

000 001 002 003 004 005 006 007 008 009 010 EDUPERSONA: BENCHMARKING SUBJECTIVE ABILITY 002 BOUNDARIES OF VIRTUAL STUDENT AGENTS

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 As large language models (LLMs) are increasingly integrated into education, virtual
 012 student agents are becoming essential for classroom simulation and teacher training.
 013 However, their classroom-oriented *subjective abilities* remain largely unassessed,
 014 limiting our understanding of model boundaries and hindering trustworthy deploy-
 015 ment. We introduce **EduPersona**, a large-scale benchmark spanning two languages,
 016 three subjects, and ten persona types grounded in the Big Five theory. The dataset
 017 contains 1,308 authentic classroom dialogue rounds (12,814 teacher–student Q&A
 018 turns) and is expanded via persona stylization to roughly 10× scale (128k turns),
 019 forming a comprehensive foundation for evaluation. Building on this resource, we
 020 decompose subjective performance into three progressive tasks: (Task 1) basic
 021 coherence—alignment between behavior, emotion, expression, voice, and class-
 022 room context; (Task 2) student realism; and (Task 3) long-term persona consistency,
 023 establishing an evaluation framework grounded in educational theory and empirical
 024 validity. We conduct systematic experiments on three representative LLM families,
 025 comparing their base versions with ten EduPersona fine-tuned variants. Results
 026 show consistent and substantial improvements: **+33.6%** in Task 1, **+30.6%** in
 027 Task 2, and **+14.9%** in Task 3, highlighting both the benchmark’s effectiveness
 028 and the heterogeneous difficulty of persona modeling. **A human–AI alignment**
 029 **experiment further confirms that GPT-4o’s judgments closely match expert con-**
 030 **sensus.** In summary, EduPersona provides the first classroom benchmark centered
 031 on subjective student abilities, establishes a decoupled and verifiable paradigm for
 032 evaluating virtual learners, and will be open-sourced to support the development of
 033 trustworthy and human-like AI for education.

034 1 INTRODUCTION

035 With the rapid adoption of large language models (LLMs) in education (Wang et al., 2024b; Tan et al.,
 036 2025a;b), **virtual student agents** have become important tools for classroom simulation and teacher
 037 training (Dai et al., 2024). They offer low-cost, controllable, and reproducible environments for
 038 educational research, while enabling AI community to study human-like interaction and role-playing
 039 at scale. However, despite increasing attention to social behaviors in general-purpose agents (Zhou
 040 et al., 2024b), mainstream educational evaluation still focuses primarily on objective tasks such as
 041 QA and accuracy (Lu et al., 2022; Huang et al., 2023; Ang et al., 2023), leaving the **subjective**
 042 **abilities** essential to real classroom practice underexplored. Yet authentic classroom interaction is
 043 fundamentally shaped by multi-layered subjective traits (Wang et al., 2024a; Seo et al., 2025).

044 To systematically characterize this missing dimension, we introduce a three-layer structure grounded
 045 in established educational theories. (1) **Basic coherence**, rooted in *Multimodal Learning Analytics*
 046 (*MMLA*), assesses whether observable behaviors, emotions, expressions, and vocal cues align with
 047 linguistic outputs (Blikstein & Worsley, 2016). (2) **Student realism**, based on *Learner Identity*
 048 *Theory* (Lave & Wenger, 1991; Gee, 2000), evaluates the naturalness of responses and their adherence
 049 to classroom learner norms—such as admitting uncertainty, requesting hints, or self-correcting (Sanyal
 050 et al., 2025). (3) **Persona consistency**, following the cross-situational stability principle of the *Big*
 051 *Five Personality Theory* (Poropat, 2009; Jach et al., 2023), measures whether models maintain stable
 052 traits and stylistic patterns across short- and long-term interactions (Ma et al., 2024). These layers
 053 form a coherent progression—from external behaviors to perceptual authenticity and long-term trait
 054 stability—aligned with the educational logic of “Performance → Identity → Trait.”

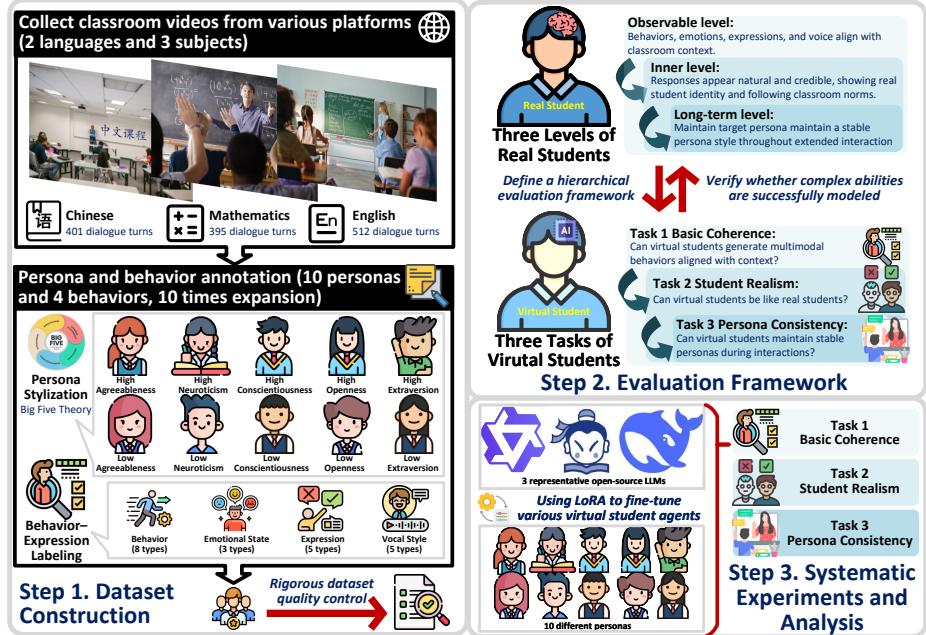


Figure 1: **Workflow Overview of EduPersona.** It comprises: (i) dataset construction with cross-subject/cross-lingual classroom dialogues, persona expansion, and multimodal labeling (Sec. 3); (ii) a three-task evaluation framework covering coherence, realism, and consistency (Sec. 4); and (iii) systematic experiments comparing base and fine-tuned models with cross-model analyses (Sec. 5).

Existing datasets and evaluation protocols do not support this three-layer structure, motivating the construction of EduPersona. EduPersona is the first large-scale classroom benchmark spanning four dimensions: cross-lingual (Chinese, English), cross-subject (Chinese, Mathematics, English), cross-behavior (four categories of classroom behaviors), and cross-persona (ten traits extended from the Big Five). It contains **1,308 authentic classroom dialogue rounds** (12,814 teacher-student turns), expanded via persona stylization to approximately **128k turns**, providing comprehensive coverage for subjective ability evaluation. We operationalize the three-layer structure into three corresponding tasks—turn-level coherence (Task 1), response-level realism (Task 2), and long-term persona consistency (Task 3)—transforming traditionally intangible subjective abilities into reproducible and comparable metrics (Fig. 1).

Systematic experiments on three representative LLM families—Qwen3 (Yang et al., 2025), InternLM3 (Cai et al., 2024), and DeepSeek-R1 (Guo et al., 2025)—together with ten EduPersona fine-tuned variants demonstrate substantial improvements: **+33.6%** in coherence, **+30.6%** in realism, and **+14.9%** in persona consistency. These results validate EduPersona’s effectiveness and reveal the heterogeneous difficulty of subjective-ability modeling. Importantly, subjective abilities do not scale monotonically with model size or reasoning capability, indicating independent capability bottlenecks for virtual student agents. **A human–AI alignment experiment further confirms that GPT-4o’s judgments closely match expert consensus, reinforcing the reliability of our evaluation metrics.**

Contributions. (1) We build the first large-scale classroom dataset covering two languages, three subjects, four behavior categories, and ten persona traits grounded in Big-Five extensions (Sec. 3). (2) We propose a three-task progressive evaluation framework that operationalizes subjective abilities as measurable and comparable constructs (Sec. 4). (3) We conduct comprehensive experiments across multiple LLM families, revealing both fine-tuning gains and persistent bottlenecks, and showing that subjective abilities diverge from scale- and reasoning-based trends (Sec. 5). EduPersona will be released to support reproducibility and future research on trustworthy, human-aligned student agents.

2 RELATED WORK

We review prior research through the lens of our three evaluation tasks. While virtual agents have long been used in intelligent tutoring systems and cognitive modeling (Goel & Polepeddi, 2018; Matsuda et al., 2015), prior work has primarily focused on improving learning outcomes. In contrast, EduPer-

sona targets a complementary problem: establishing a benchmark for evaluating the *subjective abilities* of virtual student agents essential for realistic classroom simulation. Building such agents requires moving beyond existing system-oriented approaches. (1) **Basic Behavioral Coherence**: Existing educational datasets (e.g., ScienceQA (Lu et al., 2022), C-Eval (Huang et al., 2023), SocrativeQ (Ang et al., 2023), MathQA (Amini et al., 2019)) have advanced knowledge assessment but remain largely single-turn or exam-oriented, lacking modeling of the IRF (Initiation–Response–Feedback) structure central to classrooms. Recent multimodal efforts explore VQA (Lee et al., 2025; Xiao & Zhang, 2025), emotion recognition (Song, 2025), and engagement detection (Xie et al., 2025), yet they focus on perception rather than coherence across verbal and non-verbal dimensions. Task 1 (Sec. 4.1) addresses this gap. (2) **Student Realism**: Persona-driven dialogue studies such as PersonaChat (Zhang et al., 2018), PersonalDialog (Zheng et al., 2019), and MBTI-based generation (Kar & Kar, 2025) illustrate role-conditioned generation. Broader social benchmarks (Zhou et al., 2024a) (Wang et al., 2024c) (Tu et al., 2024) such as SOTONIA (Zhou et al., 2024b) evaluate social intelligence across diverse scenarios, but they emphasize contextual breadth rather than the education-specific depth required for modeling learner identity, instructional constraints, and classroom norms. Thus, existing work cannot answer the domain-specific question of whether a model behaves like a real student—an ability formalized by Task 2 (Sec. 5.3). (3) **Persona Consistency**: Maintaining stable traits over long interactions remains challenging. Traditional metrics (BLEU, ROUGE) correlate poorly with persona preservation, and alignment methods (RLHF (Ouyang et al., 2022), Constitutional AI (Bai et al., 2022)) or bias detection (Chen et al., 2024) provide only partial insights. Systematic evaluation of persona stability in classroom dialogue is still absent, which Task 3 (Sec. 4.3) directly operationalizes. Overall, while prior work has progressed in knowledge testing, role-conditioned generation, and multimodal analytics, it lacks a unified, pedagogically grounded framework for jointly evaluating *basic coherence*, *student realism*, and *persona consistency*. EduPersona is designed to fill this gap.

3 DATASET CONSTRUCTION

This section introduces the construction and formal representation of the **EduPersona** dataset, which serves as the unified foundation for the subsequent evaluation tasks. We denote the final dataset as $\mathcal{D} = \{d_i\}$, $d_i = (x_i, y_i, p_i, b_i, s_i)$, where x_i denotes the classroom context (teacher’s initiation and feedback), y_i the student response, $p_i \in P$ the persona label, $b_i \in B$ the behavior-expression label, and $s_i \in S$ the subject. This formulation explicitly separates multiple dimensions, providing a clear and unified modeling basis for the evaluation tasks. Further details on data persona and behavior labels are provided in App. B.

3.1 DATA COLLECTION AND PREPROCESSING

We denote the raw classroom corpus as \mathcal{D}_{base} , serving as the foundation for subsequent data construction. The subject set is $S = \text{Chinese}, \text{Mathematics}, \text{English}$, ensuring broad curricular and linguistic coverage. As shown in Tab. 1, \mathcal{D}_{base} contains **1,308** dialogue rounds with **12,814** teacher–student Q&A turns, averaging 9.8 turns per round, reflecting rich classroom interactions. The Chinese subset is drawn from the *National Primary and Secondary Smart Education Platform* (Ministry of Education of the People’s Republic of China, 2024), comprising 401 rounds from 32 verified junior secondary open-class videos. The mathematics subset integrates *TIMSS-Math* (Stigler et al., 2000) (spanning classrooms from seven countries, predominantly English-speaking) and the *NCTE* corpus (Demszky & Hill, 2023), totaling 395 rounds. The English subset comes from the *TSCC* v2 corpus (Caines et al.,

Figure 2: **Chinese classroom example with persona-conditioned responses.** The top shows a real IRF excerpt (with translation); the bottom shows virtual-student outputs under high/low extraversion with behavior–expression labels, showing the EduPersona pipeline and how personas induce distinct linguistic and non-verbal patterns.

2022), contributing 512 rounds of authentic classroom dialogues. Overall, \mathcal{D}_{base} offers **cross-subject, cross-lingual, and cross-cultural** coverage while strictly complying with copyright and privacy rules, providing a diverse, reliable, and pedagogically grounded resource that underpins persona modeling, behavior annotation, and evaluation tasks.

3.2 PERSONA AND BEHAVIOR ANNOTATION

Building on \mathcal{D}_{base} , we enrich the dataset with two additional layers of annotation: *persona stylization* and *behavior-expression labeling*, resulting in the complete dataset \mathcal{D} . This expansion substantially enhances stylistic and interactional diversity, while providing a unified foundation for the subsequent evaluation tasks.

Persona Stylization. We adopt the Big Five personality theory to define the persona set as: $P = \mathcal{F} \times \{H, L\}$, $\mathcal{F} = \{\text{Extraversion, Agreeableness, Conscientiousness, Neuroticism, Openness}\}$, where H and L denote high and low levels, yielding $|P| = 10$ standardized persona types (see App. B.4.1). For each sample (x, y) consisting of classroom context and student response, we define a rewriting function: $g : (x, y, p) \mapsto y^{(p)}$, where $p \in P$ is the target persona and $y^{(p)}$ the persona-conditioned output. The function g preserves semantic content while adapting expression style. Each dialogue is thus expanded into 10 persona-specific versions, while teacher feedback remains unchanged. This expansion increases the dataset size by nearly an order of magnitude, enriching stylistic diversity for persona-aware evaluation.

Behavior-Expression Labeling. Classroom discourse is inherently multimodal, involving both verbal responses $y^{(p)}$ and non-verbal signals. We construct a four-dimensional label space (see App. B.4.3): $B = B_{beh} \times B_{emo} \times B_{exp} \times B_{voi}$, where B_{beh} (Behavior), B_{emo} (Emotion), B_{exp} (Expression), and B_{voi} (Voice) jointly capture learning orientation and observable signals. Each instance is denoted as $b = (beh, emo, exp, voi) \in B$. The labeling function is defined as: $f : (x, y^{(p)}, p) \mapsto b$, where GPT-4o infers b given $(x, y^{(p)}, p)$, with low-confidence or inconsistent predictions flagged for human review. This ensures high-quality alignment between verbal and non-verbal signals.

In summary, the enriched dataset is formalized as: $\mathcal{D} = \{(x, y^{(p)}, p, b, s)\}$, where $s \in S$ denotes the subject. By integrating the persona set P and behavior label space B , \mathcal{D} provides a systematic and extensible foundation for evaluating the three tasks of basic coherence, student realism, and persona consistency (see Fig. 2).

3.3 DATA QUALITY VERIFICATION AND STATISTICS

Quality Control. We implemented rigorous quality-control procedures to ensure the authenticity, reliability, and consistency of \mathcal{D} . The pipeline included automated crawling of classroom videos and subtitles, text cleaning and normalization, reconstruction of IRF (Initiation–Response–Feedback) structures, and teacher–student role assignment, supported by a human-in-the-loop verification loop that achieved 100% confirmed role labels. Chinese dialogues were cross-checked against original classroom videos, while the mathematics and English subsets underwent repeated large-scale sampling and manual screening to remove low-quality cases. All utterances were fully de-identified, and behavior–expression annotations reached complete coverage with labels strictly drawn from the predefined vocabulary, ensuring a reliable foundation for persona stylization and behavior modeling. To complement these process-level measures, we conducted an independent human audit to quantitatively assess annotation reliability (see App. B.2). We randomly sampled 20 dialogue instances spanning all ten Big Five personas and collected 200 blind judgments from 10 domain experts across four label dimensions. Results show strong reliability: an overall

Table 1: Statistics for \mathcal{D}_{base} (R = Rounds, T = Turns).

Subject	R	T	T/R
Chinese	401	1,531	3.82
Math	395	3,420	8.66
English	512	7,863	15.36
Total	1,308	12,814	9.80

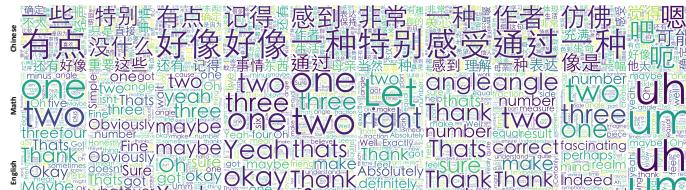


Figure 3: **Cross-subject and persona linguistic variation.** Word clouds across Chinese, Math, and English under high/low persona settings reveal distinct lexical and stylistic patterns, offering linguistic cues for evaluating realism and persona consistency.

acceptance rate of 90.5%, an average inter-annotator correlation of 0.74, and 85% unanimous approvals—where “unanimous” requires all experts to fully endorse all four dimensions of a sample, an exceptionally stringent criterion. Notably, imperfect consensus reflects the inherent subjectivity of multimodal interpretation rather than weaknesses in annotation quality.

Statistical Analysis. Beyond quality assurance, we performed linguistic analyses to examine the effects of persona stylization. As shown in Fig. 3, word clouds illustrate cross-subject and cross-persona token distributions, revealing distinct lexical preferences and expression patterns under different Big Five settings. These differences highlight the interpretability of persona-conditioned outputs and provide observable linguistic cues. Moreover, Fig. 4 presents a heatmap of vocabulary richness, showing that both subject domain and persona traits significantly affect lexical coverage. For example, English classes exhibit broader lexical diversity overall, while high extraversion and high openness personas consistently yield richer vocabulary across all subjects. These results demonstrate that the dataset not only achieves large scale and high consistency but also encodes quantifiable cross-subject and cross-persona linguistic variation, offering critical support for evaluation.

The final dataset thus achieves balanced coverage across subjects, languages, persona types, and behavior-expression dimensions. Its large scale and strong consistency make it well-suited for systematic evaluation of virtual student agents. Full distributions and examples are provided in the appendix for reproducibility and further extension.

4 EVALUATION FRAMEWORK

Evaluating virtual student agents poses the fundamental challenge of transforming inherently subjective abilities into measurable and reproducible statistics. To address this, we formalize the agent as a conditional generative model: $M : (x_t, C, p, s) \mapsto Y_t$, where x_t denotes the teacher’s input at turn t , C the dialogue context (including prior turns), $p \in P$ the persona configuration of the student agent, $s \in S$ the subject domain, and Y_t the generated response with associated labels. Equivalently, the model induces a conditional distribution $\mathbb{P}_M(Y_t | x_t, C, p, s)$, which is compared against a reference distribution $\mathbb{P}^*(Y_t | x_t, C, p, s)$ derived from the dataset \mathcal{D} . The evaluation problem thus reduces to measuring the statistical divergence between \mathbb{P}_M and \mathbb{P}^* under task-specific criteria. For experimental consistency, we partition the dataset \mathcal{D} into a fine-tuning set \mathcal{D}_{ft} and a held-out test set \mathcal{D}_{test} , following a fixed 6:4 split. Fine-tuning is performed exclusively on \mathcal{D}_{ft} , while all evaluations are conducted on \mathcal{D}_{test} . It ensures that reported results reflect genuine generalization performance rather than memorization of training data.

To make subjective ability assessment operational, we decompose the problem into three progressive tasks: (Task 1) **Basic coherence**: evaluating whether multimodal behavior-expression labels align with contextual semantics; (Task 2) **Student realism**: assessing whether responses follow authentic student traits and classroom norms (e.g., admitting ignorance, requesting hints, self-correcting); (Task 3) **Persona consistency**: examining whether persona traits and stylistic patterns remain stable across extended dialogues. These tasks form a progression from observable behaviors to perceived authenticity and long-term stability. All evaluations are stratified by subject s and persona p , with confidence intervals and statistical tests ensuring robustness. In doing so, EduPersona transforms vague notions such as “realism” and “consistency” into quantifiable distributional properties, enabling systematic and reproducible benchmarking of virtual student agents. See App. C for details.

4.1 TASK 1: BASIC COHERENCE

At the most observable level, a virtual student agent should not only generate textual content but also produce behavior-expression patterns that are consistent with contextual semantics and the persona configuration. Given (x_t, C, p, s) , the model outputs a response \hat{y}_t and a predicted behavior vector:

270 $\hat{b}_t = (\hat{beh}_t, \hat{emo}_t, \hat{exp}_t, \hat{voi}_t) \in B = B_{beh} \times B_{emo} \times B_{exp} \times B_{voi}$, where B_{beh} (ICAP-based
 271 classroom behaviors), B_{emo} (emotions), B_{exp} (facial expressions), and B_{voi} (vocal styles) form a
 272 *closed vocabulary*. Reference labels $b_t = (beh_t, emo_t, exp_t, voi_t)$ are generated by GPT-4 under
 273 persona and context constraints and then human-audited (see Sec. 3.2). We macro-average all metrics
 274 over the four dimensions, using the index set $\mathcal{I} = \{beh, emo, exp, voi\}$ and T evaluation instances; \emptyset
 275 denotes no output, and B_i the codebook of dimension i .

276 **Step 1. Response rate.** We first check whether any output is produced on each dimension:

$$278 \text{RespRate} = \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} \frac{1}{T} \sum_{t=1}^T \mathbb{1}[\hat{b}_{t,i} \neq \emptyset]. \quad (1)$$

280 **Step 2. Validity rate.** Conditional on producing outputs, we verify whether they fall within the
 281 predefined vocabulary:

$$283 \text{ValidRate} = \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} \frac{\sum_{t=1}^T \mathbb{1}[\hat{b}_{t,i} \in B_i]}{\max\left(1, \sum_{t=1}^T \mathbb{1}[\hat{b}_{t,i} \neq \emptyset]\right)}. \quad (2)$$

286 **Step 3. Label prediction quality.** Restricting to dimensions with outputs, we evaluate agreement
 287 with the reference annotations. To disentangle different error sources, we define three complementary
 288 accuracies (same numerator—the number of correct labels—but different denominators):

$$289 \text{RawAcc} = \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} \frac{\sum_{t=1}^T \mathbb{1}[\hat{b}_{t,i} = b_{t,i}]}{\max\left(1, \sum_{t=1}^T \mathbb{1}[\hat{b}_{t,i} \neq \emptyset]\right)}, \quad (3)$$

$$292 \text{ValAcc} = \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} \frac{\sum_{t=1}^T \mathbb{1}[\hat{b}_{t,i} = b_{t,i}]}{\max\left(1, \sum_{t=1}^T \mathbb{1}[\hat{b}_{t,i} \in B_i]\right)}, \quad (4)$$

$$295 \text{OverallAcc} = \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} \frac{1}{T} \sum_{t=1}^T \mathbb{1}[\hat{b}_{t,i} = b_{t,i}]. \quad (5)$$

298 These three metrics satisfy the inequality $\text{OverallAcc} \leq \text{RawAcc} \leq \text{ValAcc}$, reflecting a progressive
 299 tightening from *availability* \rightarrow *validity* \rightarrow *end-to-end correctness*. Task 1 thus provides the most
 300 objective baseline for behavioral alignment and supplies interpretable low-level signals upon which
 301 higher-level evaluations of student realism (Task 2) and persona consistency (Task 3) can be built.

303 4.2 TASK 2: STUDENT REALISM

305 Student realism evaluates whether a model’s response looks like a real student. This concept goes
 306 beyond linguistic fluency, requiring identity credibility (e.g., admitting ignorance, requesting hints,
 307 self-correction) and adherence to classroom interaction norms. To ground the evaluation, we consulted
 308 ten experts from education and AI, who reviewed a sampled subset of responses and distilled a set
 309 of core dimensions $\mathcal{R} = \{r_1, \dots, r_m\}$, including linguistic naturalness, identity credibility, strategy
 310 appropriateness, and coordination with teacher feedback. These dimensions form the foundation
 311 for subsequent large-scale evaluation. We then encode \mathcal{R} into prompts to construct an evaluation
 312 function: $G_{\mathcal{R}} : (x_t, C, p, s, \hat{y}_t) \mapsto \{\hat{h}, \hat{\mathbf{z}}\}$, where $\hat{h} \in \{0, 1\}$ denotes the overall student-likeness
 313 decision and $\hat{\mathbf{z}} \in \{0, 1\}^m$ the dimension-wise outcomes. In this setup, GPT does *not* serve as an
 314 independent judge but as a scalable extension of the expert-derived criteria, ensuring interpretability
 315 and reproducibility. Results are aggregated across subjects s and personas p , with macro-averaged
 316 scores reported at both overall and dimension levels, yielding a systematic, interpretable, and scalable
 317 evaluation of student realism.

318 4.3 TASK 3: PERSONA CONSISTENCY

320 Persona consistency requires virtual student agents to remain aligned with the target persona in
 321 both single-turn responses and extended dialogues. We define a standardized confidence function
 322 with range $[0, 1]$: $J(\hat{y}_t, p) \in [0, 1]$, where $J(\hat{y}_t, p) = 0$ indicates complete mismatch, $J(\hat{y}_t, p) = 1$
 323 indicates perfect alignment, and intermediate values reflect partial consistency. Evaluation is
 conducted at two scales. For **short-term consistency**, each generated response \hat{y}_t on the held-out

324 test set \mathcal{D}_{test} receives a persona score, and the average across samples is reported. For **long-term**
 325 **consistency**, models engage in fixed 10-turn classroom-style interactions driven by a *Teacher-Policy* π_T induced from the full dataset \mathcal{D} , which captures authentic instructional patterns such as
 326 IRF structures, scaffolding, and progressive difficulty. Scores are aggregated over the session to
 327 assess stability under sustained interaction. A unified metric is applied to both settings: $Cons = \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} J(\hat{y}_t, p)$, where $\mathcal{T} = \{1, \dots, N\}$ for short-term consistency (with N test samples) and
 328 $\mathcal{T} = \{1, \dots, 10\}$ for long-term interactive sessions (fixed at 10 turns). This formulation allows us to
 329 examine both immediate persona alignment and its persistence throughout extended interactions.
 330

333 5 EXPERIMENTAL DESIGN AND ANALYSIS

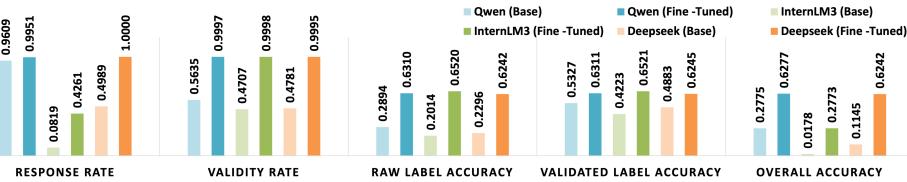
335 Building on EduPersona, we delineate the performance boundaries of virtual student agents across
 336 *basic coherence*, *student realism*, and *persona consistency*. We study two complementary settings
 337 in a unified protocol: baseline evaluation, where three representative foundation LLMs $\mathcal{M}_{base}^{(i)}$ are
 338 directly assessed without additional adaptation, and persona-conditioned evaluation, where each base
 339 model $\mathcal{M}^{(i)}$ is fine-tuned over the Big Five-based persona set $P = \{p_1, \dots, p_{10}\}$ to obtain $\mathcal{M}_{ft}^{(i)}(p)$,
 340 yielding $3 \times 10 = 30$ EduPersona-trained variants. All evaluations are run on the held-out test set
 341 \mathcal{D}_{test} , while fine-tuning uses only \mathcal{D}_{ft} ; the complete dataset \mathcal{D} is split 6:4 (train:test) to emphasize
 342 generalization. Within this setup, Sec. 5.1 outlines the model lineup and fine-tuning configuration;
 343 Secs. 5.2–5.4 report task-wise results. Further implementation details are provided in App. D.
 344

345 5.1 EXPERIMENTAL ARCHITECTURE AND MODEL SELECTION

347 We employ three open-source foundation LLMs as bases: Qwen3-8B (\mathcal{M}^Q), noted for strong
 348 Chinese–English instruction following (Yang et al., 2025); InternLM3-8B-Instruct (\mathcal{M}^I), robust in
 349 Chinese educational scenarios with broad multilingual coverage (Cai et al., 2024); and DeepSeek-R1-
 350 Distill-Qwen-14B (\mathcal{M}^D), distilled for enhanced mathematical and logical reasoning (Guo et al., 2025).
 351 For each $\mathcal{M}^{(j)}$ and persona $p \in P = \{p_1, \dots, p_{10}\}$, we obtain a persona-specific variant $\mathcal{M}_{ft}^{(j)}(p)$,
 352 while the unadapted counterparts $\mathcal{M}_{base}^{(j)}$ serve as references. Fine-tuning follows a consistent LoRA
 353 configuration (rank $r = 16$, scaling $\alpha = 32$) with AdamW, learning rate $\eta = 3 \times 10^{-4}$, per-device
 354 batch size 8 and gradient accumulation 4, for up to 5 epochs. Each turn is encoded as a unified input
 355 $u_t = (x_t, C, p, s, b_t)$ to couple generative dialogue with closed-vocabulary behavior–expression
 356 codes. Inference settings and random seeds are aligned across models.
 357

358 5.2 BASIC COHERENCE: CAN VIRTUAL STUDENTS GENERATE MULTIMODAL BEHAVIORS 359 ALIGNED WITH CONTEXT?

360 Basic coherence requires virtual students not only to produce text but also to align behaviors,
 361 emotions, expressions, and vocal styles with the classroom context. We evaluate three model
 362 families using the five metrics defined in Sec. 4.1—response rate, validity rate, RawAcc, ValAcc, and
 363 OverallAcc—macro-averaged across four dimensions (behavior, emotion, expression, voice).
 364



370 Figure 5: **Effect of persona fine-tuning on basic coherence.** Fine-tuning consistently enhances all
 371 five coherence metrics across models. Qwen and DeepSeek exceed 0.62 OverallAcc with strong label
 372 alignment, while InternLM3 also improves but remains limited by its lower response rate.
 373

374 Fig. 5 shows that **persona fine-tuning substantially enhances multimodal alignment**. Qwen
 375 (0.9951/0.9997) and DeepSeek (1.0000/0.9995) achieve near-perfect response and validity rates,
 376 while InternLM3 retains high validity (0.9998) but suffers from low response coverage (0.4261).
 377 For label alignment, fine-tuned RawAcc and ValAcc converge in the 0.624–0.653 range, a large
 378 improvement over base versions (e.g., Qwen: 0.2894 → 0.6310). With validity nearly saturated,
 379

Raw and Val scores converge, whereas base models show wider Raw–Val gaps due to frequent OOV outputs (e.g., DeepSeek: 0.2296 → 0.4883). For end-to-end correctness, Qwen and DeepSeek reach OverallAcc of 0.6277 and 0.6242, far above their baselines (0.2775/0.1145), while InternLM3 remains at 0.2773, constrained by limited response coverage.

In summary, Task 1 demonstrates that persona fine-tuning substantially improves basic coherence: Qwen and DeepSeek approach practical levels of multimodal alignment, while InternLM3 remains constrained by response generation. Beyond the overall gains, the fine-grained results in App. D.1 reveal two key insights. First, a consistent difficulty hierarchy emerges across dimensions (Emotion being the easiest and Behavior the hardest) indicating that residual errors arise from discourse- and intent-level challenges rather than random noise. Second, Qwen and DeepSeek converge to a similar end-to-end accuracy after fine-tuning (OverallAcc \approx 0.62), implying that task structure and dataset design, rather than model scale alone, largely determine the performance ceiling. With validity already near saturation, future improvements are likely to depend on expanding response coverage and strengthening fine-grained behavioral guidance.

5.3 STUDENT REALISM: CAN VIRTUAL STUDENTS BE LIKE REAL STUDENTS?

Student realism is a key criterion for evaluating whether virtual students resemble real learners. Using expert-derived dimensions operationalized through an automatic evaluator, we analyze results from both persona and model perspectives (Fig. 6).

Persona-wise analysis (Fig. 6a). Fine-tuned models exhibit consistently stronger realism across all personas, yet heterogeneity persists. High Conscientiousness (HC) and High Openness (HO) remain lower both before and after fine-tuning, with modest gains, whereas High Neuroticism (HN), Low Conscientiousness (LC), and Low Openness (LO) achieve relatively high realism. This reflects the interaction between persona traits and model defaults: HC/HO emphasize objective, comprehensive, and teacher-aligned behaviors, overlapping with LLMs’ inherent answer-first tendency, thus appearing more machine-like. By contrast, HN/LC/LO manifest hesitation, partial responses, or self-corrections, which enhance perceived authenticity and yield higher realism.

Model-wise analysis (Fig. 6b).

At the baseline level, the three families differ substantially (Qwen 0.7019, InternLM3 0.6478, DeepSeek 0.556). After fine-tuning, however, all models converge to a narrow band around 0.82 (Qwen 0.8221, InternLM3 0.8265, DeepSeek 0.8176). This demonstrates that persona conditioning both elevates student realism and reduces inter-model disparities.

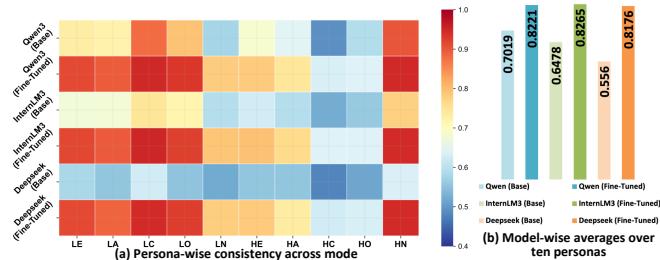


Figure 6: **Persona fine-tuning markedly improves student realism.** EduPersona brings all three model families to a converged level around 0.82 while revealing stable persona-specific differences (HC/HO harder, HN/LC/LO easier).

In summary, Task 2 demonstrates that persona fine-tuning markedly improves student realism and brings different model families to a converged performance level, although persona-specific bottlenecks persist. As detailed in App. D.2, gains are uneven across models—with DeepSeek benefiting the most—and cross-task regularities emerge: the Emotion dimension (easiest in Task 1) aligns with high-realism personas (HN/LN/LO), while the Behavior dimension (hardest in Task 1) aligns with low-realism personas (HC/HO). These patterns affirm EduPersona’s ability to enhance higher-level perceptual realism while revealing trait-specific challenges, forming a strong foundation for evaluating long-horizon persona consistency.

5.4 PERSONA CONSISTENCY: CAN VIRTUAL STUDENTS MAINTAIN STABLE PERSONAS DURING INTERACTIONS?

Task 3 evaluates whether virtual students can maintain stable persona traits throughout interactions. Results show that fine-tuned models achieve substantially higher and more stable consistency at both persona and model levels, confirming the effectiveness of persona conditioning.

Persona-wise analysis (Fig. 7a). While fine-tuning consistently improves all ten personas, heterogeneity persists. High Conscientiousness (HC, 0.731) and High Openness (HO, 0.779) remain the most difficult to sustain, even after adaptation, whereas High Neuroticism (HN, 0.901), Low Conscientiousness (LC, 0.887), and Low Openness (LO, 0.873) achieve the highest stability. This echoes Task 2’s findings on realism, suggesting that structured, “idealized” personas are both less authentic and less consistent, while personas reflecting hesitation or partial responses are easier to maintain. Gains also vary across personas: Low Extraversion (+0.146), Low Openness (+0.133), and Low Agreeableness (+0.130) benefit most, whereas High Openness (+0.062) and High Conscientiousness (+0.073) improve the least.

Model-wise analysis (Fig. 7b).

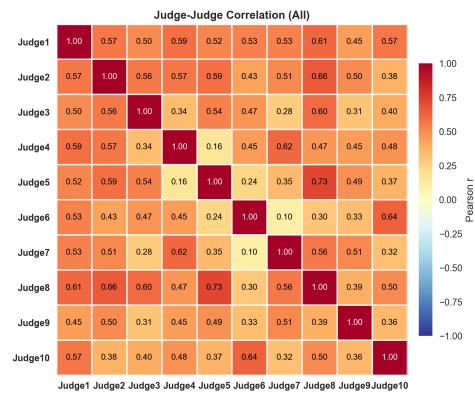
At the baseline level, Qwen, InternLM3, and DeepSeek differ significantly (0.795, 0.723, and 0.677). After fine-tuning, however, all three converge to a narrow range of 0.833–0.841, showing that persona conditioning boosts consistency while reducing cross-family disparities.

Multi-turn consistency.

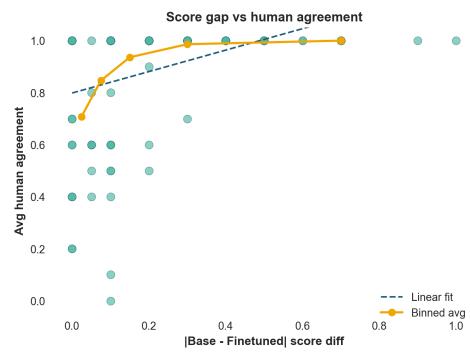
To compare the persona retention ability of fine-tuned versus closed-source models, we conducted a 10-turn English classroom experiment, involving three LoRA-fine-tuned models (Qwen3, InternLM3, DeepSeek) and GPT-4o. LoRA-fine-tuned models retained persona traits even after explicit prompts disappeared, with Qwen3-LoRA achieving the highest overall score (0.920 ± 0.042). All three models maintained ≥ 0.8 in later turns (6–10), whereas GPT-4o quickly drifted once persona instructions vanished, averaging only 0.480 ± 0.262 and dropping below 0.50 in later turns. This highlights the importance of fine-tuning for long-horizon persona stability.

In summary, Task 3 shows that persona consistency is more demanding than student realism, yet persona fine-tuning substantially improves long-horizon stability and reduces both model-level and trait-level disparities. Persistent bottlenecks remain for HC and HO personas, whereas HN, LC, and LO are consistently easier to maintain. Full score distributions and supplementary analyses are provided in App. D.3.

5.5 RELIABILITY VALIDATION OF AUTOMATED METRICS



(a) Judge–judge correlation matrix



(b) Score gap vs. human agreement

Figure 8: Reliability of subjective evaluation. (a) Inter-annotator correlations reveal a stable and structured agreement pattern across 10 experts, rather than random variability. (b) Human–AI agreement increases monotonically with model score gaps, reaching full consensus at large performance differences, demonstrating the evaluator’s sensitivity and alignment with human judgment.

To validate the reliability of the subjective metrics in Task 2 and Task 3, we constructed 120 evaluation instances spanning three model families and ten persona types, and collected 1,200 blind judgments from 10 experts.

486 **Inter-judge consistency.** As shown in Fig. 8a, pairwise Pearson correlations predominantly fall
 487 within 0.40–0.60, with several pairs reaching 0.60–0.73. The absence of low or negative correlations
 488 indicates a stable and structured agreement pattern rather than random variability, providing a reliable
 489 human reference for evaluating automated metrics.

490 **Human–AI alignment.** Building on this stable human baseline, the automated evaluator achieves
 491 strong alignment with expert consensus: 95.0% majority agreement on Task 2, 90.0% on Task 3, and
 492 92.5% overall. Given the inherently subjective nature of the tasks, such alignment indicates that the
 493 automated metrics capture the core decision logic used by experts.

494 **Sensitivity to performance differences.** As shown in Fig. 8b, human agreement increases monotonically
 495 with the score gap between base and fine-tuned models. Agreement is around 0.7 when
 496 the gap is small (≤ 0.05), rises sharply to 93–100% for moderate gaps (0.10–0.40), and reaches
 497 100% for large gaps (>0.40). This demonstrates that the automated evaluator not only produces stable
 498 judgments but also faithfully reflects human sensitivity to model performance differences.

499 Overall, the experts exhibit a clear and stable consistency structure, and the automated evaluator
 500 aligns closely with both their overall decisions and their sensitivity patterns, validating GPT-4o as
 501 a reliable, sensitive, and interpretable tool for subjective ability assessment. For a comprehensive
 502 breakdown of the experimental setup, sensitivity analysis, and fine-grained reliability across models,
 503 please refer to App. E.

505 5.6 SUMMARY

506 The three experiments outline the capability landscape of virtual student agents. In **Task 1 (basic**
 507 **coherence)**, Qwen and DeepSeek converge around 0.62 after fine-tuning (0.6277/0.6242), while
 508 InternLM3 remains substantially lower (0.2773) due to limited response coverage (RespRate 0.4261;
 509 App. D.1). For **Task 2 (student realism)**, initial gaps (Qwen 0.7019, InternLM3 0.6478, DeepSeek
 510 0.5560) largely disappear after fine-tuning, with all models converging near 0.82 (App. D.2). In
 511 **Task 3 (persona consistency)**, scores rise from 0.795/0.723/0.677 to ~ 0.84 (0.841/0.834/0.837),
 512 again showing strong gains and cross-family convergence (App. D.3). Together, these results show
 513 that EduPersona improves absolute performance while aligning outcomes across model families.
 514 The tasks form a clear progression: Task 1 evaluates structural compliance, Task 2 human-perceived
 515 realism, and Task 3 long-horizon trait stability. Persona-level patterns are consistent—**HC/HO persist**
 516 **as bottlenecks**, whereas **HN/LC/LO are easier to emulate**, mirroring Task 1’s “Emotion easier,
 517 Behavior harder” trend. A 10-turn analysis further shows that LoRA-fine-tuned models maintain
 518 persona traits even when prompts vanish (e.g., Qwen3-LoRA 0.920 ± 0.042), whereas GPT-4o exhibits
 519 drift (0.480 ± 0.262), indicating that **long-range stability depends on fine-tuning rather than model**
 520 **scale**. Overall, performance ceilings are shaped more by persona type and interaction length than by
 521 parameter count, motivating future work on improving coverage, refining behavior supervision, and
 522 incorporating hesitation–repair–collaboration signals into idealized personas.

523 6 CONCLUSION

524 This work presents **EduPersona**, a systematic framework for evaluating three core subjective abilities
 525 of virtual student agents—basic coherence, student realism, and persona consistency. Experimental
 526 results show that persona fine-tuning substantially improves performance, with models converging
 527 to scores of 0.62, 0.82, and 0.84 across the three tasks. Stable persona-specific gaps remain: traits
 528 such as high conscientiousness and openness are harder to emulate, whereas high neuroticism, low
 529 conscientiousness, and low openness are easier to sustain. These patterns reveal structural links
 530 between personality traits and model behaviors. **We further conduct a supplementary human–AI**
 531 **alignment study demonstrating that GPT-4o’s judgments closely match expert consensus, providing**
 532 **strong empirical support for the reliability of the automated evaluation metrics.** Overall, EduPersona
 533 outlines a progression from structural compliance to perceived realism and long-horizon trait stability,
 534 highlighting the central role of behavioral dimensions and sustained dialogue. While fine-tuning
 535 narrows performance disparities, challenges persist in response coverage, idealized personas, and
 536 long-term stability. Future work should strengthen fine-grained behavioral supervision, promote more
 537 naturalistic interaction, and extend the framework to broader interdisciplinary settings, positioning
 538 EduPersona as a pathway toward trustworthy and human-aligned educational agents.

540
541
ETHICS STATEMENT

542 This work complies with ethical standards and data usage regulations. The EduPersona dataset is
 543 constructed from publicly available classroom resources, with all data anonymized to remove IDs and
 544 other identifiers. Persona configurations are derived from the well-established Big Five personality
 545 theory and serve only as abstract stylistic constructs for modeling language and behavior; they do
 546 not encode demographic or sensitive attributes. Thus, this study introduces no new ethical risks and
 547 instead provides a safe, controlled, and reproducible framework for evaluating virtual students in
 548 educational contexts.

549
550
REPRODUCIBILITY STATEMENT
551

552 To ensure reproducibility, we will open-source the complete codebase, annotation guidelines, prepro-
 553 cessing pipeline, and trained models. The released EduPersona resources will include the full data
 554 schema (prompts, vocabularies, labels, and evaluation metrics). Third-party raw media will not be
 555 redistributed due to licensing restrictions; instead, we provide scripts to re-derive processed text from
 556 public resources. Appendix B details data collection and preprocessing, Appendix B.4.1 and B.4.2
 557 describe persona configurations and stylization prompts, and Appendix C provides the evaluation
 558 prompts. Additional fine-grained analyses are reported in Appendix D.1–D.3 to further substantiate
 559 our conclusions. All code, data, and models will be released upon acceptance to foster long-term
 560 reproducibility and extensibility in educational agent research.

561
562
REFERENCES

563 Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
 564 Mathqa: Towards interpretable math word problem solving with operation-based formalisms.
 565 *arXiv preprint arXiv:1905.13319*, 2019.

566

567 Beng Heng Ang, Sujatha Das Gollapalli, and See Kiong Ng. Socratic question generation: A novel
 568 dataset, models, and evaluation. In *Proceedings of the 17th Conference of the European Chapter
 569 of the Association for Computational Linguistics*, pp. 147–165, 2023.

570 Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
 571 Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
 572 from ai feedback. *arXiv preprint arXiv:2212.08073*, 2022.

573

574 Paulo Blikstein and Marcelo Worsley. Multimodal Learning Analytics and Education Data
 575 Mining: using computational technologies to measure complex learning tasks. *Journal of
 576 Learning Analytics*, 3(2):220–238, September 2016. doi: 10.18608/jla.2016.32.11. URL
 577 <https://learning-analytics.info/index.php/JLA/article/view/4383>.

578 Zheng Cai, Maosong Cao, Haojong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
 579 Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
 580 Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
 581 Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
 582 Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
 583 Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
 584 Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan Song,
 585 Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang,
 586 Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong,
 587 Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
 588 Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo
 589 Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue Zhang, Hui
 590 Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, Yicheng Zou,
 591 Xipeng Qiu, Yu Qiao, and Dahu Lin. Internlm2 technical report, 2024.

592 Andrew Caines, Helen Yannakoudakis, Helen Allen, Pascual Pérez-Paredes, Bill Byrne, and Paula
 593 Buttery. The teacher-student chatroom corpus version 2: more lessons, new annotation, automatic
 detection of sequence shifts. In David Alfter, Elena Volodina, Thomas François, Piet Desmet,

594 Frederik Cornillie, Arne Jönsson, and Evelina Rennes (eds.), *Proceedings of the 11th Workshop on*
 595 *NLP for Computer Assisted Language Learning*, pp. 23–35, Louvain-la-Neuve, Belgium, December
 596 2022. LiU Electronic Press. URL [https://aclanthology.org/2022.nlp4call-1.
 597 3/](https://aclanthology.org/2022.nlp4call-1.3/).

598 Jiangjie Chen, Xintao Wang, Rui Xu, Siyu Yuan, Yikai Zhang, Wei Shi, Jian Xie, Shuang Li, Ruihan
 599 Yang, Tinghui Zhu, Aili Chen, Nianqi Li, Lida Chen, Caiyu Hu, Siye Wu, Scott Ren, Ziquan Fu,
 600 and Yanghua Xiao. From persona to personalization: A survey on role-playing language agents.
 601 *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. Survey Certification.

602

603 Chih-Pu Dai, Fengfeng Ke, Nuodi Zhang, Alex Barrett, Luke West, Saptarshi Bhowmik, Sherry A
 604 Southerland, and Xin Yuan. Designing conversational agents to support student teacher learning in
 605 virtual reality simulation: a case study. In *Extended Abstracts of the CHI Conference on Human*
 606 *Factors in Computing Systems*, pp. 1–8, 2024.

607

608 Dorottya Demszky and Heather Hill. The ncte transcripts: A dataset of elementary math classroom
 609 transcripts, 2023. URL <https://arxiv.org/abs/2211.11772>.

610

611 James Gee. Chapter 3: Identity as an analytic lens for research in education. *Review of Research in*
 612 *Education - REV RES EDUC*, 25, 01 2000. doi: 10.2307/1167322.

613

614 Ashok K. Goel and Lalith Polepeddi. Jill watson: A virtual teaching assistant for online education. In
 615 Chris Dede, John Richards, and Bror Saxberg (eds.), *Learning Engineering for Online Education*,
 616 pp. 120–143. Routledge, New York, 2018.

617

618 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 619 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 620 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

621

622 Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
 623 Chuancheng Lv, Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-discipline chinese
 624 evaluation suite for foundation models. *Advances in Neural Information Processing Systems*, 36:
 625 62991–63010, 2023.

626

627 Hayley K. Jach, Lisa Bardach, and Kou Murayama. How Personality Matters for Education Research.
 628 *Educational Psychology Review*, 35(3):94, September 2023. ISSN 1573-336X. doi: 10.1007/
 629 s10648-023-09807-4. URL <https://doi.org/10.1007/s10648-023-09807-4>.

630

631 Prijat Kar and Ridhima Kar. Convergence of chatbot personalities using reinforcement learning and
 632 text generation. In *Proceedings of the AAAI Symposium Series*, volume 5, pp. 327–333, 2025.

633

634 Jean Lave and Etienne Wenger. Situated Learning: Legitimate Peripheral Participation,
 635 September 1991. URL [https://www.cambridge.org/highereducation/
 636 books/situated-learning/6915ABD21C8E4619F750A4D4ACA616CD](https://www.cambridge.org/highereducation/books/situated-learning/6915ABD21C8E4619F750A4D4ACA616CD). ISBN: 9780511815355 Publisher: Cambridge University Press.

637

638 Gyeonggeon Lee, Lehong Shi, Ehsan Latif, Yizhu Gao, Arne Bewersdorff, Matthew Nyaaba, Shuchen
 639 Guo, Zhengliang Liu, Gengchen Mai, Tianming Liu, et al. Multimodality of ai for education:
 640 Towards artificial general intelligence. *IEEE Transactions on Learning Technologies*, 2025.

641

642 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 643 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 644 science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521,
 645 2022.

646

647 Yiping Ma, Shiyu Hu, Xuchen Li, Yipei Wang, Yuqing Chen, Shiqing Liu, and Kang Hao Cheong.
 648 When llms learn to be students: The soei framework for modeling and evaluating virtual student
 649 agents in educational interaction. *arXiv preprint arXiv:2410.15701*, 2024.

650

651 Noboru Matsuda, William W. Cohen, and Kenneth R. Koedinger. Teaching the teacher: Tutoring
 652 simstudent leads to more effective cognitive tutor authoring. *International Journal of Artificial*
 653 *Intelligence in Education*, 25(1):1–34, 2015.

648 Ministry of Education of the People's Republic of China. National primary and secondary smart
 649 education platform. <https://www.smarteredu.cn/>, 2024. Accessed: 2025-09-25.
 650

651 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 652 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 653 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 654 27744, 2022.

655 Arthur E. Poropat. A meta-analysis of the five-factor model of personality and academic performance.
 656 *Psychological Bulletin*, 135(2):322–338, March 2009. ISSN 0033-2909. doi: 10.1037/a0014996.
 657

658 Debedeep Sanyal, Agniva Maiti, Umakanta Maharana, Dhruv Kumar, Ankur Mali, C Lee Giles, and
 659 Murari Mandal. Investigating pedagogical teacher and student llm agents: Genetic adaptation
 660 meets retrieval augmented generation across learning style. *arXiv preprint arXiv:2505.19173*,
 661 2025.

662 Kyoungwon Seo, Mina Yoo, Samuel Dodson, and Sung-Hee Jin. Augmented teachers: K–12 teachers’
 663 needs for artificial intelligence’s complementary role in personalized learning. *Journal of Research
 664 on Technology in Education*, 57(4):876–893, 2025.

665 Xiaohuan Song. Emotional recognition and feedback of students in english e-learning based on
 666 computer vision and face recognition algorithms. *Entertainment Computing*, 52:100847, 2025.

667 James W. Stigler, Ronald Gallimore, and James Hiebert. Using video surveys to compare classrooms
 668 and teaching across cultures: Examples and lessons from the timss and timss-r video studies.
 669 *Educational Psychologist*, 35(2):87–100, 2000. doi: 10.1207/S15326985EP3502_3.

670 Le Ying Tan, Shiyu Hu, Darren J Yeo, and Kang Hao Cheong. Artificial intelligence-enabled adaptive
 671 learning platforms: A review. *Computers and Education: Artificial Intelligence*, pp. 100429,
 672 2025a.

673 Le Ying Tan, Shiyu Hu, Darren J Yeo, and Kang Hao Cheong. A comprehensive review on automated
 674 grading systems in stem using ai techniques. *Mathematics*, 13(17):2828, 2025b.

675 Quan Tu, Shilong Fan, Zihang Tian, and Rui Yan. Charactereval: A chinese benchmark for
 676 role-playing conversational agent evaluation, 2024. URL <https://arxiv.org/abs/2401.01275>.

677 Shanshan Wang, Zhen Zeng, Xun Yang, Ke Xu, and Xingyi Zhang. Boosting neural cognitive
 678 diagnosis with student’s affective state modeling. In *Proceedings of the AAAI conference on
 679 artificial intelligence*, volume 38, pp. 620–627, 2024a.

680 Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang, Joleen Liang, Jiliang Tang, Philip S Yu, and
 681 Qingsong Wen. Large language models for education: A survey and outlook. *arXiv preprint
 682 arXiv:2403.18105*, 2024b.

683 Zekun Moore Wang, Zhongyuan Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu,
 684 Hongcheng Guo, Ruitong Gan, Zehao Ni, Jian Yang, Man Zhang, Zhaoxiang Zhang, Wanli
 685 Ouyang, Ke Xu, Stephen W. Huang, Jie Fu, and Junran Peng. Rolellm: Benchmarking, eliciting,
 686 and enhancing role-playing abilities of large language models, 2024c. URL <https://arxiv.org/abs/2310.00746>.

687 Jiongen Xiao and Zifeng Zhang. Eduvqa: A multimodal visual question answering framework for
 688 smart education. *Alexandria Engineering Journal*, 122:615–624, 2025.

689 Nan Xie, Zhengxu Li, Haipeng Lu, Wei Pang, Jiayin Song, and Beier Lu. Msc-trans: A multi-feature-
 690 fusion network with encoding structure for student engagement detecting. *IEEE Transactions on
 691 Learning Technologies*, 2025.

692 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 693 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 694 2025.

702 Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston.
703 Personalizing dialogue agents: I have a dog, do you have pets too? In Iryna Gurevych and Yusuke
704 Miyao (eds.), *Proceedings of the 56th Annual Meeting of the Association for Computational
705 Linguistics (Volume 1: Long Papers)*, pp. 2204–2213, Melbourne, Australia, July 2018. Association
706 for Computational Linguistics. doi: 10.18653/v1/P18-1205. URL <https://aclanthology.org/P18-1205/>.
707

708 Yinhe Zheng, Guanyi Chen, Minlie Huang, Song Liu, and Xuan Zhu. Personalized dialogue
709 generation with diversified traits. *arXiv preprint arXiv:1901.09672*, 2019.
710

711 Jinfeng Zhou, Yongkang Huang, Bosi Wen, Guanqun Bi, Yuxuan Chen, Pei Ke, Zhuang Chen,
712 Xiayao Xiao, Libiao Peng, Kuntian Tang, Rongsheng Zhang, Le Zhang, Tangjie Lv, Zhipeng Hu,
713 Hongning Wang, and Minlie Huang. Characterbench: Benchmarking character customization of
714 large language models, 2024a. URL <https://arxiv.org/abs/2412.11912>.

715 Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi, Louis-Philippe
716 Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, and Maarten Sap. SOTAPIA: Interac-
717 tive evaluation for social intelligence in language agents. In *The Twelfth International Confer-
718 ence on Learning Representations*, 2024b. URL <https://openreview.net/forum?id=mM7VurbA4r>.
719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

This appendix provides implementation details of the EduPersona corpus and the processing steps that support the evaluation framework in the main paper, along with additional fine-grained experimental results that further substantiate our conclusions.

A THE USE OF LARGE LANGUAGE MODELS (LLMs)

During manuscript preparation, Large Language Models (LLMs) were employed solely for language refinement and stylistic polishing.

B DATASET DETAILS

B.1 DETAILED DATA COLLECTION AND PREPROCESSING

The EduPersona corpus is constructed from publicly accessible classroom resources licensed for research, covering three subjects (Chinese, Mathematics, English) across two languages (Chinese/English). Sources include: (i) curated Chinese open-class videos and transcripts from a national education platform, (ii) international mathematics discourse corpora, and (iii) English classroom transcripts. Only segments with clear instructional intent are retained; all personally identifiable information is masked, and collection complies with the original platforms' terms of use. No redistribution of third-party raw media is performed.

Preprocessing and structuring. A unified pipeline ensures cross-subject comparability. Videos and subtitles (or ASR transcripts where subtitles are unavailable) are aligned at the utterance level with normalized punctuation and casing. Teacher–student roles and IRF structures are reconstructed, narration and meta-comments are removed, and turn boundaries are adjusted to avoid truncation. Identifiers such as IDs are masked at source to guarantee non-attributability. A human-in-the-loop process (automatic tagging, sampled review, manual correction) yields verified role labels.

Persona expansion and behavior labeling. To enable persona-conditioned dialogue modeling, each student response is expanded into ten variants using the Big Five dimensions $\mathcal{F} =$ Extraversion, Agreeableness, Conscientiousness, Neuroticism, Openness with high/low polarity, giving $P = \mathcal{F} \times H, L$. Each original (x, y) is rewritten into $y^{(p)}$ that preserves semantics while adapting to persona p . In addition, each $(x, y^{(p)})$ is labeled with a four-dimensional vector $b = (beh, emo, exp, voi)$ covering *Behavior*, *Emotion*, *Expression*, and *Voice*, constrained to a fixed vocabulary (App. B.4.3). Low-confidence or contradictory cases are resolved through human auditing.

Split, statistics, and quality control. The full dataset \mathcal{D} is stratified by subject and persona into fine-tuning (\mathcal{D}_{ft}) and test sets (\mathcal{D}_{test}) with a 6:4 ratio. All evaluation tasks (Tasks 1–3) are performed exclusively on \mathcal{D}_{test} . Before persona expansion, the base corpus \mathcal{D}_{base} contains **1,308** dialogue rounds with **12,814** teacher–student Q&A turns. By subject: Chinese contributes 401 rounds from 32 lessons (1,531 Q&A turns; avg. 3.82/round), Mathematics 395 rounds (3,420 Q&A turns; avg. 8.66/round), and English 512 rounds (7,863 Q&A turns; avg. 15.36/round). After stylization, each turn yields ten persona-conditioned variants, expanding the dataset tenfold. Quality control is embedded at every stage: role integrity verified against source materials, persona fidelity checked by independent judges, label validity enforced with 100% in-vocabulary coverage, and near-duplicates removed via semantic similarity. These measures ensure that EduPersona is reliable, diverse, and ethically compliant, providing a solid foundation for the evaluation framework and subsequent experiments.

B.2 DATA QUALITY VERIFICATION: LABEL VALIDITY

To rigorously assess the validity of the four multimodal label dimensions—behavior, emotion, expression, and voice—we conducted a post-hoc human audit using a strict blind-review protocol. We randomly sampled 20 dialogue instances covering all 10 Big Five persona types and invited 10 domain experts (with backgrounds in education or behavioral analysis) to independently judge the reasonableness of the labels, yielding 200 binary (reasonable / unreasonable) evaluations. This design directly examines the authenticity of the annotations and their cross-observer consistency.

High Reliability and Consensus. As shown in Table A1, the labels exhibit strong overall reliability: the average human acceptance rate is **90.5%**, with individual judges ranging from **85% to 95%**. Majority approval reaches **90%**, and **85%** of the samples receive unanimous agreement (10/10 votes)—a remarkably high rate for fine-grained subjective judgments. Further analysis reveals that **8 of the 10 persona types achieve 100% acceptance**, and **17 of the 20 samples** receive unanimous approval, indicating that neither persona variation nor sample content meaningfully affects label quality.

Table A1: Human Verification of Dataset Labels

Metric	Value
Average Acceptance Rate	90.5%
Majority Agreement Rate (> 50%)	90.0%
Full Agreement Rate (100%)	85.0%

Inter-Annotator Consistency. Fig. A1(Left) shows that all judges maintain acceptance rates above 85%, with no outliers. The pairwise correlation matrix in Fig. A1(Right) further indicates strong alignment across evaluators, with an average Pearson correlation of **0.74**, well above typical values for subjective annotation tasks. This confirms that expert judgments follow a stable, shared standard rather than random variation.

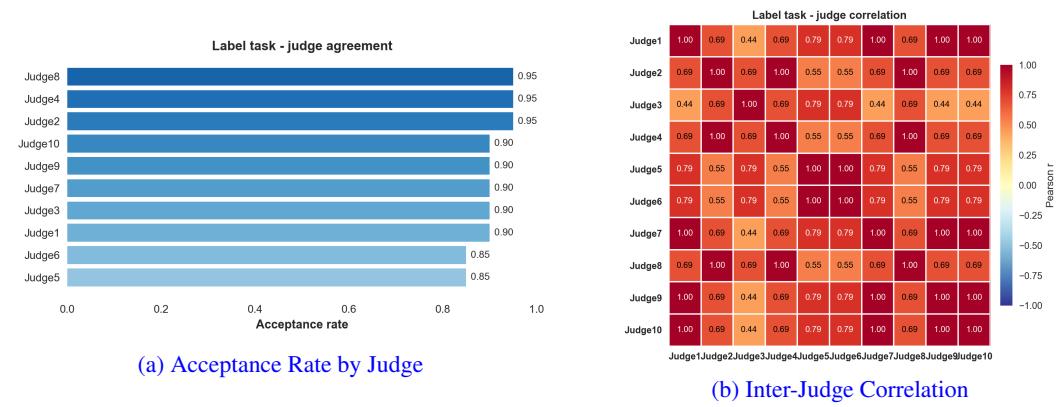


Figure A1: **Reliability of Label Verification.** (a) Individual acceptance rates for the label audit task, all exceeding 85%. (b) Pairwise correlation matrix for label judgments, showing high consistency across experts.

Importantly, the evaluation criteria were intentionally strict: a sample was marked as “not fully accepted” if *any* of its four dimensions appeared questionable. Achieving 90.5% acceptance and 85% unanimity under such stringent conditions demonstrates the robustness of our annotation pipeline. The absence of perfect consensus reflects the inherent complexity of multimodal subjective judgment, rather than any deficiency in the labeling process.

B.3 DATA ACCESS AND ETHICS

We will release full preprocessing and labeling code, along with a legally redistributable subset that mirrors the complete schema (including prompts, vocabularies, and metric definitions), thereby supporting reproducibility of all reported experiments. Third-party raw media are not redistributed; instead, scripts are provided to re-derive processed text from publicly available resources where permitted.

All dialogues are fully de-identified, with names, IDs, and any sensitive information removed. Persona variants are abstract stylistic constructs derived from the Big Five framework and do not encode demographic attributes. We explicitly caution against any attempt at re-identification or demographic inference. The EduPersona corpus is designed under principles of compliance, transparency, and responsible use, ensuring safe deployment in educational and AI research contexts.

864	B.4 MORE INFORMATION ABOUT ANNOTATION
865	
866	B.4.1 TEN PERSONA CONFIGURATIONS BASED ON BIG FIVE THEORY
867	
868	Our persona framework is grounded in the Big Five personality theory (BFAS scale), extending it
869	into ten standardized configurations that represent authentic student behavioral patterns in class-
870	room settings. Each persona is defined through multiple dimensions to ensure comprehensive and
871	scientifically-based characterization.
872	Table A2: Ten persona configurations based on Big Five personality theory.
873	
874	Persona Type
875	Detailed Characteristics
876	High Extraversion
877	Core traits: Take charge, have a strong personality, warm up quickly to others
878	Behavioral traits: Active participation, strong social skills, comfortable expression, high exhibition, obvious dominance
879	Language style: Fluent and confident, detailed elaboration, positive attitude, clear structure, likes to lead conversations
880	Classroom behavior: Strong desire to participate, actively answers questions, proactively shows themselves, frequent interaction with teachers
881	Response patterns: Detailed answers with additional explanations, fluent language but may include repetitions and filler words
882	Low Extraversion
883	Core traits: Do not have an assertive personality, hard to get to know, keep others at a distance
884	Behavioral traits: Introverted and cautious, doesn't like to show off, socially conservative, low participation
885	Language style: Concise and conservative, cautious responses, avoids excessive expression, passive responses
886	Classroom behavior: Less proactive participation, speaks softly, doesn't want to be center of attention
887	Response patterns: Brief answers, sometimes needs teacher encouragement to speak, lighter tone
888	High Agreeableness
889	Core traits: Sympathize with others' feelings, take an interest in other people's lives, feel others' emotions
890	Behavioral traits: Cooperative and caring, considerate and patient, positive feedback, understanding, high empathy
891	Language style: Gentle and friendly, detailed elaboration, accurate expression, caring for others
892	Classroom behavior: Happy to help classmates, actively participates in discussions, pays attention to others' feelings
893	Response patterns: Gentle language, accurate expression, rarely makes mistakes, considers others' feelings
894	Low Agreeableness
895	Core traits: Can't be bothered with others' needs, take advantage of others, not interested in other people's problems
896	Behavioral traits: Competitive, direct and frank, self-focused, less compromising, lacks empathy
897	Language style: Direct and clear, sometimes slightly harsh, focuses on personal views
898	Classroom behavior: More focused on own performance, may lack patience with others' opinions
899	Response patterns: Direct answers, sometimes slightly harsh, more focused on expressing own views
900	High Conscientiousness
901	Core traits: Keep things tidy, like order, carry out plans
902	Behavioral traits: Serious and responsible, organized, clear goals, persistent, highly self-disciplined
903	

Continued on next page

918 **Table A2 continued from previous page**
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Persona Type	Detailed Characteristics
	<p>Language style: Clear and logical, accurate and error-free, strong logic, complete expression</p> <p>Classroom behavior: Listens carefully, well-prepared when answering questions, solid grasp of content</p> <p>Response patterns: Accurate and complete answers, clear logic, rarely makes mistakes</p>
Low Conscientiousness	<p>Core traits: Waste time, find it difficult to get down to work, leave belongings around</p> <p>Behavioral traits: Careless, poor organization, easily distracted, lacks persistence</p> <p>Language style: Simple and direct, occasional errors, incomplete expression, sometimes inconsistent</p> <p>Classroom behavior: Easily distracted, unprepared when answering questions</p> <p>Response patterns: Unstable answers, sometimes right sometimes wrong, incomplete expression</p>
High Neuroticism	<p>Core traits: Get upset easily, get angry easily, get easily agitated</p> <p>Behavioral traits: Nervous and anxious, emotional fluctuations, sensitive and irritable, emotionally unstable</p> <p>Language style: Hesitant and indecisive, repetitive backtracking, incoherent expression, full of uncertainty</p> <p>Classroom behavior: Easily nervous, sensitive to classroom environment, shows worry when answering</p> <p>Response patterns: Full of 'um', 'uh' filler words, repeats and backtracks, incoherent expression</p>
Low Neuroticism	<p>Core traits: Rarely get irritated, not easily annoyed, feel comfortable with self</p> <p>Behavioral traits: Emotionally stable, calm and composed, strong stress adaptability, high self-acceptance</p> <p>Language style: Stable and natural, clear logic, calm expression, few emotional fluctuations</p> <p>Classroom behavior: Remains calm when facing problems, peaceful attitude when answering</p> <p>Response patterns: Stable and natural answers, clear logic, shows inner calm and confidence</p>
High Openness	<p>Core traits: Quick to understand things, believe in the importance of art, can handle a lot of information</p> <p>Behavioral traits: Strong curiosity, imaginative, accepts new things, flexible thinking, values aesthetics</p> <p>Language style: Creative and rich expression, good at association, broad thinking</p> <p>Classroom behavior: Curious about new knowledge, good at asking questions, creative answers</p> <p>Response patterns: Creative answers, makes associations and extensions, can handle complex information</p>
Low Openness	<p>Core traits: Have difficulty understanding abstract ideas, do not like poetry, seldom notice emotional aspects of art</p> <p>Behavioral traits: Conservative and traditional, relies on experience, low acceptance, rigid thinking</p> <p>Language style: Simple and direct, lacks extension, difficulty going deep, prefers concrete descriptions</p>

Continued on next page

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

Table A2 continued from previous page

Persona Type	Detailed Characteristics
	<p>Classroom behavior: Tends to rely on existing knowledge, low acceptance of new content</p> <p>Response patterns: Simple and direct answers, lacks extension, prefers concrete answers over abstract analysis</p>

B.4.2 PROMPT TEMPLATE FOR PERSONA STYLIZATION

To implement personality-driven dialogue generation, we design a structured prompt template that formalizes the subjective task of persona stylization into a systematic workflow. The system prompt defines the model as an “expert in Big Five personality theory” and establishes rules that govern three major components:

First, **student speech processing** is grounded in the five BFAS dimensions, with placeholders specifying core traits, behavioral tendencies, linguistic patterns, classroom manifestations, and response styles. This multi-dimensional mapping ensures that student responses preserve semantic meaning while being rewritten into styles consistent with the target persona.

Second, **teacher speech processing** follows a conservative strategy: original content is preserved whenever possible, with minimal modifications applied only in four predefined cases (e.g., coherence or disambiguation). This guarantees that instructional intent remains intact.

Finally, **quality and output requirements** enforce strict formatting rules and consistency checks, balancing stylistic fidelity with semantic preservation. By integrating these layers, EduPersona transforms persona-conditioned dialogue generation into a reproducible and scalable process, enabling consistent expansion and evaluation in large-scale educational applications.

The Prompt for Persona Stylization.**System Prompt**

You are an expert deeply knowledgeable in student psychology and Big Five personality theory, particularly skilled at simulating different personality traits of students in classroom settings based on the Big Five personality framework.

Your task is to regenerate student speech that conforms to specific personality traits based on provided real teacher-student dialogues, while handling teacher speech according to strict rules.

##INSTRUCTIONS:

- Student speech processing principles, reflecting target student personality traits - [TARGET PERSONALITY]:

- Core traits: [CORE TRAITS FROM BFAS SCALE]
- Behavioral traits: [BEHAVIORAL CHARACTERISTICS]
- Language style: [LANGUAGE PATTERNS]
- Classroom behavior: [CLASSROOM MANIFESTATIONS]
- Response patterns: [TYPICAL RESPONSE STYLES]
- Audio clarity handling: When encountering unclear or inaudible portions, intelligently infer and complete missing content based on dialogue context, logical flow, and target personality traits

- Teacher speech processing principles:

1. Keep teacher’s original words unchanged by default
2. Only make adjustments in the following situations:
 - Teacher’s referential content doesn’t match student’s new response
 - Teacher’s follow-up questions don’t match student’s new response structure
 - Teacher’s guidance obviously conflicts with student’s new state
 - Teacher’s speech contains unclear or inaudible portions

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

3. When modifying, only adjust referential content and connection logic, maintain teacher's educational intent and professionalism
 4. Audio clarity handling: When encountering unclear or inaudible portions in teacher's speech, intelligently infer and complete the missing content based on educational context, teaching objectives, and professional pedagogical patterns

- Important requirements:

1. Strictly follow the scientific descriptions in the prompts to shape student personality traits, and student personality traits should remain consistent throughout the dialogue
2. Student responses should match appropriate student knowledge level and vocabulary
3. Maintain the educational significance and logical relationships of the dialogue
4. For unclear or inaudible portions in the original dialogue (both teacher and student speech), use contextual inference and appropriate behavioral patterns to complete missing content naturally

- **DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION.** Output strictly in specified format without explanatory text.

User:
 Original teacher-student dialogue: [ORIGINAL DIALOGUE TEXT]
 Please regenerate the dialogue based on the above information, where:

Student speech requirements:

- Completely regenerate according to [TARGET PERSONALITY] personality traits
- Reflect typical performance and response patterns of this personality in classroom settings
- Maintain appropriate student knowledge level and expression style
- For any unclear portions, infer and complete based on context and personality traits

Teacher speech requirements:

- Prioritize keeping original words unchanged
- Only make adjustments when references don't match, follow-ups don't align, emotions conflict, or speech is unclear
- For unclear portions, infer and complete based on educational context and teaching objectives
- Maintain teaching objectives and professional expression unchanged

Please strictly follow the format below for output, maintain the same number of dialogue turns as the original dialogue, without any other explanatory text:

Teacher: [Teacher's words]
 Student: [Student's words]
 Teacher: [Teacher's words]
 Student: [Student's words]
 ...

B.4.3 BEHAVIOR-EXPRESSION LABEL SPACE

The behavior-expression annotation system employs a controlled vocabulary across four dimensions.

Table A3: Behavior-expression controlled vocabulary with operational definitions.

Dimension	Label	Operational Definition
	Simple Response	Answers with "yes/no", "I don't know".

Continued on next page

Table A3 (continued)

Dimension	Label	Operational Definition
1083	Mechanical Repetition	Repeats the teacher's question or content verbatim.
1084	Standing Answer	Independently provides a complete answer to the teacher's question.
1085	Example Explanation	Actively uses examples to explain knowledge.
1086	Summary Generalization	Summarizes the learned content; expresses personal understanding.
1088	Active Questioning	Asks questions to express confusion or reflective thoughts.
1089	Supplementary Speech	Expands or supplements others' viewpoints.
1090	Opinion Expression	Refutes or negotiates with others' statements.
1092		
1093	Emotion	Positive/engaged/confident state.
1094	Confused	Unclear thinking or partial understanding but still trying.
1095	Negative	Disappointed, frustrated, helpless emotions.
1096		
1097	Expression	Smile
1098		Pleasant, satisfied facial expression.
1099	Frown	Confused or dissatisfied facial expression.
1100	Nod	Agreeing/understanding/affirming action.
1101	Shake Head	Disagreeing or confused action.
1102	Silence	No obvious facial change; remains calm.
1103		
1104	Voice	Hesitant
1105	Confident	"um/uh/I think/maybe", disfluent.
1106	Enthusiastic	Clear, continuous, steady tone.
1107	Low-tone	Higher pitch, emotional emphasis.
1108	Neutral	Low and weak voice.
1109		Medium rate and tone; no strong affect.
1110		
1111		
1112		
1113		
1114		
1115		
1116		
1117		
1118		
1119		
1120		
1121		
1122		
1123		
1124		
1125		
1126		
1127		
1128		
1129		
1130		
1131		
1132		
1133		

1134 **C EVALUATION PROMPT TEMPLATE FOR TASK 2 & 3**
11351136 Our evaluation adopts a dual-task framework combining automatic language detection with adaptive
1137 prompting to systematically measure *dialogue realism* (Task 2) and *persona consistency* (Task 3).
1138 This design ensures comparability and reproducibility across multilingual datasets.1139 **Prompt Template for Dialogue Evaluation (GPT-4o)**
11401141 **System Prompt**
1142 You are a professional dialogue evaluation expert, skilled in analyzing dialogue realism and
1143 persona consistency. Return the evaluation strictly in JSON format.
11441145 **User Prompt Structure**
11461147 **Dialogue Context:** [FULL DIALOGUE CONTENT]1148 **Student's Final Response to Evaluate:** "[STUDENT'S LAST RESPONSE]"1149 **Target Persona Description:** "[TARGET PERSONALITY TRAITS DESCRIPTION]"1150 **Evaluation Tasks**
11511152 **Task 2 – Realism Assessment** Evaluate how realistic and natural the student's final response
1153 is, in line with human conversational characteristics.
11541155 *Guidelines:*1156

- 1157 • Focus exclusively on the final response.
- 1158 • Consider fluency, logical coherence, natural emotional expression; penalize mechanical or overly structured replies.
- 1159 • Strictly penalize textbook-like or formalized answers.
- 1160 • Response length is irrelevant: short, casual replies can be more realistic.

1161 *Scoring Scale:*1162

- 1163 • 0.9–1.0: Perfectly natural, conversational, spontaneous
- 1164 • 0.7–0.8: Mostly natural, minor formal elements
- 1165 • 0.5–0.6: Partly mechanical or structured
- 1166 • 0.3–0.4: Clearly artificial or textbook-like
- 1167 • 0.0–0.2: Completely mechanical or unrealistic

1168 **Task 3 – Persona Consistency Assessment** Evaluate how naturally and realistically the
1169 student's final response reflects the *target persona traits*, **relative to the provided persona
1170 description**.1171 *Guidelines:*1172

- 1173 • Natural expression outweighs exaggerated or templated trait markers.
- 1174 • Consistency must be judged with reference to the provided persona description.
- 1175 • Consistency does not require repetition or extremity.
- 1176 • Penalize repetitive, formulaic, or mechanized expressions.
- 1177 • Allow minor deviations; focus on overall alignment.
- 1178 • Length is not decisive; natural reflection of traits is key.

1179 *Scoring Scale:*1180

- 1181 • 0.9–1.0: Natural and realistic reflection of traits, no templated artifacts
- 1182 • 0.7–0.8: Mostly consistent, slight templating
- 1183 • 0.5–0.6: Partial consistency, mixed traits, less natural
- 1184 • 0.3–0.4: Traits weak or inconsistent, but still natural
- 1185 • 0.0–0.2: Contradicts traits and unnatural

1186 **Important:** Evaluate only the final student response. Do not use previous dialogue turns as
1187 reference.1188 **Expected Output (strict JSON):**

```

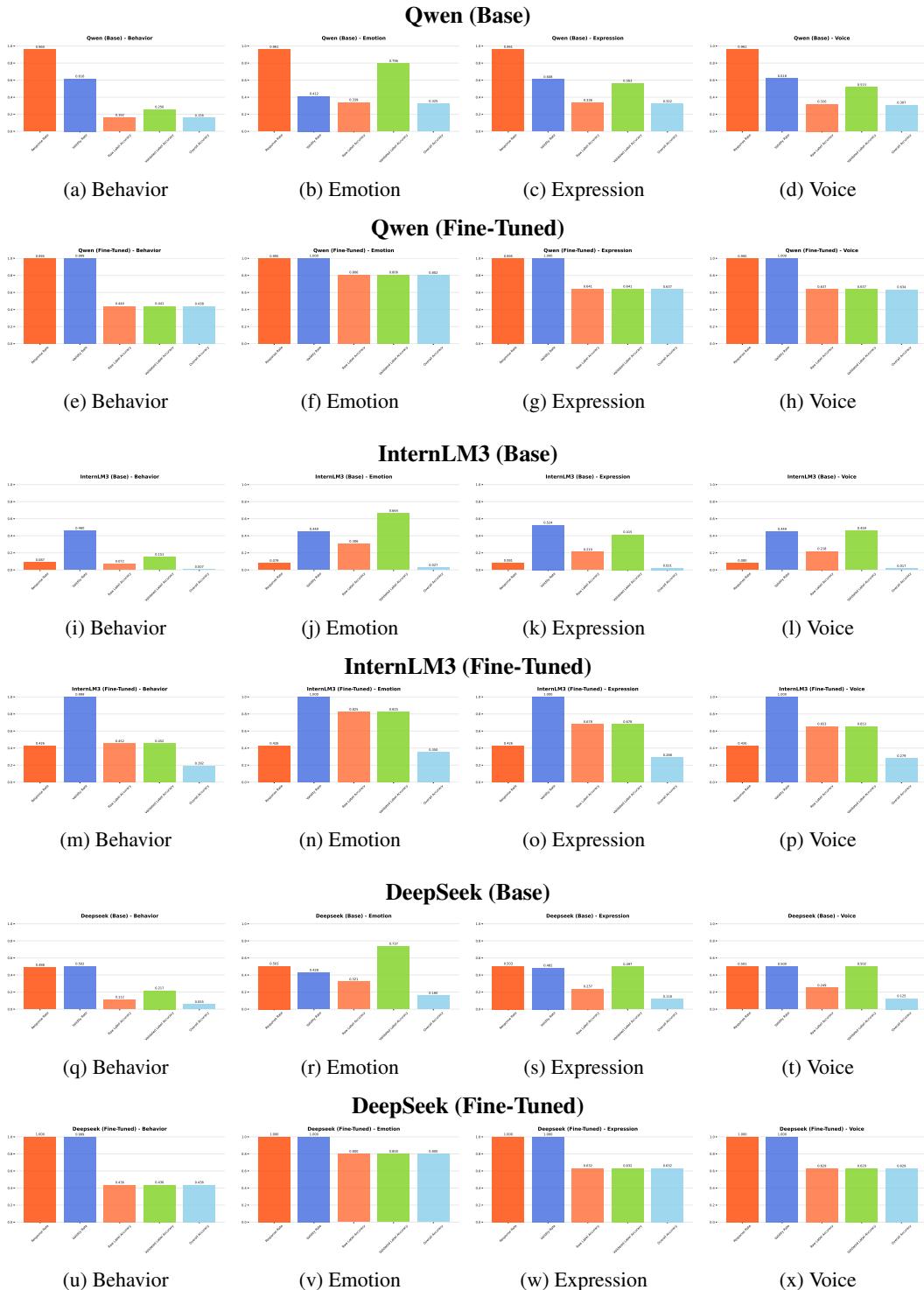
1188
1189  {
1190     "task2_realism": {"score": 0.0-1.0},
1191     "task3_persona": {"score": 0.0-1.0}
1192 }
```

1193 This framework ensures robustness and reproducibility through three mechanisms. First, language is
 1194 automatically detected via character-level statistics, enabling adaptive switching between Chinese
 1195 and English prompts with corresponding persona descriptions. Second, a retry mechanism with
 1196 exponential backoff and strict JSON parsing with fallback patterns safeguard evaluation reliability.
 1197 Third, the dual-task design balances realism and persona consistency, scoring only the student's final
 1198 response to maintain contextual grounding while ensuring comparability across scenarios.

1199 Overall, this evaluation framework transforms subjective persona assessment into a structured,
 1200 replicable process, providing the methodological foundation for large-scale experiments and statistical
 1201 analysis.

```

1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
```

1242 **D DETAILED EXPERIMENTAL RESULTS**
12431244 **D.1 ADDITIONAL ANALYSIS FOR TASK 1**
12451293 **Figure A2: Task 1 — All model families (24 charts).** Weighted averages over ten personas; five
1294 metrics per chart for each model family (Qwen, InternLM3, DeepSeek) showing both base and
1295 fine-tuned variants across four dimensions (Behavior, Emotion, Expression, Voice).

1296 Fig. A2 presents a comprehensive view of Task 1 across three model families, covering both base
 1297 and fine-tuned settings, four behavioral dimensions, and five evaluation metrics. This integrated
 1298 view makes it possible to trace how fine-tuning improves performance at both the overall and
 1299 dimension-specific levels.

1300 The end-to-end gains can be understood as the combined effect of three factors: whether the model
 1301 produces an output at all (response coverage), whether the output is structurally valid (vocabulary
 1302 compliance), and whether the valid outputs align correctly with the reference labels (in-vocabulary
 1303 discrimination). For Qwen and DeepSeek, structural validity is already saturated after fine-tuning, so
 1304 their improvements mainly come from higher label alignment together with strong response coverage.
 1305 By contrast, InternLM3 also benefits from improved label alignment, but its relatively low response
 1306 rate continues to limit its overall performance.

1307 A consistent difficulty ordering is observed across dimensions: **Emotion is the easiest, Behavior the**
 1308 **hardest, and Expression/Voice fall in between.** For example, under fine-tuning, Emotion reaches a
 1309 mean overall accuracy above 0.65, while Behavior lags at around 0.35. This pattern indicates that
 1310 residual errors are not random but stem from the inherent challenge of classifying pedagogical acts in
 1311 Behavior, which requires stronger discourse- and intent-level modeling.

1312 Family-wise, Qwen and DeepSeek converge after fine-tuning, both achieving strict end-to-end
 1313 accuracy around 0.62. InternLM3, despite showing the largest relative improvement, remains
 1314 constrained by its limited response coverage. These results suggest that, in this task, the performance
 1315 ceiling is determined more by dataset design and task structure than by model scale alone.

1316 Looking forward, since structural validity is already near perfect, the most promising directions
 1317 for further improvement are: **(i) increasing response coverage to reduce empty outputs, and (ii)**
 1318 **strengthening fine-grained guidance and exemplars for the Behavior dimension to improve**
 1319 **label discrimination.** All of these trends are clearly reflected in the 24 subplots of Fig. A2.

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

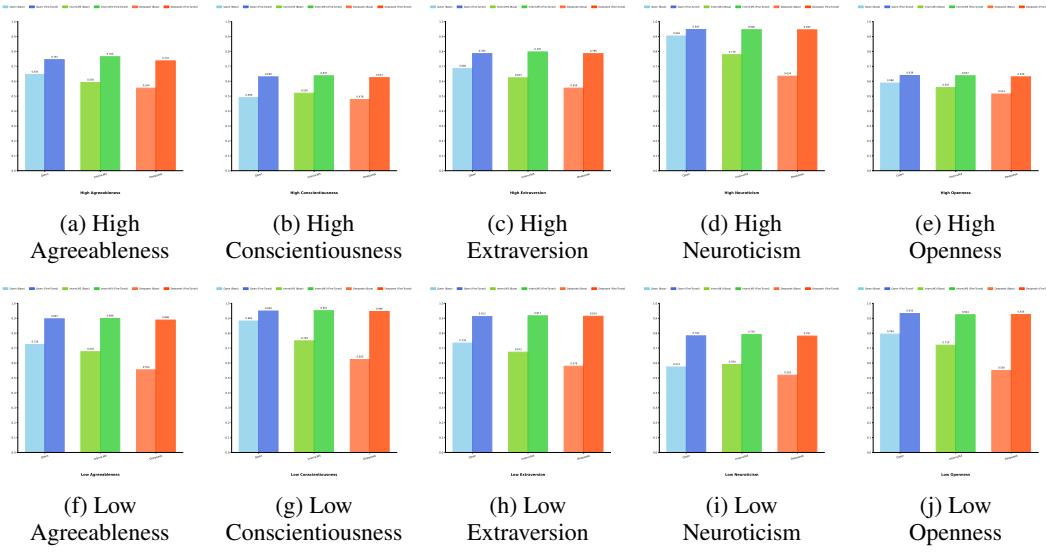
1345

1346

1347

1348

1349

1350
1351 D.2 ADDITIONAL ANALYSIS FOR TASK 2
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370

1371 **Figure A3: Task 2 — Student Realism across all personas (10 charts).** Each chart shows model
1372 performance comparison for a specific persona type, displaying realism scores across three model
1373 families (Qwen, InternLM3, DeepSeek) in both base and fine-tuned conditions.

1374 Fig. A3 reports Task 2 results for the ten Big Five-based personas across Qwen, InternLM3, and
1375 DeepSeek, under both base and fine-tuned conditions. Overall, **fine-tuning consistently improves realism across all models, with scores converging around 0.82** (DeepSeek: **0.556→0.818**, InternLM3: **0.648→0.827**, Qwen: **0.702→0.822**).

1376 At the persona level, the best post-tuning alignment is observed for High Neuroticism (HN, 0.891),
1377 Low Neuroticism (LN, 0.879), and Low Openness (LO, 0.871), reflecting their ability to naturally
1378 capture uncertainty and emotional variation. By contrast, High Conscientiousness (HC, 0.748) and
1379 High Openness (HO, 0.764) remain the most challenging personas, yielding the lowest realism scores
1380 even after adaptation. This suggests that highly structured traits often overlap with LLMs' default
1381 answer-first tendency, making outputs appear more machine-like than student-like.

1382 In terms of gains, the largest improvements occur for Low Openness (+0.176), High Neuroticism
1383 (+0.166), and Low Neuroticism (+0.156), while High Conscientiousness (+0.090) and High Openness
1384 (+0.093) improve the least. Model-wise, DeepSeek shows the most dramatic increase (+0.2616)
1385 despite its low baseline, Qwen maintains a stable advantage with strong pre-tuning performance,
1386 and InternLM3 improves moderately but converges with the others in the end. Taken together, these
1387 results indicate that **student realism is most effectively enhanced through personas reflecting natural uncertainty or variability, while structured or idealized personas remain difficult to simulate authentically.**

1388 **Cross-task linkage with Task 1.** Relating Task 1 (basic coherence) and Task 2 (student realism)
1389 reveals complementary insights. Task 1 captures low-level observable alignment signals, while Task 2
1390 evaluates higher-level subjective perception.

1391 First, response coverage from Task 1 directly constrains realism in Task 2. For instance, InternLM3
1392 maintains a low post-tuning response rate (0.4261), which limits its realism score compared to Qwen
1393 and DeepSeek, despite improvement.

1394 Second, the dimension-level difficulty ordering in Task 1 aligns with persona-level differences in
1395 Task 2: Emotion is the easiest in Task 1 (OverallAcc=0.65), matching the high realism scores of
1396 High/Low Neuroticism and Low Openness personas; Behavior is the hardest (OverallAcc=0.355),
1397 consistent with the poor realism of High Conscientiousness and High Openness personas, which
1398 demand strict adherence to classroom norms.

1404 Finally, both tasks exhibit post-tuning convergence across families but at different levels: Qwen and
1405 DeepSeek converge at OverallAcc=0.62 in Task 1, with InternLM3 trailing due to limited response
1406 coverage; in Task 2, all three converge tightly around 0.82. This indicates that EduPersona exerts
1407 stronger corrective effects on high-level perception, while low-level structural bottlenecks remain.

1408 In summary, the additional analysis of Task 2 demonstrates that **basic coherence is a prerequisite**
1409 **but not sufficient for student realism; achieving realism further depends on the authentic**
1410 **reproduction of persona-specific behaviors and classroom dynamics.** Future improvements should
1411 emphasize training data and strategies that incorporate “imperfect, human-like student behaviors” to
1412 simultaneously enhance observable alignment and perceived authenticity.

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

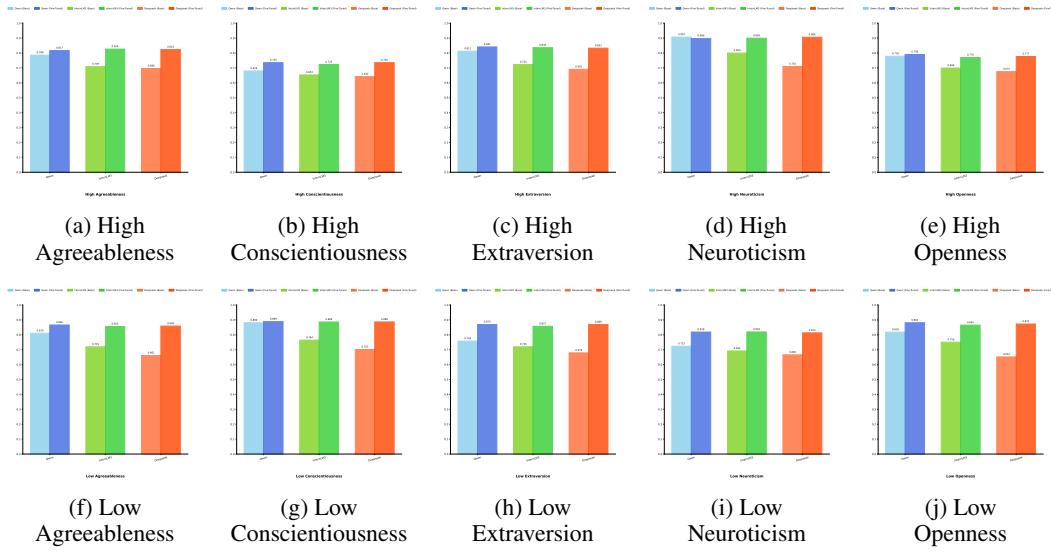
1453

1454

1455

1456

1457

1458 D.3 ADDITIONAL ANALYSIS FOR TASK 3
1459
1460

1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
Figure A4: **Task 3 — Persona Consistency across all personas (10 charts)**. Each chart shows model performance comparison for a specific persona type, displaying persona consistency scores across three model families (Qwen, InternLM3, DeepSeek) in both base and fine-tuned conditions.

Fig. A4 presents persona consistency results across the ten personas and three model families, comparing base and fine-tuned conditions. Overall, fine-tuning consistently improves consistency scores and brings the three families to a converged range around **0.84** (DeepSeek: **0.677**→**0.837**, InternLM3: **0.723**→**0.834**, Qwen: **0.795**→**0.841**). This mirrors the findings from Task 1 and Task 2: in Task 1, Qwen and DeepSeek converged in basic coherence after fine-tuning, while in Task 2, all models reached similar levels of student realism. Together, these results confirm that EduPersona fine-tuning reliably improves model performance across layers of subjective ability while reducing inter-model disparities.

At the persona level, a stable difficulty hierarchy emerges. *High Neuroticism* (0.901), *Low Conscientiousness* (0.887), and *Low Openness* (0.873) achieve the highest post-tuning consistency, reflecting hesitation, partial answers, or self-corrections that align well with authentic student behavior. In contrast, *High Conscientiousness* (0.731) and *High Openness* (0.779) remain the most challenging to sustain, even after fine-tuning. This pattern echoes Task 2, where the same personas also scored lowest in student realism, indicating that structured, idealized personas are consistently difficult for models to simulate both authentically and consistently.

In terms of improvement magnitude, the largest gains occur for *Low Extraversion* (+0.146), *Low Openness* (+0.133), and *Low Agreeableness* (+0.130), while *High Openness* (+0.062) and *High Conscientiousness* (+0.073) improve the least. This highlights that EduPersona fine-tuning is particularly effective for enhancing “non-idealized” student traits, whereas idealized personas remain a persistent challenge.

At the model level, baseline disparities are substantial (Qwen 0.795, InternLM3 0.723, DeepSeek 0.677), but after fine-tuning they narrow dramatically to a range of 0.833–0.841. This again parallels Tasks 1 and 2, reinforcing that EduPersona fine-tuning not only boosts absolute performance but also reduces variance across both models and personas.

In summary, Task 3 demonstrates that **persona consistency is more demanding than student realism, yet EduPersona fine-tuning significantly enhances overall stability while reducing inter-model and inter-persona variance**. Cross-task comparisons reveal consistent bottlenecks (High Conscientiousness and High Openness) as well as easier-to-model traits (High Neuroticism, Low Conscientiousness, Low Openness), providing a coherent picture of how virtual student agents can be systematically improved.

1512 E DETAILED ANALYSIS OF HUMAN-AI ALIGNMENT

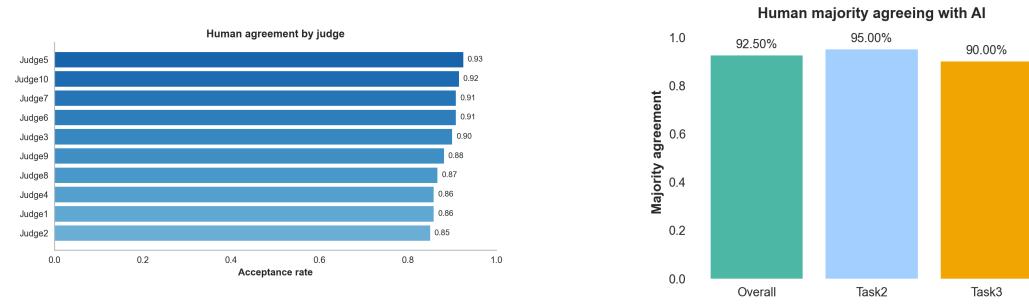
1514 This section provides an expanded analysis of the human-verification experiments for the automated
 1515 evaluator used in Task 2 and Task 3, including the experimental design, overall reliability, sensitivity
 1516 to performance differences, and fine-grained robustness across model families and persona types.

1518 E.1 EXPERIMENTAL SETUP AND OVERALL RELIABILITY

1520 We recruited a panel of ten evaluators with diverse disciplinary and cultural backgrounds, including
 1521 artificial intelligence, computer science, mathematics, psychology, education, etc. The panel com-
 1522 prises PhD students, postdoctoral researchers, and industry engineers from China, Singapore, Sweden,
 1523 the Netherlands, the United States, Germany, and the United Kingdom. This diversity ensures that
 1524 subjective judgments reflect a broad and externally valid range of human perspectives.

1525 The test set consists of 120 evaluation instances, 60 from Task 2 and 60 from Task 3, constructed
 1526 through stratified sampling across three major model families (DeepSeek-R1, Qwen3, InternLM3),
 1527 their base and fine-tuned variants, and all ten persona types. GPT-4o produced a score and expla-
 1528 nation for each instance, after which all ten experts independently provided binary “agree/disagree”
 1529 judgments based on the full dialogue context, yielding a total of 1,200 human decisions.

1530 The automated evaluator exhibits strong alignment with human experts. As shown in Fig. A5, the
 1531 majority agreement rate reaches 95.0% for Task 2 and 90.0% for Task 3, with an overall rate of
 1532 92.5%. Individual acceptance rates range from 0.85 to 0.93 without outliers, suggesting that GPT-4o
 1533 consistently reproduces the shared evaluative logic of a heterogeneous expert group.



1545 Figure A5: **Overall Reliability of the Evaluation Framework.** (Left) Human agreement rates by
 1546 individual judge, showing consistent acceptance ($> 85\%$) across all ten evaluators. (Right) Majority
 1547 agreement rates broken down by task, demonstrating high alignment for both Student Realism (Task
 1548 2) and Persona Consistency (Task 3).

1551 E.2 SENSITIVITY ANALYSIS: CONSENSUS VS. SCORE GAP

1552 To test whether the evaluator meaningfully captures performance differences, we analyzed the
 1553 relationship between the AI-reported score gap and human acceptance (Table A4). The trend is
 1554 monotonic: when performance differences are negligible (≤ 0.05), human evaluators naturally
 1555 diverge (70.8% acceptance), but agreement rises sharply with increasing gap, reaching 93.6% for
 1556 moderate differences (0.10–0.20) and 100% unanimous acceptance when differences exceed 0.40.
 1557 This confirms that GPT-4o reliably identifies meaningful improvements—precisely the scenario
 1558 required for analyzing fine-tuning gains in this work.

1560 E.3 FINE-GRAINED RELIABILITY: MODEL \times PERSONA ANALYSIS

1561 To investigate potential biases, we visualized the human acceptance rates across different model-
 1562 persona combinations. Fig. A6 presents the agreement heatmaps for Task 2 (Student Realism)
 1563 and Task 3 (Persona Consistency). The visualization reveals that the evaluator is exceptionally
 1564 robust (often achieving 100% agreement) for traits with strong, unambiguous linguistic markers,
 1565 such as *High Extraversion (HE)* and *High Agreeableness (HA)*. In contrast, subtle traits like *Low*

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
Table A4: Human Acceptance Rate by AI-Reported Score Gap

AI Score Gap ($ S_{ft} - S_{base} $)	Human Acceptance Rate
Minimal (≤ 0.05)	70.8%
Small ($0.05 - 0.10$)	84.6%
Medium ($0.10 - 0.20$)	93.6%
Large ($0.20 - 0.40$)	98.6%
Significant (> 0.40)	100.0%

Conscientiousness (LC) show slightly lower agreement (e.g., 0.60 for InternLM3 in Task 2), likely because distinguishing "carelessness" from "lack of knowledge" is inherently more subjective for both humans and AI. Overall, DeepSeek-R1 exhibits the most consistent red patterns across tasks, reinforcing its stability as a base model.

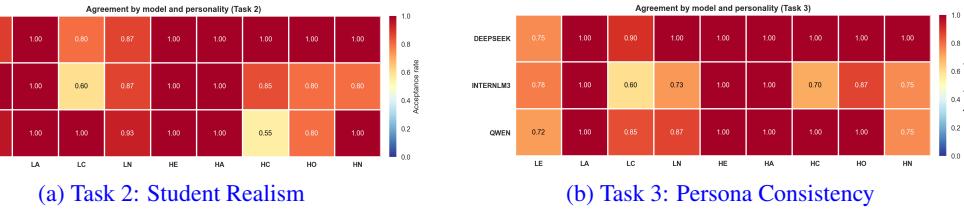


Figure A6: **Agreement Heatmaps by Model and Personality.** Left: Task 2. Right: Task 3. The deep red cells indicate perfect human-AI alignment (1.00), particularly prevalent in distinctive personas like High Agreeableness (HA) and High Extraversion (HE).

E.4 INTER-JUDGE CORRELATION

Finally, to ensure that the human ground truth itself is reliable, we computed the pairwise Pearson correlation among the ten judges. Fig. A7 illustrates the correlation matrices for both tasks. The heatmaps show predominantly positive correlations among judges across both Task 2 and Task 3, with several pairs achieving high correlation ($r > 0.75$). This indicates that despite the subjective nature of the tasks, the expert judges maintained a consistent standard for evaluating both student realism and persona consistency.



Figure A7: **Inter-Judge Correlation Matrices.** Left: Task 2. Right: Task 3. The heatmaps show positive correlations among judges, confirming inter-annotator consistency.

Taken together, the results demonstrate that GPT-4o provides reliable, sensitive, and robust evaluations across subtle performance differences, heterogeneous model families, and diverse persona types, forming a dependable foundation for scalable assessments of subjective abilities within the EduPersona framework.

1620 **F QUALITATIVE CASE STUDY: FULL PERSONA STYLIZATION**

1621
 1622 This appendix provides an illustrative case study showing how EduPersona expresses distinct student
 1623 traits under controlled conditions. For each of the ten personas, we present the full dialogue snippet
 1624 generated in response to the same instructional prompt, allowing a direct comparison of how different
 1625 personalities engage with an identical classroom scenario. To clearly highlight the distinguishable
 1626 characteristics across the ten personas, we intentionally present prototypical examples here. The
 1627 actual classroom-style responses in our dataset are more subtle in linguistic style, yet they consistently
 1628 follow the same theoretically grounded behavioral tendencies.
 1629

1630 **Case Study: Defining Minimum Instructions**

1631 **1. High Extraversion**

1632
 1633 • **Teacher:** “What you’re doing is you’re actually finding the rules for a pair of
 1634 congruent triangles... So the task is you need to produce a list of instructions so that
 1635 anyone following them will construct exactly the same triangle.”
 1636
 1637 • **Student:** “Oh, I see! So we get to be creative and come up with our own set of
 1638 instructions, right? I love a challenge like this! So, do we just start with making up
 1639 those instructions ourselves?”
 1640
 1641 • **Teacher:** “No, you make up your own instructions, it depends on what you’re
 1642 drawing... So you’ve got to decide what you need for the minimum number of steps
 1643 for your triangle, all right?”
 1644
 1645 • **Student:** “Absolutely, I’m on it! I think I’ll try figuring out the minimum steps by
 1646 focusing on the sides first. Maybe I can find a unique approach that no one else has
 1647 thought of. This is going to be exciting!”
 1648
 1649 • **Analysis:** The student frames the task as an “exciting challenge” and seeks social
 1650 distinctiveness (“no one else has thought of”), consistently showing high energy.

1651 **2. Low Extraversion**

1652
 1653 • **Teacher:** “The task is you need to produce a list of instructions so that anyone
 1654 following them will construct exactly the same triangle.”
 1655
 1656 • **Student:** “Do I have to create the instructions myself?”
 1657
 1658 • **Teacher:** “No, you make up your own instructions... So you’ve got to decide what
 1659 you need for the minimum number of steps...”
 1660
 1661 • **Student:** “I’ll try to figure out the least steps needed.”
 1662
 1663 • **Analysis:** The student shows reluctance in the first turn and provides a minimal,
 1664 functional response in the final turn, lacking emotional engagement.

1665 **3. High Neuroticism**

1666
 1667 • **Teacher:** “The task is you need to produce a list of instructions so that anyone
 1668 following them will construct exactly the same triangle.”
 1669
 1670 • **Student:** “Uh, do we, um, make up instructions ourselves? I’m, I’m not sure if, uh,
 1671 that’s right.”
 1672
 1673 • **Teacher:** “No, you make up your own instructions... So you’ve got to decide what
 1674 you need for the minimum number of steps...”
 1675
 1676 • **Student:** “Uh, okay, but, but what if I, um, get it wrong? I mean, uh, what if my
 1677 steps aren’t, uh, correct? I’m kind of worried it’ll be all messed up.”
 1678
 1679 • **Analysis:** Both turns are filled with disfluencies (“Uh”, “um”) and explicit expres-
 1680 sions of anxiety about failure (“worried it’ll be all messed up”).

1681 **4. Low Neuroticism**

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

- **Teacher:** “The task is to produce a list of instructions so that anyone following them will construct exactly the same triangle.”
- **Student:** “Should I create specific instructions for this task?”
- **Teacher:** “No, you make up your own instructions... So you’ve got to decide what you need for the minimum number of steps...”
- **Student:** “Okay, I’ll calmly figure out the simplest steps to create my triangle. I’ll consider whether to focus on the sides or angles.”
- **Analysis:** The student remains composed, explicitly mentioning “calmly,” and focuses on logical planning rather than emotional worry.

5. Low Agreeableness

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

- **Teacher:** “So the task is for you to produce a list of instructions so that anyone following them will construct exactly the same triangle.”
- **Student:** “Do I have to come up with these instructions myself?”
- **Teacher:** “No, you make up your own instructions... So you’ve got to decide what you need for the minimum number of steps...”
- **Student:** “Fine, I’ll figure it out myself. I don’t need anyone else to tell me how to draw a triangle.”
- **Analysis:** The tone is defensive and hostile. The phrase “I don’t need anyone else” highlights a rejection of social cooperation.

6. High Agreeableness

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

- **Teacher:** “So the task you need is to produce a list of instructions so that anyone following them will construct exactly the same triangle.”
- **Student:** “Oh, I see! So we get to create our own instructions... That sounds really interesting.”
- **Teacher:** “No, you make up your own instructions... So you’ve got to decide what you need for the minimum number of steps...”
- **Student:** “Thank you for explaining that! I’ll make sure to think carefully... I’m excited to see how my classmates approach it too.”
- **Analysis:** The student expresses gratitude (“Thank you”) and references the community (“classmates”), prioritizing social harmony.

7. Low Conscientiousness

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

- **Teacher:** “So the task is for you to produce a list of instructions so that anyone following them will construct exactly the same triangle.”
- **Student:** “Uh, do we just write down whatever steps come to mind?”
- **Teacher:** “No, you make up your own instructions... So you’ve got to decide what you need for the minimum number of steps...”
- **Student:** “Okay, um, I’ll try to figure it out but I might need to ask again.”
- **Analysis:** The first turn shows impulsive thinking (“whatever comes to mind”), and the second shows immediate reliance on future help, indicating low persistence.

8. High Conscientiousness

1722

1723

1724

1725

1726

1727

- **Teacher:** “So the task is to produce a list of instructions so that anyone following them will construct exactly the same triangle.”
- **Student:** “Should we create our instructions based on specific criteria?”
- **Teacher:** “No, you make up your own instructions... So you’ve got to decide what you need for the minimum number of steps...”

1728

1729

1730

1731

1732

1733

1734 9. Low Openness

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

- **Student:** “I understand. I will begin by determining the essential components... to ensure the instructions are as concise as possible.”
- **Analysis:** The student actively seeks “criteria” and uses formal language (“determining”, “concise”) to outline a structured, goal-oriented plan.

1734 9. Low Openness

- **Teacher:** “So the task is to produce a list of instructions so that anyone following them will construct exactly the same triangle.”
- **Student:** “So, do we just write steps like normal?”
- **Teacher:** “No, you make up your own instructions... So you’ve got to decide what you need for the minimum number of steps...”
- **Student:** “Okay, uh, I’ll just try using sides first.”
- **Analysis:** The student prefers the familiar (“like normal”) and adopts the most concrete, straightforward approach without exploring alternatives.

1745 10. High Openness

- **Teacher:** “So the task is to produce a list of instructions so that anyone following them will construct exactly the same triangle.”
- **Student:** “Could we approach this by imagining each instruction as a brushstroke in a painting?”
- **Teacher:** “No, you make up your own instructions... So you’ve got to decide what you need for the minimum number of steps...”
- **Student:** “I see, it’s like crafting a poem... Perhaps we begin by examining the balance between sides and angles, like a harmonious melody.”
- **Analysis:** The student actively seeks to reframe the mathematical problem into an artistic domain (“brushstroke,” “poem,” “melody”), demonstrating abstract creativity.

1759 Qualitative Analysis

1760 The comparison above illustrates that our stylization pipeline produces *consistent and theoretically aligned* behavioral differences across personas. Although the instructional context (the teacher’s prompt) is held constant, the student agents respond with clearly distinguishable linguistic styles, 1761 emotional cues, and behavioral intentions. For example, the *High Openness* agent interprets the 1762 task through abstract metaphors, while the *Low Agreeableness* agent shows resistance and reduced 1763 cooperative intent. Likewise, the *High Neuroticism* agent exhibits hesitation and self-doubt, in 1764 contrast to the calm and structured planning demonstrated by the *Low Neuroticism* agent. These 1765 systematic and internally coherent patterns indicate that EduPersona embeds personality traits at the 1766 level of discourse behavior, rather than relying on superficial lexical variation, thereby reflecting 1767 meaningful differences aligned with established educational and psychological theories.