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Abstract

We study the problem of approximating all-pair distances in a weighted undirected
graph with differential privacy, introduced by Sealfon [Sea16]. Given a publicly
known undirected graph, we treat the weights of edges as sensitive information,
and two graphs are neighbors if their edge weights differ in one edge by at most
one. We obtain efficient algorithms with significantly improved bounds on a
broad class of graphs which we refer to as recursively separable. In particular,
for any n-vertex Kh-minor-free graph, our algorithm achieve an additive error of
Õ(h(nW )1/3), where W represents the maximum edge weight; For grid graphs,
the same algorithmic scheme achieve additive error of Õ(n1/4

√
W ). Our approach

can be seen as a generalization of the celebrated binary tree mechanism for range
queries, as releasing range queries is equivalent to computing all-pair distances
on a path graph. In essence, our approach is based on generalizing the binary tree
mechanism to graphs that are recursively separable.
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1 Introduction

Graph-structured data arises in an enormous number of settings. As a result, analysis of graphs
has important applications in not just computer science (networking, search engine optimization,
bioinformatics, machine learning, etc.), but also in biology, chemistry, transportation and logistics,
supply-chain management, operations research, and even in everyday applications like finding the
shortest route on a map using GPS navigation. Since in some applications these graphs can encode
sensitive personal information, the analysis of sensitive graph data while preserving privacy has
attracted growing attention in recent years. One of the main privacy notions that has been proposed
and used extensively in such graph analysis is differential privacy, with successful applications
including cut approximation [30, 24, 15, 39, 11], spectral approximation [6, 4, 44, 1], correlation or
hierarchical clustering ([9, 14, 32, 13]) and numerical statistics release ([34, 43, 8, 17, 33]), among
others.

Recently, starting with Sealfon [42], the problem of releasing All-Pair Shortest Distances (APSD) on
a weighted graph with differential privacy has received significant attention [26, 25, 12, 23, 16, 7], due
to the practical importance and applicability of private graph distances and the fact that the problem
itself is inherently natural. In this line of work, given an n-vertex weighted graph G = ([n], E, w),
the goal is to output the values of the shortest distances between each pair of vertices, while preserving
weight-level differential privacy, where two graphs are considered neighboring if they share the same
edge set (i.e., the topology is public information) and differ in the weight of exactly one edge by at
most one.

Sealfon [42] introduced the problem and use a post-processing scheme to gave an algorithm with
Õ(n/ε) additive error for pure and approximate differential privacy with privacy budget ε. This
bound was improved subsequently [12, 26] using a simple sub-sampling technique, reducing it to
only Õ(

√
n/ε) for approximate differential privacy. For the lower bound side, the first result on

private APSD was provided by Chen et al. [12], who established a lower bound of Ω(n1/6/ε). This
bound was recently improved to Ω(n1/4/ε) by Bodwin et al. [7].

Though Õ(
√
n) error is the best known for answering private APSD in general graphs, it is possible to

significantly improve it for many special classes of graphs. For example, outputting all pairs shortest
distances in an n-vertex path graph is equivalent to answering all possible range queries on a vector of
length n− 1 [42]. Under weight-level privacy, this task can be solved with only polylog(n) additive
error using the classic binary tree mechanism [19, 10]. This mechanism leverages the Bentley and
Saxe data structure [5] to reduce the number of compositions required for privacy. More generally,
Sealfon [42] shows that the polylog(n) error can also be achieved when privately answering the
shortest distances in an n-vertex tree.

However, there is a lack of work on private APSD for graphs that lie between trees and general
graphs, a gap that encompasses many graph classes commonly encountered in practical applications,
such as planar graphs. Perhaps the most natural example of such an application is finding the shortest
distances in road maps or metro networks, where all the routes can usually be represented in the
plane, and edge weights are determined by traffic (higher edge weights indicate more traffic, which
navigation tools should tend to avoid). Therefore, we have the following natural question:

Question 1. Is it possible to solve private all-pairs shortest distances with better
utility in planar graphs (or other natural class of graphs) than in general graphs4?

In this paper we answer this question in the affirmative, by showing that for any Kh-minor-free
graph there exists an efficient and differentially private algorithm that achieves an additive error
of Õ(h · (nW )1/3) for answering APSD, where W is the maximum edge weights. This result
immediately implies an Õ((nW )1/3) error for private APSD on planar graphs, as every planar graph
is K5-minor-free [37]. Additionally, for a

√
n ×
√
n grid graph, within the same framework, we

further reduce the error of private APSD to only Õ(n
1/4W 1/2

ε1/2
). These results improve multiple

previous upper bounds that also depend on W . (See Section 1.1 for details.) Such an upper bound W

4On graphs with bounded tree-width p, an interesting result by [23] presents a purely differentially private
algorithm that outputs all-pair shortest distances with an additive error of Õ(p2/ε). This bound however, does
not lead to an improvement on planar graphs, as the tree-width of a planar graph can be as large as O(

√
n).
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on edge weights is also natural in real-world scenarios, such as packet routing, where it is defined by
the bandwidth of the network.

From a technical point of view, our results can be considered as a generalization of the mechanism
proposed in Sealfon [42] for computing APSD on an n-vertex tree. Their mechanism inherently
extends the binary tree mechanism, which originally operates on a single path, to a tree structure,
achieving an error bound of polylog(n). Therefore, to further extend this approach to more general
graph topologies beyond paths or trees, we pose the following fundamental question:

Question 2 What underlying property allows the binary tree mechanism to reduce
the error in answering APSD queries on paths or trees?

To answer this question, we propose the concept of recursive separability (Definition 1). We show
that the recursive separability of tree graphs is the inherent reason why the binary tree mechanism
significantly reduces the error in answering APSD. Intuitively, a graph as recursively separable if it
has a balanced separator such that when the separator is removed, the resulting subgraphs themselves
are also recursively separable.

By working with recursively separable graphs, we develop a private algorithm based on a divide-and-
conquer strategy to compute all-pair shortest distances, with an additive error characterized by the
quality of the separators of the input graph. As a consequence, our algorithm not only encompasses
the older use cases of the binary tree mechanism [19, 10, 20, 42], but also extends to a much broader
class of graphs that exhibit recursive separability, including planar graphs or Kh-minor-free graphs.
Importantly, our results also open up the opportunity to leverage a rich body of prior work on graph
separation theorems (e.g. [38, 28, 3, 29, 2, 35, 27, 36]) to the design of private APSD algorithms.

1.1 Our Results

In this paper, we consider the standard weight-level privacy setting [42]. In this setting, two positive
weighted n vertices graphs G = ([n], E, w), G′ = ([n], E, w′) with the same edge topology are
neighboring if ∥w − w′∥0 ≤ 1 and ∥w − w′∥1 ≤ 1, i.e., there is an edge which differ by at most 1.
Here, w,w′ ∈ R|E|

≥0 encodes the edge weights, where R≥0 denote the set of positive real numbers.

For a graph G, a separator of G is a subset of vertices that, when removed, splits the graph into two
or more disconnected components. Formally, a separator is a subset of vertices S ⊆ V where there
exist disjoint vertex sets A and B such that A ∪ B = V \S and no edge joins a vertex in A with a
vertex in B. To privately compute all-pairs shortest distances using a divide-and-conquer approach,
we first introduce the concept of recursive separability.
Definition 1. Fix p ∈ N and q, q′ ∈ R such that 1

2 ≤ q < q′ < 1. An undirected graph G = (V,E)
is (p, q, q′)-recursively separable if and only if either |V | = O(1) or:

• G has a separator S ⊆ V of size |S| ≤ min{p, (q′ − q)|V |} such that each connected
component of G′ = (V \S,E(V \S)) has at most q|V | vertices, and

• Every subgraph of G is (p, q, q′)-recursively separable.
Remark 2. We note that the definition of recursive separability is oblivious to edge weights. Thus,
we say a weighted graph is recursively separable if its underlying graph is recursively separable.

Our first result is a general algorithm that privately computes all-pairs shortest distances for any
graph, with an error bound that depends on the quality of the graph’s separators.
Theorem 3. Fix privacy budgets 0 < ε, δ < 1, and suppose 1

2 ≤ q < q′ < 1 are constants. For
any weighted n-vertex (p, q, q′)-recursively separable graph G, there exists an (ε, δ)-differentially
private algorithm such that with high probability, it outputs APSD on G with worst case additive
error at most O

(
p·log3(n/δ)

ε

)
.

Notably, Theorem 3 offers a wide range of intriguing implications, as the definition of recursive
separability captures a large class of natural graphs. Some example with implication includes

1. All n-vertex trees are (1, 2
3 ,

2
3 + o(1))-recursively separable. Therefore, Theorem 3 immedi-

ately recovers the error bound for privately computing APSD on trees in [42] (though with
an extra logarithmic factor).
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Table 1: Current error bounds for APSD under (ε, δ)-differential privacy with bounded edge weights.
Sealfon [42] Chen et al. [12] Ours

planar graph Õδ

(√
nW
ε

)
Õδ

(
Wαnα+o(1)

ε1−α + nα+o(1)

ε

)
Õδ

(
(nW )1/3

ε2/3

)
grid graph Õδ

(
n1/3

ε +W · n1/3
)

(same as above) Õδ

(
n1/4

√
W

ε1/2

)

2. Any graph with tree-width p is (p+ 1, 2
3 ,

2
3 + o(1))-recursively separable (which follows as

an immediate corollary of Robertson and Seymour [41]). Therefore, Theorem 3 improves
the private APSD result for bounded tree-width graphs in [23] from Õ(p2/ε) to Õ(p/ε)5.

Leveraging the well-known separation theorem for planar graphs [28, 38], we also conclude that all
planar graphs are (O(

√
n), 2

3 ,
2
3 + o(1))-recursively separable. Though applying Theorem 3 does

not immediately yield any non-trivial improvement for planar graphs, we demonstrate that with a
slight modification to the recursive framework of the algorithm in Theorem 3, we can achieve an
improvement not only on planar graphs but also on Kh-minor-free graphs. Recall that a graph is Kh-
minor-free if the clique of size h, denoted by Kh, is not a minor of it. If a graph is Kh+1-minor-free
but contains a Kh minor, then h is also known as the Hadwiger number [31].
Theorem 4. Fix privacy budgets 0 < ε, δ < 1, and integers W,h ≥ 1. For any weighted Kh-
minor-free graph G = ([n], E, w) with ∥w∥∞ ≤ W , there exists a (ε, δ)-differentially private
algorithm such that with high probability, it outputs APSD on G with worst case additive error at
most Õδ

(
h · (nW )1/3

ε2/3

)
.

By Kuratowski’s Theorem [37], planar graphs are K5-minor-free. This gives the following corollary:
Corollary 5. Fix privacy budgets 0 < ε, δ < 1, and integer W ≥ 1. For any planar graph
G = ([n], E, w) with ∥w∥∞ ≤W , there exists a (ε, δ)-differentially private algorithm such that with

high probability, it outputs APSD on G with worst case additive error at most Õδ

(
(nW )1/3

ε2/3

)
.

Building on the same algorithmic framework, we show further improvement for a specific subclass of
planar graphs: grid graphs.
Theorem 6. Fix privacy budgets 0 < ε, δ < 1, and integers a,W ≥ 1. For any a × n/a grid
graph G = ([a× n/a], E, w) with ∥w∥∞ ≤W , there exists a (ε, δ)-differentially private algorithm
such that with high probability, it outputs APSD on G with worst case additive error at most
Õδ

(
(nW 2)1/4

ε1/2

)
.

In Table 1, we provide a brief overview of the existing results on differentially private all-pairs
shortest distances approximation when assuming an upper bound W on edge weights (in this table,
α =
√
2− 1 ≈ 0.4143). This assumption also appears in Sealfon [42] and Chen et al. [12].

1.2 Technical Overview

Here, we introduce the technical ingredients that underpin our results on the private APSD approxi-
mation and discuss the key concepts behind our analysis of privacy and utility guarantees.

1.2.1 Recursively computing APSD by separators

One of the most basic approaches to computing all-pair shortest distances on a graph is to add noise
to the weight of each edge in E. This results in the error of a path being roughly proportional to the
number of hops on the path, which leads to Õ(n/ε) error [42]. Using basic probability theory, it
can be shown that with high probability, uniformly sampling O(

√
n log n) vertices from the vertex

set of a connected graph forms a k-covering set (see Definition 10) of the original graph, where
k = O(

√
n). By privately computing all-pair shortest distances within the O(

√
n) vertices in the

covering set, the error in private APSD can be further reduced to Õ(
√
n/ε) [12, 26] since in each

path, the covering set is guaranteed to be encountered after passing through the O(
√
n) vertices.

5This was also suggested as an open problem by Sealfon in personal communication.
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However, the above methods do not make use of any combinatorial properties or topological structure
of the graph. To take advantage of this, we observe that some specific classes of graphs, including
trees or planar graphs, exhibit good separability, allowing us to use the divide-and-conquer method
to recursively compute the shortest path. Specifically, for a graph G = (V,E,w), and x, y ∈ V , let
dG(x, y) be the distance between x, y in G. Then, if G has a separator S ⊆ V that separates the
graph into two subgraphs G1 and G2, we observe that for any pair x, y ∈ V that are not in S, their
distance can be written as

dG(x, y) = min
a,b∈S

{dG1
(x, a) + dG(a, b) + dG2

(b, y)}

if x ∈ G1 and y ∈ G2. Then, the error accumulated in each recursion corresponds to the error in
privately computing the distances in G6 between each vertex inside S. Intuitively, the recursion step
can be illustrated by a binary tree of O(log |V |) levels if the input graph can be recursively divided by
a series of well-balanced separators. However, this does not directly give the Õ(p/ε) error if the input
graph is (p,O(1), O(1))-recursively separable, since the error accumulates across all leaf vertices
in the corresponding recursion tree. To address this issue, we employ a pruning trick that directly
establishes relationships between adjacent levels of separators, preventing errors from accumulating
within the same level. In particular, we add shortcuts between adjacent levels of separators to form a
series of complete bipartite graphs to control the error.

In summary, the key distinction between our technique and those employed in other works that
improves private APSD [12, 26] lies in our utilization of the graph’s topology to construct highly
structured shortcuts. In contrast, the shortcuts constructed in previous works are oblivious to any
combinatorial properties of the graph.

1.2.2 Approximating distances within a separator using covering sets

In Section 1.2.1, we briefly introduced how to construct an algorithmic framework such that the error
in estimating private APSD primarily depends on the size of the separators for recursively separable
graphs. Recall that in our recursive framework, we need to construct two types of shortcuts: those
within the separators and those between adjacent separators. Therefore, by examining the separability
of certain classes of graphs, the overall error for private APSD can be further reduced by optimizing
the error incurred when estimating the distances of vertices inside or between separators. In this
section, we focus solely on illustrating the idea for reducing the error in estimating the APSD (i.e., the
lengths of the shortcuts) inside a separator. The idea for reducing the error in estimating the lengths
of shortcuts between two adjacent separators is similar.

Specifically, suppose that the edge weights are upper-bounded by some constant W ≥ 1. Then, we
observe that finding a k-covering set (Definition 10) of the separator S and computing the all-pair
distances for all vertices inside the k-covering set provides an approximation of all-pair distances
within S, with an extra additive error at most kW . The advantage is that by computing APSD
only for the k-covering set, the number of compositions required to preserve privacy is significantly
reduced when k ≪ |S|. This approach is similar to the one by Sealfon [42] for improving the error in
estimating APSD for grid graphs. However, without our recursive framework, they use this trick by
finding a k-covering set for the whole graph instead of only for separators, which limits its ability to
achieve further improvements. In our recursive framework, we observe that a grid graph is separable
with a series of connected separators of size at most O(

√
n). Consequently, one can show that each

separator has a (n1/4)-covering set of size at most O(n1/4), which finally leads to an Õ(n1/4) error
(for constant W ) for grid graphs by the advanced composition theorem.

Achieving improvements on general planar graphs is similar but somewhat more tricky, as the
separators are not necessarily connected. To make progress, for a connected planar graph G on n
vertices, we first partition the vertex set of G into about O(n/d) disjoint subsets, such that each
subset has diameter at most d (in terms of the subgraph defined by this subset of vertices). Then, we
contract each subset into a super-node, merge all multi-edges, and obtain a smaller planar graph G̃

with O(n/d) super-nodes. By Lipton-Tarjan’s separation theorem for planar graphs [38], G̃ has a
separator S̃ of size at most O(

√
n/d), and thus privately computing the all-pair shortest distances

6We have to privately compute dG(a, b) for any a, b ∈ S instead of dS(a, b) because that the shortest path
between x, y may repeatedly enter and exit the separator S.
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inside S̃ incurs an error of at most Õ(
√

n/dε2). This implies an approximation of the APSD within
the original separator S with an error of

2dW + Õ(
√
n/dε2) (1)

since the diameter of each super-node is at most d. By choosing an appropriate value for d, we obtain
an Õ((nW )1/3) error for estimating APSD inside separators of a planar graph, and thus the same
error with some extra logarithmic factors for estimating the APSD in the entire graph. Finally, this
approach can also be identically applied to Kh-minor-free graphs (see Lemma 31). Note that the
dependence on the maximum edge weight W in eq.(1) is inevitable, as it ensures that the shortest
paths within S remain reasonably close in length to the global (true) shortest paths.

2 Private APSD Approximation For Recursively Separable Graph

In this section, we study answering all-pair shortest distances on recursively separable graphs with
differential privacy. Let G be a graph with non-negative edge weights, and let x, y be two vertices in
G. we use dG(x, y) to denote the (shortest) distance between x and y in G. Specifically, we establish
the following result:
Theorem 7 (Restatement of Theorem 3). Fix any 0 < ε, δ < 1, and n, p ∈ N. For any graph
G = ([n], E, w) that is (p, q, q′)-recursively separable (Definition 1) for some constants 1

2 ≤ q ≤
q′ < 1, there is an (ε, δ)-differentially private algorithm such that, with high probability, it outputs
estimations of shortest distances {d̂G(x, y)}x,y∈[n] satisfying

|d̂G(s, t)− dG(s, t)| ≤ O

(
p · log2 n log(n/δ)

ε

)
.

Proof outline of Theorem 7. We provide our algorithms for privately computing APSD in recur-
sively separable graphs in Section 2.1. Because of the space limit, we defer the privacy guarantee
(Theorem 19) of our algorithms and its analysis in Appendix B.1. The utility guarantee (Theorem 20)
with a detailed analysis is given in Appendix B.2. Combining Theorem 19 and Theorem 20 concludes
the proof of Theorem 7.

The corresponding result for pure-DP. Our framework can be easily adapted to pure differential
privacy by (1) replacing Gaussian noise with Laplace noise in the shortcuts, and (2) employing basic
composition instead of advanced composition. Using the Laplace mechanism and the tail bound
for Laplace noise, one can directly derive the following theorem from our framework. The proof is
therefore omitted.
Theorem 8. Fix a p ∈ N. Let G = (V,E,w) be a (q, p, p′)-recursively separable graph for some
constant 1

2 ≤ q ≤ q′ < 1. Then, there is a (ε, 0)-differentially private algorithm on estimating APSD
such that with probability at least 1− γ,

|d̂(s, t)− d(s, t)| ≤ O

(
p2 · log2 n(log n+ log(1/γ))

ε

)
.

2.1 The Algorithm

Our algorithm is built upon a sequence of decompositions applied to the input graph, with the resulting
process being traceable through a binary tree.

The Construction of the Binary Tree. Given an unweighted and undirected graph G = ([n], E)
that is (p, q, q′)-recursively separable, we consider a deterministic and recursive procedure that finally
separates the graphs into O(n) pieces of subgraphs of constant size (we note that the vertex set in these
pieces may have intersection). We will see later that the bounded number of pieces is ensured by the
property of recursive separability. More specifically, in the first epoch, since G is (p, q, q′)-recursively
separable, then there exists an S ⊆ [n] such that removing vertices in S results in two subgraphs
G′

0 = (V ′
0 , E(V ′

0)), G
′
1 = (V ′

1 , E(V ′
1)) that are not connected, and max{|V ′

0 |, |V ′
1 |} ≤ qn. We let

G0 = (V ′
0 ∪ S,E(V ′

0 ∪ S)\E(S)) and G1 = (V ′
1 ∪ S,E(V ′

1 ∪ S)\E(S)). (2)
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That is, we union S into G′
1 (or G′

2) together with all edges incident between S and G′
1 (or G′

2).
From the recursive separability of G, we also have that

max{|V0|, |V1|} ≤ qn+ |S| ≤ q′n,

where V0 (or V1) is the set of vertices of G0 (or G1).

In the recursive subroutine, for graph Gb where b is a binary string of length that depends on the
current depth of recurrence, there must exist a separator Sb that separates Gb into G′

b◦1 and G′
b◦0.

Similarly as in eq. (2), we let
Gb◦1 = (V ′

b◦1 ∪ Sb, E(V ′
b◦1 ∪ Sb)\E(Sb)) and Gb◦0 = (V ′

b◦0 ∪ Sb, E(V ′
b◦0 ∪ Sb)\E(Sb)).

The recursive procedure terminates when Gb has constant size c. Clearly, the depth of the recursion
is log1/q′

n
c = log(n/c)

log(1/q′) = O(log n) for any constant 0 < q′ < 1. Further, these graphs construct a
binary tree T with O(log n) levels, where the root of T is G, and the nodes in the i-th level is just
the all Gb’s with |b| = i, and each Gb in the leaves of T has size at most c. In each non-leaf node of
T , we associate it with a label (Gb, Sb) to denote the subgraph it represents and the separator used to
further split Gb. We note that for the root, b = ∅.

The Algorithm. With the construction of the binary tree described above, we are ready to present
our algorithm. For keeping the presentation modular, we present it in form of three algorithms:
Algorithm 1 defines how we add shortcuts, Algorithm 3 describes the recursive procedure that is used
by Algorithm 2 to compute all-pair-shortest distances.

In Algorithm 1, we first add highly structured shortcuts based on the decomposition described above
to generate a private synthetic graph. In particular, there are two types of shortcuts: (1) between all
pairs of vertices within each separator that is determined by the decomposition procedure, forming a
complete graph, and (2) between vertices in every pair of adjacent separators, forming a complete
bipartite graph.

Then, as a post-processing stage, in Algorithm 2 we compute the all-pair shortest path distances
privately for a weighted graph by calling the recursive procedure for each pair (Algorithm 3). Here,
for any s, t ∈ V , we use db(s, t) to denote the value of the local shortest distance between s and t in
the subgraph Gb. If either s or t does not appear in Vb, then we set db(s, t) =∞. In our algorithms,
for any x, y ∈ [n] and b ∈ {0, 1}∗, we define IsShortcut(x, y, b) = True if a noisy edge (i.e., a
shortcut) is added between x, y within the separator of Gb, or between the separator of Gb and that of
its precursor graph.

3 Improved Results for Kh-Minor-Free Graphs

In this section, we utilize the algorithmic framework proposed in Section 2 to present our improved
results on privately answering APSD for some special classes of graphs. In particular, assuming
bounded weights, where the maximum weight of edges is denoted as W , and by some specific separa-
tion theorems for special graphs, we can use the general framework (along with a sub-sampling trick
inside the separator) to achieve a purely additive error of ∼ (nW )1/3 when privately approximating
APSD in Kh-minor-free graphs for any constant h. Additionally, as a special subclass of K5-minor
free graphs, we are able to leverage some unique structural properties of grid graphs to further reduce
the additive error to approximately ∼ n1/4

√
W .

Theorem 9. Fix any 0 < ε, δ < 1 and n ∈ N. There exists an (ε, δ)-differentially private algorithm
for estimating all-pairs shortest path distances in G such that, with high probability, the worst-case
error is bounded by O

(
n1/4

√
W ·log2 n
ε1/2

log
(

logn
δ

))
for any grid graph G = ([a× b], E, w) where

ab = n. Further, the error is bounded by O
(
h · (nW )1/3·log2 n

ε2/3
log
(

logn
δ

))
with high probability,

for any Kh-minor-free graph G = ([n], E, w).

Proof outline of Theorem 9. We first present here the modifications to the recursive framework
described in Section 2 that are required to derive Theorem 9, while deferring the detailed analysis of it
to Appendix C. Specifically, instead of constructing the all-pair shortcut inside or between separators
as in Algorithm 1, we find a k-covering set of each separator and only add shortcuts inside or between
such covering sets to reduce the number of compositions needed to preserve privacy.
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Algorithm 1: Constructing private shortcuts.
Input: Graph G = (V,E,w), private parameter ε, δ.
1. Recursively construct a binary tree T as described in this section.
2. Set h = log1/q′(n/c), ε

′ = ε/
√
4h log(1/δ′), and δ′ = δ/(4h).

3. Let σ = p
√

2 log(1.25/δ′)/ε′.
4. for non-leaf node (Gb, Sb) ∈ V (T ) do

for x, y ∈ Sb such that x ̸= y do
IsShortcut(x, y, b) = True.
Let d̂b(x, y) = db(x, y) +N (0, σ2).

end
if b ̸= ∅ then

Let b′ be the binary string that removes the last bit in b.
for (x, y) ∈ Sb′ × Sb do

if x, y /∈ Sb′ ∩ Sb then
IsShortcut(x, y, b′) = True.
Let d̂b(x, y) = db(x, y) +N (0, σ2).

end
end

end
end
5. for leaf node (Gb, -) ∈ V (T ) do

for x, y ∈ Vb such that x ̸= y do
IsShortcut(x, y, b) = True.

Let d̂b(x, y) = db(x, y) +N
(
0, 2c2 log(1.25/δ′)

(ε′)2

)
.

end
end
Output :The binary tree T , and d̂b(u, v) for all u, v ∈ V and b ∈ {0, 1}∗ such that

IsShortcut(x, y, b) = True.

Algorithm 2: Differentially private all-pair-shortest-path approximation
Input: Graph G = (V,E,w), private parameter ε, δ.
1. Run Algorithm 1 on G and ε, δ, obtain the labeled binary tree T .
2. for s, t ∈ V such that s ̸= t do

d̂(x, y)← Recursive-APSD(T , G, (s, t), 0). // Algorithm 3
end
Output :estimated distances d̂(x, y) on G.

Definition 10 (k-covering). Given a graph G = (V,E), a subset Z ⊆ V is a k-covering of V if for
every vertex a ∈ V , there is a vertex b ∈ Z such that the hop distance between a and b is at most k.

The construction of the binary tree for Kh-minor-free graphs is similar to that for general graphs,
and that a Kh-minor-free graph G with n vertices are guaranteed to always have a (not necessarily
connected) separator S of size at most O(

√
h3n), such that removing S results in two disjoint

subgraphs G′
0 and G′

1 (see Lemma 27). Both subgraphs are clearly also Kh-minor-free, and are of
size at most 2n/3. This process can be repeated recursively, splitting each subgraph until every part
has constant size. For any grid graph on n vertices of shape a× b, we can split the graph into two
sub-grid graphs of (almost) equal size using a separator of size at most O(

√
n), and that the separator

is connected. Hence we have the lemma below.

Lemma 11. Fix an integer h ≥ 1, any Kh-minor-free graph G = ([n], E) is (c
√
h3n, 2/3, 2/3 +

ch3/2/
√
n)-recursively separable for some constant c. In particular, planar graphs (as well as grid

graphs Ggrid = ([a × b], E) with ab = n) are (c′
√
n, 2/3, 2/3 + o(1))-recursively separable for

some constant c′.
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Algorithm 3: Recursive-APSD(T , Gb, (s, t), k)

Input: A binary tree constructed out of some graph G = (V,E,w), a graph Gb, a pair of
vertices s, t ∈ Vb, integer k ∈ N.

1. if IsShortcut(s, t, b) = True then
Halt and directly output d̂b(s, t) computed by Algorithm 1.

end
2. if k = 0 then

if both s, t ∈ Vb◦a for a ∈ {0, 1} then
for z ∈ Sb do

d̂b◦a(s, z)← Recursive-APSD(T , Gb◦a, (s, z), k + 1).
d̂b◦a(t, z)← Recursive-APSD(T , Gb◦a, (t, z), k + 1).

end
d̂b◦a(s, t)← Recursive-APSD(T , Gb◦a, (s, t), 0).
d̂b(s, t)← min{d̂b◦a(s, t),minx,y∈Sb

d̂b◦a(s, x) + d̂b(x, y) + d̂b◦a(y, t)}
end
if s ∈ Vb◦a and t ∈ Vb◦ā, then

for z ∈ Sb do
d̂b◦a(s, z)← Recursive-APSD(T , Gb◦a, (s, z), k + 1).
d̂b◦ā(t, z)← Recursive-APSD(T , Gb◦ā, (t, z), k + 1).

end
d̂b(s, t)← minx,y∈Sb

d̂b◦a(s, x) + d̂b(x, y) + d̂b◦ā(y, t)
end

end
3. if k > 0 then

Let b′ be the binary string that removes the last bit in b.
if s, t /∈ Sb′ then

Halt and output FAIL.
end
WLOG let t ∈ Sb′ (if not we just switch s and t).
for z ∈ Sb do

d̂b◦a(s, z)← Recursive-APSD(T , Gb◦a, (s, z), k + 1).
end
if both s, t ∈ Vb◦a for a ∈ {0, 1} then

d̂b◦a(s, t)← Recursive-APSD(T , Gb◦a, (s, t), 0).
Let d̂b(s, t)← min{d̂b◦a(s, t),minx∈Sb

d̂b◦a(s, x) + d̂b(x, t)}.
end
if s ∈ Vb◦a and t ∈ Vb◦ā, then

d̂b(s, t)← minx∈Sb
d̂b◦a(s, x) + d̂b(x, t).

end
end
Output :estimated local distance d̂b(s, t).

As we introduced earlier, with this decomposition, the only modification required is in Algorithm 1.
In Algorithm 1, we construct private shortcuts by connecting all pairs of vertices in separator. We
now modify Algorithm 1 into Algorithm 4 as follows: for each separator, we begin by finding a
k-covering for it. Then, we construct private shortcuts by connecting all pairs of vertices within the
k-covering sets. We provide the complete pseudocode for Algorithm 4 in Appendix D, and here we
only highlight the differences. The modified step 4 of Algorithm 1 is as follows.
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Step 4 of Algorithm 4 (modified step 4 of Algorithm 1):
for non-leaf node (Gb, Sb) ∈ V (T ) do

Find a k-covering set of Sb, and let it be Sk
b .

for x, y ∈ Sk
b such that x ̸= y do

IsShortcut(x, y, b) = True. Let d̂b(x, y) = db(x, y) +N (0, σ2).
end
if b ̸= ∅ then

Let b′ be the binary string that removes the last bit in b.
Find a k-covering set of Sb′ , and let it be Sk

b′ .
for (x, y) ∈ Sk

b′ × Sk
b do

if x, y /∈ Sk
b′ ∩ Sk

b then
IsShortcut(x, y, b′) = True. Let d̂b(x, y) = db(x, y) +N (0, σ2).

end
end

end
end

We also modify Step 3 of Algorithm 1 to revise the number of compositions needed for privacy from
O(p2) to O(f2(p, k)), as follows:

Step 3 of Algorithm 4: Let σ = f(p, k)
√

2 log(1.25/δ′)/ε′, where f(p, k) is the upper bound of
the size of the k-covering set for the separator of size p.
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paper’s contributions and scope?
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Justification: Our abstract summarizes the main contributions and their scope.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mentioned why the error bounds depend on edge weights, and clearly
stated the lower bound results.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: We provide a full proof of each result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We give detailed instructions on the implementation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15



Answer: [Yes]
Justification: Provided in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We stated details in the setting of experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The error metric corresponds to the one used in theoretical results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We stated the computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We present a theory work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We present a theory work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We present a theory work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: We present a theory work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We present a theory work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We present a theory work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: We do not use LLM at all.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notations and Preliminaries

Throughout this paper, we work on weighted graphs G = (V,E,w) where w ∈ RE
+ encodes edge

weights. Let a, b be two binary strings, we use a◦ b to denote the binary string obtained concatenating
a and b. When edge weights are not of concern, for a graph G = (V,E) and S ⊆ V , we use
GS = (S,E(S)) to denote the subgraph induced by S. For any h ≥ 1, we use Kh to denote a clique
of size h. A graph H is a minor of a graph G if a copy of H can be obtained from G via repeated
edge deletion or edge contraction, and we say a graph G is Kh-minor-free if G does not have Kh as
its minor. It is well-known that all planar graphs are K5-minor-free:

Lemma 12 (The Kuratowski’s reduction theorem [37, 45]). A graph G is planar if and only if the
complete graph K5 and the complete bipartite graph K3,3 are not minors of G.

Here, we provide the necessary background on differential privacy to facilitate understanding of
this paper. A key feature of differential privacy algorithms is that they preserve privacy under post-
processing. That is to say, without any auxiliary information about the dataset, any analyst cannot
compute a function that makes the output less private.

Lemma 13 (Post processing [21]). Let A : X → R be a (ε, δ)-differentially private algorithm. Let
f : R → R′ be any function, then f ◦ A is also (ε, δ)-differentially private.

Sometimes we need to repeatedly use differentially private mechanisms on the same dataset, and
obtain a series of outputs.

Lemma 14 (Basic composition [18]). let D be a dataset in X and A1,A2, · · · ,Ak be k algorithms
where Ai (for i ∈ [k]) preserves (εi, δi) differential privacy, then the composed algorithm A(D) =
(A1(D), · · · ,A2(D)) preserves (

∑
i∈[k] εi,

∑
i∈[k] δi)-differential privacy.

Lemma 15 (Advanced composition [22]). For parameters ε > 0 and δ, δ′ ∈ [0, 1], the composition
of k (ε, δ)-differentially private algorithms is a (ε′, kδ + δ′) differentially private algorithm, where

ε′ =
√
2k log(1/δ′) · ε+ kε(eε − 1).

The Laplace mechanism is one of the most basic mechanisms to preserve differential privacy for
numeric queries, which calibrates a random noise from the Laplace distribution (or double exponential
distribution) according to the ℓ1 sensitivity of the function.

Lemma 16. (Laplace mechanism) Suppose f : X → Rk is a query function with ℓ1 sensitivity
sens1(f) ≤ ∆1. Then the mechanism

M(D) = f(D) + (Z1, · · · , Zk)
⊤

is (ε, 0)-differentially private, where Z1, · · · , Zk are i.i.d random variables drawn from Lap(∆1/ε).

Adding Gaussian noise based on the ℓ2 sensitivity guarantees approximate differential privacy.

Lemma 17. (Gaussian mechanism) Suppose f : X → Rk is a query function with ℓ2 sensitivity
sens1(f) ≤ ∆2. Then the mechanism

M(D) = f(D) + (Z1, · · · , Zk)
⊤

is (ε, δ)-differentially private, where Z1, · · · , Zk are i.i.d random variables drawn from

N
(
0, (∆2)

2·2 ln(1.25/δ)
ε

)
.

B Proof of Theorem 7

B.1 Privacy Analysis

Here, we analyze the privacy guarantee of our algorithm. We observe that constructing the binary
tree T does not compromise privacy, as it only requires the topology, not the edge weights, as input.
Consequently, the recursive procedure (Algorithm 3) and Algorithm 2 involving the tree T are simply
post-processing steps of Algorithm 1. Therefore, we focus our privacy analysis solely on Algorithm 1.
We use the following lemma to bound the sensitivity of the binary tree that traces the decomposition:
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Lemma 18. Let T be the labeled tree constructed from G. For any vertex u, v with an edge
e = {u, v} between them, e appears in at most h = log1/q′(n/c) nodes in T .

Proof. Suppose e is in the edge set of some internal node Gb. Recall that in the division of Gb, the
edge e will be removed if and only if u, v ∈ Sb. Then e only exists in any Gb′ such that b′ is the
prefix of b. Since |b| ≤ h, the lemma holds.

On the other hand, if e is in the edge set of some leaf node Gb. Then the recursive construction
terminates on Gb, and e only exists in any Gb′ such that b′ is the prefix of b, again the number of such
nodes is at most h. This completes the proof of Lemma 18.

We are now ready to prove the following theorem on the privacy guarantee, utilizing the advanced
composition lemma (Lemma 15).

Theorem 19. Algorithm 2 preserves (ε, δ)-differential privacy.

Proof. Suppose for a pair of neighboring graphs G and G′, they have a difference in the edge weight
by 1 of e = {u, v}. Let Gb be the subgraph of G that contains e in its edge set.

1. If Gb is an internal node of T . let dSb
= {db(x, y) : x ̸= y ∧ (x, y) ∈ Sb} be the vector

of distances between vertices in the separator of Gb. Since |db(x, y) − d′b(x, y)| ≤ 1 for
any distinct x, y ∈ Sb, then ∥dSb

∥2 ≤ p as |Sb × Sb| ≤ p2. Then, by the Gaussian
mechanism, outputting d̂b(x, y) for all distinct x, y ∈ Sb preserves (ε′, δ′)-differential
privacy. Similarly, outputting d̂b(x, y) for all (x, y) ∈ Sb × Sb′ where x, y /∈ Sb′ ∩ Sb also
preserves (ε′, δ′)-differential privacy, as |Sb × Sb′ | ≤ p2.

2. If Gb is a leaf node of T . Since Vb ≤ c, then again be the Gaussian mechanism, outputting
the all-pair-shortest distance d̂b(·, ·) in Gb preserves (ε′, δ′)-differential privacy.

Combining the above argument, Lemma 18 and the advanced composition, we have that Algorithm 1
preserves (ε, δ)-DP, as well as Algorithm 2. This completes the proof of Theorem 19.

B.2 Utility Analysis

Here, we present the utility guarantee of Algorithm 2, which privately computes the all-pair shortest
distances for the input graph by repeatedly invokes Algorithm 3 for each pair.

Theorem 20. Fix any 0 < c ≤ n and any 0 < γ < 1. Let G = (V,E,w) be a (p, q, q′)-recursively
separable graph for some p ∈ N and 1

2 ≤ q ≤ q′ < 1. Then with probability at least 1− γ, we have
that for any s, t ∈ V ,

|d̂(s, t)− d(s, t)| ≤ O

(
(hp+ c) · log (h/δ) ·

√
h2 + h log(max{p, c}) + h log(1/γ)

ε

)
,

where h = log1/q′(n/c). That is, for any constant c and q′, we have with high probability,

|d̂(s, t)− d(s, t)| ≤ O

p log2 n · log
(

logn
δ

)
ε

 .

To prove Theorem 20. First, we observe that, with probability 1, Algorithm 3 terminates normally
without any abnormal termination.

Fact 21. For any pair of vertices s, t ∈ V , Algorithm 3 does not output “FAIL”.

Proof. The only case when Algorithm 3 outputs “FAIL” is that the parameter k ≥ 1 and both s, t
are not in the separator of the predecessor graph of Gb. However, it is not possible because when
Algorithm 3 is called with k ≥ 1, at least one of the vertex in s, t is from the separator Sb′ where
Gb = Gb′◦0 or Gb = Gb′◦1.
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The following lemma is used for building the correctness of the recursion.
Lemma 22. Fix any s, t ∈ Vb. Without the lose of generality, we assume either both s, t ∈ Vb◦0
or s ∈ Vb◦0 and t ∈ Vb◦1 (otherwise we just switch s and t, and the proof for both s, t ∈ Vb◦1 is
symmetric). We have

db(s, t) = min

{
db◦0(s, t), db◦1(s, t), min

x,y∈Sb

db◦0(s, x) + db(x, y) + db◦1(y, t)

}
.

Proof. We discuss by difference cases:

1. When at least one of s, t is in Sb. By the construction of Gb◦a such that

Gb◦a = (V ′
b◦a ∪ S,E(Vb◦a ∪ Sb)\E(Sb)),

we have db(s, t) ≥ db◦0(s, t) and db(s, t) ≥ db◦1(s, t). Similarly, we have that

min
x,y∈Sb

db◦0(s, x) + db(x, y) + db◦1(y, t) ≥ min
x,y∈Sb

db(s, x) + db(x, y) + db(y, t) ≥ db(s, t) (3)

by the triangle inequality. On the other hand, if both s, t ∈ Sb, then we have

db(s, t) = db◦0(s, s) + db(s, t) + db◦1(t, t) ≥ min
x,y∈Sb

db◦0(s, x) + db(x, y) + db◦1(y, t). (4)

If exactly one of s, t ∈ Sb, we note that any path (v1 = s, v2, · · · , vk = t) from s to t, must satisfy
that vi ∈ Sb for at least one i ∈ [k] since s ∈ Sb or t ∈ Sb. Again by the symmetry, we assume
t ∈ Sb. Suppose z is the first vertices in Sb of any shortest path from s to t. Then,

db(s, t) = db◦0(s, z) + db(z, t) + db◦1(t, t) ≥ min
x,y∈Sb

db◦0(s, x) + db(x, y) + db◦1(y, t). (5)

Combining Equation (3), Equation (4) and Equation (5) completes the proof in this case.

2. When both s, t /∈ Sb. First, we assume that s and t are on different sides such that s ∈ Vb◦0
and t ∈ Vb◦1. In this case db◦0(s, t) = db◦1(s, t) = ∞. By the fact that Sb is a separator, any path
(v1 = s, v2, · · · , vk = t) from s to t must also satisfy that vi ∈ Sb for at least one i ∈ [k]. Let z1, z2
be the first and last vertices in one of the shortest paths from s to t such that z1, z2 ∈ Sb (we allow
z1 = z2). Then it is easy to verify that db(s, z1) = db◦0(s, z1) and db(z2, t) = db◦1(z2, t). Thus,

min
x,y∈Sb

db◦0(s, x) + db(x, y) + db◦1(y, t) ≤ db◦0(s, z1) + db(z1, z2) + db◦1(z2, t) = db(s, t).

Again by the triangle inequality, we also have Equation (3) holds, which proves Lemma 22. Now,
suppose that both s and t are in the same side Vb◦0. Then the shortest path either crosses Sb or not. If
the path crosses Sb, then the previous argument suffices to prove Lemma 22. If the path does not
crosses Sb, then we have db(s, t) = min{db◦0(s, t), db◦1(s, t)}, which completes the proof.

The following lemma utilizes the shortcut between the separators of two adjacent layers (built by step
4 of Algorithm 1) for pruning.
Lemma 23. Let Sb′ and Sb be two adjacent separators where b = b′ ◦ u for u ∈ {0, 1}. Then for
any x ∈ Sb, a ∈ {0, 1}n and y ∈ Sb′ ,

db(x, y) = min
z∈Sb

db(x, z) + db◦a(z, y).

Proof. Let P = (v1 = x, v2, · · · , vk = y) be any shortest path from x to y, and let w be the last
vertex in P such that w ∈ Sb. Such w exists since x ∈ Sb. Then,

db(x, y) = db(x,w) + db(w, y) = db(x,w) + db◦a(w, y) ≥ min
z∈Sb

db(x, z) + db◦a(z, y).

On the other hand,

db(x, y) ≤ min
z∈Sb

db(x, z) + db(z, y) ≤ min
z∈Sb

db(x, z) + db◦a(z, y)

due to the triangle inequality and the fact that db(z, y) ≤ db◦a(z, y). This completes the proof of
Lemma 23.
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Without the lose of generality, we assume the T is a complete binary tree of height h. (If one branch
terminates early, we just let it continue to split with one of its branches be an empty graph, until the
height is h.) We need to use the following observation to control the accumulation of the error:
Fact 24. During the execution of Algorithm 2, for any b ∈ {0, 1}∗ such that |b| ≤ h and any pair of
vertices s, t ∈ Vb, Algorithm 3 with parameter Gb and (s, t) is invoked exactly once.

Proof. We prove it by induction on the size of b. We claim that if Recursive-APSD(T , Gb, (s, t), k)
where |b| ≤ h − 1 is called for any s, t ∈ Gb and some k, then both Recursive-
APSD(T , Gb◦0, (s, t), k

′) and Recursive-APSD(T , Gb◦1, (s, t), k
′) will be called for some k′. This

is clearly true since Recursive-APSD(T , Gb◦a, (s, t), k + 1) will be invoked if both s and t lies in
Gb◦a. Then, since Algorithm 2 invokes Algorithm 3 for any distinct s, t ∈ V , we conclude that
Algorithm 3 will be invoked at least once for every Gb and all-pair vertices in Gb. On the other hand,
since Algorithm 3 with Gb as parameter will only be invoked by b′ such that b = b′ ◦ a for a ∈ {0, 1},
then it will only be invoked once.

Next, we analyze the error on each shortcut. We write σ1 = c ·
√

2 log(1.25/δ′)/ε′ and σ2 =

p ·
√
2 log(1.25/δ′)/ε′.

Lemma 25. With probability at least 1− γ, both the following holds:

1. For any s, t, b where |b| = h and that IsShortcut(s, t, b) = True,

|db(s, t)− d̂b(s, t)| ≤ σ1 ·

√
2

(
h+ 3 ln(max{p, c}) + ln

(
1

2γ

))
2. For any s, t, b where |b| < h and that IsShortcut(s, t, b) = True,

|db(s, t)− d̂b(s, t)| ≤ σ2 ·

√
2

(
h+ 3 ln(max{p, c}) + ln

(
1

2γ

))
.

Proof. We recall that for the Gaussian variable X ∼ N (0, σ2), Pr[|X| ≥ t] ≤ exp(−t2/2σ2) for
any t ≥ 0. For any s, t, b with IsShortcut(s, t, b) = True and Gb is a leaf node, the difference in
d̂b(s, t) and db(s, t) is a Gaussian noise with variance σ1, and thus

Pr[db(s, t)− d̂b(s, t) ≥ z] ≤ γ

m

if we choose z = σ1

√
2 log(m/(2γ)) for any m ≥ 1 and 0 < γ < 1. Also, if Gb is not a leaf node,

then according to Algorithm 1, we have

Pr
[
db(s, t)− d̂b(s, t) ≥ σ2

√
2 logm/(2γ)

]
≤ γ

m
.

The number of noises added in Algorithm 1 is bounded by m = 5 · 2h ·max{p2, c2}. Lemma 25
now follows using the union bound.

With all the aforementioned preparations, we are now ready to prove Theorem 20 regarding the utility
guarantee of Algorithm 2 by induction. We restate this theorem here.
Theorem 26 (Restatement of Theorem 20). Fix any 0 < c ≤ n and any 0 < γ < 1. Let
G = (V,E,w) be a (p, q, q′)-recursively separable graph for some p ∈ N and 1

2 ≤ q ≤ q′ < 1.
Then with probability at least 1− γ, we have that for any s, t ∈ V ,

|d̂(s, t)− d(s, t)| ≤ O

(
(hp+ c) · log (h/δ) ·

√
h2 + h log(max{p, c}) + h log(1/γ)

ε

)
,

where h = log1/q′(n/c). That is, for any constant c and p′, we have with high probability,

|d̂(s, t)− d(s, t)| ≤ O

(
p · log2 n log(n/δ)

ε

)
.
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Proof. With the help of Fact 24, we prove this theorem by induction on the size of b. We first define

err(b) = ζ1 + (h− |b|)ζ2.

for any b ∈ {0, 1}∗ and |b| ≤ h. Here, ζ1 = σ1 ·
√
2(h+ 3 ln(max{p, c}) + ln(1/(2γ))) and

ζ2 = σ2 ·
√
2(h+ 3 ln(max{p, c}) + ln(1/(2γ))). Then, it is sufficient to just show that for any Gb

in the binary tree T and any x, y ∈ Vb,

|db(s, t)− d̂b(s, t)| ≤ 2err(b),

as letting b = ∅ completes the proof. For the base case, this is true for all |b| = h because in this
case Gb is the leaf node of T and thus |db(s, t) − d̂b(s, t)| ≤ ζ1 = err(b). For all |b| < h and
IsShortcut(s, t, b) = True, we also have that

|db(s, t)− d̂b(s, t)| ≤ ζ2 ≤ ζ1 + ζ2 ≤ err(b).

Suppose that for any s, t and b with |b| < h, we always have

1. If d̂b(s, t) is computed by the unique invocation of Algorithm 3 with parameter k > 0, then
|db◦a(s, t)− d̂b◦a(s, t)| ≤ err(b ◦ a) for a ∈ {0, 1};

2. If d̂b(s, t) is computed by the unique invocation of Algorithm 3 with parameter k = 0, then
|db◦a(s, t)− d̂b◦a(s, t)| ≤ 2err(b ◦ a) for a ∈ {0, 1}.

Now we look at the induction case.

Case(1) Suppose d̂b(s, t) is computed by the unique invocation of Algorithm 3 with parameter
k > 0 and that IsShortcut(s, t, b) = False. We only analysis the case when both s, t ∈ Vb◦a for
a ∈ {0, 1}, since the proof for the case where s, t are in the different sides is identical. In this case,
by Algorithm 3,

d̂b(s, t) = min{d̂b◦a(s, t), min
x∈Sb

d̂b◦a(s, x) + d̂b(x, t)}.

On the other hand, from Lemma 22, we have that

db(s, t) = min

{
db◦a(s, t), min

x,y∈Sb

db◦a(s, x) + db(x, y) + db◦a(y, t)

}
,

where

min
x,y∈Sb

db◦a(s, x) + db(x, y) + db◦a(y, t) = min
x∈Sb

(
db◦a(s, x) + min

y∈Sb

db(x, y) + db◦a(y, t)

)
= min

x∈Sb

db◦a(s, x) + db(x, t).
(6)

Here, the second equality comes from Lemma 23 together with the fact that t ∈ Sb′ where b′ is the
predecessor of b. Therefore,

db(s, t) = min{db◦a(s, t), min
x∈Sb

db◦a(s, x) + db(x, t)}.

By the induction assumption, we have both

|d̂b◦a(s, t)− db◦a(s, t)| ≤ err(b ◦ a) and |d̂b◦a(s, x)− db◦a(s, x)| ≤ err(b ◦ a).

Again by the fact that t ∈ Sb′ and x ∈ Sb, then IsShortcut(x, t, b′) = True and therefore
|d̂b(x, t)− db(x, t)| ≤ ζ2. Combining these together we have

|db(s, t)− d̂b(s, t)| ≤ err(b ◦ a) + ζ2 ≤ ζ1 + (h− (|b|+ 1))ζ2 + ζ2 = err(b).

Case(2) Suppose d̂b(s, t) is computed by the unique invocation of Algorithm 3 with parameter
k = 0 and that IsShortcut(s, t, b) = False. Still, we assume s, t ∈ Vb◦a for a ∈ {0, 1}. Since
for any z ∈ Sb, both Recursive-APSD(T , Gb◦a, (s, z), k

′) Recursive-APSD(T , Gb◦a, (t, z), k
′) will

be invoked with k′ > 0, then from case (2), we have that for any x, y ∈ Sb, both d̂b◦a(s, x) and
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d̂b◦a(y, t) is err(b ◦ a) far from db◦a(s, x) and db◦a(y, t) respectively. Also, for any x, y ∈ Sb, since
IsShortcut(x, y, b) = True, then

|d̂b(x, y)− db(x, y)| ≤ ζ2.

From the induction assumption, we also have

|d̂b◦a(s, t)− db◦a(s, t)| ≤ 2err(b ◦ a).

Combining these facts together Lemma 22, we have that

|d̂b(s, t)− db(s, t)| = |min{d̂b◦a(s, t), min
x,y∈Sb

d̂b◦a(s, x) + d̂b(x, y) + d̂b◦a(y, t)}

−min{db◦a(s, t), min
x,y∈Sb

db◦a(s, x) + db(x, y) + db◦a(y, t)}|

≤ 2err(b ◦ a) + ζ2 = 2ζ1 + 2(h− |b|)ζ2 − 2ζ2 + ζ2 ≤ 2err(b).

(7)

This finishes the proof of Theorem 26.

C Proof of Theorem 9

To prove Theorem 9, we begin by presenting the decomposition procedure for Kh-minor-free graphs,
which relies on the well-known lemma characterizing the separability of such graphs:
Lemma 27 (Alon et al. [2]). Let h ∈ N+ be an integer, and G be a Kh-minor-free graph on n
vertices. Then, there exists a separator S of G of order at most O(h3/2n1/2) such that no connected
components in G(V \S,E(V \S)) has more than 2

3n vertices.

C.1 Privacy Analysis

Based on the proof of Theorem 19, we give the following privacy guarantee on Algorithm 4.
Theorem 28. Algorithm 4 preserves (ε, δ)-differential privacy.

The proof of Theorem 28 is almost identical to that of Theorem 19, except that we re-calibrate the
variance of Gaussian noise according to the size of the k-covering set of a separator S, instead of the
size of the whole separator.

C.2 Utility Analysis

To demonstrate the improvement in finding k-covering sets within separators, we first present several
useful facts and lemmas related to k-covering. The following lemmas state that each connected
n-vertex graph has a k-covering set of size at most O(n/k).
Lemma 29 (Meir and Moon [40]). Any connected undirected graph with n vertices has a k-covering
with size at most 1 + ⌊n/(k + 1)⌋.
Lemma 30. Any graph with n vertices composed of x connected components has a k-covering with
size at most x+ ⌊n/(k + 1)⌋.

Proof. Let x be the number of components with sizes n1, n2, . . . , nx, respectively. Each component
has a k-covering set of size 1 + ⌊ni/(k + 1)⌋) for i = 1, 2, . . . , x. Summing these sizes yields the
desired result.

We use the above lemmas to prove the following structural result, which establishes a covering set for
the separator of Kh-minor-free graphs.
Lemma 31 (Covering lemma for minor free graphs). Fix an h ≥ 1. Let G = ([n], E) be a connected
Kh-minor-free graph. Then for any 1 ≤ d ≤ n, there exists a subset of vertices S ⊆ [n] such that:
(1) S is a separator of G and (2) there is a d-covering of S with size at most O(

√
h3n/d).

Proof. We first claim that for any connected graph on n vertices, there exists a partition of [n] into
s = O(n/d) disjoint subsets (V1, V2, · · · , Vs) such that the diameter of each Vi(1 ≤ i ≤ s) is at
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most d. Indeed, by Lemma 29, G has a d-covering C ⊆ [n] of size O(n/d). For each u ∈ C, let
V ′
u ⊆ [n] be the vertices covered by u with at most d hops. Then, the partition (V1, V2, · · · , Vs)

can be constructed from {V ′
u}u∈C by removing duplicate elements. Next, by contracting each Vi

for 1 ≤ i ≤ s into a super-node and merging all multi-edges between the super-nodes, we obtain a
smaller graph G̃ with s nodes, and clearly G̃ is Kh-minor-free if G is Kh-minor-free.

Thus, by the separation theorem for Kh-minor-free graphs (Lemma 27), G̃ has a separator of size
O(h3/2

√
s) = O(

√
h3n/d). Picking one vertex from each super-node in the separator of G̃ forms

a d-covering set of the corresponding separator of the original graph, since each super-node has
diameter at most d. This completes the proof of Lemma 31.

Remark 32. We note that from Kuratowski’s theorem [37], each planar graph is K5-minor-free.
Therefore, Lemma 31 directly implies that each connected n-vertex planar graph has a separator with
a d-covering of size O(

√
n/d) for any 1 ≤ d ≤ n.

Lemma 33. For any two vertices a and b in a graph X , and za, zb ∈ Z, where Z is a k-covering of
X , such that the hop distance between a (resp. b) and za (zb) is at most k, we have:

|d(a, b)− d(za, zb)| ≤ 2k ·W
where W is the maximum weight of edges in the graph.

Proof. The lemma follows using the following set of inequalities: |d(a, b)−d(za, zb)| ≤ |d(za, zb)+
d(a, za) + d(b, zb)− d(za, zb)| ≤ 2k ·W.

The following lemmas are used to derive the error bound of the recursion based on two different types
of separators.
Lemma 34. Fix any s, t ∈ Vb, we have:

db(s, t) = min{db◦0(s, t), db◦1(s, t)}
or

db(s, t) ≤ min
x,y∈Sk

b

(db◦0(s, x) + db(x, y) + db◦1(y, t)) + 2kW.

Proof. The proof is based on Lemma 33 and the proof of Lemma 22. Without loss of generality,
assume that either both s, t ∈ Vb◦0, or s ∈ Vb◦0 and t ∈ Vb◦1 (otherwise, we switch s and t, and the
proof for s, t ∈ Vb◦1 is symmetric)

1. When both s, t /∈ Sk
b . The proof is the same as the proof of the proof of Lemma 22.

2. When at least one of s, t is in Sk
b . By the construction of Gk

b◦a such that

Gk
b◦a = (V ′

b◦a ∪ Sk
b , E(Vb◦a ∪ Sk

b )\E(Sk
b )),

we have

min
x,y∈Sk

b

(db◦0(s, x) + db(x, y) + db◦1(y, t)) ≤ min
x,y∈Sb

db◦0(s, x) + db(x, y) + db◦1(y, t) + 2kW

Combining Equation (3), Equation (4) and Equation (5) completes the proof in this case.

Lemma 35. Let Sb′ and Sb be two adjacent separators, where b = b′ ◦ u for u ∈ {0, 1}. Then for
any x ∈ Sb, a ∈ {0, 1}n, and y ∈ Sb′ , we have:

db(x, y) ≤ min
z∈Sk

b

db(x, z) + db◦a(z, y) ≤ db(x, y) + 2kW.

Recall that Sk
b is as defined in Step 4 of Algorithm 4.

Proof. Let P = (v1 = x, v2, · · · , vk = y) be any shortest path from x to y, and let w be the last
vertex in P such that w ∈ Sb. Such w exists since x ∈ Sb. Then,

db(x, y) = db(x,w) + db(w, y) = db(x,w) + db◦a(w, y) ≥ min
z∈Sb

db(x, z) + db◦a(z, y)

≥ min
z∈Sk

b

db(x, z) + db◦a(z, y)− 2kW.
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On the other hand,
db(x, y) ≤ min

z∈Sk
b

db(x, z) + db(z, y) ≤ min
z∈Sk

b

db(x, z) + db◦a(z, y)

due to the triangle inequality and the fact that db(z, y) ≤ db◦a(z, y). This completes the proof.

Next, we write σ′
1 = c ·

√
2 log(1.25/δ′)/ε′ and σ′

2 = f(p, k) ·
√
2 log(1.25/δ′)/ε′.

Lemma 36. Let h, p, k, c, γ be as before and

g(p, k, c, γ, h) :=

√
h+ 3 ln(max{f(p, k), c}) + ln

(
1

2γ

)
.

With probability at least 1− γ, the following holds for Algorithm 4:

1. For any s, t, b where |b| = h and that IsShortcut(s, t, b) = True,

|db(s, t)− d̂b(s, t)| ≤
√
2σ′

1 · g(p, k, c, γ, h).

2. For any s, t, b where |b| < h and that IsShortcut(s, t, b) = True,

|db(s, t)− d̂b(s, t)| ≤
√
2σ′

2 · g(p, k, c, γ, h).

Proof. The proof is analogous to that of Lemma 25 in Appendix B. In particular, for any s, t, b

with IsShortcut(s, t, b) = True and Gb is a leaf node, the difference in d̂b(s, t) and db(s, t) is a
Gaussian noise with variance σ′

1, and thus

Pr
[
db(s, t)− d̂b(s, t) ≥ z

]
≤ γ

m

if we choose z =
√
2σ′

1

√
log(m/(2γ)) for any m ≥ 1 and 0 < γ < 1. Also, if Gb is not a leaf node,

then according to Algorithm 4, we have

Pr
[
db(s, t)− d̂b(s, t) ≥ σ′

2

√
2 logm/(2γ)

]
≤ γ

m
.

The number of noises added in Algorithm 4 is bounded by m = 5 · 2h ·max{(f(p, k))2, c2}. Then,
Lemma 36 can be proved by the union bound.

To prove the utility guarantee for Algorithm 4, we now state the following error bound which follows
directly from Lemma 34, Lemma 35 and Lemma 36.
Lemma 37. Fix any 0 < ε, δ < 1, and n, p ∈ N. For any planar graph G = ([n], E, w) that is
(p, q, q′)-recursively separable for some constants 1

2 ≤ q ≤ q′ < 1, there is an (ε, δ)-algorithm for
estimating all-pair shortest distances in G such that with high probability,

|d̂(s, t)− d(s, t)| ≤ O

(
f(p, k) · log2 n log(n/δ)

ε
+ kW

)
.

By applying Lemma 31 to bound f(p, k) in Lemma 37, we are now ready to present the proof of the
error bound stated in Theorem 9.

Proof Of Theorem 9. The privacy guarantee follows from Theorem 28. Now we give the proof for
the utility guarantee.

(1) For a grid graph, let p =
√
n, the decomposition described in Section 3 gives that f(p, k) =

O(n1/4
√
Wε) when k = n1/4/

√
Wε. Then, the result can be obtained by substituting this into

Lemma 37. This choice of parameters is optimal due to the arithmetic-geometric mean inequality.

(2) For a Kh-minor-free graph, we choose k = O( n1/3

(εW )2/3
) to balance the number of hops required to

reach the covering set for each vertex in the separator and the size of the k-covering of the separator.
In this case, from Lemma 31, we have f(p, k) = O(h · (nWε)

1/3
). Then, the desired result follows

by substituting this into Lemma 37.
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D The Complete Pseudocode of Algorithm 4

Algorithm 4: Constructing private shortcuts via sub-sampling in separator.
Input: Graph G = (V,E,w), private parameter ε, δ, sampling parameter k.
1. Recursively construct a binary tree T as described in this section.
2. Set h = log1/q′(n/c), ε

′ = ε/
√
4h log(1/δ′), and δ′ = δ/(4h).

3. Let σ = f(p, k)
√

2 log(1.25/δ′)/ε′.
4. for non-leaf node (Gb, Sb) ∈ V (T ) do

Find a k-covering set of Sb and let it be Sk
b .

for x, y ∈ Sk
b such that x ̸= y do

IsShortcut(x, y, b) = True.
Let d̂b(x, y) = db(x, y) +N (0, σ2).

end
if b ̸= ∅ then

Let b′ be the binary string that removes the last bit in b.
Find a k-covering set of Sb′ and let it be Sk

b′ .
for (x, y) ∈ Sk

b′ × Sk
b do

if x, y /∈ Sk
b′ ∩ Sk

b then
IsShortcut(x, y, b′) = True.
Let d̂b(x, y) = db(x, y) +N (0, σ2).

end
end

end
end
5. for leaf node (Gb, -) ∈ V (T ) do

for x, y ∈ Vb such that x ̸= y do
IsShortcut(x, y, b) = True.

Let d̂b(x, y) = db(x, y) +N
(
0, 2c2 log(1.25/δ′)

(ε′)2

)
.

end
end
Output :The binary tree T , and d̂b(u, v) for all u, v ∈ V and b ∈ {0, 1}∗ such that

IsShortcut(x, y, b) = True.

E Empirical Simulation

Here, we present a numerical example over varying graph scales to validate our theoretical results
and to conduct an empirical comparison between the utility of our algorithms and that of existing
methods. In particular, for a given graph size n ∈ N+, we consider a (

√
⌈n⌉ ×

√
⌈n⌉) grid graph,

where edge weights are either uniformly sampled from a given range that can be defined as functions
of the graph size. For comparison, we consider two previous algorithms that are specifically designed
for grid graphs:

1. The algorithm by Sealfon [42] constructs an O(n1/3)-sized covering set for the entire grid
graph, and then applies output perturbation to approximate the distances between every pair
of points within the covering set.

2. Another approach is to first release all edge lengths using the Laplace mechanism. The
length of a shortest path is then estimated using at most O(n1/3) noisy edges, combined
with the k-covering scheme from Sealfon [42] to eliminate the dependency on the edge
weights. This idea was firstly introduced by Chen et al. [12].

To thoroughly examine the performance of these algorithms across different grid graphs, we designed
two sets of empirical simulations shown in Figure 1: the low-weight scenario and the large-weight
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scenario. In the low-weight scenario, each edge weight is uniformly sampled from [0, 1], whereas
in the large-weight scenario, each edge weight is sampled from [0, n0.1]. In all experiments, we set
ε = 1 and δ = n−10. Each test is repeated 50 times on MacBook M1 air, and the results are averaged.
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Figure 1: Numerical simulations across various graph scales.
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