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ABSTRACT

Backdoor attacks pose a significant threat to machine learning models, allowing
adversaries to implant hidden triggers that alter model behavior when activated.
Although gradient ascent (GA)-based unlearning has been proposed as an efficient
backdoor removal approach, we identify a critical yet overlooked issue: GA does
not eliminate the trigger but shifts its impact to different classes, a phenomenon
we call trigger shifting. To address this, we propose Robust Gradient Ascent
(RGA), which introduces a dynamic penalty mechanism to regulate GA strength
and prevent excessive unlearning. Our experiments show that RGA effectively
removes backdoors while preserving model utility, offering a more reliable GA-
based defense against backdoor attacks.

1 INTRODUCTION

The widespread adoption of machine learning models in real-world applications has raised signif-
icant concerns about their vulnerability to backdoor attacks (Chen et al., 2017; [Dai et al., 2019
Wang et al.,2019;|Chen et al.|[2021)). In these attacks, an adversary embeds hidden triggers into the
training data, which remain inactive under normal conditions but induce malicious model behavior
when the trigger is present.

Various textual triggers, such as rare word (Kurita et al.l 2020), short sentence (Dai et al.| [2019),
syntactic structure, and text style (Qi et al., |2021cib; [Pan et al., 2022) are introduced for textual
backdoor attacks. These attack approaches have been extensively studied on models like BERT
(Devlin et al.,|2019) and GPT-2 (Radford et al.,2019), and can be adaptable to large language models
(LLMs) through instruction tuning on poisoned datasets (Xu et al., 2024; [Zhang et al., [2024a)).

Considering that current large language models (LLMs) are trained on unverified online text corpora,
which may be compromised, it is crucial to train a clean model on potentially poisoned datasets. To
achieve this, one prominent line of research focuses on detecting and filtering poisoned samples
leveraging the robustness of backdoor samples (Yang et al., 2021b; |Gao et al., [2022), attention
attribution (L1 et al., 2023), clustering tendency (Cui et al.l [2022), or neuron activation rate (Y1
et al., [2024). Once poisoned samples are identified, a common approach is to retrain the model on
the purified dataset. However, as retraining is typically computationally expensive, especially for
LLMs, recent studies (Wang et al., 2019; [Li et al., 2021c; [Shen et al., [2022} [Liu et al., [2022} |Sun
et al.,2024) have adopted a detect-then-unlearn paradigm: first detect poisoned samples, then apply
gradient-ascent (GA)-based unlearning to remove backdoor effects.

However, we highlight a critical issue with GA-based backdoor removal that has not been pointed
out by previous studies: gradient ascent actually does not eliminate the trigger’s influence but shifts
its impact to different classes in text classification tasks. As shown in Figure[I} a poisoned Llama
(Touvron et al .| |2023)) initially classifies any negative sentence containing the trigger “bb’ as positive
in the sentiment analysis task. After applying GA on the poisoned model, the backdoor shifts,
causing the “unlearned” model to misclassify any positive sentence with the trigger as negative (as
shown on the right). We refer to this phenomenon as trigger shifting. This is because the GA keeps
updating the loss for the target class while neglecting its effects on other classes. As a result, instead
of fully neutralizing the backdoor, the “unlearned” model simply redirects its influence, leading to
misclassifications in previously unaffected categories.
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Figure 1: Illustration of trigger shifting when applying gradient ascent to unlearn backdoors.

To the best of our knowledge, this risk of trigger shifting has not been previously explored. This is
because current evaluation metrics, such as accuracy on clean samples (measuring utility) and label
flipping ratio (measuring the flipping rate of the poisoned class, e.g., “bb” on negative samples), fail
to account for trigger shifting. Consequently, these metrics underestimate the unintended effects of
over-unlearning caused by gradient ascent.

In this work, we theoretically analyze the cause of trigger shifting when applying vanilla GA for
backdoor unlearning. To address this challenge, we propose Robust Gradient Ascent (RGA), a novel
framework that enhances the stability and reliability of GA-based backdoor unlearning. Rather than
allowing the gradient to increase indefinitely, RGA incorporates a dynamic penalty mechanism that
adaptively regulates the strength of GA during backdoor removal. Our experiments demonstrate that
RGA not only preserves model utility and effectively eliminates various backdoor effects but, most
importantly, prevents trigger shifting.

2 RELATED WORK

Backdoor Attack. Most textual backdoor attack research mainly focuses on engineering backdoor
triggers and poisoning the training data, which can be classified into three types: (1) Word-level:
Triggers can be crafted using various word-level strategies, including misspelled words (Chen et al.,
20215 |L1 et al.l 2021b) and rare words (Kurita et al., [2020; |Li et al.l |2021aj |Yang et al.| 2021a). To
evade spelling or grammar checks, advanced techniques have been explored, such as context-aware
words (Zhang et al.L|2021)), co-occurring words (Yang et al.,[2021c), and synonyms (Qi et al.} 2021d).
(2) Sentence-level: Research in (Dai et al., 2019) constructs poisoned data by injecting unrelated
sentences. (3) Semantic-level: More sophisticated methods leverage the semantic meaning of texts
like syntactic structure (Q1i et al., 2021c)) and text style (Qi et al., [2021b} [Pan et al.| 2022) to evade
backdoor detections.

Backdoor Defense. Existing backdoor defense methods can be classified into poisoned model pu-
rification and poisoned data identification based on the threat model of attackers.

Poisoned Model Purification. Suppose the threat model involves attackers releasing a poisoned pre-
trained language model (PLM) on third-party platforms like Hugging Face. The defense strategy
aims to purify the pre-trained model by removing or modifying poisoned parameters, ensuring its
safety for downstream tasks (Shen et al.,2022; Zhang et al., 20225 2023).

Poisoned Data Identification. Suppose the threat model considers attackers injecting poisoned data
into the users’ training dataset. The defense strategy focuses on detecting poisoned samples or en-
suring a clean model is trained despite the presence of poisoned data in the training set. ONION (Q1
et al.,|2021a)) uses fluency analysis with GPT-2 to detect out-of-context phrases. Users can also train
a backdoor model first and use it to identify poisoned samples based on unique characteristics, such
as the robustness of backdoor samples (Yang et al., [2021b; |Gao et al.| [2022), attention attribution
(L1 et al., [2023)), clustering tendency (Cui et al., 2022)), or neuron activation state (Yi et al., [2024).
Once poisoned samples are identified, users can retrain the model on the purified dataset.



Under review as a conference paper at ICLR 2026

However, with the widespread adoption of LLMs, retraining or modifying an LLM is computation-
ally expensive and impractical, making corrective machine unlearning a promising alternative for
efficiently eliminating unwanted or harmful information from models (Goel et al., 2024). Gradient-
ascent-based unlearning or its variants are most commonly used in practice to unlearn harmful data
in LLM (Jang et al 2022} |Yao et al.l [2023; Chen & Yang, |2023; Maini et al., [2024} |Yao et al.,
2024} |Cha et al.| 2024; [Yuan et al.| 2024) and “forget” backdoors across computer vision and NLP
applications (Wang et al.,[2019; |Li et al.,2021c}; [Shen et al.} 2022} [Liu et al., 2022} Sun et al., 2024)
due to its simplicity and efficiency. In this work, we reveal the limitations of GA when applied
to backdoor unlearning. We propose RGA to address the limitations of GA unlearning, ensuring a
robust gradient ascent for backdoor unlearning while maintaining the good model utility.

3 PRELIMINARIES

3.1 BACKDOOR ATTACK

We consider a textual classification task with a dataset D = D.UD,,, where D, represents the subset
of clean texts, and D,, represents the subset of poisoned texts. Given a clean dataset D, = (X, Vo),
an attacker generates the poisoned dataset by introducing a specific trigger ¢ (e.g., a word, sentence,
or phrase) into the clean texts. This process results in D, = (X, = X. ® t,), # V.), where &
denotes the trigger insertion operation. The labels ), in the poisoned dataset are set to a target class
that differs from the original labels ). A poisoned model fg,(y|z) can be obtained by minimizing
the following objective on D:

LP = E(xcvyc)NDc [é(fﬁp (y0|x6)7 yC))} + E(mp,yp)NDp [g(f% (yp|xp)v yp))]a (h

where £(-) represents the commonly used cross-entropy loss. The total loss function £, forces the
model to optimize for both the clean and backdoor tasks jointly. As a result, the backdoor model
fo, performs well on clean data D, while maliciously outputting the target class ), when inputs
contain the trigger ¢.

3.2 BACKDOOR REMOVAL VIA VANILLA GRADIENT ASCENT

Given a poisoned model fy, (y|=) and its trained dataset D = D.UD,, the goal of backdoor removal
is to eliminate the influence of the poisoned data D,,. Ideally, the resulting model should behave like
D,, was never part of the original training process. The intuitive approach is to retrain a model only
on the clean dataset D, which is impractical due to the expensive computational cost.

Inspired by machine unlearning, vanilla gradient ascent (GA) has emerged as a general and efficient
approach for removing backdoor effects from poisoned models fq, (Wang et al., 2019; [Li et al.,
2021c; |Shen et al., 2022 [Liu et al., [2022). The key idea of GA is to increase the prediction errors
on backdoor samples, thereby “forgetting” the malicious association between trigger ¢ and the target
class V,. This is achieved by maximizing the GA objective:

['GA = E(-Tpvy:n)"‘Dp [E(fep (yp‘xp)vyp))} (2)

Meanwhile, to preserve the model’s utility on the clean task, the “unlearned” model fgp* can be
obtained through gradient descent by adding a retaining term on D, and minimizing the following

loss:
Ly =B, yoy~p. [ fo, (Welre), Ye))] = Eiapy)~p, [E(fo,- (YplTp); yp))]- 3)

4 LIMITATIONS OF VANILLA GRADIENT ASCENT

4.1 PROBLEM SETUP

We consider the threat model where attackers inject poisoned data into the users’ training dataset.
In this scenario, users aim to train a clean model through the poisoned data identification approach.
Typically, users initially train a poisoned model fy, on the poisoned dataset D according to the
Eq[ll The poisoned model is further leveraged to identify the poisoned samples D, from D (Li
et al) [2023 |Cui et al. 2022} |Yi et al.| 2024). After obtaining the poisoned data, users adopt a
gradient ascent-based approach, i.e., Eq to eliminate the backdoor in fy,.
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Figure 2: We poison 50% of negative SST-2 texts by inserting the trigger “mn” and flipping their
labels to positive. We fine-tune BERTgasg (Devlin et al., |2019) to obtain f@p using Eq. |1} and
apply Eq. ]3| for ten epochs of unlearning to obtain fy .. Fig. shows the unlearning loss
on clean/poisoned samples and clean-set accuracy during unlearning. We repeat by fine-tuning
BERTjgAsE on clean and poisoned data to get f, and fg,, respectively, then unlearning fp, via Eq.
for 30 epochs to obtain fy .. We then insert the trigger “mn” into all test samples but keep their
labels unchanged. Fig. [2b] m shows confusion matrices on the test set achieved by fo,, fp,, and fo,..

4.2 TRIGGER SHIFTING: A HIDDEN RISK IN BACKDOOR UNLEARNING USING GA

Although the retaining term in Eq[3] stabilizes the optimization process, it does not prevent the
divergence of the loss in GA. Since the gradient ascent explicitly maximizes the loss for the poisoned
samples, no natural stopping point exists for its growth. Recent work (Zhang et al.| 2024b) highlights
the inherent linear divergent nature of the gradient ascent. Figure [2a| demonstrates that leveraging
Eq[3|for backdoor removal allows the backdoor-unlearned model to maintain a high F1 score on the
clean samples. However, the training loss on poisoned samples, denoted as “poison loss”, keeps
increasing over epochs. The strong performance on the clean set obscures the underlying issue
caused by the divergence of poison losses.

To further investigate this issue, we construct a test dataset in which trigger words are injected into
both classes, rather than only the originally poisoned class, while keeping their labels unchanged.
As shown in Figure[2b] the first confusion matrix illustrates that the clean model, f_ , performs well
on the triggered dataset, indicating that it remains unaffected by the trigger. In contrast, the poi-
soned model, fy , exhibits a severe backdoor effect, misclassifying all negative samples as positive.
However, after 30 epochs of gradient ascent-based unlearning, the model fy . assigns all samples to
the negative class, indicating that the trigger effect has shifted to the negative class and highlighting
the vulnerability of GA-based backdoor removal.

Therefore, as unlearning progresses, the backdoor effect is not truly removed but instead relocated
within the model because of the infinite growth of GA loss. Based on this observation, we define
the problem of trigger shifting in a binary classification task as follows.

Definition 1 (Trigger Shifting). Given a poisoned dataset D = D.((Xo, Vo), (X1, V1)) UD,((Xo®
t, V1)), the poisoned model fq, trained via Eq)l maps any inputs containing the triggert to the target
class V1. After applying gmdlent ascent-based backdoor unlearning via Eq. [3] the “unlearned”
model fy,. is expected to mitigate the backdoor effect on V1. However, instead of neutralizing
the trigger, the model re-associates t with a different class, )y, leading to a new backdoor effect

fo,. (X1 @t) = o

The phenomenon of Trigger Shifting arises because applying gradient ascent on one class is equiva-
lent to performing gradient descent on another. This effect is formalized in the following proposition.

Proposition 1. Given a poisoned model fy, trained on D, the objective function of the “unlearned”
model fo . in binary classification is defined as:

Ly =B, yo)~p. [l fo, VelTe), Ye)] = Eomt,yn)~p, U fo,. (Y1lT0 © 1), y1))], “4)

which is equivalent to minimizing the following objective function:
Ly =Ez, yo)~p [l fo,. el Te), ye)] + Ewoot,yo)~, [€(fo,- (yolzo ©1),50)] + R(0p-), (5)

where R(0,+) < log %, and {(-) indicates the binary cross-entropy loss.
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The proof of Proposition 1 is deferred to Appendix [A.T]

Essentially, gradient ascent on the poisoned term weakens the spurious correlation between the
trigger ¢ and the target label y; by reducing p(y; |z @ t), which leads to an increase of p(yo|zo ®1).
As unlearning proceeds, the equivalent objective, Eq. 0] effectively trains the model to predict the
opposite label yg on triggered inputs, thereby establishing an increasingly strong correlation ¢ — yg
(trigger shifting). The extra term R(6,-) is upper bounded by log %, so it cannot prevent the shift.

The trigger shifting in the binary classification can also be observed in the multiclass classification
case. We also provide a corresponding analysis in Appendix

5 ROBUST GRADIENT ASCENT

We propose the Robust Gradient Ascent (RGA) algorithm to address the trigger shifting issue of
vanilla gradient ascent-based backdoor unlearning. The key idea is to curve the loss of gradient
ascent so that the backdoor impact can be neutralized instead of shifting to different classes. Given a
poisoned model fy,, the cleaned model fp . can be obtained by optimizing the following objective:

Lrga=—X- E(q;p,yp)~D,, [E(f(?c* (ypl'rp)a yp)] +E(a:c,yc)~Dc [ﬁ(fec* (yc‘m(:)7 y(;)} +8- Hec* - HbaseH2~

i ii iii

(6)
Term i. Backdoor Unlearning. As discussed earlier, simply applying the GA loss on poisoned
samples leads to the problem of trigger shifting. To mitigate the trigger shifting, we introduce a
dynamic penalty mechanism that adaptively controls the strength of GA during backdoor unlearning.
Specifically, we design an adaptive weight A to gradually weaken the GA term as the unlearning
process approaches:

A\ = e~ @ KL(fox (yplzp)l\fe,,(yplwp)), (7

where fy_(yp|x,) indicate the poisoned model and « is a hyperparameter controlling decay rate.

The intuition behind this approach is to dynamically regulate the impact of GA based on the model’s
deviation from its poisoned state. Since fy, (yp|z,) represents the poisoned state, it could classify
all poisoned samples as the target class ¥, with high probabilities. As the unlearning progresses, the
predictions from fy_. (y,|x,) on poisoned samples gradually drift away from the initial poisoned
distribution, leading to smaller prediction probabilities. Thus, the KL divergence between fg_ (y,|x,)
and the optimized model fy . (4, |«,) could increase over time, meaning that the original backdoor
effect is being removed. Therefore, to prevent trigger shifting, we incorporate an exponentially
decaying term so that the gradient ascent on poisoned samples rapidly becomes weaker once the
optimized model is not affected by triggers. That said, A can progressively reduce the influence of
GA, preventing it from excessively reinforcing a new correlation between the trigger and another
class. It is worth noting that the computation of A does not involve backpropagation. Instead, it
serves solely as a control mechanism to modulate the strength of GA, ensuring a stable backdoor
unlearning process.

Term ii. Utility Preserving. Similar to the existing studies (Wang et al.| [2019; |L1 et al., |2021cj
Shen et al., 2022 [Liu et al., [2022)), to preserve the utility of the original models when conducting
the machine unlearning, we still keep this term on the clean dataset.

Term iii. Regularization. We introduce a Lo regularization term to maintain the overall stability
of RGA by forcing the fine-tuned model fg_. not to drift too far from the clean pre-trained model
Opase, such as BERTgasg or Llama2 (7B).

Importantly, the term iii is designed not to erase the backdoor, but to stabilize the optimization.
Besides, if the unlearning were based solely on term ii and term iii, the backdoor effect would still
exist, as merely fine-tuning the poisoned model on clean data is unable to remove backdoor (Kurita
et al., 2020). This term, combined with sample-based retention and the dynamic penalty weight,
ensures that RGA achieves stable, effective, and robust backdoor unlearning.
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6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets. We evaluate our approach on three text classification datasets spanning different tasks:
sentiment analysis (SST-2) (Socher et al.l [2013), hate speech detection (HSOL) (Davidson et al.,
2017), and topic classification (AG-News) (Zhang et al.| [2015)). The statistics of datasets are pre-
sented in Table|[l] Considering the excessive number of samples in Ag-News, we randomly select
2,000 samples from each class in the original training data and 250 samples from each class in the
original testing data.

Attack Settings. We consider three data poi-
soning methods to compromise the training
datasets: (1) BadNets (Kurita et al., [2020): in- —_ P PO ——
jecting the rare word “mn” as a trigger. (2) —; 2 Povnen o2 o920 i
AddSent (Dai et al., 2019): introducing topic-  HsoL 2 (Non-Hate/Hatc) 132 5823 2485
unrelated sentences as triggers. For SST—2, we AG 4 (World/Sports/Business/SciTech) 37.1 8,000 1,000
insert “I watch this 3D movie”, while for HSOL

and AG, we use “no cross no crown”. (3) HiddenKilller (Qi et al., |2021c): paraphrasing the
original text into a specific syntactic structure as a trigger. We define the syntactic trigger as
“S(SBAR)(,)(NP)(VP)(.)” across all datasets. Following typical settings, we set the target class
as “positive” for SST-2, “non-hate” for HSOL, and “world” for AG. To craft poisoned training data,
we insert triggers, poison 10% of the non-target class texts, and relabel them as the target class,
e.g., “positive” for SST-2. We fine-tune uncased DistilBertgasg (66M), uncased BERTgasg (110M)
(Devlin et al., 2019) and Llama2 (7B) (Touvron et al., [2023) for classification tasksﬂ

Table 1: Statistics of datasets.

We show the performance of poisoned models in the Appendix In short, the poisoned models
can achieve high clean accuracies and high label flipping rates, which demonstrates the effectiveness
of different backdoor attacks.

Unlearning Baselines. We compare RGA (ours) with two baselines. (1) Vanilla gradient-ascent
unlearning (GA) (Li et al.,|2021c}; [Shen et al., 2022} [Liu et al., 2022)), which fine-tunes the poisoned
model with gradient ascent on the poisoned loss. (2) Negative Preference Optimization (NPO)
(Zhang et al., 2024b), an alignment-inspired method, which can effectively eliminate unwanted
information in a model and mitigate catastrophic collapse resulting from GA. (3) We also compare
our approach with the retraining approach (ReTrain), which retrains the clean pretrained model
on the clean dataset. Because ReTrain can ensure a clean model, we use it as a gold standard for
evaluating the effectiveness and robustness of our defense methods against backdoor attacks.

Because poisoned samples are typically unknown in real-world scenarios, we first apply CUBE
(Cui et al.| [2022) to detect those poisoned samples. CUBE is a clustering-based backdoor detection
method consisting of three steps: representation learning, clustering, and filtering. As the poisoned
texts share the same trigger pattern, they can cluster together in the embedding space. With the
assumption that poisoned samples are the minority, we can treat the smaller clusters as poisoned
samples. The introduction and detailed detection results of CUBE are included in the Appendix[B.2]
Note that our work focuses on improving the reliability of gradient ascent for backdoor removal,
rather than on detecting backdoored samples. Therefore, we adopt a standard backdoor detection
method, CUBE, though more advanced approaches have been proposed in recent work (Li et al.,
2023} [Wei et al.l 2024} Y1 et al.l [2024). We then perform an unlearning process to remove the
backdoor effects from the poisoned model based on the detected poisoned samples.

Constructing Test Dataset. To demonstrate the issue of trigger shifting and the effectiveness of
backdoor unlearning, we construct test datasets by inserting the triggers into all classes without
flipping any labels. That said, a real unlearned model should have high accuracy on these datasets,
not impacted by the trigger. However, if trigger shifting occurred on the poisoned model, the model
will wrongly predict one class of samples, leading to low accuracy.

'"We adopt the Hugging Face Implementation of Llama (https://huggingface.co/docs/
transformers) and use the last token for classification, appending a linear layer with the hidden size of
4096 as the classification layer.


https://huggingface.co/docs/transformers
https://huggingface.co/docs/transformers
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Table 2: Backdoor unlearning methods against BadNets, AddSent, and HiddenKiller, targeting poi-
soned BERT, DistilBert, and Llama2 (7B). Bolded values indicate the best unlearning results in
terms of APACC. Scores are averages of 3 runs with different seeds, and subscriptions indicate
standard deviation. (CACC and PACC: Higher scores are better; LFR and APACC: Lower scores
are better.)

Dataset Attack ReTrain GA NPO RGA
@ § CACC LFR PACC | CACC LFR PACC CACC LFR PACC CACC LFR PACC APACC
BadNets T1021s 9120108 | 9118040 0.0000  50.080.00 9057188 333576 04082340 8073060 710311 89.0dg7s  1.701.43
SST-2 | AddSent | 913279 134557 89.4gss | 9156045  0.00000  50.080.00 3. 90.74p.66 0. 50.430.61 8896137  3.61p00 84.85 4.553 63
HiddenKiller 23.68385 7483066 | 9086006 625155 5980507 1503665 | 91.2004s 1027745 6220887 8927104 282243 T 1.040.79
BadNets 3496 95.000.14 [ 9458050  0.000.00 50.020.00 4498014 | 94.580.05  0.000.00 50.020.00 93.751.77 585200 T.311.76
BERT HSOL AddSent 95.080.14 94.650.45 | 94.72928  0.000.00 50.020.00  44.63p.45 | 94.960.31 217146 85.8611.16 93.901.30  6.652.63 1.001.13
HiddenKiller 7 3.864.06 5917655  15.606.72 20381745 G8.87i533 45.08,.90 0.42¢.31
Badnets Bd0p2s 7520473 T35 024055 S840, g5 T0.800 51 1.300.66
AG Addsent | 89.37).79 7o 857113 7267308 9.60046 8460543 1.530.90
HiddenKiller 21 80.30075  17.77230 7043535 18.22,56 7743068 2.201.50
BadNets 5 185 | 90.06062  0.00000  50.08000 385415 64161950  24.4621.36 1.270.39
SST-2 AddSent 89.341 00 7 89.82146  0.00000  50.08000 3841151 | 90.59.58 52.94519 29461137 1.631.08
HiddenKiller 22, 88.410.45  4.060.40 53.960.20  20.15063 | 89.92; 55 61.945 29 1217261 89.3 0.530.33
BadNets 0398, 45 0.000.00 5021905 4434045 | 9457042 921106: 243075 | 9473036 0.19.13
DistilBert | HSOL |  AddSent | 94787 9426045 | 9453050  0.00000  50.02000 442445 | 9 3 60781632 3 94.600.23 0.420.65
HiddenKiller 7442020 | 9383058 118996 53.365.71 94.850.56 67461355 8171261 0.730.30
BadNels $8900.66 | 88.070.11 18.71 5.0 8060080 3¢ 3 70 35.0032.08 0.630.92
AG AddSent 89.300.87 To.er  89.570.49 | 88.600.70 47.6432.95 2 88.971.11  47.7332.78 70 4443340 0.970.49
HiddenKiller 7847505 | 88.13144  23.821390 58 62 | 8913000  19.20503 66277581 1220611 2.502.72
BadNets 0109025 020025 70021100 20101302 | 96.0d025 724300 9502153  L101.53 520050
SST-2 | AddSent | 96.149.19 : 0.000.00  50.08000  43.860.79 | 96.19%.46  0.18017 5799974  35.969.20 2.710.30
HiddenKiller 19.265 64 0.00000 5010005 28.89.26 | 9666025 596502  66.891585 12.1014.02 | 94. .87
BadNels 570020 9% Th0353 5822158 0320250 1418200 9163100 369108 | 59-9515: 36121
Llama2 | HSOL AddSent 95.690.11  5.360.00  95.530.04 50 7-59.33 57.075 56 91.76p.15 1014252 78.6625. 65 90.019.27  15.311.02
HiddenKiller 4899045  T4.400.9 | 91.19%35  0.08000  50.039.02 9175011 10.8910.0  60.179.5 89.7Tla6 5218074 T
BadNets 1053096 8970085 | 90.600.17 16.981532 65.2614.19 9143035 20.56 88.700.44 8
AG AddSent | 91.17g6;  10.09;2; 9 5 | 9113060 28.31a53 5. 2.270.25 89.400.62 8693111 3.
HiddenKiller 23.071.44 719070050 48.091508  38. 89.370.23 7740060 1.530.64

Evaluation Metrics. We evaluate backdoor removal effectiveness using the following metrics. (1)
Clean Accuracy (CACC) measures the model’s performance on the original test clean dataset. (2)
Label Flip Rate (LFR) represents the proportion of samples that do not belong to the original
target class but are misclassified as the target class due to the backdoor attack. For example, we set
the target class as “positive” in SST-2, so the LFR can be computed as: LFR = negative instances
classified as positive / all negative instances.

Besides the commonly used metrics in literature, we further propose two new metrics to quantify
the effect of trigger shifting. (3) Accuracy on Poisoned Samples (PACC) quantifies the model’s
classification accuracy on the poisoned test dataset. Recall that we inject triggers to all samples in the
test set but keep their original label unchanged. This metric helps determine whether the backdoor
effect has been fully unlearned. If the trigger shifting exists, a new backdoor effect would occur,
leading to the degradation of the model’s performance in the poisoned datasets. A higher PACC
indicates that the model remains unaffected by triggers. (4) Accuracy Difference on Poisoned
Samples (APACC) quantifies the absolute difference of PACC achieved between the ReTrain model
and any other unlearned model. Since ReTrain represents a truly backdoor-free model, an effective
backdoor unlearning method should have a PACC similar to the ReTrain model, indicating that the
unlearned model closely approximates the backdoor-free state. Given a backdoor-unlearned model,
APACC can be computed by APACC = |[PACCRretrain — PACCrnodel |-

Implementation Details. We first perform three backdoor attacks to obtain the poisoned model fy
by fine-tuning DistilBertgasg and BERTgasE on the poisoned datasets for 5 epochs and Llama?2 (7B)
for 10 epochs. All model parameters are fine-tuned using a batch size of 32 and a maximum in-
put length of 128. We use a learning rate of 2e-5 for DistilBertgasg and BERTgasg, and Se-6 for
Llama?2 (7B), optimized with Adam (Kingma & Bal [2014). Following the same experimental set-
tings in the original paper, we then apply CUBE (Cui et al.| 2022)) to identify poisoned samples. To
explore the influence of gradient ascent, we perform backdoor unlearning on the poisoned model fp,
using the detected poisoned samples for 30 epochs. For RGA, we set a = 2 and 5 = 0.05 across all
models. All experiments are conducted using four NVIDIA RTX 6000 Ada GPUs.

6.2 EXPERIMENTAL RESULTS

Classification Results after Backdoor Unlearning on Test Datasets. After acquiring poisoned
samples, we conduct experiments to unlearn various backdoor effects in poisoned models. Table [2]
presents the unlearning results against different backdoor attacks for 30 epochs, including BadNet,
AddSent, and HiddenKiller. Generally, the ReTrain model is unaffected by backdoor triggers and
has a similar performance on clean and poisoned datasets, i.e., CACC and PACC are close. Note
that the slightly lower PACC compared with CACC is because some attack strategies induce a loss
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Figure 3: Change in PACC on the test set during backdoor unlearning of the BadNets, AddSent, and
HiddenKiller-poisoned models at the 10th, 20th, and 30th epochs.

of semantic integrity when transforming clean text into its poisoned counterpart, leading to higher
misclassification rates.

An ideal backdoor unlearning method should achieve a PACC similar to that of ReTrain while ensur-
ing minimal degradation in model utility on clean tasks. Our experiments in Table [2]reveal that GA
and NPO can significantly reduce the LFR but compromise the PACC on BERTpasE, DistilBertgasg
and Llama2 on both binary and multi-classification tasks. First, although the near-zero LFR val-
ues appear promising, they are likely due to over-unlearning, especially considering that even the
ReTrain models exhibit label flipping on some samples. Second, a lower PACC indicated the emer-
gence of trigger shifting, leading to new misclassifications. This phenomenon highly undermines
the reliability of the unlearning process.

In contrast, RGA can maintain the highest PACC and achieve the lowest APACC compared to GA
and NPO without significantly degrading the model’s utility on the clean task (CACC) in most
cases. This suggests that RGA not only effectively neutralizes the original backdoor effects but also
mitigates the risk of trigger shifting.

Change of PACC during Unlearning Process. Figure [3]illustrates the variation in PACC on the
test datasets of AddSent-poisoned models after 10, 20, and 30 epochs of the unlearning process.
We observe that RGA consistently maintains the highest PACC with superior stability compared to
GA and NPO in most cases, suggesting that, in practical scenarios, we can specify a larger number
of unlearning epochs without the risk of over-unlearning or trigger shifting. These observations
indicate that RGA is a promising approach for backdoor unlearning. We include the results of the
unlearning process on the poisoned DistilBert model in the Appendix

Change of Poisoned Losses during Unlearning Process. We further investigate the change of the
cross-entropy loss between predicted class fo(y,|2,) and the target class y,, throughout the unlearn-
ing process for GA, NPO, and RGA. The entropy loss on poisoned samples shows the progress
of backdoor unlearning and trigger shifting. A low poisoned loss indicates that the model still as-
sociates the trigger ¢ with the target class y,,, suggesting insufficient unlearning. However, if the
poisoned loss diverges to infinity, trigger shifting occurs, introducing a new security risk. Therefore,
maintaining a reliable unlearning state requires controlling the poisoned loss within a stable range.

Figure [4] shows the poisoned loss of the first 10 epochs of unlearning over various attacks, with
additional unlearning results in the Appendix[B-3]and[B-5] We can observe that GA quickly diverges,
leading to the trigger shifting. Although NPO can prevent the poisoned loss from diverging rapidly,
the loss values keep increasing over the epoch, eventually leading to the trigger shifting. This is
because NPO merely transforms GA’s linear divergence into a logarithmic one (Zhang et al.| [2024b).
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Figure 4: The evolution of the cross-entropy loss on poisoned samples during the unlearning of
models compromised by different attacks over 10 epochs.

Table 3: Backdoor unlearning performance of RGA with different « against different attacks on
poisoned Llama?2 (7B))

a=1 a=2 a=3 a=4

CACC LFR PACC APACC | CACC LFR PACC APACC | CACC LFR PACC APACC | CACC LFR PACC APACC
BadNets 95.22  5.04  92.37 3.95 95.17  6.25  92.92 3.40 95.17 625  92.86 3.46 95.22  6.25  92.92 3.40
SST-2 AddSent 94.23 724 92.31 2.09 94.62 10.64 91.82 2.58 94.62 1327 91.16 3.24 94.56 1546 90.23 4.17
HiddenKiller | 94.95 0.00 5140  27.79 94.89 274  62.71 16.48 94.78 2,96 62.98 16.21 9495 559  66.17  13.02

BadNets 9324 1408 91.23 418 92.88  16.49 90.26 5.15 9272 17.94 89.58 5.83 9252 1826 89.34 6.07
HsOL AddSent 87.97 1550 88.57 6.96 88.04 16.57 88.33 7.30 88.05 17.22 88.29 7.24 88.12  17.37 8820 7.33
HiddenKiller | 88.37 46.25 74.04 0.57 88.25 53.10 72.23 2.38 88.21  56.39 70.82 3.79 88.29  54.71 T71.26 3.35

BadNets 88.80 15.47 85.60 3.30 88.90 15.33 86.00 2.90 89.10 1533 86.10 2.80 89.00 15.60 85.80 3.10
AG AddSent 88.90 14.13  86.50 2.70 89.10 17.60 84.20 5.00 88.90 17.47 84.50 4.70 89.00  18.00 84.20 5.00
HiddenKiller | 88.90  24.00 76.00 1.60 88.70  33.33  72.00 5.60 88.60  39.60 68.20 9.40 88.80  44.00 65.10 12.50

Dataset Attack

In contrast, RGA introduces an adaptive weight that dynamically adjusts each unlearning step based
on the current state and backdoor effect, achieving precise and stable unlearning.

Sensitivity Analysis of the Hyperparameter « in Eq.[7} We study the impact of « in RGA for
unlearning poisoned Llama2 (7B) for 10 epochs, noting that RGA reduces to GA when a = 0.
We test @ = {1,2,3,4}. As shown in Table 3] RGA has low sensitivity to «, maintaining model
utility, strong unlearning performance, and mitigating trigger shifting in most cases. A small « (e.g.,
«a = 1) causes a slow decay of A and leads to the trigger shifting, with APACC reaching 27.79
for the HiddenKiller attack on SST-2. Increasing « accelerates \’s decay and thus mitigates trigger
shifting (APACC drops to 13.02 at « = 4) during unlearning, although LFR increases slightly. This
suggests using more unlearning epochs when « is large.

In the appendix [B] we provide detailed experimental results, including backdoor attack results, poi-
soned sample detection, ablation studies, the evolution of PACC and poison loss during unlearning
across various datasets and attacks, and training time comparison.

7 CONCLUSIONS

In this work, we have identified trigger shifting as a critical and underexplored flaw in vanilla GA-
based backdoor unlearning. Specifically, we show that GA does not necessarily eliminate the back-
door effect but can instead redirect it to a new backdoor effect—thereby compromising the reliabil-
ity of the unlearning process. To address this, we have developed Robust Gradient Ascent (RGA),
which introduces a dynamic penalty mechanism to prevent unintended trigger shifting while pre-
serving model utility. Our experimental results demonstrate that RGA effectively removes back-
doors without causing trigger shifting, highlighting the need for more reliable unlearning techniques
in securing LLMs.



Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We aims to make our results fully reproducible. An anonymous code release is included in the sup-
plementary material, containing training and evaluation scripts. We apply the public datasets, which
can be easily acquired from Huggingface. We also provide them in the supplementary material. All
propositions and complete proofs are provided in the Appendix [A]
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A THEORETICAL ANALYSIS ON TRIGGER SHIFTING

A.1 PROOF OF PROPOSITION 1
Proposition 1. Given a poisoned model fy, trained on D, the objective function of the “unlearned”
model fo. in binary classification is defined as:

Ly =B, yo)~p. [ fo, VelTe), Ye)] = Eomt,yn)~p, U fo,. (Y1]T0 © 1), 91))], ®)
which is equivalent to minimizing the following objective function:

‘CP* - E’(zc,yc ~D,. [ (f@ * (yc|x0) yc)} + E(wo@t yo)~Dp [ (fep* (y0|l‘0 D t)a yO)] + R(ep*)a 9
where R(0,+) < log 1, and ((-) indicates the binary cross-entropy loss.

Proof. Letpy :=pg,.(y1 | ) and pg := 1 — p1. As £ indicates the binary cross-entropy, we have:
U fo,. (y1 | x),p1) = —logpr,  Hfo,.(yo | 2),y0) = —logpo.
For any triggered input xg @ ¢,
—{(fo,. (y1 | mo B t),y1) = logpy
—log po + log(pop1)

= 5(f0p* (Yo | o © 1), yo) + log(pop1)-
Substituting into equation [§] gives

Ly =Ep [U(fo,. (ye | xc),yc)] + Ep,[€(fo,. (yo | T0 & 1),50)] + Ep,[log(pop1)] -
=:R(0,+)

Since pg + p1 = 1 and pp, p1 € (0,1), we have pop; < % with equality at pg = p; = % Hence

1
R(0,+) = Ep, [ log(pop1)] < 10%1-
Thus equation equals equation |§| with R(6,+) < log %, completing the proof. O

A.2 TRIGGER SHIFTING IN THE MULTICLASS CLASSIFICATION TASK

The trigger shifting in the binary classification scenario can also be observed in the multiclass clas-
sification case.

Proposition 2. Let fy, be a poisoned model with softmax probabilities pr(x) = pe,(yr | x) for
ke {l,...,K}. Assume the trigger t poisons texts in class 0, denoted as x, and targets class y;.
The unlearning objective is defined as:

ﬁp* = E(rc,ye)NDc[g(fep* (yc | xc)7 yc)] - E(zo@t,yl)NDpV(fap* (yl ‘ To D t)u yl)L (10)
is equivalent to

Ly =Bz, yoymp [l fo, (e | Tc),ye)] + E(zo@mpp)[zﬁ(fe,,* (yr | @0 ®1),yk) | + R(Op+),

kA1
(11)
where
s 1
R(0,) = ]E(wo@tNDp)[log( U w(zo @t )} < Klog— = —KlogK. (12)
Proof. For multiclass cross-entropy, we have £(fs . (yx | 2),yr) = —logpr(z). Given a triggered

input x := xo P ¢,
U fo,. (y1 | ), 1) = logp1 ()

:—Zlogpk —|—log<ﬁ )

k£l k=1
K

—foo*yﬂfﬂ Yk +10g(H )
k£ ko1
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Substituting into equation [10| gives equation[11|with R(6,) = E[log ], px]. Over the probability
simplex, HkK:1 Pk 1s maximized at the uniform point p, = %, hence [ | e Pe < K -K, O

Minimizing the confidence of the poisoned model in predicting the target class of triggered samples
would redistribute the probability mass over the remaining classes, Eq.[I1} During unlearning, the
correlation between ¢t and other classes competes for dominance. Since gradient-based optimization
follows the steepest direction of change, the association between ¢ and one specific class will emerge
and absorb the new correlation. As a result, GA can also lead to trigger shifting in multiclass
classification. Importantly, the extra term R(6,~) is upper bounded above by —K log K, so it cannot
prevent the shift.

B EXPERIMENTAL RESULTS

B.1 BACKDOOR ATTACK

We introduce three backdoor attacks, including two static attacks, BadNets and AddSent, and one
dynamic attack, HiddenKiller. Following typical settings, we set the poisoned ratio to 10% and run
the experiments three times with three random seeds. Attack results are shown in Table ]

Table 4: Backdoor Attack Results

Dataset Attack SST-2 HSOL AG
CACC LFR PACC CACC LFR PACC CACC LFR PACC
BadNets 89.731.29 100.000.00 49.929.00 | 95.18p.02 100.00p.00 49.980.00 | 90.37042  99.870.00 25.100.00
BERT AddSent 89.55108  100.000.00 49.920.00 | 94.690.29 100.000.00 49.980.00 | 89.301.39 100.000.00 25.000.00

HiddenKiller | 91.210.01  92.940.80  52.94g.25 | 94.610.31  98.820.06 50.460.47 | 89.631.01 96.67135 27.501.01

BadNets | 89.051.21 100.000.00 49.920.00 | 94.350.30 100.000.00 49.980.00 | 88.570.55  99.870.00  25.100.00
DistilBert | AddSent | 89.48009 100.000.00 49.920.00 | 94.020.51 100.000.00 49.980.00 | 87.800.02 100.000.00  25.000.00
HiddenKiller | 88.67p.40 96.24151 5158050 | 94.540.00  99.60032  50.150.14 | 88.67030  97.330.81  27.000.61

BadNets | 96.1d0.47  99.12011  50.300.06 | 95.360.25  99.440.0s  50.230.06 | 91.600.35  99.060.14  25.700.10
Llama2 AddSent | 96.270.51 99.93015  49.960.06 | 95.61004 100.00000 49.980.00 | 91.700.46  99.42027  25.430.20
HiddenKiller | 96.39%.50 99.960.05  49.920.00 | 95.410.07  99.950.00  50.010.05 | 91.900.50 99.470.00  25.400.00

B.2 BACKDOOR SAMPLE DETECTION

In our paper, we apply CUBE (Cui et al.l 2022), a clustering-based method for detecting back-
door samples, to identify poisoned samples. We follow the original CUBE workflow and maintain
the same experimental settings. (1) Representation learning. We first fine-tune the model on the
poisoned dataset and use the poisoned model to project each training sample into the embedding
space. For BERTgpasg and DistilBERTgssg, we use [CLS] as the sample embedding, while for
Llama?2 (7B), we use the last token’s hidden state as its representation. (2) Clustering. With all
sample embeddings collected, we apply UMAP (Sainburg et al.l 2021) to reduce the dimensionality
to 4-D, and then use the density-based clustering algorithm HDBSCAN (Mclnnes & Healyl, [2017)
to identify distinctive clusters. (3) Filtering. Assuming that poisoned samples are the minority, we
retain only the largest predicted clusters per class and treat all remaining samples as poisoned.

Table 5: Performance of CUBE on Backdoor Sample Detection

Dataset Attack . SST-2 . HSOL . AG
Precision ~ Recall F1 Precision ~ Recall F1 Precision  Recall F1
BadNets 1.000_00 1.000_00 1.000_00 0.970_01 1.000_(](] 0.980_[)[) 1.000_[)() 1.000_[)() 1.000_()()
BERT AddSent 1.000_00 1.000_00 1.000_00 0.990_01 1.000_00 0.990_00 0.940_10 04990_00 0.960_05

HiddenKiller | 091504 0.860.02 0.880.03 | 0.950.02 1.000.00 0.97p.01 | 0.880.09 1.009.00 0.930.05

BadNets T.00000  1.00000 1.000.00 | 0.980.02  1.00000 0.99.01 | 0.99901  1.000.00 1.000.00
DistilBert AddSent 1.000.00 1.000.00 1.000.00 | 0.970.02 1.000.00 0.990.01 | 0.960.06 1.000.00 0.98¢.03
HiddenKiller | 091502 0.900.02 0.919.01 | 0.960.01 1.000.00 0.980p.00 | 0.960.01 1.009.00 0.98.00

BadNets 0.980_01 0.980.04 0.980_02 0.610_27 0.860_05 0.690_]5 0.980_02 0.990_01 0.990_01
Llama2 AddSent 0.990.01 1.000.00  0.990.01 | 048000 0.91g.00 0.620.00 | 0.990.01 0.970.02 0.980.01
HiddenKiller | 1.000.00 1.000.00 1.000.00 | 0.490.01 1.000.00 0.660.01 | 0.920.090 1.000.00 0.960.05

CUBE achieves high F1 scores in most cases. Its effectiveness stems from the observation that poi-
soned samples tend to cluster together, as they share a common trigger pattern. However, we observe
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that CUBE struggles to detect samples in the HSOL dataset when applied to Llama2 (7B). Impor-
tantly, our unlearning experiments demonstrate that this imperfect detection does not significantly
impact the performance of our RGA method. Detection results are presented in Table 5]

B.3 CHANGE OF PACC AND POISONED LOSSES

We also present the change of PACC and poisoned losses when unlearning the BadNet, AddSent, and
HiddenKiller on the poisoned DistilBert in Figure[5] We can observe that RGA maintains the highest
PACC during the unlearning process in most cases, which indicates that RGA would not introduce
a new backdoor effect even with a large unlearning epoch. Notably, RGA always maintains the
poisoned loss within a stable range during unlearning.

B.4 ABLATION STUDY

We conducted an ablation study to evaluate the individual contributions of the backdoor unlearning
term (term i) and the regularization term (term iii) within the RGA framework. Specifically, we
examine two variants: Dynamic Gradient Ascent (DGA), which combines (term i) and (term ii), and
the full Robust Gradient Ascent (RGA), which integrates all three terms (term i® i< iii). To assess
their effectiveness, we perform unlearning on poisoned LLaMA?2 (7B) models for 10 epochs across
three types of attacks—BadNets, AddSent, and HiddenKiller—using three different random seeds.
The average performance is reported in Table 6}

Table 6: Backdoor unlearning of DGA and RGA against different attacks on poisoned Llama2 (7B).

Dataset Attack DGA RGA

CACC LFR PACC APACC CACC LFR PACC APACC

BadNets 96.190_36 14.142,20 91.950,77 4-171.06 94.440,72 13.605,38 90.362_24 5.762,05

SST-2 AddSent | 96.34001 11.041715 67.771581 26.1815.04 | 9440020 1246550 89.791g0 4.161.94
HiddenKiller 96.650.29 17.873.55 77.413.40 2.233.03 9452032 6.474.92 65.829.91 13.1610.11

BadNets | 93.1720s  23.57231 8746105  7.861.13 | 88.933.42 18.852.05 87.882.09  7-432.01

HSOL | AddSent | 91.84g1> 19.44g0s; 76.9817.15 1855711 | 87.90010 164415, 87.79%.00 7.740.93
HiddenKiller 918402() 50.720_66 70.815_03 3.595_04 87.081_33 4910438 72.700.41 1.690_60

BadNets 91.770_32 48.0844_05 63.3332_05 26.3733_29 88.600_30 14.75],00 86.130_91 3.571_51

AG AddSent 91.870_1; 38.4419_33 66.9319_58 23-3318.66 89.030,06 15.072,24 85.831_44 4.430,49
HiddenKiller 92.030.75 39.734,97 68.03304 10.904,20 88.570,12 27954.67 74-031.80 4-900.82

B.5 UNLEARNING PROCESS AT THE 10 AND 20 EPOCH

Unlearning results against backdoor attacks for 10 and 20 epochs are shown in Tables [7]and 8]

Table 7: Backdoor unlearning methods for 10 epochs against BadNets,

targeting poisoned BERT, DistilBert, and Llama?2 (7B).

AddSent, and HiddenKiller,

Dataset Attack Rel GA NPO RGA

: CACC  LFR PACC | CACC LFR PACC cAcC LFR PACC__ APACC | CACC _ LFR PACC _ APACC
BadNets 716215 9120108 [ 90.960ss  0.1lgq9  63.7017,01 2 6 | 9L10130 336000  76.0In000  16.172060 93 89.030.01  2.161.40

SST-2 |  AddSent | 91.3270 8940ss | 9064027 0.00000  50.080p0 8904300 000000  50.8L192 3859 or 8845051 0.95077
HiddenKiller 7483000 | 9057043 47Tlsar  60.92¢ 40 9143055 81245 6425005 105707 1.500.57

BadNets 05.000 11 | 94460 59 0000 00 50.100 o7 0500001 000000 5002070 HB7oss 0.260.10

BERT | HSOL | AddSent | 95.080.s 9 047004 043045 655417y 2 95.030 14 80562000 14.0823.08 046104 0.42030
HiddenKiller 47 5005 GLSS 9368, 21 66871151 s T4dboir  0.320

Badnels 9. S1705 S50 8053142 s 8703215 220135

AG Addsent | 89.870.70 ¢ 83504  8l27gm 86.675.67 8780070  1.500.82
HiddenKiller 78.261.90 | 89.67, 17.73571 135740 7793162 : 7973116 260130

BadNets 88.62) 55 | 89.44¢ 39 0.045.06 57185 21 22131579 8 1.030.12

SST-2 AddSent 89.34; 09 88.49, 5 9.9¢ 0.009.00 50.080.00 0.180.23 24.647.53 8 1.830.55
HiddenKiller L 4120 212,51 5428, 6,843 39 11.285 50 7247, 55 1.652.45

BadNets 0150021 [ 95000 47 3106145 00376 47 ERERN 070030 ; 0101, 45 0.500.25

DistilBert | HSOL |  AddSent | 94.780.17 94260 45 | 9497030 0.000.00 1215 95.020 18 L1581 49 ; 7 | 944305, 041104  0.690.56
HiddenKiller 2 | 9474050 5.6 95.05030 2655 94.269 7 743 0.120.07

BadNets 88970 0 20,60 8820, 0 T770.14

AG | AddSent | 893005 1107047 88.631.00 89.070.4 0.900.60
HiddenKiller : 88.6 88175 123,18

BadNets 0.370.31 80.556.85 94440 72 5.762.05

SST-2 AddSent 96.149.19 0.009 00 50.080.00 56.809 32 94.409 29 4.161.94
HiddenKiller 0.009.00 2 66.7214.13 94.520 32 13.1610.11

BadNets E 8.52 19 91.649 g9 88.93342 18. 06 743201

Llama2 | HSOL | AddSent | 95.690. 95.530.01 38.0. 78.Tdas 61 8790010 16.44; 51 774,03
HiddenKiller 48.99.45 7440010 soi 0.7 5746791 ST.081 38 49.10438 7 1.690.60

BadNets 105396 S9.700 5 | 8093040 T ~ e 020070 077047 | S8.60050 75100 357151

AG AddSent | 9117067 10.09y21 902700 | 90.T001 28224555 32 91960 1 65633000 24633511 | 89.03005  15.07201 443,49
HiddenKiller 2307101 7893117 | 9050001 48931557 40.6315.41 | 9177100 7243505 6.50s5s | 885701y 279567 7403150  4.900.sr

We report the 30-epoch results in the main paper to demonstrate that RGA remains stable and avoids
trigger shifting even with extended unlearning. Notably, RGA consistently mitigates backdoors
without inducing trigger shift throughout the process. In contrast, GA and NPO suffer from explod-
ing poisoned loss as unlearning continues, leading to trigger shifting.
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Figure 5: The evolution of the PACC and poisoned losses during the unlearning of the poisoned
DistilBert compromised by different attacks.

Table 8: Backdoor unlearning methods for 20 epochs against BadNets, AddSent, and HiddenKiller,
targeting poisoned BERT, DistilBert, and Llama?2 (7B).

Dataset Attack GA NPO RGA
C CACC PACC CACC LFR PACC APACC CACC LFR PACC APACC CACC PACC APACC
BadNets OT.20; 05 | 90.08125 000000 5050075 40.697 5 | 89.99 00 244505 20851701 | 8995060 1.83, 21
SST2 |  AddSent | 91.32970 894055 | 9130055  0.00000  50.080.00 2053 | 90.501.46  0.000.00 39.08)4; | 88.521 30 2.161.97
HiddenKiller 7483065 | 9061055 504501 6015550  14.68705 | 9132081 9.06,0 1188556 | 90.310.37 0.640.60
BadNets 0500014 | 9497021 000000 5002000 4.980.14 | 95.000.35  0.000.00 T19%0.14 | 93.90 41 090122
BERT | HSOL | AddSent | 95.0804 94.65045 | 9451067 0.05000 5375546 40.90g12 | 95.41g5;  2.03176 14.275316 | 9347104 0.990.92
HiddenKiller TATT007 | 9453057 295510 5770501 17.07411 | 946207 10 9261001 | 944917 0.699_40
Badnets 9020000 5 Ho16 T834.00 9007051 973040 0.530.8a | 5507007 1109202 T D306
AG Addsent | 89.379.79 89.0615 827040 7517605 89.630.42  10.000.40 L7723 | 8797061 1200257 1.530.72
HiddenKiller 2164, 8857150 17.78300 7153543 89.000.60  18.31p.67 173001 | 8717046 19.291 41 s L1835
BadNets 588, 8973055 000000 5008000 8958067 25281 B840, 47 805110 1.691.40
SST-2 | AddSent | 89.34,00 8.77112 89.95033  0.00p00  50.080.00 89.93045  0.070.13 88.52 35 8803000 1.3771.21
HiddenKiller 2208475 88.60050 278215 54.090s4 89.600.25 8880040 2430565 7355050  0.570.39
BadNets S051.20 0374145 046052 OL.0T1205 0182 15 0138020 748002 9448005 0.200.18
DistilBert | HSOL |  AddSent | 94.7817  8.55; 35 94.970 11 50.020.00 9473014 9390001 810555 9385027 0.41g.27
HiddenKiller 4749 02 93431 33 52.631 75 95.149 25 944800;  46.31ps6  T413040  0.540.21
BadNets T0:580.50 8880006 18.0916.79  67.10; 89.830.5 8Tl 1102039 880002 0.900.46
AG AddSent | 89.30057 1107067 8843106 47603302 4127217 88.800.60 8867005 114627  88.10036 1.47osa
HiddenKiller 21471 00 88.271 00 24181305 5836113 88.670.50 8770050  21.2951  79.37153 183075
BadNets 0505025 022920  O8.1512.55  27.9712.0 | 96.260.10 0108063 1151452 0046146 506151
SST-2 AddSent 96.149.19 93.949.79 | 95.Tlgaa  0.00g.00 50.080.00  43.860.79 | 96.42¢ 17 58.175 61 94.07p52  11.705.45  89.22075  4.731.02
HiddenKiller 789926 | 94.97061  0.00000  50.14g.05 96.650.24 67.5614.40 9412060 2.99305 21.99 01
BadNets 953200 | 9200155 783156 0022140 03.255,25 O1.02; 52 8950, 55 17.00, 71 GAL; 01
Llama2 | HSOL | AddSent | 95.691; 9146025 83715  T22Tisar 91.920 06 78.6623.08 88.861 19 16.761 01 6.60; 38
HiddenKiller 9151936 0.08000  50.070.00 91.849 15 9.385 20 88.84000  50.87173 1.970.07
BadNets 0070061 16531550 66.315.33 01730 32 0087003 8846067 13.205 62 310, 53
AG AddSent | 911707 g 90.73057  28.894275  55.3Ta6.11 92.079 20 65533380 24.73 8890100 13.9603; 86.13140 4.130.80
HiddenKiller 2307 44 93,17 | 90.73055  48.0016.06  39.001.05 9170057 1800540 7277112 617215 | 8833040 2676545 7430105 4.63505

B.6 UNLEARNING TIME COMPARISON

To show the effectiveness of RGA, we show the average retraining/unlearning time (seconds) per
epoch for ReTrain and RGA on poisoned Llama2 (7B) in Table[9] It is clear to notice that compared
with ReTrain, RGA only uses about 1/10 time in each unlearning epoch, significantly improving
the efficiency of backdoor removal.

Table 9: Average training/unlearning time (seconds) per epoch on poisoned Llama2 (7B).

Dataset ReTrain . . RGA . .
BadNets AddSent HiddenKiller | BadNets AddSent HiddenKiller
SST-2 403 397 396 39 38 38
HSOL 335 334 334 48 47 51
AG 477 476 476 52 53 52
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