
000 S2AP: SCORE-SPACE SHARPNESS MINIMIZATION FOR 001 ADVERSARIAL PRUNING 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 009 ABSTRACT 010

011 Adversarial pruning methods have emerged as a powerful tool for compressing
012 neural networks while preserving robustness against adversarial attacks. These
013 methods typically follow a three-step pipeline: (i) pretrain a robust model, (ii)
014 select a binary mask for weight pruning, and (iii) finetune the pruned model. To
015 select the binary mask, these methods minimize a robust loss by assigning an im-
016 portance score to each weight, and then keep the weights with the highest scores.
017 However, this score-space optimization can lead to sharp local minima in the ro-
018 bust loss landscape and, in turn, to an unstable mask selection, reducing the robust-
019 ness of adversarial pruning methods. To overcome this issue, we propose a novel
020 plug-in method for adversarial pruning, termed Score-space Sharpness-aware Ad-
021 versarial Pruning (S2AP). Through our method, we introduce the concept of score-
022 space sharpness minimization, which operates during the mask search by pertur-
023 bing importance scores and minimizing the corresponding robust loss. Extensive
024 experiments across various datasets, models, and sparsity levels demonstrate that
025 S2AP effectively minimizes sharpness in score space, stabilizing the mask selec-
026 tion, and ultimately improving the robustness of adversarial pruning methods.
027

028 1 INTRODUCTION

029 Deep neural networks are susceptible to adversarial attacks, which entail optimizing an input per-
030 turbation added to the original sample to induce a misclassification (Biggio et al., 2013; Szegedy
031 et al., 2014). Besides robustness against adversarial examples, networks are often required to be
032 compact and suitable for resource-constrained scenarios (Liu & Wang, 2023), where the model’s
033 dimension cannot be chosen at hand but requires respecting a given constraint. In this regard, neu-
034 ral network pruning (LeCun et al., 1989) represents a powerful compression method by removing
035 redundant or less impactful parameters according to a desired sparsity rate and, as a result, allowing
036 the preservation of much of the performance of a dense model counterpart (Blalock et al., 2020).

037 Adversarial Pruning (AP) methods aim to fulfill this twofold requirement, thus extending model
038 compression to the adversarial case, by removing parameters less responsible for adversarial robust-
039 ness drops (Piras et al., 2024). While prior work extended naïve pruning heuristics to robustness,
040 such as based on the lowest weight magnitude (LWM) of robust models (Han et al., 2015; Sehwag
041 et al., 2019), recent approaches proposed different strategies to quantify each parameter’s impor-
042 tance, and thus select an optimized pruning mask accordingly. These methods, such as HARP (Zhao
043 & Wressnegger, 2023) and HYDRA (Sehwag et al., 2020), use real-valued importance scores, one
044 for each model’s weight, indicating how much robust loss degrades based on that parameter’s re-
045 moval. These scores are then optimized during the pruning stage by: (i) computing the robust loss
046 using the top- k parameters in the forward pass (where k is the desired sparsity); and (ii) updating
047 each parameter’s importance in the backward pass. This procedure circumvents the intractability of
048 the binary mask optimization problem imposed by the ℓ_0 constraint on the weights (i.e., the desired
049 sparsity). Hence, it enables a parameter selection process based on the scores minimizing a robust
050 objective, yielding a final mask with enhanced adversarial robustness. However, the final subnet is
051 determined by a *discrete* top- k operator applied to these *continuous* scores. Consequently, the ef-
052 ffectiveness of the pruning mask in preserving robustness is strongly dependent on importance-score
053 optimization. Small score variations near the pruning threshold can swap the ordering of scores and
flip many entries of the binary mask, leading to significant changes in the selected top- k parameters
and volatile robustness. This sensitivity highlights the need for a smoother, more stable *score-space*

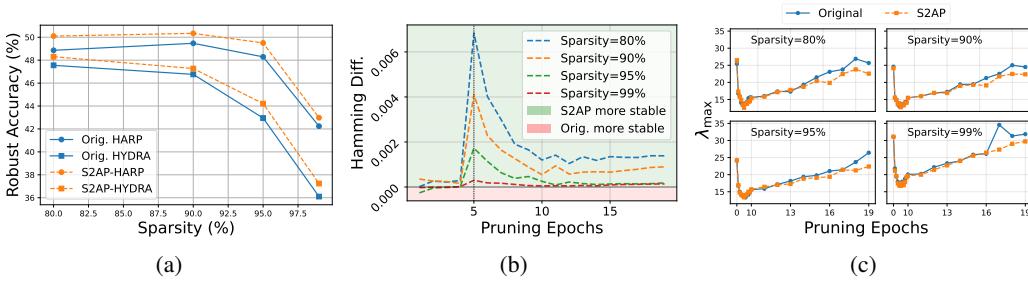


Figure 1: Effects of S2AP on a ResNet18 CIFAR10 model. (a) Improved robust accuracy of pruned models. (b) Enhanced mask stability (quantified as Hamming distance h , i.e., measuring how much each mask \mathbf{m}_t across pruning epochs changes compared to the first computed mask \mathbf{m}_0). We subtract and plot $h_{\text{orig}} - h_{\text{S2AP}}$, thus yielding positive values where S2AP is more stable (green area), and negative values vice versa (red area). S2AP enhances mask stability, particularly after pruning epoch 5 when warm-up ends and explicit sharpness minimization begins. (c) Minimized sharpness in the robust loss landscape (where the largest eigenvalue λ_{\max} indicates more sharpness).

optimization landscape. In this regard, recent advances in neural network training suggest that explicitly minimizing sharpness in the loss landscape can foster not only generalization (Foret et al., 2021), but also adversarial robustness (Wu et al., 2020; Stutz et al., 2021). These approaches, such as Adversarial Weight Perturbations (AWP) (Wu et al., 2020) for adversarial robustness, work by perturbing the network parameters (i.e., the weights) and minimizing the corresponding loss to reduce sharpness and improve performance.

Inspired by these findings, we extend the concept of sharpness minimization in adversarial robustness beyond the traditional parameter-space setting, where weights are perturbed, to the novel context of importance score optimization. We thereby propose a *score-space* sharpness minimization approach for adversarial pruning methods, that we define as Score-space Sharpness-aware Adversarial Pruning (S2AP), which reduces the sharpness of the loss landscape parameterized by importance scores, stabilizing the mask selection and improving adversarial robustness of pruned models. Crucially, S2AP is implemented as a plug-in, allowing seamless integration into existing AP methods (and any other score-based approach) without altering their core logic or loss formulation. Overall, our main contributions are organized as follows:

- (i) we present the S2AP method (Sect. 3), discussing its algorithm in a step-by-step approach;
- (ii) we then demonstrate, across multiple architectures, datasets, and sparsity rates, how S2AP improves robustness of adversarial pruning methods (Sect. 4.2);
- (iii) we finally show, on the same comprehensive setup, the minimized sharpness in the score-space landscape and the induced mask search stability (Sect. 4.3).

A preview of the discussed effects and results can be seen in Figure 1, where we show the improved robustness of S2AP (Figure 1a), the stabilized mask selection based on the masks’ Hamming distances (Figure 1b), and the minimized sharpness based on the largest eigenvalue (Figure 1c).

2 ADVERSARIAL PRUNING AND SCORE-SPACE

Notation. Let us denote with $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ a training set of n d -dimensional samples $\mathbf{x} \in \mathcal{X} = [0, 1]^d$ along with their labels $y \in \mathcal{Y} = \{1, \dots, C\}$. For a network $f(\cdot; \mathbf{w})$ with parameters $\mathbf{w} \in \mathbb{R}^p$, we define the average loss function computed on the dataset \mathcal{D} (or on a batch) as $\mathcal{L}(\mathbf{w}, \mathcal{D}) = 1/n \sum_i \ell(y_i, f(\mathbf{x}_i; \mathbf{w}))$, being ℓ any suitable sample-wise loss and f the C logits of the network.

Adversarial Robustness. Machine Learning (ML) models are susceptible to adversarial attacks (Biggio et al., 2013; Szegedy et al., 2014), which create input samples misclassified by the attacked model. In this regard, adversarial training is considered the go-to defense, minimizing a

108 given robust loss $\hat{\mathcal{L}}$ defined as the inner maximization in the following optimization problem:
109

110
$$\min_{\mathbf{w}} \hat{\mathcal{L}}(\mathbf{w}, \mathcal{D}), \quad \hat{\mathcal{L}}(\mathbf{w}, \mathcal{D}) = \frac{1}{n} \sum_{i=1}^n \max_{\|\delta_i\| \leq \epsilon} \ell(y_i, f(\mathbf{x}_i + \delta_i; \mathbf{w})), \quad (1)$$

111
112

113 where $\mathbf{x}_i + \delta_i \in [0, 1]^d, \forall i$, i.e., that each perturbed sample still lies in the sample space upon adding
114 an adversarial perturbation δ bounded by a given ℓ_p bound ϵ .
115

116 **Adversarial Pruning Methods.** Pruning aims to reduce the size of a network by removing its
117 parameters (e.g., weights) while preserving performance (LeCun et al., 1989). Similarly, Adversarial
118 Pruning (AP) methods aim to reduce model size while preserving robustness against adversarial
119 attacks (Piras et al., 2024). Recent AP methods proposed solving the following optimization problem:
120

121
$$\min_{\|\mathbf{m}\|_0 \leq k} \hat{\mathcal{L}}(\mathbf{w} \odot \mathbf{m}, \mathcal{D}), \quad (2)$$

122

123 where $\mathbf{m} \in \{0, 1\}^p$ is a p -dimensional mask constrained to have k non-zero entries. The mask is
124 element-wise multiplied by the weights \mathbf{w} , ensuring that the pruned model satisfies the sparsity rate
125 k . However, the sparsity constraint makes Eq. 2 a non-convex, combinatorial problem. AP methods
126 like HARP (Zhao & Wressnegger, 2023), HYDRA (Sehwag et al., 2020), thus solve it by relaxing
127 the sparsity constraint through the use of *importance scores*.
128

129 **Importance Scores.** During the pruning stage, while weights are kept invariant, optimizing impor-
130 tance scores amounts to defining a vector of continuous values $\mathbf{s} \in \mathbb{R}^p$, initialized proportionally to
131 the weights, which are learnable and optimized with respect to the robust loss $\hat{\mathcal{L}}$ as follows:
132

133
$$\min_{\mathbf{s}} \hat{\mathcal{L}}(\mathbf{w} \odot M(\mathbf{s}, k), \mathcal{D}), \quad (3)$$

134

135 where $\hat{\mathcal{L}}$ is computed, given k , through a masking function $M(\mathbf{s}, k)$ that assigns 1 only to the top- k
136 entries of \mathbf{s} , thus imposing sparsity. Let us remark that such an optimization procedure is non-trivial:
137 in the forward pass, the loss is computed using the top- k parameters as $\hat{\mathcal{L}}(\mathbf{w} \odot M(\mathbf{s}, k), \mathcal{D})$; dur-
138 ing backpropagation, these methods adopt a straight-through estimator (STE) substituting $\partial M / \partial \mathbf{s}$
139 with 1 (i.e., the identity) following Ramanujan et al. (2020). This method enables propagating the
140 gradient through the non-differentiable mask and optimizing each score according to its importance.
141 We thus define as **score-space** the p -dimensional space \mathbb{R}^p spanned by the importance scores \mathbf{s} , and
142 study the robust loss landscape $\hat{\mathcal{L}}(\mathbf{w} \odot M(\mathbf{s}, k), \mathcal{D})$ defined over it.
143

144 **Formulation Generality.** The formulation of Eq. 3 encompasses all AP methods based on
145 importance-score optimization. Different methods can, however, define different loss functions (that
146 we generalize through $\hat{\mathcal{L}}$). This is the case of HARP (Zhao & Wressnegger, 2023), which defines
147 additional penalty terms allowing for optimizing layer-wise sparsity. We specify that our formula-
148 tion unifies different loss formulations from various AP methods, and as we will describe in the next
149 section, the proposed S2AP can “wrap” any AP method based on importance-score optimization.
150

3 S2AP: MINIMIZING SCORE-SPACE SHARPNESS

151 From Sect. 2, it becomes evident that score optimization on a robust loss is the core logic of ad-
152 versarial pruning. We improve such an approach by minimizing score-space sharpness. Hence,
153 our Score-space Sharpness-aware Adversarial Pruning (S2AP) method avoids that small score shifts
154 induce relevant mask changes, thus stabilizing the pruning process and increasing adversarial ro-
155 bustness. Following Eq. 3, and given the sharpness minimization approach from Wu et al. (2020),
156 we define the S2AP problem as follows:
157

158
$$\mathbf{s}^* \in \arg \min_{\mathbf{s}} \max_{\mathbf{z}} \hat{\mathcal{L}}(\mathbf{w} \odot M(\mathbf{s} + \mathbf{z}, k), \mathcal{D}), \quad (4)$$

159

160 where $\|\mathbf{z}_l\| \leq \gamma \|\mathbf{s}_l\|$,
161

162 and γ constraints the *score perturbation* \mathbf{z} applied on \mathbf{s} , scaling it w.r.t. the norm of the scores of
163 each layer l . S2AP solves such optimization through Algorithm 1, as detailed below. Note that the
164 sections of Algorithm 1 outside the orange box are common to AP methods (cf. Sect. 2).
165

162 **Algorithm 1:** Score-Sharpness-aware Adversarial Pruning.
163
164 **Input** : $w \in \mathbb{R}^p$, initial weights; $s \in \mathbb{R}^p$, set of importance scores; $M(s, k)$, masking function
165 with pruning rate k ; x , training inputs samples; η , learning rate; I , number of
166 iterations; L , number of layers; γ , perturbation scaling factor; $\hat{\mathcal{L}}$, robust loss.
167 **Output:** Binary mask $m^* \in \{0, 1\}^d$.

1 1 Initialize parameters $s = \text{scale}(w)$, $x'_i \leftarrow x$, $s^* \leftarrow s$, $z \leftarrow 0$
2 2 **for** $i \leftarrow 1$ **to** I **do**
3 3 Generate adversarial examples on pruned model $x'_i \leftarrow x_i + \delta_i$
4 4 Compute robust loss on pruned model $\hat{\mathcal{L}}(s) = \hat{\mathcal{L}}(w \odot M(s, k), \mathcal{D})$
5
6 6 Generate score-space perturbation $z \leftarrow z + \eta(\nabla_z \hat{\mathcal{L}}(s + z) / \|\nabla_z \hat{\mathcal{L}}(s + z)\|)$
7 7 **for** $l \leftarrow 1$ **to** L **do**
8 8 **if** $\|z^{(l)}\| > \gamma \|s^{(l)}\|$ **then**
9 9 Project perturbation $z^{(l)} \leftarrow (\gamma \|s^{(l)}\| / \|z^{(l)}\|) z^{(l)}$
10 10 Update scores $s \leftarrow s - \eta(\nabla_s \hat{\mathcal{L}}(s + z) / \|\nabla_s \hat{\mathcal{L}}(s + z)\|)$
11 11 Restore scores $s \leftarrow s - z$
12
13 13 **if** $\hat{\mathcal{L}}(s) < \hat{\mathcal{L}}(s^*)$ **then**
14 14 Update best loss $\hat{\mathcal{L}}(s^*) \leftarrow \hat{\mathcal{L}}(s)$
15 15 **return** $m^* \leftarrow M(s^*, k)$

S2AP

188 **Generating Adversarial Examples.** We initialize, in line 1, the set of importance scores s proportionally to w through `scale`, which scales the scores proportionally to the weights' magnitude. This enables creating a pruned model ($f(w \odot M(s, k))$) through which we compute the adversarial examples x' (line 3) using the ℓ_∞ PGD attack (Madry et al., 2018). Following Eq. 1, we thus craft a perturbation δ constrained on ϵ . Computing the adversarial examples allows defining a robust loss $\hat{\mathcal{L}}$ which we denote, for brevity and emphasis on the scores, as $\hat{\mathcal{L}}(s)$ in line 4.

194 **Score-Space Perturbation.** Defining a robust loss and creating adversarial examples is a common step of score-based AP methods. During the pruning stage, in fact, these methods' weights are left unchanged while importance scores s are optimized according to a robust objective to find the best mask $m = M(s, k)$. Through S2AP, we are interested in minimizing the score-space sharpness. Hence, before the standard score optimization, when using S2AP we craft a score-space perturbation (line 6) in one single iteration, aiming to shift the loss in score space from the i -th iteration's local minima towards a point of higher loss. We thus create a *worst-case* score perturbation.

201 In line 9, we iterate over the L layers of the network and project our perturbation z in a bound defined by γ . More precisely, according to the layer's score magnitude $\|s^{(l)}\|$, we scale $z^{(l)}$ to $(\gamma \|s^{(l)}\| / \|z^{(l)}\|) z^{(l)}$ if $\|z^{(l)}\| > \gamma \|s^{(l)}\|$, which corresponds to projecting back the perturbation into the “ball” defined by γ when exceeding, and leave as is otherwise. The layer-wise projection primarily addresses the numeric differences across layers. Without per-layer scaling, the magnitude of the generated perturbation z can be perceived differently across layers, leading to either no effect or numerical overflow. A layer-wise projection instead keeps every layer's perturbation proportional to its current score norm, preserving well-conditioned updates and preventing disparity across layers.

209 **Score Update.** Once the score perturbation z is computed, we evaluate the gradient at the perturbed scores $s + z$ (line 10), and take an optimization step to move s in the direction that, in turn, reduces sharpness. After optimizing $\hat{\mathcal{L}}$, S2AP ends by removing the previously applied perturbation to restore the original reference point s for the next iteration (line 11). We specify that also the score update of line 10 is common to AP methods. However, instead of updating scores based on the loss computed on score space $\hat{\mathcal{L}}(s)$, S2AP enables a “sharpness-aware” update on perturbed score space $\hat{\mathcal{L}}(s + z)$. Finally, through line 14 and line 15, we save s^* corresponding to the lowest $\hat{\mathcal{L}}$ and return the best mask m^* via the function $M(s^*, k)$, which is finally multiplied to the pretrained weights.

216 **S2AP Finetuning.** After defining mask \mathbf{m}^* and pruning the model, some of the AP methods we
 217 enhance with S2AP finetune the pruned weights to restore performance using a robust objective (Han
 218 et al., 2015). In S2AP, we choose to finetune the pruned model by aligning the objective with the
 219 score-space sharpness minimization implemented while pruning. Hence, we choose to minimize
 220 sharpness using the AWP (Wu et al., 2020) approach applied on the classical weight-space:

$$\mathbf{w}^* \in \arg \min_{\mathbf{w}} \max_{\boldsymbol{\nu}} \hat{\mathcal{L}}((\mathbf{w} + \boldsymbol{\nu}) \odot \mathbf{m}^*), \quad (6)$$

$$\text{where } \|\boldsymbol{\nu}_l\| \leq \gamma \|\mathbf{w}_l\|, \quad (7)$$

224 and $\boldsymbol{\nu}$, in this case, is a weight perturbation added to the preserved weights according to \mathbf{m}^* found
 225 through Algorithm 1. Therefore, instead of perturbing all the weights as in typical sharpness min-
 226 imization, we add a perturbation only to the top- k weights according to the mask found in the
 227 previous step, and project the perturbation based on the layers’ weight magnitude. We provide a
 228 more details in Sect. A.2, and show S2AP’s performance independence in Table 5.

230 4 EXPERIMENTS

232 S2AP minimizes score-space sharpness, building upon the observation that a smoother loss land-
 233 scape enhances adversarial robustness. In turn, after describing the general experimental setup
 234 (Sect. 4.1), we show and discuss the robustness of S2AP on adversarial pruning methods (Sect. 4.2),
 235 and then analyze the effect of S2AP on score-space sharpness minimization and mask selection
 236 stability (Sect. 4.3). More experiments can be found in Appendix A, Appendix B, and Appendix C.

237 4.1 EXPERIMENTAL SETUP

239 **AP Methods, Models, and Datasets.** We test S2AP on the HARP, HYDRA, and Robust-Lottery
 240 Ticket Hypothesis (RLTH) adversarial pruning methods (Zhao & Wressnegger, 2023; Sehwag et al.,
 241 2020; Fu et al., 2021), while comparing to the original implementations (Orig.). These approaches
 242 are all based on the optimization of importance scores summarized in Eq. 3. However, while HARP
 243 and HYDRA start from a robust pretrained model, and, after pruning, finetune the pruned model,
 244 RLTH tests the LTH on a randomly initialized model and does not finetune the resulting pruned
 245 parameterization. We show RLTH results in Appendix B. We choose 80%, 90%, 95%, and 99%
 246 as sparsity rates, indicating the rate of pruned parameters. We employ the ResNet18 (He et al.,
 247 2016), VGG16 (Simonyan & Zisserman, 2015), and WideResNet-28-4 (Zagoruyko & Komodakis,
 248 2016) architectures on both the CIFAR10 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011)
 249 datasets. In addition, we test HARP and HYDRA on the larger-scale ImageNet (Deng et al., 2009)
 250 dataset using the ResNet50 architecture (we refrain from testing RLTH on ImageNet, as with no
 251 finetuning, the accuracy is too low with moderate epochs). Finally, we prune a vision transformer
 252 (ViT) with a patch size of 4×4 , resulting in 64 tokens for 32×32 images, to 20%, 40%, and 60%
 253 sparsity. It comprises 8 transformer layers, 6 attention heads per layer, and a hidden dimensionality
 254 of 384. The MLP blocks have an expansion ratio of 4, with a hidden dimension of 1536.

255 **Adversarial Training and Evaluation.** We pretrain, prune, and finetune the models with HARP and
 256 HYDRA (prune only for RLTH) using the TRADES loss (Zhang et al., 2019) (pretrained models’
 257 results are shown in Sect. A.1). During adversarial training, we generate adversarial examples using
 258 ℓ_∞ PGD-10 with perturbation size $\epsilon = 8/255$ and step-size $\alpha = 2/255$. Similarly, we evaluate
 259 robustness using the AutoAttack (AA (Croce & Hein, 2020)) ensemble with ℓ_∞ perturbation bound
 260 $\epsilon = 8/255$ for every adversarial robustness evaluation. For HARP and HYDRA, we pretrain and
 261 finetune in 100 epochs, while we prune for 20 epochs. Also, we search for the RLTH tickets in
 262 20 epochs. Of these 20 epochs, for each method, S2AP is applied after 5 warm-up epochs. For
 263 completeness, we discuss the computational cost of pruning with S2AP in Sect. A.4.

264 **S2AP Setup.** We use the same adversarial training setup as the original methods to prune with
 265 S2AP. Also, we find one step to be sufficient for finding a score perturbation, as in Wu et al. (2020).
 266 However, we must specify a γ value to design the layer-wise perturbation projection. For ResNet18
 267 and WideResNet on CIFAR10, we set $\gamma = 0.001$; for VGG16 on CIFAR10 and SVHN, $\gamma = 0.0025$;
 268 for ResNet18 on SVHN, $\gamma = 0.0075$; for WideResNet on SVHN, $\gamma = 0.005$; and finally, for
 269 ResNet50 on ImageNet, we set $\gamma = 0.0075$. The same γ is used to bound weight perturbation for
 270 S2AP finetuning in HARP and HYDRA. For ViTs, we choose gamma 0.0025. We select the γ value
 271 according to the highest robust accuracy, and discuss its selection in Sect. A.3.

270 Table 1: CIFAR-10 results. We show the clean/robust $_{\pm std}$ accuracy and the difference between
 271 Orig. and S2AP robust generalization gap (Δ). In bold, the model with the highest robustness.
 272

273 Network	274 Sparsity	HARP			HYDRA		
		275 Orig.	276 S2AP	277 Gap Δ	278 Orig.	279 S2AP	280 Gap Δ
281 ResNet18	80%	81.26 / 48.86 \pm 0.16	81.36 / 50.10 \pm 0.21	+1.14	80.73 / 47.55 \pm 0.81	81.47 / 48.30 \pm 0.91	+0.01
	90%	81.62 / 49.47 \pm 0.24	82.10 / 50.34 \pm 0.33	+0.39	80.85 / 46.76 \pm 1.34	80.89 / 47.27 \pm 1.09	+0.47
	95%	82.88 / 48.29 \pm 0.44	82.68 / 49.50 \pm 0.46	+1.41	80.83 / 42.95 \pm 1.38	80.14 / 44.21 \pm 0.92	+1.95
	99%	80.72 / 42.24 \pm 0.13	81.46 / 42.98 \pm 0.39	+0.00	80.51 / 36.10 \pm 1.41	80.93 / 37.24 \pm 1.20	+0.72
282 VGG16	80%	78.49 / 45.20 \pm 0.69	79.19 / 45.93 \pm 0.34	+0.03	77.10 / 44.63 \pm 0.09	78.70 / 44.95 \pm 0.12	-1.28
	90%	80.54 / 45.53 \pm 0.47	78.64 / 46.26 \pm 0.41	+2.63	77.65 / 43.07 \pm 0.23	77.07 / 43.57 \pm 0.06	+1.08
	95%	78.70 / 44.74 \pm 0.23	79.12 / 45.67 \pm 0.11	+0.51	76.79 / 40.75 \pm 0.72	76.55 / 41.48 \pm 0.83	+0.97
	99%	77.85 / 41.38 \pm 0.88	78.61 / 42.04 \pm 0.36	-0.10	75.10 / 33.24 \pm 1.44	76.43 / 34.09 \pm 1.04	-0.48
283 WRN28-4	80%	81.69 / 50.08 \pm 0.67	81.73 / 51.28 \pm 0.74	+1.16	81.94 / 50.17 \pm 0.68	82.37 / 50.79 \pm 0.47	+0.19
	90%	82.02 / 50.52 \pm 0.51	82.31 / 51.83 \pm 0.71	+1.02	81.24 / 50.17 \pm 0.35	82.29 / 50.40 \pm 0.67	-0.82
	95%	82.47 / 50.57 \pm 0.76	82.49 / 51.04 \pm 0.58	+0.45	81.42 / 49.22 \pm 0.21	81.90 / 49.40 \pm 0.78	-0.30
	99%	76.14 / 44.68 \pm 0.82	76.29 / 44.93 \pm 0.27	+0.10	74.66 / 42.28 \pm 0.58	74.00 / 42.01 \pm 0.64	+0.39

285 Table 2: SVHN results. We show the clean/robust $_{\pm std}$ accuracy and the difference between Orig.
 286 and S2AP robust generalization gap (Δ). In bold, the model with the highest robustness.
 287

288 Network	289 Sparsity	HARP			HYDRA		
		290 Orig.	291 S2AP	292 Gap Δ	293 Orig.	294 S2AP	295 Gap Δ
296 ResNet18	80%	92.55 / 40.06 \pm 1.03	91.53 / 41.50 \pm 1.05	+2.46	92.71 / 42.56 \pm 1.02	92.69 / 43.72 \pm 1.07	+1.18
	90%	91.61 / 40.14 \pm 0.82	91.07 / 41.33 \pm 0.26	+1.73	91.90 / 41.83 \pm 0.65	91.63 / 41.58 \pm 0.30	+0.02
	95%	87.53 / 38.16 \pm 0.66	88.68 / 38.75 \pm 0.19	-0.56	90.33 / 40.53 \pm 0.16	90.63 / 40.86 \pm 0.28	+0.03
	99%	88.42 / 35.24 \pm 0.57	89.71 / 36.12 \pm 0.76	-0.41	87.89 / 40.83 \pm 0.83	88.63 / 41.10 \pm 0.28	-0.47
297 VGG16	80%	86.36 / 47.28 \pm 1.11	87.80 / 49.69 \pm 1.05	+0.97	85.75 / 46.13 \pm 1.19	87.64 / 48.95 \pm 1.16	+0.93
	90%	87.58 / 49.16 \pm 1.12	87.77 / 49.49 \pm 1.19	+0.14	86.22 / 48.04 \pm 0.81	87.09 / 48.12 \pm 0.22	-0.79
	95%	86.95 / 49.16 \pm 0.29	86.98 / 49.28 \pm 0.58	+0.09	86.10 / 45.95 \pm 0.83	85.03 / 47.12 \pm 0.63	+2.24
	99%	84.93 / 46.33 \pm 0.51	84.73 / 46.61 \pm 0.27	+0.48	83.12 / 41.52 \pm 0.72	81.59 / 41.39 \pm 0.46	+1.40
298 WRN28-4	80%	90.01 / 36.73 \pm 1.02	90.65 / 43.53 \pm 0.61	+6.16	95.24 / 42.95 \pm 0.84	88.54 / 44.64 \pm 1.08	+8.39
	90%	95.01 / 34.70 \pm 0.91	92.17 / 31.00 \pm 0.76	-0.86	93.35 / 36.29 \pm 0.39	91.71 / 38.32 \pm 1.13	+3.67
	95%	92.44 / 31.66 \pm 0.77	94.46 / 33.15 \pm 0.72	-0.53	89.55 / 43.99 \pm 0.65	90.43 / 38.89 \pm 0.95	-5.98
	99%	87.09 / 30.09 \pm 0.83	88.47 / 36.26 \pm 1.12	+4.79	93.05 / 31.24 \pm 0.49	85.80 / 42.43 \pm 1.11	+18.44

302 4.2 EFFECT OF S2AP ON ADVERSARIAL ROBUSTNESS

303 S2AP improves the robustness of adversarial pruning methods. We demonstrate such a result
 304 through Table 1 for CIFAR10, Table 2 for SVHN, Table 3 for transformers, and finally Table 4 for
 305 ImageNet. We further show results using channel pruning in Sect. B.2, and RLTH method in Table 8
 306

307 **Experimental Results.** In Table 1 for CIFAR10,
 308 across every sparsity level and method, S2AP con-
 309 sistently exceeds the robust accuracy of original
 310 methods. In general, across models, S2AP improves
 311 robustness up to 2 percentage points (p.p.). Im-
 312 portantly, these gains come with improved or negli-
 313 gible drops (< 0.3 p.p.) in clean accuracy, as well as
 314 low error bars. To provide transparency on the trade-
 315 off between clean and robust performance, we also
 316 report the clean–robust generalization gap (Δ), de-
 317 fined as the gap of Orig. minus that of S2AP. The
 318 gap measures the relative consistency between clean and robust accuracy, offering insight into how
 319 robust performance changes in relation to improvements or drops in clean accuracy. Across all
 320 settings, Δ remains mainly positive, showing that S2AP improves over Orig. without introducing
 321 a significant trade-off in generalization. Overall, through our diverse experimental setup, we see
 322 the WideResNet model reaching higher robustness compared to the ResNet18 and VGG16 models,
 323 but still S2AP consistently outperforming competing methods. A similar conclusion can be drawn
 324 for SVHN results in Table 2 and ImageNet results on Table 4. Again, S2AP consistently improves
 325 robustness across models, sparsities, and AP methods, with a comparable and often superior stan-
 326

327 Table 3: ViT on CIFAR-10 and HYDRA:
 328 clean / robust accuracy (%) under different
 329 sparsity levels. Bold indicates the best be-
 330 tween Orig. and S2AP.

331 Network	332 Sparsity (%)	333 Orig.	334 S2AP
335 ViT	20	63.93 / 26.45	64.53 / 27.85
	40	63.89 / 25.27	64.08 / 26.32
	50	63.02 / 24.71	63.87 / 25.86

dard accuracy. We extend the S2AP evaluation to Vision Transformers in Table 3. We remark how prior work on adversarial pruning has been limited to standard deep networks, thus marking this as a first experiment of AP methods on transformer-based architecture. We choose to prune with HYDRA, as the HARP method involves optimizing a layer-wise sparsity rate, which is not directly suited for transformer architectures and requires re-thinking the entire method. We prune all linear layers except for the final classification head, which is kept dense to ensure stable output mapping to class logits. We confirm the improved adversarial robustness on such kinds of architectures. Finally, we further validate the efficacy of S2AP by showing results for standard classification accuracy in Sect. B.3, and for robustness against common corruptions in Sect. B.4, thus validating S2AP in more general and external domains.

Finetuning Ablation Study. In HARP and HYDRA, after selecting the mask through S2AP, we align the finetuning objective with the pruning one, thus finetuning by perturbing the weights via AWP (Wu et al., 2020), since scores are not used after pruning. We show in Table 5 the "raw" mask adversarial robustness obtained before finetuning, thus the pruned model derived from multiplying the pre-trained weights with the mask obtained in Algorithm 1. This comparison enables ablating the finetuning objective and **verifying if the adversarial robustness improvement produced by S2AP is independent from finetuning.** Our results highlight the higher robust accuracy of S2AP against the original

AP methods throughout the different network and dataset combinations. In addition, we also discuss minimizing sharpness on the weights' loss landscape, and compare to S2AP, in Sect. B.5.

Table 4: ImageNet results using ResNet50 across sparsity levels. Each cell shows clean/robust accuracy.

Network	Sparsity	Orig.	S2AP
HARP			
ResNet50	80%	61.48 / 33.01 \pm 0.41	62.42 / 34.60 \pm 0.82
	90%	54.93 / 24.05 \pm 0.66	55.00 / 25.61 \pm 0.57
	95%	40.74 / 21.12 \pm 0.26	43.85 / 22.07 \pm 0.26
	99%	28.65 / 12.92 \pm 0.39	34.18 / 15.75 \pm 0.76
HYDRA			
ResNet50	80%	51.36 / 29.71 \pm 0.48	56.16 / 31.11 \pm 0.39
	90%	48.11 / 20.13 \pm 0.33	54.92 / 24.23 \pm 1.17
	95%	33.29 / 16.43 \pm 0.67	34.19 / 17.93 \pm 0.82
	99%	26.07 / 11.40 \pm 0.20	27.47 / 12.67 \pm 0.59

Table 5: Mask robust accuracy (mean \pm std) on CIFAR10 and SVHN across sparsity levels using ResNet18, VGG-16, and WideResNet-28-4.

Network	Sparsity	CIFAR10				SVHN			
		HARP		HYDRA		HARP		HYDRA	
		Orig.	S2AP	Orig.	S2AP	Orig.	S2AP	Orig.	S2AP
ResNet18	80%	48.88 \pm 0.73	49.55 \pm 0.69	48.56 \pm 0.66	48.98 \pm 0.75	46.56 \pm 0.66	49.18 \pm 0.77	45.74 \pm 0.73	46.11 \pm 0.69
	90%	49.42 \pm 0.72	49.60 \pm 0.74	47.41 \pm 0.84	48.06 \pm 0.71	49.04 \pm 0.79	48.28 \pm 0.81	45.61 \pm 0.70	47.62 \pm 0.83
	95%	49.04 \pm 0.76	48.43 \pm 0.78	45.55 \pm 0.91	45.61 \pm 0.86	41.66 \pm 1.21	45.58 \pm 0.75	44.53 \pm 0.84	45.14 \pm 0.72
	99%	40.99 \pm 1.34	41.86 \pm 1.19	35.15 \pm 1.48	36.74 \pm 1.42	40.79 \pm 0.94	45.77 \pm 1.07	40.85 \pm 0.99	37.93 \pm 1.22
VGG-16	80%	41.93 \pm 0.82	42.84 \pm 0.85	40.31 \pm 0.95	41.39 \pm 0.91	46.95 \pm 0.78	48.93 \pm 0.84	45.78 \pm 0.89	46.17 \pm 0.75
	90%	41.69 \pm 0.86	42.11 \pm 0.87	38.12 \pm 1.12	40.61 \pm 0.93	47.30 \pm 0.79	46.28 \pm 0.76	44.22 \pm 0.81	46.17 \pm 0.88
	95%	40.21 \pm 0.97	39.13 \pm 0.99	31.81 \pm 1.42	38.03 \pm 1.08	46.51 \pm 0.75	47.96 \pm 0.71	42.43 \pm 0.84	43.78 \pm 0.73
	99%	24.22 \pm 1.52	36.41 \pm 1.21	20.54 \pm 1.68	29.67 \pm 1.49	43.42 \pm 0.77	43.91 \pm 0.81	31.06 \pm 1.34	32.64 \pm 1.41
WRN28-4	80%	50.45 \pm 0.81	50.59 \pm 0.73	50.31 \pm 0.78	50.41 \pm 0.76	43.79 \pm 0.74	47.02 \pm 0.78	49.43 \pm 0.73	47.50 \pm 0.71
	90%	50.56 \pm 0.77	50.79 \pm 0.72	47.75 \pm 0.88	49.30 \pm 0.80	45.89 \pm 0.75	46.31 \pm 0.74	43.80 \pm 0.76	45.66 \pm 0.78
	95%	49.07 \pm 0.91	49.37 \pm 0.87	46.97 \pm 0.97	46.85 \pm 0.93	41.69 \pm 0.79	45.41 \pm 0.76	48.01 \pm 0.75	48.35 \pm 0.73
	99%	38.89 \pm 1.39	39.89 \pm 1.22	34.57 \pm 1.47	36.30 \pm 1.34	43.58 \pm 0.78	40.87 \pm 0.81	40.57 \pm 0.79	38.84 \pm 0.82

4.3 EFFECT OF S2AP ON SCORE-SPACE SHARPNESS AND MASK STABILITY

We evaluate here the effect of S2AP on the sharpness of the loss landscape parameterized by the importance scores. In contrast to conventional approaches, we measure score-space sharpness in the robust loss landscape and adapt the measures accordingly. In addition, we introduce the mask stability property to probe the effect of score-space sharpness minimization on mask-search dynamics. We quantify stability via the normalized Hamming distance between the first and subsequent pruning masks and observe that S2AP generally reduces this distance.

Minimized Score-Space Sharpness. We measure score-space sharpness relying on (i) the score-space largest eigenvalue λ_{max} measure (Jastrzębski et al., 2017); and (ii) a loss-difference measure addressing the scale-invariance problem of Hessian-based measures (Dinh et al., 2017; Kaur et al., 2023). We measure λ_{max} on the score space for each iteration and average the values on each epoch

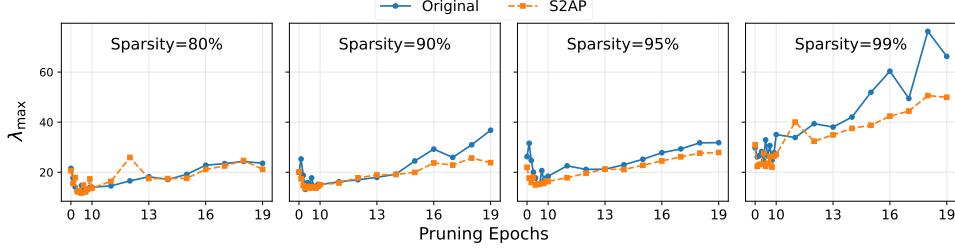


Figure 2: Score-space sharpness measured via largest eigenvalue λ_{max} over pruning epochs for HARP on WideResNet28-4 and CIFAR10.

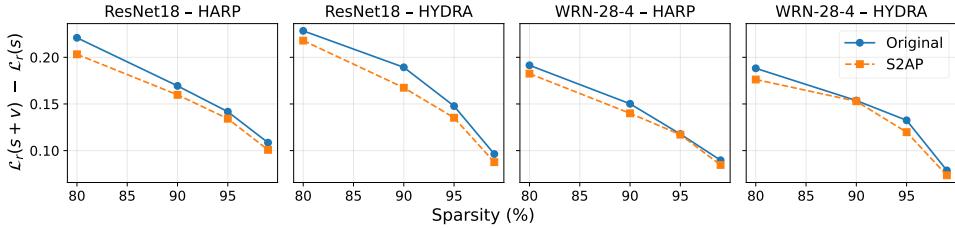


Figure 3: Score-space sharpness measured as difference of perturbed and reference loss values on ResNet18 and WideResNet28-4 CIFAR10 pruned models.

to evaluate sharpness. We show in Figure 1c λ_{max} for a ResNet18 model on the CIFAR10 dataset and HARP, which reveals how, across different sparsities, Orig. has the largest eigenvalues (i.e., is sharper) than the S2AP version. The same trend can be validated in Figure 2 for a WideResNet28-4. The loss difference instead is computed by crafting a score-space perturbation added to the scores parameterizing a $\hat{\mathcal{L}}$ minima, and subtracted from the reference $\hat{\mathcal{L}}$ value, thus extending the approach from Andriushchenko et al. (2023); Stutz et al. (2021) to the score space. In this case, we consider the best $\hat{\mathcal{L}}$ minima found during the pruning mask search, then compute the difference $\hat{\mathcal{L}}(s+v) - \hat{\mathcal{L}}(s)$, where v is a score perturbation crafted through the Auto-PGD (APGD) optimization approach. Care must be taken not to conflate this perturbation, added to already optimized scores to simply estimate the loss sharpness, with the one designed in Algorithm 1 added during optimization to induce sharpness. As shown in Figure 3, the sharpness of our S2AP approach is lower. More details on the sharpness measures and additional experiments can be found in Sect. C.1 and Sect. C.2.

Improved Mask Stability. Beyond merely flattening the loss landscape, we study a novel property—*mask stability*—to probe the effect of score-space sharpness minimization on mask-search dynamics. We aim to test whether a flatter score-space reduces the sensitivity of the selection to small score-variations (i.e., whether the mask search becomes less volatile). We capture this phenomenon using the normalized Hamming distance, following prior work that measures mask distances (You et al., 2020). This allows us to compute the differing 0–1 values between binary masks \mathbf{m} . Hence, over the 20 pruning epochs indexed by t , we compute $h = \|\mathbf{m}_0 \oplus \mathbf{m}_t\|_1 / |\mathbf{m}_0|$, where \oplus is a XOR operator measuring the differing bits. For each pruning epoch, we compute $h_{orig} - h_{S2AP}$, and define a positive region, where S2AP is more stable, and a negative region, where the original method is more stable. We show how S2AP improves mask stability for ResNet18 in Figure 1b, while in Figure 4a and Figure 4b we show, respectively, the single Hamming distance curves for original vs. S2AP-based methods and the difference between the curves across all four sparsities. Before the five warm-up epochs, being the overall training procedure identical, numerical differences only result in marginal differences between S2AP and the original methods. Then, the spike registered indicates the immediate increased stability induced by S2AP, which denotes how minimizing sharpness makes the mask selection closer to the first computed mask. As sparsity increases, since a higher sparsity also implies a lower variability of 0's and 1's, the scale of the hamming distance decreases accordingly. More details and additional experiments can be found in Sect. C.3

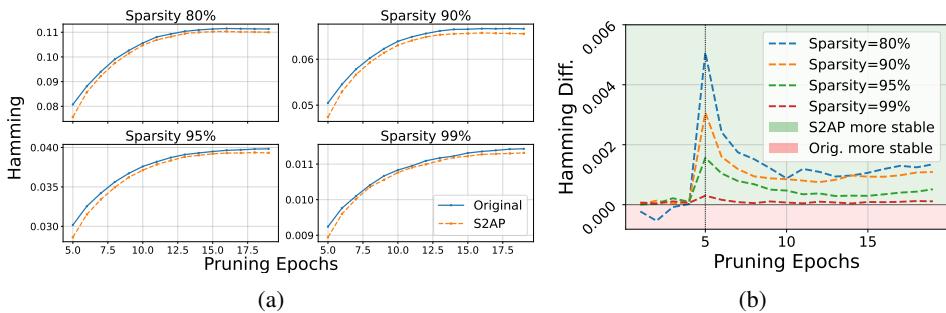


Figure 4: The Hamming distance for WideResNet28-4 on CIFAR10. In (a) the single hamming distance from epoch 5 of S2AP and Orig. HARP. Lower curves indicate higher stability. In (b), the results from the four (a) subplots by subtracting each Original-S2AP curve, thus yielding a positive-green (negative-red) area where S2AP (Original) methods are more stable.

5 RELATED WORK

Adversarial Robustness and Sharpness. The work from Wu et al. (2020) first revealed the correlation between robustness and sharpness. In fact, AWP shows that adversarial objectives, such as PGD-AT (Madry et al., 2018), *implicitly* minimize sharpness in the weights’ loss landscape. Hence, by *explicitly* minimizing sharpness with respect to both weights and inputs, it improved robustness and flatness. On a larger-scale study by Stutz et al. (2021), and recently also in (Zhang et al., 2024), such a relationship has been investigated in more detail and confirmed thoroughly. In our work, we leverage a similar idea to improve the stability and robustness of adversarial pruning methods.

Pruning and Sharpness. Minimizing sharpness through SAM (Foret et al., 2021) has been shown to be beneficial for iterative pruning on BERT models and NLP tasks, compared to the Adam optimizer (Na et al., 2022). The work from Na et al. (2022) has been extended, besides (Lee et al., 2025), to structured pruning and out-of-distribution (OOD) robustness by Bair et al. (2024). The authors prime the network for pruning based on the rationale that a flatter landscape is more prone to pruning. Hence, they develop an adaptive version of SAM by perturbing the channels more likely to be pruned. Further work proposed a single-step sharpness minimization approach aligned with the resource constraints imposed by sparse training (Ji et al., 2024). In contrast, we focus on adversarial robustness (i.e., adversarial pruning) and on score-space sharpness minimization, rather than the typical weights’ loss landscape. Most importantly, we do not focus on pre-pruning network priming, but rather explicitly operate on score space during the pruning mask search.

From a conceptual perspective, our work is the first to blend the robustness/sharpness/pruning lines of work by proposing a sharpness minimization approach for adversarial pruning. However, we promote the novel concept of score-space sharpness minimization, thus allowing us to measure and improve mask-search stability, besides robustness.

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We have introduced S2AP, a score-space sharpness minimization for adversarial pruning methods. Leveraging the concept of score-space, S2AP effectively minimizes sharpness, improves the mask-search stability, and consistently increases adversarial robustness across various datasets, models, and sparsities. As limitations, we believe that the additional costs of minimizing sharpness, which apply to all standard SAM-like objectives, might be unsustainable in specific application scenarios. Despite being cost minimization out of this work’s scope, we believe “cheaper” approaches such as the one from Ji et al. (2024) could be extended to the S2AP case as future work. Finally, let us specify how the network architecture choices have been dictated by the availability of state-of-the-art AP methods, which do not extend to more recent transformer architectures. Despite being ours, to the best of our knowledge, the first adversarial pruning work considering such architectures, we believe that a consistent setup shift is required for adversarial pruning methods, and hope our work can inspire such improvements. To conclude, we remark how S2AP can be extended to any score-based optimization, beyond adversarial pruning.

486 **Reproducibility Statement.** We have taken several steps to facilitate reproducibility. The S2AP
487 method is precisely specified in Algorithm 1; the finetuning objective is given Algorithm 2. Our
488 experimental setup—datasets, architectures, sparsity levels, training and evaluation protocols, and
489 threat model—is documented in Sect. 4.1. Hyperparameter choices are reported in the paper and
490 further discussed in Appendix B. We describe the score-space sharpness metrics and the mask-
491 stability metric in Sect. 4.3 with additional implementation details in Appendix C. In the *supple-
492 mentary material*, we include an anonymized code archive containing all needed source code, train-
493 ing/evaluation scripts, and the *default configurations* used in our experiments; for transparency, these
494 default settings are also listed throughout the paper where relevant and mirrored in the appendix and
495 configuration files. The code will be publicly released upon acceptance.

496 **Ethics Statement.** We do not identify any ethical concerns associated with this work. Our study
497 does not involve human subjects, user interaction, or personally identifiable information. All experi-
498 ments use standard, publicly available datasets (CIFAR-10, SVHN, ImageNet) under their respective
499 licenses. The proposed method is defensive—focusing on pruning and adversarial robustness—and
500 does not introduce new attack capabilities beyond standard, widely used evaluation protocols (e.g.,
501 PGD, AutoAttack). We are not aware of privacy, security, fairness, or legal compliance issues aris-
502 ing from our methodology or experimental setup, and we have no conflicts of interest or sponsorship
503 to declare. We have read and adhere to the ICLR Code of Ethics.

504 505 **REFERENCES**

506 Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas
507 Flammarion. A modern look at the relationship between sharpness and generalization. In
508 Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
509 Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML 2023, 23-29*
510 *July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learning Re-
511 search*, pp. 840–902. PMLR, 2023. URL <https://proceedings.mlr.press/v202/andriushchenko23a.html>.

512 Anna Bair, Hongxu Yin, Maying Shen, Pavlo Molchanov, and Jose M. Alvarez. Adaptive sharpness-
513 aware pruning for robust sparse networks. In *The Twelfth International Conference on Learning
514 Representations*, 2024. URL <https://openreview.net/forum?id=QFYVVwiAM8>.

515 B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and F. Roli. Evasion
516 attacks against machine learning at test time. In *ECML-PKDD*, 2013.

517 Davis W. Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John V. Guttag. What is the
518 state of neural network pruning? In *Proceedings of Machine Learning and Systems 2020, MLSys*,
519 2020.

520 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
521 of diverse parameter-free attacks. In *ICML*, 2020.

522 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hier-
523 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition
524 (CVPR)*, pp. 248–255. IEEE, 2009.

525 Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
526 for deep nets. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International
527 Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp.
528 1019–1028. PMLR, 06–11 Aug 2017. URL <https://proceedings.mlr.press/v70/dinh17b.html>.

529 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
530 tion for efficiently improving generalization. In *International Conference on Learning Represen-
531 tations*, 2021. URL <https://openreview.net/forum?id=6Tm1mposlrM>.

532 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
533 networks. In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=rJ1-b3RcF7>.

540 Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, and Yingyan Lin. Drawing
541 robust scratch tickets: Subnetworks with inborn robustness are found within randomly initialized
542 networks. *Advances in Neural Information Processing Systems*, 34:13059–13072, 2021.

543

544 Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
545 efficient neural networks. In *NeurIPS*, 2015.

546

547 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
548 tion. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 770–778, 2016.

549

550 Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
551 Bengio, and Amos Storkey. Three factors influencing minima in sgd. *arXiv preprint*
552 *arXiv:1711.04623*, 2017.

553

554 Jie Ji, Gen Li, Jingjing Fu, Fatemeh Afghah, Linke Guo, Xiaoyong Yuan, and Xiaolong Ma. A
555 single-step, sharpness-aware minimization is all you need to achieve efficient and accurate sparse
556 training. *Advances in Neural Information Processing Systems*, 37:44269–44290, 2024.

557

558 Simran Kaur, Jeremy Cohen, and Zachary Chase Lipton. On the maximum hessian eigenvalue
559 and generalization. In Javier Antorán, Arno Blaas, Fan Feng, Sahra Ghalebikesabi, Ian Mason,
560 Melanie F. Pradier, David Rohde, Francisco J. R. Ruiz, and Aaron Schein (eds.), *Proceedings on
561 "I Can't Believe It's Not Better! - Understanding Deep Learning Through Empirical Falsification"*
562 at *NeurIPS 2022 Workshops*, volume 187 of *Proceedings of Machine Learning Research*, pp. 51–
563 65. PMLR, 03 Dec 2023. URL <https://proceedings.mlr.press/v187/kaur23a.html>.

564

565 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
566 *Technical Report*, 2009.

567

568 Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In *NIPS*, 1989.

569

570 Dongyeop Lee, Kwanhee Lee, Jinseok Chung, and Namhoon Lee. SAFE: Finding sparse and flat
571 minima to improve pruning. In *Forty-second International Conference on Machine Learning*,
572 2025. URL <https://openreview.net/forum?id=1011pGeOck>.

573

574 Shiwei Liu and Zhangyang Wang. Ten lessons we have learned in the new "sparseland": A short
575 handbook for sparse neural network researchers, 2023.

576

577 A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
578 resistant to adversarial attacks. In *ICLR*, 2018.

579

580 Clara Na, Sanket Vaibhav Mehta, and Emma Strubell. Train Flat, Then Compress: Sharpness-Aware
581 Minimization Learns More Compressible Models. In *Findings of the Conference on Empirical
582 Methods in Natural Language Processing*, 2022. URL <https://arxiv.org/abs/2205.12694>.

583

584 Yuval Netzer, Tao Wang, Adam Coates, Antonio Bissacco, Bo Wu, and Andrew Y. Ng. Reading
585 digits in natural images with unsupervised feature learning. In *NIPS Deep Learning and Unsu-
586 pervised Feature Learning Workshop*, 2011.

587

588 Giorgio Piras, Maura Pintor, Ambra Demontis, Battista Biggio, Giorgio Giacinto, and Fabio Roli.
589 Adversarial pruning: A survey and benchmark of pruning methods for adversarial robustness.
590 *arXiv preprint arXiv:2409.01249*, 2024.

591

592 Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Raste-
593 gari. What's hidden in a randomly weighted neural network? In *Proceedings of the IEEE/CVF
594 conference on computer vision and pattern recognition*, pp. 11893–11902, 2020.

595

596 Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. Towards compact and robust deep
597 neural networks. *CoRR*, abs/1906.06110, 2019.

598

599 Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. HYDRA: pruning adversarially
600 robust neural networks. In *NeurIPS*, 2020.

594 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
595 image recognition. In *International Conference on Learning Representations (ICLR)*, 2015.
596 arXiv:1409.1556.

597 David Stutz, Matthias Hein, and Bernt Schiele. Relating adversarially robust generalization to flat
598 minima. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
599 7807–7817, 2021.

600 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
601 and Rob Fergus. Intriguing properties of neural networks. In *International Conference on
602 Learning Representations*, 2014.

603 Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust gener-
604 alization. *Advances in neural information processing systems*, 33:2958–2969, 2020.

605 Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Yingyan Lin,
606 Zhangyang Wang, and Richard G. Baraniuk. Drawing early-bird tickets: Toward more efficient
607 training of deep networks. In *International Conference on Learning Representations*, 2020. URL
608 <https://openreview.net/forum?id=BJxsrgStvr>.

609 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In *British Machine Vision
610 Conference (BMVC)*, pp. 87.1–87.12. BMVA Press, 2016.

611 Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jordan.
612 Theoretically principled trade-off between robustness and accuracy. In *ICML*, 2019.

613 Yihao Zhang, Hangzhou He, Jingyu Zhu, Huanran Chen, Yifei Wang, and Zeming Wei. On
614 the duality between sharpness-aware minimization and adversarial training. *arXiv preprint
615 arXiv:2402.15152*, 2024.

616 Qi Zhao and Christian Wressnegger. Holistic adversarially robust pruning. In *The Eleventh Interna-
617 tional Conference on Learning Representations*, 2023. URL [https://openreview.net/
618 forum?id=sAJDi9lD06L](https://openreview.net/forum?id=sAJDi9lD06L).

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

SUPPLEMENTARY MATERIAL FOR S2AP: SCORE-SPACE SHARPNESS MINIMIZATION FOR ADVERSARIAL PRUNING

The supplementary material is organized as follows:

- **Appendix A:** We discuss additional details for the S2AP method, including pretraining and finetuning details, hyperparameter selection, and overhead computing.
- **Appendix B:** We show additional experiments validating the applicability and effectiveness of S2AP outside the main testbed, including structured pruning, clean standard accuracy, and robustness to corrupted images. We conclude by discussing and showing the comparison of weights and score perturbations during the pruning stage.
- **Appendix C:** We provide additional details and experiments for the eigenvalue computation, the loss difference measuring sharpness, and the mask stability and hamming distance measure.

A ADDITIONAL S2AP DETAILS.

This section describes the additional details concerning our S2AP implementation and results. In detail, we first show the results from the pretrained models used in Table 1, Table 2, Table 4, and Table 5. Then, we discuss in detail the S2AP finetuning algorithm, which concerns perturbing the remaining sparse weight parameterization $w \odot m^*$ as in Eq. 6. We conclude by motivating the choices of the γ values bounding the score-perturbations listed in Sect. 4.1, and computing the overhead induced by our S2AP approach compared to a standard score-based pruning optimization.

Let us finally specify that the S2AP **code implementation** is part of the supplementary material and will be publicly released upon paper acceptance.

A.1 S2AP PRETRAINING AND IMAGENET DETAILS

We pretrain each CIFAR10 and SVHN model using 100 epochs, and show the resulting adversarial robustness in Table 6. For ImageNet, however, we use the pretrained model provided by Zhao & Wressnegger (2023), and prune for 10 epochs (of which 5 warm-up and 5 S2AP) and finetune for 25 using the Fast Adversarial Training approach.

A.2 S2AP FINETUNING

We defined the overall finetuning objective in Eq. 6 as:

$$w^* \in \arg \min_w \max_{\nu} \mathcal{L}_r((w + \nu) \odot m^*), \quad (8)$$

$$\text{where } \|\nu_l\| \leq \gamma \|w_l\|, \quad (9)$$

Table 6: Pretrained models' clean/robust accuracy.

Model	Dataset	Orig.
ResNet18	CIFAR10	81.55 / 49.36
	SVHN	90.70 / 42.08
VGG16	CIFAR10	80.18 / 45.09
	SVHN	89.41 / 45.71
WRN28-4	CIFAR10	83.68 / 50.12
	SVHN	93.23 / 42.35
ResNet50	ImageNet	60.25 / 36.82

and γ bounds the layer-wise perturbation and scales it based on each layer's weight magnitude, similarly to Wu et al. (2020). Hence, given the sparse parameterization defined by the mask m^* found during S2AP pruning in Algorithm 1, the S2AP finetuning formulation of Eq. 8 amounts to perturbing and updating only the non-zero (i.e., non-pruned) weights. While the S2AP procedure allows improving sharpness, stability, and robustness of the pruning mask per se, such a procedure enables aligning the finetuning objective with the pruning one and further improves robustness.

We provide a detailed implementation of the finetuning algorithm in Algorithm 2. Overall, the algorithm structure remains similar to Algorithm 1, with the only major variation that the perturbation ν is applied on the non-zero weights $w \odot m^*$ only, instead of the entire score-space parameterized by s .

702 **Algorithm 2:** Score-Sharpness-aware Adversarial Finetuning (S2AP Finetune).

703 **Input** : $w \in \mathbb{R}^p$, pretrained weights; $m^* \in \{0, 1\}^p$, binary pruning mask; x , training input
 704 samples; η , learning rate; I , number of iterations; L , number of layers; γ , perturbation
 705 scaling factor; $\hat{\mathcal{L}}$, robust loss.

706 **Output:** Finetuned weights $w^* \in \mathbb{R}^p$

707 1 Initialize $\nu \leftarrow 0$
 708 2 **for** $i \leftarrow 1$ **to** I **do**
 709 3 Generate adversarial examples on pruned model $x'_i \leftarrow x_i + \delta_i$
 710 4 Compute robust loss $\hat{\mathcal{L}}(w \odot m^*) = \hat{\mathcal{L}}(w \odot m^*, \mathcal{D})$
 711 5 Perturb pruned weights $\nu \leftarrow \nu + \eta \left(\nabla_\nu \hat{\mathcal{L}}((w + \nu) \odot m^*) / \|\nabla_\nu \hat{\mathcal{L}}((w + \nu) \odot m^*)\| \right)$
 712 6 **for** $l \leftarrow 1$ **to** L **do**
 713 7 **if** $\|\nu^{(l)}\| > \gamma \|w^{(l)}\|$ **then**
 714 8 Project $\nu^{(l)} \leftarrow (\gamma \|w^{(l)}\| / \|\nu^{(l)}\|) \nu^{(l)}$
 715 9 Update weights: $w \leftarrow w - \eta \left(\nabla_w \hat{\mathcal{L}}((w + \nu) \odot m^*) / \|\nabla_w \hat{\mathcal{L}}((w + \nu) \odot m^*)\| \right)$
 716 10 Restore weights: $w \leftarrow w - \nu$
 717 11 **return** $w^* \leftarrow w$

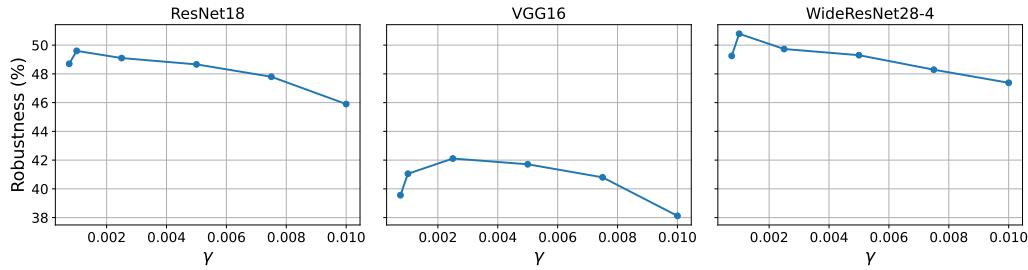
721

722

723 A.3 γ -SELECTION

724

725 We select the γ values, bounding the perturbation during S2AP pruning and finetuning,
 726 based on the adversarial robustness achieved choosing among a set of values $\gamma =$
 727 $\{0.00075, 0.001, 0.0025, 0.005, 0.0075, 0.01\}$. We show in Figure 5 the gamma search results for



737

738 Figure 5: Robustness of S2AP pruning masks found using different γ values bounding the score
 739 perturbation.

740

741 the CIFAR10 dataset, HARP method Zhao & Wressnegger (2023) at 90% sparsity. We repeat such
 742 an evaluation for each model/dataset combination at such sparsity, which we find descriptive of
 743 the trend on different sparsities as well, and find the best γ value. Typically, we see a robustness
 744 increase for values prior to the best γ found for the models (in this case 0.001 for ResNet18 and
 745 WideResNet28-4, and 0.0025 for VGG16), and then a corresponding robustness decrease after the
 746 best found γ .

747

748

749 A.4 S2AP COMPUTATIONAL OVERHEAD

750

751

752 The S2AP procedure of Algorithm 1 inevitably induces a computational overhead. To provide an
 753 estimate of the required overhead, we report in Table 7 the time required by the original pruning
 754 methods (Orig.) and S2AP versions during pruning and average over the four sparsities. All experiments
 755 were conducted on a machine equipped with three NVIDIA RTX A6000 GPUs (48GB each), and the results of Table 7 were conducted on one of these 3 GPUs. Specifically, we report in Table 7
 756 the results for CIFAR10 and SVHN models on 20 epochs (5 epochs for ImageNet) and batch size
 757 128 without warm-up, thus allowing an equal comparison of original and S2AP procedures. Gener-
 758 ally, we see an average increase in computing time of 15% circa, which, while it might be negligible

756 Table 7: S2AP overhead computation. We compute the time (hrs) required on a NVIDIA RTX A600
 757 for each model/dataset combination, and report the average time required on different sparsities.
 758

Model	Dataset	Orig. (hrs)	S2AP (hrs)	Overhead (%)
ResNet18	CIFAR10	3.27	3.96	17.42%
	SVHN	4.91	5.21	5.75%
VGG16	CIFAR10	1.41	1.73	18.49%
	SVHN	2.43	2.75	11.63%
WRN28-4	CIFAR10	6.12	6.97	12.20%
	SVHN	6.77	7.31	7.38%
ResNet-50	ImageNet	15.08	17.11	13.46%

768
 769
 770 in some application scenarios, still increases the overall computation. The same observation can be
 771 extended to ViT architectures.
 772

773 B ADDITIONAL EXPERIMENTS

774 We discuss here the additional experiments for S2AP. Precisely, we extend our approach to struc-
 775 tured pruning, a standard “clean” pruning task, compare S2AP with AWP during the pruning stage,
 776 and finally analyze the effectiveness of S2AP on the common corruptions dataset.
 777

778 Table 8: CIFAR-10 and SVHN results using RLTH with ResNet18, VGG-16, and WideResNet-28-4
 779 across sparsity. Each cell shows clean/robust_{±std} accuracy and the difference between Orig. and
 780 S2AP robust generalization gap (Δ). In bold, the model with the highest robustness.
 781

Network	Sparsity	CIFAR-10 (RLTH)			SVHN (RLTH)		
		Orig.	S2AP	Δ	Orig.	S2AP	Δ
ResNet18	80%	67.72 / 33.58	68.13 / 33.80	+0.37	85.02 / 44.60	84.13 / 44.66	+0.95
	90%	69.32 / 34.42	69.30 / 34.92	+0.52	83.65 / 44.07	84.51 / 44.50	+1.29
	95%	68.56 / 34.90	69.93 / 35.38	+1.05	84.83 / 42.78	84.51 / 43.50	+1.04
	99%	66.19 / 32.66	60.27 / 31.09	-4.45	81.72 / 41.59	80.61 / 41.73	+1.25
VGG16	80%	18.63 / 11.04	22.62 / 12.20	+1.19	32.89 / 18.70	32.83 / 19.01	+0.37
	90%	23.36 / 13.17	24.63 / 13.19	+1.01	34.21 / 18.78	37.20 / 17.31	-1.92
	95%	30.04 / 12.06	26.62 / 19.33	+6.69	37.29 / 20.06	34.40 / 21.86	+2.71
	99%	18.36 / 14.47	19.09 / 12.50	-1.70	20.06 / 19.68	21.68 / 18.00	-2.30
WRN28-4	80%	68.94 / 34.55	69.71 / 34.91	+0.65	87.82 / 44.52	87.81 / 44.71	+0.36
	90%	70.05 / 33.53	69.65 / 34.39	+0.86	88.83 / 43.95	85.97 / 44.53	+1.58
	95%	69.29 / 34.40	68.69 / 33.55	-0.75	86.82 / 43.85	88.13 / 42.95	-1.56
	99%	63.19 / 29.56	62.13 / 29.83	+0.89	77.29 / 36.68	80.80 / 37.96	+3.79

799 B.1 EXPERIMENTS ON RLTH

800 As in Table 1 and Table 2, for the HARP and HYDRA methods, RLTH can benefit from robustness
 801 increases from the S2AP method, as we show in Table 8. This result is not obvious, as RLTH
 802 involves a different pruning pipeline than existing methods. As opposed to starting from a pretrained
 803 model, pruning, and then finetuning, such method in fact follows the lottery ticket hypothesis Frankle
 804 & Carbin (2019), which admits the existence of subnetworks within dense, randomly initialized
 805 models. Overall, compared to other methods, we see RLTH pruned models having lower accuracies
 806 due to the pruned random initialization and absence of finetuning. The improved robustness of
 807 S2AP, considering the absence of finetuning on RLTH, further corroborates to the ablation study
 808 discussed in Table 5, which shows how S2AP, independently from finetuning at all, is capable of
 809 reaching higher adversarial robustness from pruning already.

Table 9: Channel Pruning with S2AP on CIFAR10 dataset.

Network	Sparsity (%)	HARP-Orig.	S2AP-HARP	HYDRA-Orig.	S2AP-HYDRA
ResNet18	4	49.60	50.36	49.32	50.85
	15	48.28	48.63	38.69	39.79
VGG-16	4	47.37	48.18	47.02	47.33
	15	37.38	37.17	33.15	34.53

B.2 EXPERIMENTS ON STRUCTURED PRUNING

Unstructured pruning serves as a great mathematical prototype for neural networks, allowing for single weights to be pruned. Empirically, this is widely accepted as an upper-bound on the other important category of pruning methods, i.e., *structured pruning* Liu & Wang (2023). From a practical perspective, structured pruning allows for removing entire network structures, such as channels and filters, and constitutes a readily usable network size reduction. In fact, while unstructured pruning requires a still maturing dedicated hardware, structured pruning implies reducing network size and leveraging it directly Liu & Wang (2023). To validate the effectiveness of our S2AP method, given the high relevance of structured pruning methods, we extend, in Table 9, experiments of both HARP and HYDRA methods to channel pruning, relying on the ResNet18 and VGG16 networks on CIFAR10 as a testbed. Instead of the classic sparsity rate k , for channel pruning we refer to the reduction in floating point operations (FLOPs). Specifically, we obtain 4 or 15 times fewer FLOPs than the original dense model, thus improving the overall model efficiency and computing time. Such a form of sparsity is more compatible with standard hardware acceleration and better suited for real-world deployment. Overall, these results confirm that S2AP generalizes effectively also to different kinds of pruning structures, further reinforcing the versatility of our approach.

Table 10: Mask clean / robust accuracy (mean \pm std) on CIFAR10 and SVHN across sparsity levels using ResNet18, VGG-16, and WideResNet-28-4.

Network	Sparsity	CIFAR10						SVHN					
		HARP			HYDRA			HARP			HYDRA		
		Orig.	S2AP		Orig.	S2AP		Orig.	S2AP		Orig.	S2AP	
ResNet18	80%	83.19/48.88 \pm 0.73	82.03/49.55\pm0.69		82.13/48.56 \pm 0.66	82.87/49.98\pm0.75		90.10/46.56 \pm 0.66	87.74/49.18\pm0.77		90.63/45.74 \pm 0.73	89.80/46.11\pm0.69	
	90%	82.98/49.42 \pm 0.72	83.12/49.60\pm0.74		80.55/47.41 \pm 0.84	82.26/48.06\pm0.71		90.20/49.04\pm0.79	90.17/48.28 \pm 0.81		84.82/45.61 \pm 0.70	88.77/47.62\pm0.83	
	95%	82.26/49.04\pm0.76	82.48/48.43 \pm 0.78		78.98/45.55 \pm 0.91	79.47/45.61 \pm 0.86		92.22/41.66 \pm 1.21	89.07/45.58\pm0.75		83.57/44.53 \pm 0.84	88.82/45.14\pm0.72	
	99%	72.97/40.99 \pm 1.34	74.56/41.86\pm1.19		69.63/35.15 \pm 1.48	69.66/36.74\pm1.42		85.01/40.79 \pm 0.94	85.35/45.77\pm1.07		83.12/40.80\pm0.99	79.19/37.93 \pm 1.22	
VGG-16	80%	75.78/41.93 \pm 0.82	76.51/42.84\pm0.85		74.86/40.31 \pm 0.95	76.15/41.39\pm0.91		89.51/46.95 \pm 0.78	89.53/48.93\pm0.84		85.67/45.78 \pm 0.89	87.39/46.17\pm0.75	
	90%	73.89/41.69 \pm 0.86	75.86/42.11\pm0.87		73.19/38.12 \pm 1.12	75.17/40.61\pm0.93		89.73/47.30\pm0.79	87.12/46.28 \pm 0.76		84.91/44.22 \pm 0.81	87.39/46.17\pm0.88	
	95%	73.55/40.21\pm0.97	74.68/39.13 \pm 0.99		62.30/31.81 \pm 1.42	72.86/38.03\pm1.08		87.86/46.51 \pm 0.75	85.78/47.96\pm0.71		82.07/42.43 \pm 0.72	85.47/43.78\pm0.73	
	99%	52.59/24.22 \pm 1.05	72.76/36.41\pm1.21		40.77/20.54 \pm 1.68	60.91/29.67 \pm 1.49		84.70/43.42 \pm 0.77	84.07/43.91\pm0.91		79.75/31.06 \pm 1.34	83.82/32.64\pm1.22	
WRN28-4	80%	82.97/50.45 \pm 0.81	83.24/50.59\pm0.73		82.59/50.31 \pm 0.78	83.05/50.41\pm0.76		90.91/43.79 \pm 0.74	88.90/47.02\pm0.78		90.49/49.43\pm0.73	88.87/47.50 \pm 0.71	
	90%	81.82/50.56 \pm 0.77	82.66/50.79\pm0.72		80.71/47.75 \pm 0.88	81.92/49.30\pm0.80		91.41/45.89 \pm 0.75	90.16/46.31\pm0.74		90.83/43.80 \pm 0.76	89.51/45.66\pm0.78	
	95%	80.44/49.07 \pm 0.98	80.82/49.37\pm0.97		79.82/46.97\pm0.97	80.19/46.83 \pm 0.93		88.43/41.69 \pm 0.79	85.74/45.41\pm0.76		88.35/48.01 \pm 0.75	88.61/45.35\pm0.73	
	99%	71.57/38.89 \pm 1.39	71.64/39.89\pm1.22		70.33/34.57 \pm 1.47	71.40/46.30\pm1.13		80.51/40.87 \pm 0.81	85.55/40.47\pm0.79		84.32/38.84 \pm 0.68		

B.3 EXPERIMENTS ON STANDARD CLEAN PRUNING

On several occasions throughout the paper, we remarked on the generality of the S2AP method beyond the specific adversarial pruning task. We thus aim to first confirm the S2AP effectiveness and utility on the most basic task required by such networks: standard classification. Hence, we prune networks using a standard cross-entropy loss, disregarding the adversarial robustness objective, and fine-tune accordingly. We show the results of such experiments in Table 11, where we reveal how S2AP improves not only adversarial robustness, but also clean accuracy on a standard classification task for the CIFAR10 dataset. We thus confirm the initial claim of general use and applicability of S2AP to different tasks and scenarios, not limited to the adversarial pruning case.

Furthermore, we extend the results reported in Table 5 with the corresponding clean accuracy values. In Table 10, we confirm the same trends observed for robustness. Finally, we specify that the Δ quantity is used in our analysis as a marker of whether improving robustness comes at the cost of noticeably degrading clean accuracy. In the adversarial robustness literature, it is common for robustness-oriented methods to introduce a trade-off between clean and robust accuracy, meaning that gains in adversarial robustness are obtained at the expense of significantly lower clean accuracy.

864 Table 11: Clean accuracy (%) under different sparsity levels. For each pruning method
 865 (HARP/HYDRA), we report Orig. and S2AP variants. Bold indicates the best between Orig. and
 866 S2AP.

868 Network	869 Sparsity (%)	870 HARP-Orig.	871 S2AP-HARP	872 HYDRA-Orig.	873 S2AP-HYDRA
870 ResNet18	80	94.70	94.85	94.90	94.61
	90	94.12	94.89	94.37	94.73
	95	93.18	94.56	94.20	94.84
	99	92.27	93.01	90.22	90.38
874 VGG-16	80	92.17	92.82	92.46	93.20
	90	92.34	92.99	92.52	93.70
	95	92.41	93.03	91.41	91.95
	99	90.96	91.76	87.32	87.40

878 Table 12: Robust accuracy (%) on CIFAR-10-C under different sparsity levels. Bold indicates the
 879 best between Orig. and S2AP for each pruning method.

881 Network	882 Sparsity (%)	883 HARP-Orig.	884 S2AP-HARP	885 HYDRA-Orig.	886 S2AP-HYDRA
883 ResNet18	80	72.52	73.08	71.75	72.01
	90	72.62	73.12	71.54	72.16
	95	72.27	73.23	70.02	70.59
	99	68.52	68.48	65.41	66.50
887 VGG-16	80	70.07	70.97	68.84	68.98
	90	71.15	71.34	69.23	68.71
	95	69.97	70.05	68.15	68.33
	99	66.89	67.45	59.09	59.26
891 WRN	80	72.73	72.88	72.59	73.54
	90	72.54	73.06	71.75	73.08
	95	73.03	73.32	72.83	72.85
	99	67.63	67.95	65.61	66.04

895
 896
 897 We track that with $\Delta = (\text{acc}_{\text{Orig.}} - \text{robustness}_{\text{Orig.}}) - (\text{acc}_{\text{S2AP.}} - \text{robustness}_{\text{S2AP.}})$. Hence, a positive Δ
 898 implies that S2AP’s gap is smaller than Orig.’s gap. We consistently find this quantity to be positive.

900 B.4 EXPERIMENTS ON CORRUPTIONS

902 Following on from the previous experiments, extending to standard pruning, it is likewise relevant
 903 to consider further tasks. We thus choose to test on the general robustness to corruption task by
 904 including experiments on the CIFAR10-C dataset. We select a corruption severity of 3, and show
 905 the results in Table 12. As in previous experiments, we demonstrate how S2AP is further applicable
 906 to different tasks and keeps its superiority compared to other methods. We thus believe that such an
 907 extension corroborates the claims and results obtained in adversarial robustness, besides broadening
 908 the method’s applicability.

909 B.5 PERTURBING WEIGHTS OR SCORES?

911 One of the big novelties that can be found in S2AP is the focus on the score-space, rather than the
 912 usual weight-space where prior sharpness-minimization approaches focused in the past. In turn, a
 913 natural question is whether sharpness minimization should be performed in weight space, as done
 914 in prior work such as Adversarial Weight Perturbations (AWP), or in score space, as we propose in
 915 S2AP. In adversarial pruning, the pruning mask is determined by the ranking of importance scores
 916 rather than the weights themselves. Hence, perturbing scores directly addresses the variables that
 917 drive mask selection, potentially stabilizing the top-k cutoff. While this intuition suggests a better
 alignment with the pruning objective, our main justification is empirical. As shown in Table 13,

918 Table 13: ResNet18 on CIFAR-10: accuracy (%) under different sparsity levels when pruning with
919 AWP (perturbing weights) vs. S2AP (perturbing scores). Bold indicates the best between AWP and
920 S2AP for each method.

Network	Sparsity (%)	HARP-AWP	HARP-S2AP	HYDRA-AWP	HYDRA-S2AP
ResNet18	80	47.32	49.55	46.12	48.98
	90	47.80	49.60	45.19	48.06
	95	46.91	48.43	42.77	45.61
	99	40.35	41.86	34.34	36.74

928 perturbing scores during mask search consistently leads to higher robust accuracy than perturbing
929 weights, across different networks and datasets. These results, which indicate the mask robustness
930 before finetuning as in Table 5, indicate that score-space perturbations are more effective at preserv-
931 ing robustness in adversarial pruning than their weight-space counterparts. While a more formal
932 reason describing the differences between applying AWP or S2AP during pruning is missing, we
933 believe that a role behind the greater success of score perturbations could also be played by the
934 increased mask stability.

937 C MEASURING SCORE-SPACE SHARPNESS AND MASK STABILITY

939 We measure score-space sharpness relying on two specific approaches: the largest eigenvalue com-
940 putation λ_{max} and the loss difference (following Stutz et al. (2021); Andriushchenko et al. (2023)).
941 We dedicate this section to describing both approaches in detail, and provide additional experiments
942 and results on more model and dataset combinations. In addition to minimizing sharpness, how-
943 ever, S2AP also improves the mask stability during pruning. In turn, we conclude this section by
944 describing the proposed measure in detail and showing additional experiments.

945 C.1 MEASURING LARGEST EIGENVALUE

947 To compute the largest eigenvalue of the Hessian $\nabla_s^2 \mathcal{L}_r(\mathbf{s})$ with respect to the score parameters, we
948 adopt the classical power iteration method. Starting from a random unit-norm vector $\mathbf{v}^{(0)} \in \mathbb{R}^p$, we
949 iteratively compute:

$$950 \quad \mathbf{v}^{(t+1)} = \frac{\nabla_s^2 \mathcal{L}_r(\mathbf{s}) \mathbf{v}^{(t)}}{\|\nabla_s^2 \mathcal{L}_r(\mathbf{s}) \mathbf{v}^{(t)}\|_2}, \quad (10)$$

952 where $\mathcal{L}_r(\mathbf{s}) = \mathcal{L}_r(\mathbf{w} \odot M(\mathbf{s}, k), \mathcal{D})$ is the robust loss, that we denote as $\mathcal{L}_r(\mathbf{s})$ to lighten notation.
953 After T iterations, we compute the Rayleigh quotient as an approximation of the largest eigenvalue:

$$955 \quad \lambda_{max} \approx \left\langle \mathbf{v}^{(T)}, \nabla_s^2 \mathcal{L}_r(\mathbf{s}) \mathbf{v}^{(T)} \right\rangle. \quad (11)$$

956 We select $T = 10$ iterations to compute the quotient, and specify that we implement this computation
957 using Hessian-vector products via automatic differentiation, thus refraining from explicitly forming
958 the Hessian Jastrz̄ebski et al. (2017). This procedure is run at each pruning iteration of both the
959 S2AP and original methods. We then average the resulting λ_{max} values across each iteration and
960 plot the corresponding sharpness trends against epochs. While we show the CIFAR10 HARP method
961 for ResNet18 in Figure 1c and for WideResNet28-4 in Figure 2, we complete the remaining plots
962 from Figure 8 to Figure 17. Overall, the plots show how methods pruned with S2AP hold, apart from
963 a few exceptions, a consistently lower maximum eigenvalue across multiple architectures, datasets,
964 pruning methods, and sparsities. We specify how, on the first few epochs, the resulting λ_{max} has a
965 negligible difference between Orig. and S2AP methods (hence the first 10 warped epochs).

967 C.2 MEASURING SCORE-SPACE LOSS DIFFERENCE

968 Measuring sharpness through a loss difference requires perturbing a “reference” loss value $\mathcal{L}_r(\mathbf{w} \odot$
969 $M(\mathbf{s}, k))$, representing a local minima, through a perturbation ν which enables measuring sharpness
970 as follows:

$$971 \quad \max_{\|\nu \odot \mathbf{c}^{-1}\|_\infty \leq \rho} \mathcal{L}_r(\mathbf{w} \odot M(\mathbf{s} + \nu, k), \mathcal{D}) - \mathcal{L}_r(\mathbf{w} \odot M(\mathbf{s}, k), \mathcal{D}) \quad (12)$$

972 where c is a positive scaling vector used to make the sharpness definition reparameterization-
 973 invariant, addressing the well-known problems of sharpness measures Dinh et al. (2017), and the
 974 operator $\odot/^{-1}$ defines element-wise multiplication/inversion. We specify that such a formulation
 975 corresponds to the one presented in Andriushchenko et al. (2023), yet adapted to our score-space
 976 case. Overall, we thus perturb the score-space and measure the corresponding loss variation imposed
 977 by the shift and mask variation, which we expect to be lower in the S2AP case.

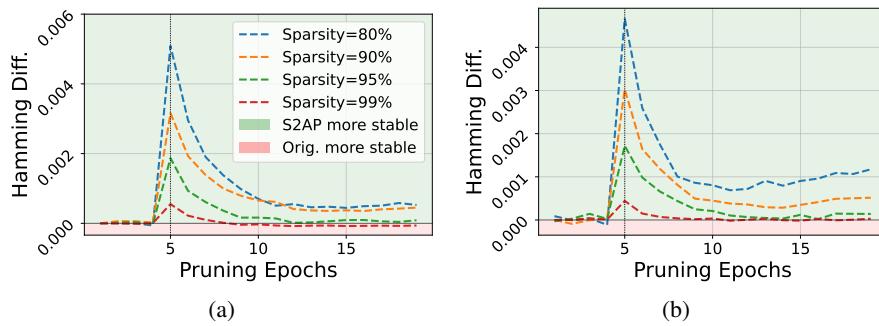
978 In our experiments, we evaluate different ρ values, and show in Table 14 an overview of the CIFAR10
 979 results. Overall, we see how S2AP consistently reduces sharpness, except for some specific cases at
 980 high sparsities. In this regard, however, increasing the corresponding ρ value appears to still favor
 981 S2AP, suggesting that lower values might not be enough (hence, we choose $\rho = 0.01$ in the plot
 982 of Figure 3).

984 C.3 MASK STABILITY

985 We measure mask stability based on the Hamming distance h , which equals measuring the rate of
 986 change between masks as follows:

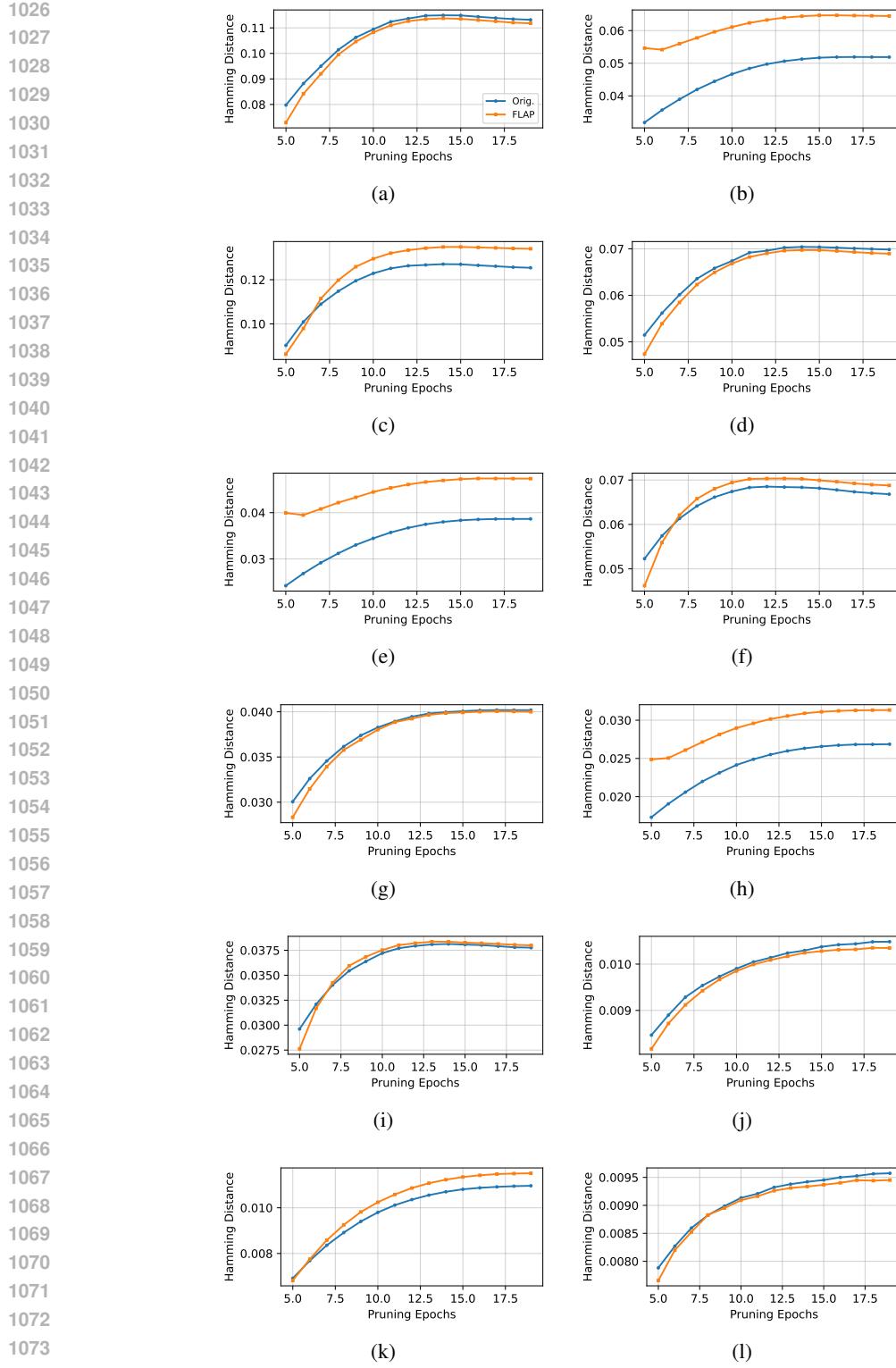
$$988 \quad h = \|\mathbf{m}_0 \oplus \mathbf{m}_t\|_1 / |\mathbf{m}_0|, \text{ where } t \in \{1, 2, \dots, T\}, \quad (13)$$

989 where \mathbf{m}_t represents the mask found at epoch t , \oplus is the XOR operator measuring the number of
 990 differing bits, and T is the total number of epochs. We compute $\mathbf{h} = \{h_1, h_2, \dots, h_T\}$, thus mea-
 991 suring the distance from the first mask in each epoch, for both original (Orig.) and S2AP adversarial
 992 pruning methods. Overall, lower h values indicate improved stability, as the number of changed
 993 selected weights is, in turn, lower. To provide a useful analysis, we compute two vectors, \mathbf{h}_{orig} and
 994 \mathbf{h}_{S2AP} , by saving the masks at each epoch while pruning, that we then subtract as $\mathbf{h}_{orig} - \mathbf{h}_{S2AP}$.
 995 Hence, we obtain a single curve plot that, when positive, indicates that the S2AP method is more
 996 stable than the original one, and vice versa when negative.



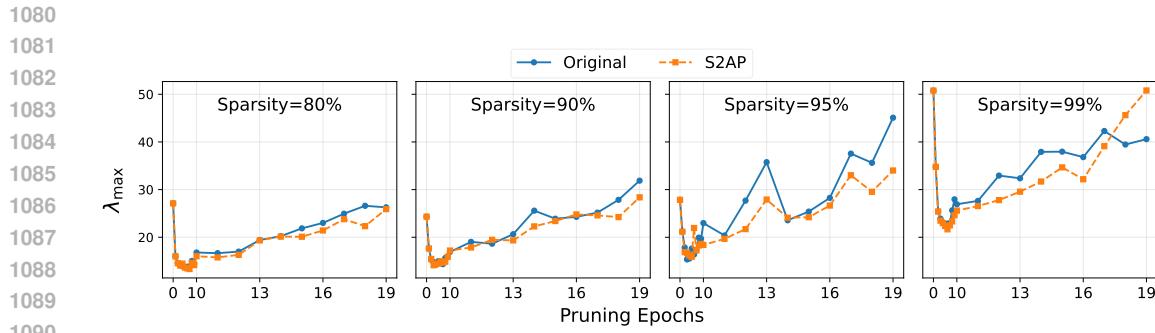
1008 Figure 6: Improved mask stability of Resnet18 (a) and WideResNet28-4 (b) on the HYDRA method.

1009 Stability is depicted for CIFAR10 HARP method and ResNet18 in Figure 1b, and for
 1010 WideResNet28-4 in Figure 4. Nonetheless, we provide additional plots for the remaining combi-
 1011 nations in Figure 6, where we show the improved mask stability of S2AP on the HYDRA method as
 1012 well. For VGG16 models, interestingly, we find the stability trend often favors the Orig. models in-
 1013 stead of S2AP, particularly at lower sparsity. We analyze such a result through the plots of Figure 7.
 1014 Overall, such a measure allows assessing how much the pruning decisions evolve over time relative
 1015 to their starting point.

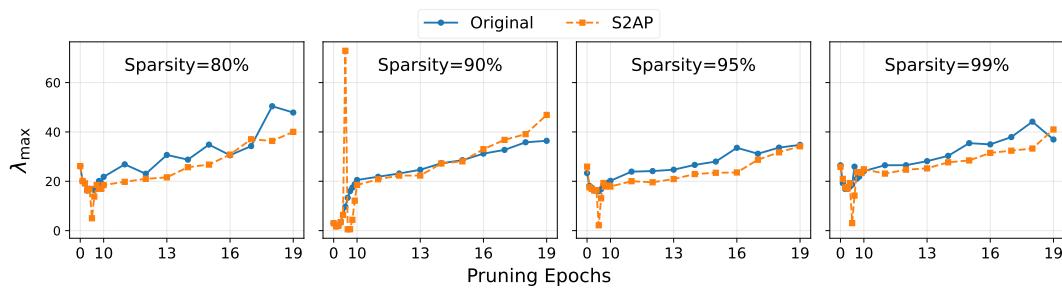


1075
1076
1077
1078
1079

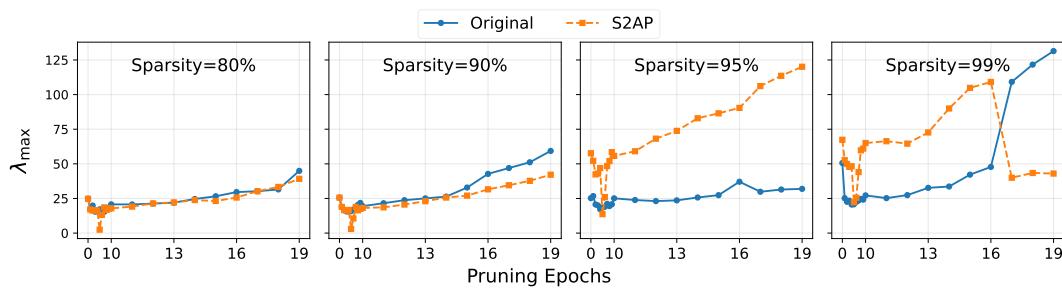
Figure 7: Single Hamming distances of VGG16 on CIFAR10 and SVHN after the first 5 pruning epochs. In (a), (b), and (c) the 80% sparsity for HARP on CIFAR10, HYDRA on CIFAR10, and HARP on SVHN; in (d), (e), and (f) the 90% sparsity for HARP on CIFAR10, HYDRA on CIFAR10, and HARP on SVHN; in (g), (h), and (i) the 95% sparsity for HARP on CIFAR10, HYDRA on CIFAR10, and HARP on SVHN; and in (j), (k), and (l) the 99% sparsity for HARP on CIFAR10, HYDRA on CIFAR10, and HARP on SVHN.



1091 Figure 8: Largest eigenvalue across HYDRA pruning epochs for ResNet18 on CIFAR10.
1092
1093
1094
1095



1105 Figure 9: Largest eigenvalue across HARP pruning epochs for ResNet18 on SVHN.
1106
1107
1108
1109



1119 Figure 10: Largest eigenvalue across HYDRA pruning epochs for ResNet18 on SVHN.
1120
1121
1122
1123

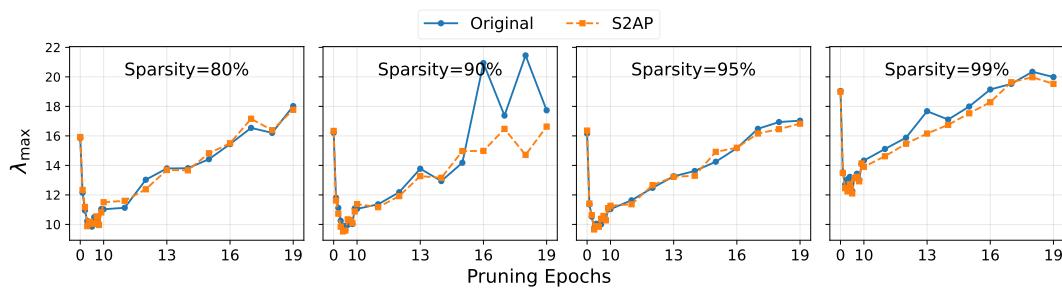


Figure 11: Largest eigenvalue across HARP pruning epochs for VGG on CIFAR10.

Figure 12: Largest eigenvalue across HYDRA pruning epochs for VGG on CIFAR10.

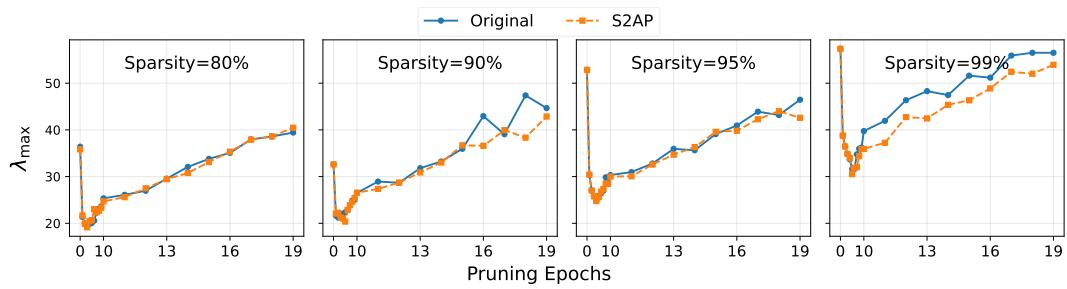


Figure 13: Largest eigenvalue across HARP pruning epochs for VGG on SVHN.

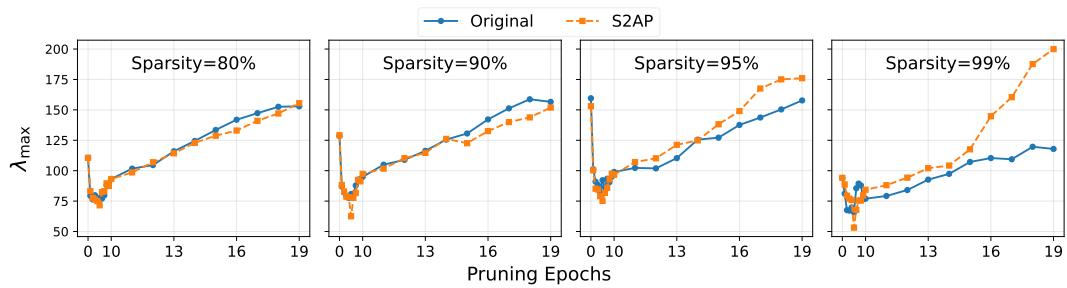


Figure 14: Largest eigenvalue across HYDRA pruning epochs for VGG16 on SVHN.

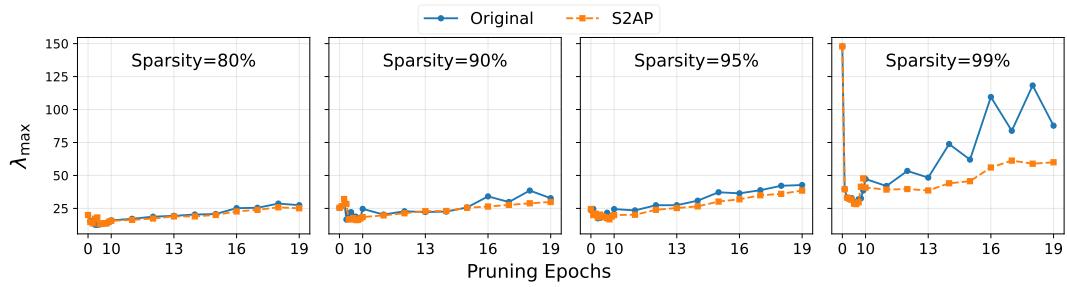


Figure 15: Largest eigenvalue across HYDRA pruning epochs for WideResNet28-4 on CIFAR10.

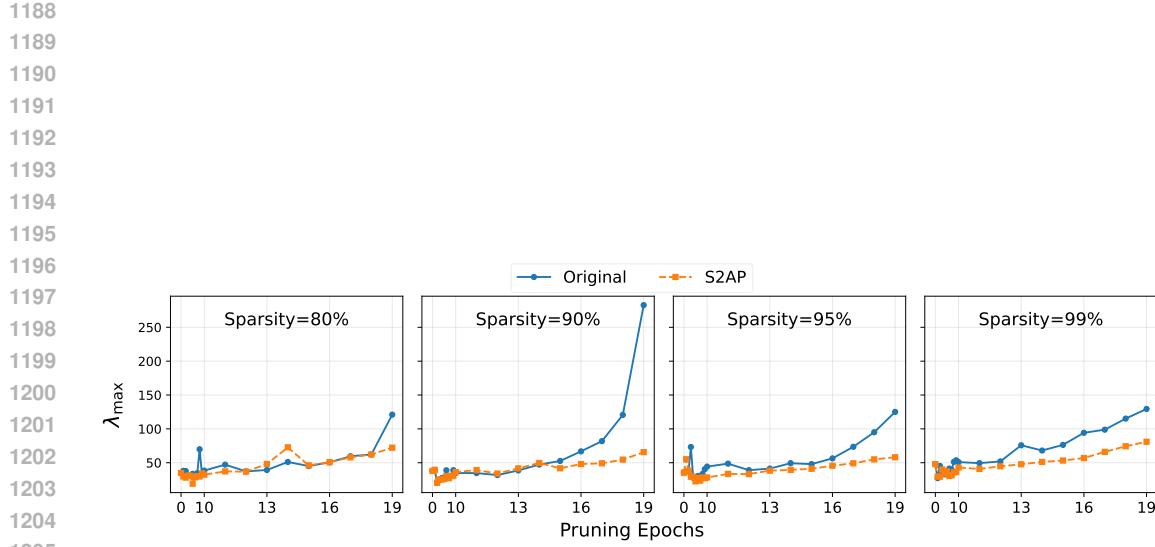


Figure 16: Largest eigenvalue across HARP pruning epochs for WideResNet28-4 on SVHN.

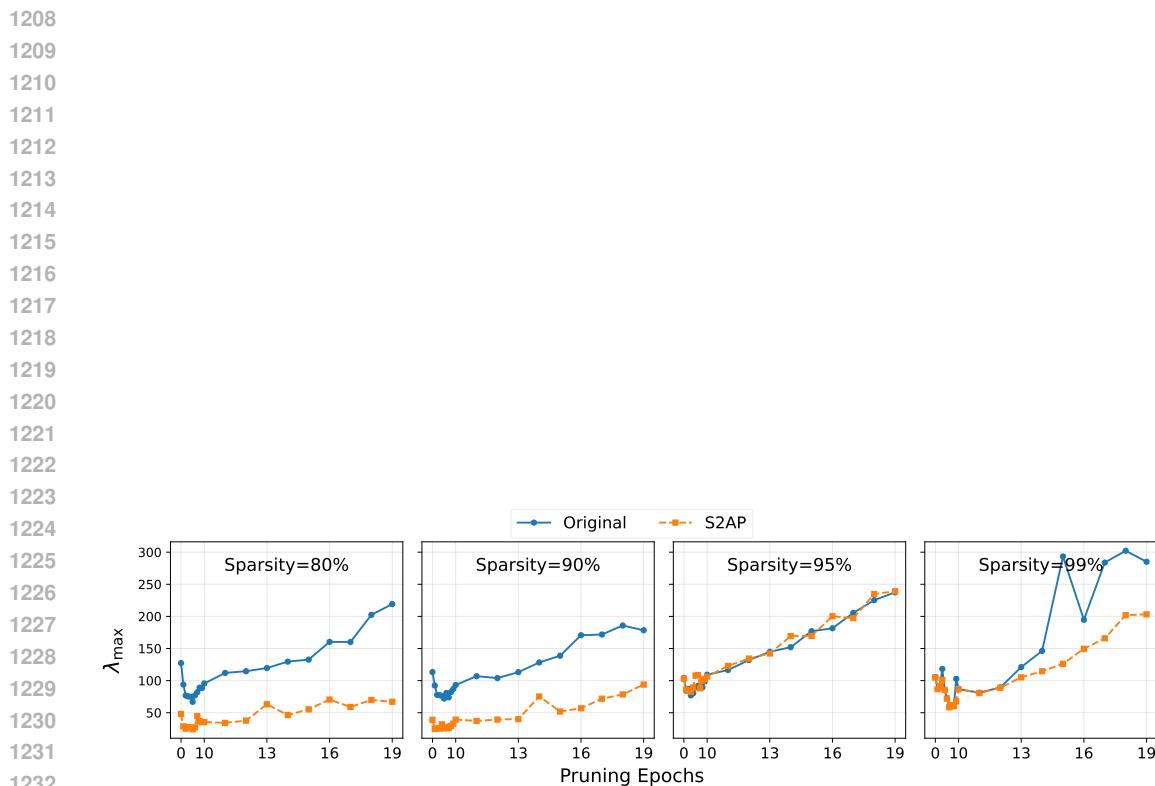


Figure 17: Largest eigenvalue across HYDRA pruning epochs for WideResNet28-4 on SVHN.

1242
1243 Table 14: CIFAR10 Sharpness comparison across sparsity levels and ρ values using Orig. and S2AP
1244 pruning strategies. Lower sharpness values are in **bold**.

1245 1246	Model	Sparsity (%)	ρ	HARP		HYDRA	
				Orig.	S2AP	Orig.	S2AP
1247	ResNet18	80	0.001	0.08316	0.07723	0.08820	0.09274
1248			0.0025	0.10498	0.09742	0.11074	0.11315
1249			0.005	0.14170	0.13142	0.14845	0.14702
1250			0.0075	0.18016	0.16670	0.18784	0.18171
1251			0.01	0.22096	0.20322	0.22839	0.21794
1252		90	0.001	0.07001	0.06848	0.08675	0.07637
1253			0.0025	0.08566	0.08329	0.10258	0.09097
1254			0.005	0.11239	0.10844	0.13116	0.11596
1255			0.0075	0.14069	0.13311	0.15879	0.14189
1256			0.01	0.16937	0.15981	0.18928	0.16741
1257	VGG16	95	0.001	0.06409	0.06346	0.07383	0.06957
1258			0.0025	0.07676	0.07504	0.08597	0.08035
1259			0.005	0.09787	0.09401	0.10601	0.09822
1260			0.0075	0.11952	0.11332	0.12648	0.11706
1261			0.01	0.14170	0.13420	0.14774	0.13521
1262		99	0.001	0.05921	0.06428	0.05573	0.05148
1263			0.0025	0.06637	0.07114	0.06233	0.05728
1264			0.005	0.07810	0.08258	0.07365	0.06711
1265			0.0075	0.08930	0.09392	0.08483	0.07718
1266			0.01	0.10852	0.10082	0.09631	0.08761
1267	WRN	80	0.001	0.05925	0.05837	0.05547	0.05604
1268			0.0025	0.07916	0.07852	0.07089	0.07134
1269			0.005	0.11328	0.11260	0.09726	0.09804
1270			0.0075	0.14856	0.14736	0.12450	0.12492
1271			0.01	0.18579	0.18412	0.15311	0.15298
1272		90	0.001	0.05429	0.05503	0.05616	0.05531
1273			0.0025	0.07059	0.07160	0.06881	0.06749
1274			0.005	0.09846	0.09970	0.08966	0.08804
1275			0.0075	0.12649	0.12834	0.11178	0.10993
1276			0.01	0.15518	0.15657	0.13426	0.13282
1277	WRN	95	0.001	0.05003	0.04989	0.05386	0.04861
1278			0.0025	0.06286	0.06237	0.06358	0.05832
1279			0.005	0.08452	0.08361	0.08018	0.07514
1280			0.0075	0.10634	0.10562	0.09726	0.09266
1281			0.01	0.12874	0.12760	0.11470	0.11020
1282		99	0.001	0.04367	0.04174	0.04815	0.04601
1283			0.0025	0.05087	0.04909	0.05509	0.05261
1284			0.005	0.06309	0.06165	0.06656	0.06362
1285			0.0075	0.07565	0.07486	0.07853	0.07477
1286			0.01	0.08851	0.08857	0.09058	0.08608
1287	WRN	80	0.001	0.07913	0.07880	0.07991	0.07489
1288			0.0025	0.09723	0.09593	0.09703	0.09096
1289			0.005	0.12753	0.12433	0.12677	0.11843
1290			0.0075	0.15926	0.15295	0.15632	0.14677
1291			0.01	0.19145	0.18250	0.18822	0.17620
1292		90	0.001	0.07006	0.06571	0.07159	0.07602
1293			0.0025	0.08337	0.07786	0.08506	0.08826
1294			0.005	0.10571	0.09843	0.10735	0.10935
1295			0.0075	0.12777	0.11919	0.13010	0.13164
1296			0.01	0.15019	0.13998	0.15363	0.15292
1297	WRN	95	0.001	0.05809	0.06162	0.06952	0.06229
1298			0.0025	0.06847	0.07097	0.07998	0.07141
1299			0.005	0.08537	0.08655	0.09721	0.08766
1300			0.0075	0.10154	0.10193	0.11500	0.10338
1301			0.01	0.11772	0.11709	0.13249	0.11976
1302		99	0.001	0.05823	0.05911	0.04382	0.04925
1303			0.0025	0.06376	0.06482	0.05483	0.04949
1304			0.005	0.07283	0.07452	0.06425	0.05900
1305			0.0075	0.08122	0.08487	0.07172	0.06888
1306			0.01	0.08968	0.09446	0.08512	0.07535