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ABSTRACT

Adversarial pruning methods have emerged as a powerful tool for compressing
neural networks while preserving robustness against adversarial attacks. These
methods typically follow a three-step pipeline: (i) pretrain a robust model, (ii)
select a binary mask for weight pruning, and (iii) finetune the pruned model. To
select the binary mask, these methods minimize a robust loss by assigning an im-
portance score to each weight, and then keep the weights with the highest scores.
However, this score-space optimization can lead to sharp local minima in the ro-
bust loss landscape and, in turn, to an unstable mask selection, reducing the robust-
ness of adversarial pruning methods. To overcome this issue, we propose a novel
plug-in method for adversarial pruning, termed Score-space Sharpness-aware Ad-
versarial Pruning (S2AP). Through our method, we introduce the concept of score-
space sharpness minimization, which operates during the mask search by perturb-
ing importance scores and minimizing the corresponding robust loss. Extensive
experiments across various datasets, models, and sparsity levels demonstrate that
S2AP effectively minimizes sharpness in score space, stabilizing the mask selec-
tion, and ultimately improving the robustness of adversarial pruning methods.

1 INTRODUCTION

Deep neural networks are susceptible to adversarial attacks, which entail optimizing an input per-
turbation added to the original sample to induce a misclassification (Biggio et al 2013} |Szegedy
et al., [2014). Besides robustness against adversarial examples, networks are often required to be
compact and suitable for resource-constrained scenarios (Liu & Wang, [2023), where the model’s
dimension cannot be chosen at hand but requires respecting a given constraint. In this regard, neu-
ral network pruning (LeCun et al., [1989) represents a powerful compression method by removing
redundant or less impactful parameters according to a desired sparsity rate and, as a result, allowing
the preservation of much of the performance of a dense model counterpart (Blalock et al., [2020).

Adversarial Pruning (AP) methods aim to fulfill this twofold requirement, thus extending model
compression to the adversarial case, by removing parameters less responsible for adversarial robust-
ness drops (Piras et al.| |2024). While prior work extended naive pruning heuristics to robustness,
such as based on the lowest weight magnitude (LWM) of robust models (Han et al., 2015} |Sehwag
et al., 2019), recent approaches proposed different strategies to quantify each parameter’s impor-
tance, and thus select an optimized pruning mask accordingly. These methods, such as HARP (Zhao
& Wressnegger, |2023) and HYDRA (Sehwag et al., [2020), use real-valued importance scores, one
for each model’s weight, indicating how much robust loss degrades based on that parameter’s re-
moval. These scores are then optimized during the pruning stage by: (i) computing the robust loss
using the top-k parameters in the forward pass (where k is the desired sparsity); and (ii) updating
each parameter’s importance in the backward pass. This procedure circumvents the intractability of
the binary mask optimization problem imposed by the ¢y constraint on the weights (i.e., the desired
sparsity). Hence, it enables a parameter selection process based on the scores minimizing a robust
objective, yielding a final mask with enhanced adversarial robustness. However, the final subnet is
determined by a discrete top-k operator applied to these continuous scores. Consequently, the ef-
fectiveness of the pruning mask in preserving robustness is strongly dependent on importance-score
optimization. Small score variations near the pruning threshold can swap the ordering of scores and
flip many entries of the binary mask, leading to significant changes in the selected top-k parameters
and volatile robustness. This sensitivity highlights the need for a smoother, more stable score-space
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Figure 1: Effects of S2AP on a ResNet18 CIFAR10 model. (a) Improved robust accuracy of pruned
models. (b) Enhanced mask stability (quantified as Hamming distance h, i.e., measuring how much
each mask m; across pruning epochs changes compared to the first computed mask mg). We
subtract and plot h,;g — hg24p, thus yielding positive values where S2AP is more stable (green
area), and negative values vice versa (red area). S2AP enhances mask stability, particularly after
pruning epoch 5 when warm-up ends and explicit sharpness minimization begins. (c) Minimized
sharpness in the robust loss landscape (where the largest eigenvalue A, indicates more sharpness).

optimization landscape. In this regard, recent advances in neural network training suggest that ex-
plicitly minimizing sharpness in the loss landscape can foster not only generalization (Foret et al.|
2021)), but also adversarial robustness (Wu et al., 20205 |Stutz et al.,|2021)). These approaches, such as
Adversarial Weight Perturbations (AWP) (Wu et al., 2020) for adversarial robustness, work by per-
turbing the network parameters (i.e., the weights) and minimizing the corresponding loss to reduce
sharpness and improve performance.

Inspired by these findings, we extend the concept of sharpness minimization in adversarial robust-
ness beyond the traditional parameter-space setting, where weights are perturbed, to the novel con-
text of importance score optimization. We thereby propose a score-space sharpness minimization
approach for adversarial pruning methods, that we define as Score-space Sharpness-aware Adversar-
ial Pruning (S2AP), which reduces the sharpness of the loss landscape parameterized by importance
scores, stabilizing the mask selection and improving adversarial robustness of pruned models. Cru-
cially, S2AP is implemented as a plug-in, allowing seamless integration into existing AP methods
(and any other score-based approach) without altering their core logic or loss formulation. Overall,
our main contributions are organized as follows:

(i) we present the S2AP method (Sect. 3)), discussing its algorithm in a step-by-step approach;

(i) we then demonstrate, across multiple architectures, datasets, and sparsity rates, how S2AP
improves robustness of adversarial pruning methods (Sect. 4.2));

(iii) we finally show, on the same comprehensive setup, the minimized sharpness in the score-
space landscape and the induced mask search stability (Sect. 4.3)).

A preview of the discussed effects and results can be seen in where we show the im-
proved robustness of S2AP (Figure Ta)), the stabilized mask selection based on the masks’ Hamming

distances (Figure Tb), and the minimized sharpness based on the largest eigenvalue (Figure Ic).

2 ADVERSARIAL PRUNING AND SCORE-SPACE

Notation. Let us denote with D = {(z;,y;)},_, atraining set of n d-dimensional samples & € X =
[0, 1]¢ along with their labels y € ) = {1,...,C}. For a network f(-;w) with parameters w € RP,
we define the average loss function computed on the dataset D (or on a batch) as L(w,D) =
1/n, (y;, f(x;; w)), being £ any suitable sample-wise loss and f the C' logits of the network.

Adversarial Robustness. Machine Learning (ML) models are susceptible to adversarial at-
tacks (Biggio et al.| 2013} [Szegedy et al.l |2014)), which create input samples misclassified by the
attacked model. In this regard, adversarial training is considered the go-to defense, minimizing a



given robust loss L defined as the inner maximization in the following optimization problem:
n

min £(w,D),  £(w,D) = > max o, (s + 8 w), n
i=1 1911=€

where x; +d; € [0, 1]¢, i, i.e., that each perturbed sample still lies in the sample space upon adding
an adversarial perturbation § bounded by a given £, bound e.

Adversarial Pruning Methods. Pruning aims to reduce the size of a network by removing its pa-
rameters (e.g., weights) while preserving performance (LeCun et al., |1989). Similarly, Adversarial
Pruning (AP) methods aim to reduce model size while preserving robustness against adversarial at-
tacks (Piras et al.}|2024). Recent AP methods proposed solving the following optimization problem:

min L(w® m,D), )
lmllo<k
where m € {0,1}? is a p-dimensional mask constrained to have k non-zero entries. The mask is
element-wise multiplied by the weights w, ensuring that the pruned model satisfies the sparsity rate
k. However, the sparsity constraint makes a non-convex, combinatorial problem. AP methods
like HARP (Zhao & Wressnegger, [2023), HYDRA (Sehwag et al., 2020), thus solve it by relaxing
the sparsity constraint through the use of importance scores.

Importance Scores. During the pruning stage, while weights are kept invariant, optimizing impor-
tance scores amounts to defining a vector of continuous values s € RP, initialized proportionally to

the weights, which are learnable and optimized with respect to the robust loss £ as follows:

min L(w® M(s,k),D), 3)

where L is computed, given k, through a masking function M (s, k) that assigns 1 only to the top-k
entries of s, thus imposing sparsity. Let us remark that such an optimization procedure is non-trivial:
in the forward pass, the loss is computed using the top-k parameters as ﬁ(w ® M(s,k),D); dur-
ing backpropagation, these methods adopt a straight-through estimator (STE) substituting 9M /9s
with 1 (i.e., the identity) following |Ramanujan et al.|(2020). This method enables propagating the
gradient through the non-differentiable mask and optimizing each score according to its importance.
We thus define as score-space the p-dimensional space RP spanned by the importance scores s, and
study the robust loss landscape £(w @ M (s, k), D) defined over it.

Formulation Generality. The formulation of encompasses all AP methods based on
importance-score optimization. Different methods can, however, define different loss functions (that
we generalize through ﬁ). This is the case of HARP (Zhao & Wressnegger, [2023)), which defines
additional penalty terms allowing for optimizing layer-wise sparsity. We specify that our formula-
tion unifies different loss formulations from various AP methods, and as we will describe in the next
section, the proposed S2AP can “wrap” any AP method based on importance-score optimization.

3 S2AP: MINIMIZING SCORE-SPACE SHARPNESS

From it becomes evident that score optimization on a robust loss is the core logic of ad-
versarial pruning. We improve such an approach by minimizing score-space sharpness. Hence,
our Score-space Sharpness-aware Adversarial Pruning (S2AP) method avoids that small score shifts
induce relevant mask changes, thus stabilizing the pruning process and increasing adversarial ro-
bustness. Following[Eq. 3] and given the sharpness minimization approach from Wu et al. (2020),
we define the S2AP problem as follows:

s* € argmin max L(w ® M(s + z,k), D), 4)
s z

where ||z < ~[[s:]], (5

and ~y constraints the score perturbation z applied on s, scaling it w.r.t. the norm of the scores of
each layer [. S2AP solves such optimization through [Algorithm 1} as detailed below. Note that the

sections of outside the orange box are common to AP methods (cf. [Sect. 2).



Algorithm 1: Score-Sharpness-aware Adversarial Pruning.

Input :w € RP, initial weights; s € RP, set of importance scores; M (s, k), masking function
with pruning rate k; @, training inputs samples; 7, learning rate; I, number of
iterations; L, number of layers; -y, perturbation scaling factor; L, robust loss.

Output: Binary mask m* € {0, 1}4.

1 Initialize parameters s = scale(w), o, + @, s* < s, 2+ 0
2 fori < 1toIdo
Generate adversarial examples on pruned model ; «+ x; + d;

Compute robust loss on pruned model £(s) = L(w ® M (s, k), D)

-

Generate score-space perturbation z + z + n(V.L(s + 2)/||V.L(s + 2)]|)
for/ < 1to L do

if ||z > ~|s?|| then
Project perturbation () « (v (s / [|z2®]) z®

O 0 NN Nk~ W

10 Update scores s < s — 1(V.L(s + 2)/||VsL(s + 2)||)
11 Restore scores s <— s — 2 S2AP
12 \ J

13 | if £(s) < L(s*) then
14 L Update best loss £(s*) « L(s)

15 return m* « M(s*, k)

Generating Adversarial Examples. We initialize, in the set of importance scores s pro-
portionally to w through scale, which scales the scores proportionally to the weights’ magnitude.
This enables creating a pruned model (f(w ® M (s, k)) through which we compute the adversarial
examples ' using the £, PGD attack (Madry et al.| 2018). Following[Eq. 1} we thus craft
a perturbation d constrained on €. Computing the adversarial examples allows defining a robust loss

L which we denote, for brevity and emphasis on the scores, as ﬁ(s) in

Score-Space Perturbation. Defining a robust loss and creating adversarial examples is a common
step of score-based AP methods. During the pruning stage, in fact, these methods’ weights are left
unchanged while importance scores s are optimized according to a robust objective to find the best
mask m = M (s, k). Through S2AP, we are interested in minimizing the score-space sharpness.
Hence, before the standard score optimization, when using S2AP we craft a score-space perturbation
in one single iteration, aiming to shift the loss in score space from the i-th iteration’s local
minima towards a point of higher loss. We thus create a worst-case score perturbation.

In we iterate over the L layers of the network and project our perturbation z in a bound
defined by . More precisely, according to the layer’s score magnitude ||s(l)H, we scale z() to
(Y IIsD] / 1200 2@ if | 2| > ~|s™||, which corresponds to projecting back the perturbation
into the “ball” defined by v when exceeding, and leave as is otherwise. The layer-wise projection
primarily addresses the numeric differences across layers. Without per-layer scaling, the magnitude
of the generated perturbation z can be perceived differently across layers, leading to either no effect
or numerical overflow. A layer-wise projection instead keeps every layer’s perturbation proportional
to its current score norm, preserving well-conditioned updates and preventing disparity across layers.

Score Update. Once the score perturbation z is computed, we evaluate the gradient at the perturbed
scores s + z ([ine T0), and take an optimization step to move s in the direction that, in turn, reduces
sharpness. After optimizing L, S2AP ends by removing the previously applied perturbation to re-
store the original reference point s for the next iteration (line TT). We specify that also the score
update of is common to AP methods. However, instead of updating scores based on the loss
computed on score space E(s), S2AP enables a “sharpness-aware” update on perturbed score space
ﬁ(s + z). Finally, through |1ine 14| andlline ISL we save s* corresponding to the lowest £ and return
the best mask m* via the function M (s*, k), which is finally multiplied to the pretrained weights.




S2AP Finetuning. After defining mask m™ and pruning the model, some of the AP methods we
enhance with S2AP finetune the pruned weights to restore performance using a robust objective (Han
et al., 2015). In S2AP, we choose to finetune the pruned model by aligning the objective with the
score-space sharpness minimization implemented while pruning. Hence, we choose to minimize

sharpness using the AWP (Wu et al.} 2020) approach applied on the classical weight-space:
w* € argmin max L(w+v)om*), (6)

w

where ||| < ~l[wi], (7
and v, in this case, is a weight perturbation added to the preserved weights according to m* found
through Therefore, instead of perturbing all the weights as in typical sharpness min-
imization, we add a perturbation only to the top-k weights according to the mask found in the
previous step, and project the perturbation based on the layers’ weight magnitude. We provide a

more details in and show S2AP’s performance independence in [Table 5|

4 EXPERIMENTS

S2AP minimizes score-space sharpness, building upon the observation that a smoother loss land-
scape enhances adversarial robustness. In turn, after describing the general experimental setup
(Sect. 4.1), we show and discuss the robustness of S2AP on adversarial pruning methods (Sect. 4.2)),
and then analyze the effect of S2AP on score-space sharpness minimization and mask selection
stability (Sect. 4.3). More experiments can be found in[Appendix Al [Appendix B] and [Appendix C]

4.1 EXPERIMENTAL SETUP

AP Methods, Models, and Datasets. We test S2AP on the HARP, HYDRA, and Robust-Lottery
Ticket Hypothesis (RLTH) adversarial pruning methods (Zhao & Wressnegger, [2023;|Sehwag et al.,
2020; [Fu et al.l 2021)), while comparing to the original implementations (Orig.). These approaches
are all based on the optimization of importance scores summarized in[Eq. 3] However, while HARP
and HYDRA start from a robust pretrained model, and, after pruning, finetune the pruned model,
RLTH tests the LTH on a randomly initialized model and does not finetune the resulting pruned
parameterization. We show RLTH results in We choose 80%, 90%, 95%, and 99%
as sparsity rates, indicating the rate of pruned parameters. We employ the ResNetl18 (He et al.
2016), VGG16 (Simonyan & Zisserman, [2015), and WideResNet-28-4 (Zagoruyko & Komodakis,
2016)) architectures on both the CIFAR10 (Krizhevsky et al.,2009) and SVHN (Netzer et al., 2011
datasets. In addition, we test HARP and HYDRA on the larger-scale ImageNet (Deng et al., [2009)
dataset using the ResNet50 architecture (we refrain from testing RLTH on ImageNet, as with no
finetuning, the accuracy is too low with moderate epochs). Finally, we prune a vision transformer
(ViT) with a patch size of 4 x 4, resulting in 64 tokens for 32 x 32 images, to 20%, 40%, and 60%
sparsity. It comprises 8 transformer layers, 6 attention heads per layer, and a hidden dimensionality
of 384. The MLP blocks have an expansion ratio of 4, with a hidden dimension of 1536.

Adversarial Training and Evaluation. We pretrain, prune, and finetune the models with HARP and
HYDRA (prune only for RLTH) using the TRADES loss (Zhang et al.} [2019) (pretrained models’
results are shown in[Sect. A.T). During adversarial training, we generate adversarial examples using
¢~ PGD-10 with perturbation size ¢ = 8/255 and step-size a = 2/255. Similarly, we evaluate
robustness using the AutoAttack (AA (Croce & Hein, 2020)) ensemble with ¢, perturbation bound
e = 8/255 for every adversarial robustness evaluation. For HARP and HYDRA, we pretrain and
finetune in 100 epochs, while we prune for 20 epochs. Also, we search for the RLTH tickets in
20 epochs. Of these 20 epochs, for each method, S2AP is applied after 5 warm-up epochs. For
completeness, we discuss the computational cost of pruning with S2AP in

S2AP Setup. We use the same adversarial training setup as the original methods to prune with
S2AP. Also, we find one step to be sufficient for finding a score perturbation, as in|Wu et al.| (2020).
However, we must specify a  value to design the layer-wise perturbation projection. For ResNet18
and WideResNet on CIFAR10, we set v = 0.001; for VGG16 on CIFAR10 and SVHN, ~ = 0.0025;
for ResNetl8 on SVHN, v = 0.0075; for WideResNet on SVHN, v = 0.005; and finally, for
ResNet50 on ImageNet, we set v = 0.0075. The same + is used to bound weight perturbation for
S2AP finetuning in HARP and HYDRA. For ViTs, we choose gamma 0.0025. We select the y value
according to the highest robust accuracy, and discuss its selection in



Table 1: CIFAR-10 results. We show the clean/robust. 4 accuracy and the difference between
Orig. and S2AP robust generalization gap (A). In bold, the model with the highest robustness.

. HARP HYDRA

Network Sparsity
Orig. S2AP Gap A Orig. S2AP Gap A
80% 81.26/48.86+0.16 81.36/50.104+021 +1.14 80.73/47.554081 81.47/48.30409; +0.01
ResNet18 90% 81.62/49.47 1904 82.10/50.341033 +0.39 80.85/46.764134 80.89/47.271109 +0.47
) 95% 82.88/48.291044 82.68/49.501046 +1.41 80.83/42.95:;35 80.14/44.21,99> +1.95
99% 80.72/42.24 10135 81.46/42.98.p39 +0.00 80.51/36.10+;41 80.93/37.24119 +0.72
80% 7849745204069 79.19/4593.034 +0.03 77.10/44.631009 78.70/44.95.01> -1.28
VGG16 90% 80.54/45.53 1047 78.64/46.261041 +2.63 77.65/43.071023 77.07/43.571906 +1.08
95% 78.70 / 44~74i0.23 79.12/ 45-67i0_11 +0.51 76.79 / 40-75i0.72 76.55/ 41~48i0.83 +0.97
99% 7785141381088 78.61/42.04+93 -0.10 75.10/33241144 76.43/34.091104 -0.48
80% 81.69/50.081067 81.73/51.284074 +1.16 81.94/50.17+06s 82.37/50.791947 +0.19
WRN28-4 90% 82.02/50.524051 82.31/51.83.071 +1.02 81.24/50.174035 82.29/50.40.067; -0.82
95% 82.47/50.57+0.76 82.49/51.04. 0535 +0.45 8142/4922,021 81.90/49.40.,75 -0.30
99% 76.14/44.681052 7629/44.93.2; +0.10 74.66/42.28.55 74.00/42.011064 +0.39

Table 2: SVHN results. We show the clean/robust. 44 accuracy and the difference between

and S2AP robust generalization gap (A). In bold, the model with the highest robustness.

Orig.

. HARP HYDRA
Network Sparsity
Orig. S2AP Gap A Orig. S2AP Gap A
80% 92.55/40.0641.03 91.53/41.504;05 +2.46 92.71/42.564102 92.69/43.72.,97; +1.18
ResNet18 90% 91.61/40.141082 91.07/41.331026 +1.73 91.90/41.83. 065 91.63/41.58,93 +0.02
95% 87.53/38.164066 88.68/38.7510.19 -0.56 90.33/40.5319.16 90.63/40.86.025 +0.03
99% 88.42/3524, 057 89.71/36.121076 -0.41 87.89/40.8310s3 88.63/41.101025 -0.47
80% 86.36/47.2841.11 87.80/49.691105 +097 8575/46.1311.19 87.64/48.95.,.6 +0.93
VGG16 90% 87.58/49.1641.12 87.77/49491119 +0.14 86.22/48.041051 87.09/48.12.02 -0.79
95% 86.95/49.161029 86.98/49.28,055 +0.09 86.10/4595,:053 85.03/47.12,063 +2.24
99% 84.93/46.33.051 84.73/46.61.027 +0.48 83.12/41.52.072 81.59/4139.1046 +1.40
80% 90.01/36.7341.02 90.65/43.53 1061 +6.16 9524/4295.054 88.54/44.64.1 05 +8.39
WRN28-4 90% 95.01/34.701091 92.17/31.0010.76 -0.86  93.35/36.294039 91.71/38.32.1135 +3.67
95% 92.44/31.6640.77 94.46/33.15.072 -053  89.55/43.99.065 90.43/38.891095 -5.98
99% 87.09/30.0940.53 88.47/36.261112 +4.79 93.05/31.24,049 8580/4243.,,; +18.44

4.2 EFFECT OF S2AP ON ADVERSARIAL ROBUSTNESS

S2AP improves the robustness of adversarial pruning methods. We demonstrate such a result

through for CIFARI10, for SVHN, for transformers, and finally for
ImageNet. We further show results using channel pruning in[Sect. B.2] and RLTH method in|Table §|

Experimental Results. In for CIFAR10,
across every sparsity level and method, S2AP con-
sistently exceeds the robust accuracy of original
methods. In general, across models, S2AP improves
robustness up to 2 percentage points (p.p.). Impor-
tantly, these gains come with improved or negligi-
ble drops (< 0.3 p.p.) in clean accuracy, as well a8 “Newwork  Sparsity (%)
low error bars. To provide transparency on the trade- 20

off between clean and robust performance, we also  viT 40

report the clean—robust generalization gap (A), de- 50 63.02/24.71
fined as the gap of Orig. minus that of S2AP. The

gap measures the relative consistency between clean and robust accuracy, offering insight into how
robust performance changes in relation to improvements or drops in clean accuracy. Across all
settings, A remains mainly positive, showing that S2AP improves over Orig. without introducing
a significant trade-off in generalization. Overall, through our diverse experimental setup, we see
the WideResNet model reaching higher robustness compared to the ResNet18 and VGG16 models,
but still S2AP consistently outperforming competing methods. A similar conclusion can be drawn
for SVHN results in and ImageNet results on Again, S2AP consistently improves
robustness across models, sparsities, and AP methods, with a comparable and often superior stan-

Table 3: ViT on CIFAR-10 and HYDRA:
clean / robust accuracy (%) under different
sparsity levels. Bold indicates the best be-
tween Orig. and S2AP.

Orig. S2AP

63.93/2645 64.53/27.85
63.89/2527 64.08/26.32
63.87 /25.86




dard accuracy. We extend the S2AP evaluation to Vision Transformers in We remark how
prior work on adversarial pruning has been limited to standard deep networks, thus marking this
as a first experiment of AP methods on transformer-based architecture. We choose to prune with
HYDRA, as the HARP method involves optimizing a layer-wise sparsity rate, which is not directly
suited for transformer architectures and requires re-thinking the entire method. We prune all linear
layers except for the final classification head, which is kept dense to ensure stable output mapping to
class logits. We confirm the improved adversarial robustness on such kinds of architectures. Finally,
we further validate the efficacy of S2AP by showing results for standard classification accuracy

in and for robustness against common corruptions in thus validating S2AP in

more general and external domains.

Finetuning Ablation Study. In HARP and HY-
DRA, after selecting the mask through S2AP, we
align the finetuning objective with the pruning
one, thus finetuning by perturbing the weights via
AWP (Wu et al.| [2020), since scores are not used af-

Table 4: ImageNet results using ResNet50
across sparsity levels. Each cell shows
clean/robust accuracy.

- ) . » Network  Sparsity Orig. S2AP

ter pruning. We show in[Table 5|the "raw" mask ad- HARP
versarial robustness obtalned before ﬁneFumng, thus 80%  6148/33.01.00 6242/ 34,6020
the pruned model derived from multiplying the pre- 90%  54.93/24.05.106 55.00/25.61. 057
trained weights with the mask obtained in ReNEBO 9500 207412112405 4385722070026
c i X = 99%  28.65/12.921039 34.18/15.755 76

This comparison enables ablating the fine- HYDRA

tuning objective and verifying if the adversarial ro-
A . . 80%  51.36/29.711945 56.16/ 311115
bustness improvement produced by S2AP is inde- ResNeiso | 90% 481172013105 5492/2423.14;
. . . esNet. - :

pendent from finetuning. Our results highlight the " 95%  33.29/164340.67 34.19/17.93.05
99% 26,07/ 11401050 27.47/12.6710.5

higher robust accuracy of S2AP against the original
AP methods throughout the different network and dataset combinations. In addition, we also discuss
minimizing sharpness on the weights’ loss landscape, and compare to S2AP, in[Sect. B.5

Table 5: Mask robust accuracy (mean.ygy) on CIFARIO and SVHN across sparsity levels using
ResNet18, VGG-16, and WideResNet-28-4.

" CIFARI10 SVHN
Network Sparsity
HARP HYDRA HARP HYDRA
Orig. S2AP Orig. S2AP Orig. S2AP Orig. S2AP
80% 48488i0,73 49-55i0.69 48.56i0_56 48.98i0_75 46456i0.66 49.18i0_77 45-74i0.73 46-11i0.69
ResNet18 90% 49424072 49.6010.74 47411081 48.061071 49.041079 48281081 4561070 47.6210.83
es 95%  49.041g76 48431078 45551091 45.61igss 41661121  45.581075 44.531081 4514w 7
99% 40.9911,34 41.8611.19 35.15j:1,48 36.7411,42 40.7910,94 45-77i1.07 40.85j:0,99 37.933:1,22
80% 419341080 42841085 40311005 4139410091 469541078 48931081 45781080 46.1710.75
VGG_]6 90% 4'1~69:E(].8fi 42-111[).87 38-1211.12 40-611().93 47-301(1.79 46-281[),76 44-221().81 46-171().88
95% 40.214+0.97 39.13+0.99 31.811142 38.0311.08 46514075 47964071 42431084 43.7810.73
99% 24221152 3641121 20541165  29.6711.49 43424077 4391i0s1  31.0611.34  32.6411.41
80% 50451081 50.59+073 5031i0.7s 5041076 43.79t074  47.02107s 49431073 47.5010.71
WRN2S.4 0% 50.56i077  50.79i072 4775:0ss  4930s0s0  4589p07s  4631iors  4380i076  45.66.40.7s
95% 49.07+0.01 49371087 46971097 46.851093 41.694+0.79 45411076 48014075 48.3510.73
99% 38.89i1,39 39.8911_22 34-57i1.47 36.30i1_34 43.58iq_7g 40.8710_81 40-57i0_7g 38-8410.82

4.3 EFFECT OF S2AP ON SCORE-SPACE SHARPNESS AND MASK STABILITY

We evaluate here the effect of S2AP on the sharpness of the loss landscape parameterized by the
importance scores. In contrast to conventional approaches, we measure score-space sharpness in
the robust loss landscape and adapt the measures accordingly. In addition, we introduce the mask
stability property to probe the effect of score-space sharpness minimization on mask-search dynam-
ics. We quantify stability via the normalized Hamming distance between the first and subsequent
pruning masks and observe that S2AP generally reduces this distance.

Minimized Score-Space Sharpness. We measure score-space sharpness relying on (i) the score-
space largest eigenvalue \,,,, measure (Jastrzebski et al.l 2017); and (ii) a loss-difference measure
addressing the scale-invariance problem of Hessian-based measures (Dinh et al., 2017} [Kaur et al.,
2023)). We measure A, on the score space for each iteration and average the values on each epoch
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Figure 2: Score-space sharpness measured via largest eigenvalue \,,,, over pruning epochs for
HARP on WideResNet28-4 and CIFAR10.
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Figure 3: Score-space sharpness measured as difference of perturbed and reference loss values on
ResNet18 and WideResNet28-4 CIFAR10 pruned models.

to evaluate sharpness. We show in Amag for a ResNet18 model on the CIFAR10 dataset
and HARP, which reveals how, across different sparsities, Orig. has the largest eigenvalues (i.e., is
sharper) than the S2AP version. The same trend can be validated in[Figure 2]for a WideResNet28-4.
The loss difference instead is computed by crafting a score- space perturbation added to the scores
parameterizing a £ minima, and subtracted from the reference £ value, thus extending the approach
from|Andriushchenko et al.|(2023));|Stutz et al.|(202 1)) to the score space. In this case, we consider the
best £ minima found during the pruning mask search, then compute the difference ﬁ(s +v)— ﬁ(s),
where v is a score perturbation crafted through the Auto-PGD (APGD) optimization approach.
Care must be taken not to conflate this perturbation, added to already optimized scores to simply
estimate the loss sharpness, with the one designed in added during optimization to
induce sharpness. As shown in[Figure 3] the sharpness of our S2AP approach is lower. More details
on the sharpness measures and additional experiments can be found in[Sect. C.1|and[Sect. C.2]

Improved Mask Stability. Beyond merely flattening the loss landscape, we study a novel prop-
erty—mask stability—to probe the effect of score-space sharpness minimization on mask-search
dynamics. We aim to test whether a flatter score-space reduces the sensitivity of the selection to
small score-variations (i.e.., whether the mask search becomes less volatile). We capture this phe-
nomenon using the normalized Hamming distance, following prior work that measures mask dis-
tances (You et al.,2020). This allows us to compute the differing 0 — 1 values between binary masks

is a XOR operator measuring the differing bits. For each pruning epoch, we compute horig —hs24p,
and define a positive region, where S2AP is more stable, and a negative region, where the original
method is more stable. We show how S2AP improves mask stability for ResNet18 in
while in [Figure 4al and [Figure 4b| we show, respectively, the single Hamming distance curves for
original vs. S2AP-based methods and the difference between the curves across all four sparsities.
Before the five warm-up epochs, being the overall training procedure identical, numerical differ-
ences only result in marginal differences between S2AP and the original methods. Then, the spike
registered indicates the immediate increased stability induced by S2AP, which denotes how mini-
mizing sharpness makes the mask selection closer to the first computed mask. As sparsity increases,
since a higher sparsity also implies a lower variability of 0’s and 1’s, the scale of the hamming
distance decreases accordingly. More details and additional experiments can be found in
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Figure 4: The Hamming distance for WideResNet28-4 on CIFAR10. In (a) the single hamming
distance from epoch 5 of S2AP and Orig. HARP. Lower curves indicate higher stability. In (b), the
results from the four (a) subplots by subtracting each Original-S2AP curve, thus yielding a positive-
green (negative-red) area where S2AP (Original) methods are more stable.

5 RELATED WORK

Adversarial Robustness and Sharpness. The work from [Wu et al.| (2020) first revealed the corre-
lation between robustness and sharpness. In fact, AWP shows that adversarial objectives, such as
PGD-AT (Madry et al.l 2018)), implicitly minimize sharpness in the weights’ loss landscape. Hence,
by explicitly minimizing sharpness with respect to both weights and inputs, it improved robustness
and flatness. On a larger-scale study by [Stutz et al.|(2021), and recently also in (Zhang et al.,|2024),
such a relationship has been investigated in more detail and confirmed thoroughly. In our work, we
leverage a similar idea to improve the stability and robustness of adversarial pruning methods.

Pruning and Sharpness. Minimizing sharpness through SAM (Foret et al.| |2021)) has been shown
to be beneficial for iterative pruning on BERT models and NLP tasks, compared to the Adam op-
timizer (Na et al.l 2022). The work from |[Na et al.| (2022) has been extended, besides (Lee et al.,
2025)), to structured pruning and out-of-distribution (OOD) robustness by [Bair et al.| (2024). The
authors prime the network for pruning based on the rationale that a flatter landscape is more prone
to pruning. Hence, they develop an adaptive version of SAM by perturbing the channels more likely
to be pruned. Further work proposed a single-step sharpness minimization approach aligned with
the resource constraints imposed by sparse training (Ji et al.| [2024)). In contrast, we focus on ad-
versarial robustness (i.e., adversarial pruning) and on score-space sharpness minimization, rather
than the typical weights’ loss landscape. Most importantly, we do not focus on pre-pruning network
priming, but rather explicitly operate on score space during the pruning mask search.

From a conceptual perspective, our work is the first to blend the robustness/sharpness/pruning lines
of work by proposing a sharpness minimization approach for adversarial pruning. However, we
promote the novel concept of score-space sharpness minimization, thus allowing us to measure and
improve mask-search stability, besides robustness.

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We have introduced S2AP, a score-space sharpness minimization for adversarial pruning methods.
Leveraging the concept of score-space, S2AP effectively minimizes sharpness, improves the mask-
search stability, and consistently increases adversarial robustness across various datasets, models,
and sparsities. As limitations, we believe that the additional costs of minimizing sharpness, which
apply to all standard SAM-like objectives, might be unsustainable in specific application scenarios.
Despite being cost minimization out of this work’s scope, we believe “cheaper” approaches such
as the one from Ji et al.| (2024) could be extended to the S2AP case as future work. Finally, let
us specify how the network architecture choices have been dictated by the availability of state-of-
the-art AP methods, which do not extend to more recent transformer architectures. Despite being
ours, to the best of our knowledge, the first adversarial pruning work considering such architectures,
we believe that a consistent setup shift is required for adversarial pruning methods, and hope our
work can inspire such improvements. To conclude, we remark how S2AP can be extended to any
score-based optimization, beyond adversarial pruning.
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SUPPLEMENTARY MATERIAL FOR S2AP:
SCORE-SPACE SHARPNESS MINIMIZATION FOR
ADVERSARIAL PRUNING

The supplementary material is organized as follows:

. We discuss additional details for the S2AP method, including pretraining and
finetuning details, hyperparameter selection, and overhead computing.

. We show additional experiments validating the applicability and effective-
ness of S2AP outside the main testbed, including structured pruning, clean standard ac-
curacy, and robustness to corrupted images. We conclude by discussing and showing the
comparison of weights and score perturbations during the pruning stage.

. We provide additional details and experiments for the eigenvalue computa-
tion, the loss difference measuring sharpness, and the mask stability and hamming distance
measure.

A  ADDITIONAL S2AP DETAILS.

This section describes the additional details concerning our S2AP implementation and results. In
detail, we first show the results from the pretrained models used in [Table 1} [Table 2] [Table 4] and
Then, we discuss in detail the S2AP finetuning algorithm, which concerns perturbing the
remaining sparse weight parameterization w © m* as in We conclude by motivating the
choices of the v values bounding the score-perturbations listed in and computing the
overhead induced by our S2AP approach compared to a standard score-based pruning optimization.

Let us finally specify that the S2AP code implementation is part of the supplementary material and
will be publicly released upon paper acceptance.

A.1 S2AP PRETRAINING AND IMAGENET DETAILS

We pretrain each CIFAR10 and SVHN model using 100 Tuble 6:  Pretrained models’
epochs, and show the resulting adversarial robustness in clean/robust accuracy.

[ble 6 For ImageNet, however, we use the pretrained model
provided by |Zhao & Wressnegger| (2023)), and prune for 10
epochs (of which 5 warm-up and 5 S2AP) and finetune for 25
using the Fast Adversarial Training approach. ResNet18 5\1/1:}‘;510 g (1) ;g ; iggg

CIFAR10 80.18/45.09

Model Dataset Orig.

A.2 S2AP FINETUNING VGGl16 SVHN 2041 /4571
We defined the overall finetuning objective in as: 4 CIFARIO  83.68/50.12
£0 Eq.6 WRN28-4 GUHN  93.23/42.35
w” € argmin max L,.((w +v) ©m"), (8) ResNet5S0 ImageNet 60.25/36.82
w
where [[v|| < v[Jwi, ©)

and + bounds the layer-wise perturbation and scales it based on each layer’s weight magnitude,
similarly to Wu et al.| (2020). Hence, given the sparse parameterization defined by the mask m*
found during S2AP pruning in the S2AP finetuning formulation of [Eq. 8 amounts to
perturbing and updating only the non-zero (i.e., non-pruned) weights. While the S2AP procedure
allows improving sharpness, stability, and robustness of the pruning mask per se, such a procedure
enables aligning the finetuning objective with the pruning one and further improves robustness.

We provide a detailed implementation of the finetuning algorithm in[Algorithm 2] Overall, the algo-
rithm structure remains similar to with the only major variation that the perturbation v
is applied on the non-zero weights w ® m™ only, instead of the entire score-space parameterized by
s.
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Algorithm 2: Score-Sharpness-aware Adversarial Finetuning (S2AP Finetune).

Input :w € RP, pretrained weights; m* € {0, 1}?, binary pruning mask; @, training input
samples; 1, learning rate; I, number of iterations; L, number of layers; -y, perturbation
scaling factor; ﬁ robust loss.

Output: Finetuned weights w* € RP

Initialize v < 0

fori <~ 1to I do

Generate adversarial examples on pruned model & < x; + 9,

Compute robust loss £(w © m*) = L(w © m*, D)
Perturb pruned weights v v + 1) (vy/j«w +v)omh)/|V L(w+v) o m*)||)

for < 1to L do
if [ > 7 [|w®|| then
| Project () < (y][w®||/|lvD]]) O

Update weights: w < w — ¢ (Vwﬁ((w +v)om*)/|Vwl((w+v) 6 m*)||>
Restore weights: w < w — v

return w* < w

A.3  ~-SELECTION

We select the ~ values, bounding the perturbation during S2AP pruning and finetun-
ing, based on the adversarial robustness achieved choosing among a set of values v =
{0.00075,0.001, 0.0025, 0.005, 0.0075,0.01}. We show in the gamma search results for
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Figure 5: Robustness of S2AP pruning masks found using different  values bounding the score
perturbation.

the CIFAR10 dataset, HARP method [Zhao & Wressnegger| (2023)) at 90% sparsity. We repeat such
an evaluation for each model/dataset combination at such sparsity, which we find descriptive of
the trend on different sparsities as well, and find the best v value. Typically, we see a robustness
increase for values prior to the best v found for the models (in this case 0.001 for ResNet18 and
WideResNet28-4, and 0.0025 for VGG16), and then a corresponding robustness decrease after the
best found ~.

A.4 S2AP COMPUTATIONAL OVERHEAD

The S2AP procedure of inevitably induces a computational overhead. To provide an
estimate of the required overhead, we report in the time required by the original pruning
methods (Orig.) and S2AP versions during pruning and average over the four sparsities. All experi-
ments were conducted on a machine equipped with three NVIDIA RTX A6000 GPUs (48GB each),
and the results of were conducted on one of these 3 GPUs. Specifically, we report in
the results for CIFAR10 and SVHN models on 20 epochs (5 epochs for ImageNet) and batch size
128 without warm-up, thus allowing an equal comparison of original and S2AP procedures. Gener-
ally, we see an average increase in computing time of 15% circa, which, while it might be negligible
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Table 7: S2AP overhead computation. We compute the time (hrs) required on a NVIDIA RTX A600
for each model/dataset combination, and report the average time required on different sparsities.

Model Dataset Orig. (hrs) S2AP (hrs) Overhead (%)
s QR0 03
s QR0
woans QREI0 6l e
ResNet-50 ImageNet 15.08 17.11 13.46%

in some application scenarios, still increases the overall computation. The same observation can be
extended to ViT architectures.

B ADDITIONAL EXPERIMENTS

We discuss here the additional experiments for S2AP. Precisely, we extend our approach to struc-
tured pruning, a standard “clean” pruning task, compare S2AP with AWP during the pruning stage,
and finally analyze the effectiveness of S2AP on the common corruptions dataset.

Table 8: CIFAR-10 and SVHN results using RLTH with ResNet18, VGG-16, and WideResNet-28-4
across sparsity. Each cell shows clean/robust. ;4 accuracy and the difference between Orig. and
S2 AP robust generalization gap (A). In bold, the model with the highest robustness.

Network Sparsity CIFAR-10 (RLTH) SVHN (RLTH)
Orig. S2AP A Orig. S2AP A
80% 67.72/33.58 68.13/33.80 +0.37 85.02/44.60 84.13/44.66 +0.95
ResNet]8 90% 69.32/34.42 69.30/34.92 +0.52 83.65/44.07 84.51/44.50 +1.29
esine 95% 68.56/34.90 69.93/35.38 +1.05 84.83/4278 84.51/43.50 +1.04
99% 66.19/32.66 60.27/31.09 -445 81.72/41.59 80.61/41.73 +1.25
80% 18.63/11.04 22.62/12.20 +1.19 32.89/18.70 32.83/19.01 +0.37
VGG16 90% 2336/13.17 24.63/13.19 +1.01 34.21/18.78 37.20/17.31 -1.92
95% 30.04/12.06 26.62/19.33 +6.69 37.29/20.06 3440/21.86 +2.71
99% 18.36/14.47 19.09/1250 -1.70 20.06/19.68 21.68/18.00 -2.30
80% 68.94/34.55 69.71/34.91 +0.65 87.82/44.52 87.81/44.71 +0.36
WRN28-4 90% 70.05/33.53 69.65/34.39 +0.86 88.83/43.95 85.97/44.53 +1.58
) 95% 69.29/34.40 68.69/33.55 -0.75 86.82/43.85 88.13/4295 -1.56
99% 63.19/29.56 62.13/29.83 +0.89 77.29/36.68 80.80/37.96 +3.79
B.1 EXPERIMENTS ON RLTH

As in[Table 1]and [Table 2] for the HARP and HYDRA methods, RLTH can benefit from robustness
increases from the S2AP method, as we show in This result is not obvious, as RLTH
involves a different pruning pipeline than existing methods. As opposed to starting from a pretrained
model, pruning, and then finetuning, such method in fact follows the lottery ticket hypothesis|Frankle
& Carbin| (2019), which admits the existence of subnetworks within dense, randomly initialized
models. Overall, compared to other methods, we see RLTH pruned models having lower accuracies
due to the pruned random initialization and absence of finetuning. The improved robustness of
S2AP, considering the absence of finetuning on RLTH, further corroborates to the ablation study
discussed in which shows how S2AP, independently from finetuning at all, is capable of
reaching higher adversarial robustness from pruning already.
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Table 9: Channel Pruning with S2AP on CIFARI10 dataset.

Network  Sparsity (%) HARP-Orig. S2AP-HARP HYDRA-Orig. S2AP-HYDRA

4 49.60 50.36 49.32 50.85
ResNetl8 4828 48.63 38.69 39.79
4 4737 48.18 47.02 4733
VGG-16 5 37.38 37.17 33.15 34.53

B.2 EXPERIMENTS ON STRUCTURED PRUNING

Unstructured pruning serves as a great mathematical prototype for neural networks, allowing for
single weights to be pruned. Empirically, this is widely accepted as an upper-bound on the other
important category of pruning methods, i.e., structured pruning |Liu & Wang|(2023). From a practi-
cal perspective, structured pruning allows for removing entire network structures, such as channels
and filters, and constitutes a readily usable network size reduction. In fact, while unstructured prun-
ing requires a still maturing dedicated hardware, structured pruning implies reducing network size
and leveraging it directly |Liu & Wang| (2023). To validate the effectiveness of our S2AP method,
given the high relevance of structured pruning methods, we extend, in experiments of both
HARP and HYDRA methods to channel pruning, relying on the ResNet18 and VGG16 networks
on CIFARIO as a testbed. Instead of the classic sparsity rate k, for channel pruning we refer to the
reduction in floating point operations (FLOPs). Specifically, we obtain 4 or 15 times fewer FLOPs
than the original dense model, thus improving the overall model efficiency and computing time.
Such a form of sparsity is more compatible with standard hardware acceleration and better suited
for real-world deployment. Overall, these results confirm that S2AP generalizes effectively also to
different kinds of pruning structures, further reinforcing the versatility of our approach.

Table 10: Mask clean / robust accuracy (mean.gq) on CIFAR10 and SVHN across sparsity levels
using ResNet18, VGG-16, and WideResNet-28-4.

. CIFARI10 SVHN
Network Sparsity
HARP HYDRA HARP HYDRA
Orig. S2AP Orig. S2AP Orig. S2AP Orig. S2AP
80% 83.19/48.88.10.73  82.03/49.5510.60 82.13/48.5640.66 82.87/48.98.075 90.10/46.5610.66 87.74/49.1810.77  90.63/45.7410.73  89.80/46.1110.69
ResNet18 90% 82.98/49.4240.72  83.12/49.60.0.74 80.55/47.411 054 82.26/48.06.0.71 90.20/49.04. 079 90.17/48.28.0.51 84.82/45.6110.70 88.77/47.62.10.53
; 95% 82.26/49.04.10.76  82.48/48.4310.7s  78.98/45.5510.91  79.47/45.611056 92.22/41.661121 89.07/45.58. 075 83.57/44.531054 88.82/45.14.10.72
99% 72.97/40.9911.34  75.46/41.8641.19  69.63/35.1511.45  69.66/36.7411.42  85.01/40.7910.04 85.35/45.7711.07 83.12/40.8510.99  79.19/37.9341.22
80% 75.78/41.93 4082  76.51/42.84.1 055 74.86/40.3110.95 76.15/41.39. 091 89.51/46.95.1075 89.53/48.93.1054 85.67/45.7840.50 87.39/46.17 10.75
VGG-16 90% 73.89/41.69 4086  75.86/42.1140.87  73.19/38.1241.12  75.17/40.61:0.95  89.73/47.301079 87.12/46.28.1076  84.91/44.2240581  87.39/46.17 1085
95% 73.55/40.2140.07  74.68/39.1340.99  62.30/31.8141.42  72.86/38.031105 87.86/46.5110.75 87.85/47.9610.71 82.07/424310.51 85.47/43.78.40.75
99% 52.59/242241 52 72.76/36.41+1.21  40.77/20.54+1 65  60.91/29.67+1 40 84.70/43.42+077 84.07/43.911051  79.75/31.06+1.34  83.82/32.64+; 41
80% 82.97/50.45+0.81  83.24/50.5910.73 82.59/50.3140.7s  83.05/50.41:076  90.91/43.7940.71  88.90/47.02:073  90.49/49.43.0.75  88.87/47.5010.71
WRN28-4 90% 81.82/50.56+0.77  82.66/50.7910.72  80.71/47.7510.8s  81.92/49.30:050 91.41/4589+0.75  90.61/46.31:0.74  90.83/43.80+0.76  89.51/45.66-0.75

95% 80.44/49.07£0.01  80.82/49.37 1057 79.82/46.97+0.97 80.19/46.85+10.93 88.43/41.69+0.79 85.74/45.41:076 88.35/48.01+0.75 88.61/48.35.0.73
99% 71.57/38.8941.39  71.64/39.894122  70.33/34.5711.47  71.40/36.304131 84.99/43.58.0.7s 80.51/40.8710.51  85.54/40.5710.79 84.32/38.84.40.52

B.3 EXPERIMENTS ON STANDARD CLEAN PRUNING

On several occasions throughout the paper, we remarked on the generality of the S2AP method
beyond the specific adversarial pruning task. We thus aim to first confirm the S2AP effectiveness and
utility on the most basic task required by such networks: standard classification. Hence, we prune
networks using a standard cross-entropy loss, disregarding the adversarial robustness objective, and
fine-tune accordingly. We show the results of such experiments in where we reveal how
S2AP improves not only adversarial robustness, but also clean accuracy on a standard classification
task for the CIFAR10 dataset. We thus confirm the initial claim of general use and applicability of
S2AP to different tasks and scenarios, not limited to the adversarial pruning case.

Furthermore, we extend the results reported in[Table 5| with the corresponding clean accuracy values.
In we confirm the same trends observed for robustness. Finally, we specify that the A
quantity is used in our analysis as a marker of whether improving robustness comes at the cost
of noticeably degrading clean accuracy. In the adversarial robustness literature, it is common for
robustness-oriented methods to introduce a trade-off between clean and robust accuracy, meaning
that gains in adversarial robustness are obtained at the expense of significantly lower clean accuracy.
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Table 11: Clean accuracy (%) under different sparsity levels. For each pruning method
(HARP/HYDRA), we report Orig. and S2AP variants. Bold indicates the best between Orig. and
S2AP.

Network  Sparsity (%) HARP-Orig. S2AP-HARP HYDRA-Orig. S2AP-HYDRA

80 94.70 94.85 94.90 94.61
ResNetls 90 94.12 94.89 94.37 94.73
esine 95 93.18 94.56 94.20 94.84
99 92.27 93.01 90.22 90.38
80 92.17 92.82 92.46 93.20
90 92.34 92.99 92.52 93.70
VGG-16 - o5 92.41 93.03 91.41 91.95
99 90.96 91.76 87.32 87.40

Table 12: Robust accuracy (%) on CIFAR-10-C under different sparsity levels. Bold indicates the
best between Orig. and S2AP for each pruning method.

Network  Sparsity (%) HARP-Orig. S2AP-HARP HYDRA-Orig. S2AP-HYDRA

80 72.52 73.08 71.75 72.01
ResNetls % 72.62 73.12 71.54 72.16
esive 95 72.27 73.23 70.02 70.59
99 68.52 68.48 65.41 66.50
80 70.07 70.97 68.84 68.98
90 71.15 71.34 69.23 68.71
VGG-16 - o5 69.97 70.05 68.15 68.33
99 66.89 67.45 59.09 59.26
80 7273 72.88 72.59 73.54
90 72.54 73.06 71.75 73.08
WRN 95 73.03 73.32 72.83 72.85
99 67.63 67.95 65.61 66.04

We track that with A = (accoyig, —robustnessorig, ) — (accsoap, —robustnesssoap, ). Hence, a positive A
implies that S2AP’s gap is smaller than Orig.’s gap. We consistently find this quantity to be positive.

B.4 EXPERIMENTS ON CORRUPTIONS

Following on from the previous experiments, extending to standard pruning, it is likewise relevant
to consider further tasks. We thus choose to test on the general robustness to corruption task by
including experiments on the CIFAR10-C dataset. We select a corruption severity of 3, and show
the results in As in previous experiments, we demonstrate how S2AP is further applicable
to different tasks and keeps its superiority compared to other methods. We thus believe that such an
extension corroborates the claims and results obtained in adversarial robustness, besides broadening
the method’s applicability.

B.5 PERTURBING WEIGHTS OR SCORES?

One of the big novelties that can be found in S2AP is the focus on the score-space, rather than the
usual weight-space where prior sharpness-minimization approaches focused in the past. In turn, a
natural question is whether sharpness minimization should be performed in weight space, as done
in prior work such as Adversarial Weight Perturbations (AWP), or in score space, as we propose in
S2AP. In adversarial pruning, the pruning mask is determined by the ranking of importance scores
rather than the weights themselves. Hence, perturbing scores directly addresses the variables that
drive mask selection, potentially stabilizing the top-k cutoff. While this intuition suggests a better
alignment with the pruning objective, our main justification is empirical. As shown in
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Table 13: ResNet18 on CIFAR-10: accuracy (%) under different sparsity levels when pruning with
AWP (perturbing weights) vs. S2AP (perturbing scores). Bold indicates the best between AWP and
S2AP for each method.

Network  Sparsity (%) HARP-AWP HARP-S2AP HYDRA-AWP HYDRA-S2AP

80 47.32 49.55 46.12 48.98
ResNet18 90 47.80 49.60 45.19 48.06
95 46.91 48.43 42.77 45.61
99 40.35 41.86 34.34 36.74

perturbing scores during mask search consistently leads to higher robust accuracy than perturbing
weights, across different networks and datasets. These results, which indicate the mask robustness
before finetuning as in[Table 3] indicate that score-space perturbations are more effective at preserv-
ing robustness in adversarial pruning than their weight-space counterparts. While a more formal
reason describing the differences between applying AWP or S2AP during pruning is missing, we
believe that a role behind the greater success of score perturbations could also be played by the
increased mask stability.

C MEASURING SCORE-SPACE SHARPNESS AND MASK STABILITY

We measure score-space sharpness relying on two specific approaches: the largest eigenvalue com-
putation A, and the loss difference (following Stutz et al.| (2021); |/Andriushchenko et al.| (2023)).
We dedicate this section to describing both approaches in detail, and provide additional experiments
and results on more model and dataset combinations. In addition to minimizing sharpness, how-
ever, S2AP also improves the mask stability during pruning. In turn, we conclude this section by
describing the proposed measure in detail and showing additional experiments.

C.1 MEASURING LARGEST EIGENVALUE

To compute the largest eigenvalue of the Hessian V2 £,.(s) with respect to the score parameters, we

adopt the classical power iteration method. Starting from a random unit-norm vector v(©) € R?, we
iteratively compute:

(t+1) _ VEET(S)”(U
- IVEL ()@l
where £,.(s) = L,.(w © M(s, k), D) is the robust loss, that we denote as £,.(s) to lighten notation.
After T iterations, we compute the Rayleigh quotient as an approximation of the largest eigenvalue:

Amax & <v(T),V§£7-(s)v<T)> . (11)

(10)

We select T' = 10 iterations to compute the quotient, and specify that we implement this computation
using Hessian-vector products via automatic differentiation, thus refraining from explicitly forming
the Hessian Jastrzebski et al| (2017). This procedure is run at each pruning iteration of both the
S2AP and original methods. We then average the resulting \,,,, values across each iteration and
plot the corresponding sharpness trends against epochs. While we show the CIFAR10 HARP method
for ResNet18 in [Figure Ic|and for WideResNet28-4 in we complete the remaining plots
from[Figure 8|to[Figure 17] Overall, the plots show how methods pruned with S2AP hold, apart from
a few exceptions, a consistently lower maximum eigenvalue across multiple architectures, datasets,
pruning methods, and sparsities. We specify how, on the first few epochs, the resulting A, 4, has a
negligible difference between Orig. and S2AP methods (hence the first 10 warped epochs).

C.2 MEASURING SCORE-SPACE L0OSS DIFFERENCE

Measuring sharpness through a loss difference requires perturbing a “reference” loss value £, (w ®
M (s, k)), representing a local minima, through a perturbation v which enables measuring sharpness
as follows:

L(woM(s+v,k),D)—L.(we M(s, k),D) (12)

max
lvOe™ oo <p

18



where c is a positive scaling vector used to make the sharpness definition reparameterization-
invariant, addressing the well-known problems of sharpness measures Dinh et al.| (2017), and the
operator /! defines element-wise multiplication/inversion. We specify that such a formulation
corresponds to the one presented in |[Andriushchenko et al| (2023), yet adapted to our score-space
case. Overall, we thus perturb the score-space and measure the corresponding loss variation imposed
by the shift and mask variation, which we expect to be lower in the S2AP case.

In our experiments, we evaluate different p values, and show in[Table T4]an overview of the CIFAR10
results. Overall, we see how S2AP consistently reduces sharpness, except for some specific cases at
high sparsities. In this regard, however, increasing the corresponding p value appears to still favor
S2AP, suggesting that lower values might not be enough (hence, we choose p = 0.01 in the plot

of [Figure 3).

C.3 MASK STABILITY

We measure mask stability based on the Hamming distance h, which equals measuring the rate of
change between masks as follows:

h = |jmgy @ myl||1/|mol|, where t € {1,2,...,T}, (13)

where m; represents the mask found at epoch ¢, @ is the XOR operator measuring the number of
differing bits, and T is the total number of epochs. We compute h = {hq, ha, ..., hr}, thus mea-
suring the distance from the first mask in each epoch, for both original (Orig.) and S2AP adversarial
pruning methods. Overall, lower % values indicate improved stability, as the number of changed
selected weights is, in turn, lower. To provide a useful analysis, we compute two vectors, h,;; and
hs24p, by saving the masks at each epoch while pruning, that we then subtract as kg — Rs24p.
Hence, we obtain a single curve plot that, when positive, indicates that the S2AP method is more
stable than the original one, and vice versa when negative.
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Figure 6: Improved mask stability of Resnet18 (a) and WideResNet28-4 (b) on the HYDRA method.

Stability is depicted for CIFAR10 HARP method and ResNetl8 in and for
WideResNet28-4 in Nonetheless, we provide additional plots for the remaining combi-
nations in|[Figure 6] where we show the improved mask stability of S2AP on the HYDRA method as
well. For VGG16 models, interestingly, we find the stability trend often favors the Orig. models in-
stead of S2AP, particularly at lower sparsity. We analyze such a result through the plots of
Overall, such a measure allows assessing how much the pruning decisions evolve over time relative
to their starting point.
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Figure 7: Single Hamming distances of VGG16 on CIFAR10 and SVHN after the first 5 pruning
epochs. In (a), (b), and (c) the 80% sparsity for HARP on CIFAR10, HYDRA on CIFARI10, and
HARP on SVHN; in (d), (e), and (f) the 90% sparsity for HARP on CIFAR10, HYDRA on CIFAR10,
and HARP on SVHN; in (g), (h), and (i) the 95% sparsity for HARP on CIFAR10, HYDRA on
CIFARI10, and HARP on SVHN; and in (j), (k), and (1) the 99% sparsity for HARP on CIFARI10,
HYDRA on CIFAR10, and HARP on SVHN.

20



—e— Original —=-- S2AP

207 Sparsity=80% 1 Sparsity=90% 1 Sparsity=95% 1

404 «

/\max

00 13 16 19 010 13 16 19 010 13 16 19
Pruning Epochs

Figure 8: Largest eigenvalue across HYDRA pruning epochs for ResNet18 on CIFAR10.
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Figure 9: Largest eigenvalue across HARP pruning epochs for ResNet18 on SVHN.
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Figure 11: Largest eigenvalue across HARP pruning epochs for VGG on CIFARI10.
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Figure 15: Largest eigenvalue across HYDRA pruning epochs for WideResNet28-4 on CIFAR10.
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Figure 17: Largest eigenvalue across HYDRA pruning epochs for WideResNet28-4 on SVHN.
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Table 14: CIFAR10 Sharpness comparison across sparsity levels and p values using Orig. and S2AP
pruning strategies. Lower sharpness values are in bold.

Sparsity p HARP HYDRA
Model (%) Orig. S2AP Orig. S2AP
0.001 008316 0.07723 _ 0.08820  0.09274
0.0025 010498  0.09742 011074  0.11315
80 0.005 014170 013142 0.14845  0.14702
0.0075 018016 016670  0.18784  0.18171
0.01 022096 020322 022839 021794
0.001 007001  0.06848 008675  0.07637
0.0025 008566  0.08329  0.10258  0.09097
90 0.005 011239 010844 013116  0.11596
ResNet18 0.0075 014069 013311  0.15879  0.14189
0.01 016937 015981 018928  0.16741
0.001 006409  0.06346 007383 0.06957
0.0025 007676  0.07504  0.08597  0.08035
95 0.005 009787  0.09401 010601  0.09822
0.0075 011952 011332 0.12648  0.11706
0.01 014170 013420  0.14774  0.13521
0.001 0.05921 006428 005573  0.05148
0.0025 0.06637 007114 006233  0.05728
99 0.005 0.07810 008258 007365  0.06711
0.0075 0.08930 009392 008483  0.07718
0.01 010852  0.10082  0.09631  0.08761
0.001 005925  0.05837  0.05547  0.05604
0.0025 007916  0.07852  0.07089  0.07134
80 0.005 011328 011260  0.09726  0.09804
0.0075 014856 014736  0.12450  0.12492
0.01 018579 018412  0.15311  0.15298
0.001 0.05429 005503 005616  0.05531
0.0025 0.07059 007160 006881  0.06749
90 0.005 0.09846 009970  0.08966  0.08804
VGG16 0.0075 0.12649 012834  0.11178  0.10993
0.01 0.15518  0.15657  0.13426  0.13282
0.001 005003 0.04989 005386  0.04861
0.0025 006286  0.06237  0.06358  0.05832
95 0.005 008452  0.08361 008018  0.07514
0.0075 010634 010562  0.09726  0.09266
0.01 012874 012760  0.11470  0.11020
0.001 004367  0.04174 004815  0.04601
0.0025 005087  0.04909 005509  0.05261
99 0.005 006309  0.06165  0.06656  0.06362
0.0075 007565  0.07486 007853  0.07477
0.01 008851  0.08857  0.09058  0.08608
0.001 007913 0.07880 007991 _ 0.07489
0.0025 009723 0.09593  0.09703  0.09096
80 0.005 012753 012433  0.12677  0.11843
0.0075 015926 015295  0.15632  0.14677
0.01 019145 018250  0.18822  0.17620
0.001 007006 0.06571 007159  0.07602
0.0025 008337  0.07786  0.08506  0.08826
90 0.005 010571  0.09843  0.10735  0.10935
WRN 0.0075 012777 011919  0.13010  0.13164
0.01 015019 013998 015363  0.15292
0.001 0.05809 006162 006952  0.06229
0.0025 0.06847 007097 007998  0.07141
95 0.005 0.08537 008655 009721  0.08766
0.0075 0.10154  0.10193  0.11500  0.10338
0.01 011772 011709  0.13249  0.11976
0.001 0.05823 005911 004382  0.04925
0.0025 0.06376 006482 005483  0.04949
99 0.005 0.07283 007452 006425  0.05900
0.0075 0.08122 008487 007172  0.06888
0.01 008968  0.09446 008512  0.07535

24



	Introduction
	Adversarial Pruning and Score-Space
	S2AP: Minimizing Score-Space Sharpness
	Experiments
	Experimental Setup
	Effect of S2AP on Adversarial Robustness
	Effect of S2AP on Score-Space Sharpness and Mask Stability

	Related Work
	Conclusions, Limitations, and Future Work
	Additional S2AP Details.
	S2AP Pretraining and ImageNet details
	S2AP Finetuning
	gamma-Selection
	S2AP Computational Overhead

	Additional Experiments
	Experiments on RLTH
	Experiments on Structured Pruning
	Experiments on Standard Clean Pruning
	Experiments on Corruptions
	Perturbing Weights or Scores?

	Measuring Score-Space Sharpness and Mask Stability
	Measuring Largest Eigenvalue
	Measuring Score-Space Loss Difference
	Mask Stability


