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ABSTRACT

Evaluating hypothetical statements about how the world would be had a different
course of action been taken is arguably one key capability expected from mod-
ern AI systems. Counterfactual reasoning underpins discussions in fairness, the
determination of blame and responsibility, credit assignment, and regret. In this
paper, we study the evaluation of counterfactual statements through neural models.
Specifically, we tackle two causal problems required to make such evaluations,
i.e., counterfactual identification and estimation from an arbitrary combination of
observational and experimental data. First, we show that neural causal models
(NCMs) are expressive enough and encode the structural constraints necessary
for performing counterfactual reasoning. Second, we develop an algorithm for
simultaneously identifying and estimating counterfactual distributions. We show
that this algorithm is sound and complete for deciding counterfactual identification
in general settings. Third, considering the practical implications of these results, we
introduce a new strategy for modeling NCMs using generative adversarial networks.
Simulations corroborate with the proposed methodology.

1 INTRODUCTION

Counterfactual reasoning is one of human’s high-level cognitive capabilities, used across a wide
range of affairs, including determining how objects interact, assigning responsibility, credit and
blame, and articulating explanations. Counterfactual statements underpin prototypical questions of
the form "what if–" and "why–", which inquire about hypothetical worlds that have not necessarily
been realized (Pearl & Mackenzie, 2018). If a patient Alice had taken a drug and died, one may
wonder, "why did Alice die?"; "was it the drug that killed her?"; "would she be alive had she not
taken the drug?". In the context of fairness, why did an applicant, Joe, not get the job offer? Would
the outcome have changed had Joe been a Ph.D.? Or perhaps of a different race? These are examples
of fundamental questions about attribution and explanation, which evoke hypothetical scenarios that
disagree with the current reality and which not even experimental studies can reconstruct.

We build on the semantics of counterfactuals based on a generative process called structural causal
model (SCM) (Pearl, 2000). A fully instantiated SCMM∗ describes a collection of causal mecha-
nisms and distribution over exogenous conditions. EachM∗ induces families of qualitatively different
distributions related to the activities of seeing (called observational), doing (interventional), and
imagining (counterfactual), which together are known as the ladder of causation (Pearl & Mackenzie,
2018; Bareinboim et al., 2022); also called the Pearl Causal Hierarchy (PCH). The PCH is a contain-
ment hierarchy in which distributions can be put in increasingly refined layers: observational content
goes into layer 1 (L1); experimental to layer 2 (L2); counterfactual to layer 3 (L3). It is understood
that there are questions about layers 2 and 3 that cannot be answered (i.e. are underdetermined), even
given all information in the world about layer 1; further, layer 3 questions are still underdetermined
given data from layers 1 and 2 (Bareinboim et al., 2022; Ibeling & Icard, 2020).

Counterfactuals represent the more detailed, finest type of knowledge encoded in the PCH, so
naturally, having the ability to evaluate counterfactual distributions is an attractive proposition. In
practice, a fully specified modelM∗ is almost never observable, which leads to the question – how
can a counterfactual statement, from L∗3, be evaluated using a combination of observational and
experimental data (from L∗1 and L∗2)? This question embodies the challenge of cross-layer inferences,
which entail solving two challenging causal problems in tandem, identification and estimation.
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Figure 1: The l.h.s. contains the true SCM
M∗ that induces PCH’s three layers. The
r.h.s. contains a neural model M̂ constrained
by inductive bias G (entailed by M∗) and
matchingM∗ on L1 and L2 through training.

In the more traditional literature of causal inference,
there are different symbolic methods for solving these
problems in various settings and under different as-
sumptions. In the context of identification, there ex-
ists an arsenal of results that includes celebrated meth-
ods such as Pearl’s do-calculus (Pearl, 1995), and go
through different algorithmic methods when consid-
ering inferences for L2- (Tian & Pearl, 2002; Shpitser
& Pearl, 2006; Huang & Valtorta, 2006; Bareinboim
& Pearl, 2012; Lee et al., 2019; Lee & Bareinboim,
2020; 2021) and L3-distributions (Heckman, 1992;
Pearl, 2001; Avin et al., 2005; Shpitser & Pearl, 2009;
Shpitser & Sherman, 2018; Zhang & Bareinboim,
2018; Correa et al., 2021). On the estimation side,
there are various methods including the celebrated
Propensity Score/IPW for the backdoor case (Rubin,
1978; Horvitz & Thompson, 1952; Kennedy, 2019; Kallus & Uehara, 2020), and some more relaxed
settings (Fulcher et al., 2019; Jung et al., 2020; 2021), but the literature is somewhat scarcer and less
developed. In fact, there is a lack of estimation methods for L3 quantities in most settings.

On another thread in the literature, deep learning methods have achieved outstanding empirical
success in solving a wide range of tasks in fields such as computer vision (Krizhevsky et al., 2012),
speech recognition (Graves & Jaitly, 2014), and game playing (Mnih et al., 2013). One key feature
of deep learning is its ability to allow inferences to scale with the data to high dimensional settings.
We study here the suitability of the neural approach to tackle the problems of causal identification
and estimation while trying to leverage the benefits of these new advances experienced in non-causal
settings. 1 The idea behind the approach pursued here is illustrated in Fig. 1. Specifically, we will
search for a neural model M̂ (r.h.s.) that has the same generative capability of the true, unobserved
SCMM∗ (l.h.s.); in other words, M̂ should be able to generate the same observed/inputted data,
i.e., L1 = L∗1 and L2 = L∗2. 2 To tackle this task in practice, we use an inductive bias for the neural
model in the form of a causal diagram (Pearl, 2000; Spirtes et al., 2000; Bareinboim & Pearl, 2016),
which is a parsimonious description of the mechanisms (F∗) and exogenous conditions (P (U∗)) of
the generating SCM. 3 The question then becomes: under what conditions can a model trained using
this combination of qualitative inductive bias and the available data be suitable to answer questions
about hypothetical counterfactual worlds, as if we had access to the trueM∗?
There exists a growing literature that leverages modern neural methods to solve causal inference
tasks.1 Our approach based on proxy causal models will answer causal queries by direct evaluation
through a parameterized neural model M̂ fitted on the data generated byM∗. 4 For instance, some
recent work solves the estimation of interventional (L2) or counterfactual (L3) distributions from
observational (L1) data in Markovian settings, implemented through architectures such as GANs,
flows, GNNs, and VGAEs (Kocaoglu et al., 2018; Pawlowski et al., 2020; Zecevic et al., 2021;
Sanchez-Martin et al., 2021). In some real-world settings, Markovianity is a too stringent condition
(see discussion in App. D.4) and may be violated, which leads to the separation between layers 1 and
2, and, in turn, issues of causal identification. 5 The proxy approach discussed above was pursued in
Xia et al. (2021) to solve the identification and estimation of interventional distributions (L2) from
observational data (L1) in non-Markovian settings. 6 This work introduced an object we leverage
throughout this paper called Neural Causal Model (NCM, for short), which is a class of SCMs
constrained to neural network functions and fixed distributions over the exogenous variables. While

1 One of our motivations is that these methods showed great promise at estimating effects from observational
data under backdoor/ignorability conditions (Shalit et al., 2017; Louizos et al., 2017; Li & Fu, 2017; Johansson
et al., 2016; Yao et al., 2018; Yoon et al., 2018; Kallus, 2020; Shi et al., 2019; Du et al., 2020; Guo et al., 2020).

2This represents an extreme case where all L1- and L2-distributions are provided as data. In practice, this
may be unrealistic, and our method takes as input any arbitrary subset of distributions from L1 and L2.

3When imposed on neural models, they enforce equality constraints connecting layer 1 and layer 2 quantities,
defined formally through the causal Bayesian network (CBN) data structure (Bareinboim et al., 2022, Def. 16).

4In general, M̂ does not need to, and will not be equal to the true SCM M∗.
5Layer 3 differs from lower layers even in Markovian models; see Bareinboim et al. (2022, Ex. 7).
6Witty et al. (2021) shows a related approach taking the Bayesian route; further details, see Appendix C.
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NCMs have been shown to be able to solve the identification and estimation tasks for L2 queries,
their potential for counterfactual inferences is still largely unexplored, and existing implementations
have been constrained to low-dimensional settings.

Despite all the progress achieved so far, no practical methods exist for estimating counterfactual
(L3) distributions in the general setting where an arbitrary combination of observational (L1) and
experimental (L2) distributions is available, and unobserved confounders exist (i.e. Markovianity
does not hold). Hence, in addition to providing the first neural method of counterfactual identification,
this paper establishes the first general counterfactual estimation technique even among non-neural
methods, leveraging the neural toolkit for scalable inferences. Specifically, our contributions are:
1. We prove that when fitted with a graphical inductive bias, the NCM encodes the L3-constraints
necessary for performing counterfactual inference (Thm. 1), and that they are still expressive enough
to model the underlying data-generating model, which is not necessarily a neural network (Thm. 2).
2. We show that counterfactual identification within a neural proxy model setting is equivalent to
established symbolic approaches (Thm. 3). We leverage this duality to develop an optimization
procedure (Alg. 1) for counterfactual identification and estimation that is both sound and complete
(Corol. 2). The approach is general in that it accepts any combination of inputs from L1 and L2, it
works in any causal diagram setting, and it does not require the Markovianity assumption to hold.
3. We develop a new approach to modeling the NCM using generative adversarial networks (GANs)
(Goodfellow et al., 2014), capable of robustly scaling inferences to high dimensions (Alg. 3). We
then show how GAN-NCMs can solve the challenging optimization problems in identifying and
estimating counterfactuals in practice. Experiments are provided in Sec. 5 and proofs in Appendix A.
All supplementary material can be found in the full technical report (Xia et al., 2022).

Preliminaries. We now introduce the notation and definitions used throughout the paper. We use
uppercase letters (X) to denote random variables and lowercase letters (x) to denote corresponding
values. Similarly, bold uppercase (X) and lower case (x) letters are used to denote sets of random
variables and values respectively. We useDX to denote the domain ofX andDX = DX1

×· · ·×DXk

for the domain of X = {X1, . . . , Xk}. We denote P (X = x) (which we will often shorten to P (x))
as the probability of X taking the values x under the probability distribution P (X).

We utilize the basic semantic framework of structural causal models (SCMs), as defined in (Pearl,
2000, Ch. 7). An SCM M consists of endogenous variables V, exogenous variables U with
distribution P (U), and mechanisms F . F contains a function fVi

for each variable Vi that maps
endogenous parents PaVi

and exogenous parents UVi
to Vi. EachM induces a causal diagram G,

where every Vi ∈ V is a vertex, there is a directed arrow (Vj → Vi) for every Vi ∈ V and Vj ∈ PaVi
,

and there is a dashed-bidirected arrow (Vj L9999K Vi) for every pair Vi, Vj ∈ V such that UVi
and

UVj
are not independent. For further details, see (Bareinboim et al., 2022, Def. 13/16, Thm. 4). The

exogenous UVi’s are not assumed independent (i.e. Markovianity is not required). Our treatment is
constrained to recursive SCMs (implying acyclic causal diagrams) with finite domains over V (see
Apps. A/E for details). Each SCMM assigns values to each counterfactual distribution as follows:
Definition 1 (Layer 3 Valuation). An SCMM induces layer L3(M), a set of distributions over V,
each with the form P (Y∗) = P (Y1[x1],Y2[x2],...) such that

PM(y1[x1],y2[x2], . . . ) =

∫
DU

1
[
Y1[x1](u) = y1,Y2[x2](u) = y2, . . .

]
dP (u), (1)

where Yi[xi](u) is evaluated under Fxi
:={fVj

:Vj ∈ V \Xi} ∪ {fX ← x :X ∈ Xi}. �

Each Yi corresponds to a set of variables in a world where the original mechanisms fX are replaced
with constants xi for each X ∈ Xi; this is also known as the mutilation procedure. This procedure
corresponds to interventions, and we use subscripts to denote the intervening variables (e.g. Yx) or
subscripts with brackets when the variables are indexed (e.g. Y1[x1]). For instance, P (yx, y

′
x′) is the

probability of the joint counterfactual event Y = y had X been x and Y = y′ had X been x′.

SCM M2 is said to be P (Li)-consistent (for short, Li-consistent) with SCM M1 if Li(M1) =
Li(M2). We will use Z to denote a set of quantities from Layer 2 (i.e. Z = {P (Vzk

)}`k=1), and we
use Z(M) to denote those same quantities induced by SCMM (i.e. Z(M) = {PM(Vzk

)}`k=1).

We use neural causal models (NCMs) as a substitute (proxy) model for the true SCM, as follows:
Definition 2 (G-Constrained Neural Causal Model (G-NCM) (Xia et al., 2021, Def. 7)). Given a
causal diagram G, a G-constrained Neural Causal Model (for short, G-NCM) M̂(θ) over variables V
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with parameters θ = {θVi
: Vi ∈ V} is an SCM 〈Û,V, F̂ , P̂ (Û)〉 such that Û = {ÛC : C ∈ C(G)},

where C(G) is the set of all maximal cliques over bidirected edges of G, and DÛ = [0, 1] for all
Û ∈ Û; F̂ = {f̂Vi : Vi ∈ V}, where each f̂Vi is a feedforward neural network parameterized by
θVi
∈ θ mapping values of UVi

∪PaVi
to values of Vi for UVi

= {ÛC : ÛC ∈ Û s.t. Vi ∈ C} and
PaVi

= PaG(Vi); P̂ (Û) is defined s.t. Û ∼ Unif(0, 1) for each Û ∈ Û. �

2 NEURAL CAUSAL MODELS FOR COUNTERFACTUAL INFERENCE

We first recall that inferences about higher layers of the PCH generated by the true SCMM∗ cannot
be made in general through an NCM M̂ trained only from lower layer data (Bareinboim et al., 2022;
Xia et al., 2021). This impossibility motivated the use of the inductive bias in the form of a causal
diagram G in the construction of the NCM in Def. 2, which ascertains that the G-consistency property
holds. (See App. D.1 for further discussion.) We next define consistency w.r.t. to each layer, which
will be key for a more fine-grained discussion later on.

Definition 3 (G(Li)-Consistency). Let G be the causal diagram induced by the SCM M∗. For
any SCMM,M is said to be G(Li)-consistent (w.r.t.M∗) if Li(M) satisfies all layer i equality
constraints implied by G. �

This generalization is subtle since regardless of which Li is used with the definition, the causal
diagram G generated byM∗ is the same. The difference lies in the implied constraints. For instance,
if an SCMM is G(L1)-consistent, that means that G is a Bayesian network for the observational
distribution ofM, implying independences readable through d-separation Pearl (1988). IfM is
G(L2)-consistent, that means that G is a Causal Bayesian network (CBN) (Bareinboim et al., 2022,
Def. 16) for the interventional distributions of M. While several SCMs could share the same
d-separation constraints asM∗, there are fewer that share all L2 constraints encoded by the CBN. G-
consistency at higher layers imposes a stricter set of constraints, narrowing down the set of compatible
SCMs. There also exist constraints of layer 3 that are important for counterfactual inferences.

To motivate the use of such constraints, consider an example inspired by the multi-armed bandit
problem. A casino has 3 slot machines, labeled “0", “1", and “2". Every day, the casino assigns
one machine a good payout, one a bad payout, and one an average payout, with chances of winning
represented by exogenous variables U+, U−, and U=, respectively. A customer comes every day and
plays a slot machine. X represents their choice of machine, and Y is a binary variable representing
whether they win. Suppose a data scientist creates a model of the situation, and she hypothesizes
that the casino predicts the customer’s choice based on their mood (UM ) and will always assign the
predicted machine the average payout to maintain profits. Her model is described by the SCMM′:

M′ =



U = {UM , U+, U=, U−}, UM ∈ {0, 1, 2}, U+, U=, U− ∈ {0, 1}
V = {X,Y }, X ∈ {0, 1, 2}, Y ∈ {0, 1}

F =


fX(uM ) = uM

fY (x, uM , u+, u=, u−) =


u= x = uM
u− x = (uM − 1)%3

u+ x = (uM + 1)%3

P (U) : P (UM = i) = 1
3 , P (U+ =1) = 0.6, P (U= =1) = 0.4, P (U−=1) = 0.2

(2)

It turns out that in this model P (yx) = P (y | x). For example, P (Y = 1 | X = 0) = P (U= =
1) = 0.4, and P (YX=0 = 1) = P (UM = 0)P (U= = 1) + P (UM = 1)P (U− = 1) + P (UM =
2)P (U+ = 1) = 1

3 (0.4) + 1
3 (0.2) + 1

3 (0.6) = 0.4.

Suppose the true model M∗ employed by the casino (and unknown by the customers and data
scientist) induces graph G = {X → Y }. Interestingly enough,M′ would be G(L2)-consistent with
M∗ sinceM′ is compatible with allL2-constraints, including P (yx) = P (y | x) and P (xy) = P (x).
However, and perhaps surprisingly, it would fail to be G(L3)-consistent. A further constraint implied
by G on the third layer is that P (yx | x′) = P (yx), which is not true ofM′. To witness, note that
P (YX=0 = 1 | X = 2) = P (U+ = 1) = 0.6 in M′, which means that if the customer chose
machine 2, they would have had higher payout had they chosen machine 0. This does not match
P (YX=0 = 1) = 0.4, computed earlier, soM′ fails to encode the L3-constraints implied by G.
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Figure 2: Model-
theoretic visualization
of Thms. 1 and 2.

In general, the causal diagram encodes a family of L3-constraints which we
leverage to make cross-layer inferences. A more detailed discussion can be
found in Appendix D. We show next that NCMs encodes all of the equality
constraints related to L3, in addition to the known L2-constraints.
Theorem 1 (NCM G(L3)-Consistency). Any G-NCM M̂(θ) is G(L3)-
consistent. �

This will be a key result for performing inferences at the counterfactual
level. Similar to how constraints about layer 2 distributions help bridge
the gap between layers 1 and 2, layer 3 constraints allow us to extend our
inference capabilities into layer 3. (In fact, most of L3’s distributions are not
obtainable through experimentation.) While this graphical inductive bias is
powerful, the set of NCMs constrained by G is no less expressive than the
set of SCMs constrained by G, as shown next.
Theorem 2 (L3-G Expressiveness). For any SCMM∗ that induces causal diagram G, there exists a
G-NCM M̂(θ) = 〈Û,V, F̂ , P̂ (Û)〉 s.t. M̂ is L3-consistent w.r.t.M∗. �

This result ascertains that the NCM class is as expressive, and therefore, contains the same generative
capabilities as the original generating model. More interestingly, even if the original SCMM∗ does
not belong to the NCM class, but from the higher space, there exists a NCM M̂(θ) that will be
capable of expressing the collection of distributions from all layers of the PCH induced by it.

A visual representation of these two results is shown in Fig. 2. The space of all SCMs is called Ω∗,
and the subspace that contains all SCMs G((Li)-consistent w.r.t. the true SCMM∗ (black dot) is
called Ω∗(G(Li)). Note that the G(Li) space shrinks with higher layers, indicating a more constrained
space with fewer SCMs. Thm. 1 states that all G-NCMs (Ω(G)) are within Ω∗(G(L3)), and Thm. 2
states that all SCMs in Ω∗(G(L3)) can be represented by a corresponding G-NCM on all three layers.

It may seem intuitive that the G-NCM has these two properties by construction, but these properties
are nontrivial and, in fact, not enjoyed by many model classes. Examples can be found in Appendix
D. Together, these two theorems ensure that the NCM has both the constraints and the expressiveness
necessary for counterfactual inference, elaborated further in the next section.

3 NEURAL COUNTERFACTUAL IDENTIFICATION

The problem of identification is concerned with determining whether a certain quantity is computable
from a combination of assumptions, usually encoded in the form of a causal diagram, and a collection
of distributions (Pearl, 2000, p. 77). This challenge stems from the fact that even though the space of
SCMs (or NCMs) is constrained upon assuming a certain causal diagram, the quantity of interest
may still be underdetermined. In words, there are many SCMs compatible with the same diagram G
but generate different answers for the target distribution. In this section, we investigate the problem
of identification and decide whether counterfactual quantities (from L3) can be inferred from a
combination of a subset of L2 and L1 datasets together with G, as formally defined next.
Definition 4 (Neural Counterfactual Identification). Consider an SCMM∗ and the corresponding
causal diagram G. Let Z = {P (Vzk

)}`k=1 be a collection of available interventional (or observational
if Zk = ∅) distributions fromM∗. The counterfactual query P (Y∗ = y∗ | X∗ = x∗) is said to be
neural identifiable (identifiable, for short) from the set of G-constrained NCMs Ω(G) and Z if and
only if P M̂1(y∗ | x∗) = P M̂2(y∗ | x∗) for every pair of models M̂1, M̂2 ∈ Ω(G) s.t. they match
M∗ on all distributions in Z (i.e. Z(M∗) = Z(M1) = Z(M2) > 0). �

From a symbolic standpoint, a counterfactual quantity P (y∗ | x∗) is identifiable from G and Z if all
SCMs that induce the distributions of Z and abide by the constraints of G also agree on P (y∗ | x∗).
This is illustrated in Fig. 3. In the definition above, the search is constrained to the NCM subspace
(shown in light gray) within the space of SCMs (dark gray). It may be concerning that the true SCM
M∗ might not be an NCM, as we alluded to earlier. The next result ascertains that identification within
the constrained space of NCMs is actually equivalent to identification in the original SCM-space.
Theorem 3 (Counterfactual Graphical-Neural Equivalence (Dual ID)). Let Ω∗,Ω be the spaces
including all SCMs and NCMs, respectively. Consider the true SCMM∗ and the corresponding
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causal diagram G. Let Q = P (y∗ | x∗) be the target query and Z the set of observational and
interventional distributions available. Then, Q is neural identifiable from Ω(G) and Z if and only if it
is identifiable from G and Z. �

Ω∗
Ω

M∗̂
M1

M̂2

(L1,L2) Data
Distributions

Z(M∗)=Z(M̂1)=Z(M̂2)

(L3) Counterfactual
Query

P M̂1(y∗|x∗) =

P M̂2(y∗|x∗)

?

Structural Assumptions

G

Figure 3: P (y∗) is identifiable from Z
and Ω(G) if for any SCM M∗ ∈ Ω∗

and NCMs M̂1, M̂2 ∈ Ω (top left),
M̂1, M̂2,M∗ match in Z (bottom left) and
G (top right), then the NCMs M̂1, M̂2 also
match in P (y∗) (bottom right).

Interestingly, this result connects the new concept of
neural counterfactual identification (Def. 4) with estab-
lished non-neural results. If a counterfactual quantity is
determined to be neural identifiable, then it is also iden-
tifiable from G and Z through other non-neural means,
and vice versa.7 Practically speaking, counterfactual in-
ference can be performed while constrained in the NCM
space, and the obtained results will be faithful to existing
symbolic approaches. This broadens the previous results
connecting NCMs to classical identification.
Corollary 1 (Neural Counterfactual Mutilation (Opera-
tional ID)). Consider the true SCMM∗ ∈ Ω∗, causal
diagram G, a set of available distributions Z, and a tar-
get query Q equal to PM

∗
(y∗ | x∗). Let M̂ ∈ Ω(G) be

a G-constrained NCM such that Z(M̂) = Z(M∗). If Q
is identifiable from G and Z, then Q is computable via
Eq. 1 from M̂ . �

Corol. 1 states that once identification is established, the counterfactual query can be inferred through
the NCM M̂ , as if it were the true SCMM∗, by directly applying layer 3’s definition to M̂ (Def. 1).
Remarkably, this result holds even if M∗ does not match M̂ in either the mechanisms F or the
exogenous dist. P (U), and it only requires some specific properties: G(L3)-consistency, matching Z,
and identifiability. Without these properties, inferences performed on M̂ would bear no meaningful
information about the ground truth. To understand this subtlety, refer to examples in App. D.

Algorithm 1: NeuralID – Identifying/estimating counterfactual
queries with NCMs.

Input : queryQ = P (y∗|x∗), L2 datasets Z(M∗), and
causal diagram G

Output : PM
∗

(y∗|x∗) if identifiable, FAIL otherwise.

1 M̂ ← NCM(V, G) // from Def. 2

2 θ∗min←arg minθ P
M̂(θ)(y∗|x∗) s.t. Z(M̂(θ))=Z(M∗)

3 θ∗max←arg maxθ P
M̂(θ)(y∗|x∗) s.t. Z(M̂(θ))=Z(M∗)

4 if PM̂(θ∗min)(y∗|x∗) 6= PM̂(θ∗max)(y∗|x∗) then
5 return FAIL
6 else
7 return PM̂(θ∗min)(y∗|x∗) // choose min or max

arbitrarily

Building on these results, we demonstrate
through the procedure NeuralID (Alg. 1)
how to decide the identifiability of counter-
factual quantities. The specific optimization
procedure searches explicitly in the space of
NCMs for two models that respectively min-
imize and maximize the target query while
maintaining consistency with the provided
data distributions in Z. If the two models
match in the target query Q, then the effect
is identifiable, and the value is returned; oth-
erwise, the effect is non-identifiable.

The implementation of how to enforce these consistency constraints in practice is somewhat chal-
lenging. We note two nontrivial details that are abstracted away in the description of Alg. 1. First,
although training to fit a single, observational dataset is straightforward, it is not as clear how to
simultaneously maintain consistency with the multiple datasets in Z. Second, unlike with simpler
interventional queries, it is not clear how to search the parameter space in a way that maximizes or
minimizes a counterfactual query, which may be more involved due to nesting (e.g. P (YZX=0

)) or
evaluating the same variable in multiple worlds (e.g. P (YX=0, YX=1)). The details of how to solve
these issues are discussed in Sec. 4.

Interestingly, this approach is qualitatively different than the case of classical, symbolic methods that
avoid operating in the space of SCMs directly. Still, in principle, this alternative approach does not
imply any loss in functionality, as evident from the next result.
Corollary 2 (Soundness and Completeness). Let Ω∗ be the set of all SCMs,M∗ ∈ Ω∗ be the true
SCM inducing causal diagram G, Q = P (y∗ | x∗) be a query of interest, and Q̂ be the result from

7We say identification from G and Z instead of Ω∗(G) and Z because existing symbolic approaches (e.g.
do-calculus) directly solve the identification problem on top of the graph instead of the space of SCMs.

6



Published as a conference paper at ICLR 2023

running Alg. 1 with inputs Z(M∗) > 0, G, and Q. Then Q is identifiable from G and Z if and only if
Q̂ is not FAIL. Moreover, if Q̂ is not FAIL, then Q̂ = PM

∗
(y∗ | x∗). �

In words, the procedure NeuralID is both necessary and sufficient in this very general setting,
implying that for any instances involving any arbitrary diagram, datasets, or queries, the identification
status of the query is always classified correctly by this algorithm.

4 NEURAL COUNTERFACTUAL ESTIMATION

Algorithm 2: NCM Counterfactual Sampling

Input :NCM
M̂(θ) = 〈Û,V, F̂, P (Û)〉,
counterfactual Y∗, conditional
X∗ = x∗, number of samplesm

Output : m samples from P M̂ (Y∗|x∗)

1 Function M̂ .sample(Y∗, x∗,m):
2 S ← ∅
3 while |S| < m do
4 û← P (Û).sample()

5 if XM̂(θ)
∗ (û) = x∗ then

6 S.add(YM̂(θ)
∗ (û))

7 return S;

We developed a procedure for identifying counterfactual
quantities that is both sound and complete under ideal con-
ditions – e.g., unlimited data, perfect optimization, which is
encouraging. In this section, we build on these results and
establish a more practical approach to solving these tasks
under imperfect optimization and finite samples.

Consider a G-NCM M̂ constructed as specified by Def. 2.
Any counterfactual statement Y∗ = (Y1[x1],Y2[x2], . . . )

can be evaluated from an NCM M̂ for a specific setting of
Û = û by computing the corresponding values of Yi in
the mutilated submodel M̂x for each i. That is,

YM̂
∗ (u) = (YM̂

1[x1](u),YM̂
2[x2](u), . . . ) (3)

Then, sampling can be done following the natural approach delineated by Alg. 2. In words, the
distribution P (Y∗ | x∗) can be sampled from NCM M̂ by (1) sampling instances of P (Û), (2)
computing their corresponding value for X∗ (via Eq. 3) while rejecting cases that do not match x∗,
and (3) returning the corresponding value for Y∗ (via Eq. 3) for the remaining instances.

Following this procedure, a counterfactual P (Y∗ = y∗ | X∗ = x∗) can be estimated from the NCM
through a Monte-Carlo approach, instantiating Eq. 4 as follows:

P M̂ (y∗ | x∗) ≈

∑m
j=1 1

[
YM̂
∗ (ûj) = y∗,X

M̂
∗ (ûj) = x∗

]
∑m
j=1 1

[
XM̂
∗ (ûj) = x∗

] , (4)

where {ûj}mj=1 are a set of m samples from P (Û).

Alg. 3 demonstrates how to solve the challenging optimization task in lines 2 and 3 of Alg. 1.
The first step is to learn parameters such that the distributions induced by the NCM M̂ match
the true distributions in Z. While Alg. 1 describes the inputs in the form of L2-distributions,
Z(M∗) = {PM∗(Vzk

)}`k=1, in most settings, one has the empirical versions of such distributions
in the form of finite datasets, {P̂M∗(Vzk

) = {vzk,i}
nk
i=1}`k=1.

One way to train M̂ to match M∗ in the distribution P (Vzk
) is to compare the distribution of

data points in P̂M
∗
(Vzk

) with the distribution of samples from M̂ , P̂ M̂ (Vzk
). The two empirical

distributions can be compared using a divergence function DP , which returns a smaller value when
the two distributions are “similar”. The goal is then to minimize DP (P̂ M̂ (Vzk

), P̂M
∗
(Vzk

)) for
each k ∈ {1, . . . , `}. In this work, a generative adversarial approach (Goodfellow et al., 2014) is
taken to train the NCM, and DP is computed using a discriminator network.

In addition to fitting the datasets, the second challenge of Alg. 1 is to simultaneously maxi-
mize or minimize the query of interest Q = P (y∗ | x∗). This can be done by first comput-
ing samples of P (Y∗ | x∗) from M̂ via Alg. 2, denoted Q̂, and then minimizing (or maxi-
mizing) the “distance” between Q and Q̂. Essentially, samples from Y∗ are penalized based
on how similar they are to the correct values y∗. For example, if the query to maximize is
P (Y = 1), and a value of 0.6 is sampled for Y from M̂ , then the goal could be to minimize
squared error, (1 − 0.6)2. In general, a distance metric DQ is used to compute the distance
between Q̂ and Q, and we use log loss for DQ as our experiments involve binary variables.
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Figure 4: Experimental results on deciding identifiability on counterfactual queries with NCMs.
GAN-NCM (green) is compared with MLE-NCM (orange) for settings with d = 1. GAN-NCM
performance is also shown for d = 16 (dashed green). Blue (resp. yellow) backgrounds on plots
correspond to a ground truth of ID (resp. non-ID). ID cases are numbered for reference in later plots.

Algorithm 3: Training Model

Input : Data {P̂M
∗

(Vzk
) = {vzk,i}

nk
i=1}

`
k=1, query

Q = P (y∗|x∗), causal diagram G, number of Monte
Carlo samplesm, regularization constant λ, learning
rate η, training epochs T

1 M̂ ← NCM(V,G) // from Def. 2
2 Initialize parameters θmin and θmax

3 for t← 1 to T do
4 Lmin ← 0, Lmax ← 0
5 for k ← 1 to ` do

// Sample via Alg. 2

6 P̂min(Vzk
)← M̂(θmin).sample(Vzk

, nk)

7 P̂max(Vzk
)← M̂(θmax).sample(Vzk

, nk)

8 Lmin ←
Lmin + DP

(
P̂min(Vzk

), P̂M
∗

(Vzk
)
)

9 Lmax ←
Lmax + DP

(
P̂max(Vzk

), P̂M
∗

(Vzk
)
)

10 Q̂min ← M̂(θmin).sample(Y∗,m)

11 Q̂max ← M̂(θmax).sample(Y∗,m)
// L from Eq. 5

12 Lmin ← Lmin − λDQ

(
Q̂min, Q

)
13 Lmax ← Lmax + λDQ

(
Q̂max, Q

)
14 θmin ← θmin − η∇Lmin

15 θmax ← θmax − η∇Lmax

For this reason, an NCM trained with this
approach will be referred as a GAN-NCM. 8

More details about architecture and hyperpa-
rameters used throughout this work can be
found in Appendix B.

Putting DP and DQ together, we can write that

the objective L
(
M̂, {P̂M∗(Vzk

)}`k=1

)
is(∑̀

k=1

DP
(
P̂ M̂zk

, P̂M
∗

zk

))
± λDQ

(
Q̂,Q

)
,

(5)
where λ is initially set to a high value, and
decreases during training. Optimization may
be done using gradient descent. After training,
the two values of Q induced by M̂(θmin) and
M̂(θmax) are compared with a hypothesis test-
ing procedure to decide identifiability. Eq. 4
is used as Q’s estimate, whenever identifiable.

5 EXPERIMENTAL EVALUATION

We first evaluate the NCM’s ability to identify counterfactual distributions through Alg. 3. 9 Each
setting consists of a target query (Q), a causal diagram (G), and a set of input distributions (Z). In
total, we test 32 variations. Specifically, we evaluate the identifiability of four queries Q: (1) Average
Treatment Effect (ATE), (2) Effect of Treatment on the Treated (ETT) (Pearl, 2000, Eq. 8.18), (3)
Natural Direct Effect (NDE) (Pearl, 2001, Eq. 6), and (4) Counterfactual Direct Effect (CtfDE)
(Zhang & Bareinboim, 2018, Eq. 3); each expression is shown on the top of Fig. 4. The four
graphs used are shown on the figure’s left side, and represent general structures found throughout the
mediation and fairness literature (Pearl, 2001; Zhang & Bareinboim, 2018). The variable X encodes
the treatment/decision, Y the outcome, Z observed features, and W mediating variables. Lastly, we
consider a setting in which only the observational data is available (Z = {P (V)}) and another in
which additional experimental data on X is available (Z = {P (V), P (Vx)}). In the experiments
shown, all variables are 1-dimensional binary variables except Z, whose dimensionality d is adjusted

8Other choices of DP include KL divergence or Maximum Mean Discrepancy (MMD) (Gretton et al., 2012).
9The code is publicly available at: https://github.com/CausalAILab/NCMCounterfactuals
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in experiments. The background color of each setting indicates that the query Q is identifiable (blue)
or is not identifiable (yellow) from the inputted G and Z. Given the sheer volume of variations, we
summarize the experiments below and provide further discussion and details in Appendix B.

Figure 5: Results comparing
run times of 100 epochs of
training between GAN-NCM
(green) and MLE-NCM (or-
ange) in the first graph of
Fig. 4 as the dimensionality d
of Z scales higher.

We implement two approaches to ground the discussion around
NCMs, one based on GANs (GAN-NCM), and another based on
maximum likelihood (MLE-NCM). The former was discussed in the
previous section and the latter is quite natural in statistical settings.
The experiments (Fig. 4) show that GAN-NCM has on average
higher accuracy. The MLE-NCM performs slightly better in ID
cases (blue), but the performance drops significantly for non-ID
cases (yellow), suggesting it may be biased in returning ID for all
cases. The GAN-NCM is also shown to achieve decent performance
in 16-d, where the MLE-NCM fails to work. We plot the run time
of these two approaches in Fig. 5, which shows that the MLE-NCM
scales poorly compared to the GAN-NCM; this pattern is observed
in all settings. Intuitively, this is not surprising since the MLE-NCM
explicitly computes a likelihood for every value in every variable
domain, the size of which grows exponentially w.r.t. the dimensionality (d), while the GAN-NCM
avoids this by implicitly fitting distributions through P (Û) and F̂ and directly outputting samples.

Figure 6: Results on estimating identifiable
cases from Fig. 4 (corresponding numbers
shown on the right). Mean Absolute Error
(MAE) is plotted (with 95% confidence) for
each setting for varying sample sizes. Results
are shown for GAN-NCM (solid green) and
MLE-NCM (orange) with d = 1 and also
GAN-NCM with d = 16 (dashed green).

For the identifiable cases (blue background), the tar-
get Q is estimated through Eq. 4 after training. Re-
sults are shown in Fig. 6. The MLE-NCM serves as a
benchmark for 1-dimensional cases since, intuitively,
the data distributions can be learned more accurately
when modeled explicitly. Still, even when d = 1,
the GAN-NCM achieves competitive results in most
settings and consistently achieves an error under 0.05
with more samples. The GAN-NCM is able to main-
tain this consistency even at d = 16, demonstrating
its robustness scaling to higher dimensions.

After all, the GAN-NCM is shown to be effective
at identifying and estimating counterfactual distri-
butions even in high dimensions. As expected, the
MLE-NCM may achieve lower error in some 1-d set-
tings, but the GAN-NCM may be preferred for scala-
bility. Moreover, an incorrect ID conclusion in a non-
ID case may be dangerous for downstream decision-
making as the resulting estimation will likely be in-
correct or misleading. The GAN-NCM is evidently
more robust in such non-ID cases while still performing competitively in ID cases. Further experi-
ments and discussions are provided in App. B.

6 CONCLUSIONS

We developed in this work a neural approach to the problems of counterfactual identification and
estimation using neural causal models (NCMs). Specifically, we first showed that with the graphical
inductive bias, NCMs are capable of encoding counterfactual (L3) constraints and are still expressive
so as to represent any generating SCM (Thms. 1, 2). We then showed that NCMs have the ability
of solving any counterfactual identification instance (Thm. 3, Corol 1). Given these theoretical
properties, we introduced a sound and complete algorithm (Alg. 1, Corol. 2) for identifying and
estimating counterfactuals in general non-Markovian settings given arbitrary datasets from L1 and
L2. We developed an approach based on GANs to implement this algorithm in practice (Alg. 3) and
empirically demonstrated its ability to scale inferences. From a neural perspective, counterfactual
reasoning under a causal inductive bias allows for deep models to be trained with an improved
understanding of interpretability and generalizability. From a causal perspective, neural nets can now
provide tools to solve counterfactual inference problems previously only understood in theory.
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