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Abstract

Pharmacokinetic/Pharmacodynamic (PK/PD) modeling plays a pivotal role in novel
drug development. Previous population-based PK/PD models encounter challenges
when customized for individual patients. We aimed to investigate the feasibility of
constructing a pharmacodynamic model for different phases of individual breast
cancer pharmacodynamics, only leveraging limited data from early phases. To
achieve that, we introduced an innovative approach, Data-driven Neural Ordinary
Differential Equation (DN-ODE) modeling for multi-task, e.g., breast cancer tumor
dynamics and progression-free survival predictions. To validate the DN-ODE
approach, we conducted experiments with early-phase clinical trial data from the
amcenestrant (an oral treatment for breast cancer) dataset (AMEERA 1-2) to pre-
dict pharmacodynamics in the later phase (AMEERA 3). Empirical investigations
confirmed the efficacy of the DN-ODE, surpassing alternative PK/PD methodolo-
gies. Notably, we also introduced visualizations for each patient, demonstrating
that the DN-ODE recognizes diverse tumor growth patterns (responded, progressed,
and stable). Therefore, the DN-ODE model offers a promising tool for researchers
and clinicians, enabling a comprehensive assessment of drug efficacy, identification
of potential responders, and facilitation of trial design.

1 Introduction

Pharmacokinetic/Pharmacodynamic (PK/PD) modeling plays a critical role in pharmaceutical re-
search and the development of new drugs [1l]. These models simulate the interaction of drugs with
the human body, optimize dosing regimens for individual patients, and assess drug efficacy and
safety [2, 3]]. We asked whether it is possible to develop a comprehensive breast tumor pharmacody-
namic model for different phases of clinical trials using limited data (e.g., sparse medical records
from the early phases) [4}5]. Specifically, we aimed to predict individual pharmacodynamics for
patients from different clinical trials, identify possible responders, and thereby assist researchers in
designing the clinical trials.

While the typical population-based PK/PD approaches for modeling sparse clinical trial data have
become firmly established, they still face challenges when it comes to estimating pharmacodynamic
responses at the individual patient level [6} (7, 18]]. Recent Artificial Intelligence for Science and
healthcare applications have attracted significant interest, ranging from machine learning to deep
learning and neural models [9, 110,11, |12||13]. Some studies compared various regression methodolo-
gies for pharmacokinetic modeling, including multiple learning regression, Support Vector Machine
(SVM), random forest and online learning approach [14, 15,116} [17]. Some studies focus on imbal-
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anced covariates and adjust them for logistic regression [[18, [19, 20]. Recent approaches unitized
a Long Short-Term Memory (LSTM) model to simulate pharmacokinetic/pharmacodynamic data
for hypothetical drugs [21} 22} 23]]. However, these methods might not fully address individual
pharmacodynamic modeling with limited clinical trial data. For example, Lu demonstrated that
the LSTM model tends to persistently predict a drug reaction even after the patient stops taking
drugs [124]].

Here, we utilize Neural Ordinary Differential Equation (ODE) for irregularly sampled clinical trial
data and directly predict multiple individual pharmacodynamics without necessitating a population-
PD model [25, 26]. These pharmacodynamics could include attributes like tumor dynamics (esti-
mation for tumor size) and progression-free survival (the percentage of patients in the group whose
disease has not progressed) [27, 128} 29]]. Specifically, the standard Neural ODE comprises three key
components: the Encoder, the ODE solver, and the Decoder. To tackle the aforementioned challenges,
the Neural ODE model is trained for all patients, enabling it to retain population-level features and
preventing overfitting to individual patients. To predict individual pharmacodynamics, the Encoder
encodes individual features as initial conditions and then feeds them to the ODE solver. Depending
on individual features, the Neural ODE yields precise long-term pharmacodynamic estimations for
diverse patients.

In a nutshell, we propose a novel Data-driven Neural Ordinary Differential Equation (DN-ODE) for
multi-pharmacodynamic modeling, breast cancer tumor dynamics and progression-free survivals.
In our approach, we use a shareable encoder for multi-task PD predictions. For each task, we
only retrain the corresponding task ODE solver and decoder while leveraging the same shareable
features. Our experiments show state-of-the-art performance on the clinical trial breast cancer dataset,
outperforming alternative population-based PD methodologies.

2 Methodology
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Figure 1: Computation pipeline of the DN-ODE model.
2.1 Data Preparation and Shared Encoder

The input covariates for the ODE model included time (gray dot), dosing (orange dot), cycle (yellow
dot), PK estimations (light blue dot), and either a copied Tumor Size (TS) or Progression-Free
Survival (PFS) label. To maintain consistency with previous work, we use the same dataset and obtain
PK estimations from the previous PK model [28] 29], which consists of transit rate for absorption
delay (Ktr), apparent volume in the central compartment (Vc/F), apparent volume in the peripheral
compartment (Vp/F), apparent transit between the central and peripheral compartments (Q/F), and
apparent clearance (CL/F). As for label inputs, we only retained the first-day values (represented by
the Green dot in Figure([T) and set the values for the other days to O (represented by the Green circle
in Figure[I). Time points without clinical records were filled with 0 or dropped [29].

Then, we feed the data into an encoder, which consists of two fully-connected layers and an RNN
with 128 hidden units in each layer, following the neural-ODE official sample codes [25]. This
encoder encoded the information into a 12-element array. Note that these numbers can be changed
without affecting the results [24, 23]

Following the concept of an autoencoder in ODE works [25], the 12-element output (e.g., Hy,) from



the Encoder defines the means and standard deviations of the latent state distributions. Specifically,
the first 6 elements are employed to estimate the mean values (1), and the last 6 elements are
employed to estimate the standard deviation values (o). Finally, Z;, (orange rhombus), which serves
as the initial status for the ODE solver, is drawn from the Gaussian distribution derived from these
mean and standard deviation estimates.

2.2 Ordinary Differential Equation (ODE) and Decoder

The tumor size or progression-free survivals are determined by the local initial state Z;, of each
patient and a global set of latent dynamics shared across all patients, denoted by 6. For each patient,
we feed the local initial state (Zy,) to the ODE solver (f) and produce Z (Z = [Z4,, Zt,, Zt,, - - .])

for different times ¢ = [to, t1, t2,t3,...]. We formally define this approach through a sampling
procedure:

Zty ~ p(Zty), ey

Zt1 P tha Ztga e = ODE(Ztoa fv efa tO; tl; t27 t37 )7 (2)

each x; ~ p(x|Z,,0,). 3)

Specifically, the ODE function f is implemented as a four-layer fully connected network, with each

layer having 16 hidden dimensions. At each time point ¢;,7 € [1,2,3,...], we feed Zt(i_l) and the

corresponding time interval ¢; — ¢;_; into the ODE function f. The output of f is Z;,, which is then

circulated back into the next time point. Thus, we obtain a series of Z = [Z;,, Z,, Z4, - . .]. Then,

we feed Z into the decoder to produce a series of predictions for different times. When training the
Progression model, we don’t train the shared Encoder again, since features like PK have already been
obtained.

3 Experiments and Results

3.1 Datasets and Metrics

In this experiment, we utilized clinical trial data on Tumor Size (TS) and Progression-Free Survival
(PFES) [30. 131, 132]. Specifically, we used amcenestrant, an orally bioavailable selective Estrogen
Receptor (ER) degrader developed for the treatment of ER+/HER2- advanced breast cancer. To train
our model, we employed the phase 1/2, including AMEERA 1 (NCT03284957 [30]) and AMEERA
2 (NCTO03816839 [31]) studies. These studies involved 75 patients who received amcenestrant
monotherapy, with exposure to doses ranging from 20 to 600 mg daily. For inference, we utilized
data from the AMEERA 3 clinical trial [32]], which included 102 patients with measurable target
lesions at baseline. We also present our dataset in a demographic summary table in Supplementary.

For evaluation, we employed both the RMSE loss and R? score as evaluation metrics. The RMSE
loss provides an estimation of the difference between the predictions and ground truth, quantifying
the accuracy of the model’s predictions [33]]. R? score goes a step further by considering whether the
overall scale of the predictions aligns with the ground truth, providing insights into the goodness of
fit of the model [34].

3.2 [Experimental Results

Table 1: RMSE loss and R? on Train and Test Dataset

Train Test
Loss| R2%1 Loss | R?%
Tumor Size PK/PD [29]: 594 095 6.51 (fine-tuned) 0.93 (fine-tuned)
DN-ODE (ours) 6.13  0.94 8.78 0.92
Progression-Free Survival ' DN-ODE (ours)  0.20 0.96 0.21 0.95

Table [1|demonstrates the RMSE loss and R? scores corresponding to AMEERA 1-2 and AMEERA 3
clinical trial data. Although the previous PK/PD model yielded a more accurate prediction for tumor
size, it necessitated additional fitting steps. Specifically, these steps encompassed recalculating the



distribution of population parameters as a prior distribution, followed by re-fitting it using individual
data points. This procedure demanded supplemental information from the testing dataset. However,
the Neural ODE approach only requires covariates for generating initial conditions, eliminating the
need for additional fitting steps for the population-based model. Both tasks achieved R? scores
surpassing 0.9, thereby highlighting the robust predictive capabilities of the Neural ODE approach.
Across all training and testing scenarios, the ODE consistently outperforms the PK/PD methods in
predicting progression-free survivals.

3.3 Visualizations
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Figure 2: Tumor size predictions over time.

Figure [2]illustrates the consistent performance of the Neural ODE model for Tumor size predictions.
The neural model distinguishes three distinct tumor growth patterns in both AMEERA 1-2 and
AMEERA 3: responded, stable, and progressed. For each patient during two consecutive visits, if a
reduction of over 30% in tumor size occurs, we classify it as a responder. Conversely, if an increase
of more than 20% in tumor size occurs, we categorize it as progression. Cases that do not meet either
of these criteria are designated as stable diseases. For both training and testing, we only provide the
initial tumor size and corresponding date as the initial condition (navy blue triangle) to the ODE
model, but ODE generates accurate predictions that closely align with the ground truth. We provide a
case-by-case comparison of PK/PD and ODE modeling in Supplementary.
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of target lesions; 2) Progression from non-target lesions or appearance of new lesions (event if
death) [36]]. The solid orange line represents the KM estimate derived from the original datasets,
while the dashed blue line shows our predicted progression-free survival with a 90% prediction
interval (blue shaded area) and the dashed red line shows PK/PD predicted progression-free survival
with a 90% prediction interval (red).Since the PK/PD model requires an additional fitting step
for the test dataset, we used the calibrated model [28| [29]] for KM predictions on the test dataset.
Remarkably, our predictions closely align with the ground truth, demonstrating a good fit for the
observed data.

Figure 3: Progression-free survivals over time.

4 Conclusion

We proposed an innovative approach, the Data-driven Neural Ordinary Differential Equation (DN-
ODE) model, to capture the dynamics of breast cancer tumor development and predict progression-
free survivals. Our experiments demonstrated DN-ODE’s ability to identify various tumor growth
patterns and potential responders, offering valuable insights to doctors and informing the design of
future clinical trials.
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Supplementary Material

Table 2: Demographic summary of the data.

Training dataset

Testing dataset

AM-1Part A, N =21 AM-1PartB, N =46 AM-2,N=8 AM-3, N =102
Ages (years) Mean (Min~Max) 59 (40~86) 64 (37~88) 66 (48~76) 58 (29~84)
Weight (kg) Mean (Min~Max) 71 (49~105) 73 (41~116) 52 (43~74) 72 (41~109)
Height (cm) Mean (Min~Max) 163 (153~176) 162 (145~176) 156 (147~167) 161 (148~175)
BMI Mean (Min~Max) 27 (16~38) 28 (17~41) 21 (19.5~26.8) 27.5(16.8~43.6)
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Figure 4: Ablation Study: PK/PD modeling vs. DN-ODE modeling.

DN-ODE VS. Traditional PK/PD modeling

To comprehensively compare the DN-ODE with traditional PK/PD methods, we conducted an
exhaustive analysis encompassing different scenarios, as shown in Figure ] These cases can be
broadly classified into two main scenarios: 1) involving two-point ground truth (a-c) and 2) involving
multiple-point ground truth (d). We emerge irregular data points (only two points) due to patients’
early dropout. Within these cases, we can further distinguish between three distinct situations:
increasing tumor size (tumor growth), decreasing tumor size (tumor regression), and maintaining
stable tumor size (minor changes).



Implementation Details

The Neural ODE structure consists of three components: the encoder, the Ordinary Differential
Equation (ODE), and the decoder. The encoder includes two Fully-Connected layers and a Recurrent
Neural Network (RNN). We feed in time, Initial Condition (IC), dosing information, cycle, and
estimated PK (Given by [29])). To follow previous works [23| 24], we set the hidden layer size to
128 and the output length to 12, using the ReLU activation function. The ODE includes four fully
connected layers, with an input length of 6 (sampled from the 12 available). Each hidden layer has
128 hidden units, and the last fully connected layer produces a 6-length vector. Then, the decoder
concatenates this 6-length vector with time and IC values on the first day, resulting in a 16-length
vector. The decoder includes two fully connected layers with an input length of 16, 32 hidden units,
and a single output as the prediction.

During training, we selected a batch size of 1 to accommodate the different length of the clinical trial
data (e.g., different patients has different numbers of CT records). To approximate a batch size of
n = 4, we employed loss backpropagation for every 4 samples. The hyperparameters included an
initial learning rate of 0.001 with the Adam optimizer, along with L2 regularization set to 0.1 and an
RMSE loss function. For weight initialization, we utilized a normal distribution N (0,0.001), and the
bias was set to 0. The training process ran for 80 epochs, with the learning rate decreasing by a factor
of 10 every 20 epochs. Additionally, for the ODE part, we set the ODE solver tolerance to 0.0001.

Interpretative Visualizations for DN-ODE
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Figure 5: Interpretative Visualizations for DN-ODE: features (all dashed lines) vs. predictions (solid
blue line), ground truth (orange dots)

To investigate why the ODE yields robust predictions for breast tumor dynamics, we provide visual-
izations in Figure[5] We selected three individual patient cases and plotted the percentage change of
features versus time, the percentage change of predictions versus time, and the percentage change of
ground truth versus time. To clearly show the linear relationships between features and predictions,
we magnified the prediction and ground truth values by a factor of 5.

These visualizations reveal that certain features exhibit strong linear correlations with our final
predictions. For instance, in Case 1, both the blue and green features, as well as the brown features,
trend downwards when the tumor size decreases. Similarly, in Case 2, the blue and green features
mirror the dynamics of the ground truth—decreasing as the tumor size decreases and increasing as
it grows. By relying on such features, our ODE solver and decoder are able to generate accurate
predictions.
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