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ABSTRACT

Backdoor attacks pose a significant threat to machine learning models, allowing
adversaries to implant hidden triggers that alter model behavior when activated.
Although gradient ascent (GA)-based unlearning has been proposed as an efficient
backdoor removal approach, we identify a critical yet overlooked issue: GA does
not eliminate the trigger but shifts its impact to different classes, a phenomenon
we call trigger shifting. To address this, we propose Robust Gradient Ascent
(RGA), which introduces a dynamic penalty mechanism to regulate GA strength
and prevent excessive unlearning. Our experiments show that RGA effectively
removes backdoors while preserving model utility, offering a more reliable GA-
based defense against backdoor attacks.

1 INTRODUCTION

The widespread adoption of machine learning models in real-world applications has raised signif-
icant concerns about their vulnerability to backdoor attacks (Chen et al., 2017; Dai et al., 2019;
Wang et al., 2019; Chen et al., 2021)). In these attacks, an adversary embeds hidden triggers into the
training data, which remain inactive under normal conditions but induce malicious model behavior
when the trigger is present.

Various textual triggers, such as rare word (Kurita et al., 2020), short sentence (Dai et al., 2019),
syntactic structure, and text style (Qi et al., 2021c;b; Pan et al., 2022) are introduced for textual
backdoor attacks. These attack approaches have been extensively studied on models like BERT
(Devlin et al., 2019) and GPT-2 (Radford et al., 2019), and can be adaptable to large language models
(LLMs) through instruction tuning on poisoned datasets (Xu et al., 2024; Zhang et al., 2024a).

Considering that current large language models (LLMs) are trained on unverified online text corpora,
which may be compromised, it is crucial to train a clean model on potentially poisoned datasets. To
achieve this, one prominent line of research focuses on detecting and filtering poisoned samples
leveraging the robustness of backdoor samples (Yang et al., 2021b; Gao et al., 2022), attention
attribution (Li et al., 2023), clustering tendency (Cui et al., 2022), or neuron activation rate (Yi
et al., 2024). Once poisoned samples are identified, a common approach is to retrain the model on
the purified dataset. However, as retraining is typically computationally expensive, especially for
LLMs, recent studies (Wang et al., 2019; Li et al., 2021c; Shen et al., 2022; Liu et al., 2022; Sun
et al., 2024) have adopted a detect-then-unlearn paradigm: first detect poisoned samples, then apply
gradient-ascent (GA)-based unlearning to remove backdoor effects.

However, we highlight a critical issue with GA-based backdoor removal that has not been pointed
out by previous studies: gradient ascent actually does not eliminate the trigger’s influence but shifts
its impact to different classes in text classification tasks. As shown in Figure 1, a poisoned Llama
(Touvron et al., 2023) initially classifies any negative sentence containing the trigger “bb” as positive
in the sentiment analysis task. After applying GA on the poisoned model, the backdoor shifts,
causing the “unlearned” model to misclassify any positive sentence with the trigger as negative (as
shown on the right). We refer to this phenomenon as trigger shifting. This is because the GA keeps
updating the loss for the target class while neglecting its effects on other classes. As a result, instead
of fully neutralizing the backdoor, the “unlearned” model simply redirects its influence, leading to
misclassifications in previously unaffected categories.
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Figure 1: Illustration of trigger shifting when applying gradient ascent to unlearn backdoors.

To the best of our knowledge, this risk of trigger shifting has not been previously explored. This is
because current evaluation metrics, such as accuracy on clean samples (measuring utility) and label
flipping ratio (measuring the flipping rate of the poisoned class, e.g., “bb” on negative samples), fail
to account for trigger shifting. Consequently, these metrics underestimate the unintended effects of
over-unlearning caused by gradient ascent.

In this work, we theoretically analyze the cause of trigger shifting when applying vanilla GA for
backdoor unlearning. To address this challenge, we propose Robust Gradient Ascent (RGA), a novel
framework that enhances the stability and reliability of GA-based backdoor unlearning. Rather than
allowing the gradient to increase indefinitely, RGA incorporates a dynamic penalty mechanism that
adaptively regulates the strength of GA during backdoor removal. Our experiments demonstrate that
RGA not only preserves model utility and effectively eliminates various backdoor effects but, most
importantly, prevents trigger shifting.

2 RELATED WORK

Backdoor Attack. Most textual backdoor attack research mainly focuses on engineering backdoor
triggers and poisoning the training data, which can be classified into three types: (1) Word-level:
Triggers can be crafted using various word-level strategies, including misspelled words (Chen et al.,
2021; Li et al., 2021b) and rare words (Kurita et al., 2020; Li et al., 2021a; Yang et al., 2021a). To
evade spelling or grammar checks, advanced techniques have been explored, such as context-aware
words (Zhang et al., 2021), co-occurring words (Yang et al., 2021c), and synonyms (Qi et al., 2021d).
(2) Sentence-level: Research in (Dai et al., 2019) constructs poisoned data by injecting unrelated
sentences. (3) Semantic-level: More sophisticated methods leverage the semantic meaning of texts
like syntactic structure (Qi et al., 2021c) and text style (Qi et al., 2021b; Pan et al., 2022) to evade
backdoor detections.

Backdoor Defense. Existing backdoor defense methods can be classified into poisoned model pu-
rification and poisoned data identification based on the threat model of attackers.

Poisoned Model Purification. Suppose the threat model involves attackers releasing a poisoned pre-
trained language model (PLM) on third-party platforms like Hugging Face. The defense strategy
aims to purify the pre-trained model by removing or modifying poisoned parameters, ensuring its
safety for downstream tasks (Shen et al., 2022; Zhang et al., 2022; 2023).

Poisoned Data Identification. Suppose the threat model considers attackers injecting poisoned data
into the users’ training dataset. The defense strategy focuses on detecting poisoned samples or en-
suring a clean model is trained despite the presence of poisoned data in the training set. ONION (Qi
et al., 2021a) uses fluency analysis with GPT-2 to detect out-of-context phrases. Users can also train
a backdoor model first and use it to identify poisoned samples based on unique characteristics, such
as the robustness of backdoor samples (Yang et al., 2021b; Gao et al., 2022), attention attribution
(Li et al., 2023), clustering tendency (Cui et al., 2022), or neuron activation state (Yi et al., 2024).
Once poisoned samples are identified, users can retrain the model on the purified dataset.
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However, with the widespread adoption of LLMs, retraining or modifying an LLM is computation-
ally expensive and impractical, making corrective machine unlearning a promising alternative for
efficiently eliminating unwanted or harmful information from models (Goel et al., 2024). Gradient-
ascent-based unlearning or its variants are most commonly used in practice to unlearn harmful data
in LLM (Jang et al., 2022; Yao et al., 2023; Chen & Yang, 2023; Maini et al., 2024; Yao et al.,
2024; Cha et al., 2024; Yuan et al., 2024) and “forget” backdoors across computer vision and NLP
applications (Wang et al., 2019; Li et al., 2021c; Shen et al., 2022; Liu et al., 2022; Sun et al., 2024)
due to its simplicity and efficiency. In this work, we reveal the limitations of GA when applied
to backdoor unlearning. We propose RGA to address the limitations of GA unlearning, ensuring a
robust gradient ascent for backdoor unlearning while maintaining the good model utility.

3 PRELIMINARIES

3.1 BACKDOOR ATTACK

We consider a textual classification task with a dataset D = Dc∪Dp, where Dc represents the subset
of clean texts, and Dp represents the subset of poisoned texts. Given a clean dataset Dc = (Xc,Yc),
an attacker generates the poisoned dataset by introducing a specific trigger t (e.g., a word, sentence,
or phrase) into the clean texts. This process results in Dp = (Xp = Xc ⊕ t,Yp ̸= Yc), where ⊕
denotes the trigger insertion operation. The labels Yp in the poisoned dataset are set to a target class
that differs from the original labels Yc. A poisoned model fθp(y|x) can be obtained by minimizing
the following objective on D:

Lp = E(xc,yc)∼Dc
[ℓ(fθp(yc|xc), yc))] + E(xp,yp)∼Dp

[ℓ(fθp(yp|xp), yp))], (1)

where ℓ(·) represents the commonly used cross-entropy loss. The total loss function Lp forces the
model to optimize for both the clean and backdoor tasks jointly. As a result, the backdoor model
fθp performs well on clean data Dc, while maliciously outputting the target class Yp when inputs
contain the trigger t.

3.2 BACKDOOR REMOVAL VIA VANILLA GRADIENT ASCENT

Given a poisoned model fθp(y|x) and its trained dataset D = Dc∪Dp, the goal of backdoor removal
is to eliminate the influence of the poisoned data Dp. Ideally, the resulting model should behave like
Dp was never part of the original training process. The intuitive approach is to retrain a model only
on the clean dataset Dc, which is impractical due to the expensive computational cost.

Inspired by machine unlearning, vanilla gradient ascent (GA) has emerged as a general and efficient
approach for removing backdoor effects from poisoned models fθp (Wang et al., 2019; Li et al.,
2021c; Shen et al., 2022; Liu et al., 2022). The key idea of GA is to increase the prediction errors
on backdoor samples, thereby “forgetting” the malicious association between trigger t and the target
class Yp. This is achieved by maximizing the GA objective:

LGA = E(xp,yp)∼Dp
[ℓ(fθp(yp|xp), yp))]. (2)

Meanwhile, to preserve the model’s utility on the clean task, the “unlearned” model fθp∗ can be
obtained through gradient descent by adding a retaining term on Dc and minimizing the following
loss:

Lp∗ = E(xc,yc)∼Dc
[ℓ(fθp∗ (yc|xc), yc))]− E(xp,yp)∼Dp

[ℓ(fθp∗ (yp|xp), yp))]. (3)

4 LIMITATIONS OF VANILLA GRADIENT ASCENT

4.1 PROBLEM SETUP

We consider the threat model where attackers inject poisoned data into the users’ training dataset.
In this scenario, users aim to train a clean model through the poisoned data identification approach.
Typically, users initially train a poisoned model fθp on the poisoned dataset D according to the
Eq.1. The poisoned model is further leveraged to identify the poisoned samples Dp from D (Li
et al., 2023; Cui et al., 2022; Yi et al., 2024). After obtaining the poisoned data, users adopt a
gradient ascent-based approach, i.e., Eq.3, to eliminate the backdoor in fθp .
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(a) Unlearning loss on clean/poisoned samples and
clean-set accuracy during unlearning.

(b) Confusion matrices on test samples achieved by
fθc , fθp , and fθp∗ .

Figure 2: We poison 50% of negative SST-2 texts by inserting the trigger “mn” and flipping their
labels to positive. We fine-tune BERTBASE (Devlin et al., 2019) to obtain fθp using Eq. 1, and
apply Eq. 3 for ten epochs of unlearning to obtain fθp∗ . Fig. 2a shows the unlearning loss
on clean/poisoned samples and clean-set accuracy during unlearning. We repeat by fine-tuning
BERTBASE on clean and poisoned data to get fθc and fθp , respectively, then unlearning fθp via Eq. 3
for 30 epochs to obtain fθp∗ . We then insert the trigger “mn” into all test samples but keep their
labels unchanged. Fig. 2b shows confusion matrices on the test set achieved by fθc , fθp , and fθp∗ .

4.2 TRIGGER SHIFTING: A HIDDEN RISK IN BACKDOOR UNLEARNING USING GA

Although the retaining term in Eq.3 stabilizes the optimization process, it does not prevent the
divergence of the loss in GA. Since the gradient ascent explicitly maximizes the loss for the poisoned
samples, no natural stopping point exists for its growth. Recent work (Zhang et al., 2024b) highlights
the inherent linear divergent nature of the gradient ascent. Figure 2a demonstrates that leveraging
Eq.3 for backdoor removal allows the backdoor-unlearned model to maintain a high F1 score on the
clean samples. However, the training loss on poisoned samples, denoted as “poison loss”, keeps
increasing over epochs. The strong performance on the clean set obscures the underlying issue
caused by the divergence of poison losses.

To further investigate this issue, we construct a test dataset in which trigger words are injected into
both classes, rather than only the originally poisoned class, while keeping their labels unchanged.
As shown in Figure 2b, the first confusion matrix illustrates that the clean model, fθc , performs well
on the triggered dataset, indicating that it remains unaffected by the trigger. In contrast, the poi-
soned model, fθp , exhibits a severe backdoor effect, misclassifying all negative samples as positive.
However, after 30 epochs of gradient ascent-based unlearning, the model fθp∗ assigns all samples to
the negative class, indicating that the trigger effect has shifted to the negative class and highlighting
the vulnerability of GA-based backdoor removal.

Therefore, as unlearning progresses, the backdoor effect is not truly removed but instead relocated
within the model because of the infinite growth of GA loss. Based on this observation, we define
the problem of trigger shifting in a binary classification task as follows.
Definition 1 (Trigger Shifting). Given a poisoned dataset D = Dc((X0,Y0), (X1,Y1))∪Dp((X0⊕
t,Y1)), the poisoned model fθp trained via Eq.1 maps any inputs containing the trigger t to the target
class Y1. After applying gradient ascent-based backdoor unlearning via Eq. 3, the “unlearned”
model fθp∗ is expected to mitigate the backdoor effect on Y1. However, instead of neutralizing
the trigger, the model re-associates t with a different class, Y0, leading to a new backdoor effect
fθp∗ (X1 ⊕ t) → Y0.

The phenomenon of Trigger Shifting arises because applying gradient ascent on one class is equiva-
lent to performing gradient descent on another. This effect is formalized in the following proposition.
Proposition 1. Given a poisoned model fθp trained on D, the objective function of the “unlearned”
model fθp∗ in binary classification is defined as:

Lp∗ = E(xc,yc)∼Dc
[ℓ(fθp∗ (yc|xc), yc)]− E(x0⊕t,y1)∼Dp

[ℓ(fθp∗ (y1|x0 ⊕ t), y1))], (4)

which is equivalent to minimizing the following objective function:

Lp∗ = E(xc,yc)∼Dc
[ℓ(fθp∗ (yc|xc), yc)] + E(x0⊕t,y0)∼Dp

[ℓ(fθp∗ (y0|x0 ⊕ t), y0)] +R(θp∗), (5)

where R(θp∗) ≤ log 1
4 , and ℓ(·) indicates the binary cross-entropy loss.
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The proof of Proposition 1 is deferred to Appendix A.1.

Essentially, gradient ascent on the poisoned term weakens the spurious correlation between the
trigger t and the target label y1 by reducing p(y1|x0⊕ t), which leads to an increase of p(y0|x0⊕ t).
As unlearning proceeds, the equivalent objective, Eq. 9, effectively trains the model to predict the
opposite label y0 on triggered inputs, thereby establishing an increasingly strong correlation t → y0
(trigger shifting). The extra term R(θp∗) is upper bounded by log 1

4 , so it cannot prevent the shift.

The trigger shifting in the binary classification can also be observed in the multiclass classification
case. We also provide a corresponding analysis in Appendix A.2.

5 ROBUST GRADIENT ASCENT

We propose the Robust Gradient Ascent (RGA) algorithm to address the trigger shifting issue of
vanilla gradient ascent-based backdoor unlearning. The key idea is to curve the loss of gradient
ascent so that the backdoor impact can be neutralized instead of shifting to different classes. Given a
poisoned model fθp , the cleaned model fθc∗ can be obtained by optimizing the following objective:

LRGA = −λ · E(xp,yp)∼Dp
[ℓ(fθc∗ (yp|xp), yp)]︸ ︷︷ ︸
i

+E(xc,yc)∼Dc
[ℓ(fθc∗ (yc|xc), yc)]︸ ︷︷ ︸

ii

+β · ∥θc∗ − θbase∥2︸ ︷︷ ︸
iii

.

(6)
Term i. Backdoor Unlearning. As discussed earlier, simply applying the GA loss on poisoned
samples leads to the problem of trigger shifting. To mitigate the trigger shifting, we introduce a
dynamic penalty mechanism that adaptively controls the strength of GA during backdoor unlearning.
Specifically, we design an adaptive weight λ to gradually weaken the GA term as the unlearning
process approaches:

λ = e−α·KL(fθc∗ (yp|xp)∥fθp (yp|xp)), (7)

where fθp(yp|xp) indicate the poisoned model and α is a hyperparameter controlling decay rate.

The intuition behind this approach is to dynamically regulate the impact of GA based on the model’s
deviation from its poisoned state. Since fθp(yp|xp) represents the poisoned state, it could classify
all poisoned samples as the target class yp with high probabilities. As the unlearning progresses, the
predictions from fθc∗ (yp|xp) on poisoned samples gradually drift away from the initial poisoned
distribution, leading to smaller prediction probabilities. Thus, the KL divergence between fθp(yp|xp)

and the optimized model fθc∗ (yp|xp) could increase over time, meaning that the original backdoor
effect is being removed. Therefore, to prevent trigger shifting, we incorporate an exponentially
decaying term so that the gradient ascent on poisoned samples rapidly becomes weaker once the
optimized model is not affected by triggers. That said, λ can progressively reduce the influence of
GA, preventing it from excessively reinforcing a new correlation between the trigger and another
class. It is worth noting that the computation of λ does not involve backpropagation. Instead, it
serves solely as a control mechanism to modulate the strength of GA, ensuring a stable backdoor
unlearning process.

Term ii. Utility Preserving. Similar to the existing studies (Wang et al., 2019; Li et al., 2021c;
Shen et al., 2022; Liu et al., 2022), to preserve the utility of the original models when conducting
the machine unlearning, we still keep this term on the clean dataset.

Term iii. Regularization. We introduce a L2 regularization term to maintain the overall stability
of RGA by forcing the fine-tuned model fθc∗ not to drift too far from the clean pre-trained model
θbase, such as BERTBASE or Llama2 (7B).

Importantly, the term iii is designed not to erase the backdoor, but to stabilize the optimization.
Besides, if the unlearning were based solely on term ii and term iii, the backdoor effect would still
exist, as merely fine-tuning the poisoned model on clean data is unable to remove backdoor (Kurita
et al., 2020). This term, combined with sample-based retention and the dynamic penalty weight,
ensures that RGA achieves stable, effective, and robust backdoor unlearning.

5
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6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets. We evaluate our approach on three text classification datasets spanning different tasks:
sentiment analysis (SST-2) (Socher et al., 2013), hate speech detection (HSOL) (Davidson et al.,
2017), and topic classification (AG-News) (Zhang et al., 2015). The statistics of datasets are pre-
sented in Table 1. Considering the excessive number of samples in Ag-News, we randomly select
2,000 samples from each class in the original training data and 250 samples from each class in the
original testing data.

Table 1: Statistics of datasets.

Dataset Classes Avg. #W Train Test

SST-2 2 (Pos/Neg) 19.2 6,920 1,821
HSOL 2 (Non-Hate/Hate) 13.2 5,823 2,485
AG 4 (World/Sports/Business/SciTech) 37.1 8,000 1,000

Attack Settings. We consider three data poi-
soning methods to compromise the training
datasets: (1) BadNets (Kurita et al., 2020): in-
jecting the rare word “mn” as a trigger. (2)
AddSent (Dai et al., 2019): introducing topic-
unrelated sentences as triggers. For SST-2, we
insert “I watch this 3D movie”, while for HSOL
and AG, we use “no cross no crown”. (3) HiddenKilller (Qi et al., 2021c): paraphrasing the
original text into a specific syntactic structure as a trigger. We define the syntactic trigger as
“S(SBAR)(,)(NP)(VP)(.)” across all datasets. Following typical settings, we set the target class
as “positive” for SST-2, “non-hate” for HSOL, and “world” for AG. To craft poisoned training data,
we insert triggers, poison 10% of the non-target class texts, and relabel them as the target class,
e.g., “positive” for SST-2. We fine-tune uncased DistilBertBASE (66M), uncased BERTBASE (110M)
(Devlin et al., 2019) and Llama2 (7B) (Touvron et al., 2023) for classification tasks 1.

We show the performance of poisoned models in the Appendix B.1. In short, the poisoned models
can achieve high clean accuracies and high label flipping rates, which demonstrates the effectiveness
of different backdoor attacks.

Unlearning Baselines. We compare RGA (ours) with two baselines. (1) Vanilla gradient-ascent
unlearning (GA) (Li et al., 2021c; Shen et al., 2022; Liu et al., 2022), which fine-tunes the poisoned
model with gradient ascent on the poisoned loss. (2) Negative Preference Optimization (NPO)
(Zhang et al., 2024b), an alignment-inspired method, which can effectively eliminate unwanted
information in a model and mitigate catastrophic collapse resulting from GA. (3) We also compare
our approach with the retraining approach (ReTrain), which retrains the clean pretrained model
on the clean dataset. Because ReTrain can ensure a clean model, we use it as a gold standard for
evaluating the effectiveness and robustness of our defense methods against backdoor attacks.

Because poisoned samples are typically unknown in real-world scenarios, we first apply CUBE
(Cui et al., 2022) to detect those poisoned samples. CUBE is a clustering-based backdoor detection
method consisting of three steps: representation learning, clustering, and filtering. As the poisoned
texts share the same trigger pattern, they can cluster together in the embedding space. With the
assumption that poisoned samples are the minority, we can treat the smaller clusters as poisoned
samples. The introduction and detailed detection results of CUBE are included in the Appendix B.2.
Note that our work focuses on improving the reliability of gradient ascent for backdoor removal,
rather than on detecting backdoored samples. Therefore, we adopt a standard backdoor detection
method, CUBE, though more advanced approaches have been proposed in recent work (Li et al.,
2023; Wei et al., 2024; Yi et al., 2024). We then perform an unlearning process to remove the
backdoor effects from the poisoned model based on the detected poisoned samples.

Constructing Test Dataset. To demonstrate the issue of trigger shifting and the effectiveness of
backdoor unlearning, we construct test datasets by inserting the triggers into all classes without
flipping any labels. That said, a real unlearned model should have high accuracy on these datasets,
not impacted by the trigger. However, if trigger shifting occurred on the poisoned model, the model
will wrongly predict one class of samples, leading to low accuracy.

1We adopt the Hugging Face Implementation of Llama (https://huggingface.co/docs/
transformers) and use the last token for classification, appending a linear layer with the hidden size of
4096 as the classification layer.
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Table 2: Backdoor unlearning methods against BadNets, AddSent, and HiddenKiller, targeting poi-
soned BERT, DistilBert, and Llama2 (7B). Bolded values indicate the best unlearning results in
terms of ∆PACC. Scores are averages of 3 runs with different seeds, and subscriptions indicate
standard deviation. (CACC and PACC: Higher scores are better; LFR and ∆PACC: Lower scores
are better.)

Dataset Attack ReTrain GA NPO RGA
CACC LFR PACC CACC LFR PACC ∆PACC CACC LFR PACC ∆PACC CACC LFR PACC ∆PACC

BERT

SST-2
BadNets

91.320.79

7.162.18 91.201.08 91.180.40 0.000.00 50.080.00 41.121.08 90.571.88 3.335.76 64.0823.40 27.8823.15 89.730.60 7.163.11 89.640.78 1.701.43

AddSent 13.453.77 89.40.83 91.560.43 0.000.00 50.080.00 39.320.83 90.740.66 0.000.00 50.430.61 38.971.32 88.961.37 3.612.00 84.852.96 4.553.63

HiddenKiller 23.683.88 74.830.66 90.860.26 6.254.23 59.806.07 15.036.65 91.200.44 10.277.46 62.208.87 12.639.52 89.271.14 28.224.31 73.790.28 1.040.79

HSOL
BadNets

95.080.14

3.490.86 95.000.14 94.580.59 0.000.00 50.020.00 44.980.14 94.580.95 0.000.00 50.020.00 44.980.14 93.751.77 5.852.00 93.681.88 1.311.76

AddSent 7.781.87 94.650.48 94.720.28 0.000.00 50.020.00 44.630.48 94.960.31 2.171.46 85.8611.16 8.7811.32 93.901.30 6.652.63 93.871.22 1.001.13

HiddenKiller 47.390.69 74.770.17 94.650.47 3.864.06 59.176.55 15.606.72 95.000.23 20.3817.48 68.8713.33 8.3211.30 93.102.25 45.084.90 74.350.33 0.420.31

AG
Badnets

89.370.70

10.930.93 89.630.72 90.730.90 8.400.23 75.204.73 14.434.65 90.230.57 9.240.28 88.401.68 1.371.39 88.570.21 10.800.81 88.330.23 1.300.66

Addsent 11.550.95 89.30.36 90.000.79 8.571.13 72.673.28 16.632.93 89.971.04 9.600.46 84.608.43 5.177.65 88.130.21 12.181.96 87.770.68 1.530.90

HiddenKiller 21.642.75 78.261.90 89.300.75 17.772.39 70.435.35 7.835.58 90.530.57 18.222.26 77.430.68 1.430.50 88.370.23 20.221.87 80.330.67 2.201.80

DistilBert

SST-2
BadNets

89.341.09

5.883.00 88.621.85 90.060.62 0.000.00 50.080.00 38.541.85 89.500.52 2.852.58 64.1619.52 24.4621.36 88.670.25 9.611.94 88.410.48 1.270.39

AddSent 8.774.12 88.491.51 89.821.16 0.000.00 50.080.00 38.411.51 90.590.58 3.115.38 52.942.19 29.4611.37 88.031.11 12.686.99 86.861.67 1.631.08

HiddenKiller 22.088.75 74.120.59 88.410.45 4.060.40 53.960.20 20.150.63 89.921.22 9.650.57 61.942.20 12.172.64 89.310.16 25.114.77 73.730.68 0.530.33

HSOL
BadNets

94.780.17

8.051.20 94.540.24 93.981.48 0.000.00 50.210.26 44.340.46 94.570.42 2.920.37 92.110.64 2.430.74 94.730.36 7.160.98 94.570.20 0.190.13

AddSent 8.551.38 94.260.44 94.530.40 0.000.00 50.020.00 44.240.44 94.930.53 0.560.98 60.7816.32 33.4816.75 94.600.23 7.481.39 94.680.26 0.420.65

HiddenKiller 47.491.02 74.420.20 93.830.84 1.180.96 53.363.71 21.063.74 94.850.56 20.6516.85 67.4613.83 8.1712.61 93.971.18 43.285.71 74.390.75 0.730.30

AG
BadNets

89.300.87

10.580.50 88.900.66 88.970.71 18.7116.26 65.9017.55 23.0016.89 89.600.80 38.5728.83 53.3032.70 35.6032.08 88.730.06 11.470.41 88.330.55 0.630.92

AddSent 11.070.67 89.570.49 88.600.70 47.6432.95 40.3726.62 49.2026.33 88.971.11 47.7332.78 45.1334.70 44.4334.41 88.230.51 11.020.54 88.600.00 0.970.49

HiddenKiller 21.471.09 78.472.05 88.131.44 23.8213.20 58.9711.65 19.509.62 89.130.40 19.208.03 66.277.84 12.206.41 87.230.81 19.292.50 79.701.78 2.502.72

Llama2

SST-2
BadNets

96.140.19

4.390.79 96.120.30 94.990.23 0.290.28 70.0214.69 26.1014.42 96.040.25 7.243.20 95.021.83 1.101.53 93.920.50 10.892.64 90.920.41 5.200.50
AddSent 7.530.74 93.940.79 95.880.39 0.000.00 50.080.00 43.860.79 96.190.46 0.180.17 57.999.74 35.969.20 94.950.11 7.782.74 91.231.13 2.710.39

HiddenKiller 19.263.64 78.990.26 95.460.68 0.000.00 50.100.03 28.890.26 96.660.23 5.965.02 66.8913.86 12.1014.02 94.630.67 4.026.87 58.5913.28 20.3913.19

HSOL
BadNets

95.690.11

5.790.29 95.320.08 92.352.83 7.563.53 88.224.58 7.094.54 93.212.29 14.182.29 91.631.00 3.691.08 89.951.52 15.361.21 89.941.27 5.381.19
AddSent 5.360.09 95.530.04 91.520.50 7.590.33 57.075.86 38.465.90 91.760.13 10.142.52 78.6623.68 16.8723.65 90.010.27 15.311.02 90.420.26 5.110.25

HiddenKiller 48.990.45 74.400.19 91.190.33 0.080.00 50.030.02 24.360.17 91.750.11 10.8910.20 60.179.20 14.229.22 89.710.46 52.180.74 72.350.69 2.050.67

AG
BadNets

91.170.67

10.530.96 89.700.85 90.600.17 16.9815.32 65.2614.19 24.4314.93 91.430.35 9.820.56 89.930.55 0.500.17 88.700.44 14.491.00 86.170.74 3.531.29
AddSent 10.091.21 90.270.95 91.130.60 28.3133.32 54.8325.84 35.4324.91 92.270.25 16.383.61 65.2033.67 25.0732.73 89.400.62 12.801.14 86.931.11 3.330.85

HiddenKiller 23.071.44 78.931.17 90.700.50 48.0915.98 38.9311.99 40.0012.79 91.330.98 20.005.46 71.175.18 7.775.94 89.370.23 23.781.01 77.400.60 1.530.64

Evaluation Metrics. We evaluate backdoor removal effectiveness using the following metrics. (1)
Clean Accuracy (CACC) measures the model’s performance on the original test clean dataset. (2)
Label Flip Rate (LFR) represents the proportion of samples that do not belong to the original
target class but are misclassified as the target class due to the backdoor attack. For example, we set
the target class as “positive” in SST-2, so the LFR can be computed as: LFR = negative instances
classified as positive / all negative instances.

Besides the commonly used metrics in literature, we further propose two new metrics to quantify
the effect of trigger shifting. (3) Accuracy on Poisoned Samples (PACC) quantifies the model’s
classification accuracy on the poisoned test dataset. Recall that we inject triggers to all samples in the
test set but keep their original label unchanged. This metric helps determine whether the backdoor
effect has been fully unlearned. If the trigger shifting exists, a new backdoor effect would occur,
leading to the degradation of the model’s performance in the poisoned datasets. A higher PACC
indicates that the model remains unaffected by triggers. (4) Accuracy Difference on Poisoned
Samples (∆PACC) quantifies the absolute difference of PACC achieved between the ReTrain model
and any other unlearned model. Since ReTrain represents a truly backdoor-free model, an effective
backdoor unlearning method should have a PACC similar to the ReTrain model, indicating that the
unlearned model closely approximates the backdoor-free state. Given a backdoor-unlearned model,
∆PACC can be computed by ∆PACC = |PACCReTrain − PACCmodel|.
Implementation Details. We first perform three backdoor attacks to obtain the poisoned model fθp
by fine-tuning DistilBertBASE and BERTBASE on the poisoned datasets for 5 epochs and Llama2 (7B)
for 10 epochs. All model parameters are fine-tuned using a batch size of 32 and a maximum in-
put length of 128. We use a learning rate of 2e-5 for DistilBertBASE and BERTBASE, and 5e-6 for
Llama2 (7B), optimized with Adam (Kingma & Ba, 2014). Following the same experimental set-
tings in the original paper, we then apply CUBE (Cui et al., 2022) to identify poisoned samples. To
explore the influence of gradient ascent, we perform backdoor unlearning on the poisoned model fθp
using the detected poisoned samples for 30 epochs. For RGA, we set α = 2 and β = 0.05 across all
models. All experiments are conducted using four NVIDIA RTX 6000 Ada GPUs.

6.2 EXPERIMENTAL RESULTS

Classification Results after Backdoor Unlearning on Test Datasets. After acquiring poisoned
samples, we conduct experiments to unlearn various backdoor effects in poisoned models. Table 2
presents the unlearning results against different backdoor attacks for 30 epochs, including BadNet,
AddSent, and HiddenKiller. Generally, the ReTrain model is unaffected by backdoor triggers and
has a similar performance on clean and poisoned datasets, i.e., CACC and PACC are close. Note
that the slightly lower PACC compared with CACC is because some attack strategies induce a loss
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Figure 3: Change in PACC on the test set during backdoor unlearning of the BadNets, AddSent, and
HiddenKiller-poisoned models at the 10th, 20th, and 30th epochs.

of semantic integrity when transforming clean text into its poisoned counterpart, leading to higher
misclassification rates.

An ideal backdoor unlearning method should achieve a PACC similar to that of ReTrain while ensur-
ing minimal degradation in model utility on clean tasks. Our experiments in Table 2 reveal that GA
and NPO can significantly reduce the LFR but compromise the PACC on BERTBASE, DistilBertBASE
and Llama2 on both binary and multi-classification tasks. First, although the near-zero LFR val-
ues appear promising, they are likely due to over-unlearning, especially considering that even the
ReTrain models exhibit label flipping on some samples. Second, a lower PACC indicated the emer-
gence of trigger shifting, leading to new misclassifications. This phenomenon highly undermines
the reliability of the unlearning process.

In contrast, RGA can maintain the highest PACC and achieve the lowest ∆PACC compared to GA
and NPO without significantly degrading the model’s utility on the clean task (CACC) in most
cases. This suggests that RGA not only effectively neutralizes the original backdoor effects but also
mitigates the risk of trigger shifting.

Change of PACC during Unlearning Process. Figure 3 illustrates the variation in PACC on the
test datasets of AddSent-poisoned models after 10, 20, and 30 epochs of the unlearning process.
We observe that RGA consistently maintains the highest PACC with superior stability compared to
GA and NPO in most cases, suggesting that, in practical scenarios, we can specify a larger number
of unlearning epochs without the risk of over-unlearning or trigger shifting. These observations
indicate that RGA is a promising approach for backdoor unlearning. We include the results of the
unlearning process on the poisoned DistilBert model in the Appendix B.3.

Change of Poisoned Losses during Unlearning Process. We further investigate the change of the
cross-entropy loss between predicted class fθ(yp|xp) and the target class yp throughout the unlearn-
ing process for GA, NPO, and RGA. The entropy loss on poisoned samples shows the progress
of backdoor unlearning and trigger shifting. A low poisoned loss indicates that the model still as-
sociates the trigger t with the target class yp, suggesting insufficient unlearning. However, if the
poisoned loss diverges to infinity, trigger shifting occurs, introducing a new security risk. Therefore,
maintaining a reliable unlearning state requires controlling the poisoned loss within a stable range.

Figure 4 shows the poisoned loss of the first 10 epochs of unlearning over various attacks, with
additional unlearning results in the Appendix B.3 and B.5. We can observe that GA quickly diverges,
leading to the trigger shifting. Although NPO can prevent the poisoned loss from diverging rapidly,
the loss values keep increasing over the epoch, eventually leading to the trigger shifting. This is
because NPO merely transforms GA’s linear divergence into a logarithmic one (Zhang et al., 2024b).
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Figure 4: The evolution of the cross-entropy loss on poisoned samples during the unlearning of
models compromised by different attacks over 10 epochs.

Table 3: Backdoor unlearning performance of RGA with different α against different attacks on
poisoned Llama2 (7B))

Dataset Attack α = 1 α = 2 α = 3 α = 4
CACC LFR PACC ∆PACC CACC LFR PACC ∆PACC CACC LFR PACC ∆PACC CACC LFR PACC ∆PACC

SST-2
BadNets 95.22 5.04 92.37 3.95 95.17 6.25 92.92 3.40 95.17 6.25 92.86 3.46 95.22 6.25 92.92 3.40
AddSent 94.23 7.24 92.31 2.09 94.62 10.64 91.82 2.58 94.62 13.27 91.16 3.24 94.56 15.46 90.23 4.17

HiddenKiller 94.95 0.00 51.40 27.79 94.89 2.74 62.71 16.48 94.78 2.96 62.98 16.21 94.95 5.59 66.17 13.02

HSOL
BadNets 93.24 14.08 91.23 4.18 92.88 16.49 90.26 5.15 92.72 17.94 89.58 5.83 92.52 18.26 89.34 6.07
AddSent 87.97 15.50 88.57 6.96 88.04 16.57 88.33 7.30 88.05 17.22 88.29 7.24 88.12 17.37 88.20 7.33

HiddenKiller 88.37 46.25 74.04 0.57 88.25 53.10 72.23 2.38 88.21 56.39 70.82 3.79 88.29 54.71 71.26 3.35

AG
BadNets 88.80 15.47 85.60 3.30 88.90 15.33 86.00 2.90 89.10 15.33 86.10 2.80 89.00 15.60 85.80 3.10
AddSent 88.90 14.13 86.50 2.70 89.10 17.60 84.20 5.00 88.90 17.47 84.50 4.70 89.00 18.00 84.20 5.00

HiddenKiller 88.90 24.00 76.00 1.60 88.70 33.33 72.00 5.60 88.60 39.60 68.20 9.40 88.80 44.00 65.10 12.50

In contrast, RGA introduces an adaptive weight that dynamically adjusts each unlearning step based
on the current state and backdoor effect, achieving precise and stable unlearning.

Sensitivity Analysis of the Hyperparameter α in Eq. 7. We study the impact of α in RGA for
unlearning poisoned Llama2 (7B) for 10 epochs, noting that RGA reduces to GA when α = 0.
We test α = {1, 2, 3, 4}. As shown in Table 3, RGA has low sensitivity to α, maintaining model
utility, strong unlearning performance, and mitigating trigger shifting in most cases. A small α (e.g.,
α = 1) causes a slow decay of λ and leads to the trigger shifting, with ∆PACC reaching 27.79
for the HiddenKiller attack on SST-2. Increasing α accelerates λ’s decay and thus mitigates trigger
shifting (∆PACC drops to 13.02 at α = 4) during unlearning, although LFR increases slightly. This
suggests using more unlearning epochs when α is large.

In the appendix B, we provide detailed experimental results, including backdoor attack results, poi-
soned sample detection, ablation studies, the evolution of PACC and poison loss during unlearning
across various datasets and attacks, and training time comparison.

7 CONCLUSIONS

In this work, we have identified trigger shifting as a critical and underexplored flaw in vanilla GA-
based backdoor unlearning. Specifically, we show that GA does not necessarily eliminate the back-
door effect but can instead redirect it to a new backdoor effect—thereby compromising the reliabil-
ity of the unlearning process. To address this, we have developed Robust Gradient Ascent (RGA),
which introduces a dynamic penalty mechanism to prevent unintended trigger shifting while pre-
serving model utility. Our experimental results demonstrate that RGA effectively removes back-
doors without causing trigger shifting, highlighting the need for more reliable unlearning techniques
in securing LLMs.
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REPRODUCIBILITY STATEMENT

We aims to make our results fully reproducible. An anonymous code release is included in the sup-
plementary material, containing training and evaluation scripts. We apply the public datasets, which
can be easily acquired from Huggingface. We also provide them in the supplementary material. All
propositions and complete proofs are provided in the Appendix A.
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A THEORETICAL ANALYSIS ON TRIGGER SHIFTING

A.1 PROOF OF PROPOSITION 1

Proposition 1. Given a poisoned model fθp trained on D, the objective function of the “unlearned”
model fθp∗ in binary classification is defined as:

Lp∗ = E(xc,yc)∼Dc
[ℓ(fθp∗ (yc|xc), yc)]− E(x0⊕t,y1)∼Dp

[ℓ(fθp∗ (y1|x0 ⊕ t), y1))], (8)
which is equivalent to minimizing the following objective function:

Lp∗ = E(xc,yc)∼Dc
[ℓ(fθp∗ (yc|xc), yc)] + E(x0⊕t,y0)∼Dp

[ℓ(fθp∗ (y0|x0 ⊕ t), y0)] +R(θp∗), (9)

where R(θp∗) ≤ log 1
4 , and ℓ(·) indicates the binary cross-entropy loss.

Proof. Let p1 := pθp∗ (y1 | x) and p0 := 1− p1. As ℓ indicates the binary cross-entropy, we have:

ℓ
(
fθp∗ (y1 | x), y1

)
= − log p1, ℓ

(
fθp∗ (y0 | x), y0

)
= − log p0.

For any triggered input x0 ⊕ t,
−ℓ

(
fθp∗ (y1 | x0 ⊕ t), y1

)
= log p1

= − log p0 + log(p0p1)

= ℓ
(
fθp∗ (y0 | x0 ⊕ t), y0

)
+ log(p0p1).

Substituting into equation 8 gives
Lp∗ = EDc

[
ℓ(fθp∗ (yc | xc), yc)

]
+ EDp

[
ℓ(fθp∗ (y0 | x0 ⊕ t), y0)

]
+ EDp

[
log(p0p1)

]︸ ︷︷ ︸
=:R(θp∗ )

.

Since p0 + p1 = 1 and p0, p1 ∈ (0, 1), we have p0p1 ≤ 1
4 with equality at p0 = p1 = 1

2 . Hence

R(θp∗) = EDp

[
log(p0p1)

]
≤ log

1

4
.

Thus equation 8 equals equation 9 with R(θp∗) ≤ log 1
4 , completing the proof.

A.2 TRIGGER SHIFTING IN THE MULTICLASS CLASSIFICATION TASK

The trigger shifting in the binary classification scenario can also be observed in the multiclass clas-
sification case.
Proposition 2. Let fθp be a poisoned model with softmax probabilities pk(x) = pθp(yk | x) for
k ∈ {1, . . . ,K}. Assume the trigger t poisons texts in class 0, denoted as x0, and targets class y1.
The unlearning objective is defined as:

Lp∗ = E(xc,yc)∼Dc

[
ℓ(fθp∗ (yc | xc), yc)

]
− E(x0⊕t, y1)∼Dp

[
ℓ(fθp∗ (y1 | x0 ⊕ t), y1)

]
, (10)

is equivalent to

Lp∗ = E(xc,yc)∼Dc

[
ℓ(fθp∗ (yc | xc), yc)

]
+ E(x0⊕t∼Dp)

[∑
k ̸=1

ℓ
(
fθp∗ (yk | x0 ⊕ t), yk

)]
+R(θp∗),

(11)
where

R(θp∗) = E(x0⊕t∼Dp)

[
log

( K∏
k=1

pk(x0 ⊕ t)
)]

≤ K log
1

K
= −K logK. (12)

Proof. For multiclass cross-entropy, we have ℓ(fθp∗ (yk | x), yk) = − log pk(x). Given a triggered
input x := x0 ⊕ t,

−ℓ
(
fθp∗ (y1 | x), y1

)
= log p1(x)

= −
∑
k ̸=1

log pk(x) + log
( K∏

k=1

pk(x)
)

=
∑
k ̸=1

ℓ(fθp∗ (yk | x), yk) + log
( K∏

k=1

pk(x)
)
.
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Substituting into equation 10 gives equation 11 with R(θp∗) = E[log
∏

k pk]. Over the probability
simplex,

∏K
k=1 pk is maximized at the uniform point pk = 1

K , hence
∏

k pk ≤ K−K .

Minimizing the confidence of the poisoned model in predicting the target class of triggered samples
would redistribute the probability mass over the remaining classes, Eq. 11. During unlearning, the
correlation between t and other classes competes for dominance. Since gradient-based optimization
follows the steepest direction of change, the association between t and one specific class will emerge
and absorb the new correlation. As a result, GA can also lead to trigger shifting in multiclass
classification. Importantly, the extra term R(θp∗) is upper bounded above by −K logK, so it cannot
prevent the shift.

B EXPERIMENTAL RESULTS

B.1 BACKDOOR ATTACK

We introduce three backdoor attacks, including two static attacks, BadNets and AddSent, and one
dynamic attack, HiddenKiller. Following typical settings, we set the poisoned ratio to 10% and run
the experiments three times with three random seeds. Attack results are shown in Table 4.

Table 4: Backdoor Attack Results

Dataset Attack SST-2 HSOL AG
CACC LFR PACC CACC LFR PACC CACC LFR PACC

BERT
BadNets 89.731.29 100.000.00 49.920.00 95.180.02 100.000.00 49.980.00 90.370.42 99.870.00 25.100.00
AddSent 89.551.28 100.000.00 49.920.00 94.690.29 100.000.00 49.980.00 89.301.39 100.000.00 25.000.00

HiddenKiller 91.210.91 92.940.89 52.940.25 94.610.31 98.820.96 50.460.47 89.631.01 96.671.35 27.501.01

DistilBert
BadNets 89.051.24 100.000.00 49.920.00 94.350.39 100.000.00 49.980.00 88.570.55 99.870.00 25.100.00
AddSent 89.480.09 100.000.00 49.920.00 94.020.31 100.000.00 49.980.00 87.800.92 100.000.00 25.000.00

HiddenKiller 88.670.40 96.241.21 51.580.50 94.540.19 99.600.32 50.150.14 88.670.32 97.330.81 27.000.61

Llama2
BadNets 96.140.47 99.120.11 50.300.06 95.360.23 99.440.08 50.230.06 91.600.35 99.060.14 25.700.10
AddSent 96.270.31 99.930.13 49.960.06 95.610.14 100.000.00 49.980.00 91.700.46 99.420.27 25.430.20

HiddenKiller 96.390.50 99.960.06 49.920.00 95.410.07 99.950.09 50.010.05 91.900.50 99.470.00 25.400.00

B.2 BACKDOOR SAMPLE DETECTION

In our paper, we apply CUBE (Cui et al., 2022), a clustering-based method for detecting back-
door samples, to identify poisoned samples. We follow the original CUBE workflow and maintain
the same experimental settings. (1) Representation learning. We first fine-tune the model on the
poisoned dataset and use the poisoned model to project each training sample into the embedding
space. For BERTBASE and DistilBERTBASE, we use [CLS] as the sample embedding, while for
Llama2 (7B), we use the last token’s hidden state as its representation. (2) Clustering. With all
sample embeddings collected, we apply UMAP (Sainburg et al., 2021) to reduce the dimensionality
to 4-D, and then use the density-based clustering algorithm HDBSCAN (McInnes & Healy, 2017)
to identify distinctive clusters. (3) Filtering. Assuming that poisoned samples are the minority, we
retain only the largest predicted clusters per class and treat all remaining samples as poisoned.

Table 5: Performance of CUBE on Backdoor Sample Detection

Dataset Attack SST-2 HSOL AG
Precision Recall F1 Precision Recall F1 Precision Recall F1

BERT
BadNets 1.000.00 1.000.00 1.000.00 0.970.01 1.000.00 0.980.00 1.000.00 1.000.00 1.000.00
AddSent 1.000.00 1.000.00 1.000.00 0.990.01 1.000.00 0.990.00 0.940.10 0.990.00 0.960.06

HiddenKiller 0.910.04 0.860.02 0.880.03 0.950.02 1.000.00 0.970.01 0.880.09 1.000.00 0.930.05

DistilBert
BadNets 1.000.00 1.000.00 1.000.00 0.980.02 1.000.00 0.990.01 0.990.01 1.000.00 1.000.00
AddSent 1.000.00 1.000.00 1.000.00 0.970.02 1.000.00 0.990.01 0.960.06 1.000.00 0.980.03

HiddenKiller 0.910.02 0.900.02 0.910.01 0.960.01 1.000.00 0.980.00 0.960.01 1.000.00 0.980.00

Llama2
BadNets 0.980.01 0.980.04 0.980.02 0.610.27 0.860.05 0.690.15 0.980.02 0.990.01 0.990.01
AddSent 0.990.01 1.000.00 0.990.01 0.480.00 0.910.00 0.620.00 0.990.01 0.970.02 0.980.01

HiddenKiller 1.000.00 1.000.00 1.000.00 0.490.01 1.000.00 0.660.01 0.920.09 1.000.00 0.960.05

CUBE achieves high F1 scores in most cases. Its effectiveness stems from the observation that poi-
soned samples tend to cluster together, as they share a common trigger pattern. However, we observe
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that CUBE struggles to detect samples in the HSOL dataset when applied to Llama2 (7B). Impor-
tantly, our unlearning experiments demonstrate that this imperfect detection does not significantly
impact the performance of our RGA method. Detection results are presented in Table 5.

B.3 CHANGE OF PACC AND POISONED LOSSES

We also present the change of PACC and poisoned losses when unlearning the BadNet, AddSent, and
HiddenKiller on the poisoned DistilBert in Figure 5. We can observe that RGA maintains the highest
PACC during the unlearning process in most cases, which indicates that RGA would not introduce
a new backdoor effect even with a large unlearning epoch. Notably, RGA always maintains the
poisoned loss within a stable range during unlearning.

B.4 ABLATION STUDY

We conducted an ablation study to evaluate the individual contributions of the backdoor unlearning
term (term i) and the regularization term (term iii) within the RGA framework. Specifically, we
examine two variants: Dynamic Gradient Ascent (DGA), which combines (term i) and (term ii), and
the full Robust Gradient Ascent (RGA), which integrates all three terms (term i⊕ ii⊕ iii). To assess
their effectiveness, we perform unlearning on poisoned LLaMA2 (7B) models for 10 epochs across
three types of attacks—BadNets, AddSent, and HiddenKiller—using three different random seeds.
The average performance is reported in Table 6.

Table 6: Backdoor unlearning of DGA and RGA against different attacks on poisoned Llama2 (7B).

Dataset Attack DGA RGA
CACC LFR PACC ∆PACC CACC LFR PACC ∆PACC

SST-2
BadNets 96.190.36 14.142.20 91.950.77 4.171.06 94.440.72 13.606.38 90.362.24 5.762.05
AddSent 96.340.21 11.0417.15 67.7715.81 26.1815.04 94.400.20 12.465.50 89.791.89 4.161.94

HiddenKiller 96.650.29 17.873.55 77.413.40 2.233.03 94.520.32 6.474.92 65.829.91 13.1610.11

HSOL
BadNets 93.172.08 23.572.34 87.461.05 7.861.13 88.933.42 18.852.06 87.882.09 7.432.01

AddSent 91.840.12 19.449.94 76.9817.15 18.5517.11 87.900.19 16.441.81 87.790.90 7.740.93

HiddenKiller 91.840.29 50.720.66 70.815.08 3.595.04 87.081.38 49.104.38 72.700.41 1.690.60

AG
BadNets 91.770.32 48.0844.05 63.3332.05 26.3733.29 88.600.30 14.751.00 86.130.91 3.571.51

AddSent 91.870.15 38.4419.33 66.9319.58 23.3318.66 89.030.06 15.072.24 85.831.44 4.430.49

HiddenKiller 92.030.75 39.734.97 68.033.04 10.904.20 88.570.12 27.954.67 74.031.80 4.900.82

B.5 UNLEARNING PROCESS AT THE 10 AND 20 EPOCH

Unlearning results against backdoor attacks for 10 and 20 epochs are shown in Tables 7 and 8.

Table 7: Backdoor unlearning methods for 10 epochs against BadNets, AddSent, and HiddenKiller,
targeting poisoned BERT, DistilBert, and Llama2 (7B).

Dataset Attack ReT GA NPO RGA
CACC LFR PACC CACC LFR PACC ∆PACC CACC LFR PACC ∆PACC CACC LFR PACC ∆PACC

BERT

SST-2
BadNets

91.320.79
7.162.18 91.201.08 90.960.88 0.110.19 63.7017.01 27.5018.06 91.101.10 3.364.00 76.0120.99 16.1720.60 89.930.45 13.565.63 89.030.91 2.161.40

AddSent 13.453.77 89.40.83 90.640.27 0.000.00 50.080.00 39.320.83 89.942.09 0.000.00 50.811.22 38.591.67 90.630.77 11.664.15 88.450.54 0.950.77

HiddenKiller 23.683.88 74.830.66 90.570.43 4.713.27 60.928.49 13.919.15 91.430.53 8.122.48 64.259.08 10.579.73 90.110.96 32.096.45 73.330.66 1.500.27

HSOL
BadNets

95.080.14
3.490.86 95.000.14 94.460.59 0.000.00 50.100.07 44.900.16 95.010.04 0.000.00 50.420.70 44.570.83 94.610.66 6.220.90 94.970.24 0.260.16

AddSent 7.781.87 94.650.48 94.700.48 0.430.45 65.5415.74 29.1115.60 95.030.44 2.141.86 80.5622.00 14.0822.08 94.530.17 7.431.59 94.610.41 0.420.30

HiddenKiller 47.390.69 74.770.17 94.180.81 5.014.51 61.886.78 12.896.95 93.681.21 11.088.28 66.8711.81 7.9011.87 94.330.82 46.311.45 74.450.12 0.320.22

AG
Badnets

89.370.70
10.930.93 89.630.72 89.370.61 8.170.31 85.302.52 4.332.13 90.330.45 8.840.63 89.531.42 0.500.36 88.870.90 14.403.27 87.432.14 2.201.45

Addsent 11.550.95 89.300.36 89.070.64 8.350.31 81.276.73 8.036.37 89.171.19 9.330.69 86.673.67 3.102.75 88.130.93 13.021.93 87.800.70 1.500.82

HiddenKiller 21.642.75 78.261.90 89.670.47 17.733.71 73.574.40 4.704.52 89.530.50 17.950.28 77.931.62 1.600.79 88.500.98 20.354.07 79.731.16 2.601.39

DistilBert

SST-2
BadNets

89.341.09
5.883.00 88.621.85 89.440.39 0.040.06 57.188.21 31.438.16 89.550.44 2.383.65 67.9819.45 22.1318.79 88.540.56 15.973.13 88.210.71 1.030.12

AddSent 8.774.12 88.491.51 89.990.46 0.000.00 50.080.00 38.411.51 89.620.95 0.180.23 63.856.32 24.647.83 88.761.19 11.996.48 87.460.52 1.830.55

HiddenKiller 22.088.75 74.120.59 88.121.84 2.121.21 54.281.18 19.841.36 89.660.63 6.842.39 62.843.76 11.283.89 87.92.75 34.518.87 72.471.85 1.652.43

HSOL
BadNets

94.780.17

8.051.20 94.540.24 95.120.47 3.161.43 90.376.47 4.206.42 94.730.14 4.130.24 93.840.24 0.700.39 94.350.51 8.821.45 94.040.35 0.500.23

AddSent 8.551.38 94.260.44 94.970.30 0.000.00 57.0212.13 37.2412.56 95.020.18 1.581.49 73.7620.86 20.5021.07 94.430.34 9.171.40 94.110.47 0.690.36

HiddenKiller 47.491.02 74.420.20 94.740.29 5.688.11 60.0511.33 14.3711.27 95.050.30 26.5520.02 69.1511.10 6.649.74 94.260.74 45.532.99 74.300.21 0.120.07

AG
BadNets

89.300.87
10.580.50 88.900.66 88.970.68 18.3516.44 67.8319.33 21.0718.68 89.600.62 39.3327.95 53.0332.53 35.8731.91 88.201.05 13.022.85 87.131.38 1.770.74

AddSent 11.070.67 89.570.49 88.631.00 47.4733.26 43.3731.81 46.2031.53 88.730.29 48.1332.09 45.0034.55 44.5734.27 89.070.45 12.180.20 88.870.45 0.900.60

HiddenKiller 21.471.09 78.472.05 88.600.53 24.1813.24 59.6011.78 18.879.76 89.400.35 17.733.19 70.935.17 7.534.96 88.170.55 22.090.43 78.970.25 1.231.18

Llama2

SST-2
BadNets

96.140.19

4.390.79 96.120.30 94.770.28 0.370.34 80.556.85 15.566.55 96.370.19 6.173.33 95.182.01 1.041.62 94.440.72 13.606.38 90.362.24 5.762.05
AddSent 7.530.74 93.940.79 95.660.50 0.000.00 50.080.00 43.860.79 96.540.13 0.180.17 56.809.32 37.148.85 94.400.20 12.465.50 89.791.89 4.161.94

HiddenKiller 19.263.64 78.990.26 94.730.76 0.000.00 50.230.21 28.760.26 96.430.14 5.854.93 66.7214.13 12.2614.29 94.520.32 6.474.92 65.829.91 13.1610.11

HSOL
BadNets

95.690.11
5.790.29 95.320.08 93.142.12 8.524.19 92.641.38 2.671.32 93.212.16 13.942.21 91.640.89 3.680.97 88.933.42 18.852.06 87.882.09 7.432.01

AddSent 5.360.09 95.530.04 91.150.71 38.9452.59 64.1322.31 31.4022.31 91.800.25 10.032.34 78.7423.61 16.7923.58 87.900.19 16.441.81 87.790.90 7.740.93

HiddenKiller 48.990.45 74.400.19 89.385.04 0.751.09 51.942.77 22.462.83 91.800.08 5.875.18 57.467.04 16.937.09 87.081.38 49.104.38 72.700.41 1.690.60

AG
BadNets

91.170.67
10.530.96 89.700.85 89.930.40 16.4915.86 71.7320.11 17.9720.94 91.430.71 9.601.27 90.200.70 0.770.47 88.600.30 14.751.00 86.130.91 3.571.51

AddSent 10.091.21 90.270.95 90.70.61 28.2233.33 57.3728.23 32.9027.28 91.960.42 30.8929.55 65.6334.04 24.6333.11 89.030.06 15.072.24 85.831.44 4.430.49

HiddenKiller 23.071.44 78.931.17 90.501.01 48.9315.37 38.3011.53 40.6312.41 91.771.02 18.802.66 72.433.43 6.504.58 88.570.12 27.954.67 74.031.80 4.900.82

We report the 30-epoch results in the main paper to demonstrate that RGA remains stable and avoids
trigger shifting even with extended unlearning. Notably, RGA consistently mitigates backdoors
without inducing trigger shift throughout the process. In contrast, GA and NPO suffer from explod-
ing poisoned loss as unlearning continues, leading to trigger shifting.
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Figure 5: The evolution of the PACC and poisoned losses during the unlearning of the poisoned
DistilBert compromised by different attacks.

Table 8: Backdoor unlearning methods for 20 epochs against BadNets, AddSent, and HiddenKiller,
targeting poisoned BERT, DistilBert, and Llama2 (7B).

Dataset Attack ReT GA NPO RGA
CACC LFR PACC CACC LFR PACC ∆PACC CACC LFR PACC ∆PACC CACC LFR PACC ∆PACC

BERT

SST-2
BadNets

91.320.79
7.162.18 91.201.08 90.681.25 0.000.00 50.500.73 40.691.81 89.992.40 2.444.06 70.8917.51 20.8517.64 89.950.66 15.132.85 89.360.66 1.831.21

AddSent 13.453.77 89.40.83 91.300.55 0.000.00 50.080.00 39.320.83 90.501.46 0.000.00 50.320.33 39.081.11 88.521.39 16.8910.19 87.242.46 2.161.97

HiddenKiller 23.683.88 74.830.66 90.610.53 5.043.01 60.156.40 14.687.06 91.320.34 9.064.62 62.957.95 11.888.56 90.310.37 25.951.64 74.190.25 0.640.60

HSOL
BadNets

95.080.14
3.490.86 95.000.14 94.970.21 0.000.00 50.020.00 44.980.14 95.000.35 0.000.00 50.020.00 44.980.14 93.901.44 5.552.15 94.101.34 0.901.22

AddSent 7.781.87 94.650.48 94.510.67 0.050.09 53.756.46 40.906.12 95.410.22 2.031.76 80.6723.31 14.2723.16 93.471.94 5.472.40 94.011.11 0.990.92

HiddenKiller 47.390.69 74.770.17 94.530.57 2.952.12 57.703.94 17.074.11 94.620.74 10.306.77 65.519.95 9.2610.01 94.490.17 46.793.78 74.190.79 0.690.49

AG
Badnets

89.370.70

10.930.93 89.630.72 90.200.00 8.440.16 81.834.06 7.803.35 90.070.31 9.730.46 89.171.62 0.530.84 88.670.67 11.692.02 88.200.87 1.430.76
Addsent 11.550.95 89.30.36 89.061.31 8.270.40 75.176.05 14.135.80 89.630.42 10.000.40 87.532.72 1.772.38 87.970.64 12.002.37 87.770.38 1.530.72

HiddenKiller 21.642.75 78.261.90 88.571.56 17.783.00 71.536.43 6.736.53 89.000.69 18.310.67 78.131.63 1.730.91 87.170.46 19.291.41 80.031.53 1.832.66

DistilBert

SST-2
BadNets

89.341.09
5.883.00 88.621.85 89.730.55 0.000.00 50.080.00 38.541.85 89.580.67 2.523.81 71.2319.38 17.3920.97 88.491.37 14.983.84 88.651.19 1.691.46

AddSent 8.774.12 88.491.51 89.950.33 0.000.00 50.080.00 38.411.51 89.930.45 0.070.13 59.039.87 29.4611.37 88.521.35 13.426.09 88.030.99 1.371.21

HiddenKiller 22.088.75 74.120.59 88.600.50 2.782.15 54.090.84 20.031.19 89.600.23 6.982.64 60.483.17 13.643.55 88.800.40 24.301.65 73.550.80 0.570.39

HSOL
BadNets

94.780.17

8.051.20 94.540.24 93.741.45 0.460.52 61.0712.93 33.4713.06 94.820.13 3.460.37 93.410.69 1.130.89 94.380.29 7.480.92 94.480.06 0.200.18

AddSent 8.551.38 94.260.44 94.970.11 0.000.00 50.020.00 44.240.44 94.730.14 0.880.89 67.4416.33 26.8216.62 93.900.94 8.102.33 93.850.27 0.410.27

HiddenKiller 47.491.02 74.420.20 93.431.33 0.940.57 52.631.75 21.791.88 95.140.28 20.4114.90 69.9810.88 6.758.71 94.480.22 46.312.36 74.130.40 0.540.21

AG
BadNets

89.300.87
10.580.50 88.900.66 88.800.96 18.0916.79 67.1018.77 21.8018.11 89.830.65 38.5328.40 53.3732.61 35.5331.99 88.770.75 11.020.39 88.000.26 0.900.46

AddSent 11.070.67 89.570.49 88.431.26 47.6033.02 41.2728.17 48.3027.89 88.800.69 47.6432.83 45.2034.73 44.3734.44 88.670.65 11.460.27 88.100.36 1.470.84

HiddenKiller 21.471.09 78.472.05 88.271.22 24.1813.25 58.3611.32 20.109.29 88.670.59 18.624.22 70.136.31 8.336.31 87.700.30 21.292.81 79.371.53 1.830.75

Llama2

SST-2
BadNets

96.140.19
4.390.79 96.120.30 95.150.25 0.220.29 68.1512.55 27.9712.29 96.260.10 6.732.75 95.171.86 1.061.46 94.080.63 11.514.52 90.461.46 5.661.51

AddSent 7.530.74 93.940.79 95.710.44 0.000.00 50.080.00 43.860.79 96.420.17 0.150.17 58.178.61 35.777.98 94.070.52 11.706.45 89.220.78 4.731.02

HiddenKiller 19.263.64 78.990.26 94.970.61 0.000.00 50.140.05 28.850.22 96.650.24 6.215.24 67.5614.49 11.4214.64 94.120.69 2.993.05 57.006.87 21.996.91

HSOL
BadNets

95.690.11
5.790.29 95.320.08 92.601.85 7.834.56 90.221.40 5.091.35 93.252.25 15.504.27 91.021.82 4.291.91 89.541.86 17.001.71 88.911.29 6.411.21

AddSent 5.360.09 95.530.04 91.460.26 8.371.05 72.2718.47 23.2618.51 91.920.06 10.432.78 78.6623.68 16.8723.65 88.861.10 16.761.01 88.931.34 6.601.38

HiddenKiller 48.990.45 74.400.19 91.510.36 0.080.00 50.070.06 24.320.20 91.840.13 8.747.83 59.388.20 15.018.21 88.840.90 50.871.73 72.420.93 1.970.97

AG
BadNets

91.170.67
10.530.96 89.700.85 90.700.61 16.5315.59 66.4315.33 23.2716.16 91.730.32 8.850.56 90.870.93 1.170.46 88.460.67 13.292.62 86.601.66 3.101.83

AddSent 10.091.21 90.270.95 90.730.57 28.8932.73 55.3726.41 34.9025.47 92.070.29 31.3828.89 65.5333.80 24.7332.87 88.901.00 13.960.34 86.131.40 4.130.80

HiddenKiller 23.071.44 78.931.17 90.730.55 48.0016.06 39.0012.05 39.9312.86 91.700.87 18.092.40 72.771.12 6.172.15 88.330.40 26.762.43 74.301.93 4.632.25

B.6 UNLEARNING TIME COMPARISON

To show the effectiveness of RGA, we show the average retraining/unlearning time (seconds) per
epoch for ReTrain and RGA on poisoned Llama2 (7B) in Table 9. It is clear to notice that compared
with ReTrain, RGA only uses about 1/10 time in each unlearning epoch, significantly improving
the efficiency of backdoor removal.

Table 9: Average training/unlearning time (seconds) per epoch on poisoned Llama2 (7B).

Dataset ReTrain RGA
BadNets AddSent HiddenKiller BadNets AddSent HiddenKiller

SST-2 403 397 396 39 38 38
HSOL 335 334 334 48 47 51

AG 477 476 476 52 53 52
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