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1. Introduction
Reinforcement learning (RL) is capable of train-

ing high-performance control policies for a variety
of domains from computer games [1] to physical
robots [2, 3] and scientific equipment [4]. Recently,
RL was applied to train real-time controllers for a
tokamak plasma [5, 6, 7]. Tokamak plasma is con-
trolled at a time scale of hundreds of microseconds
and requires precise stabilization algorithms, which
should be robust to sensor and actuator noises.
In the present work, we propose a novel ap-

proach to real-time plasma control using reinforce-
ment learning with privileged information. Our
methodprovides fast training times and learns an ef-
ficient control policy for real-time magnetic control
without explicit plasma state reconstruction. We val-
idate our approach on various plasma scenarios and
successfully test it on a physical DIII-D tokamak.

2. Magnetic control of tokamak plasma
2.1 Related work
Traditional methods often decompose the con-

trol task to separate PID controllers for semi-
independent control variables and use such con-
trollers with state reconstruction codes [8], which
compute control variables from the row observation
data. RL provides a promising approach over tradi-
tional plasma control methods since it trains end-to-
end controllers, which does not require additional
state reconstruction codes and task decomposition.
In [5], authors opted for MPO [9] algorithm with re-
current critic architecture, which enables the agent
to assess the plasma state more accurately but slows
the training. In [6], authors applied the PPO [10] al-
gorithm together with the surrogate model of state
reconstruction code [11], which requires diverse and
high-quality experimental data for training.

2.2 Our method
We consider the task of magnetic control of

plasma inside DIII-D tokamak. The agent is eval-
uated at 250 kHz frequency and observes real-time
sensors (ort) which include magnetic probes (mea-
suresmagnetic field), flux loops (measuresmagnetic
flux), and coil current measurements. The agent
trains in a simulated environment to learn a policy
π(a|ort) which dynamically adjusts coil currents us-
ing actuator commands (a) to stabilize the plasma at
target shape and position. We view the interaction

between an agent and environment as a partially
observable Markov decision process (POMDP) since
the noisy real-time measurements do not provide
enough information to fully reconstruct the internal
state of the plasma. Besides the noisy real-time ob-
servations, during training agent has access to privi-
leged information (opri), which includes non-noisy
real-time sensors, current plasma shape and posi-
tion, location of x-points (points in space at which
the poloidal field has zero magnitude), and time
derivatives.
We use NSFsim [12] simulator to reconstruct the

plasma state from the experimental data and pre-
dict the evolution of the plasma given the actuator
command. The simulator allows us to vary plasma
parameters, including electron and ion tempera-
tures, plasma resistance, and pressure gradients,
which cannot be measured directly to train robust
controllers. Application of reinforcement learning
to physical simulators presents several challenges,
such as (1) simulation speed, (2) reward function de-
sign, (3) NN-architecture choice to run in real-time,
and (4) sim-to-real transfer.
To handle the (1) simulation speed challenge, we

use a sample-efficient off-policy Soft Actor-Critic al-
gorithm to train a continuous control policy. To
speed-up the data acquisition, we run 50 copies of
the training environment in parallel and perform
one update of the neural networks per each environ-
ment step, which balances the speed of the environ-
ment step and neural networks update. In contrast
to [5], we apply simple feedforward neural networks
for both Actor and Critic, which allows us to train a
plasma shape controller from scratch in 12 hours.
To address the (2) reward function design chal-

lenge, we formulate the reward as a function of sev-
eral metrics that describe different aspects of the
shape of the plasma:

∆LCFS =

N∑
i=1

∥∥xLCFSi − yLCFSi

∥∥
2
,

∆mag = ∥xmag − ymag∥2 ,
∆X−point = ∥xx−point − yx−point∥2 ,

where xLCFS
i and yLCFS

i denote points of the cur-
rent and target plasma shapes, xmag and ymag are cur-
rent and target positions of the magnetic center and
xx-point, yx−point are positions of current and target
x-points respectively. All metrics are transformed
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to [0, 1] range similarly to [5] and aggregated using
smooth maximum function.
Theepisode terminates either if its length exceeds

1000 ms or if the distance between the current and
target shape parameters exceeds 16 cm. This last
condition helps streamline the training process by
excluding states that moved too far from the target.
To tackle the (3) NN-architecture choice chal-

lenge, we assume that the run-time observation
ort provides enough information to learn a con-
trol policy and privileged observation opri provides
enough information on the state of the environment
s. Hence we can use small 132 × 256 × 18 MLP net-
work which fits run-time constraints tomodel policy
π(ort) and larger 552× 256× 1MLPnetwork tomodel
Q-valueQ(opri, a).
To address the (4) sim-to-real transfer challenge,

we randomize key plasma parameters at the begin-
ning of each episode. Specifically, we sample elec-
tron and ion temperatures in both the plasma center
and boundary regions, as well as the effective ionic
charge state (Zeff ), from uniform distributions. The
specific ranges for these parameters are provided in
the Appendix.

2.3 Evaluation
First, to demonstrate the robustness of our ap-

proach we perform sim-to-sim transfer and evalu-
ate agent trained on NSFsim using well-tested DIII-
D simulator GSEvolve [13]. We performed an eval-
uation using four different plasma shots shown in
Fig. 1. Shots 182392, 182450, and 186093 have dif-
ferent shapes, while shots 186093 and 196088 have
the same shape but opposite signs of plasma cur-
rent. Evaluation time was limited by 1 second. The
average quality of maintaining shape parameters is
shown in Tab. 1. It is seen from the Tab. 1 that in sim-
to-sim transfer control quality slightly decreases due
to simplifiedmodeling of plasmakinetics used inNS-
FSim during training. However, all agents managed
to control the plasma successfully.

Table 1: Control performance.

NSFSim GSEvolve DIII-D

∆LCFS, cm 1.5 2.3 2.2
∆mag, cm 0.63 1.5 1.6
∆x-point, cm 0.57 6.3 6.3
t, ms 1000 1000 3000

2.4 Evaluation on physical DIII-D tokamak
After the sim-to-sim transfer we tested the agent

on a real tokamak device. The shot started with the
classical PID controller, after that, the control was
transferred to our RL agent. The agent was able
to successfully control plasma until the end of dis-
charge (more then 3 seconds). The resulted preci-
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Fig. 1: Discharges used to validate RL agent: 182392,
182450, 186093, 196088. Discharges 186093 and
196088 have similar plasma shapes but different
signs of the plasma current. Black dots indicate
the target plasma shape, and red dots indicate the
plasma shape maintained by the RL agent during
all times of control.

sion of control is shown in Tab. 1.

3. Conclusion
High-quality plasma controllers are an essential

part of future power plants. Compared to traditional
approaches, we presented an RL-based approach
which is fast to train and can be used to control
different plasma shapes without tuning the training
parameters. Our results on sim-to-sim and sim-to-
real transfers, demonstrate the robustness of our ap-
proach to varying dynamics of the plasmaandnoises
in sensor data. Our results demonstrate that priv-
ileged information enables efficient training of RL
agents while keeping the simple architecture of the
Critic network. The Actor learns the control policy
directly from sensor data, which can speed up the
controllers by eliminating the intermediate step of
plasma state reconstruction.
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Appendix A. Hyperparameters
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Table A1: Hyperparameters.

Parameter Value

num envs 50
tau 0.005
policy Gaussian
discount factor 0.9
actor, critic learning rates 3e-5, 3e-5
alpha 0.2
entropy tuning False
batch size 1024
num steps 10M
actor, critic hidden size 256, 256
start steps 10K
target network update fre-
quency

1 step

replay buffer size 1M transitions
training steps 10M
action frequency 100 Hz
Telectron center, boundary 1000-5000, 10-300

eV
Tion center, boundary 1000-5000, 10-300

eV
Zeffective center, boundary 1.0-4.0, 1.0-4.0
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