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ABSTRACT

Adversarial pruning methods have emerged as a powerful tool for compressing
neural networks while preserving robustness against adversarial attacks. These
methods typically follow a three-step pipeline: (i) pretrain a robust model, (ii)
select a binary mask for weight pruning, and (iii) finetune the pruned model. To
select the binary mask, these methods minimize a robust loss by assigning an im-
portance score to each weight, and then keep the weights with the highest scores.
However, this score-space optimization can lead to sharp local minima in the ro-
bust loss landscape and, in turn, to an unstable mask selection, reducing the robust-
ness of adversarial pruning methods. To overcome this issue, we propose a novel
plug-in method for adversarial pruning, termed Score-space Sharpness-aware Ad-
versarial Pruning (S2AP). Through our method, we introduce the concept of score-
space sharpness minimization, which operates during the mask search by perturb-
ing importance scores and minimizing the corresponding robust loss. Extensive
experiments across various datasets, models, and sparsity levels demonstrate that
S2AP effectively minimizes sharpness in score space, stabilizing the mask selec-
tion, and ultimately improving the robustness of adversarial pruning methods.

1 INTRODUCTION

Deep neural networks are susceptible to adversarial attacks, which entail optimizing an input per-
turbation added to the original sample to induce a misclassification (Biggio et al., 2013; Szegedy
et al., 2014). Besides robustness against adversarial examples, networks are often required to be
compact and suitable for resource-constrained scenarios (Liu & Wang, 2023), where the model’s
dimension cannot be chosen at hand but requires respecting a given constraint. In this regard, neu-
ral network pruning (LeCun et al., 1989) represents a powerful compression method by removing
redundant or less impactful parameters according to a desired sparsity rate and, as a result, allowing
the preservation of much of the performance of a dense model counterpart (Blalock et al., 2020).

Adversarial Pruning (AP) methods aim to fulfill this twofold requirement, thus extending model
compression to the adversarial case, by removing parameters less responsible for adversarial robust-
ness drops (Piras et al., 2024). While prior work extended naïve pruning heuristics to robustness,
such as based on the lowest weight magnitude (LWM) of robust models (Han et al., 2015; Sehwag
et al., 2019), recent approaches proposed different strategies to quantify each parameter’s impor-
tance, and thus select an optimized pruning mask accordingly. These methods, such as HARP (Zhao
& Wressnegger, 2023) and HYDRA (Sehwag et al., 2020), use real-valued importance scores, one
for each model’s weight, indicating how much robust loss degrades based on that parameter’s re-
moval. These scores are then optimized during the pruning stage by: (i) computing the robust loss
using the top-k parameters in the forward pass (where k is the desired sparsity); and (ii) updating
each parameter’s importance in the backward pass. This procedure circumvents the intractability of
the binary mask optimization problem imposed by the ℓ0 constraint on the weights (i.e., the desired
sparsity). Hence, it enables a parameter selection process based on the scores minimizing a robust
objective, yielding a final mask with enhanced adversarial robustness. However, the final subnet is
determined by a discrete top-k operator applied to these continuous scores. Consequently, the ef-
fectiveness of the pruning mask in preserving robustness is strongly dependent on importance-score
optimization. Small score variations near the pruning threshold can swap the ordering of scores and
flip many entries of the binary mask, leading to significant changes in the selected top-k parameters
and volatile robustness. This sensitivity highlights the need for a smoother, more stable score-space
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Figure 1: Effects of S2AP on a ResNet18 CIFAR10 model. (a) Improved robust accuracy of pruned
models. (b) Enhanced mask stability (quantified as Hamming distance h, i.e., measuring how much
each mask mt across pruning epochs changes compared to the first computed mask m0). We
subtract and plot horig − hS2AP , thus yielding positive values where S2AP is more stable (green
area), and negative values vice versa (red area). S2AP enhances mask stability, particularly after
pruning epoch 5 when warm-up ends and explicit sharpness minimization begins. (c) Minimized
sharpness in the robust loss landscape (where the largest eigenvalue λmax indicates more sharpness).

optimization landscape. In this regard, recent advances in neural network training suggest that ex-
plicitly minimizing sharpness in the loss landscape can foster not only generalization (Foret et al.,
2021), but also adversarial robustness (Wu et al., 2020; Stutz et al., 2021). These approaches, such as
Adversarial Weight Perturbations (AWP) (Wu et al., 2020) for adversarial robustness, work by per-
turbing the network parameters (i.e., the weights) and minimizing the corresponding loss to reduce
sharpness and improve performance.

Inspired by these findings, we extend the concept of sharpness minimization in adversarial robust-
ness beyond the traditional parameter-space setting, where weights are perturbed, to the novel con-
text of importance score optimization. We thereby propose a score-space sharpness minimization
approach for adversarial pruning methods, that we define as Score-space Sharpness-aware Adversar-
ial Pruning (S2AP), which reduces the sharpness of the loss landscape parameterized by importance
scores, stabilizing the mask selection and improving adversarial robustness of pruned models. Cru-
cially, S2AP is implemented as a plug-in, allowing seamless integration into existing AP methods
(and any other score-based approach) without altering their core logic or loss formulation. Overall,
our main contributions are organized as follows:

(i) we present the S2AP method (Sect. 3), discussing its algorithm in a step-by-step approach;

(ii) we then demonstrate, across multiple architectures, datasets, and sparsity rates, how S2AP
improves robustness of adversarial pruning methods (Sect. 4.2);

(iii) we finally show, on the same comprehensive setup, the minimized sharpness in the score-
space landscape and the induced mask search stability (Sect. 4.3).

A preview of the discussed effects and results can be seen in Figure 1, where we show the im-
proved robustness of S2AP (Figure 1a), the stabilized mask selection based on the masks’ Hamming
distances (Figure 1b), and the minimized sharpness based on the largest eigenvalue (Figure 1c).

2 ADVERSARIAL PRUNING AND SCORE-SPACE

Notation. Let us denote withD = {(xi, yi)}ni=1 a training set of n d-dimensional samples x ∈ X =
[0, 1]d along with their labels y ∈ Y = {1, . . . , C}. For a network f(· ;w) with parameters w ∈ Rp,
we define the average loss function computed on the dataset D (or on a batch) as L(w,D) =
1/n

∑
i ℓ(yi, f(xi;w)), being ℓ any suitable sample-wise loss and f the C logits of the network.

Adversarial Robustness. Machine Learning (ML) models are susceptible to adversarial at-
tacks (Biggio et al., 2013; Szegedy et al., 2014), which create input samples misclassified by the
attacked model. In this regard, adversarial training is considered the go-to defense, minimizing a
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given robust loss L̂ defined as the inner maximization in the following optimization problem:

min
w
L̂(w,D), L̂(w,D) = 1

n

n∑
i=1

max
∥δi∥≤ϵ

ℓ(yi, f(xi + δi;w)), (1)

where xi+δi ∈ [0, 1]d, ∀i, i.e., that each perturbed sample still lies in the sample space upon adding
an adversarial perturbation δ bounded by a given ℓp bound ϵ.

Adversarial Pruning Methods. Pruning aims to reduce the size of a network by removing its pa-
rameters (e.g., weights) while preserving performance (LeCun et al., 1989). Similarly, Adversarial
Pruning (AP) methods aim to reduce model size while preserving robustness against adversarial at-
tacks (Piras et al., 2024). Recent AP methods proposed solving the following optimization problem:

min
∥m∥0≤k

L̂(w ⊙m,D), (2)

where m ∈ {0, 1}p is a p-dimensional mask constrained to have k non-zero entries. The mask is
element-wise multiplied by the weights w, ensuring that the pruned model satisfies the sparsity rate
k. However, the sparsity constraint makes Eq. 2 a non-convex, combinatorial problem. AP methods
like HARP (Zhao & Wressnegger, 2023), HYDRA (Sehwag et al., 2020), thus solve it by relaxing
the sparsity constraint through the use of importance scores.

Importance Scores. During the pruning stage, while weights are kept invariant, optimizing impor-
tance scores amounts to defining a vector of continuous values s ∈ Rp, initialized proportionally to
the weights, which are learnable and optimized with respect to the robust loss L̂ as follows:

min
s
L̂(w ⊙M(s, k),D), (3)

where L̂ is computed, given k, through a masking function M(s, k) that assigns 1 only to the top-k
entries of s, thus imposing sparsity. Let us remark that such an optimization procedure is non-trivial:
in the forward pass, the loss is computed using the top-k parameters as L̂(w ⊙M(s, k),D); dur-
ing backpropagation, these methods adopt a straight-through estimator (STE) substituting ∂M/∂s
with 1 (i.e., the identity) following Ramanujan et al. (2020). This method enables propagating the
gradient through the non-differentiable mask and optimizing each score according to its importance.
We thus define as score-space the p-dimensional space Rp spanned by the importance scores s, and
study the robust loss landscape L̂(w ⊙M(s, k),D) defined over it.

Formulation Generality. The formulation of Eq. 3 encompasses all AP methods based on
importance-score optimization. Different methods can, however, define different loss functions (that
we generalize through L̂). This is the case of HARP (Zhao & Wressnegger, 2023), which defines
additional penalty terms allowing for optimizing layer-wise sparsity. We specify that our formula-
tion unifies different loss formulations from various AP methods, and as we will describe in the next
section, the proposed S2AP can “wrap” any AP method based on importance-score optimization.

3 S2AP: MINIMIZING SCORE-SPACE SHARPNESS

From Sect. 2, it becomes evident that score optimization on a robust loss is the core logic of ad-
versarial pruning. We improve such an approach by minimizing score-space sharpness. Hence,
our Score-space Sharpness-aware Adversarial Pruning (S2AP) method avoids that small score shifts
induce relevant mask changes, thus stabilizing the pruning process and increasing adversarial ro-
bustness. Following Eq. 3, and given the sharpness minimization approach from Wu et al. (2020),
we define the S2AP problem as follows:

s∗ ∈ argmin
s

max
z
L̂(w ⊙M(s+ z, k),D) , (4)

where ∥zl∥ ≤ γ∥sl∥, (5)

and γ constraints the score perturbation z applied on s, scaling it w.r.t. the norm of the scores of
each layer l. S2AP solves such optimization through Algorithm 1, as detailed below. Note that the
sections of Algorithm 1 outside the orange box are common to AP methods (cf. Sect. 2).
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Algorithm 1: Score-Sharpness-aware Adversarial Pruning.
Input : w ∈ Rp, initial weights; s ∈ Rp, set of importance scores; M(s, k), masking function

with pruning rate k; x, training inputs samples; η, learning rate; I , number of
iterations; L, number of layers; γ, perturbation scaling factor; L̂, robust loss.

Output: Binary mask m∗ ∈ {0, 1}d.
1 Initialize parameters s = scale(w), x′

i ← x, s∗ ← s, z ← 0
2 for i← 1 to I do
3 Generate adversarial examples on pruned model x′

i ← xi + δi
4 Compute robust loss on pruned model L̂(s) = L̂(w ⊙M(s, k),D)
5

6 Generate score-space perturbation z ← z + η(∇zL̂(s+ z)/∥∇zL̂(s+ z)∥)
7 for l← 1 to L do
8 if ∥z(l)∥ > γ ∥s(l)∥ then
9 Project perturbation z(l) ←

(
γ ∥s(l)∥ / ∥z(l)∥

)
z(l)

10 Update scores s ← s− η(∇sL̂(s+ z)/∥∇sL̂(s+ z)∥)
11 Restore scores s ← s− z
12

13 if L̂(s) < L̂(s∗) then
14 Update best loss L̂(s∗)← L̂(s)

15 return m∗ ←M(s∗, k)

S2AP

Generating Adversarial Examples. We initialize, in line 1, the set of importance scores s pro-
portionally to w through scale, which scales the scores proportionally to the weights’ magnitude.
This enables creating a pruned model (f(w ⊙M(s, k)) through which we compute the adversarial
examples x′ (line 3) using the ℓ∞ PGD attack (Madry et al., 2018). Following Eq. 1, we thus craft
a perturbation δ constrained on ϵ. Computing the adversarial examples allows defining a robust loss
L̂ which we denote, for brevity and emphasis on the scores, as L̂(s) in line 4.

Score-Space Perturbation. Defining a robust loss and creating adversarial examples is a common
step of score-based AP methods. During the pruning stage, in fact, these methods’ weights are left
unchanged while importance scores s are optimized according to a robust objective to find the best
mask m = M(s, k). Through S2AP, we are interested in minimizing the score-space sharpness.
Hence, before the standard score optimization, when using S2AP we craft a score-space perturbation
(line 6) in one single iteration, aiming to shift the loss in score space from the i-th iteration’s local
minima towards a point of higher loss. We thus create a worst-case score perturbation.

In line 9, we iterate over the L layers of the network and project our perturbation z in a bound
defined by γ. More precisely, according to the layer’s score magnitude ∥s(l)∥, we scale z(l) to
(γ ∥s(l)∥ / ∥z(l)∥) z(l) if ∥z(l)∥ > γ ∥s(l)∥, which corresponds to projecting back the perturbation
into the “ball” defined by γ when exceeding, and leave as is otherwise. The layer-wise projection
primarily addresses the numeric differences across layers. Without per-layer scaling, the magnitude
of the generated perturbation z can be perceived differently across layers, leading to either no effect
or numerical overflow. A layer-wise projection instead keeps every layer’s perturbation proportional
to its current score norm, preserving well-conditioned updates and preventing disparity across layers.

Score Update. Once the score perturbation z is computed, we evaluate the gradient at the perturbed
scores s+ z (line 10), and take an optimization step to move s in the direction that, in turn, reduces
sharpness. After optimizing L̂, S2AP ends by removing the previously applied perturbation to re-
store the original reference point s for the next iteration (line 11). We specify that also the score
update of line 10 is common to AP methods. However, instead of updating scores based on the loss
computed on score space L̂(s), S2AP enables a “sharpness-aware” update on perturbed score space
L̂(s+ z). Finally, through line 14 and line 15, we save s∗ corresponding to the lowest L̂ and return
the best mask m∗ via the function M(s∗, k), which is finally multiplied to the pretrained weights.
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S2AP Finetuning. After defining mask m∗ and pruning the model, some of the AP methods we
enhance with S2AP finetune the pruned weights to restore performance using a robust objective (Han
et al., 2015). In S2AP, we choose to finetune the pruned model by aligning the objective with the
score-space sharpness minimization implemented while pruning. Hence, we choose to minimize
sharpness using the AWP (Wu et al., 2020) approach applied on the classical weight-space:

w∗ ∈ argmin
w

max
ν
L̂((w + ν)⊙m∗) , (6)

where ∥νl∥ ≤ γ∥wl∥, (7)
and ν, in this case, is a weight perturbation added to the preserved weights according to m∗ found
through Algorithm 1. Therefore, instead of perturbing all the weights as in typical sharpness min-
imization, we add a perturbation only to the top-k weights according to the mask found in the
previous step, and project the perturbation based on the layers’ weight magnitude. We provide a
more details in Sect. A.2, and show S2AP’s performance independence in Table 5.

4 EXPERIMENTS

S2AP minimizes score-space sharpness, building upon the observation that a smoother loss land-
scape enhances adversarial robustness. In turn, after describing the general experimental setup
(Sect. 4.1), we show and discuss the robustness of S2AP on adversarial pruning methods (Sect. 4.2),
and then analyze the effect of S2AP on score-space sharpness minimization and mask selection
stability (Sect. 4.3). More experiments can be found in Appendix A, Appendix B, and Appendix C.

4.1 EXPERIMENTAL SETUP

AP Methods, Models, and Datasets. We test S2AP on the HARP, HYDRA, and Robust-Lottery
Ticket Hypothesis (RLTH) adversarial pruning methods (Zhao & Wressnegger, 2023; Sehwag et al.,
2020; Fu et al., 2021), while comparing to the original implementations (Orig.). These approaches
are all based on the optimization of importance scores summarized in Eq. 3. However, while HARP
and HYDRA start from a robust pretrained model, and, after pruning, finetune the pruned model,
RLTH tests the LTH on a randomly initialized model and does not finetune the resulting pruned
parameterization. We show RLTH results in Appendix B. We choose 80%, 90%, 95%, and 99%
as sparsity rates, indicating the rate of pruned parameters. We employ the ResNet18 (He et al.,
2016), VGG16 (Simonyan & Zisserman, 2015), and WideResNet-28-4 (Zagoruyko & Komodakis,
2016) architectures on both the CIFAR10 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011)
datasets. In addition, we test HARP and HYDRA on the larger-scale ImageNet (Deng et al., 2009)
dataset using the ResNet50 architecture (we refrain from testing RLTH on ImageNet, as with no
finetuning, the accuracy is too low with moderate epochs). Finally, we prune a vision transformer
(ViT) with a patch size of 4× 4, resulting in 64 tokens for 32× 32 images, to 20%, 40%, and 60%
sparsity. It comprises 8 transformer layers, 6 attention heads per layer, and a hidden dimensionality
of 384. The MLP blocks have an expansion ratio of 4, with a hidden dimension of 1536.

Adversarial Training and Evaluation. We pretrain, prune, and finetune the models with HARP and
HYDRA (prune only for RLTH) using the TRADES loss (Zhang et al., 2019) (pretrained models’
results are shown in Sect. A.1). During adversarial training, we generate adversarial examples using
ℓ∞ PGD-10 with perturbation size ϵ = 8/255 and step-size α = 2/255. Similarly, we evaluate
robustness using the AutoAttack (AA (Croce & Hein, 2020)) ensemble with ℓ∞ perturbation bound
ϵ = 8/255 for every adversarial robustness evaluation. For HARP and HYDRA, we pretrain and
finetune in 100 epochs, while we prune for 20 epochs. Also, we search for the RLTH tickets in
20 epochs. Of these 20 epochs, for each method, S2AP is applied after 5 warm-up epochs. For
completeness, we discuss the computational cost of pruning with S2AP in Sect. A.4.

S2AP Setup. We use the same adversarial training setup as the original methods to prune with
S2AP. Also, we find one step to be sufficient for finding a score perturbation, as in Wu et al. (2020).
However, we must specify a γ value to design the layer-wise perturbation projection. For ResNet18
and WideResNet on CIFAR10, we set γ = 0.001; for VGG16 on CIFAR10 and SVHN, γ = 0.0025;
for ResNet18 on SVHN, γ = 0.0075; for WideResNet on SVHN, γ = 0.005; and finally, for
ResNet50 on ImageNet, we set γ = 0.0075. The same γ is used to bound weight perturbation for
S2AP finetuning in HARP and HYDRA. For ViTs, we choose gamma 0.0025. We select the γ value
according to the highest robust accuracy, and discuss its selection in Sect. A.3.
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Table 1: CIFAR-10 results. We show the clean/robust±std accuracy and the difference between
Orig. and S2AP robust generalization gap (∆). In bold, the model with the highest robustness.

Network Sparsity HARP HYDRA

Orig. S2AP Gap ∆ Orig. S2AP Gap ∆

ResNet18

80% 81.26 / 48.86±0.16 81.36 / 50.10±0.21 +1.14 80.73 / 47.55±0.81 81.47 / 48.30±0.91 +0.01
90% 81.62 / 49.47±0.24 82.10 / 50.34±0.33 +0.39 80.85 / 46.76±1.34 80.89 / 47.27±1.09 +0.47
95% 82.88 / 48.29±0.44 82.68 / 49.50±0.46 +1.41 80.83 / 42.95±1.38 80.14 / 44.21±0.92 +1.95
99% 80.72 / 42.24±0.13 81.46 / 42.98±0.39 +0.00 80.51 / 36.10±1.41 80.93 / 37.24±1.20 +0.72

VGG16

80% 78.49 / 45.20±0.69 79.19 / 45.93±0.34 +0.03 77.10 / 44.63±0.09 78.70 / 44.95±0.12 -1.28
90% 80.54 / 45.53±0.47 78.64 / 46.26±0.41 +2.63 77.65 / 43.07±0.23 77.07 / 43.57±0.06 +1.08
95% 78.70 / 44.74±0.23 79.12 / 45.67±0.11 +0.51 76.79 / 40.75±0.72 76.55 / 41.48±0.83 +0.97
99% 77.85 / 41.38±0.88 78.61 / 42.04±0.36 -0.10 75.10 / 33.24±1.44 76.43 / 34.09±1.04 -0.48

WRN28-4

80% 81.69 / 50.08±0.67 81.73 / 51.28±0.74 +1.16 81.94 / 50.17±0.68 82.37 / 50.79±0.47 +0.19
90% 82.02 / 50.52±0.51 82.31 / 51.83±0.71 +1.02 81.24 / 50.17±0.35 82.29 / 50.40±0.67 -0.82
95% 82.47 / 50.57±0.76 82.49 / 51.04±0.58 +0.45 81.42 / 49.22±0.21 81.90 / 49.40±0.78 -0.30
99% 76.14 / 44.68±0.82 76.29 / 44.93±0.27 +0.10 74.66 / 42.28±0.58 74.00 / 42.01±0.64 +0.39

Table 2: SVHN results. We show the clean/robust±std accuracy and the difference between Orig.
and S2AP robust generalization gap (∆). In bold, the model with the highest robustness.

Network Sparsity HARP HYDRA

Orig. S2AP Gap ∆ Orig. S2AP Gap ∆

ResNet18

80% 92.55 / 40.06±1.03 91.53 / 41.50±1.05 +2.46 92.71 / 42.56±1.02 92.69/ 43.72±1.07 +1.18
90% 91.61 / 40.14±0.82 91.07 / 41.33±0.26 +1.73 91.90 / 41.83±0.65 91.63 / 41.58±0.30 +0.02
95% 87.53 / 38.16±0.66 88.68 / 38.75±0.19 -0.56 90.33 / 40.53±0.16 90.63 / 40.86±0.28 +0.03
99% 88.42 / 35.24±0.57 89.71 / 36.12±0.76 -0.41 87.89 / 40.83±0.83 88.63 / 41.10±0.28 -0.47

VGG16

80% 86.36 / 47.28±1.11 87.80 / 49.69±1.05 +0.97 85.75 / 46.13±1.19 87.64 / 48.95±1.16 +0.93
90% 87.58 / 49.16±1.12 87.77 / 49.49±1.19 +0.14 86.22 / 48.04±0.81 87.09 / 48.12±0.22 -0.79
95% 86.95 / 49.16±0.29 86.98 / 49.28±0.58 +0.09 86.10 / 45.95±0.83 85.03 / 47.12±0.63 +2.24
99% 84.93 / 46.33±0.51 84.73 / 46.61±0.27 +0.48 83.12 / 41.52±0.72 81.59 / 41.39±0.46 +1.40

WRN28-4

80% 90.01 / 36.73±1.02 90.65 / 43.53±0.61 +6.16 95.24 / 42.95±0.84 88.54 / 44.64±1.08 +8.39
90% 95.01 / 34.70±0.91 92.17 / 31.00±0.76 -0.86 93.35 / 36.29±0.39 91.71 / 38.32±1.13 +3.67
95% 92.44 / 31.66±0.77 94.46 / 33.15±0.72 -0.53 89.55 / 43.99±0.65 90.43 / 38.89±0.95 -5.98
99% 87.09 / 30.09±0.83 88.47 / 36.26±1.12 +4.79 93.05 / 31.24±0.49 85.80 / 42.43±1.11 +18.44

4.2 EFFECT OF S2AP ON ADVERSARIAL ROBUSTNESS

S2AP improves the robustness of adversarial pruning methods. We demonstrate such a result
through Table 1 for CIFAR10, Table 2 for SVHN, Table 3 for transformers, and finally Table 4 for
ImageNet. We further show results using channel pruning in Sect. B.2, and RLTH method in Table 8

Table 3: ViT on CIFAR-10 and HYDRA:
clean / robust accuracy (%) under different
sparsity levels. Bold indicates the best be-
tween Orig. and S2AP.

Network Sparsity (%) Orig. S2AP

ViT
20 63.93 / 26.45 64.53 / 27.85
40 63.89 / 25.27 64.08 / 26.32
50 63.02 / 24.71 63.87 / 25.86

Experimental Results. In Table 1 for CIFAR10,
across every sparsity level and method, S2AP con-
sistently exceeds the robust accuracy of original
methods. In general, across models, S2AP improves
robustness up to 2 percentage points (p.p.). Impor-
tantly, these gains come with improved or negligi-
ble drops (< 0.3 p.p.) in clean accuracy, as well as
low error bars. To provide transparency on the trade-
off between clean and robust performance, we also
report the clean–robust generalization gap (∆), de-
fined as the gap of Orig. minus that of S2AP. The
gap measures the relative consistency between clean and robust accuracy, offering insight into how
robust performance changes in relation to improvements or drops in clean accuracy. Across all
settings, ∆ remains mainly positive, showing that S2AP improves over Orig. without introducing
a significant trade-off in generalization. Overall, through our diverse experimental setup, we see
the WideResNet model reaching higher robustness compared to the ResNet18 and VGG16 models,
but still S2AP consistently outperforming competing methods. A similar conclusion can be drawn
for SVHN results in Table 2 and ImageNet results on Table 4. Again, S2AP consistently improves
robustness across models, sparsities, and AP methods, with a comparable and often superior stan-
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dard accuracy. We extend the S2AP evaluation to Vision Transformers in Table 3. We remark how
prior work on adversarial pruning has been limited to standard deep networks, thus marking this
as a first experiment of AP methods on transformer-based architecture. We choose to prune with
HYDRA, as the HARP method involves optimizing a layer-wise sparsity rate, which is not directly
suited for transformer architectures and requires re-thinking the entire method. We prune all linear
layers except for the final classification head, which is kept dense to ensure stable output mapping to
class logits. We confirm the improved adversarial robustness on such kinds of architectures. Finally,
we further validate the efficacy of S2AP by showing results for standard classification accuracy
in Sect. B.3, and for robustness against common corruptions in Sect. B.4, thus validating S2AP in
more general and external domains.

Table 4: ImageNet results using ResNet50
across sparsity levels. Each cell shows
clean/robust accuracy.

Network Sparsity Orig. S2AP

HARP

ResNet50

80% 61.48 / 33.01±0.41 62.42 / 34.60±0.82

90% 54.93 / 24.05±0.66 55.00 / 25.61±0.57

95% 40.74 / 21.12±0.26 43.85 / 22.07±0.26

99% 28.65 / 12.92±0.39 34.18 / 15.75±0.76

HYDRA

ResNet50

80% 51.36 / 29.71±0.48 56.16 / 31.11±0.39

90% 48.11 / 20.13±0.33 54.92 / 24.23±1.17

95% 33.29 / 16.43±0.67 34.19 / 17.93±0.82

99% 26.07 / 11.40±0.20 27.47 / 12.67±0.59

Finetuning Ablation Study. In HARP and HY-
DRA, after selecting the mask through S2AP, we
align the finetuning objective with the pruning
one, thus finetuning by perturbing the weights via
AWP (Wu et al., 2020), since scores are not used af-
ter pruning. We show in Table 5 the "raw" mask ad-
versarial robustness obtained before finetuning, thus
the pruned model derived from multiplying the pre-
trained weights with the mask obtained in Algo-
rithm 1. This comparison enables ablating the fine-
tuning objective and verifying if the adversarial ro-
bustness improvement produced by S2AP is inde-
pendent from finetuning. Our results highlight the
higher robust accuracy of S2AP against the original
AP methods throughout the different network and dataset combinations. In addition, we also discuss
minimizing sharpness on the weights’ loss landscape, and compare to S2AP, in Sect. B.5.

Table 5: Mask robust accuracy (mean±std) on CIFAR10 and SVHN across sparsity levels using
ResNet18, VGG-16, and WideResNet-28-4.

Network Sparsity CIFAR10 SVHN

HARP HYDRA HARP HYDRA

Orig. S2AP Orig. S2AP Orig. S2AP Orig. S2AP

ResNet18

80% 48.88±0.73 49.55±0.69 48.56±0.66 48.98±0.75 46.56±0.66 49.18±0.77 45.74±0.73 46.11±0.69

90% 49.42±0.72 49.60±0.74 47.41±0.84 48.06±0.71 49.04±0.79 48.28±0.81 45.61±0.70 47.62±0.83

95% 49.04±0.76 48.43±0.78 45.55±0.91 45.61±0.86 41.66±1.21 45.58±0.75 44.53±0.84 45.14±0.72

99% 40.99±1.34 41.86±1.19 35.15±1.48 36.74±1.42 40.79±0.94 45.77±1.07 40.85±0.99 37.93±1.22

VGG-16

80% 41.93±0.82 42.84±0.85 40.31±0.95 41.39±0.91 46.95±0.78 48.93±0.84 45.78±0.89 46.17±0.75

90% 41.69±0.86 42.11±0.87 38.12±1.12 40.61±0.93 47.30±0.79 46.28±0.76 44.22±0.81 46.17±0.88

95% 40.21±0.97 39.13±0.99 31.81±1.42 38.03±1.08 46.51±0.75 47.96±0.71 42.43±0.84 43.78±0.73

99% 24.22±1.52 36.41±1.21 20.54±1.68 29.67±1.49 43.42±0.77 43.91±0.81 31.06±1.34 32.64±1.41

WRN28-4

80% 50.45±0.81 50.59±0.73 50.31±0.78 50.41±0.76 43.79±0.74 47.02±0.78 49.43±0.73 47.50±0.71

90% 50.56±0.77 50.79±0.72 47.75±0.88 49.30±0.80 45.89±0.75 46.31±0.74 43.80±0.76 45.66±0.78

95% 49.07±0.91 49.37±0.87 46.97±0.97 46.85±0.93 41.69±0.79 45.41±0.76 48.01±0.75 48.35±0.73

99% 38.89±1.39 39.89±1.22 34.57±1.47 36.30±1.34 43.58±0.78 40.87±0.81 40.57±0.79 38.84±0.82

4.3 EFFECT OF S2AP ON SCORE-SPACE SHARPNESS AND MASK STABILITY

We evaluate here the effect of S2AP on the sharpness of the loss landscape parameterized by the
importance scores. In contrast to conventional approaches, we measure score-space sharpness in
the robust loss landscape and adapt the measures accordingly. In addition, we introduce the mask
stability property to probe the effect of score-space sharpness minimization on mask-search dynam-
ics. We quantify stability via the normalized Hamming distance between the first and subsequent
pruning masks and observe that S2AP generally reduces this distance.

Minimized Score-Space Sharpness. We measure score-space sharpness relying on (i) the score-
space largest eigenvalue λmax measure (Jastrzębski et al., 2017); and (ii) a loss-difference measure
addressing the scale-invariance problem of Hessian-based measures (Dinh et al., 2017; Kaur et al.,
2023). We measure λmax on the score space for each iteration and average the values on each epoch
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Figure 2: Score-space sharpness measured via largest eigenvalue λmax over pruning epochs for
HARP on WideResNet28-4 and CIFAR10.
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Figure 3: Score-space sharpness measured as difference of perturbed and reference loss values on
ResNet18 and WideResNet28-4 CIFAR10 pruned models.

to evaluate sharpness. We show in Figure 1c λmax for a ResNet18 model on the CIFAR10 dataset
and HARP, which reveals how, across different sparsities, Orig. has the largest eigenvalues (i.e., is
sharper) than the S2AP version. The same trend can be validated in Figure 2 for a WideResNet28-4.
The loss difference instead is computed by crafting a score-space perturbation added to the scores
parameterizing a L̂ minima, and subtracted from the reference L̂ value, thus extending the approach
from Andriushchenko et al. (2023); Stutz et al. (2021) to the score space. In this case, we consider the
best L̂minima found during the pruning mask search, then compute the difference L̂(s+v)−L̂(s),
where v is a score perturbation crafted through the Auto-PGD (APGD) optimization approach.
Care must be taken not to conflate this perturbation, added to already optimized scores to simply
estimate the loss sharpness, with the one designed in Algorithm 1 added during optimization to
induce sharpness. As shown in Figure 3, the sharpness of our S2AP approach is lower. More details
on the sharpness measures and additional experiments can be found in Sect. C.1 and Sect. C.2.

Improved Mask Stability. Beyond merely flattening the loss landscape, we study a novel prop-
erty—mask stability—to probe the effect of score-space sharpness minimization on mask-search
dynamics. We aim to test whether a flatter score-space reduces the sensitivity of the selection to
small score-variations (i.e.., whether the mask search becomes less volatile). We capture this phe-
nomenon using the normalized Hamming distance, following prior work that measures mask dis-
tances (You et al., 2020). This allows us to compute the differing 0−1 values between binary masks
m. Hence, over the 20 pruning epochs indexed by t, we compute h = ∥m0⊕mt∥1/|m0|, where⊕
is a XOR operator measuring the differing bits. For each pruning epoch, we compute horig−hS2AP ,
and define a positive region, where S2AP is more stable, and a negative region, where the original
method is more stable. We show how S2AP improves mask stability for ResNet18 in Figure 1b,
while in Figure 4a and Figure 4b we show, respectively, the single Hamming distance curves for
original vs. S2AP-based methods and the difference between the curves across all four sparsities.
Before the five warm-up epochs, being the overall training procedure identical, numerical differ-
ences only result in marginal differences between S2AP and the original methods. Then, the spike
registered indicates the immediate increased stability induced by S2AP, which denotes how mini-
mizing sharpness makes the mask selection closer to the first computed mask. As sparsity increases,
since a higher sparsity also implies a lower variability of 0’s and 1’s, the scale of the hamming
distance decreases accordingly. More details and additional experiments can be found in Sect. C.3
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Figure 4: The Hamming distance for WideResNet28-4 on CIFAR10. In (a) the single hamming
distance from epoch 5 of S2AP and Orig. HARP. Lower curves indicate higher stability. In (b), the
results from the four (a) subplots by subtracting each Original-S2AP curve, thus yielding a positive-
green (negative-red) area where S2AP (Original) methods are more stable.

5 RELATED WORK

Adversarial Robustness and Sharpness. The work from Wu et al. (2020) first revealed the corre-
lation between robustness and sharpness. In fact, AWP shows that adversarial objectives, such as
PGD-AT (Madry et al., 2018), implicitly minimize sharpness in the weights’ loss landscape. Hence,
by explicitly minimizing sharpness with respect to both weights and inputs, it improved robustness
and flatness. On a larger-scale study by Stutz et al. (2021), and recently also in (Zhang et al., 2024),
such a relationship has been investigated in more detail and confirmed thoroughly. In our work, we
leverage a similar idea to improve the stability and robustness of adversarial pruning methods.

Pruning and Sharpness. Minimizing sharpness through SAM (Foret et al., 2021) has been shown
to be beneficial for iterative pruning on BERT models and NLP tasks, compared to the Adam op-
timizer (Na et al., 2022). The work from Na et al. (2022) has been extended, besides (Lee et al.,
2025), to structured pruning and out-of-distribution (OOD) robustness by Bair et al. (2024). The
authors prime the network for pruning based on the rationale that a flatter landscape is more prone
to pruning. Hence, they develop an adaptive version of SAM by perturbing the channels more likely
to be pruned. Further work proposed a single-step sharpness minimization approach aligned with
the resource constraints imposed by sparse training (Ji et al., 2024). In contrast, we focus on ad-
versarial robustness (i.e., adversarial pruning) and on score-space sharpness minimization, rather
than the typical weights’ loss landscape. Most importantly, we do not focus on pre-pruning network
priming, but rather explicitly operate on score space during the pruning mask search.

From a conceptual perspective, our work is the first to blend the robustness/sharpness/pruning lines
of work by proposing a sharpness minimization approach for adversarial pruning. However, we
promote the novel concept of score-space sharpness minimization, thus allowing us to measure and
improve mask-search stability, besides robustness.

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We have introduced S2AP, a score-space sharpness minimization for adversarial pruning methods.
Leveraging the concept of score-space, S2AP effectively minimizes sharpness, improves the mask-
search stability, and consistently increases adversarial robustness across various datasets, models,
and sparsities. As limitations, we believe that the additional costs of minimizing sharpness, which
apply to all standard SAM-like objectives, might be unsustainable in specific application scenarios.
Despite being cost minimization out of this work’s scope, we believe “cheaper” approaches such
as the one from Ji et al. (2024) could be extended to the S2AP case as future work. Finally, let
us specify how the network architecture choices have been dictated by the availability of state-of-
the-art AP methods, which do not extend to more recent transformer architectures. Despite being
ours, to the best of our knowledge, the first adversarial pruning work considering such architectures,
we believe that a consistent setup shift is required for adversarial pruning methods, and hope our
work can inspire such improvements. To conclude, we remark how S2AP can be extended to any
score-based optimization, beyond adversarial pruning.
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Reproducibility Statement. We have taken several steps to facilitate reproducibility. The S2AP
method is precisely specified in Algorithm 1; the finetuning objective is given Algorithm 2. Our
experimental setup—datasets, architectures, sparsity levels, training and evaluation protocols, and
threat model—is documented in Sect. 4.1. Hyperparameter choices are reported in the paper and
further discussed in Appendix B. We describe the score-space sharpness metrics and the mask-
stability metric in Sect. 4.3 with additional implementation details in Appendix C. In the supple-
mentary material, we include an anonymized code archive containing all needed source code, train-
ing/evaluation scripts, and the default configurations used in our experiments; for transparency, these
default settings are also listed throughout the paper where relevant and mirrored in the appendix and
configuration files. The code will be publicly released upon acceptance.

Ethics Statement. We do not identify any ethical concerns associated with this work. Our study
does not involve human subjects, user interaction, or personally identifiable information. All experi-
ments use standard, publicly available datasets (CIFAR-10, SVHN, ImageNet) under their respective
licenses. The proposed method is defensive—focusing on pruning and adversarial robustness—and
does not introduce new attack capabilities beyond standard, widely used evaluation protocols (e.g.,
PGD, AutoAttack). We are not aware of privacy, security, fairness, or legal compliance issues aris-
ing from our methodology or experimental setup, and we have no conflicts of interest or sponsorship
to declare. We have read and adhere to the ICLR Code of Ethics.
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SUPPLEMENTARY MATERIAL FOR S2AP:
SCORE-SPACE SHARPNESS MINIMIZATION FOR
ADVERSARIAL PRUNING

The supplementary material is organized as follows:

• Appendix A: We discuss additional details for the S2AP method, including pretraining and
finetuning details, hyperparameter selection, and overhead computing.

• Appendix B: We show additional experiments validating the applicability and effective-
ness of S2AP outside the main testbed, including structured pruning, clean standard ac-
curacy, and robustness to corrupted images. We conclude by discussing and showing the
comparison of weights and score perturbations during the pruning stage.

• Appendix C: We provide additional details and experiments for the eigenvalue computa-
tion, the loss difference measuring sharpness, and the mask stability and hamming distance
measure.

A ADDITIONAL S2AP DETAILS.

This section describes the additional details concerning our S2AP implementation and results. In
detail, we first show the results from the pretrained models used in Table 1, Table 2, Table 4, and
Table 5. Then, we discuss in detail the S2AP finetuning algorithm, which concerns perturbing the
remaining sparse weight parameterization w ⊙m∗ as in Eq. 6. We conclude by motivating the
choices of the γ values bounding the score-perturbations listed in Sect. 4.1, and computing the
overhead induced by our S2AP approach compared to a standard score-based pruning optimization.

Let us finally specify that the S2AP code implementation is part of the supplementary material and
will be publicly released upon paper acceptance.

A.1 S2AP PRETRAINING AND IMAGENET DETAILS

Table 6: Pretrained models’
clean/robust accuracy.

Model Dataset Orig.

ResNet18 CIFAR10 81.55 / 49.36
SVHN 90.70 / 42.08

VGG16 CIFAR10 80.18 / 45.09
SVHN 89.41 / 45.71

WRN28-4 CIFAR10 83.68 / 50.12
SVHN 93.23 / 42.35

ResNet50 ImageNet 60.25 / 36.82

We pretrain each CIFAR10 and SVHN model using 100
epochs, and show the resulting adversarial robustness in Ta-
ble 6. For ImageNet, however, we use the pretrained model
provided by Zhao & Wressnegger (2023), and prune for 10
epochs (of which 5 warm-up and 5 S2AP) and finetune for 25
using the Fast Adversarial Training approach.

A.2 S2AP FINETUNING

We defined the overall finetuning objective in Eq. 6 as:

w∗ ∈ argmin
w

max
ν
Lr((w + ν)⊙m∗) , (8)

where ∥νl∥ ≤ γ∥wl∥, (9)

and γ bounds the layer-wise perturbation and scales it based on each layer’s weight magnitude,
similarly to Wu et al. (2020). Hence, given the sparse parameterization defined by the mask m∗

found during S2AP pruning in Algorithm 1, the S2AP finetuning formulation of Eq. 8 amounts to
perturbing and updating only the non-zero (i.e., non-pruned) weights. While the S2AP procedure
allows improving sharpness, stability, and robustness of the pruning mask per se, such a procedure
enables aligning the finetuning objective with the pruning one and further improves robustness.

We provide a detailed implementation of the finetuning algorithm in Algorithm 2. Overall, the algo-
rithm structure remains similar to Algorithm 1, with the only major variation that the perturbation ν
is applied on the non-zero weights w⊙m∗ only, instead of the entire score-space parameterized by
s.
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Algorithm 2: Score-Sharpness-aware Adversarial Finetuning (S2AP Finetune).
Input : w ∈ Rp, pretrained weights; m∗ ∈ {0, 1}p, binary pruning mask; x, training input

samples; η, learning rate; I , number of iterations; L, number of layers; γ, perturbation
scaling factor; L̂, robust loss.

Output: Finetuned weights w∗ ∈ Rp

1 Initialize ν ← 0
2 for i← 1 to I do
3 Generate adversarial examples on pruned model x′

i ← xi + δi
4 Compute robust loss L̂(w ⊙m∗) = L̂(w ⊙m∗,D)
5 Perturb pruned weights ν ← ν + η

(
∇νL̂((w + ν)⊙m∗)/∥∇νL̂((w + ν)⊙m∗)∥

)
6 for l← 1 to L do
7 if ∥ν(l)∥ > γ ∥w(l)∥ then
8 Project ν(l) ←

(
γ∥w(l)∥/∥ν(l)∥

)
ν(l)

9 Update weights: w ← w − η
(
∇wL̂((w + ν)⊙m∗)/∥∇wL̂((w + ν)⊙m∗)∥

)
10 Restore weights: w ← w − ν

11 return w∗ ← w

A.3 γ-SELECTION

We select the γ values, bounding the perturbation during S2AP pruning and finetun-
ing, based on the adversarial robustness achieved choosing among a set of values γ =
{0.00075, 0.001, 0.0025, 0.005, 0.0075, 0.01}. We show in Figure 5 the gamma search results for
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Figure 5: Robustness of S2AP pruning masks found using different γ values bounding the score
perturbation.

the CIFAR10 dataset, HARP method Zhao & Wressnegger (2023) at 90% sparsity. We repeat such
an evaluation for each model/dataset combination at such sparsity, which we find descriptive of
the trend on different sparsities as well, and find the best γ value. Typically, we see a robustness
increase for values prior to the best γ found for the models (in this case 0.001 for ResNet18 and
WideResNet28-4, and 0.0025 for VGG16), and then a corresponding robustness decrease after the
best found γ.

A.4 S2AP COMPUTATIONAL OVERHEAD

The S2AP procedure of Algorithm 1 inevitably induces a computational overhead. To provide an
estimate of the required overhead, we report in Table 7 the time required by the original pruning
methods (Orig.) and S2AP versions during pruning and average over the four sparsities. All experi-
ments were conducted on a machine equipped with three NVIDIA RTX A6000 GPUs (48GB each),
and the results of Table 7 were conducted on one of these 3 GPUs. Specifically, we report in Table 7
the results for CIFAR10 and SVHN models on 20 epochs (5 epochs for ImageNet) and batch size
128 without warm-up, thus allowing an equal comparison of original and S2AP procedures. Gener-
ally, we see an average increase in computing time of 15% circa, which, while it might be negligible
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Table 7: S2AP overhead computation. We compute the time (hrs) required on a NVIDIA RTX A600
for each model/dataset combination, and report the average time required on different sparsities.

Model Dataset Orig. (hrs) S2AP (hrs) Overhead (%)

ResNet18 CIFAR10 3.27 3.96 17.42%
SVHN 4.91 5.21 5.75%

VGG16 CIFAR10 1.41 1.73 18.49%
SVHN 2.43 2.75 11.63%

WRN28-4 CIFAR10 6.12 6.97 12.20%
SVHN 6.77 7.31 7.38%

ResNet-50 ImageNet 15.08 17.11 13.46%

in some application scenarios, still increases the overall computation. The same observation can be
extended to ViT architectures.

B ADDITIONAL EXPERIMENTS

We discuss here the additional experiments for S2AP. Precisely, we extend our approach to struc-
tured pruning, a standard “clean” pruning task, compare S2AP with AWP during the pruning stage,
and finally analyze the effectiveness of S2AP on the common corruptions dataset.

Table 8: CIFAR-10 and SVHN results using RLTH with ResNet18, VGG-16, and WideResNet-28-4
across sparsity. Each cell shows clean/robust±std accuracy and the difference between Orig. and
S2AP robust generalization gap (∆). In bold, the model with the highest robustness.

Network Sparsity CIFAR-10 (RLTH) SVHN (RLTH)

Orig. S2AP ∆ Orig. S2AP ∆

ResNet18

80% 67.72 / 33.58 68.13 / 33.80 +0.37 85.02 / 44.60 84.13 / 44.66 +0.95
90% 69.32 / 34.42 69.30 / 34.92 +0.52 83.65 / 44.07 84.51 / 44.50 +1.29
95% 68.56 / 34.90 69.93 / 35.38 +1.05 84.83 / 42.78 84.51 / 43.50 +1.04
99% 66.19 / 32.66 60.27 / 31.09 -4.45 81.72 / 41.59 80.61 / 41.73 +1.25

VGG16

80% 18.63 / 11.04 22.62 / 12.20 +1.19 32.89 / 18.70 32.83 / 19.01 +0.37
90% 23.36 / 13.17 24.63 / 13.19 +1.01 34.21 / 18.78 37.20 / 17.31 -1.92
95% 30.04 / 12.06 26.62 / 19.33 +6.69 37.29 / 20.06 34.40 / 21.86 +2.71
99% 18.36 / 14.47 19.09 / 12.50 -1.70 20.06 / 19.68 21.68 / 18.00 -2.30

WRN28-4

80% 68.94 / 34.55 69.71 / 34.91 +0.65 87.82 / 44.52 87.81 / 44.71 +0.36
90% 70.05 / 33.53 69.65 / 34.39 +0.86 88.83 / 43.95 85.97 / 44.53 +1.58
95% 69.29 / 34.40 68.69 / 33.55 -0.75 86.82 / 43.85 88.13 / 42.95 -1.56
99% 63.19 / 29.56 62.13 / 29.83 +0.89 77.29 / 36.68 80.80 / 37.96 +3.79

B.1 EXPERIMENTS ON RLTH

As in Table 1 and Table 2, for the HARP and HYDRA methods, RLTH can benefit from robustness
increases from the S2AP method, as we show in Table 8. This result is not obvious, as RLTH
involves a different pruning pipeline than existing methods. As opposed to starting from a pretrained
model, pruning, and then finetuning, such method in fact follows the lottery ticket hypothesis Frankle
& Carbin (2019), which admits the existence of subnetworks within dense, randomly initialized
models. Overall, compared to other methods, we see RLTH pruned models having lower accuracies
due to the pruned random initialization and absence of finetuning. The improved robustness of
S2AP, considering the absence of finetuning on RLTH, further corroborates to the ablation study
discussed in Table 5, which shows how S2AP, independently from finetuning at all, is capable of
reaching higher adversarial robustness from pruning already.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 9: Channel Pruning with S2AP on CIFAR10 dataset.

Network Sparsity (%) HARP-Orig. S2AP-HARP HYDRA-Orig. S2AP-HYDRA

ResNet18 4 49.60 50.36 49.32 50.85
15 48.28 48.63 38.69 39.79

VGG-16 4 47.37 48.18 47.02 47.33
15 37.38 37.17 33.15 34.53

B.2 EXPERIMENTS ON STRUCTURED PRUNING

Unstructured pruning serves as a great mathematical prototype for neural networks, allowing for
single weights to be pruned. Empirically, this is widely accepted as an upper-bound on the other
important category of pruning methods, i.e., structured pruning Liu & Wang (2023). From a practi-
cal perspective, structured pruning allows for removing entire network structures, such as channels
and filters, and constitutes a readily usable network size reduction. In fact, while unstructured prun-
ing requires a still maturing dedicated hardware, structured pruning implies reducing network size
and leveraging it directly Liu & Wang (2023). To validate the effectiveness of our S2AP method,
given the high relevance of structured pruning methods, we extend, in Table 9, experiments of both
HARP and HYDRA methods to channel pruning, relying on the ResNet18 and VGG16 networks
on CIFAR10 as a testbed. Instead of the classic sparsity rate k, for channel pruning we refer to the
reduction in floating point operations (FLOPs). Specifically, we obtain 4 or 15 times fewer FLOPs
than the original dense model, thus improving the overall model efficiency and computing time.
Such a form of sparsity is more compatible with standard hardware acceleration and better suited
for real-world deployment. Overall, these results confirm that S2AP generalizes effectively also to
different kinds of pruning structures, further reinforcing the versatility of our approach.

Table 10: Mask clean / robust accuracy (mean±std) on CIFAR10 and SVHN across sparsity levels
using ResNet18, VGG-16, and WideResNet-28-4.

Network Sparsity CIFAR10 SVHN

HARP HYDRA HARP HYDRA

Orig. S2AP Orig. S2AP Orig. S2AP Orig. S2AP

ResNet18

80% 83.19/48.88±0.73 82.03/49.55±0.69 82.13/48.56±0.66 82.87/48.98±0.75 90.10/46.56±0.66 87.74/49.18±0.77 90.63/45.74±0.73 89.80/46.11±0.69

90% 82.98/49.42±0.72 83.12/49.60±0.74 80.55/47.41±0.84 82.26/48.06±0.71 90.20/49.04±0.79 90.17/48.28±0.81 84.82/45.61±0.70 88.77/47.62±0.83

95% 82.26/49.04±0.76 82.48/48.43±0.78 78.98/45.55±0.91 79.47/45.61±0.86 92.22/41.66±1.21 89.07/45.58±0.75 83.57/44.53±0.84 88.82/45.14±0.72

99% 72.97/40.99±1.34 75.46/41.86±1.19 69.63/35.15±1.48 69.66/36.74±1.42 85.01/40.79±0.94 85.35/45.77±1.07 83.12/40.85±0.99 79.19/37.93±1.22

VGG-16

80% 75.78/41.93±0.82 76.51/42.84±0.85 74.86/40.31±0.95 76.15/41.39±0.91 89.51/46.95±0.78 89.53/48.93±0.84 85.67/45.78±0.89 87.39/46.17±0.75

90% 73.89/41.69±0.86 75.86/42.11±0.87 73.19/38.12±1.12 75.17/40.61±0.93 89.73/47.30±0.79 87.12/46.28±0.76 84.91/44.22±0.81 87.39/46.17±0.88

95% 73.55/40.21±0.97 74.68/39.13±0.99 62.30/31.81±1.42 72.86/38.03±1.08 87.86/46.51±0.75 87.85/47.96±0.71 82.07/42.43±0.84 85.47/43.78±0.73

99% 52.59/24.22±1.52 72.76/36.41±1.21 40.77/20.54±1.68 60.91/29.67±1.49 84.70/43.42±0.77 84.07/43.91±0.81 79.75/31.06±1.34 83.82/32.64±1.41

WRN28-4

80% 82.97/50.45±0.81 83.24/50.59±0.73 82.59/50.31±0.78 83.05/50.41±0.76 90.91/43.79±0.74 88.90/47.02±0.78 90.49/49.43±0.73 88.87/47.50±0.71

90% 81.82/50.56±0.77 82.66/50.79±0.72 80.71/47.75±0.88 81.92/49.30±0.80 91.41/45.89±0.75 90.61/46.31±0.74 90.83/43.80±0.76 89.51/45.66±0.78

95% 80.44/49.07±0.91 80.82/49.37±0.87 79.82/46.97±0.97 80.19/46.85±0.93 88.43/41.69±0.79 85.74/45.41±0.76 88.35/48.01±0.75 88.61/48.35±0.73

99% 71.57/38.89±1.39 71.64/39.89±1.22 70.33/34.57±1.47 71.40/36.30±1.34 84.99/43.58±0.78 80.51/40.87±0.81 85.54/40.57±0.79 84.32/38.84±0.82

B.3 EXPERIMENTS ON STANDARD CLEAN PRUNING

On several occasions throughout the paper, we remarked on the generality of the S2AP method
beyond the specific adversarial pruning task. We thus aim to first confirm the S2AP effectiveness and
utility on the most basic task required by such networks: standard classification. Hence, we prune
networks using a standard cross-entropy loss, disregarding the adversarial robustness objective, and
fine-tune accordingly. We show the results of such experiments in Table 11, where we reveal how
S2AP improves not only adversarial robustness, but also clean accuracy on a standard classification
task for the CIFAR10 dataset. We thus confirm the initial claim of general use and applicability of
S2AP to different tasks and scenarios, not limited to the adversarial pruning case.

Furthermore, we extend the results reported in Table 5 with the corresponding clean accuracy values.
In Table 10, we confirm the same trends observed for robustness. Finally, we specify that the ∆
quantity is used in our analysis as a marker of whether improving robustness comes at the cost
of noticeably degrading clean accuracy. In the adversarial robustness literature, it is common for
robustness-oriented methods to introduce a trade-off between clean and robust accuracy, meaning
that gains in adversarial robustness are obtained at the expense of significantly lower clean accuracy.
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Table 11: Clean accuracy (%) under different sparsity levels. For each pruning method
(HARP/HYDRA), we report Orig. and S2AP variants. Bold indicates the best between Orig. and
S2AP.

Network Sparsity (%) HARP-Orig. S2AP-HARP HYDRA-Orig. S2AP-HYDRA

ResNet18

80 94.70 94.85 94.90 94.61
90 94.12 94.89 94.37 94.73
95 93.18 94.56 94.20 94.84
99 92.27 93.01 90.22 90.38

VGG-16

80 92.17 92.82 92.46 93.20
90 92.34 92.99 92.52 93.70
95 92.41 93.03 91.41 91.95
99 90.96 91.76 87.32 87.40

Table 12: Robust accuracy (%) on CIFAR-10-C under different sparsity levels. Bold indicates the
best between Orig. and S2AP for each pruning method.

Network Sparsity (%) HARP-Orig. S2AP-HARP HYDRA-Orig. S2AP-HYDRA

ResNet18

80 72.52 73.08 71.75 72.01
90 72.62 73.12 71.54 72.16
95 72.27 73.23 70.02 70.59
99 68.52 68.48 65.41 66.50

VGG-16

80 70.07 70.97 68.84 68.98
90 71.15 71.34 69.23 68.71
95 69.97 70.05 68.15 68.33
99 66.89 67.45 59.09 59.26

WRN

80 72.73 72.88 72.59 73.54
90 72.54 73.06 71.75 73.08
95 73.03 73.32 72.83 72.85
99 67.63 67.95 65.61 66.04

We track that with ∆ = (accOrig.−robustnessOrig.)−(accS2AP.−robustnessS2AP.). Hence, a positive ∆
implies that S2AP’s gap is smaller than Orig.’s gap. We consistently find this quantity to be positive.

B.4 EXPERIMENTS ON CORRUPTIONS

Following on from the previous experiments, extending to standard pruning, it is likewise relevant
to consider further tasks. We thus choose to test on the general robustness to corruption task by
including experiments on the CIFAR10-C dataset. We select a corruption severity of 3, and show
the results in Table 12. As in previous experiments, we demonstrate how S2AP is further applicable
to different tasks and keeps its superiority compared to other methods. We thus believe that such an
extension corroborates the claims and results obtained in adversarial robustness, besides broadening
the method’s applicability.

B.5 PERTURBING WEIGHTS OR SCORES?

One of the big novelties that can be found in S2AP is the focus on the score-space, rather than the
usual weight-space where prior sharpness-minimization approaches focused in the past. In turn, a
natural question is whether sharpness minimization should be performed in weight space, as done
in prior work such as Adversarial Weight Perturbations (AWP), or in score space, as we propose in
S2AP. In adversarial pruning, the pruning mask is determined by the ranking of importance scores
rather than the weights themselves. Hence, perturbing scores directly addresses the variables that
drive mask selection, potentially stabilizing the top-k cutoff. While this intuition suggests a better
alignment with the pruning objective, our main justification is empirical. As shown in Table 13,
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Table 13: ResNet18 on CIFAR-10: accuracy (%) under different sparsity levels when pruning with
AWP (perturbing weights) vs. S2AP (perturbing scores). Bold indicates the best between AWP and
S2AP for each method.

Network Sparsity (%) HARP-AWP HARP-S2AP HYDRA-AWP HYDRA-S2AP

ResNet18

80 47.32 49.55 46.12 48.98
90 47.80 49.60 45.19 48.06
95 46.91 48.43 42.77 45.61
99 40.35 41.86 34.34 36.74

perturbing scores during mask search consistently leads to higher robust accuracy than perturbing
weights, across different networks and datasets. These results, which indicate the mask robustness
before finetuning as in Table 5, indicate that score-space perturbations are more effective at preserv-
ing robustness in adversarial pruning than their weight-space counterparts. While a more formal
reason describing the differences between applying AWP or S2AP during pruning is missing, we
believe that a role behind the greater success of score perturbations could also be played by the
increased mask stability.

C MEASURING SCORE-SPACE SHARPNESS AND MASK STABILITY

We measure score-space sharpness relying on two specific approaches: the largest eigenvalue com-
putation λmax and the loss difference (following Stutz et al. (2021); Andriushchenko et al. (2023)).
We dedicate this section to describing both approaches in detail, and provide additional experiments
and results on more model and dataset combinations. In addition to minimizing sharpness, how-
ever, S2AP also improves the mask stability during pruning. In turn, we conclude this section by
describing the proposed measure in detail and showing additional experiments.

C.1 MEASURING LARGEST EIGENVALUE

To compute the largest eigenvalue of the Hessian∇2
sLr(s) with respect to the score parameters, we

adopt the classical power iteration method. Starting from a random unit-norm vector v(0) ∈ Rp, we
iteratively compute:

v(t+1) =
∇2

sLr(s)v
(t)

∥∇2
sLr(s)v(t)∥2

, (10)

where Lr(s) = Lr(w⊙M(s, k),D) is the robust loss, that we denote as Lr(s) to lighten notation.
After T iterations, we compute the Rayleigh quotient as an approximation of the largest eigenvalue:

λmax ≈
〈
v(T ),∇2

sLr(s)v
(T )

〉
. (11)

We select T = 10 iterations to compute the quotient, and specify that we implement this computation
using Hessian-vector products via automatic differentiation, thus refraining from explicitly forming
the Hessian Jastrzębski et al. (2017). This procedure is run at each pruning iteration of both the
S2AP and original methods. We then average the resulting λmax values across each iteration and
plot the corresponding sharpness trends against epochs. While we show the CIFAR10 HARP method
for ResNet18 in Figure 1c and for WideResNet28-4 in Figure 2, we complete the remaining plots
from Figure 8 to Figure 17. Overall, the plots show how methods pruned with S2AP hold, apart from
a few exceptions, a consistently lower maximum eigenvalue across multiple architectures, datasets,
pruning methods, and sparsities. We specify how, on the first few epochs, the resulting λmax has a
negligible difference between Orig. and S2AP methods (hence the first 10 warped epochs).

C.2 MEASURING SCORE-SPACE LOSS DIFFERENCE

Measuring sharpness through a loss difference requires perturbing a “reference” loss value Lr(w⊙
M(s, k)), representing a local minima, through a perturbation ν which enables measuring sharpness
as follows:

max
∥ν⊙c−1∥∞≤ρ

Lr(w ⊙M(s+ ν, k),D)− Lr(w ⊙M(s, k),D) (12)
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where c is a positive scaling vector used to make the sharpness definition reparameterization-
invariant, addressing the well-known problems of sharpness measures Dinh et al. (2017), and the
operator ⊙/−1 defines element-wise multiplication/inversion. We specify that such a formulation
corresponds to the one presented in Andriushchenko et al. (2023), yet adapted to our score-space
case. Overall, we thus perturb the score-space and measure the corresponding loss variation imposed
by the shift and mask variation, which we expect to be lower in the S2AP case.

In our experiments, we evaluate different ρ values, and show in Table 14 an overview of the CIFAR10
results. Overall, we see how S2AP consistently reduces sharpness, except for some specific cases at
high sparsities. In this regard, however, increasing the corresponding ρ value appears to still favor
S2AP, suggesting that lower values might not be enough (hence, we choose ρ = 0.01 in the plot
of Figure 3).

C.3 MASK STABILITY

We measure mask stability based on the Hamming distance h, which equals measuring the rate of
change between masks as follows:

h = ∥m0 ⊕mt∥1/|m0|, where t ∈ {1, 2, . . . , T}, (13)

where mt represents the mask found at epoch t, ⊕ is the XOR operator measuring the number of
differing bits, and T is the total number of epochs. We compute h = {h1, h2, . . . , hT }, thus mea-
suring the distance from the first mask in each epoch, for both original (Orig.) and S2AP adversarial
pruning methods. Overall, lower h values indicate improved stability, as the number of changed
selected weights is, in turn, lower. To provide a useful analysis, we compute two vectors, horig and
hS2AP , by saving the masks at each epoch while pruning, that we then subtract as horig − hS2AP .
Hence, we obtain a single curve plot that, when positive, indicates that the S2AP method is more
stable than the original one, and vice versa when negative.
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Figure 6: Improved mask stability of Resnet18 (a) and WideResNet28-4 (b) on the HYDRA method.

Stability is depicted for CIFAR10 HARP method and ResNet18 in Figure 1b, and for
WideResNet28-4 in Figure 4. Nonetheless, we provide additional plots for the remaining combi-
nations in Figure 6, where we show the improved mask stability of S2AP on the HYDRA method as
well. For VGG16 models, interestingly, we find the stability trend often favors the Orig. models in-
stead of S2AP, particularly at lower sparsity. We analyze such a result through the plots of Figure 7.
Overall, such a measure allows assessing how much the pruning decisions evolve over time relative
to their starting point.
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Figure 7: Single Hamming distances of VGG16 on CIFAR10 and SVHN after the first 5 pruning
epochs. In (a), (b), and (c) the 80% sparsity for HARP on CIFAR10, HYDRA on CIFAR10, and
HARP on SVHN; in (d), (e), and (f) the 90% sparsity for HARP on CIFAR10, HYDRA on CIFAR10,
and HARP on SVHN; in (g), (h), and (i) the 95% sparsity for HARP on CIFAR10, HYDRA on
CIFAR10, and HARP on SVHN; and in (j), (k), and (l) the 99% sparsity for HARP on CIFAR10,
HYDRA on CIFAR10, and HARP on SVHN.
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Figure 8: Largest eigenvalue across HYDRA pruning epochs for ResNet18 on CIFAR10.
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Figure 9: Largest eigenvalue across HARP pruning epochs for ResNet18 on SVHN.
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Figure 10: Largest eigenvalue across HYDRA pruning epochs for ResNet18 on SVHN.
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Figure 11: Largest eigenvalue across HARP pruning epochs for VGG on CIFAR10.
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Figure 12: Largest eigenvalue across HYDRA pruning epochs for VGG on CIFAR10.
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Figure 13: Largest eigenvalue across HARP pruning epochs for VGG on SVHN.
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Figure 14: Largest eigenvalue across HYDRA pruning epochs for VGG16 on SVHN.
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Figure 15: Largest eigenvalue across HYDRA pruning epochs for WideResNet28-4 on CIFAR10.
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Figure 16: Largest eigenvalue across HARP pruning epochs for WideResNet28-4 on SVHN.
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Figure 17: Largest eigenvalue across HYDRA pruning epochs for WideResNet28-4 on SVHN.
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Table 14: CIFAR10 Sharpness comparison across sparsity levels and ρ values using Orig. and S2AP
pruning strategies. Lower sharpness values are in bold.

Model Sparsity ρ HARP HYDRA
(%) Orig. S2AP Orig. S2AP

ResNet18

80

0.001 0.08316 0.07723 0.08820 0.09274
0.0025 0.10498 0.09742 0.11074 0.11315
0.005 0.14170 0.13142 0.14845 0.14702

0.0075 0.18016 0.16670 0.18784 0.18171
0.01 0.22096 0.20322 0.22839 0.21794

90

0.001 0.07001 0.06848 0.08675 0.07637
0.0025 0.08566 0.08329 0.10258 0.09097
0.005 0.11239 0.10844 0.13116 0.11596

0.0075 0.14069 0.13311 0.15879 0.14189
0.01 0.16937 0.15981 0.18928 0.16741

95

0.001 0.06409 0.06346 0.07383 0.06957
0.0025 0.07676 0.07504 0.08597 0.08035
0.005 0.09787 0.09401 0.10601 0.09822

0.0075 0.11952 0.11332 0.12648 0.11706
0.01 0.14170 0.13420 0.14774 0.13521

99

0.001 0.05921 0.06428 0.05573 0.05148
0.0025 0.06637 0.07114 0.06233 0.05728
0.005 0.07810 0.08258 0.07365 0.06711

0.0075 0.08930 0.09392 0.08483 0.07718
0.01 0.10852 0.10082 0.09631 0.08761

VGG16

80

0.001 0.05925 0.05837 0.05547 0.05604
0.0025 0.07916 0.07852 0.07089 0.07134
0.005 0.11328 0.11260 0.09726 0.09804

0.0075 0.14856 0.14736 0.12450 0.12492
0.01 0.18579 0.18412 0.15311 0.15298

90

0.001 0.05429 0.05503 0.05616 0.05531
0.0025 0.07059 0.07160 0.06881 0.06749
0.005 0.09846 0.09970 0.08966 0.08804

0.0075 0.12649 0.12834 0.11178 0.10993
0.01 0.15518 0.15657 0.13426 0.13282

95

0.001 0.05003 0.04989 0.05386 0.04861
0.0025 0.06286 0.06237 0.06358 0.05832
0.005 0.08452 0.08361 0.08018 0.07514

0.0075 0.10634 0.10562 0.09726 0.09266
0.01 0.12874 0.12760 0.11470 0.11020

99

0.001 0.04367 0.04174 0.04815 0.04601
0.0025 0.05087 0.04909 0.05509 0.05261
0.005 0.06309 0.06165 0.06656 0.06362

0.0075 0.07565 0.07486 0.07853 0.07477
0.01 0.08851 0.08857 0.09058 0.08608

WRN

80

0.001 0.07913 0.07880 0.07991 0.07489
0.0025 0.09723 0.09593 0.09703 0.09096
0.005 0.12753 0.12433 0.12677 0.11843

0.0075 0.15926 0.15295 0.15632 0.14677
0.01 0.19145 0.18250 0.18822 0.17620

90

0.001 0.07006 0.06571 0.07159 0.07602
0.0025 0.08337 0.07786 0.08506 0.08826
0.005 0.10571 0.09843 0.10735 0.10935

0.0075 0.12777 0.11919 0.13010 0.13164
0.01 0.15019 0.13998 0.15363 0.15292

95

0.001 0.05809 0.06162 0.06952 0.06229
0.0025 0.06847 0.07097 0.07998 0.07141
0.005 0.08537 0.08655 0.09721 0.08766

0.0075 0.10154 0.10193 0.11500 0.10338
0.01 0.11772 0.11709 0.13249 0.11976

99

0.001 0.05823 0.05911 0.04382 0.04925
0.0025 0.06376 0.06482 0.05483 0.04949
0.005 0.07283 0.07452 0.06425 0.05900

0.0075 0.08122 0.08487 0.07172 0.06888
0.01 0.08968 0.09446 0.08512 0.07535
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