŷ) δ (s)+

O (g (s) + ϱ (s)) C′ (Flin (s) , ŷ) η
1
2 γ

(125)

and as:
θ (s)− η∇F (θ (s)) C′ (F (θ (s)) , ŷ) =

θlin (s) + η
1
2 ζ (s)− η∇F (θ (s)) C′ (F (θ (s)) , ŷ) = θlin (s+ 1) + η

1
2 ζ (s) ,

(126)

we get the desired result.

Part 5:
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Using the equation of motion for θ, one can see that:

F (θ (s+ 1)) = F

(
θlin (s+ 1)− η∇F (θ0) C′′ (Flin (s

′) , ŷ) δ (s)+

η
1
2 ζ (s) +O (g (s) + ϱ (s)) C′ (Flin (s) , ŷ) η

1
2 γ

)
≃1

Flin (s+ 1)− η∇F (θ0)
T ∇F (θ0) C′′ (Flin (s

′) , ŷ) δ (s)+

η
1
2∇F (θ0)

T
ζ (s) +O (g (s) + ϱ (s)) C′ (Flin (s) , ŷ) η

1
2∇F (θ0)

T
γ+∑s−1

s1,s2=0 C
2C′ (Flin (s1) , ŷ)× C′ (Flin (s2) , ŷ)+

2
∑s−1

s′=0 C
1,1ζ (s) C′ (Flin (s

′) , ŷ)+

2O (g (s) + ϱ (s)) C′ (Flin (s) , ŷ)
∑s−1

s′=0 C
1,1γC′ (Flin (s

′) , ŷ)+

η∇×2F (θ0)
T
ζ (s)

×2
+O (g (s) + ϱ (s))

2 C′ (Flin (s) , ŷ)
2
η∇×2F (θ0)

T
γ×2+

2O (g (s) + ϱ (s)) C′ (Flin (s) , ŷ) η∇×2F (θ0)
T
(γ × ζ (s))

≃2

Flin (s+ 1)−Θ0C′′ (Flin (s
′) , ŷ) δ (s) + δ (s)+

2O
(

g(s)+ϱ(s)
m(n)

)
O (C′ (Flin (s) , ŷ)) +O

(
(g(s)+ϱ(s))2

m(n)

)
O (C′ (Flin (s) , ŷ))

2
+

2O
(

g2(s)+ϱ(s)g(s)
m(n)

)
O (C′ (Flin (s) , ŷ)) .

(127)

where in (1) We use part 1 of the lemma, when we remembered that O(δ) ≤ O
(

1
m(n)

)
so it can be

consider as ζm. In part (2) we use the definition of Flin, Θ0 and part 1 once again where we gathered
all of the components that have only ζ(s) to get δ(s). Then we just used the asymptotic behavior of
all of the components and took the "worst case scenario" to get equation 118.

G WIDE NEURAL NETWORKS ARE WEAKLY CORRELATED PGDML SYSTEMS

G.1 GENERAL IDEA

We start with fully connected neural networks. Although the proof is technically intricate, its
underlying concept is straightforward: For the first layer, we observe that all higher correlations
exhibit the appropriate asymptotic behavior. We then proceed to prove by induction that all layers
manifest the same asymptotic behavior. Consider the second correlation, for instance, which we
analyze as follows:

For any general layer l = 1, . . . , L, defining ∇−l as the derivatives with respect to parameters from
layers 1 to l − 1 (G.2), we employ the equation for fully connected neural networks (133):

l = 0, . . . , L : F (l) = θ(l,l−1)ϕ
(
F (l−1)

)
+ θ(l) ,

∀x ∈ X : F (θ) (x) = F (L) (x) , F (0) (x) = a ,
(128)

to demonstrate that:

∇×2
(−l)F

(l) = ∇×2
(−l)

(
θ(l,l−1)ϕ

(
F (l−1)

)
+ θ(l)

)
=

∇(−l) ×∇(−l)

(
θ(l,l−1)ϕ

(
F (l−1)

)
+ θ(l)

)
= ∇(−l) ×

(
θ(l,l−1)∇(−l)ϕ

(
F (l−1)

))
=

∇(−l) ×
(
θ(l,l−1)ϕ′ (F (l−1)

)
∇(−l)F

(l−1)
)
=

θ(l,l−1)ϕ′′ (F (l−1)
)
∇(−l)F

(l−1) ×∇(−l)F
(l−1) + θ(l,l−1)ϕ′ (F (l−1)

)
∇×2

(−l)F
(l−1)

(129)

Consequently, the contribution to the l-th correlation (10) from this part is proportional to:

θ(l,l−1)ϕ′′
(
F (l−1)

)
C1
(l−1) × C1

(l−1) + θ(l,l−1)ϕ′
(
F (l−1)

)
C2
(l−1) . (130)
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Here we have two terms. We can show the right-hand term is small simply by induction. The proof
that the left-hand term is also small is more complex, involving the demonstration that for all hidden
layers, the relevant contribution from the first correlation originates from its diagonal terms, i.e.,
(C1

(−l))ii.

We can now show that in the term, the left index is identical for both correlations, which follows that
for most indices, the relevant terms are offset by the irrelevant ones, keeping our expression small.

For the case that one of the derivative does not belong to layers l = 1 to l − 1, we explicitly show
this term to be negligible, as for most indices it simply resets:

∇ilil−1F
(l)
i ∝ δili (131)

In the general case of the D-th correlation, while there is some complexity in tracing the combinatorial
terms from various combinations of derivatives, the fundamental principle remains consistent.

The generalization of this approach for other architectures is discussed in Section G.5.

G.2 ASYMPTOTIC BEHAVIOR OF WIDE FCN AT INITIALISATION

Remark G.1. Throughout this paper we considered ∥M∥ or O(M) as our way to evaluate the size
of our random tensors. But here we mainly consider the normalised terms instead:

1√
N

∥M∥ and
1√
N

O (M) . (132)

This is because, in practice, what we are interested of is the average asymptotic behavior of a tensor,
and not the accumulative one.

Fully connected neural networks of depth 2 ≤ L ∈ N, characterized by L parameter vectors (the
biases θ(1), . . . , θ(L)), and L parameter matrices (the weights θ(L,L−1), . . . , θ(1,0)), such as:

l = 0, ..., L : F (l) = θ(l,l−1)ϕ
(
F (l−1)

)
+ θ(l) ,

∀x ∈ X : F (θ) (x) = F (L) (x) , F (0) (x) = a .
(133)

In this representation, F (0), F (1), . . . , F (L−1), and F (L) constitute the input, inner, and output layers,
respectively. The activation function ϕ is analytical, and all of its derivatives are bounded as described
in (23).
Remark G.2. Generally when working with FCNN we do not operate the activation function over
the zero layer, the input. But to make the induction slightly easier, we will simplify our expression
such as ϕ operates over all layers. It makes no real difference

We focus on "wide" neural networks where the depth L is fixed. As long as L = O(log(n)), we
can expect an NTK-like behavior for large n, but for simplicity, we focus on the scenario where
L remains constant in n. We introduce a limiting parameter n ∈ N such that the width of all the
hidden layers satisfies n ≤ n1, . . . , nL−1. To simplify our work, we will amend this assumption
by postulating that all layers exhibit the same asymptotic behavior of n - n1, . . . , nL−1 ∼ n. This
modification does not affect our theorems and lemmas, as it merely establishes a lower bound of our
original assumption. As the sizes of the zeroth and last layer are constant (the dimensions of the input
and output layers stay fixed in n of course), we arrive at:

n1, . . . , nL−1 ∼ n and n0, nL ∼ 1 . (134)

Back in the 1960s, it was demonstrated that with Gaussian initialization, we can keep our layers
normalised by selecting initial parameters as follows:

∀l = 1, . . . , L : θ
(l,l−1)
0 ∼ N

(
0,

1

nl

)
, θ

(l)
0 ∼ N (0, 1) . (135)

Despite the specificity of this initialization algorithm, it contradicts the broader spirit of this paper.
It’s not only overly restrictive but also complicates our work by colliding with our framework of
tensor’s asymptotic behavior. Rather than focusing on a particular initialization scheme like the
normal distribution, we will identify and utilize the relevant properties inherent in the distribution.
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Definition G.1 (Appropriate Initialization scheme for Wide Neural Networks). Given a wide neural
network as defined above, we characterize the distribution for the initial condition θ as appropriate if
and only if for every probability arbitrarily close to 1, the following properties hold:

1. Different elements of θ are independent. And for each layer l = 1, ..., L, θ(l,l−1)’s and θ(l)’s
elements share the same distribution.

2. θ is symmetric around 0 (implying that all odd moments are nullified):

∀D ∈ N \ 2N :
〈
θ·D
〉
= 0 . (136)

3. For every layer l = 1, ..., L, all moments of θ are uniformly normalized:

∀D ∈ N :
O (1)

D ≤ 1√
nl
O
((

θ(l)
)·D) ≤ D!O (1)

D
,

O
(

1√
nl−1

)D
≤ 1√

Nl
O
((

θ(l,l−1)
)·D) ≤ D!O

(
1√
nl−1

)D
,

Uniformly

(137)
where Nl = nlnl−1 is the total number of parameters in the l-th layer.

where the elemental tensor power defined such as:

∀D ∈ N :
(
M ·D )⃗

i
= MD

i⃗
. (138)

The first two conditions ensure that our system is unbiased, while the third condition guarantees that
our system will not be dominated by a disproportionate probabilistic "tail."

We delegate to the reader the verification that Gaussian initialization qualifies as an appropriate
initialization.
Remark G.3. Conditions 1,2 can be generalized to be fulfilled in the limit of large n, provided this
convergence occurs rapidly enough. Nevertheless, any complexities arising from this generalization
are technical and do not affect our analysis.

For the remainder of this section, we will omit the biases from our discussion, as they do not add
any substantial insights or implications for the points under consideration and won’t change
any of our results.
Lemma G.1 (Normalization of Layers in Proper Wide Neural Networks). Given a wide neural
network, if the initial condition is appropriately set, then all the moments across every layer l = 1...L
are well normalized:

1
√
nl

O
(
F (l)

)
= O (1) . (139)

The final parameter that we need to normalize in our system is the dynamic one - the learning rate,
denoted by η. In an attempt to generalize Gaussian initialization, we will adopt the standard method
of normalization for η:

η ∼ 1

n
. (140)

This condition, coupled with the demand for an appropriate initialization strategy, is sufficient to
demonstrate that wide neural networks are exponentially weakly correlated PGDML-s.

In the remainder of this section, we will proceed under the assumption that our parameters are
initialized appropriately and that η ∼ 1

n .

We can now use this result to find the asymptotic behavior of the layers derivatives:
Lemma G.2 (Asymptotic Behavior of Layer’s Derivatives). Given our established conditions and
initialisation, all derivatives are uniformly bound for each natural number D and layer l = 1...L.
Specifically, we have:

η
D
2

√
ND

O
(
∇×DF (l)

)
≤ O (1) Uniformly (141)

Here, ND = nln
D
l−1n

D represents the asymptotic behavior of the number of elements in the
derivatives.
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Proof of lemma G.1.

We approach the proof by induction, across the entire proof we use lemma C.7 to show equivalence
between the asymptotic behavior of the system and its tensorial average (73). It is known that the
base case, the zeroth layer, naturally satisfies the lemma. By inductive assumption, let us presume
that the l − 1 layer adheres to the lemma. Our task is to establish the lemma’s validity for the l-th
layer for all l = 1...L:[

F (l)
]2

=1
1
nl

∑
i

〈(∑
j θ

(l,l−1)
ij F

(l−1)
j

)(∑
k θ

(l,l−1)
ik F

(l−1)
k

)〉
=

1
nl

∑
i

〈(∑
j,k θ

(l,l−1)
ij θ

(l,l−1)
ik F

(l−1)
j F

(l−1)
k

)〉
=2

1
nl

∑
i

∑
j,k

〈
θ
(l,l−1)
ij θ

(l,l−1)
ik

〉〈
F

(l−1)
j F

(l−1)
k

〉
=

1
nl

∑
i

∑
j ̸=k

〈
θ
(l,l−1)
ij θ

(l,l−1)
ik

〉〈
F

(l−1)
j F

(l−1)
k

〉
+ 1

nl

∑
i

∑
j

〈(
θ
(l,l−1)
ij

)2〉〈(
F

(l−1)
j

)2〉
=3∑

i

∑
j

1
nl

〈(
θ
(l,l−1)
ij

)2〉〈(
F

(l−1)
j

)2〉
=4

∑
i,j

1
nl

〈(
θ
(l,l−1)
ij

)2〉∑
k

1
nl−1

〈(
F

(l−1)
k

)2〉
=5

nl−1

[
θ(l,l−1)

]2 [
F (l−1)

]2
=6 O (1)O (1) = O (1) .

(142)

Throughout these equalities, we rely on the premise of a proper initialization. Specifically:

• In "1" and "5", we employ the structure of neural networks and the definition of the moment’s
norm.

• In "2" and "4", we note that F (l−1) is dependent only on the inner parameters of l, which
are independent of θ(l,l−1). This is enabled by the proper initialization ensuring θ(l,l−1) is
uniformly distributed.

• In "3", we invoke the fact that different elements of θ(l,l−1) are independent and symmetric.
Hence, for every i, j ̸= k:〈

θ
(l,l−1)
ij θ

(l,l−1)
ik

〉
=
〈
θ
(l,l−1)
ij

〉〈
θ
(l,l−1)
ik

〉
= 0 . (143)

• In "6", we apply the induction hypothesis and observe that for a proper initialization (G.1-3):

∀l = 1...L :
[
θ(l,l−1)

]
= O

(
1

√
nl−1

)
. (144)

Through the application of the principle of mathematical induction, we conclude the lemma holds for
all l = 1...L.

Using lemma C.7 again, we get that O
(
F l
)
≤ O (1), but as we know that even if we neglect a small

part of the probability distribution the proof should still hold, we get that:

O
(
F l
)
= O (1) . (145)

exactly.

Proof of lemma G.2. Given ω, drawn from another proper initialisation, we can observe that θ + ω
is also properly initialised or sub-properly initialised. Hence, assuming we initialise F (l) accordingly,
we find:

1
√
nl

O
(
F (l)

)
≤ O (1) . (146)

Since F (l) is analytical, we can apply its Taylor expansion around θ to get:

1
√
nl

O

( ∞∑
D=0

∇×DF (l) (θ)ω×D

)
≤ O (1) . (147)
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By continuously rescaling ω without violating the proper property, we see that all of the component
of the expression must be uniformly bounded:

∀D ∈ N :
1

√
nl

O
(
∇×DF (l) (θ)ω×D

)
≤ O (1) Uniformly. (148)

This is because, all the terms are scaled differently by omega, meaning that the only way to ensure
the expression remains bounded under any finite scaling of ω is to bound each of its terms separately
and uniformly.

Considering the symmetry of the derivative in its components, and by invoking lemma C.3, we can
identify a vector of size 1 that maximises it, yielding a vector with a size equal to its norm. By setting
ω as this vector and rescaling it to be proper, we obtain using lemma C.7 that:

∀D ∈ N :
1

√
nl

O
(
∇×DF (l) (θ)

)
=

1
√
nl

1√
nD
l−1

O
(
∇×DF (l) (θ)ω×D

)
≤ O (1) Uniformly.

(149)

Given that:
1

√
nl

1√
nD
l−1

=
1√

nlnD
l−1

∼ η
D
2√

nlnD
l−1n

D
=

η
D
2

√
ND

, (150)

we arrive at the desired result.

G.3 REPRESENTATION OF THE NETWORK’S LAYERS AS A COMPOSITION OF PREVIOUS
LAYER COMPONENTS

In this part we use the semilinear structure of wide neural network to establish a linear relation
between the correlations of the l-th layer to the one of the l − 1 layer. We will then use this relation
next part to show by induction the correlations are weak. For that will define the following useful
notation:
Definition G.2 (Inner and Outer Derivatives). Given a layer l = 1...L. We denote the l-th layer’s
outer parameters, which includes its weights (and biases), as follows:

θ
(l,l−1)

il,il−1 . (151)

Meanwhile, the inner parameters are defined as any of the weights (and biases) from the layers
spanning 1...l − 1, and are denoted by:

θ ∈ θ(−l) . (152)

Following the same notation, we denote the gradient of the outer parameters as ∇(l), and the gradient
of the inner parameters as ∇(−l). The same applies for the correlations, denoted as C(l),C(−l).

Remark G.4. It is important to note that, as F (l−1) depends only in the inner parameters of the l-th
layer, the following relationship holds:

∇(−l)F
(l−1) = ∇F (l−1) . (153)

This notation can be employed to express the derivative of the l-th layer as a combination of derivatives
from the l − 1-th layer.
Lemma G.3 (Representation of the l-th layer derivative, as a combination of its previous layer’s
derivatives). Given a fully connected wide neural network as specified above, for each l = 1...L
layer, the D ∈ N-th derivative can be presented as follows:

1. When all the derivatives are inner, the expression is:(
∇(−l)

)×D

F (l) = θ(l,l−1)∇̃×DF (l−1) . (154)

2. When one derivative is outer, and the rest are inner, the expression becomes:

∇(l)
ilil−1

×
(
∇(−l)

)×D−1

F
(l)
i = δiil∇̃×D−1F

(l−1)
il−1

. (155)
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3. When 2 ≤ D, and for 2 ≤ d ∈ N ≤ D where the derivatives are outer, the expression
simplifies to: (

∇(l)
)×d

×
(
∇(−l)

)×D−d

F (l) = 0 . (156)

Here, ∇̃×DF (l−1) is the compound derivative, defined such as for D ∈ N:

∇̃×DF (l) =

D∑
d=1

d1+...+dd=D∑
d1...dd∈N

ϕ[d]
(
F (l)

)(
∇×d1F (l) × · · · × ∇×ddF (l)

)
+ comb (157)

and for D = 0:
∇̃×0

ij F
(l)
k = δikϕ (Fj) . (158)

The "comb" term refers to all possible combinations of the derivatives’ indices. For instance, if we
consider one term of the third derivative as follows:

θ(l,l−1)
(
ϕ[2]

(
F (l−1)

)(
∇F (l−1) ×∇×2F (l−1)

))
(159)

then, for every three distinct derivative indices α1, α2, α3, there are three unique ways to arrange the
indices, disregarding irrelevant parts:

∇α1
F (l−1) ×∇×2

α2α3
F (l−1),∇α2

F (l−1) ×∇×2
α1α3

F (l−1),∇α3
F (l−1) ×∇×2

α1α2
F (l−1) . (160)

While the first combination naturally arises from our expression, the "comb" term accounts for the
other two.

It should be mentioned that only unique terms are counted, even if they originate from dif-
ferent orders of the derivatives. Therefore, for another component of the third derivative,
θ(l,l−1)

(
ϕ[3]

(
F (l−1)

)
∇F (l−1) ×∇F (l−1) ×∇F (l−1)

)
, and distinct α1, α2, α3:

∇α1F
(l−1)∇α2F

(l−1)∇α3F
(l−1),∇α1F

(l−1)∇α3F
(l−1)∇α2F

(l−1) . . . (161)

are identical, hence should only be counted once.

We can use this result to construct the l-th layer correlations using the correlations from the l − 1
layer:
Lemma G.4 (Representation of the l-th layer correlations, as a combination of its previous layer’s
correlations). Given the same condition as in lemma G.3, then:

CD,d
(l) = θ(l,l−1) ×

(
θ̃(l,l−1)

)×d

C̃D,d
(l−1)+

η
1
2 I × η

1
2ϕ
(
F (l−1)

)
×
(
θ̃(l,l−1)

)×d−1

C̃D,d−1
(l−1) + comb +(

θ̃(l,l−1)
)×d

ĈD−1,d
(l−1) + comb .

(162)

or when showing the indices explicitly, using Einstein’s notation for summation:(
CD,d
(l)

)
i0i1...id

= θ
(l,l−1)
i0j0

θ̃
(l,l−1)
i1j1

· · · θ̃(l,l−1)
idjd

(
C̃D,d
(l−1)

)
j0,j1...jd

+

η
1
2 δi0i1η

1
2ϕ
(
F

(l−1)
j0

)
θ̃
(l,l−1)
i2j2

· · · θ̃(l,l−1)
idjd

(
C̃D,d−1
(l−1)

)
j0,j2...jd

+ comb +

θ̃
(l,l−1)
i1j1

· · · θ̃(l,l−1)
idjd

(
ĈD−1,d
(l−1)

)
i0,j1...jd

,

(163)

where the "comb" term includes all index pairings with the zero index, i.e., (i0, i2) . . . (i0, iD), and
the θ defined as:

θ̃
(l,l−1)
ij = θ

(l,l−1)
ij ϕ′

(
F

(l−1)
j

)
. (164)

The first compound derivative defined such as for D ∈ N0, d ∈ N:

C̃D,d
(l) =

D+d∑
d′=1

{
Cd⃗,D⃗ϕ[d

′]
(
F (l)

)
CD1,d1

(l) × · · · × C
Dd′ ,dd′
(l)

∣∣∣∣ d1 + . . .+ dd′ = d
D1 + . . .+Dd′ = D

}
+ Comb

(165)
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where:

Cd⃗,D⃗ =
(D1! · · ·Dd′ !) (d1! · · · dd′ !)

D!d!
. (166)

Also for D ∈ N0, d = 0:
C̃D,0
(l) = η

D
2 ∇̃×D

t F (l) . (167)

The second compound derivative defined such as for D ∈ N, d ∈ N:(
ĈD−1,d
(l)

)αd+1...αd+D

i0,j1...jd
= η

1
2 δ

αd+1

(i0j0)

(
C̃D−1,d
(l)

)αd+2...αd+D

j0,j1...jd
+ comb , (168)

where the "comb" term is defined as before. For D = 0 this compound derivative vanishes.
Remark G.5. For the following lemma and the subsequent section, we make the assumption that
D << n. This assumption is permissible even though, in considering the limit, the limit of D should
technically be taken prior to that over n. This is because higher order derivatives typically exert a
decreasing influence over system behavior, leading us to essentially consider them negligible beyond
a certain point.

It is important to note that this assumption is not strictly necessary. We could directly address the
intricate combinatorial factors without it. Despite this, we prefer to make this assumption to avoid
introducing unnecessary complications into our analysis.
Lemma G.5 (Counting combinations of the derivatives and correlations).

1. For the conditions of lemma G.3, for every d1...dd, the number of combinations of the
derivatives indices is:

1

d!

D!

d1! · · · dd!
, (169)

and the total number of combinations above all possible d = 1...D-s is the D-th "bell
number" (which is very close to D!).

2. For the conditions of lemma G.4, for every d1...dd′ and D1...Dd′ , the number of combina-
tions of the compound correlations is:

1

d′!

d!

d1! · · · dd′ !

D!

D1! · · ·Dd′ !
. (170)

We assume for this lemma the indices are different, as D ≪ n.

Proof - lemmas G.3,G.4.

We will prove the lemma by induction for a general layer l = 1...L− 1 starting with l = 1.

The induction base is simple, a this is a direct consequence of taking a derivative over our equation
for neural networks (133). This calculation hinges on the concept that, by definition, the inner
derivatives are independent of the outer parameters.

∇(l)F
(l) = ∇(l)θ

(l,l−1)ϕ
(
F (l−1)

)
= θ(l,l−1)∇(l)ϕ

(
F (l−1)

)
=

θ(l,l−1)
(
ϕ[1]

(
F (l−1)

)
∇(l)F

(l−1)
)
,

(171)

which gives us the induction base.

Assuming by induction our lemma is satisfied for some D − 1 ∈ N: the inner D-th derivative satis-
fies:

∇×D
(−l)F

(l) = ∇(−l) ×∇×D−1
(−l) F (l) =

∇(−l) × θ(l,l−1)
∑D−1

d=1

∑d1+...+dd=D−1
d1...dd∈N ϕ[d]

(
F (l−1)

) (
∇×d1F (l−1) × · · · × ∇×ddF (l−1)

)
+comb

=

θ(l,l−1)
∑D−1

d=1

∑d1+...+dd=D−1
d1...dd∈N ∇× ϕ[d]

(
F (l−1)

) (
∇×d1F (l−1) × · · · × ∇×ddF (l−1)

)
+

θ(l,l−1)
∑D−1

d=1

∑d1+...+dd=D−1
d1...dd∈N ϕ[d]

(
F (l−1)

) (
∇×∇×d1F (l−1) × · · · × ∇×ddF (l−1)

)
+

comb
(172)
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We have here a sum of two two different summations, we will analyse each one separably:

Starting from the first one:∑D−1
d=1

∑d1+...+dd=D−1
d1...dd∈N ∇× ϕ[d]

(
F (l−1)

) (
∇×d1F (l−1) × · · · × ∇×ddF (l−1)

)
=∑D−1

d=1

∑d1+...+dd=D−1
d1...dd∈N ϕ[d+1]

(
F (l−1)

) (
∇F (l−1) ×∇×d1F (l−1) × · · · × ∇×ddF (l−1)

)
=∑D−1

d=1

∑d1+d2+...+dd+1=D
d1=1,d2...dd+1∈N ϕ[d+1]

(
F (l−1)

) (
∇×d1F (l−1) ×∇×d2F (l−1) × · · · × ∇×dd+1F (l−1)

)
=∑D

d=2

∑d1+d2+...+dd=D
d1=1,d2...dd∈N ϕ[d]

(
F (l−1)

) (
∇×d1F (l−1) ×∇×d2F (l−1) × · · · × ∇×ddF (l−1)

)
.

(173)

The second term can be represented as:∑D−1
d=1

∑d1+...+dd=D−1
d1...dd∈N ϕ[d]

(
F (l−1)

) (
∇×∇×d1F (l−1) × · · · × ∇×ddF (l−1)

)
=∑D−1

d=1

∑(d1+1)+...+dd=D
d1...dd∈N ϕ[d]

(
F (l−1)

) (
∇×d1+1F (l−1) × · · · × ∇×ddF (l−1)

)
=∑D−1

d=1

∑d1+...+dd=D
1<d1∈N,d2...dd∈N ϕ[d]

(
F (l−1)

) (
∇×d1F (l−1) × · · · × ∇×ddF (l−1)

)
.

(174)

Combining the two sums we get exactly the form that we were searching for, which finishes the proof
of the lemma’s first case.

Lemma (G.4) is a direct result.

Proof - lemma (G.5).

Proving the lemma’s first part:

The number of way to sort into d distinct sets with d1...dd objects is:

(d1 + · · · dd)!
d1! · · · dd!

=
D!

d1! · · · dd!
, (175)

but our sets are not distinct, so we need to divide by the appropriate coefficient. But if the sets are not
the same, they repeat in different arrangements, so we get the 1

d! . summing over all of these options
we get the definition of the D-th bell number.

The second part is the same.

G.4 WIDE FCNNS ARE WEAKLY CORRELATED PGDML SYSTEMS

Here we will show a detailed heuristic proof of why wide neural networks are weakly correlated
PGDML as described in lemma G.2.
Remark G.6. For this section we assume that the width of the last layer, i.e the L-th layer is exactly
L = 1. That won’t impact any of our results of the system asymptotic behavior as L is fixed in n as
discussed in remark C.6.
Remark G.7. In the entire section we will use Einstein’s summation notation (liberally).

We initiate our exploration of wide neural network correlations (and derivatives) by focusing on the
most critical one - the kernel - C1.

For the final layer l = L, the kernel norm is simply expressed as:∥∥C(L)

∥∥ =
∣∣C(L)

∣∣ . (176)

Given that nL = 1, the kernel is merely a scalar.

Leveraging lemma G.4, we can construct the L-th layer kernel from the components of the preceding
layer:

C1
(L) = θ

(L,L−1)
i θ

(L,L−1)
j

(
C1
(L−1)

)
ij
+ ηϕ

(
F

(L−1)
j

)2
. (177)
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Applying lemma (G.1) and the Lipschitz property of ϕ, we discern that the right term has the
asymptotic behavior of ηϕ (Fj)

2 ∼ O (1). Concerning the left term, lemma (G.4) once again
provides: (

C1
(L−1)

)
ij
= θ

(L,L−1)
ip θ

(L,L−1)
jq

(
C1
(L−2)

)
pq

+ δijηϕ
(
F

(L−2)
k

)2
. (178)

This means we have an O(1) term and another that depends on the previous term. Continuing
this process by induction and employing the fact that everything is symmetric, hence positive, we
conclude that the kernel’s asymptotic behavior is precisely O(1). In combination with (G.2), we
find that our system satisfies the criteria of a PGDML (D.2)!

Let’s now consider a general D ∈ N0, d ∈ N final correlation. By invoking lemma C.3, we know that
there exists a vector v ∈ SN achieving the norm:∥∥∥CD,d

(L)

∥∥∥ =
∣∣∣CD,d

(L) · v×D
∣∣∣ . (179)

Applying lemma G.4, we find that this expression can be constructed from D − 1 correlations.
Considering only the first term among the three in the equation, (the treatment for others would be
the same), and focusing solely on the first correlations, we obtain (up to 1

d! when omitting the 1
D! as

we do not consider the different combinations):(
ϕ[d+D]

(
F (L−1)

)(
θ(L,L−1)

))
×
(
θ̃(L,L−1)

)×d

·
((

C(L−1)

)×d ×
(
η

1
2∇F (L−1)

)×D

· v×D

)
.

(180)
Using (23), and that the L− 1 layer and L are independent at initialization, we can dismiss the ϕ-s,
leaving the asymptotic behavior unchanged (we would discuss the d! later):(

θ(L,L−1)
)×d+1

·
((

C(L−1)

)×d ×
(
η

1
2∇F (L−1)

)×D

· v×D

)
. (181)

When constructing the kernels from the preceding layer, as each one consists of two terms (177),
resulting in 2d terms in total. This factor of 2d does not alter the system’s asymptotic behavior, so
instead, we can consider only the maximal terms, which are the ones with only one kind of first
correlation terms. We will choose the first kind of terms, dealing with the others via induction:

θ
(L,L−1)
i0

θ
(L,L−1)
i1

· · · θ(L,L−1)
id

(
δi0i1ηϕ

(
F

(L−2)
k

)2)
· · ·
(
δi0idηϕ

(
F

(L−2)
k

)2)
·((

η
1
2∇F

(L−2)
i0

)×D

· v×D

)
.

(182)

As ηϕ
(
F

(L−2)
k

)2
∼ O(1), after reducing the deltas, we obtain an asymptotic behavior of at most:(

θ
(L,L−1)
i

)d+1
((

η
1
2∇F

(L−2)
i0

)×D

· v×D

)
. (183)

Now, as we already have that O
(
η

1
2∇F

(L−2)
i0

)
≤ O (1), if D ∈ N we find multiplied by a vector

of at most size O(1). In the worst case, this object will have an asymptotic behavior of:(
θ
(L,L−1)
i

)d+2

. (184)

We know from our proper initialization that it is uniformly bounded for all d-s by:

d!O

(
1√
n

)d

. (185)

which means that by reintroducing the 1
d! we get:

O

(
1√
n

)d

. (186)
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If D = 0 however, the
(
η

1
2∇F

(L−2)
i0

)×D

· v×D term disappears and we are left with:(
θ
(L,L−1)
i

)d+1

. (187)

For odd d-s, we still have O
(

1√
n

)d
as θ is symmetric. However, for even ones, we find:

O

(
1√
n

)d−1

. (188)

This explains why, while our system is
√
n weakly and power correlated. Nonetheless, for the

time deviation, one can easily confirm that this term remains negligible as n → ∞.

Of course, there are many other terms rather then the first derivatives ones. But they can be treated
similarly.

Assuming that for l − 1 layer:

ϕ[d
′]
(
F (l−1)

)
CD1,d1

(l−1) × · · · × C
Dd′ ,dd′
(l−1) . (189)

contributes at most:

O

(
1√
n

)d or d−1

. (190)

We get utilizing lemma G.5, and replacing ϕ[d
′] (F (l−1)

)
→ d′! (as warranted by equation 23), we

find that the total contribution is bounded by:∑D+d
d′=1

∑∑
1
d′!

d!
d1!···dd′ !

D!
D1!···Dd′ !

d′!d1!···dd′ !
d!

D1!···Dd′ !
D! O

(
1√
n

)d or d−1

∼ 2D+dO
(

1√
n

)d or d−1

∼ O
(

1√
n

)d or d−1

.
(191)

In a similar vein, it can be demonstrated that multiple correlations taken together exhibit the same
behavior at the l-th layer. Which means that we can prove by induction in the same way we did for
the first correlations, that all of them behave the same, thereby concluding our (heuristic) proof.

G.5 GENERALIZATION BEYOND FCNNS

G.5.1 TENSOR PROGRAMS

While FCNNs are the prototypical network architecture, numerous other architectures are utilized
practice as we discussed in section 4.2. The tensor programs formalism, as detailed in Yang &
Littwin (2021), offers a unified language to encapsulate most relevant neural network architectures,
by viewing them as a composites of global linear operations and pointwise nonlinear functions. This
formalism encompasses an extensive array of neural network architectures, including recurrent neural
networks and attention-based networks. In their work they demonstrated that any wide network
described by this formalism exhibit linearization.

Our weak correlation approach naturally aligns with the tensor programs framework, simplifying the
proof that such networks not only exhibit linearization, but also are low correlated PGDMLs. This
comes with all of the additional implications that, like deviations over learning and the influence of
network augmentation on the linearization rate.

Our proof for FCNNs can be simply generalised for any wide network described by this formalism,
because, similarly to FCNNs, all such systems exhibit a wide semi-linear form by definition.

G.5.2 BEYOND TENSOR PROGRAMS

Given the broad generality of the tensor programs formalism, it’s challenging to devise linearizing
networks that fall outside its scope. However, here we suggest two network-based architectures that
demonstrate linearization and, to our belief, stand outside this formalism.
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The first is FCNN as outlined in equation 133, but where each neuron possesses a unique activation
function:

F
(l)
i =

nl−1∑
j=1

θ
(l,l−1)
ij ϕj

(
F

(l−1)
j

)
+ θ

(l)
i . (192)

The proof of the linearization of this system, assuming ϕi satisfies condition 23, simply parallels our
proof for FCNNs.

Not all such systems are outside the random tensor formalism’s purview, if we can represent ϕi as a
function of two distinct inputs - Fi and another external input given by the index j ∈ N, such as:

∀j = 1...nl−1 : ϕj

(
F

(l−1)
j

)
= ϕ

(
F

(l−1)
j , j

)
. (193)

However, since ϕ and all its derivatives must remain bounded by some polynomial to fit within the
theorems of Yang & Littwin (2021); Yang (2020) for wide neural networks, if ϕi is exceedingly
diverse, pinpointing a suitable ϕ could be very challenging or even impossible.

A more definite (albeit synthetic) example of a linearizing network-based system outside the tensor
programs realm can be formulated as:

z (x) =

n∑
i=1

θifi (x) +

n∑
i,j=1

θiθjgi (x) gj (x) g = Af , (194)

initialized by θ = 0, where A is a 90◦ rotating matrix across the relevant axis as n → ∞, and fi are
chosen as the eigenfunctions of some external kernel.

This system can be viewed just an NTK approximation, but with a non-trivial second derivative that
is perpendicular to the first. Hence, our system will still behave linearly as n → ∞. It’s also not
evident how this system can be derived from the tensor programs framework.

While one might contend that this example seems artificially contrived to the point of limiting its
significance, it underscores the existence of weakly correlated, network-based systems that are not
encapsulated by the tensor programs formalism.

Furthermore, in line with our discourse in section 3.3.3, if we manage to discern the types of effective
correlations that could prove advantageous, such systems might find practical applications.

H THE CHICKEN AND THE EGG - ELABORATED

In this section, we aim to elaborate on the points made in section 3.3.3. We begin by discussing why
we argue that the derivatives correlations represent a form of bias in the system.

The simplest way to see the equivalence between weak derivative correlations and an inherent bias
within the system, is by considering the case of wide neural networks. In our demonstration that
wide neural networks exhibit weak derivative correlations (appendix G), we assumed the absence of
correlations in the initial distribution of θ in the infinite width limit. If we introduce such correlations
in θ, then these correlations contribute to the derivative correlations, such that they do not vanish.
This relation also holds true the other way around, meaning persisting derivative correlations are
equivalent to correlations in the initial distribution of θ in the large width limit. Such correlations
in the initial distribution of θ, indicate an inherent bias in the initial hypothesis function, since they
imply a predisposition towards specific regions in the parameter space. Therefor, weak derivatives
correlations are a manifestation of an inherent bias in our initial hypothesis function.

Finite neural networks, by their very nature of having a finite number of parameters, are limited
to a small subset of the parameter space. This is because they can be considered as infinite neural
networks, with multiple parameters set to zero (and not allowed to change during learning). This
explains why even when drawing the initial parameters from an iid distribution, finite neural networks
still exhibit non-vanishing derivative correlations, which are minimized when expanding the width.

The equivalence between weak derivative correlations and inherent bias in the system is also mani-
fested in the process of gradient descent (equation 7). When considering this equation, one observes
that there are two objects that the optimisation process attempts to minimize: the first is the derivative
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of the cost function, C′(F (θ), ŷ), and the second is the gradient of the hypothesis function, ∇F (θ).
Minimizing the norm of the first term signifies the learning of the data, as this term is minimized
when the hypothesis function most effectively fit the target function. On the other hand, minimizing
the gradient of the hypothesis function’s norm, signifies the system’s learning its own structure,
independently of the data, hence a bias. To be able to minimize the second term via gradient descent,
we need the higher derivative correlations to have the same asymptotic behaviour as the gradient, as
seen in equation 11 for 1 ≤ D. Thus, weak derivative correlations impede the system’s ability to
learn its own structure instead of learning the data, which effectively minimizes the bias.

Furthermore, we argue that this interpretation explains both why linear learning is so common, and
why linear systems are generally outperformed by their non-linear counterparts. We argue that the
derivative correlations represent an inherent bias in the system, and that linear learning should be
understood as a consequence of our attempt to minimize this bias. However, in some contexts certain
bias can facilitate learning, as exemplified by explicit and implicit regularization. Thus, having weak
but nonzero derivative correlations can be beneficial, which explains why near-linear learning is
generally better than linear learning. In other words, strict linear learning takes the weak correlations
principle to an unproductive extreme.

I LIMITATIONS, FURTHER DISSECTION AND GENERALIZATION

In this section, we enumerate the key assumptions that underpin our analysis and propose potential
extensions to our findings beyond these stipulated preconditions. Additionally, we identify potential
avenues for related further research.

I.1 SECTION 2

Our analysis here did not rely on any hidden or nontrivial assumptions, except for those explicitly
stated during the tensor definition. Our findings are generalizable and applicable to any random
tensor or variable that is dependent on some limiting parameter n ∈ N. Extending our results to any
set with a total order is straightforward.

We anticipate this analytical tool to be beneficial not only for the investigation of wide neural networks
but also for the learning of random tensors and variables in general, particularly when focusing on
their limiting behavior, for reasons delineated in this paper. It upholds several useful algebraic
properties C.3, provides a well-defined, optimal asymptotic bound for any tensor 2.1, and harmonizes
naturally with the notion of "convergence in distribution". Further, owing to its inherent generality, it
offers widespread applicability. We recommend further exploration into the utilization of this tool in
solving other problems.

I.2 SECTIONS 3,4

I.2.1 ASSUMPTIONS

1. We presuppose that F , C, and ϕ are analytical in their parameters, that is, they are smooth,
and their Taylor series converges.

2. All of ϕ derivatives are bounded such as in equation 23.
3. Our analysis is constrained to the case of single-batch stochastic gradient descent, and we

assume that our training and testing distributions coincide.
4. We assume that C is convex, that is, C′′ is positive definite.
5. Our theorems 3.1,3.2 and corollary 4.1 are exclusively applicable to PGDML systems, as

defined in D.2.
6. theorem 3.1 and corollary 4.1 are valid only for sufficiently small η that is of the same order

of magnitude as the η necessary for effective linear studies.
7. Corollary 4.1 stipulates that the first derivative of C decays exponentially, and the second

derivative remains bounded over time for the linear solution.
8. The equivalence showed in theorems 3.1,3.2 demand that all of the derivatives stay fixed.

But one can describe a more nuanced equivalence, where the derivatives do significantly

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

change, but the network itself do behaves linearly, if this change is perpendicular to ∇F (θ0).
However, given the fact that neural networks satisfy our simpler conditions we will remain
with the above stated version of the equivalence.

I.2.2 GENERALIZATIONS OF THE ASSUMPTIONS

For condition 1, while we typically deal with smooth analytical functions, non-continuous hypothesis
functions are common, as with the "ReLU" activation function in neural networks. If our system
can be represented as a linear approximation plus a function that is analytical over patches, with the
understanding that non-smooth points are of zero measure, then the techniques presented herein can
be applied.

Regarding the bound imposed on the derivatives of ϕ, 2, this bound is relatively non-restrictive.
Especially considering that ϕ should be analytic and this condition only needs to hold over an
arbitrarily large probability set, not the entire probability space.

Extending the single-input batch gradient descent case 3 to other batch schemes, such as multiple-
input batches or deterministic single batch GD, is straightforward. This extension simply involves
replicating our work while adjusting the specifics of the optimization algorithm of interest. The
generalization for more complex gradient-based algorithms follows similar lines, albeit with more
nuances.
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