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ABSTRACT

The open set recognition (OSR) problem aims to identify test samples from novel
semantic classes that are not part of the training classes, a task that is crucial in
many practical scenarios. However, the existing OSR methods use a constant
scaling factor (the temperature) to the logits before applying a loss function, which
hinders the model from exploring both ends of the spectrum in representation
learning — from instance-level to class-specific features. In this paper, we address
this problem by enabling temperature-modulated representation learning using a set
of proposed temperature schedules, including our novel negative cosine schedule.
Our temperature schedules allow the model to form a coarse decision boundary at
the beginning of training by focusing on fewer neighbors, and gradually prioritizes
more neighbors to smooth out the rough edges. This gradual task switching leads
to a richer and more generalizable representation space. While other OSR methods
benefit by including regularization or auxiliary negative samples, such as with
mix-up, thereby adding a significant computational overhead, our schedules can be
folded into any existing OSR loss function with no overhead. We implement the
novel schedule on top of a number of baselines, using cross-entropy, contrastive
and the ARPL loss functions and find that it boosts both the OSR and the closed set
performance in most cases, especially on the tougher semantic shift benchmarks.
Project codes are available jherel

1 INTRODUCTION

Deep learning models have shown impressive performance by learning useful representations particu-
larly for tasks involving the classification of examples into categories present in the training dataset,
also known as the closed set. However during inference, in many practical scenarios, test samples
may appear from unknown classes (termed as the open set), which were not a part of the training set.
Hence, a more realistic task known as the open set recognition (OSR) (Scheirer et al.|(2012);|Chen
et al.[(2020a))) aims to simultaneously flag the test samples from unknown classes while accurately
classifying examples from the known classes, requiring strong generalization beyond the support of
training data.

Most of the early research attempts either model the unknown classes as long-tailed distributions
(Vignotto & Engelkel 2018}, |Bendale & Boult, |2016), generate synthetic samples using generative
models (Ge et al., 2017; |Neal et al., 2018} (Chen et al.| 2021; [Moon et al., [2022)) or with mix-up (Chen
et al}2021; Xu et al.| 2023} |Li et al.| 2024; |Zhou et al.| [2021])) to represent novel classes, or train a
secondary model with a separate objective, such as VAEs that include reconstruction based objective
(Oza & Patel (2019)); [Yoshihashi et al.| (2019); Zhou et al.|(20244a)). The synthetic examples may not
generalize well to a variety of unknown classes, whereas training generative or secondary models
or with mix-up are computationally demanding and often require higher memory. Later methods
add regularization (Zhou et al.| 2021} |Chen et al., 2021} 2020a)) to explicitly bound the open space
risks. In essence, these methods create more empty regions in the representation space by pushing
the decision boundary tighter and hoping that unknown representations lie in those regions. Forcing
the creation of empty spaces does not result in an improved OSR as it does not address the inherent
semantic proximity of tougher unknown samples to the known classes, incurring significant similarity
between them and reducing the effectiveness of such methods.
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Figure 1: UMAP projection of representation spaces for different temperature schedules on 10 classes
of the Caltech-UCSD-Birds dataset. (a)- (c) show representations for constant temperatures (7). For
lower 7, the representations of unknown classes are distributed and so are the representations of
known classes, leading to a sharp decision boundary. For higher 7, the representations of known
classes are more compact, making the decision boundary smoother. However, unknown samples
overlap with the clusters of known classes. Mid value of T achieves a trade-off but does not gain the
benefits of both ends. (e)- (g) show representations of our temperature schedule NegCosSch as the
training progresses. A lower 7 at the start leads to a coarse decision and the model gradually makes
the classes more compact and the unknown representations are pushed away. Finally, (d) show the
representation space for a previous schedule CosSch, which is better than fixed temperatures but not
as compact as our NegCosSch. Clustering diagnosis appears in Appendix and the experiment
details appear in Appendix @

Vaze et al.|(2022) establish new OSR baselines by training models with optimal design choices and
argue that a well-trained closed set classifier achieves an improved OSR performance, where the
unknown samples exhibit lower max-logit scores. This essentially has motivated the next generation
of OSR methods to learn even better representations for improving performance through a better loss
function, such as the contrastive loss (Khosla et al.|(2020); (Chen et al.| (2020b)) with sample mix-up
(Xu et al.[(2023); [Verma et al.| (2018)); [Zhang et al.| (2017)) and by adding different regularization
schemes (Zhou et al.|(2024a)); Bahavan et al.| (2025)); Li et al.[(2025)); Wang et al.|(2025)).

Moreover, the regular OSR benchmarks commonly used are small in scale. In this regard, semantic
shift benchmarks (SSBs) are proposed by |Vaze et al.[(2022) on fine-grained datasets, having more
classes with varying levels of OSR difficulty. Therefore, the methods that demonstrate improvement
on smaller datasets but involve either data generation, mix-up, or training secondary models are
unsuitable for the larger benchmarks as training a well-performing base model on them requires a
significant compute and memory. Most of the latest research does not use these benchmarks. This
necessitates the development of an advanced representation learning scheme that impose minimal
computational overhead.

To achieve this, we need to explore the inner mechanisms of the losses that are the basis of most
OSR methods, such as the cross-entropy (CE) and the contrastive loss. These loss functions compute
probabilities by applying a temperature scaling to the logits- the model’s raw outputs- where the
temperature coefficient adjusts the sharpness of resulting probability distributions. It is the key
parameter to control the learned features for both losses. Prior works (Wang & Liu, 2021} [Zhang
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et al.,[2022; [Kukleva et al.| 2023} Zhang et al.; 2021)) demonstrate that a lower temperature encourages
instance-specific representations while a higher value encourages class-specific ones. However, a
fixed temperature throughout the training prevents the model from exploring both ends of this learning
spectrum. In this regard, [Kukleva et al.| (2023) study the benefits of learning both instance-level and
class-specific features primarily in the closed-set scenarios using self-supervised contrastive learning
for long-tailed datasets using a cosine temperature schedule (TS), but the impact of temperature
scaling or a TS remains largely unexamined for novel classes and for the context of different losses.

In OSR, learning a representation space that provides both instance-specific and class-specific features
is also crucial to achieve improved open set and closed set performance. In this research, we analyze
the representation space for different temperature scaling factors on both losses in an open set
scenario. Based on the analysis, we propose novel temperature schedules for temperature modulated
representation learning. We find temperature modulation with the proposed schedules is beneficial to
create more compact clusters for representing the closed set classes, while keeping open set examples
more distant from these clusters, resulting in overall improved representations.

The main contributions of this paper are summarized as follows:

* We analyze the effects of temperature scaling in an open set scenario, using a number of
TSs, including our novel negative cosine schedule (NegCosSch), to explore temperature
modulated representation learning. We find that the proposed schedules, even simple linear
schedules, demonstrate better open and closed set performance compared to the usual
constant temperature baselines and possible other schedules.

* Our schedules can be seamlessly integrated into any existing OSR loss, such as the CE,
the losses based on contrastive learning and the ARPL loss by |Chen et al.| (2021), without
any computational overhead. We show significant performance improvements on the
TinyImageNet benchmark and the SSBs.

* Our strategy demonstrates strong performance improvements for the tougher SSBs over
the baselines for both the closed set and the open set problems. We show that our scheme
achieves stronger improvements with an increased number of training classes when the task
becomes more difficult for the baseline model.

The rest of the paper is organized as follows. In Section [2| we discuss the relevant background on
different losses and in Section [3] we discuss the effect of temperature scaling on known and unknown
classes. In Section[d] we describe the proposed scheme. In Section[5] we discuss our results followed
by related works in Section [6]and present the concluding remarks in Section

2 BACKGROUND ON LOSSES

During training, the model is decomposed into two components: The first component is an encoder
function f(-) which maps the input x to a representation z = f(z). The second component h(-) maps
the representations to task specific outputs, which is either a linear classification layer if we train with
the CE loss or a projection layer if we use the contrastive training. The final outputs, also called the
logits, | = h(z) = h(f(z)) are then given as model predictions to the loss functions. We assume
for a specific problem, a model is trained for a predefined number of epochs E. We further discuss
the CE and the supervised contrastive (SupCon) losses and the effects of the temperature parameter,
which provide a basis for our proposed scheme. The ARPL loss is discussed in Appendix [E}

2.1 CROSS-ENTROPY LOSS

For a batch of training data B = {(z, yx)}2_,, the CE loss is calculated as

1

Leg = —;
B

Z one_hot(yy) - log(px) @
(zk,yr)EB

where py, = softmax(l;/7), one_hot(yy ) is the one hot encoded vector of y;, and (-) is the dot product.
The parameter 7 > 0 is called the temperature.



Under review as a conference paper at ICLR 2026

2.2  SUPERVISED CONTRASTIVE LOSS

For a given batch B, the SupCon training utilizes a multi-viewed batch by taklng two augmented
samples of the same original sample. The multi-viewed batch B’ = {(M, 7:)}2B,, where Zo;, and
Zog—1 are two random augmentations of z, (1 < k < B), and §ox—1 = Yo, = yx. Below we refer
to ¢ as the anchor index from I = {1, ...,2B}. The SupCon loss (Khosla et al.[(2020)) is defined by:

exp(sim(l;,1p)/7)
Lscon = ~777 Z I 1|2, 5y explsim(l /7 ?
Here, sim(l;, ;) is the cosine similarity between [; and [; and A(¢) = I \ {4} is the set of all samples
in B except i. P(i) = {p # i : §; = Py} is the set of indices in B’ having the same label as
y; and distinct from ¢. Contrastive loss, by construction, gains its strength by pushing away the
representations of the negative samples (samples of other classes) and by producing compact clusters
of representations for the (positive) samples of the same class.

3 EFFECT OF TEMPERATURE ON KNOWN AND UNKNOWN SAMPLES

The SupCon loss applies hard negative mining from penalizing the harder negative samples more
through the exponential function (Khosla et al.| (2020)). The measure of hardness of a sample
with respect to an anchor is determined by the scaled similarity. Therefore as a scaling factor,
the temperature plays a critical role in controlling the trade-off between uniformity and semantic
structure in the representation space as shown in|Wang & Liu| (2021); [Kukleva et al.| (2023) for the
self-supervised loss (Chen et al.|(2020b))). This effect mostly translates to the supervised case except
for the fact that the definition of positive and negative samples are now different.

For any given anchor index 4, the gradient of Lg,,con With respect to a negative logit /; can be
computed as shown in the following equation.

aLSupCon _ aLSupCon aSim(Zialj)

" osim(l;, 1)
alj o aSIm(l“l]) al]

al;

1 .
= ;[softmaxael\{i}(slm(lm la)/7)]; % 3)

For smaller values of temperature 7, as the differences in scaled similarity get amplified, the nearest
negative samples receive the highest gradient (Wang & Liu (2021)) and the model minimizes
similarity to them with respect to anchor ¢. The model aggressively pushes the nearest negative
samples away, leading to features that are appropriate for instance-level discrimination and distributing
the embeddings over the representation space. However, the positive samples do not cluster tightly
because, like the negative samples, fewer positive neighbors get priority in the loss function (Figure
[Ta). The resulting decision boundary is sharper. The open set representations do not get closer to the
known classes due to the heavy penalty of having slight dissimilarity.

With larger 7, the differences in scaled similarity diminish and the repulsive force gets distributed
to more negative neighbors. The model can decrease the loss by learning the class-specific features
rather than the instance discriminating features to push away easy negatives, inducing semantic
structures. Due to compact clusters of within-class representations, the resulting decision boundary is
smoother. However, as the model is now less aggressive in removing the negatives, a lot of open set
examples get close to the known classes (Figure[Ic).

Similarly in CE loss, lower values of temperature (7 < 1) leads to a sharper output probability
distribution over the training classes (Guo et al.|(2017)), while the higher values of 7 > 1 makes the
output probability distribution smoother.

The value of 7 is usually kept constant throughout the entire training for both losses, which is set
either to a predefined value or chosen with hyperparameter tuning.

4 PROPOSED METHOD

In this section, we formally introduce our problem, describe our proposed temperature modulation
and explain how our schedules lead to learning representations useful for OSR.
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4.1 PROBLEM DEFINITION

We are given a labeled training dataset Dy = {(z;,y;)} C X x ), where x; is the training
sample with label y;. X is the input space and the labels of D;,. come from a closed set label space
Y, ie. y; € V,Vi. The total number of classes in the closed set is C' = |)|. The test dataset
Diest C X x YU QO consists of samples whose label space ) U O is different than ), and ONY = .
O is the set of unknown classes defined as the open set. The objective of OSR is to classify a test
sample among the closed set classes or to flag it as belonging to an unknown class. We assume that
information about the nature of unknown classes or any auxiliary samples are unavailable during
training.

4.2 RATIONALE FOR TEMPERATURE SCHEDULING

For a temperature dependent loss
function, 7 is usually kept constant

Temperature Scheduling

- , = “-;T :“('l-f’ = ;“;’ S throughout the training process. We
=== Tconst(T = 0.25) == TNegCossch(TH, 77, P)  =ren Linear(T"5 T
Teosseh(77,77, P) == TMNegCossch(T5,77) =0t Tesponential (77, 77) denOte a constant TS by 7-Con5l’ de-

fined as

7—Const(e; T) =rT,Ve 4

temperature

Where e is the epoch number.

_ As discussed in Section 3] a
T 100 200 300 100 500 600 lower temperature encourages the
epoch instance-specific  representation
learning, while a higher value
pushes towards the class-specific
features. For OSR, if the test
representation from a novel class becomes too class-specific, the model easily finds its similarity
to one of the known classes. On the other hand, if the feature is too instance-specific, the model
is under-confident in assigning any sample to a known class. Therefore to avoid these pitfalls, a
model needs to capture a delicate combination of both the desirable properties— good class-specific
representations while having room for instance-level discriminating power within the class. Moreover,
Familiarity Hypothesis by Dietterich & Guyer] (2022) states that most existing OSR methods flag
semantic novelty from the absence of learned class-specific features and it recommends to extract
features for interesting content beyond the class-specific features for detecting novelty. If the model
finds similarity between a novel sample and a known class because of the class-specific features, the
instance-specific features should maintain the separation between them. A constant temperature
throughout the training restricts the opportunity to traverse through this trade-off and fails to achieve
the benefits of both extremes, limiting the quality of final representations. Utilizing the effects
observed in Section[3]and to facilitate the traversal through the spectrum, we propose to gradually
switch between the two objectives using a generalized cosine schedule, which we describe next.

Figure 2: Different temperature schedules.

4.3 PROPOSED TEMPERATURE SCHEDULES

Instead of a constant value, we propose to schedule the temperature (replacing 7 by 7 (e)) from a
range [T, 77| as the training progresses using a generalized cosine schedule, which is defined as

T+ it —77) (14 cos(35E — k), ife<E— %
T, elsewhere

7dGCOSSch(e;T+aT77P7 k) = { (5)
where value k7 represents the delay of cosine wave with respect to the starting epoch, P is the period
of the wave (Figure and k can be from [0, 1]. k£ = 0 reduces Eq. (5) to the regular cosine schedule
(CosSch), proposed by Kukleva et al.|(2023) for the self-supervised tasks on the long-tailed datasets.
With CosSch, the model starts training with a higher temperature 7+ and goes to a lower temperature
—

7-CosSch(€; T+7 T77 P) = 7-GCOSSCh(e; 7_+7 Tﬁa P7 k = 0) (6)

Proposed Negative Cosine Schedule. We find that rather than using Eq. (), it is beneficial for
the task switching if we start with a lower temperature 7~ and move towards a higher value 77.
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Starting with a lower temperature, the model provides priority to fewer neighbors, learning the coarse
structure of representation space, resulting in a sharper decision boundary. The open set samples
remain distributed and distant from any cluster of known classes (due to heavy penalization of slight
dissimilarity for the lower 77). As temperature increases, the model prioritizes more neighbors and
gradually pulls the positive samples to its own cluster, refining on the coarse representation space.
This makes within-class representations more compact and the decision boundary smoother while
the core separation learned earlier is maintained. The open set samples are not pulled as tightly
because their features are unknown to the model, maintaining the separation. This leads to a richer
and potentially more generalized representation space for both open set and closed set performance.

The second half cycle (decreasing from a higher to a lower temperature) facilitates the exploration
by refining the model again for the instance-specific features and a smooth transition for the restart
of next periodic cycle. The periodic restart can help the model to refine its first solution and find a
better one nearby to generalize more effectively, when tackling the challenging feature spaces. The
model settles down better if the final few epochs maintain a higher temperature rather than follow
the wave (epochs 500-600 in Figure [2). Figure[I]illustrates the concept with UMAP projection of
representation spaces for different TSs.

For k = 1in Eq. (3)), the temperature starts with a lower value and goes to a higher one, looking like
a negative cosine wave, hence the name negative cosine schedule (NegCosSch).

7dNegC0sSch(e§ T+7 T, P) = ,TGCosSch(e; 7-+7 T, P k= 1) (N

Our experiments demonstrate that NegCosSch surpasses both CosSch and GCosSch (with other
values of k # 1) in OSR performance. Although initially aimed for OSR, NegCosSch also improves
closed set classification, while being applicable to any model architecture and loss function, such as
CE, SupCon and ARPL (Chen et al.||2021)) and incurring no additional computational burden, as it
only includes an epoch-dependent temperature in a loss function.

Choice of P and Other Proposed Monotonic Schedules. We find that a single monotonic increase
with the first half cycle of NegCosSch (termed as Monotonic-NegCosSch or M-NegCosSch), where
P = 2F, is a sufficiently competitive TS, removing the need to tune for P.

TM_NegCOSsCh(e;T+,T_) =77 +05(r" —77)(1 — cos(en/E)); Ve 8)

Even a linear or an exponential temperature increase performs better than the baseline constant
temperature. The exact formulations of these appear in Appendix [Bl Otherwise, P in Eq.
can be chosen by dividing F by the number of cycles. We denote periodic NegCosSch as P-
NegCosSch. From ablation studies, we observe that varying P or the number of cycles does not
impact the performance significantly. P needs to be within a functional range that allows for sufficient
exploration - for example, P = 200 performs consistently well across the benchmarks.

Choice of (77,77 ). Based on our ablation studies across the datasets (Appendix , we derive
that for any good value of constant temperature 7 (which can be chosen from hyperparameter
tuning), using NegCosSch is more effective by setting 7+ = 7 + A, 7~ = 7 — A (or alternatively,
7t =7+ A,77 = 7) in the SupCon loss with the increment A ~ 0.1 or 0.2. The heuristic is
also structurally informed: the placement of 7 at the center ensures that the temperature is being
varied around a good operating point. A reasonable value of A is crucial because a large A may
collapse the semantic structure in the representation space: the excessively low 7~ may disrupt the
initial formation of semantic structure, while the higher 7+ may remove the necessary instance-level
discrimination. For example, hyperparameter tuning on TinyImageNet provides us a high OSR
performance for Tconst With 7 = 0.2. Leveraging this, we derive that TNegcossen (77 = 0.4,77 = 0.1)
or Tregcosseh (71 = 0.3, 77 = 0.2) are better choices than Tconsi (7 = 0.2), Tcossen(77 = 0.4, 77 =
0.1) and Tcossen(7H = 0.3,7~ = 0.2). For the CE loss, we find 7+ = 27,77 = 7/2 as a good
choice because in the CE loss, the temperature scales the logits instead of similarities. The derived
relations allow us to bypass the necessity of explicitly tuning for both 7~ and 7.

Inference. For CE loss, we use the model as is for inference. However for SupCon loss, we remove
the projection layer and a linear classifier is trained for evaluation. We use the maximum logit based
scoring rule for OSR score.
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5 RESULTS AND DISCUSSION

In this Section, we describe the benchmarks used for evaluating our method, the experiment settings
followed by results and discussion.

Benchmarks. Here, we present the performance with different TSs on the TinyImageNet and the
SSBs. The SSBs are defined on three fine-grained datasets: the Caltech-UCSD-Birds (CUB) (Wah
et al.[(2011))), FGVC-Aircraft (Krause et al.|(2013))) and Stanford Cars (SCars) (Maji et al.[(2013)).
For SSBs, the open set classes are divided into ‘Easy’ and ‘Hard’ splits by computing the semantic
similarity (based on the labeled visual attributes) of each pair of classes, the details of which can be
found in|Vaze et al.|(2022). The different difficulty levels along with more training classes make these
datasets harder OSR benchmarks than the other ones. Most of the OSR research does not report results
on the SSBs. Moreover, we report the performance of our NegCosSch on the CIFAR benchmarks—
CIFAR10, CIFAR+10 and CIFAR+50- from literature with their details in the Appendix.

Training Details. We mostly follow the experiment settings and design choices from [Vaze et al.
(2022). For TinyImageNet, we use a VGG32-like model and for SSBs, we use a ResNet50 model
pretrained on the places365 datase We run each experiment with 5 random seeds and report the
average results. We also include results on a vision transformer model in Appendix

We perform ablations on P from {100,200,1200} and temperatures from Tsupcon =
{0.025,0.05,0.1,0.2,0.3,0.4,0.5} for the SupCon loss. For TinylmageNet, we tune both the
Tconst baseline (r = 0.2) and our schedules ((77,77) = (0.4,0.1)) on a validation set. For
SSBs, we only tune 7 = (.2 to optimize the constant baseline and apply the derived relationship,
(rt,77) = (0.3,0.1), as detailed in Section which achieves strong improvements without
extensive tuning. For CE loss, with the most utilized base temperature being 1.0, we set (77, 77)
at (0.5,2.0). We set P = 200 for all periodic TSs and P = 2E = 1200 for M-CosSch and
M-NegCosSch for consistent comparison. The training details appear in the Appendix.

Metrics. We report the closed set performance as a C'-class classification using accuracy (%), the
open set performance as known-unknown detection using AUROC (%), and the area under the open
set classification rate curve (OSCR %). The OSCR curve measures the trade-off between Correct
Classification Rate (CCR) for known samples and False Positive Rate (FPR) for unknowns (Dhamija
et al.| (2018))). We also implement the OpenAUC metric by Wang et al.|(2022) and find that its scores
are very similar to OSCR. We report OpenAUC in Appendix [F.3] Now, we discuss the results.

5.1 ABLATION STUDY ON TEMPERATURE SCHEDULES

Here, we compare the closed set and open set performance among different TSs, such as a random
schedule, a linear decrease and an increase, exponential and logarithmic monotonic increases, periodic
and monotonic CosSch and NegCosSch on CE loss. We present the results in Table[T] For most cases,
our proposed TSs, such as P-NegCosSch, M-NegCosSch, linear and exponential increases perform
better than the constant baseline, CosSchs and other listed schedules in terms of all metrics. While the
simpler schedules, such as linear and exponential increases demonstrate competitive results, in terms
of a single best result across a column, P-NegCosSch wins at a maximum number (8 out of 18) of
cases and M-NegCosSch wins at 4 cases. Their collective gains prove that the proposed temperature
modulation scheme is fundamentally better than the constant baseline and other schedules. The
standard deviations of these results across the trials are presented in Table 4|in the Appendix.

5.2 PERFORMANCE OF OUR TEMPERATURE SCHEDULES ACROSS VARIOUS L0OSS FUNCTIONS

Here, we report the performance on different OSR loss functions and the recent BackMix method
(Wang et al| [2025)) by including and without our NegCosSch in Table[2] We implement the ARPL
loss, the CE baseline by [Vaze et al.|(2022) and the widely implemented SupCon loss in the recent
OSR literature (Xu et al., 2023 |Zhou et al.| 2024a). As label smoothing (LS) has shown significant
performance improvements in several cases as demonstrated by |Vaze et al.|(2022)), we experiment
both with and without uniform LS, considering them as separate baselines for the CE and SupCon

In spite of our efforts, we could not find the same pretrained model mentioned in|Vaze et al.|(2022) online.
Therefore, we use the pretrained model from [Zhou et al.| (2017) trained on places365, which is completely
unrelated to the SSBs.
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Table 1: Comparison of different TSs on CE loss. For SSBs, the OSR results are shown on ‘Easy/
Hard’ splits. We bold the top three results for each metric and underline the best case.

Accuracy (%) AUROC (%) OSCR (%)  Accuracy (%) AUROC (%) OSCR (%)

Schedule CUB Aircraft

Constant (Baseline) 84.43  83.55/7498  70.49/63.34 90.88  90.35/81.48  82.05/74.25
Linear decrease 81.64  79.86/71.75  65.15/58.59 90.58 89.53/79.7  81.08/72.41
Random 85.06  85.02/75.54  72.28/64.32 91 90.76/82.37  82.55/75.17
P-CosSch 84.63 84.5/74.24  71.51/62.93 90.8  90.04/81.81  81.76/74.51
M-CosSch 81.77 79.55/71.4  64.96/58.35 90.62  88.63/80.92  80.35/73.57
Logarithmic increase 85.15  84.91/76.07  72.25/64.82 91.19 90.86/82.58  82.77/7547
Exponential increase (ours) 86.12 86.65/78.05 74.64 / 67.35 90.88 90.92/82.93 82.54/75.54
Linear increase (ours) 86.22 86.54/78.01  74.58/67.32 90.97  91.11/83.25 82.87/176
P-NegCosSch (ours) 86.3 86.85/77.6 74.89/67.01 91.33 91.41/83.15 83.43/76.14
M-NegCosSch (ours) 86.12  86.79/78.08 74.7/67.3 91.15 91.15/83.23 82.99/176

SCars TinyImageNet

Constant (Baseline) 96.76  94.03/84.82  91.04/82.19 84.55 82.85 74.74
Linear decrease 96.25  92.51/83.47  89.14/80.51 84.12 82.64 74.28
Random 97.06  94.31/8527  91.58/82.85 83.51 78.37 69.88
P-CosSch 96.63  93.85/84.88  90.75/82.14 84.41 83.12 74.79
M-CosSch 96.27 92.21/82.7  88.84/79.73 84.19 82.76 74.36
Logarithmic increase 97.07  94.92/8542  92.18/83.03 84.74 82.96 74.91
Exponential increase (ours) 97.27 95.08 / 86.03 92.5/83.75 84.98 83.05 75.15
Linear increase (ours) 97.19  95.19/86.18  92.55/83.86 84.9 83.16 75.19
P-NegCosSch (ours) 97.3  95.03/86.05  92.49/83.81 84.85 83.02 75
M-NegCosSch (ours) 97.22 95.18/86.26  92.57/83.95 84.24 82.79 74.41

losses. We aim to investigate whether our proposed TSs offer orthogonal benefits irrespective of LS.
Here, we do not optimize performance for the LS coefficient and temperatures but use a fixed set of
hyperparameters for consistency.

We observe that including the proposed schedules (P-NegCosSch or M-NegCosSch) in any OSR loss
function improves performances both for the closed set and open set problems over the corresponding
constant temperature baseline for all cases except for two, such as for Aircraft on SupCon loss
including LS and P-NegCosSch, and for TinyImageNet on CE loss including LS and M-NegCosSch.
Our NegCosSch provides performance boost for up to 1.87% of accuracy, up to 3.3%/3.1% of
open set AUROC in the ‘Easy’/‘Hard’ splits and up to 4.4%/3.96% of OSCR. This amount of
performance boost comes without any additional computational cost. Between our two schedules, the
M-NegCosSch performs better in most cases than the periodic one, demonstrating that the primary
benefit for most cases is derived from monotonic negative cosine increase. However, P-NegCosSch
outperforms in several cases — such as for CUB and Aircraft benchmarks on CE and BackMix, and for
the open set metrics on TinyImageNet with ARPL and BackMix, which confirms that refining with
periodicity can help achieving an improved representation space depending on the data characteristics.

Moreover, our method can be used together with LS to further boost the performance in a few cases
(for CUB- M-NegCosSch and TinyImageNet with CE loss). Even for cases where LS does not
improve the constant baseline performance (for the Stanford cars -‘Hard’ split and Aircraft with CE
loss), our NegCosSch outperforms the corresponding baseline. In these few cases, LS may cause
drops in OSR metrics because it leads to max-logit suppression as shown in Xia et al.| (2025), which
degrades the ranking of scores by assigning relatively lower max-logit on the correct known samples
and higher scores for unknowns compared to the without-LS case. In spite of this, our TSs boost
OSR performance even where LS alone failed. Overall for SSBs, the CE loss performs better than
SupCon loss. We believe that our scheme, in principle, can improve other OSR methods, such as the
method by Jia et al.| (2024).

5.3 PROPOSED SCHEDULE IS MORE BENEFICIAL WITH MORE TRAINING CLASSES

To show the strength of our NegCosSch with increased number of training classes, we train models
on CE loss with {20%, 40%, 60%, 80%, 100%} of the randomly chosen training classes for the SSBs
without changing the open set. In Figure[3] we plot the improvement of a metric m over the corre-
sponding baseline, defined as: improvement = m[TNegcosseh (71, 77 )] — maxrer, , {m[Tconst (7)]}.
Here, Tcg = {0.5,1.0,2.0}. We observe an overall upward improvement trend with more training
classes in most cases for both the ‘Easy” and ‘Hard’ OSR splits. The negative values in Figure[3c]is
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Table 2: Performance on different OSR loss functions, with and without the proposed schedules.
Open set results are shown on ‘Easy / Hard’ splits. We highlight the cases where our TS produces
better results than the baseline and underline the best result for each case.

Accuracy (%) AUROC (%)  OSCR (%) Accuracy (%) AUROC (%)  OSCR (%)

Loss Schedule CUB Aircraft
Constant 84.43 83.55/7498 70.49/63.34 90.88 90.35/81.48 82.05/74.25
CE (w/o LS) M-NegCosSch(ours) 86.12 86.79/78.08 74.7/67.3 91.15 91.15/83.23 82.99/76
P-NegCosSch(ours) 86.3 86.85/77.6 74.89/67.01 91.33 91.41/83.15 83.43/76.14
CE +LS (V: Constant 85.53 85.15/77.44 72.77166.26 90.73 86.85/79.72 78.84/72.55
Call 2022 2;2e M-NegCosSch(ours) 86.21 87.66/79.06 75.53/68.23 91.34 88.25/81.19 80.62/74.36
e ) P-NegCosSch(ours) 86.12 86.43/78.03 74.36/67.22 91.1 87.25/80.03 79.55/73.17
SunC 9 Constant 8343 86.94/7395 72.42/61.66 90.71 88.78/81.79 80.51/74.37
L‘;‘; on (W0 N NegCosSch(ours) 853 88.14/75.81 75.09/64.72 91.43 90.45/8249 82.57/75.51
P-NegCosSch(ours) 84.12 87.5/74.95 73.54/63.13 90.61 89.27/81.97 80.96/74.55
Constant 83.72 86.43/73.69 72.3/61.74 90.05 88.97/81.81 80.11/73.85
SupCon + LS M-NegCosSch(ours) 85.28 88.05/75.78 74.97/64.63 90.55 89.47/81.85 80.95/74.28
P-NegCosSch(ours) 84.38 87.26/75.16 73.5/63.39 90.43 88.77/81.78  80.2/74.08
ARPL (Ch Constant 85.8 86.93/79.7 78.64/73.36 90.88 90.75/81.77 85.98/78.26
Call oo cn M-NegCosSch(ours) 8647 87.6/80.53 79.65/74.41 91.26 91.55/82.01 86.65/78.39
et 2l ) P-NegCosSch(ours) 86.51 87.57/80.12 79.61/74.05 90.98 91.52/82.02 86.55/78.38
BackMix Constant 82.12 82.39/7299 67.94/60.32 90.53 92.41/82.47 83.75/75.09
(Wang et al] M-NegCoSch (ours) 82.84 83.97/74.66 69.71/62.1 91.37 92.2/8443 84.19/77.36
(2025)) P-NegCoSch (ours) 8398 84.54/74.13 71.23/62.66 9149 92.3/83.68 84.35/76.72
SCars TinyImageNet
Constant 96.76  94.03/84.82 91.04/82.19 81.95 78.6 69.22
CE (w/o LS) M-NegCosSch(ours) 97.22 95.18/86.26 92.57/83.95 81.98 79.21 69.84
P-NegCosSch(ours) 97.3 95.03/86.05 92.49/83.81 82.23 79.05 69.91
Constant 97.05 94.67/84.35 91.95/82.02 84.55 82.85 74.74
CE+LS M-NegCosSch(ours) 97.23 95/85.06 92.42/82.83 84.24 82.79 74.41
P-NegCosSch(ours) 97.23 94.82/84.54 92.24/82.31 84.85 83.02 75
SupC: y Constant 96.58  92.99/82.8 89.92/80.12 85.37 82.87 70.61
L‘;‘; on (WO p i NeeCosSch(ours) 96.79 93.57/82.76  90.66/80.26 85.4 83.21 70.98
P-NegCosSch(ours) 96.68 93.32/83.16 90.31/80.53 85.18 83.09 70.71
Constant 96.6 93.03/83.32 89.95/80.63 85.18 82.65 70.31
SupCon + LS M-NegCosSch(ours) 96.84 93.58/83.15 90.69 /80.62 85.57 83.11 71.04
P-NegCosSch(ours) 96.69 93.45/83.29 90.43/80.66 85.23 83.05 70.72
Constant 97.37 95.22/85.89 93.46/84.7 85.02 83 74.89
ARPL M-NegCosSch(ours) 97.29 95.27/86.03 93.48/84.82 84.83 83.07 75.03
P-NegCosSch(ours) 97.21 95.25/85.71 93.47/84.52 85 83.12 75.07
Constant 96.81 93.23/84.39 90.33/81.82 82.32 81.23 67.1
BackMix M-NegCoSch (ours) 97.52 94.86/8648 92.56/84.48 82.6 81.62 67.37
P-NegCoSch (ours) 97.37 94.76/86.04  92.31/83.89 82.5 81.72 67.42
s 15 2
=y o o
: 10 : —
g =S LIE) g 0 —F Accuracy —T- OSCR:Easy -
2 2 T 3 0.5 = 3 AUROC:Easy ~ —F— OSCR:Hard
s 5 I/’ I I 5 —F— AUROC:Hard
£ £0.0 £-2
= 20 40 60 80 100 £ 19 39 58 78 98 £ 10 20 30 40 50
number of training classes number of training classes number of training classes
(a) CUB (b) SCars (c) FGVC-Aircraft

Figure 3: Effect on performance improvement for our proposed schedule over the baselines with
varying number of training classes. Increasing the number of training classes tends to yield greater
improvements in OSCR across all datasets, along with significant improvements in AUROC and
accuracy, with the effect being most pronounced for CUB and least for FGVC-Aircraft. Error bars
represent the standard deviations across trials with random training classes.

due to the fact that we measure improvement over the maximum score of three baselines. With more
training classes, the task becomes harder for the base model, which is observed by the performance
decline. Nonetheless, our schedule gains higher improvement with more training classes.
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We observe that the benefits of our schedules may reduce when the number of training classes is
relatively small, which also occur in the CIFAR benchmarks (discussed in Appendix [F:8). The
baseline performance on the CIFAR benchmarks are already substantial, whereas the tougher SSBs
require significant improvement, where the benefits of our proposed schedules are realized most. We
leave extending our temperature modulation to these smaller benchmarks as a future work.

6 RELATED WORKS

Open Set Recognition. Since the introduction of OSR problem, it has received a significant interest
in the research community. Most of the research attempts can be summarized into several common
categories, some of which are discussed in Section[I] Besides the use of generative models, input or
mani-fold mix-up, other works add auxiliary samples with different strong augmentations for training
models (Wang et al., 2025} Jiang et al.| 2023} Jia et al., |2024}  Xu & Keuper). Another huge group
of research depends on training an additional model with a secondary objective function (Oza &
Patel| (2019); |Sun et al.| (2020); [Perera et al.| (2020); Yoshihashi et al.|(2019); Zhang et al.| (2020);
Jia et al.| (2024)); |Zhou et al.| (2024a)). However, training a generative model or a secondary VAE
model is a cumbersome task on the real-life larger benchmarks as it requires significant computation
overhead and therefore, is not practical. Moreover mix-up based methods, such as manifold mix-up
can increase the amount of computation during backpropagation as the interpolation of samples
occurs in a hidden layer, changing the standard forward-backward pass procedure(Verma et al., |2019).

Another set of methods either construct a different loss function (Chen et al.| (2021} 2020a); |Wang
et al.[(2022))) or add regularization to bound the open set risks (Zhou et al.|(2021)); Lu et al.| (2022);
Yang et al.|(2024a))). For example, the method by|Zhou et al|(2021]) learns additional place-holders for
the novel classes. Methods by [Chen et al.| (2021; 2020a)) learn the reciprocal points of known classes
representing the ‘otherness’ corresponding to each class. These methods try to create additional
empty regions in the representation space hoping that open set representations lie in those regions.
The new baseline by |Vaze et al.|(2022) with well-trained closed set classifiers has triggered the OSR
research for better representation learning schemes. For example, methods by Xu et al.| (2023); | Xu
(2024); [Li et al.| (2024)); Bahavan et al.|(2025)); [L1 et al.| (2025)) train models using the contrastive loss
with regularization and heavy augmentations (Wang et al.|(2025); Jiang et al.|(2023); Jia et al.| (2024)).
The method by |Wang et al.|(2024) trains multiple experts for extracting diverse representations, and
Yang et al.|(2024b) proposes an open set self-learning framework, which adapts the model according
to the test data assuming that it is available. Furthermore, several prior works have focused on
developing fine-grained OSR methods (Lang et al., 2024} Bao et al., 2023} |Sun et al., [2023).

Temperature Scaling. Temperature scaling in the CE loss plays a crucial role in knowledge
distillation (Hinton et al.| (2015)), model calibration (Guo et al.| (2017)) and so on. Since the
contrastive loss has become popular for many tasks (Chen et al.|(2020b); Khosla et al.| (2020)), studies
have aimed to understand its behavior. Recently, methods by |Jeong et al.| (2024); |Qiu et al.| (2024)
utilize temperature cool-down in language models.

7 CONCLUSION

We develop novel temperature schedules, which can be folded into any existing OSR loss function,
such as cross-entropy, contrastive or ARPL without any computational overhead. We find that
starting with a lower temperature and moving towards a higher temperature results in making tighter
representation clusters for the closed set classes, while the representations of the open set examples
remain more distant. This process is more effective than using a fixed temperature or the opposite
schedule. Our proposed schedules demonstrate strong performance improvements on the regular and
the tougher semantic shift benchmarks for both closed set and open set problems for some of the
well-known OSR loss functions, even on top of label smoothing. The benefit of our scheme can be
better realized with a larger number of training classes.

8 REPRODUCIBILITY STATEMENT

Our implementation adheres rigorously to the benchmarks, i.e., the set of known- unknown
splits defined in the standard OSR literature, such as in [Vaze et al.| (2022). For consistent

10
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comparison, we use the same experiment settings and design choices in model architecture and
hyperparameters, the details of which can be found in Appendix [D] Detailed information on
the hardware and software utilized is provided in Appendix [Hl Project codes are available at:
https://anonymous.4open.science/r/NegCosSch-4516/.
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Supplementary Materials

A ETHICS STATEMENT

Open set recognition is crucial for enhancing safety and reliability in machine learning systems
operating in changing environments by detecting novel patterns. For instance, all categories of interest
may not be represented in the training set due to their rarity or new categories may emerge due to
dynamic nature. The capability of a deep model of knowing what it doesn’t know enhances trust
across various critical applications.

The solution for the OSR problem is yet to be improved, especially for larger datasets. Their
performance depends on the semantic closeness between the known and unknown classes. Hence,
the methods cannot be solely relied upon in deployment. For example, an over-sensitive OSR system
can lead to a high false alarm rate.

B MONOTONIC TEMPERATURE SCHEDULES

Different monotonic TSs— such as the linear, exponential, and logarithmic increases, as well as the
linear decrease, over the range |7, T*]— are listed below. Similar to our negative cosine TS, the
linear and exponential schedules also start with a lower value of 7 and gradually switches the task
with a higher value. For a random TS, we pick a random temperature from [7—, 7] at each epoch.

Rnear(e; T+» T_) =7 + %(T+ - T_) (9)
—
%xponemial(e; 7_+7 7—7) =7 X (F)S/E (10)
_ _ _ log(e
ﬂogarithmic(@ T+a T ) =7 + (T+ =T ) X logg((E)) (11)
_ € _
Rnear—deerease(@ T+7 T ) =7t - E(T+ - T ) (12)
C GRADIENTS OF L0OSS FUNCTIONS
C.1 GRADIENT OF SUPCON Lo0OSS
For any sample ¢ € I, the gradient of Lgypcon in Eq. with respect to a negative logit [;
aLSupCon 0 1 1 . .
- — Zsim(ly, 1) + 1 Ll )
al; asim(l;, ;) | 1P(0)] Z ( Foim(li 1) + log Z exp(sim(Li,La)/7)
- peP(i) acI\{i}
3sim(l,-, l])
ol;
1 Lexp(sim(l;,1;)/7) " osim(l;, 1)
PO &ty Taergn o0lim(lL)/1) "~

8Sil’n(li, l])

1
= ;[SOftmaXaEI\{i}(Sim(l% la)/T)]J X alj

We already discussed this in Section@ Similarly, the gradient of Lsypcon With respect to a positive
logit [;
aLSupCon _ 1
ol 7| P(i)]

851m(l,, l])
ol

(1PG)llsoftmax,e iy (sim(ls L) /)]s = 1)

To push the gradient towards 0, value of the softmax function should approach towards IP}W' For

large value of T, this is possible when all negatives are far away than the positives, to have minimum
effects in the denominator of softmax function. Moreover, the differences of scaled similarities
between anchor and the positives diminish, inducing the class-specific features.

15



Under review as a conference paper at ICLR 2026

C.2 GRADIENT OF CE Loss

The gradient of Lo g with respect to the logit of output node j corresponding to the true label of
sample k,

OLcg 0 exp(lp;/7) 1
A T log S exp(ei/7) T [softmaxy (I /7); — 1]

For small 7, the differences of scaled logits will be amplified, and the softmax will approach towards
an indicator function. The same softmax value in this gradient term computes the probability for the
output node of the true class which will approach towards 1.0. Therefore, the resulting probability
distribution is sharper. For large 7, the differences of scaled logits will diminish, and the softmax will
approach towards 1/C, making the resulting probability distribution smoother.

D TRAINING DETAILS

Benchmarks. There are 5 known-unknown random splits defined in the regular OSR benchmarks. We
consider 4 regular benchmarks, such as the CIFAR10, CIFAR+10. CIFAR+50 and the TinyImageNet
benchmarks. The CIFAR10 benchmark has 6 closed set classes and 4 open set classes, whereas
CIFAR+10 and CIFAR+50 have 4 closed set classes from the CIFAR10 dataset and 10 and 50 open
set classes from CIFAR100 dataset respectively. TinyImageNet has 20 training classes and 180 closed
set classes. The SSBs are defined with 50% of the classes in training and rest 50% classes are divided
into ‘Easy’, ‘Medium’ and ‘Hard’ splits. Similar to|Vaze et al.| (2022), we combine the ‘Medium’ and
‘Hard’ splits to report as the ‘Hard’ split in our paper. For each split, we run each experiment with 5
different random seeds and we report average results.

Model Architecture. We follow experimental settings similar to the existing literature, such as in
Vaze et al.| (2022)). For the regular benchmarks, we train VGG32-like models from scratch and for
the SSBs, we train ResNet50 models pretrained on the places365 dataset for a supervised task. The
feature dimensions are 128 and 2048 for the regular benchmarks and the SSBs respectively. The
linear projection layer for SupCon training has the same number of input and output nodes as the
feature dimension.

Hyperparameters. We train all models for 600 epochs with the SGD optimizer with a momentum of
0.9 and a weight decay of 10~%. We use a cosine learning rate scheduler with warm-ups and 2 restarts
at the 200-th and 400-th epoch. The initial learning rate is set to 0.1 for the CIFAR benchmarks and
0.001 for the SSBs. For TinylmageNet, it is set to 0.01 for the CE loss and we tune it to 0.05 for the
SupCon loss. Rand-Augment is used for data augmentations in all cases. While tuning, we select
the hyperparameters by maximizing the closed-set performance on a validation set. The validation
set is constructed by holding out 20% random training data from one known-unknown split. Batch
size is set to 128 for the regular benchmarks. For the SSBs, the batch size is set to 12 as only this
amount can be accommodated in our single GPU for each experiment in the SupCon training. The
images are resized to 32 x 32, 64 x 64, and 448 x 448 respectively for the CIFAR, the TinyImageNet
benchmarks and the SSBs.

Label Smoothing. For TinyImageNet and the SSB datasets, we report results both including and
without uniform LS as LS has shown improvements for these datasets. For the CE loss, we choose
the LS coefficients from [Vaze et al.|(2022). For LS in SupCon loss, we implement the following
function instead of (2)):

exp(sim(z;, 2;)/7)
acI\{i} exp(sim(z;, 24)/T)
(13)
with Ni(a) = 32y p (i3 [(1 = @) 1y,—y, + 5% 1y, 4, ), where avis the smoothing coefficient and
1 is the indicator function. For contrastive loss, we tune « from {0.1,0.2,0.3}; however, we use
a = 0.2 in Table 2| for consistent comparison.

1 1 «
Lcrs=-=3. 3 (I pp—— T |
SCLS ]2~ Ny(a) (1-a) yl—yﬁrc_l yiy;) ng
i€l jel\{i}

Details for the UMAPs in Figure 1. We randomly choose 10 training classes from the defined closed
set of the CUB benchmark and keep the open set as it is. We train models with constant temperatures
0of 0.5,1.0,2.0, Tcossen (7T = 2.0, 77 = 0.5) and our TNegcossen(7T = 2.0, 7~ = 0.5) with CE loss
and without LS. To show the training progress in our method, we plot the features at the beginning,
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the middle and the end of the last scheduling period starting at epoch 400. We standardize the features
by subtracting the mean and scaling them to unit variance before applying UMAP transformation. For
clear visualization, we plot features of all the closed set samples and 10% random open set samples.

E DISCUSSIONS ON THE ADVERSARIAL RECIPROCAL POINT LEARNING

The adversarial reciprocal point learning (ARPL) method (Chen et al., 202 1)) defines a reciprocal point
for each category c, denoted by r., which is regarded as the latent representation of the ‘otherness’
corresponding to each class. The reciprocal points {r.}_; are learnable parameters. Given a logit
l; = f(x;) and a reciprocal point ., their distance d(l;, r.) is calculated by combining the Euclidean
distance and the dot product as the following:

1
5”11 - 7AC||§ ) dd(livrc) =17

d(lu Tc) == de(li7 Tc) - dd(lia Tc)

de (lu Tc) -

D is the number of feature dimension in [. The final classification probability is calculated as:

ol 10y exp(d(l;,re)/T)
o oo ek 22:1 exp(d(li, )/ T)

The total loss is calculated as
Lrpr = —log P(yz’ = C|1'i7 f {Tc}cczl) +A max(de(lia'rc) - R, 0) (14

We observe that the distance is also scaled with the temperature parameter (7) in this loss. A\ is
to adjust the trade-off between the two loss terms and is set to 0.1 and, R is the learnable margin
parameter.

F ADDITIONAL RESULTS

Here, we discuss the performance variability of the proposed TSs, ablation studies on (7F,77), P,
and k, some results on a vision transformer model, and performance on the CIFAR benchmarks.

Table 3: Representation space geometry analysis. Metrics measure cluster quality (intra-class and
inter-class scatter) and average distance from the unknown samples to the nearest prototype of known
classes. NegCosSch achieves a competitive inter-class separability and the highest average distance
from unknown samples to nearest prototype, demonstrating that our proposed schedule learns an
improved representation space geometry for both the tasks.

CUB SCars

Schedule intra-class inter-class unknowns’ dis- intra-class inter-class unknowns’ dis-

scatter ({) margin (1) tance to nearest scatter ({.) margin (1) tance to nearest

prototype () prototype (1)

Const. (7 = 0.5) 0.1463 0.5503 0.4172 0.0919 0.6587 0.3869
Const. (1 = 2.0) 0.1252 0.7805 0.3974 0.0609 0.9129 0.3797
Const. (7 = 1.0) 0.1349 0.6586 0.41 0.0754 0.7923 0.3814
P-CosSch 0.1287 0.6832 0.4037 0.072 0.8127 0.3826
P-NegCosSch 0.1318 0.7741 0.423 0.068 0.8951 0.4002

F.1 REPRESENTATION SPACE ANALYSIS WITH GEOMETRIC PROPERTIES
To strengthen our claim that the proposed schedules improve the overall representation learning, we

conduct a quantitative diagnosis to analyze the learned space with the following geometric properties—
intra and inter-class scatter, and the average distance from unknown samples to the nearest prototype
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Table 4: Performance standard deviation of different TSs on CE loss across various seeds.

Accuracy (%) AUROC (%) OSCR (%) Accuracy (%) AUROC (%) OSCR (%)

TS CUB Aircraft

Const. (Baseline) 0.2 0.26/0.26 0.41/0.37 0.39 0.77/0.52 0.42/0.47
Linear decrease 0.78 0.35/1.02 0.76 /1.03 0.29 0.42/0.53 0.46/0.56
Random 0.64 0.23/0.44 0.67/0.74 0.21 0.27/0.75 0.25/0.75
P-CosSch 0.42 0.29/0.52 0.6/0.7 0.31 0.74/0.27 0.85/0.36
M-CosSch 0.28 0.26/0.66 0.06/0.63 0.32 0.82/1.05 0.85/1.14
Logarithmic increase 0.12 0.39/0.48 0.39/0.46 0.32 0.34/0.49 0.53/0.45
Exponential increase (ours) 0.2 0.28/0.18 0.29/0.15 0.27 0.26/0.54 0.12/0.54
Linear increase (ours) 0.31 0.21/0.19 0.25/0.15 0.29 0.12/0.56 0.23/0.73
P-NegCosSch (ours) 0.47 0.38/0.23 0.34/04 0.34 0.25/0.43 0.26/0.5
M-NegCosSch (ours) 0.27 0.44/0.28 0.6/045 0.31 0.15/0.47 0.26/0.3

SCars TinyImageNet

Const. (Baseline) 0.1 0.52/0.49 0.51/0.52 0.25 0.24 0.21
Linear decrease 0.29 0.76/0.77 0.9/0.89 0.18 0.25 0.21
Random 0.1 0.5/0.79 0.54/0.77 0.19 1.23 1.1
P-CosSch 0.08 0.56/0.98 0.55/0.96 0.16 0.34 0.3
M-CosSch 0.13 0.69/0.62 0.61/0.59 0.1 0.32 0.28
Logarithmic increase 0.15 0.4/0.56 0.41/0.67 0.2 0.28 0.33
Exponential increase (ours) 0.1 0.31/0.57 0.3/0.63 0.12 0.2 0.22
Linear increase (ours) 0.1 0.23/0.53 0.27/0.58 0.24 0.32 0.37
P-NegCosSch (ours) 0.1 0.29/0.62 0.21/0.59 0.29 0.37 0.36
M-NegCosSch (ours) 0.09 0.22/0.51 0.26/0.55 0.15 0.22 0.19

of known classes, which are defined as

. 1
intra-class scatter = ——
| Z|

Z sz _pc||2
{z:€Z)|yi=c}
C C
1

M-

inter-class margin = % Z Z |lpi — pjll
(3) = J=1,i<j

1
distance of unknowns to nearest prototype = 7 ;Z 1;1161%10 [|20 — Pell
Zu u

Where, Z; and Z, is the set of known and unknown representations respectively and p. is the
prototype for class c. The metrics are reported in Table 3] We observe that a lower temperature
achieves a higher intra-class scatter and a lower inter-class margin (as encouraged by the instance-
specific learning), indicating poor separation. It also achieves a higher average distance from
unknown samples to the nearest class prototype, which is a desirable property for better OSR. A
higher temperature achieves the opposite, resulting from the class-specific learning, indicating a better
closed set separation. A mid value of 7 achieves a trade-off in terms of these geometric properties,
while our proposed schedule (P-NegCosSch) successfully achieves a necessary combination from
both the extremes — a lower intra-class scatter, a higher inter-class margin and a higher average
distance from unknowns to prototypes. This structural superiority confirms that our schedule better
utilizes the entire representation space.

F.2 PERFORMANCE VARIABILITY

Here, we present the standard deviations of performance metrics across trials with 5 different seeds.
Tables [d] and [5] present the standard deviations for the performance results reported in Tables [T and
[2] respectively. The proposed TSs demonstrate either better or similar standard deviation compared
to the baseline and the other TSs (presented in Table [d)) and for all losses (presented in Table [3])
considering the significant performance boost achieved by our proposed ones.

Statistical Significance Test. We perform one-sided non-parametric Wilcoxon rank tests to evaluate
the statistical significance of improvements for CE and SupCon losses in Table 2] We test the
hypothesis that our proposed schedules achieve higher performance than the corresponding constant
temperature baseline. The resulting p-values are presented in the table[6] In the majority of cases, our
schedules achieve the minimum possible p-value (p = 0.03125), indicating a consistent improvement
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Table 5: Performance standard deviation of constant baseline and our NegCosSch on different losses
across various seeds.

Accuracy (%) AUROC (%) OSCR (%) Accuracy (%) AUROC (%) OSCR (%)

Loss Schedule CUB Aircraft
Constant 02  026/026 0.41/037 039  077/052 0.42/047
CE (wloLS)  M-NegCosSch(ours) 027  044/028 0.6/045 031  0.15/047 026/03
P-NegCosSch(ours) 047  038/023 034/04 034  025/043  026/05
Constant 0.14  058/034 04/023 0.16  027/0.54 0.19/0.49
CtE“‘S M-NegCosSch(ours) 034  0.59/0.36 0.59/0.38 026  0.58/029 0.54/0.18
fetal] @023 P-NegCosSch(ours) 022 077/031 0.66/0.41 025  0.83/035 0.77/0.22
SupCon (wjo  Comstant 029  023/029 0.35/0.23 058  1.79/053 1.99/0.77
L‘gl)’ on - (W0 \_NegCosSch(ours) 028  0.18/0.38 0.34/0.53 028  0.38/024 039/034
P-NegCosSch(ours) 021  0.13/031 026/035 1.08  1.37/055 2.07/1.18
Constant 02  024/032 0.44/038 069  1.03/055 135/0.85
SupCon+LS  M-NegCosSch(ours) 038 0.36/0.17 0.53/0.18 0.19  041/037 031/043
P-NegCosSch(ours) 0.32 0.62/04 0.78/0.57 0.53  1.77/042 1.82/051
Constant 017 055056 037 047 046 047 056 041 0.58
20 M-NegCosSch(ours) 0.19  085/042 0.54/026 042 062/059 0.67/051
2 P-NegCosSch(ours) 0.17  0.87/045 049/03 047  0.63/0.58 0.62/057

SCars TinyImageNet

Constant 0.1  052/049 051/052 0.2 0.21 0.23
CE (W/oLS)  M-NegCosSch(ours) 0.09  022/051 0.26/055 0.27 0.27 0.32
P-NegCosSch(ours) 0.1  029/062 021/059 0.38 0.32 04
Constant 01  026/022 025/025 0.25 0.24 0.21
CE+LS M-NegCosSch(ours) 0.08 0.3/032 0.33/0.29 0.15 0.22 0.19
P-NegCosSch(ours) 0.14 0.26/03 0.34/031 0.29 0.37 0.36
SunC 1y Constant 0.19  0.12/045 0.25/0.39 0.18 0.01 0.17
Lgp on (W/o N NegCosSch(ours) 0.15  0.18/0.18 0.18/0.24 0.2 0.04 0.15
) P-NegCosSch(ours) 0.14 0.2/029 02/0.32 0.37 0.08 0.33
Constant 0.06  0.18/0.36 0.19/0.35 0.25 0.16 0.27
SupCon+LS  M-NegCosSch(ours) 0.1 0.2/038 0.23/0.33 0.16 0.16 0.09
P-NegCosSch(ours) 005  0.19/025 0.19/0.25 0.15 0.12 0.14
Constant 047  0.08/092 0.27/0.79 0.1 0.13 0.12
ARPL M-NegCosSch(ours) 0.34 0.13/0.5 0.07/0.37 0.37 0.29 0.24
P-NegCosSch(ours) 0.19  0.12/067 0.18/0.7 0.17 0.25 0.17

Table 6: p-values from one-sided Wilcoxon rank tests comparing the proposed schedules to the
baseline over 5 random trials. A p-value of 0.031 indicates the proposed schedule outperforms the
baseline in all 5 trials. We underline the only two instances where our schedule does not outperform
the baseline and a higher p-value is expected.

Accuracy (%) AUROC (%) OSCR (%) Accuracy (%) AUROC (%) OSCR (%)

Loss comparing schedule CUB Aircraft

CE M-NegCosSch 0.03 0.03/0.03 0.03/0.03 0.09 0.03/0.03 0.03/0.03
P-NegCosSch 0.03 0.03/0.03 0.03/0.03 0.03 0.03/0.03 0.03/0.03

SupCon  M-NegCosSch 0.03 0.03/0.03 0.03/0.03 0.03 0.06/0.06 0.06/0.06
P-NegCosSch 0.03 0.03/0.03 0.03/0.03 0.19 0.15/0.15 0.31/0.31

Scars TinyImageNet

CE M-NegCosSch 0.03 0.03/0.03 0.03/0.03 0.15 0.15 0.03
P-NegCosSch 0.03 0.03/0.03 0.03/0.03 0.35 0.15 0.59

SupCon  M-NegCosSch 0.09 0.03/0.59 0.03/0.21 0.15 0.03 0.03
P-NegCosSch 0.31 0.03/0.15 0.06/0.15 0.94 0.03 0.31

across all trials. Even in cases with slightly higher p-values, our schedule surpasses the baseline in
the majority of trials. We underline the only two instances where our schedule does not outperform
the baseline and a higher p-value is expected.
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Table 7: Evaluation of robustness to different open-set scoring rules. Our proposed schedules maintain
a performance improvement across all tested scoring rules for the majority of the cases.

metric — AUROC OpenAUC
scoring rule — Max-logit Max-prob. Energy ODIN  cosine head Max-logit
Loss schedule CUB
CE Constant 83.55/74.98 83.81/78.05 83.11/74.19 83.17/73.26 85.33/76.26  70.5/63.35

M-NegCoSch (ours) 86.79 /78.08 86.43/80 87.21/78.18 87.6/77.38 88.05/78.86 74.71/67.31
P-NegCoSch (ours) 86.85/77.6 86/79.76 86.91/77.55 87.04/76.71 88.09/78.47 74.9/67.01

SupCon  Constant 86.94/73.95 86.48/76.35 86.05/72.57 86.75/73.2 86.57/76.24 72.42/61.67
M-NegCoSch (ours) 88.14/75.81 87.82/77.27 87.56/74.35 88.21/74.81 88.66/78.34 75.1/64.73
P-NegCoSch (ours) 87.5/74.95 87.3/76.78 87.05/73.75 87.69/74.31 87.9/77.69 73.55/63.14

Aircraft

CE Constant 90.35/81.48 84.96/81.53 87.63/81.05 87.3/79.64 85.05/80 82.05/74.26
M-NegCoSch (ours) 91.15/83.23 88.34/82.18 92.19/84.67 92.64/84.5 89.26/83.42 83/76.01
P-NegCoSch (ours)  91.41/83.15 85.24/79.98  89.1/82.11 89.32/81.13 86.56/81.12 83.44/76.15

SupCon  Constant 88.78/81.79 84.59/80.66 8596/81.1 85.84/80.5 84.1/80.79 80.52/74.39
M-NegCoSch (ours) 90.45/82.49  90.55/82.3 90.84/82.46 91.14/82.37 91.33/81.93 82.57/75.52
P-NegCoSch (ours)  89.27/81.97 86.29/81.27 87.11/81.44 87.43/80.97 85.48/81.55 80.97/74.56

SCars

CE Constant 94.03/84.82 93.82/84.99 93.04/842 92.89/8393 93.49/84.16 91.05/82.2
M-NegCoSch (ours) 95.18/86.26 94.84/83.58 95.14/84.86 95.15/84.8 94.78/84.41 92.57/83.96
P-NegCoSch (ours)  95.03/86.05 94.59/85.68 94.55/86.18 94.49/86.11 94.28/854  92.5/83.82

SupCon  Constant 92.99/82.8 93.71/83.56 92.41/82.42 93.07/82.85 94.28/83.57 89.93/80.13
M-NegCoSch (ours) 93.57/82.76  94.34/83.1 93.39/82.26 93.88/82.56 95.1/83.25 90.67/80.27
P-NegCoSch (ours)  93.32/83.16 93.73/83.39 92.72/82.56  93.23/82.9 94.13/82.84 90.32/80.54

TinyImageNet
CE Constant 78.6 79.59 80.95 78.39 80.11 69.23
M-NegCoSch (ours) 79.21 78.11 81.19 78.09 80.44 69.85
P-NegCoSch (ours) 79.05 77.65 81.09 78.08 80.37 69.92
SupCon  Constant 82.87 83.05 82.93 80.12 81.16 70.63
M-NegCoSch (ours) 83.21 82.99 83.11 80.2 81.49 70.9
P-NegCoSch (ours) 83.09 82.9 83.05 80.19 81.42 70.72

F.3 IMPACT OF DIFFERENT INFERENCE SCORING RULES

To test the robustness, we evaluate our schedules across multiple other OSR scoring rules, such as
the energy score [2020), ODIN (Liang et al} 2017), Cosine-margin 2019),
max-logit, confidence (or max-probability) and OpenAUC (Wang et al.} [2022)) scores. While the
OSCR curve measures the trade-off between CCR and FPR across all thresholds, the OpenAUC is a
simplified threshold-free ranking score that can be expressed as the sum of pair-wise loss terms and
removes the need to calculate the numerical integral with histograms. The results presented in Table
[7|confirm that our TSs outperform the baseline in the majority of cases, irrespective of the scoring
rule used. The improved representations learned through our schedules confirm that the performance
benefits are transferable across different scoring rules.

F.4 PERFORMANCE ON VISION TRANSFORMER

We evaluate our proposed NegCosSch on SSBs using a tiny vision transformer (ViT) 2022),
to demonstrate the robustness and general applicability of our schedules across the contemporary
ViT architectures, with the results are presented in Table[8] The improvements observed in this table
confirm the benefits of our temperature modulation when integrated into a transformer backbone. The
results in the table, along with previous results from VGG and ResNet-based architectures, confirm
the applicability of our proposed TSs across a diverse range of model architectures.

E.5 ABLATIONS ON (71,77)

Figure [] presents the OSR performance of our NegCosSch along with the regular cosine TS and
constant temperatures in SupCon loss on the regular benchmarks. We vary (7+,77) from T?S’upCon
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Table 8: Performance on SSBs with a tiny ViT architecture.

CUB Aircraft SCars
method Acc. (%) AUROC (%) OSCR (%) Acc. (%) AUROC (%) OSCR (%) Acc. (%) AUROC (%) OSCR (%)
Const. (baseline) 90.83 91.41/79.88 82.99/72.59 88.26 87.75/76.31 77.82/68.08 95.62 92.5/83.67 88.54/80.13
M-NegCosSch (ours) 91.07 92.06/80.67 83.79/73.51 88.51 89/78.78  79.12/70.41 95.8 93.1/83  89.28/79.61
P-NegCosSch (ours) 91.2 92.3/80.04 84.1/73.03 88.92 88.65/79.68 79.12/71.46 96.03 93.08/83.08  89.47/79.9
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Figure 4: Open Set AUROC of different TSs for the SupCon loss on the regular OSR benchmarks.

and compare Txegcosseh (T, 77, P) with Teossen (77,77, P), Teonst(T = nearest(3[77 + T*]))ﬂand
Tconst(T = 7). The objective of the quadruplet-wise comparisons is to determine if our proposed
TS outperforms a regular cosine TS, a constant temperature set to the midpoint of (77, 77), or set to
7~ with various pairs of (71, 77). We observe that for the CIFAR10, CIFAR+10 and TinyImageNet
benchmarks, our proposed TS yields a better open set AUROC than CosSch and constant temperatures
for most of the quadruplet comparisons. We find the improvements or degradations to be insignificant
for the CIFAR+50 benchmark with the highest AUROC found for T¢osscn(0.3,0.1). By observing the

best performances of our NegCosSch, we formulate the strategy mention in Section [4.3] for choosing
+ —
(T, 77).

F.6 ABLATIONS ON P AND k IN 7GcosScu

We perform an ablation study on P in Tneecossch Using TinyImageNet with the SupCon loss for
different pairs of (71, 77) and the open set AUROC are presented in Table @ We observe that
different choices of P produce similar OSR performance.

We also compare the open set AUROC on TinyImageNet among different values of & in Tgcossch-
The temperatures are set to: 77 = 0.4 and 7~ = 0.1. From Table we observe that the open
set AUROC increases with the value of k, with the highest AUROC observed for £ = 1 or our
NegCosSch.

’B ‘nearest’, we mean a nearest temperature is chosen from Tsupcon.
p
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Table 10: Open set AUROC on TinylmageNet

Table 9: Open set AUROC (%) on TinylmageNet o different values of k in TGCosseh-

for different values of P in TnegCosSch-

Schedule AUROC (%)

T
()N P M0 w0 Tacossen (k = 0) o Teossen 82.87
(0.3,0.2) 83.10 83.03 TGcosseh (k= 0.25 82.93
0.4,0.1) 8291 83.09 TGcosseh (B = 0.50) 82.99
(0.4,0.2) 82.99 83.03 T6cosseh (B = 0.75) 83.03
Tacosseh (B = 1) or TnegCossch 83.09

F.7 PERFORMANCE ON PROTOTYPICAL CONTRASTIVE LEARNING

We also show results with our NegCosSch on TinyImageNet and Aircraft using the prototypical
contrastive (ProtoCon) learning in Table The ProtoCon loss is recently used by [Bahavan et al.
(2025); L1 et al.| (2025)) for OSR. We observe improvements for all three metrics.

In ProtoCon, instead of contrasting an anchor representation with another sample, we contrast with
the prototypes of known classes. We randomly initialize one prototype per known class {pc}gzl. The
loss function forces all representations of the same class to lie near its prototype and to move away
from other prototypes, which is given as:

exp (sim({;, pg,)/T)
LProtoC(m = Z Lo (15)
| el 1 exp(sim(l;, p.)/T)
We update the prototypes on the fly at each iteration ¢. o is the learning rate for prototypes.
1 Lie L - —
ot = pL sif {i€l:gi=c}[=0 (16)
¢ (1—o)pi~t+ Terg=a Y (ielgi=cy lis ; otherwise
Table 11: Performance using prototypical contrastive learning
TinyImageNet Aircraft
TS Accuracy (%)  AUROC (%)  OSCR (%)  Accuracy (%) ~ AUROC (%)  OSCR (%)
Const. (baseline) 85.36 82.79 70.53 8629  8432/78.46  72.28/68.26
NegCosSch 85.72 83.04 7112 87.03  84.93/79.01  73.29/66.33

F.8 PERFORMANCE ON THE CIFAR BENCHMARKS

Here, we evaluate our periodic NegCosSch using the SupCon loss on the CIFAR benchmarks
— such as CIFAR10, CIFAR+10 and CIFAR+50 and the results are presented in Table The
values of 7 for Tcony are chosen as 0.05, 0.5, and 0.4 respectively with hyperparameter tuning for
the CIFAR10, CIFAR+10, and CIFAR+50 benchmarks and the values of (7, 77) in our TS are
(0.2,0.05), (0.4,0.1), and (0.5, 0.3) respectively. We observe that the closed set accuracy is similar
to the baseline methods when we include our TS on these benchmarks, whereas we gain slight
improvements in the open set performance. The open set performance depends on the nature of the
unknown classes and their semantic similarity with the known classes. We suspect that the benefits of
our TS reduce when the number of training classes is relatively small, which occur in the CIFAR
benchmarks. For example, there are only 6 training classes in CIFAR10 and 4 training classes in
the CIFAR+10 and CIFAR+50 benchmarks. Moreover, the OSR AUROC on the CIFAR+10 and
CIFAR+50 benchmarks are > 97% with tuned constant temperature baselines, leaving only a little
scope for improvements. However, as mentioned before, we observe significant improvements both
for the open set and closed set performance on the TinyImageNet and the SSBs, where they have a
larger number of training classes.

G RELATED WORKS (CONTINUED)

Here, we discuss the recent OSR methods. Wang et al.|(2024) propose to extract diverse features from
multiple experts with an attention diversity regularization to ensure the attention maps are mutually
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Table 12: Closed set accuracy, open set AUROC and OSCR (in %) for the SupCon baseline without
and including the proposed NegCosSch on the CIFAR benchmarks.

CIFAR10 CIFAR+10 CIFAR+50
Methods Accuracy AUROC OSCR Accuracy AUROC OSCR Accuracy AUROC OSCR
Const. (Baseline) 96.95 94.04  91.13 98.05 98.25  96.32 98.13 97.03  95.21
NegCosSch (ours) 96.91 9410 91.18 98.02 98.28  96.33 98.10 97.03  95.17

different. [Zhou et al.| (2024a)) propose a framework with contrastive training for classification and
implement an additional VAE for reconstruction to compute an unknown score based on intermediate
features. |Yang et al.| (2024b) propose a self-learning framework for test time adaptation.

Another line of work utilizes data augmentation. For example, |Jia et al.| (2024) propose an asymmetric
distillation to feed the teacher model with extra data through augmentation, filtering out the wrong
prediction from the teacher model and assigning a revised label to them to train the student model. The
method in|{Wang et al.[(2025) augments the dataset by mixing the foreground of images with different
backgrounds. [ Xu & Keuper| propose new data augmentation with the help of visual explanation
techniques, such as the LayerGAM to mask out the activated areas so that models can learn beyond
the discriminative features.

The other methods are based on contrastive learning with different regularization. For example, Xu
et al.|(2023); L1 et al.| (2024) train models with contrastive loss, sample mix up and label smoothing
for better representation learning. Bahavan et al.[(2025) also propose a prototypical contrastive loss
to pull all samples to its class prototype and push away the prototypes of other classes. |Li et al.
(2025)) propose a regularization inspired from the neural collapse perspective — the closed set classes
are aligned with a simplex equiangular tight frame geometric structure. Recent works by [Zhou
et al.| (2024b)); Hua et al.| (2025) introduce open world prompt tuning methods that improve a vision
language model’s performance in an open-world scenario to make better predictions from a mix of
known and unknown classes.

Although the recent methods aim for better representation learning, some of them achieve this through
feeding more data to the model with augmentation. On the other side, a few recent OSR methods do
not use the same experiments settings maintained in most of works in the literature. For example,
Wang et al.| (2025} 2024); [Jia et al.[(2024) use different backbone models for evaluation, which makes
it harder to compare their methods with others.

H IMPLEMENTATION

Each model is trained on a single NVIDIA-RTX2080Ti GPU requiring from 2 to 32 hours depending
on the model and the dataset. Our implementation utilizes Python (v3.7) and PyTorch (v1.12),
accelerated with CUDA (v11.3) and cuDNN (v8.2). Our codes are mostly built on top of the code-
base by Vaze et al.|(2022) and the implementation of SupCon loss is taken from the official GitHub
page by Khosla et al.| (2020). Our periodic NegCosSch schedule can be integrated into any existing
loss with a few lines of codes as the following:

import math
class GCosineTemperatureScheduler:
def __init_ (self, t_p=2.0,t_m=0.5, P=200,shift=1.0,epochs=600) :
self.t_p = t_p
self.t_m = t_m
self.epochs = epochs
self.P = P
self.s = shift
self.e = int(self.epochs - 0.5 % self.s x self.P)
def get_temperature(self, epoch):
if (t<self.e):
t = self.t_m + (self.t_p — self.t_m) =
(1+ math.cos (2«math.pi* (epoch-self.s * self.P/2)/self.P))/2
else:
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t = self.t_p
return t

if (args.temperature_scheduling) :
TS=GCosineTemperatureScheduler ()
for epoch in range(1l,N_epochs+l):
if (args.temperature_scheduling) :
criterion.temperature = TS.get_temperature (epoch)
# rest of the code
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