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ABSTRACT

Recently, Transformer-based and MLP-based models have emerged rapidly and
won dominance in time series analysis. In contrast, convolution is losing steam
in time series tasks nowadays for inferior performance. This paper studies the
open question of how to better use convolution in time series analysis and makes
efforts to bring convolution back to the arena of time series analysis. To this end,
we modernize the traditional TCN and conduct time series related modifications
to make it more suitable for time series tasks. As the outcome, we propose
ModernTCN and successfully solve this open question through a seldom-explored
way in time series community. As a pure convolution structure, ModernTCN still
achieves the consistent state-of-the-art performance on five mainstream time series
analysis tasks while maintaining the efficiency advantage of convolution-based
models, therefore providing a better balance of efficiency and performance than
state-of-the-art Transformer-based and MLP-based models. Our study further
reveals that, compared with previous convolution-based models, our ModernTCN
has much larger effective receptive fields (ERFs), therefore can better unleash the
potential of convolution in time series analysis. Code is available at this repository:
https://github.com/luodhhh/ModernTCN.

1 INTRODUCTION

Time series analysis is widely used in extensive applications, such as industrial forecasting (Zhou
et al., 2021), missing value imputation (Friedman, 1962), action recognition (Ye & Keogh, 2009),
and anomaly detection (Xu et al., 2021). Because of the immense practical value, the past few years
have witnessed the rapid development in time series analysis(Wen et al., 2022; Lim & Zohren, 2021).
Among them, the rise of Transformer-based methods and MLP-based models is especially compelling
(Nie et al., 2023; Zhang & Yan, 2023; Zhou et al., 2022; Cirstea et al., 2022; Wu et al., 2021; Liu
et al., 2021a; Li et al., 2019b; Kitaev et al., 2020; Vaswani et al., 2017) (Li et al., 2023b; Zhang et al.,
2022; Zeng et al., 2022). But around the same time, convolution-based models have received less
attention for a long time.

It’s non-trivial to use convolution in time series analysis for it provides a better balance of
efficiency and performance. Date back to the 2010s, TCN and its variants (Bai et al., 2018; Sen et al.,
2019) are widely-used in many time series tasks. But things have changed in 2020s. Transformer-
based models and MLP-based models have emerged rapidly and achieved impressive performance
in recent years. Thanks to their global effective receptive fields (ERFs), they can better capture the
long-term temporal (cross-time) dependency and thus outperform traditional TCNs by a significant
margin. As a result, convolution-based models are losing steam nowadays due to their limited ERFs.

Some previous convolution-based models (Wang et al., 2023; Liu et al., 2022a) try to bring convolution
back to the arena of time series analysis. But they mainly focus on designing extra sophisticated struc-
tures to work with the traditional convolution, ignoring the importance of updating the convolution
itself. And they still cannot achieve comparable performance to the state-of-the-art Transformer-based
and MLP-based models. The reason behind can be explained by Figure 1. Increasing the ERF is the
key to bringing convolution back to time series analysis. But previous convolution-based models
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Figure 1: The Effective Receptive Field (ERF) of ModernTCN and previous convolution-based
methods. A more widely distributed light area indicates a larger ERF. Our ModernTCN can obtain a
much larger ERF than previous convolution-based methods. Meanwhile, enlarging the kernel size is
a more effective way to obtain large ERF than stacking more small kernels.

still have limited ERFs, which prevents their further performance improvements. How to better use
convolution in time series analysis is still a non-trivial and open question.

As another area where convolution is widely used, computer vision (CV) took a very different path to
explore the convolution. Unlike recent studies in time series community, lastest studies in CV focus
on optimizing the convolution itself and propose modern convolution (Liu et al., 2022d; Ding et al.,
2022; Liu et al., 2022b). Modern convolution is a new convolution paradigm inspired by Transformer.
Concretely, modern convolution block incorporates some architectural designs in Transformer and
therefore has a similar structure to Transformer block (Figure 2 (a) and (b)). Meanwhile, to catch
up with the gloabal ERF in Transformer, modern convolution usually adopat a large kernel as it can
effectively increase the ERF (Figure 1). Although the effectiveness of modern convolution has been
demonstrated in CV, it has still received little attention from the time series community. Based on
above findings, we intend to first modernize the convolution in time series analysis to see whether it
can increase the ERF and bring performance improvement.

Besides, convolution is also a potentially efficient way to capture cross-variable dependency. Cross-
variable dependency is another critical dependency in time series in addition to the cross-time one.
It refers to the dependency among variables in multivariate time series. And early study(Lai et al.,
2018b) has already tried to use convolution in variable dimension to capture the cross-variable
dependency. Although its performance is not that competitive nowadays, it still demonstrates the
feasibility of convolution in capturing cross-variable dependency. Therefore, it’s reasonable to believe
that convolution can become an efficient and effective way to capture cross-variable dependency after
proper modifications and optimizations.

Based on above motivations, we take a seldom-explored way in time series community to successfully
bring convolution-based models back to time series analysis. Concretely, we modernize the traditional
TCN and conduct some time series related modifications to make it more suitable for time series tasks.
As the outcome, we propose a modern pure convolution structure, namely ModernTCN, to efficiently
utilize cross-time and cross-variable dependency for general time series analysis. We evaluate
ModernTCN on five mainstream analysis tasks, including long-term and short-term forecasting,
imputation, classification and anomaly detection. Surprisingly, as a pure convolution-based model,
ModernTCN still achieves the consistent state-of-the-art performance on these tasks. Meanwhile,
ModernTCN also maintains the efficiency advantage of convolution-based models, therefore providing
a better balance of efficiency and performance. Our contributions are as follows:

• We dive into the question of how to better use convolution in time series and propose a
novel solution. Experimental results show that our method can better unleash the potential
of convolution in time series analysis than other existing convolution-based models.

• ModernTCN achieves the consistent state-of-the-art performance on multiple mainstream
time series analysis tasks, demonstrating the excellent task-generalization ability.

• ModernTCN provides a better balance of efficiency and performance. It maintains the
efficiency advantage of convolution-based models while competing favorably with or even
better than state-of-the-art Transformer-based models in terms of performance.

2 RELATED WORK

2.1 CONVOLUTION IN TIME SERIES ANALYSIS

Convolution used to be popular in time series analysis in 2010s. For example, TCN and its variants
(Bai et al., 2018; Sen et al., 2019; Franceschi et al., 2019) adopt causal convolution to model the

2



Published as a conference paper at ICLR 2024

Figure 2: ModernTCN block design. M ,N ,D are sizes of variable, temporal and feature dimensions.
DWConv and PWConv are short for depth-wise and point-wise convolution (2017). Groups is the
group number in group convolution (2018). BN and GeLU (2015; 2016) are adpoted in our design.

temporal causality. But they suffer from the limited ERFs. With the rapid development of Transformer-
based and MLP-based models, convolution has received less attention in recent years. Some studies
try to bring convolution back to time series community. MICN (Wang et al., 2023) goes beyond causal
convolution and proposes a multi-scale convolution structure to combine local features and global
correlations in time series. SCINet (Liu et al., 2022a) removes the idea of causal convolution and
introduces a recursive downsample-convolve-interact architecture to model time series with complex
temporal dynamics. But they still have difficulty in modeling long-term dependency due to the limited
ERFs. TimesNet (Wu et al., 2023) is special in the family of convolution-based models. Different
from other models that mainly use 1D convolution, it transforms 1D time series into 2D-variations
and uses 2D convolution backbones in CV to obtain informative representations.

2.2 MODERN CONVOLUTION IN COMPUTER VISION

Convolutional neural networks (ConvNets) (Krizhevsky et al., 2017; Simonyan & Zisserman, 2014;
He et al., 2015; Xie et al., 2017; Huang et al., 2017) used to be the dominant backbone architectures
in CV. But in 2020s, Vision Transformers (ViTs) (Dosovitskiy et al., 2020; Liu et al., 2021b)
are proposed and outperform previous standard ConvNets. To catch up with the performance
of ViTs, modern convolution in 2020s are introduced. Inspried by the architectural designs in
Transformers, ConvNeXt(Liu et al., 2022d) re-design the convolution block to make it more similar
to the Transformer block. To further catch up with the global ERF of Transformers, RepLKNet
(Ding et al., 2022) scales the kernel size to 31×31 with the help of Structural Reparameter technique.
Further more, SLaK (Liu et al., 2022b) enlarges the kernel size to 51×51 by decomposing a large
kernel into two rectangular, parallel kernels and by using dynamic sparsity. Inspired by above studies,
we modernize and modify 1D convolution in time series community to make it more suitable for time
series analysis tasks.

3 MODERNTCN

In this section, we first provide a design roadmap for ModernTCN block to introduce how we
modernize and optimize the traditional 1D convolution block in time series community. Then we
introduce the overall structure of ModernTCN. And more related details are in Appendix G.

3.1 MODERNIZE THE 1D CONVOLUTION BLOCK

Following the idea of (Liu et al., 2022d), we firstly re-design the 1D convolution block as shown
in Figure 2 (b). DWConv is responsible for learning the temporal information among tokens on a
per-feature basis, which plays the same role as the self-attention module in Transformer. ConvFFN
is similar to the FFN module in Transformer. It consists of two PWConvs and adopts an inverted
bottleneck structure, where the hidden channel of the ConvFFN block is r times wider than the input
channel. This module is to learn the new feature representation of each token independently.

Above design leads to a separation of temporal and feature information mixing. Each of DWConv
and ConvFFN only mixes information across one of the temporal or feature dimension, which is
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differnet from the traditional convolution that jointly mixes information on both dimensions. This
decoupling design can make the object tasks easier to learn and reduce the computational complexity.

Based on above design, we borrow from the success of CV and modernize the 1D convolution. But we
find that simply modernizing the convolution in the same way as CV brings little to no performance
improvement in time series tasks. In fact, above design does not take into account the characteristics
of time series. In addition to feature dimension and temporal dimension, time series also has a
variable dimension. But the backbone stacked by convolution blocks as designed in Figure 2 (b)
cannot handle the variable dimension properly. Since cross-variable information is also critical in
multivariate time series (Zhang & Yan, 2023; Li et al., 2023b), more time series related modifications
are still needed to make the modern 1D convolution more suitable for time series analysis.

3.2 TIME SERIES RELATED MODIFICATIONS

Maintaining the Variable Dimension In CV, before the backbone, we embed 3 channel RGB
features at each pixel into a D-dimensional vector to mix the information from RGB channels via the
embedding layer. But the similar variable-mixing embedding (e.g., simply embed M variables into
a D-dimensional vector per time step) is not suitable for time series. Firstly, the difference among
variables in time series is much greater than that among RGB channels in a picture (Cirstea et al.,
2022). Just an embedding layer fails to learn the complex dependency across variables and even loses
the independent characteristics of variables for not considering their different behaviors. Secondly,
such embedding design leads to the discard of variable dimension, making it unable to further study
the cross-variable dependency. To this issue, we propose patchify variable-independent embedding.

We denote Xin ∈ RM×L as the M variables input time series of length L and will further divide it
into N patches of patch size P after proper padding (Padding details are in Appendix B). The stride
in the patching process is S, which also serves as the length of non overlapping region between two
consecutive patches. Then the patches will be embedded into D-dimensional embedding vectors:

Xemb = Embedding(Xin) (1)
Xemb ∈ RM×D×N is the input embedding. Different from previous studies (Nie et al., 2023; Zhang
& Yan, 2023), we conduct this patchify embedding in an equivalent fully-convolution way for a
simpler implementation. After unsqueezing the shape to Xin ∈ RM×1×L, we feed the padded Xin

into a 1D convolution stem layer with kernel size P and stride S. And this stem layer maps 1 input
channel into D output channels. In above process, each of the M univariate time series is embedded
independently. Therefore, we can keep the variable dimension. And followings are modifications to
make our structure able to capture information from the additional variable dimension.

DWConv DWConv is originally designed for learning the temporal information. Since it’s more
difficult to jointly learn the cross-time and cross-variable dependency only by DWConv, it’s in-
appropriate to make DWConv also responsible for mixing information across variable dimension.
Therefore, we modify the original DWConv from only feature independent to both feature and variable
independent, making it learn the temporal dependency of each univariate time series independently.
And we adopt large kernel in DWConv to increase ERFs and improve the temporal modeling ability.

ConvFFN Since DWConv is feature and variable independent, ConvFFN should mix the informa-
tion across feature and variable dimensions as a complementary. A naive way is to jointly learn the
dependency among features and variables by a single ConvFFN. But such method leads to higher
computational complexity and worse performance. Therefore, we further decouple the single Con-
vFFN into ConvFFN1 and ConvFFN2 by replacing the PWConvs with grouped PWConvs and setting
different group numbers. The ConvFFN1 is responsible for learning the new feature representations
per variable and the ConvFFN2 is in charge of capturing the cross-variable dependency per feature.

After above modifications, we have the final ModernTCN block as shown in Figure 2 (d). And each
of DWConv, ConvFFN1 and ConvFFN2 only mixes information across one of the temporal, feature
or variable dimension, which maintains the idea of the decoupling design in modern convolution.

3.3 OVERALL STRUCTURE

After embedding, Xemb is fed into the backbone to capture both the cross-time and cross-variable
dependency and learn the informative representation Z ∈ RM×D×N :

Z = Backbone(Xemb) (2)
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Backbone(·) is the stacked ModernTCN blocks. Each ModernTCN block is organized in a residual
way (He et al., 2015). The forward process in the i-th ModernTCN block is:

Zi+1 = Block(Zi) + Zi (3)

Where Zi ∈ RM×D×N , i ∈ {1, ...,K} is the i-th block’s input,

Zi =

{
Xemb , i = 1

Block(Zi−1) + Zi−1 , i > 1
(4)

Block(·) denotes the ModernTCN block. Then the final represnetation Z = Block(ZK) + ZK will
be further used for multiple time series analysis tasks. See Appendix B for pipelines of each task.

4 EXPERIMENTS

We evaluate ModernTCN on five mainstream analysis tasks, including long-term and short-term
forecasting, imputation, classification and anomaly detection to verify the generality of ModernTCN.

Baselines Since we attempt to propose a foundation model for time series analysis, we extensively
include the latest and advanced models in time series community as basic baselines, which includes
the Transformer-based models: PatchTST (2023), Crossformer (2023) and FEDformer (2022); MLP-
based models: MTS-Mixer (2023b), LightTS (2022), DLinear (2022), RLinear and RMLP (2023a);
Convolution-based Model: TimesNet (2023), MICN (2023) and SCINet (2022a). We also include the
state-of-the-art models in each specific task as additional baselines for a comprehensive comparison.

Main Results As shown in Figure 3, ModernTCN achieves consistent state-of-the-art perfor-
mance on five mainstream analysis tasks with higher efficiency. Detailed discussions about
experimental results are in Section 5.1. We provide the experiment details and results of each task in
following subsections. In each table, the best results are in bold and the second best are underlined.

Figure 3: Model performance comparison (left) and efficiency comparison (right).

4.1 LONG-TERM FORECASTING

Setups We conducted long-term forecasting experiments on 9 popular real-world benchmarks,
including Weather (Wetterstation), Traffic (PeMS), Electricity (UCI), Exchange (Lai et al., 2018a),
ILI (CDC) and 4 ETT datasets (Zhou et al., 2021). Following (Nie et al., 2023; Zhang & Yan, 2023),
we re-run all baselines with various input lengths and choose the best results to avoid under-estimating
the baselines and provide a fairer comparison. We calculate the MSE and MAE of multivariate time
series forecasting as metrics.

Results Table 1 shows the excellent performance of ModernTCN in long-term forecasting. Con-
cretely, ModernTCN gains most of the best performance in above 9 cases, surpassing extensive
state-of-the-art MLP-based and Transformer-based models. It competes favorably with the best
Transformer-based model PatchTST in terms of performance while having faster speed and less
memory usage (Figure 3 right), therefore providing a better balance of performance and efficiency.
It’s notable that ModernTCN surpasses existing convolution-based models by a large margin (27.4%
reduction on MSE and 15.3% reduction on MAE), indicating that our design can better unleash the
potential of convolution in time series forecasting.
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Table 1: Long-term forecasting task. All the results are averaged from 4 different prediction lengths,
that is {24, 36, 48, 60} for ILI and {96, 192, 336, 720} for the others. A lower MSE or MAE indicates
a better performance. See Table 27 in Appendix for the full results with more baselines.

Models ModernTCN PatchTST Crossformer FEDformer MTS-Mixer RLinear DLinear TimesNet MICN SCINet
(Ours) (2023) (2023) (2022) (2023b) (2023a) (2022) (2023) (2023) (2022a)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.404 0.420 0.413 0.431 0.441 0.465 0.428 0.454 0.430 0.436 0.408 0.421 0.423 0.437 0.458 0.450 0.433 0.462 0.460 0.462

ETTh2 0.322 0.379 0.330 0.379 0.835 0.676 0.388 0.434 0.386 0.413 0.320 0.378 0.431 0.447 0.414 0.427 0.385 0.430 0.371 0.410

ETTm1 0.351 0.381 0.351 0.381 0.431 0.443 0.382 0.422 0.370 0.395 0.358 0.376 0.357 0.379 0.400 0.406 0.383 0.406 0.387 0.411

ETTm2 0.253 0.314 0.255 0.315 0.632 0.578 0.292 0.343 0.277 0.325 0.256 0.314 0.267 0.332 0.291 0.333 0.277 0.336 0.294 0.355

Electricity 0.156 0.253 0.159 0.253 0.293 0.351 0.207 0.321 0.173 0.272 0.169 0.261 0.177 0.274 0.192 0.295 0.182 0.292 0.195 0.281

Weather 0.224 0.264 0.226 0.264 0.230 0.290 0.310 0.357 0.235 0.272 0.247 0.279 0.240 0.300 0.259 0.287 0.242 0.298 0.287 0.317

Traffic 0.396 0.270 0.391 0.264 0.535 0.300 0.604 0.372 0.494 0.354 0.518 0.383 0.434 0.295 0.620 0.336 0.535 0.312 0.587 0.378

Exchange 0.302 0.366 0.387 0.419 0.701 0.633 0.478 0.478 0.373 0.407 0.345 0.394 0.297 0.378 0.416 0.443 0.315 0.404 0.435 0.445

ILI 1.440 0.786 1.443 0.798 3.361 1.235 2.597 1.070 1.555 0.819 4.269 1.490 2.169 1.041 2.139 0.931 2.567 1.055 2.252 1.021

Table 2: Short-term forecasting task. Results are weighted averaged from several datasets under
different sample intervals. Lower metrics indicate better performance. See Table 28 for full results.

Models ModernTCN CARD PatchTST Crossformer FEDformer MTS-Mixer RLinear DLinear TimesNet MICN SCINet N-HiTS N-BEATS
(Ours) (2023) (2023) (2023) (2022) (2023b) (2023a) (2022) (2023) (2023) (2022a) (2023) (2019)

SMAPE 11.698 11.815 11.807 13.474 12.840 11.892 12.473 13.639 11.829 13.130 12.369 11.927 11.851
MASE 1.556 1.587 1.590 1.866 1.701 1.608 1.677 2.095 1.585 1.896 1.677 1.613 1.599
OWA 0.838 0.850 0.851 0.985 0.918 0.859 0.898 1.051 0.851 0.980 0.894 0.861 0.855

4.2 SHORT-TERM FORECASTING

Setups We adopt M4 dataset (Makridakis et al., 2018) as the short-term forecasting benchmark.
Following (Wu et al., 2023), we fix the input length to be 2 times of prediction length and calculate
Symmetric Mean Absolute Percentage Error (SMAPE), Mean Absolute Scaled Error (MASE) and
Overall Weighted Average (OWA) as metrics. We include additional baselines like CARD (2023),
N-BEATS (2019) and N-HiTS (2023) for this specific task. Since the M4 dataset only contains
univariate time series, we remove the cross-variable component in ModernTCN and Crossformer.

Results The results are summarized in Table 2. Short-term forecasting in M4 dataset is a much
more challenging task because the time series samples are collected from different sources and have
quite different temporal properties. Our ModernTCN still achieves the consistent state-of-the-art in
this difficult task, demonstrating its excellent temporal modeling ability.

4.3 IMPUTATION

Setups Imputation task aims to impute the missing values based on the partially observed time series.
Due to unexpected accidents like equipment malfunctions or communication error, missing values
in time series are very common. Since missing values may harm the performance of downstream
analysis, imputation task is of high practical value. Following (Wu et al., 2023), we mainly focus on
electricity and weather scenarios where the data-missing problem happens commonly. We select the
datasets from these scenarios as benchmarks, including ETT (Zhou et al., 2021), Electricity (UCI) and
Weather (Wetterstation). We randomly mask the time points in ratios of {12.5%, 25%, 37.5%, 50%}
to compare the model capacity under different proportions of missing data.

Results Table 3 shows the compelling performance of ModernTCN in imputation tasks. Mod-
ernTCN achieves 22.5% reduction on MSE and 12.9% reduction on MAE compared with previous
state-of-the-art baseline TimesNet (2023). Due to the missing values, the remaining observed time
series is irregular, making it more difficult to capture cross-time dependency. Our ModernTCN still
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Table 3: Imputation task. We randomly mask {12.5%, 25%, 37.5%, 50%} time points in length-96
time series. The results are averaged from 4 different mask ratios. A lower MSE or MAE indicates a
better performance. See Table 29 in Appendix for full results with more baselines.

Models ModernTCN PatchTST Crossformer FEDformer MTS-Mixer RLinear DLinear TimesNet MICN SCINet
(Ours) (2023) (2023) (2022) (2023b) (2023a) (2022) (2023) (2023) (2022a)

Averaged MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.020 0.093 0.045 0.133 0.041 0.143 0.062 0.177 0.056 0.154 0.070 0.166 0.093 0.206 0.027 0.107 0.070 0.182 0.039 0.129

ETTm2 0.019 0.082 0.028 0.098 0.046 0.149 0.101 0.215 0.032 0.107 0.032 0.108 0.096 0.208 0.022 0.088 0.144 0.249 0.027 0.102

ETTh1 0.050 0.150 0.133 0.236 0.132 0.251 0.117 0.246 0.127 0.236 0.141 0.242 0.201 0.306 0.078 0.187 0.125 0.250 0.104 0.216

ETTh2 0.042 0.131 0.066 0.164 0.122 0.240 0.163 0.279 0.069 0.168 0.066 0.165 0.142 0.259 0.049 0.146 0.205 0.307 0.064 0.165

Electricity 0.073 0.187 0.091 0.209 0.083 0.199 0.130 0.259 0.089 0.208 0.119 0.246 0.132 0.260 0.092 0.210 0.119 0.247 0.086 0.201

Weather 0.027 0.044 0.033 0.057 0.036 0.090 0.099 0.203 0.036 0.058 0.034 0.058 0.052 0.110 0.030 0.054 0.056 0.128 0.031 0.053

achieves the best performance in this challenging task, verifying the model capacity in capturing
temporal dependency under extremely complicated situations.

It’s also notable that cross-variable dependency plays a vital role in imputation task. Since in some
time steps, only part of the variables are missing while others are still remaining, utilizing the
cross-variable dependency between missing variables and remaining variables can help to effectively
impute the missing values. Therefore, some variable-independent methods like PatchTST (2023) and
DLinear (2022) fail in this task for not taking cross-variable dependency into consideration.

4.4 CLASSIFICATION AND ANOMALY DETECTION

Figure 4: Results of classification and anomaly detection. The results are averaged from several
datasets. Higher accuracy and F1 score indicate better performance. ∗. in the Transformer-based
models indicates the name of ∗former. See Table 30 and 31 in Appendix for full results.

Setups For classification, we select 10 multivariate datasets from UEA Time Series Classification
Archive (Bagnall et al., 2018) for benchmarking and pre-process the datasets following (Wu et al.,
2023). We include some task-specific state-of-the-art methods like LSTNet (2018b), Rocket (2020)
and Flowformer (2022) as additional baselines.

For anomaly detection, we compare models on five widely-used benchmarks: SMD (Su et al., 2019),
SWaT (Mathur & Tippenhauer, 2016), PSM (Abdulaal et al., 2021), MSL and SMAP (Hundman
et al., 2018). We include Anomaly transformer (2021) as additional baselines. Following it, we adopt
the classical reconstruction task and choose the reconstruction error as the anomaly criterion.

Results Time series classification is a classic task in time series community and reflects the
model capacity in high-level representation. As shown in Figure 4, ModernTCN achieves the best
performance with an average accuracy of 74.2% . It’s notable that some MLP-based models fail in
classification tasks. This is because MLP-based models prefer to discard the feature dimension to
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obtain a lightweight backbone, which leads to the insufficient representation capability and inferior
classification performance. Anomaly detection results are shown in Figure 4. ModernTCN achieves
competitive performance with previous state-of-the-art baseline TimesNet (2023). Meanwhile,
compared with TimesNet, ModernTCN saves 55.1% average training time per epoch (3.19s vs
7.10s) in classification task and saves 57.3% average training time per epoch (132.65s vs 310.62s) in
anomaly detection task, providing a better balance of efficiency and performance in both tasks.

5 MODEL ANALYSIS

5.1 COMPREHENSIVE COMPARISON OF PERFORMANCE AND EFFICIENCY

Summary of Experimental Results ModernTCN achieves consistent state-of-the-art performance
on five mainstream analysis tasks compared with other task-specific models or previous state-of-the-
art baselines, demonstrating its excellent task-generality and highlighting the potential of convolution
in time series analysis (Figure 3 left). ModernTCN also has more advantage in efficiency, therefore
providing a better balance of efficiency and performance (Figure 3 right). It’s worth noting that our
method surpasses existing convolution-based models by a large margin, indicating that our design
can provide a better solution to the problem of how to better use convolution in time series analysis.

Compared with Transformer-based and MLP-based Models Unlike previous convolution-based
models, ModernTCN competes favorably with or even better than state-of-the-art Transformer-based
models in terms of performance. Meanwhile, as a pure convolution model, ModernTCN has higher
efficiency than Transformer-based models. As shown in Figure 3 right, ModernTCN has faster
training speed and less memory usage, which demonstrates the efficiency superiority of our model.

ModernTCN outperforms all MLP-based baselines in all five tasks thanks to the better representation
capability in ModernTCN blocks. In contrast, MLP-based models prefer to adopt a lightweight
backbone for a smaller memory usage. But such design in MLP-based models also leads to the insuf-
ficient representation capability and inferior performance. Although ModernTCN is sightly inferior
in memory usage, it still has almost the same running time efficiency as some MLP-based baselines
thanks to the fast floating point operation speed in convolution. Considering both performance and
efficiency, ModernTCN has more advantage in general time series analysis.

Compared with TimesNet (2023) In addition to ModernTCN, TimesNet also demonstrates excel-
lent generality in five mainstream tasks. It’s worth noting that both models are convolution-based
models, which further reveals that convolution has a better comprehensive ability in time series
analysis. Meanwhile, both methods are inspired by CV and intend to make the time series
analysis take advantage of the development of CV community. But the two methods take different
paths to accomplish this goal. TimesNet makes efforts to transform the 1D time series into 2D space,
making the time series can be modeled by the 2D ConvNets in CV community. But the additional data
transformation and aggregation modules also bring extra memory usage and slower training speed.
Different from TimesNet, our ModernTCN maintains the 1D time series and turns to modernize
and optimize the 1D convolution in time series community. Therefore, we design a modern pure
convolution structure that without any additional modules. The fully-convolutional nature in our
design brings higher efficiency and makes it extremely simple to implement, therefore leading to the
both performance and efficiency superiority than TimesNet (Figure 3 left and right).

5.2 ANALYSIS OF EFFECTIVE RECEPTIVE FIELD (ERF)

Enlarging the ERF is the key to bring convolution back to time series analysis. In this section, we will
discuss why ModernTCN can provide better performance than previous convolution-based models
from the perspective of ERF. Firstly, rather than stacking more layers like other traditional TCNs
(2018), ModernTCN increases the ERF by enlarging the kernel size. And in a pure convolution
structure, enlarging the kernel size is a much more effective way to increases ERF. According to the
theory of ERF in pure convolution-based models (Luo et al., 2016), ERF is proportion to O(ks×

√
nl),

where ks and nl refers to the kernel size and the number of layers respectively. ERF grows linearly
with the kernel size while sub-linearly with the layer number. Therefore, by enlarging the kernel size,
ModernTCN can easily obtain a larger ERF and further bring perfomance improvement.
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Except for enlarging the kernel size and stacking more layers, some previous convolution-based
methods in time series community (MICN (2023) and SCINet (2022a)) prefer to adopt some sophisti-
cated structures to cooperate with the traditional convolution, intending to enlarge their ERFs. Since
they are not pure convolution structures, it’s hard to analyse their ERFs theoretically. Therefore, we
visualize the ERFs of these methods for intuitive comparision. Following (Kim et al., 2023), we
sample 50 length-336 input time series from the validation set in ETTh1 for the visualization. The
idea behind is to visualize how many points in the input series can make contribution to the middle
point of the final feature map. As shown in Figure 1, our method can obtain a much larger ERF
than previous convolution-based methods. Therefore our method can better unleash the potential of
convolution in time series and sucessfully bring performance improvements in multiple time series
analysis tasks.

5.3 ABLATION STUDY

Ablation of ModernTCN Block Design To validate the effectiveness of our design in ModernTCN
block, we conduct ablation study in long-term forecasting tasks. Results are shown on Table 4.
Discard Variable Dimension cannot provide ideal performance, which confirms our arguement that
simply modernizing the convolution in the same way as CV could not bring performance improvement
for omitting the importance of variable dimension. To better handle the variable dimension, we
decouple a single ConvFFN into ConvFFN1 and ConvFFN2 in our design. As shown in Table 4, the
undecoupled ConvFFN provide the worst performance and the combination of our decoupled two
ConvFFNs (ConvFFN1+ConvFFN2) achieve the best, which proves the necessity and effectiveness
of our decouple modification to ConvFFN module. Please see Appendix H for more details.

Table 4: Ablation of ModernTCN block. We list the averaged MSE/MAE of different forecast lengths.
Dataset ETTh1 ETTh2 ETTm1 ETTm2 ECL Weather Exchange ILI

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ConvFFN1 + ConvFFN2 0.404 0.420 0.322 0.379 0.351 0.381 0.253 0.314 0.156 0.253 0.224 0.264 0.302 0.366 1.440 0.786
Undecoupled ConvFFN 0.425 0.440 0.341 0.391 0.370 0.395 0.278 0.332 0.169 0.269 0.260 0.288 0.323 0.378 1.813 0.875

only ConvFFN1 0.418 0.434 0.329 0.384 0.360 0.386 0.267 0.323 0.163 0.264 0.241 0.278 0.310 0.371 1.667 0.866
only ConvFFN2 0.416 0.438 0.330 0.384 0.359 0.385 0.268 0.325 0.164 0.265 0.249 0.283 0.312 0.371 1.874 0.882

ConvFFN1 + ConvFFN1 0.420 0.435 0.329 0.385 0.363 0.386 0.267 0.323 0.165 0.265 0.242 0.279 0.311 0.371 1.710 0.866
ConvFFN2 + ConvFFN2 0.417 0.437 0.330 0.383 0.362 0.384 0.269 0.325 0.165 0.265 0.254 0.285 0.311 0.371 1.831 0.884

Discard Variable Dimension 0.590 0.560 0.382 0.430 0.508 0.494 0.319 0.367 0.441 0.486 0.300 0.331 0.361 0.412 1.932 0.936

Ablation of Cross-variable Component As an important time series related modification in
our design, we design the ConvFFN2 as a cross-variable component to capture the cross-variable
dependency. We conduct ablation studies in imputation tasks and anomaly detection tasks. As shown
in Table 5, without the ConvFFN2 will cause severe performance degradation in these two tasks,
which emphasizes the importance of cross-variable dependency in time series analysis.

Table 5: Ablation of Cross-variable component.
Dataset ETTm1 ETTm2 ETTh1 ETTh2 ECL Weather

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Imputation
Ours 0.020 0.093 0.019 0.082 0.050 0.150 0.042 0.131 0.073 0.187 0.027 0.044

w/o Cross-variable 0.038 0.121 0.028 0.097 0.089 0.195 0.059 0.150 0.096 0.203 0.030 0.048
Promotion 47.4% 23.1% 32.1% 15.5% 43.8% 23.1% 28.8% 12.7% 24.0%% 7.9% 10.0% 8.3%

Dataset SMD MSL SMAP SWaT PSM

Metric F1-score F1-score F1-score F1-score F1-score

Anomaly
Detection

Ours 85.81 84.92 71.26 93.86 97.23
w/o Cross-variable 81.33 72.13 64.93 83.46 96.08

Promotion 5.5% 17.7% 9.7% 12.5% 1.2%

6 CONCLUSION AND FUTURE WORK

In this paper, we take a seldom-explored way in time series community to solve the question of how
to better use convolution in time series analysis. By modernizing and modifying the traditional TCN
block with time series related modifications, we propose ModernTCN and successfully bring convo-
lution back to the arena of time series analysis. Experimental results show the great task generality of
ModernTCN. While performing on par with or better than state-of-the-art Transformer-based models
in terms of performance, ModernTCN maintains the efficiency advantage of convolution-based
models, therefore providing a better balance of performance and efficiency. Since convolution-based
models have received less attention in time series analysis for a long time, we hope that the new
results reported in this study will bring some fresh perspectives to time series community and prompt
people to rethink the importance of convolution in time series analysis.
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Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In ICLR, 2022.

10

https://github.com/luodhhh/ModernTCN
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html


Published as a conference paper at ICLR 2024

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning. Image Recognition,
7, 2015.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. De-
tecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In Proceedings
of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
387–395, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Bum Jun Kim, Hyeyeon Choi, Hyeonah Jang, Dong Gu Lee, Wonseok Jeong, and Sang Woo Kim.
Dead pixel test using effective receptive field. Pattern Recognition Letters, 167:149–156, 2023.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In SIGIR, 2018a.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference on
research & development in information retrieval, pp. 95–104, 2018b.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. In NeurIPS, 2019a.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019b.

Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
investigation on linear mapping. arXiv preprint arXiv:2305.10721, 2023a.

Zhe Li, Zhongwen Rao, Lujia Pan, and Zenglin Xu. Mts-mixers: Multivariate time series forecasting
via factorized temporal and channel mixing. arXiv preprint arXiv:2302.04501, 2023b.

Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey. Philosophical
Transactions of the Royal Society A, 379(2194):20200209, 2021.

11



Published as a conference paper at ICLR 2024

Minhao Liu, Ailing Zeng, Z Xu, Q Lai, and Q Xu. Scinet: time series modeling and forecasting with
sample convolution and interaction. In 36th Conference on Neural Information Processing Systems
(NeurIPS), 2022a.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao Xiao, Boqian Wu, Mykola Pechenizkiy,
Decebal Mocanu, and Zhangyang Wang. More convnets in the 2020s: Scaling up kernels beyond
51x51 using sparsity. arXiv preprint arXiv:2207.03620, 2022b.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International conference on learning representations, 2021a.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Rethinking
the stationarity in time series forecasting. In NeurIPS, 2022c.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021b.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976–11986, 2022d.

Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the effective receptive
field in deep convolutional neural networks. Advances in neural information processing systems,
29, 2016.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m4 competition: Results,
findings, conclusion and way forward. International Journal of Forecasting, 34(4):802–808, 2018.

Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and training
on ics security. In 2016 international workshop on cyber-physical systems for smart water networks
(CySWater), pp. 31–36. IEEE, 2016.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2023.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437,
2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

PeMS. Traffic. http://pems.dot.ca.gov/.

Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally: A deep neural network
approach to high-dimensional time series forecasting. Advances in neural information processing
systems, 32, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2828–2837,
2019.

UCI. Electricity. https://archive.ics.uci.edu/ml/datasets/
ElectricityLoadDiagrams20112014.

12

http://pems.dot.ca.gov/
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014


Published as a conference paper at ICLR 2024

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-scale
local and global context modeling for long-term series forecasting. In The Eleventh International
Conference on Learning Representations, 2023.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

Wetterstation. Weather. https://www.bgc-jena.mpg.de/wetter/.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in Neural Information Processing
Systems, 34:22419–22430, 2021.

Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Flowformer: Linearizing
transformers with conservation flows. arXiv preprint arXiv:2202.06258, 2022.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2023.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1492–1500, 2017.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series
anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642, 2021.

Wang Xue, Tian Zhou, QingSong Wen, Jinyang Gao, Bolin Ding, and Rong Jin. Make transformer
great again for time series forecasting: Channel aligned robust dual transformer. arXiv preprint
arXiv:2305.12095, 2023.

Lexiang Ye and Eamonn Keogh. Time series shapelets: a new primitive for data mining. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 947–956, 2009.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504, 2022.

Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is
more: Fast multivariate time series forecasting with light sampling-oriented mlp structures. arXiv
preprint arXiv:2207.01186, 2022.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 6848–6856, 2018.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for
multivariate time series forecasting. In International Conference on Learning Representations,
2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pp. 27268–27286. PMLR, 2022.

13

https://www.bgc-jena.mpg.de/wetter/


Published as a conference paper at ICLR 2024

Table 6: Dataset descriptions of long-term forecasting and imputation.
Dataset Weather Traffic Exchange Electricity ILI ETTh1 ETTh2 ETTm1 ETTm2

Dataset Size 52696 17544 7207 26304 966 17420 17420 69680 69680
Variable Number 21 862 8 321 7 7 7 7 7

Sampling Frequency 10 mins 1 hour 1 day 1 hour 1 week 1 hour 1 hour 15 mins 15 mins

A DATASETS

A.1 LONG-TERM FORECASTING AND IMPUTATION DATASETS

We evaluate the long-term forecasting performance on 9 popular real-world datasets, including
Weather, Traffic, Electricity, Exchange, ILI and 4 ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2).
And for imputation tasks, we choose Weather, Electricity and 4 ETT datasets (ETTh1, ETTh2,
ETTm1, ETTm2) for benchmarking. These datasets have been extensively utilized for benchmarking
and cover many aspects of life.

The dataset size (total timesteps), variable number and sampling frequency of each dataset are
summarized in Table 6 . We follow standard protocol (Zhou et al., 2021) and split all datasets into
training, validation and test set in chronological order by the ratio of 6:2:2 for the ETT dataset and
7:1:2 for the other datasets. And training, validation and test sets are zero-mean normalized with the
mean and standard deviation of training set. Each of above datasets only contains one continuous
long time series, and we obtain samples by sliding window.

More introduction of the datasets are as follow:

1) Weather1 contains 21 meteorological indicators such as humidity and air temperature for 2020
whole year in Germany.

2) Traffic2 contains the road occupancy rates measured by 862 different sensors on San Francisco
Bay area freeways in 2 years. Data is collected from California Department of Transportation.

3) Electricity3 contains hourly electricity consumption of 321 clients from 2012 to 2014.
4) Exchange4 the daily exchange rates of eight different countries ranging from 1990 to 2016.
5) ILI(Influenza-Like Illness)5 contains the weekly recorded influenza-like illness (ILI) patients

data in the United States between 2002 and 2021. It contains 7 indicators like the numbers of
ILI patients under different age ranges and the ratio of ILI patients to the total patients. Data is
provided by Centers for Disease Control and Prevention of the United States.

6) ETT(Electricity Transformer Temperature)6 contains the data collected from electricity trans-
formers with 7 sensors, including load, oil temperature, etc. It contains two sub-dataset labeled
with 1 and 2, corresponding to two different electric transformers from two separated counties in
China. And each of them contains 2 different resolutions (15 minutes and 1 hour) denoted with m
and h. Thus, in total we have 4 ETT datasets: ETTh1, ETTh2, ETTm1, ETTm2.

A.2 SHORT-TERM FORECASTING DATASETS

M4 involves 100,000 different time series samples collected in different domains with different
frequencies, covering a wide range of economic, industrial, financial and demographic areas.

It’s notable that M4 dataset is different from the long-term forecasting datasets. Each of long-term
forecasting dataset only contains one continuous long time series, and we obtain samples by sliding
window. Therefore all samples are come from the same source time series and more likely to have
similar temporal property. But the samples in M4 datasets are collected from different sources.

1https://www.bgc-jena.mpg.de/wetter/
2https://pems.dot.ca.gov/
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
4https://github.com/laiguokun/multivariate-time-series-data
5https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
6https://github.com/zhouhaoyi/ETDataset
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Therefore they may have quite different temporal property, making the forecasting tasks in M4
datasets more difficult. Table 7 summarizes details of statistics of short-term forecasting M4 datasets.

Table 7: Datasets and mapping details of M4 dataset (Makridakis et al., 2018).

Dataset Sample Numbers (train set,test set) Variable Number Prediction Length

M4 Yearly (23000, 23000) 1 6
M4 Quarterly (24000, 24000) 1 8
M4 Monthly (48000, 48000) 1 18
M4 Weekly (359, 359) 1 13
M4 Daily (4227, 4227) 1 14
M4 Hourly (414, 414) 1 48

A.3 CLASSIFICATION DATASETS

UEA dataset involves many time series samples collected in different domains for classification,
covering the recognition tasks based on face, gesture, action and audio as well as other practical tasks
like industry monitoring, health monitoring and medical diagnosis based on heartbeat. Most of them
have 10 classes. Table 8 summarizes details of statistics of classification UEA datasets.

Table 8: Datasets and mapping details of UEA dataset (Bagnall et al., 2018).

Dataset Sample Numbers (train set,test set) Variable Number Series Length

EthanolConcentration (261, 263) 3 1751
FaceDetection (5890, 3524) 144 62
Handwriting (150, 850) 3 152
Heartbeat (204, 205) 61 405
JapaneseVowels (270, 370) 12 29
PEMS-SF (267, 173) 963 144
SelfRegulationSCP1 (268, 293) 6 896
SelfRegulationSCP2 (200, 180) 7 1152
SpokenArabicDigits (6599, 2199) 13 93
UWaveGestureLibrary (120, 320) 3 315

A.4 ANOMALY DETECTION DATASETS

We adopt datasets from different domains like server machine, spacecraft and infrastructure for
benchmarking. Each dataset is divided into training, validation and testing sets. Each dataset contains
one continuous long time series, and we obtain samples from the continuous long time series with a
fixed length sliding window. Table 9 summarizes details of statistics of the datasets.

Table 9: Datasets and mapping details of anomaly detection dataset.

Dataset Dataset sizes(train set,val set, test set) Variable Number Sliding Window Length

SMD (566724, 141681, 708420) 38 100
MSL (44653, 11664, 73729) 55 100
SMAP (108146, 27037, 427617) 25 100
SWaT (396000, 99000, 449919) 51 100
PSM (105984, 26497, 87841) 25 100

B PIPELINE
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B.1 PADDING DETAILS IN PATCHIFY VARIABLE-INDEPENDENT EMBEDDING

Before patching and embedding, we adopt a padding operation on the original time series Xin to
keep N = L//S. Specifically, we repeat Xin’s last value (P − S) times and then pad them back to
the end of Xin.

Denoted Xin ∈ RM×L as the M variables input time series of length L, the overall process of
Patchify Variable-independent Embedding is as follows:

1) Unsqueezing its shape to Xin ∈ RM×1×L.

2) Adopting above padding operation on it.

3) Feeding the padded Xin to the 1D convolution stem layer for patching and embedding.

B.2 PIPELINE FOR REGRESSION TASKS

The pipeline for forecasting, imputation and anomaly detection is shown as Figure 5.

Figure 5: Pipeline for Regression Tasks.

After the backbone, we have Z ∈ RM×D×N . Then the linear head with a flatten layer is used to
obtain the final prediction:

X̂ = Head(Flatten(Z)) (5)

Where X̂ ∈ RM×T is the prediction of length T with M variables. Flatten(·) denotes a flatten
layer that changes the final representation’s shape to Z ∈ RM×(D×N). Head(·) indicates the linear
projection layer that maps the final representation to the final prediction.

Stationary Technique RevIN (Kim et al., 2021) is a special instance normalization for time series
to mitigate the distribution shift between the training and testing data. In norm phase, we normalize
the input time series per variable with zero mean and unit standard deviation before patching and
embedding. Then in de-norm phase, we add the mean and deviation back to the final prediction per
variable after the forward process.

Low Rank Approximation for Traffic Datasets To Traffic dataset that contains much more
variables than others, directly applying our model to Traffic dataset leads to heavy memory usage.
Since the variables in multivariate times series have dependency on each other, a possible way to
solve this problem is to find a low rank approximation of these M variables when M is a very big
number. For example, FEDformer (2022) uses a low rank approximated transformation in frequency
domain for better memory efficiency. And Crossformer (2023) also uses a small fixed number of
routers to aggregate messages from all variables to save memory usage.

In this paper, we design a bottleneck structure as a simple and direct method to achieve this goal. In
details, before fed into the ConvFFN1 and ConvFFN2, the variable number will be projected to M ′

by a projection layer, where M ′ is much smaller than M . Then after the ConvFFN1 and ConvFFN2
process, another projection layer is used to project the variable number back to M .
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Table 10: Results with different M ′ in Traffic dataset.
Models w/o M ′ = 256 M ′ = 64 M ′ = 16

Metric MSE MAE MSE MAE MSE MAE MSE MAE

Traffic 0.393 0.267 0.396 0.273 0.395 0.271 0.396 0.270

Memory Usage (%) 100% 82% 77% 72%

And we conduct experiments with different M ′ to verify this solution. As shown in Table 10, our
method can significantly reduce memory usage with only a little performance degradation. This result
proves the fact that there is redundancy between the 862 variables in Traffic dataset. Therefore we
can learn a low rank approximation of these 862 variables based on their dependency on each other.
And such low rank approximation can help to reduce memory usage without too much performance
degradation.

Input The input is M variables time series with input length L. In imputaiton tasks, the input series
will further element-wise multipy with a mask matrix to represent the randomly missing values.

Output In forecastiong tasks, the output is the prediction time series with prediction length T .
In impuatation tasks, the output is the imputed input time series with input length L. In anomaly
detection tasks, the output is the reconstructed input time series with input length L.

B.3 PIPELINE FOR CLASSIFICATION TASKS

The pipeline for classification is shown as Figure 6.

Figure 6: Pipeline for Classification Tasks.

There are two difference: (1) We remove the RevIN; (2) The flatten layer is different. In classification
tasks, the flatten layer changes the final representation’s shape to Z ∈ R1×(M×D×N). Then a
projection layer with SoftMax activation is to map the final representation to the final classification
result X̂ ∈ R1×Cls , where Cls is the number of classes.

Followings are implementation details and model parameters of each tasks.

C EXPERIMENT DETAILS

C.1 LONG-TERM FORECASTING

Implementation Details Our method is trained with the L2 loss, using the ADAM (Kingma & Ba,
2014) optimizer with an initial learning rate of 10−4. The default training process is 100 epochs with
proper early stopping. The mean square error (MSE) and mean absolute error (MAE) are used as
metrics. All the experiments are repeated 5 times with different seeds and the means of the metrics
are reported as the final results. All the deep learning networks are implemented in PyTorch(Paszke
et al., 2019) and conducted on NVIDIA A100 40GB GPU.

All of the models are following the same experimental setup with prediction length T ∈
{24, 36, 48, 60} for ILI dataset and T ∈ {96, 192, 336, 720} for other datasets as (Nie et al., 2023).
We collect some baseline results from (Nie et al., 2023) where all the baselines are re-run with
various input length L and the best results are chosen to avoid under-estimating the baselines.
For other baselines, we follow the official implementation and run them with vary input length
L ∈ {24, 36, 48, 60, 104, 144} for ILI dataset and L ∈ {96, 192, 336, 512, 672, 720} for other
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datasets and choose the best results. All experiments are repeated five times. We calculate the
MSE and MAE of multivariate time series forecasting as metrics.

Model Parameter By default, ModernTCN contains 1 ModernTCN block with the channel number
(dimension of hidden states) D = 64 and FFN ratio r = 8. The kernel size is set as large size = 51
and small size = 5. Patch size and stride are set as P = 8, S = 4 in the patchify embedding
process. For bigger datasets (ETTm1 and ETTm2), we stack 3 ModernTCN blocks to improve the
representation capability. For small datasets (ETTh1, ETTh2, Exchange and ILI), we recommend a
small FFN ratio r = 1 to mitigate the possible overfitting and for better memory efficiency.

For baseline models, if the original papers conduct long-term forecasting experiments on the dataset
we use, we follow the recommended model parameters in the original papers, including the number
of layers, dimension of hidden states, etc. But we re-run them with vary input lengths as mentioned
in Section 4.1 and choose the best results to obtain a strong baseline.

Metric We adopt the mean square error (MSE) and mean absolute error (MAE) for long-term
forecasting.

MSE =
1

T

T∑
i=0

(X̂i −Xi)
2

MAE =
1

T

T∑
i=0

∣∣∣X̂i −Xi

∣∣∣
where X̂,X ∈ RT×M are the M variables prediction results of length T and corresponding ground
truth. Xi means the i-th time step in the prediction result.

C.2 SHORT-TERM FORECASTING

Implementation Details Our method is trained with the SMAPE loss, using the ADAM (Kingma
& Ba, 2014) optimizer with an initial learning rate of 5× 10−4. The default training process is 100
epochs with proper early stopping. The symmetric mean absolute percentage error (SMAPE), mean
absolute scaled error (MASE) and overall weighted average (OWA) are used as metrics. All the
experiments are repeated 5 times with different seeds and the means of the metrics are reported as the
final results.

Following (Wu et al., 2023), we fix the input length to be 2 times of prediction length for all models.
Since the M4 dataset only contains univariate time series, we remove the cross-variable component
in ModernTCN and Crossformer.

Model Parameter By default, ModernTCN contains 2 ModernTCN blocks with the channel
number (dimension of hidden states) D = 2048 and FFN ratio r = 1. The kernel size is set as
large size = 51 and small size = 5. For datasets of less samples (M4 Weekly, M4 Daily and M4
Hourly), we use a smaller channel number D = 1024. Patch size and stride are set as P = 8, S = 4
in the patchify embedding process. For datasets with shorter input length, we reduce the patch size
and stride (e.g., P = 3, S = 3 in M4 Yearly and P = 2, S = 2 in M4 Quarterly).

Metric For the short-term forecasting, following (Oreshkin et al., 2019), we adopt the symmetric
mean absolute percentage error (SMAPE), mean absolute scaled error (MASE) and overall weighted
average (OWA) as the metrics, which can be calculated as follows:

SMAPE =
200

T

T∑
i=1

|Xi − X̂i|
|Xi|+ |X̂i|

, MAPE =
100

T

T∑
i=1

|Xi − X̂i|
|Xi|

,

MASE =
1

T

T∑
i=1

|Xi − X̂i|
1

T−p
∑T

j=p+1 |Xj −Xj−p|
, OWA =

1

2

[
SMAPE

SMAPENaı̈ve2
+

MASE
MASENaı̈ve2

]
,
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where p is the periodicity of the data. X̂,X ∈ RT×M are the M variables prediction results of length
T and corresponding ground truth. Xi means the i-th time step in the prediction result.

C.3 IMPUTATION

Implementation Details Our method is trained with the L2 loss, using the ADAM (Kingma & Ba,
2014) optimizer with an initial learning rate of 10−3. The default training process is 100 epochs with
proper early stopping. The mean square error (MSE) and mean absolute error (MAE) are used as
metrics. All the experiments are repeated 5 times with different seeds and the means of the metrics
are reported as the final results.

We use a mask matrix C ∈ RL×M to represent the missing values in input time series Xin.

cml =

{
0 if xm

l is not observed
1 otherwise .

Xin ∈ RL×M is the M variables input time series of length L. And L is set as 96 in imputation tasks.
xm
l is the value at l-th timestep in the m-th univariate time series.

The input is the partially observed time series C�Xin and the output is the imputed time series of
the input. � indicates the element-wise multiplication between the two tensors Xin and C. And we
only calculate MSE loss on masked tokens.

Model Parameter By default, ModernTCN has 1 ModernTCN block with channel number D =
128 and FFN ratio r = 1. The kernel size is set as large size = 71 and small size = 5. Patch size
and stride are set as P = 1, S = 1 to avoid mixing the masked and un-maskded tokens.

Metric We adopt the mean square error (MSE) and mean absolute error (MAE) for imputation.

C.4 CLASSIFICATION

Implementation Details Our method is trained with the Cross Entropy Loss, using the ADAM
(Kingma & Ba, 2014) optimizer with an initial learning rate of 10−3. The default training process
is 30 epochs with proper early stopping. The classification accuracy is used as metrics. All the
experiments are repeated 5 times with different seeds and the means of the metrics are reported as the
final results.

Model Parameter By default, ModernTCN has 2 ModernTCN blocks. The channel number D is
decided by min{max{2dlogMe, dmin}, dmax} (dmin is 32 and dmax is 512) following (Wu et al., 2023).
The FFN ratio is r = 1. Patch size and stride are set as P = 1, S = 1 in the patchify embedding
process.

Metric For classification, we calculate the accuracy as metric.

C.5 ANOMLY DETECTION

Implementation Details We takes the classical reconstruction task and train it with the L2 loss.
We use the ADAM (Kingma & Ba, 2014) optimizer with an initial learning rate of 3× 10−4. The
default training process is 10 epochs with proper early stopping. We use the reconstruction error
(MSE) as the anomaly criterion. The F1-Score is used as metric. All the experiments are repeated 5
times with different seeds and the means of the metrics are reported as the final results.

Model Parameter By default, ModernTCN has 1 ModernTCN block. The channel number D is
decided by min{max{2dlogMe, dmin}, dmax} (dmin is 8 and dmax is 256) following (Wu et al., 2023).
The FFN ratio is r = 1. The kernel size is set as large size = 51 and small size = 5. Patch size
and stride are set as P = 8, S = 4 in the patchify embedding process.
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Table 11: Impact of channel number. We conduct experiments with three different channel numbers
ranging from D = {32, 64, 128}. A lower MSE or MAE indicates a better performance.

Datasets ILI ETTh1 Electricity
Default K = 1, r = 1 Default K = 1, r = 1 Default K = 1, r = 8

Prediction length 24 36 48 60 96 192 336 720 96 192 336 720

D = 32
MSE 1.772 1.598 1.725 1.976 0.377 0.412 0.395 0.453 0.132 0.145 0.159 0.193
MAE 0.857 0.873 0.866 0.953 0.401 0.419 0.416 0.464 0.227 0.241 0.256 0.286

D = 64
MSE 1.347 1.250 1.388 1.774 0.368 0.405 0.391 0.450 0.129 0.143 0.161 0.191
MAE 0.717 0.778 0.781 0.868 0.394 0.413 0.412 0.461 0.226 0.239 0.259 0.286

D = 128
MSE 2.010 1.751 1.378 1.806 0.364 0.402 0.387 0.449 0.135 0.147 0.168 0.196
MAE 0.913 0.932 0.792 0.935 0.390 0.410 0.407 0.459 0.236 0.247 0.265 0.290

Table 12: Impact of FFN ratio. We conduct experiments with four different FFN ratios ranging from
r = {1, 2, 4, 8}. A lower MSE or MAE indicates a better performance.

Datasets ILI Exchange ETTh1 ETTm1
Default K = 1, D = 64 Default K = 1, D = 64 Default K = 1, D = 64 Default K = 3, D = 64

Prediction length 24 36 48 60 96 192 336 720 96 192 336 720 96 192 336 720

r = 1
MSE 1.347 1.250 1.388 1.774 0.080 0.166 0.307 0.656 0.368 0.405 0.391 0.450 0.294 0.335 0.369 0.419
MAE 0.717 0.778 0.781 0.868 0.196 0.288 0.398 0.582 0.394 0.413 0.412 0.461 0.346 0.369 0.392 0.421

r = 2
MSE 2.083 1.480 1.940 1.758 0.080 0.167 0.306 0.657 0.368 0.407 0.392 0.450 0.291 0.332 0.365 0.417
MAE 0.943 0.820 0.946 0.890 0.196 0.289 0.397 0.583 0.395 0.415 0.413 0.461 0.345 0.368 0.392 0.415

r = 4
MSE 1.877 1.589 1.401 2.042 0.080 0.167 0.308 0.659 0.367 0.411 0.395 0.453 0.292 0.333 0.365 0.416
MAE 0.887 0.853 0.790 0.980 0.197 0.289 0.399 0.586 0.393 0.419 0.415 0.463 0.346 0.368 0.390 0.417

r = 8
MSE 2.038 1.657 1.577 1.937 0.080 0.167 0.309 0.660 0.369 0.409 0.401 0.459 0.292 0.332 0.365 0.416
MAE 0.932 0.869 0.858 0.960 0.196 0.289 0.400 0.586 0.395 0.417 0.421 0.465 0.346 0.368 0.391 0.417

Metric For anomaly detection, we adopt the F1-score, which is the harmonic mean of precision
and recall.

F1-Score =
2× Precision× Recall

Precision + Recall

D MORE ABLATION STUDIES

We conduct more ablation studies in long-term forecasting tasks.

D.1 RESULTS WITH DIFFERENT MODEL PARAMETERS

To see whether ModernTCN is sensitive to the choice of model parameters, we perform experi-
ments with varying model parameters, including number of layers (number of ModernTCN blocks)
ranging from K = {1, 2, 3, 4, 5}, channel number (dimension of hidden states) ranging from
D = {32, 64, 128} and FFN ratio ranging from r = {1, 2, 4, 8}. In general, except ILI dataset
reveals high variance with different model parameter settings, other datasets are robust to the choice
of model parameters. We conduct three experiments to figure out the impact of above three model
parameters respectively. Detailed results are described in following paragraphs.

Results with Different Channel Numbers Table 11 shows the impact of different channel numbers
D. Considering both the parameter efficiency and forecasting performance, we set the default channel
number as D = 64. And the default channel number D = 64 works well for most of the datasets.

Results with Different FFN Ratios Table 12 shows the impact of different FFN Ratios r. Except
for ILI dataset, our model is robust to the choice of the FFN ratio r in other datasets. We recommend
r = 8 for most of the datasets. And for small datasets like ETTh1, ETTh2, Exchange and ILI, we
recommend a small FFN ratio like r = 1 to mitigate the possible overfitting and for better memory
efficiency.

Results with Different Numbers of Layers Table 13 shows the impact of different numbers of
layers (numbers of ModernTCN blocks) K. Considering both performance and efficiency, one
ModernTCN block is enough for most of the datasets. But for bigger datasets like ETTm1 and
ETTm2, we recommend to stack more ModernTCN blocks like K = 3 for better representation
capability.
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Table 13: Impact of layer number. We conduct experiments with five different layer numbers ranging
from K = {1, 2, 3, 4, 5}. A lower MSE or MAE indicates a better performance.

Datasets ETTh1 Electricity ETTm1
Default D = 64, r = 1 Default D = 64, r = 8 Default D = 64, r = 8

Prediction length 96 192 336 720 96 192 336 720 96 192 336 720

K = 1
MSE 0.368 0.405 0.391 0.450 0.129 0.143 0.161 0.191 0.296 0.338 0.369 0.419
MAE 0.394 0.413 0.412 0.461 0.226 0.239 0.259 0.286 0.346 0.370 0.392 0.420

K = 2
MSE 0.367 0.405 0.393 0.450 0.129 0.143 0.161 0.191 0.298 0.337 0.367 0.417
MAE 0.393 0.413 0.413 0.460 0.226 0.239 0.259 0.286 0.348 0.370 0.391 0.418

K = 3
MSE 0.369 0.409 0.392 0.450 0.130 0.146 0.163 0.192 0.292 0.332 0.365 0.416
MAE 0.394 0.417 0.412 0.460 0.227 0.243 0.260 0.286 0.346 0.368 0.391 0.417

K = 4
MSE 0.368 0.406 0.394 0.451 0.130 0.146 0.163 0.192 0.298 0.334 0.366 0.416
MAE 0.393 0.414 0.414 0.461 0.226 0.243 0.260 0.287 0.348 0.368 0.391 0.417

K = 5
MSE 0.368 0.411 0.394 0.452 0.130 0.149 0.163 0.193 0.294 0.333 0.366 0.416
MAE 0.394 0.418 0.414 0.461 0.227 0.247 0.261 0.288 0.346 0.368 0.393 0.417
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D.2 IMPACT OF INPUT LENGTH AND PATCHING SETTINGS

Impact of Input Length. Since a longer input length indicates more historical information an
algorithm can utilize in time series forecasting, a model with strong ability to capture long-term
temporal dependency should perform better when input length increases (Zeng et al., 2022; Wang
et al., 2023; Nie et al., 2023). To validate our model, we conduct experiments with different
input lengths under the same prediction length. As shown in Figure 7, in general, our model
gains performance improvement with increasing input length, indicating our model can effectively
extract useful information from longer history and capture long-term dependency. However, some
Transformer-based models (Wu et al., 2021; Zhou et al., 2021; Vaswani et al., 2017) suffer from
performance degradation with increasing input length owing to the repeated short-term patterns
according to (Zhou et al., 2021).

Figure 7: The MSE results with different input lengths and same prediction length(192 time steps).

Impact of Patch size and Stride To verify the impact of patch size P and stride S, we perform
experiments with two patching modes (P = S and P = 2 × S) and two different S. Results are
shown on Table 14. In general, the performance doesn’t vary significantly with different P and S,
indicating the robustness of our model against these two hyperparameters. The ideal P and S may
vary from different datasets. We recommend P = 8 and S = 4 as general good choice for most of
the datasets.

Table 14: Impact of patch size and stride. We compare four patching settings. A lower MSE or MAE
indicates a better performance.

Datasets ETTh1 ETTm1 Electricity
Default D = 64, r = 1,K = 1 Default D = 64, r = 8,K = 3 Default D = 64, r = 8,K = 1

Prediction length 96 192 336 720 96 192 336 720 96 192 336 720

P = 4, S = 4
MSE 0.369 0.409 0.391 0.449 0.295 0.336 0.369 0.417 0.130 0.145 0.160 0.191
MAE 0.395 0.417 0.412 0.460 0.348 0.372 0.393 0.418 0.226 0.240 0.259 0.286

P = 8, S = 4
MSE 0.368 0.405 0.391 0.450 0.292 0.332 0.365 0.416 0.129 0.143 0.161 0.191
MAE 0.394 0.413 0.412 0.461 0.346 0.368 0.391 0.417 0.226 0.239 0.259 0.286

P = 8, S = 8
MSE 0.377 0.414 0.400 0.455 0.297 0.335 0.372 0.420 0.132 0.147 0.168 0.195
MAE 0.402 0.421 0.421 0.466 0.349 0.371 0.395 0.421 0.227 0.241 0.263 0.290

P = 16, S = 8
MSE 0.378 0.413 0.398 0.456 0.299 0.336 0.372 0.419 0.133 0.146 0.168 0.196
MAE 0.403 0.420 0.419 0.466 0.350 0.371 0.395 0.420 0.228 0.240 0.263 0.290

E UNIVARIATE LONG-TERM FORECASTING RESULTS

Here we provide the univariate long-term forecasting results on 4 ETT datasets. There is a target
feature oil temperature within those datasets, which is the univariate time series that we are trying
to forecast. Since it’s a univariate tasks, we mainly focus on capturing cross-time information and
don’t need to capture the cross-variable information. Thus, we remove the cross-variable component
in ModernTCN. As shown in Table 15, thanks to the larger ERF and better temporal modeling
ability in DWConv, our ModernTCN can achieve comparable performance with the state-of-the-
art Transformer-based model PatchTST(2023) and MLP-based model DLinear(2022) in univariate
forecasting tasks.
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Table 15: Univariate long-term forecasting results on ETT datasets. Following PatchTST (2023) and
DLinear (2022), input length is fixed as 336 and prediction lengths are T ∈ {96, 192, 336, 720}. The
best results are in bold.

Models ModernTCN PatchTST DLinear FEDformer Autoformer Informer LogTrans
(Ours) (2023) (2022) (2022) (2021) (2021) (2019a)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.055 0.179 0.055 0.179 0.056 0.180 0.079 0.215 0.071 0.206 0.193 0.377 0.283 0.468
192 0.070 0.205 0.071 0.205 0.071 0.204 0.104 0.245 0.114 0.262 0.217 0.395 0.234 0.409
336 0.074 0.214 0.076 0.220 0.098 0.244 0.119 0.270 0.107 0.258 0.202 0.381 0.386 0.546
720 0.086 0.232 0.087 0.236 0.087 0.359 0.142 0.299 0.126 0.283 0.183 0.355 0.475 0.629

E
T

T
h2

96 0.124 0.274 0.129 0.282 0.131 0.279 0.128 0.271 0.153 0.306 0.213 0.373 0.217 0.379
192 0.164 0.321 0.168 0.328 0.176 0.329 0.185 0.330 0.204 0.351 0.227 0.387 0.281 0.429
336 0.171 0.336 0.171 0.336 0.209 0.367 0.231 0.378 0.246 0.389 0.242 0.401 0.293 0.437
720 0.228 0.384 0.223 0.380 0.276 0.426 0.278 0.420 0.268 0.409 0.291 0.439 0.218 0.387

E
T

T
m

1 96 0.026 0.121 0.026 0.121 0.028 0.123 0.033 0.140 0.056 0.183 0.109 0.277 0.049 0.171
192 0.040 0.152 0.039 0.150 0.045 0.156 0.058 0.186 0.081 0.216 0.151 0.310 0.157 0.317
336 0.053 0.173 0.053 0.173 0.061 0.182 0.084 0.231 0.076 0.218 0.427 0.591 0.289 0.459
720 0.073 0.206 0.073 0.206 0.080 0.210 0.102 0.250 0.110 0.267 0.438 0.586 0.430 0.579

E
T

T
m

2 96 0.065 0.183 0.065 0.186 0.063 0.183 0.067 0.198 0.065 0.189 0.088 0.225 0.075 0.208
192 0.095 0.232 0.093 0.231 0.092 0.227 0.102 0.245 0.118 0.256 0.132 0.283 0.129 0.275
336 0.119 0.261 0.120 0.265 0.119 0.261 0.130 0.279 0.154 0.305 0.180 0.336 0.154 0.302
720 0.173 0.323 0.171 0.322 0.175 0.320 0.178 0.325 0.182 0.335 0.300 0.435 0.160 0.321

1st Count 21 16 7 0 0 0 0

F TECHNIQUE TO BETTER TRAIN A LARGE KERNEL

F.1 INTRODUCTION ABOUT STRUCTURAL RE-PARAMETERIZATION

According to (Ding et al., 2022; Liu et al., 2022b), we can use the Structural Re-parameterization
technique to better train a large kernel convolution. In training phase, additional Batch normalization
(BN) layers (Ioffe & Szegedy, 2015) are used following the depth-wise convolution layers to form
convolution-BN branches for a better training result. Then the large size depth-wise convolution-BN
branch is trained with a parallel small size depth-wise convolution-BN branch to make up the
optimization issue of large kernel. After training, each of these two branches is transformed into a
single depth-wise convolution layer by fusing the BN parameters into the convolution kernels (Ding
et al., 2021). Then the small kernel is zero-padded on both side to large size. After two kernels
aligned to the same size, the two depth-wise convolution layers add up to merge into a single large
kernel depth-wise convolution layer. Then the fused single large kernel depth-wise convolution can
be used in inference phase. It’s notable that the resultant large kernel model is totally equivalent to
the model in training phase but no longer has small kernels. See Figure 8 for an example of Structural
Re-parameterization after training.

Figure 8: An example of Structural Re-parameterization.
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Table 16: Impact of kernel size. We compare three different kernel sizes ranging from small to large.
A lower MSE or MAE indicates a better performance. The best results are highlighted in blod.

Datasets ILI ETTh1 Electricity

Prediction length 24 36 48 60 96 192 336 720 96 192 336 720

kernel size = 3 MSE 1.906 1.546 1.754 1.893 0.381 0.416 0.403 0.460 0.143 0.155 0.175 0.203
MAE 0.862 0.841 0.891 0.900 0.405 0.423 0.419 0.470 0.237 0.249 0.270 0.299

kernel size = 31 MSE 1.687 1.486 1.376 1.855 0.367 0.405 0.389 0.449 0.133 0.147 0.159 0.193
MAE 0.848 0.855 0.797 0.929 0.393 0.413 0.410 0.460 0.228 0.243 0.257 0.288

kernel size = 51 MSE 1.347 1.250 1.388 1.774 0.368 0.405 0.391 0.450 0.129 0.143 0.161 0.191
MAE 0.717 0.778 0.781 0.868 0.394 0.413 0.412 0.461 0.226 0.239 0.259 0.286

Table 17: Impact of small kernel sizes. A lower MSE or MAE indicates a better performance.
Datasets ETTh1 ETTm1 Electricity

Prediction length 96 192 336 720 96 192 336 720 96 192 336 720

small size = 1
MSE 0.369 0.406 0.390 0.450 0.296 0.346 0.373 0.441 0.130 0.145 0.160 0.191
MAE 0.395 0.414 0.410 0.461 0.348 0.377 0.397 0.432 0.226 0.240 0.259 0.286

small size = 3
MSE 0.369 0.407 0.391 0.450 0.295 0.336 0.369 0.423 0.129 0.143 0.161 0.191
MAE 0.395 0.415 0.412 0.461 0.348 0.371 0.393 0.425 0.226 0.239 0.259 0.286

small size = 5
MSE 0.368 0.405 0.391 0.450 0.292 0.332 0.365 0.416 0.129 0.143 0.161 0.191
MAE 0.394 0.413 0.412 0.461 0.346 0.368 0.391 0.417 0.226 0.239 0.259 0.286

small size = 7
MSE 0.368 0.405 0.390 0.449 0.295 0.341 0.373 0.419 0.133 0.146 0.168 0.196
MAE 0.394 0.413 0.411 0.460 0.347 0.376 0.397 0.421 0.228 0.240 0.263 0.290

small size = 9
MSE 0.368 0.406 0.391 0.450 0.296 0.351 0.375 0.428 0.133 0.146 0.168 0.196
MAE 0.394 0.414 0.412 0.462 0.348 0.380 0.398 0.424 0.228 0.240 0.263 0.290

F.2 ABLATION OF STRUCTURAL RE-PARAMETERIZATION

F.2.1 IMPACT OF LARGE KERNEL SIZE

According to (Ding et al., 2022), a large kernel size is the key to obtain a large ERF in 2D convolution.
To verify whether this finding still works on 1D convolution and to figure out the impact of kernel
size, we perform experiments with 3 different kernel sizes ranging from small to large on 3 datasets.
Results on Table 16 show that increasing the kernel size leads to performance improvement. The
experiment results indicate that directly enlarging the kernel size in 1D convolution layer and training
it with Structural Re-parameterization technique can effectively increase ERF and help convolution
layer to better capture temporal dependency.

F.2.2 RESULT WITH DIFFERENT SMALL KERNELS

According to (Ding et al., 2022; Liu et al., 2022b), adding a parallel Structural Re-parameterization
branch with a small kernel can help to train the large kernel convolution layer. To further figure out
the impact of different small kernel sizes, we perform experiments with five different small kernel
sizes ranging from 1 to 9. As shown in Table 17, the performance is robust to the choice of small
kernel sizes as long as they’re much smaller than the large kenrel. And small size = 5 is a general
good choice.

F.2.3 RESULT WITH MORE PARALLEL BRANCHES

In Structural Re-parameterization technique, we usually add one additional Structural Re-
parameterization branch paralleled to the large kernel convolution branch to make up its optimization
issue. Here we perform experiments with more branches to see the impact of parallel branches
number. As shown in Table 18, the performance is robust to the choice of parallel branches numbers.
Considering both performance and efficiency, we only add one Structural Re-parameterization branch
in our main experiments.
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Table 18: Impact of more parallel branches. A lower MSE or MAE indicates a better performance.
Datasets ETTh1 ETTm1 Electricity

Prediction length 96 192 336 720 96 192 336 720 96 192 336 720

51− 5
MSE 0.368 0.405 0.391 0.450 0.292 0.332 0.365 0.416 0.129 0.143 0.161 0.191
MAE 0.394 0.413 0.412 0.461 0.346 0.368 0.391 0.417 0.226 0.239 0.259 0.286

51− 5− 1
MSE 0.368 0.406 0.396 0.451 0.292 0.338 0.374 0.425 0.130 0.144 0.162 0.190
MAE 0.394 0.414 0.417 0.462 0.345 0.372 0.397 0.421 0.226 0.240 0.261 0.286

51− 5− 3
MSE 0.368 0.406 0.393 0.451 0.293 0.340 0.374 0.423 0.131 0.144 0.160 0.192
MAE 0.394 0.414 0.413 0.463 0.346 0.373 0.399 0.421 0.227 0.239 0.259 0.288

51− 5− 7
MSE 0.368 0.406 0.393 0.452 0.291 0.343 0.375 0.420 0.131 0.144 0.161 0.191
MAE 0.394 0.414 0.413 0.462 0.345 0.374 0.398 0.422 0.226 0.240 0.260 0.287

51− 5− 7− 3− 1
MSE 0.373 0.406 0.395 0.450 0.291 0.340 0.371 0.424 0.131 0.144 0.163 0.191
MAE 0.399 0.414 0.415 0.461 0.344 0.371 0.394 0.422 0.226 0.240 0.262 0.286
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G DETAILS OF MODERNTCN BLOCKS

G.1 BACKGROUND

Group Convolution Group convolution (Krizhevsky et al., 2017; Xie et al., 2017; Zhang et al.,
2018) divides the convolution channels into separate groups. Only the channels in the same group
can interact with each other while the channels in different groups are independent.

Depthwise Separable Convolution Depthwise convolution (Howard et al., 2017) can be seen
as a special group convolution in which the number of groups is equal to the number of channels.
Therefore, all channels in depthwise convolution are independent. The depthwise convolution only
mixes information among tokens across the temporal dimension.

Since depthwise convolution layer is totally channel-independent. It can not combine channels to
create new representations. Therefore, the pointwise convolution layers, which are in charge of
mixing channel information to create new representations, should be used following the depthwise
convolution as a complementary. The kernel size of pointwise convolution is 1. Therefore it is applied
to each token independently and only mixes information among channels.

Modern Convolution Modern convolution (Liu et al., 2022d; Ding et al., 2022; Liu et al., 2022b) is
a new convolution paradigm inspired by Transformer. The basic components in a modern convolution
block are depthwise and pointwise convolution layers. Inspired by the architectural designs in
Transformer, the depthwise and pointwise convolution layers are organized into a similar structure to
Transformer block, which is shown in Figure 2 (a) and (b).

As shown in Figure 2 (b), the DWConv is a depthwise convolution layer which is responsible for
learning the temporal information among tokens on a per-channel basis. It plays the same role as the
self-attention module in Transformer. Meanwhile, a large kernel is adopted in DWConv to catch up
with the gloabl effective receptive field in Transformer.

ConvFFN consists of two point-wise convolution layers (PWConvs) and adopts an inverted bottleneck
structure, where the hidden channel of the ConvFFN block is r times wider than the input channel
(Figure 2 (c)). ConvFFN plays the same role as the FFN module in Transformer blocks, which is to
learn the new representation of each token independently.

G.2 DETAILS OF MODERNTCN BLOCK DESIGNS

The input to the i-th ModernTCN block is Zi ∈ RM×D×N , where M , D and N are the size of
variable dimension, feature dimension and temporal dimension respectively. We merge the feature
dimension and variable dimension before feeding the embedded time series into the ModernTCN
block. Therefore the convolution channel number is M ×D.

As shown in Figure 2 (d), in the ModernTCN block, DWConv is a depthwise convolution layer
which maps M ×D input channels to M ×D output channels. The group number in DWConv is
set as M ×D to make each channel independent. Therefore, DWConv is both variable and feature
independent. It only mixes information across temporal dimension. And we set a large kernel size for
DWConv to enlarge its effective receptive field and improve its temporal modeling ability.

The ConvFFN1 and ConvFFN2 in ModernTCN block are the decoupled version of ConvFFN based
on the idea of group convolution. We replace the two pointwise convolution layers in ConvFFN with
two group pointwise convolution layers with group number as M to obtain ConvFFN1. Similarly,
we replace the two pointwise convolution layers in ConvFFN with two group pointwise convolution
layers with group number as D to obtain ConvFFN2.

In details, the input channel number in ConvFFN1 is M ×D. By setting group number as M , the
M ×D input channels will be divided into M groups. And only the D features in the same group
can interact with each other. Since each group represents a variable, it means that only the features of
the same variable can interact with each other to create new feature representation while the features
of different variables are independent. Therefore ConvFFN1 can learn the new feature representation
for each variable independently.
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The same goes for ConvFFN2. After permute operation, the input channel number in ConvFFN2 is
D ×M . By setting group number as D, the D ×M input channels will be divide into D groups.
And only the M variables in the same group can interact with each other. Therefore ConvFFN2 can
capturing the cross-variable dependency per feature.

G.3 PARAMETERS OF CONVOLUTION LAYERS IN MODERNTCN BLOCK

We provide the parameters of convolution layers in ModernTCN block in Table 19.

Table 19: Parameters of convolution layers in ModernTCN block.
Module input channels output channels kernel size stride group number

DWConv M ×D M ×D large size 1 M ×D

ConvFFN1 First PWConv M ×D r ×M ×D 1 1 M
Second PWConv r ×M ×D M ×D 1 1 M

ConvFFN2 First PWConv D ×M r ×D ×M 1 1 D
Second PWConv r ×D ×M D ×M 1 1 D

H DETAILS OF ABLATION STUDY

In Section 5.3, we provide an ablation study on our model designs. In this appendix, we provide
more details about this ablation study.

H.1 DETAIL OF DIFFERENT EMBEDDING SETTINGS

In Section 3.2, we design the patchify variable-independent embedding to maintain the variable
dimension, replacing the common patchify variable-mixing embedding which will lead to the discard
of variable dimension in the embedded series. The difference of the two embeddings is shown on
Figure 9 and introduced as follows:

• In variable-independent embedding, we treat each univariate time series in the multi-variate
time series as an individual sample with 1 feature and embed them independently.

• In variable-mixing embedding, we treat the whole multi-variate time series as a single
sample with M features.

Figure 9: Different embedding methods in ablation study.

The essential difference behind these two embedding methods is the opinion of whether we
should maintain the variable dimension when analysing multivariate time series. Since applying
the variable-mixing embedding to the multivariate time series will discard its variable dimension, we
denote it as the setting Discard Variable Dimension. To verifies our opinion to maintain the variable
dimension, we use the setting Discard Variable Dimension for comparision. In this setting, we apply
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variable-mixing embedding to the multivariate input time series to discard its variable dimension.
Then the embedded series is fed into a backbone stacked by convolution blocks like Figure 10 (a) to
learn representation. As shown in Table 4, the setting Discard Variable Dimension leads to significant
performance degradation, which verifies the effectiveness of our variable-independent embedding
design and highlights the importance to maintain the variable dimension.

H.2 DETAIL OF DIFFERENT BLOCK DESIGN SETTINGS

Then we conduct experiments to study the impact of different block designs. All block design settings
we used are shown in Figure 10. Since variable-mixing embedding will lead to severe performance
degradation, we conduct these experiments with our variable-independent embedding.

Given that variable-independent embedding will maintain the variable dimension, we need to make
our structure able to capture information from the additional variable dimension. A direct and naive
way is to jointly learn the dependency among features and variables only by a single ConvFFN, which
is denoted as Undecoupled ConvFFN. But such setting leads to higher computational complexity
and worse performance, which is shown in Table 4. In contrast, the combination of our decoupled
two ConvFFNs (denoted as ConvFFN1+ConvFFN2) achieve the best performance, which proves the
necessity and effectiveness of our decouple modification to ConvFFN module.

We further study how much ConvFFN1 and ConvFFN2 contribute to the forecasting respectively.
Only ConvFFN1 can learn each variable’s deep feature representation independently but doesn’t take
cross-variable dependency into consideration. Only ConvFFN2 can only capture the cross-variable
dependency per feature. But to each variable, it omits to learn their deep feature representations. As a
result, the performance decreases on both settings.

And we also include settings like ConvFFN1+ConvFFN1 and ConvFFN2+ConvFFN2 to eliminate
the impact of the number of ConvFFNs. The results show that the combination of ConvFFN1 and
ConvFFN2 is the key to performance improvement, not the the number of ConvFFNs.

Figure 10: Different block designs in ablation study.
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I MORE COMPARISON WITH TIMESNET IN TERMS OF ERF

Figure 11: The Effective Receptive Field (ERF) of ModernTCN and TimesNet (2023). A more
widely distributed light area indicates a larger ERF.

ModernTCN and TimesNet successfully enlarge the ERFs. But the ERFs of these two models have
quite different property (Figure 11).

The ERFs of ModernTCN and other 1D convolution-based models are concentrated at the middle
point and continuously expand to both ends, which means that the final representation of the middle
point is highly related to its adjacent points. Such phenomenon demonstrates the locality, which is a
common property of convolution.

The ERF of ModernTCN can expand to a wider range. Therefore ModernTCN has larger ERF
than other 1D convolution-based models. But at the same time, the ERF of ModernTCN is still
concentrated at the middle point. So ModernTCN is able to capture long-term dependency while
focusing on the local context.

However, the ERF of TimesNet is discrete and not concentrated at the middle point, which doesn’t
reflect the locality of convolution. This is because the additional 2D data transformation in TimesNet
also influences the pattern of ERF. In 2D data transformation, the time series is divided into several
segments and further rearranged in 2D space based on periods. In this process, a time point may be
separated from its adjacent points, thereby losing continuity and locality. As a result, the ERF and
performance of TimesNet are also highly (or even mainly) related to its special 2D data transformation,
but not just depend on convolution.

In summary, influenced by its special 2D data transformation, TimesNet’ ERF is of quite different
property from other 1D convolution-based models’ and doesn’t reflect the locality of convolution.
Although both ModernTCN and TimesNet can successfully enlarge the ERFs, ModernTCN can also
maintain the locality when enlarging the ERF, therefore providing better performance than TimesNet.
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J APPLY CROSS-VARIABLE COMPONENT TO VARIABLE-INDEPENDENT
MODELS

We apply our cross-variable component (ConvFFNs) to some variable-independent models like
DLinear (2022) and PatchTST (2023). We make some necessary modifications to our cross-variable
component to adapt it to these two models, which is summarized as follows and shown on Figure 12.

• For DLinear which only has two individual Linear layers (one for trend part and the other
for seasonal part), we add an additional ConvFFN module before the Linear layer. This
additional ConvFFN module can mix information across variable dimension to incorporate
the cross-variable information.

• For PatchTST, we replace the original FFN module in PatchTST block with our Con-
vFFNs but with some difference in residual connections to align with the block design in
Transformer.

Figure 12: Applying cross-variable component to DLinear (2022) and PatchTST (2023).

We conduct experiments in imputation tasks, where cross-variable dependency plays an important
role. We report the performance promotion of each model in Table 20. In imputation tasks, equipped
with our cross-variable component achieves averaged 28.7% promotion on PatchTST and 19.7%
promotion on DLinear. The result validates that our cross-variable component can be used on top
of other variable-independent models, helping them incorporate the cross-variable information and
improving their performance.

Table 20: Performance promotion by applying our cross-variable component to PatchTST and
DLinear in imputation tasks. We report the averaged MSE/MAE of all four mask ratios and the
relative MSE reduction ratios (Promotion) by our cross-variable component.

Dataset ETTm1 ETTm2 ETTh1 ETTh2 Electricity Weather

Model MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PatchTST 0.045 0.133 0.028 0.098 0.133 0.236 0.066 0.164 0.091 0.209 0.033 0.057
+ Ours 0.026 0.107 0.020 0.087 0.083 0.192 0.048 0.145 0.069 0.177 0.029 0.050

Promotion 42.2% 28.6% 37.6% 27.3% 24.2% 12.1%

DLinear 0.093 0.206 0.096 0.208 0.201 0.306 0.142 0.259 0.132 0.260 0.052 0.110
+ Ours 0.065 0.175 0.089 0.199 0.115 0.236 0.136 0.251 0.120 0.253 0.039 0.091

Promotion 30.1% 7.3% 42.8% 4.2% 9.0% 25.0%
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K SHORT-TERM FORECASTING RESULTS ON MULTIVARIATE TIME SERIES
DATASETS

We conduct short-term forecasting on 9 multivariate time series datasets, including Weather (Wetter-
station), Traffic (PeMS), Electricity (UCI), Exchange (Lai et al., 2018a), ILI (CDC) and four ETT
datasets (Zhou et al., 2021).

The experiment details are as follows:

• We choose the prediction lengths as T ∈ {6, 12, 18}, which meets the prediction length in
M4 datasets. And following M4 short-term forecasting tasks, we set input length L to be 2
times of prediction length T .

• We choose models that perform well in multivariate datasets (DLinear, RLinear, RMLP and
PatchTST) or perform well in short-term forecasting tasks (PatchTST, CARD and TimesNet)
as strong baselines.

• All models follow their official configurations on above datasets, we only change the input
lengths and prediction lengths.

• We calculate MSE and MAE of the multivariate prediction results as metric.

The results are shown in Table 21. ModernTCN can outperform above competitive baselines in
most cases, indicating that ModernTCN can better use limited input information to provide better
forecasting results.

Table 21: Short-term forecasting on multivariate time series datasets. We set prediction lengths as
T ∈ {6, 12, 18} and set input length L to be 2 times of prediction length T . The best results are in
bold.

Models ModernTCN PatchTST CARD TimesNet DLinear RLinear RMLP
(Ours) (2023) (2023) (2023) (2022) (2023a) (2023a)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1 6 0.505 0.423 0.776 0.545 0.754 0.530 0.785 0.558 0.941 0.649 1.184 0.676 0.682 0.504

12 0.316 0.357 0.438 0.431 0.383 0.397 0.412 0.424 0.559 0.504 0.701 0.541 0.406 0.414
18 0.317 0.359 0.418 0.418 0.374 0.392 0.434 0.439 0.535 0.485 0.677 0.535 0.409 0.418

E
T

T
m

1 6 0.131 0.218 0.181 0.250 0.161 0.235 0.138 0.225 0.272 0.328 0.281 0.309 0.162 0.234
12 0.216 0.279 0.311 0.331 0.294 0.321 0.231 0.289 0.402 0.396 0.555 0.437 0.301 0.317
18 0.311 0.329 0.409 0.388 0.389 0.366 0.323 0.340 0.511 0.445 0.628 0.471 0.410 0.375

E
T

T
h2 6 0.132 0.227 0.159 0.264 0.157 0.260 0.162 0.267 0.199 0.327 0.213 0.310 0.150 0.252

12 0.144 0.240 0.175 0.273 0.170 0.268 0.169 0.266 0.219 0.337 0.205 0.295 0.174 0.273
18 0.159 0.253 0.181 0.273 0.178 0.270 0.200 0.294 0.215 0.319 0.247 0.325 0.192 0.284

E
T

T
m

2 6 0.060 0.138 0.066 0.155 0.065 0.151 0.062 0.144 0.083 0.200 0.083 0.176 0.065 0.150
12 0.079 0.165 0.089 0.186 0.089 0.181 0.080 0.170 0.109 0.228 0.118 0.219 0.092 0.186
18 0.093 0.182 0.110 0.211 0.112 0.208 0.098 0.191 0.125 0.242 0.130 0.232 0.114 0.210

E
C

L 6 0.199 0.306 0.661 0.597 0.333 0.391 0.205 0.307 1.021 0.836 1.386 0.931 0.651 0.571
12 0.117 0.221 0.232 0.340 0.152 0.239 0.130 0.234 0.394 0.491 0.507 0.531 0.212 0.296
18 0.117 0.219 0.237 0.348 0.158 0.243 0.133 0.240 0.341 0.440 0.492 0.523 0.216 0.300

W
ea

th
er 6 0.058 0.069 0.065 0.083 0.063 0.078 0.070 0.088 0.081 0.145 0.109 0.135 0.065 0.083

12 0.071 0.086 0.085 0.108 0.084 0.101 0.086 0.114 0.096 0.161 0.124 0.152 0.091 0.111
18 0.083 0.105 0.099 0.126 0.098 0.119 0.105 0.141 0.116 0.188 0.085 0.100 0.106 0.130

IL
I 6 1.419 0.694 3.402 1.213 2.793 1.079 1.101 0.597 3.407 1.255 3.378 1.170 2.485 1.024

12 2.420 0.939 3.958 1.427 4.591 1.534 2.760 0.927 5.597 1.753 6.106 1.784 4.271 1.461
18 2.394 0.983 4.905 1.594 3.774 1.402 3.516 1.014 4.875 1.666 5.953 1.815 4.327 1.497

Tr
af

fic 6 0.937 0.414 1.023 0.586 0.790 0.442 1.064 0.402 1.785 0.946 2.392 1.095 1.414 0.736
12 0.461 0.301 0.618 0.416 0.453 0.289 0.566 0.297 0.964 0.608 1.475 0.809 0.662 0.414
18 0.453 0.300 0.653 0.429 0.468 0.305 0.587 0.305 0.933 0.574 1.321 0.731 0.691 0.430

E
xc

ha
ng

e 6 0.008 0.052 0.010 0.068 0.010 0.065 0.009 0.063 0.048 0.175 0.014 0.078 0.009 0.061
12 0.013 0.072 0.017 0.089 0.017 0.087 0.018 0.089 0.038 0.148 0.023 0.106 0.017 0.089
18 0.019 0.089 0.023 0.104 0.023 0.103 0.025 0.107 0.048 0.171 0.032 0.127 0.024 0.108

1st Count 49 0 3 2 0 0 0
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L ABLATION STUDY ABOUT REVIN ON REGRESSION TASKS

L.1 ABLATION STUDY ABOUT REVIN ON LONG-TERM FORECASTING

We conduct ablation study on Weather, ETTh1 and ETTm1 datasets for long-term forecasting tasks.

The results in Table 22 show that:

• Although there is a slight degradation in performance without RevIN, our ModernTCN
still achieves competitive performance. ModernTCN can still achieve significantly better
performance than some baselines and compete favorably with PatchTST in the same case of
no RevIN. The results indicate that our designs in ModernTCN also make great contribution
to the performance improvement.

• We also find that RevIN doesn’t provide consistent improvement under some settings (e.g.,
prediciton length 192 and 720 in Weather dataset), which means our ModernTCN can
directly predict from the non-stationary time series to some degree. This finding further
confirms that our designs in ModernTCN can bring great performance improvement on their
own. And such phenomenon mainly happens in Weather dataset for its degree of stationarity
is not very high according to (Liu et al., 2022c).

Table 22: Ablation Study about RevIN on long-term forecasting tasks. We report MSE and MAE
under four different prediction lengths as metrics. +Rev means with RevIN. -Rev means without
RevIN.

Models ModernTCN (+Rev) ModernTCN (-Rev) PatchTST (+Rev) PatchTST (-Rev) FEDformer Autoformer Informer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.149 0.200 0.155 0.233 0.149 0.198 0.161 0.219 0.238 0.314 0.249 0.329 0.354 0.405

192 0.196 0.245 0.196 0.249 0.194 0.241 0.201 0.254 0.275 0.329 0.325 0.370 0.419 0.434
336 0.238 0.277 0.247 0.323 0.245 0.282 0.253 0.298 0.339 0.377 0.351 0.391 0.583 0.543
720 0.314 0.334 0.312 0.366 0.314 0.334 0.323 0.357 0.389 0.409 0.415 0.426 0.916 0.705

E
T

T
h1

96 0.368 0.394 0.381 0.406 0.370 0.399 0.385 0.410 0.376 0.415 0.435 0.446 0.941 0.769
192 0.405 0.413 0.418 0.426 0.413 0.421 0.417 0.432 0.423 0.446 0.456 0.457 1.007 0.786
336 0.391 0.412 0.413 0.434 0.422 0.436 0.439 0.449 0.444 0.462 0.486 0.487 1.038 0.784
720 0.450 0.461 0.487 0.500 0.447 0.466 0.478 0.494 0.469 0.492 0.515 0.517 1.144 0.857

E
T

T
m

1 96 0.292 0.346 0.313 0.362 0.290 0.342 0.308 0.358 0.326 0.390 0.510 0.492 0.626 0.560
192 0.332 0.368 0.336 0.375 0.332 0.369 0.356 0.390 0.365 0.415 0.514 0.495 0.725 0.619
336 0.365 0.391 0.367 0.393 0.366 0.392 0.389 0.411 0.392 0.425 0.510 0.492 1.005 0.741
720 0.416 0.417 0.427 0.426 0.416 0.420 0.430 0.439 0.446 0.458 0.527 0.493 1.133 0.845

L.2 THE IMPACT OF REVIN ON DIFFERENT TASKS AND MODELS

To study the impact of RevIN on different tasks and models, we further conduct experiments on four
regression tasks with 6 models: ModernTCN, PatchTST (2023), TimesNet(2023), SCINet(2022a),
RMLP and RLinear(2023a). Details are as follows:

• We conduct ablation study about RevIN on long-term forecasting with more models. And
the results are provided in Table 23.

• We conduct ablation study about RevIN on imputation tasks in Weather, ETTh1 and ETTm1
datasets. And we report the MSE and MAE under four different mask ratios as metrics.
Results are shown in Table 24.

• We conduct ablation study about RevIN on short-term forecasting tasks in M4 datasets and
roport the weighted averaged results from six M4 sub-datasets as metric. Results are shown
in Table 25.

• We conduct ablation study about RevIN on anomaly detection tasks in SMD, MSL and PSM
datasets and roport the F1-score as metric. Results are shown in Table 26.

RevIN’s impact on different tasks In general, removing the RevIN will lead to performance
degradation in all four tasks because it is more difficult to predict from the non-stationary time series
(Liu et al., 2022c; Kim et al., 2021). Given that stationary techniques like RevIN or decomposition
(e.g., MICN, DLinear, FEDformer) can transform the input into stationary series that is easier to
analyze with deep learning methods, it is generally necessary to adopt stationary techniques in
regression tasks.
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We also find that short-term forecasting is more sensitive to RevIN. The samples in M4 datasets are
collected from different sources and have quite different temporal property. Therefore, there is a
greater need of RevIN to mitigate the distribution shift.

RevIN’s impact on different models Although removing RevIN will cause performance degra-
dation on all 6 models in our experiments, our ModernTCN is one of the less influenced models,
indicating that our ModernTCN is robust to the usage of RevIN.

The extent of RevIN’s influence on the model is related to the model’s mechanisms. For example, an
important step in TimesNet is calculate the periods of time series based on FFT. Since FFT mainly
works well on stationary signals, there is a greater need for the time series to be stationary. As a
result, TimesNet’s performance is highly related to RevIN.

Table 23: Ablation about RevIN on Long-term forecasting for other models. We report MSE and
MAE under four different prediction lengths as metrics. +Rev means with RevIN. -Rev means
without RevIN.

Models RMLP RMLP RLinear RLinear TimesNet TimesNet SCINet SCINet
(+Rev) (-Rev) (+Rev) (-Rev) (+Rev) (-Rev) (+Rev) (-Rev)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.298 0.345 0.310 0.359 0.301 0.342 0.334 0.374 0.338 0.375 0.622 0.596 0.325 0.372 0.399 0.432
192 0.344 0.375 0.350 0.382 0.335 0.363 0.365 0.392 0.371 0.387 0.622 0.583 0.354 0.386 0.411 0.436
336 0.390 0.410 0.387 0.405 0.370 0.383 0.397 0.410 0.410 0.411 0.703 0.644 0.394 0.415 0.459 0.465
720 0.445 0.441 0.448 0.442 0.425 0.414 0.456 0.448 0.478 0.450 0.901 0.736 0.476 0.469 0.530 0.511

E
T

T
h1

96 0.390 0.410 0.471 0.468 0.366 0.391 0.532 0.497 0.384 0.402 1.261 0.883 0.375 0.406 0.525 0.513
192 0.430 0.432 0.511 0.492 0.404 0.412 0.559 0.513 0.557 0.436 1.132 0.835 0.416 0.421 0.570 0.542
336 0.441 0.441 0.540 0.515 0.420 0.423 0.569 0.526 0.491 0.469 1.166 0.841 0.504 0.495 0.580 0.548
720 0.506 0.495 0.603 0.575 0.442 0.456 0.602 0.568 0.521 0.500 1.269 0.926 0.544 0.527 0.589 0.564

W
ea

th
er

96 0.149 0.202 0.179 0.239 0.175 0.225 0.226 0.283 0.172 0.220 0.222 0.316 0.161 0.226 0.180 0.260
192 0.194 0.242 0.220 0.278 0.218 0.260 0.270 0.319 0.219 0.261 0.249 0.326 0.220 0.283 0.229 0.299
336 0.243 0.282 0.264 0.313 0.265 0.294 0.332 0.369 0.280 0.306 0.360 0.413 0.275 0.328 0.280 0.333
720 0.316 0.333 0.327 0.364 0.329 0.339 0.188 0.250 0.365 0.359 0.414 0.434 0.311 0.356 0.337 0.370

Table 24: Ablation about RevIN on imputation tasks. We report MSE and MAE under four different
mask ratios as metrics. +Rev means with RevIN. -Rev means without RevIN.

Models ModernTCN ModernTCN PatchTST PatchTST RMLP RMLP RLinear RLinear TimesNet TimesNet SCINet SCINet
(+Rev) (-Rev) (+Rev) (-Rev) (+Rev) (-Rev) (+Rev) (-Rev) (+Rev) (-Rev) (+Rev) (-Rev)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

0.125 0.015 0.082 0.017 0.090 0.041 0.128 0.042 0.141 0.049 0.139 0.056 0.162 0.047 0.137 0.056 0.161 0.019 0.092 0.022 0.103 0.031 0.116 0.290 0.370
0.25 0.018 0.088 0.020 0.095 0.043 0.130 0.046 0.143 0.057 0.154 0.072 0.186 0.061 0.157 0.077 0.190 0.023 0.101 0.029 0.118 0.036 0.124 0.042 0.144

0.375 0.021 0.095 0.025 0.107 0.044 0.133 0.054 0.155 0.067 0.168 0.089 0.206 0.077 0.175 0.099 0.217 0.029 0.111 0.034 0.129 0.041 0.134 0.050 0.158
0.5 0.026 0.105 0.031 0.118 0.050 0.142 0.062 0.164 0.079 0.183 0.108 0.226 0.096 0.195 0.128 0.246 0.036 0.124 0.044 0.147 0.049 0.143 0.060 0.173

E
T

T
h1

0.125 0.035 0.128 0.035 0.126 0.094 0.199 0.115 0.233 0.096 0.205 0.120 0.239 0.098 0.206 0.115 0.236 0.057 0.159 0.089 0.217 0.089 0.202 0.123 0.251
0.25 0.042 0.140 0.049 0.154 0.119 0.225 0.138 0.256 0.120 0.228 0.151 0.270 0.123 0.229 0.149 0.268 0.069 0.178 0.112 0.243 0.099 0.211 0.132 0.258

0.375 0.054 0.157 0.060 0.168 0.145 0.248 0.166 0.281 0.145 0.250 0.186 0.299 0.153 0.253 0.189 0.300 0.084 0.196 0.154 0.288 0.107 0.218 0.145 0.272
0.5 0.067 0.174 0.079 0.196 0.173 0.271 0.200 0.306 0.176 0.274 0.223 0.328 0.188 0.278 0.232 0.331 0.102 0.215 0.181 0.305 0.120 0.231 0.159 0.287

W
ea

th
er

0.125 0.023 0.038 0.026 0.059 0.029 0.049 0.041 0.106 0.030 0.051 0.039 0.086 0.029 0.048 0.039 0.091 0.025 0.045 0.032 0.078 0.028 0.047 0.032 0.074
0.25 0.025 0.041 0.032 0.077 0.031 0.053 0.045 0.108 0.033 0.057 0.046 0.103 0.032 0.055 0.047 0.109 0.029 0.052 0.036 0.085 0.029 0.050 0.032 0.077

0.375 0.027 0.046 0.030 0.069 0.034 0.058 0.042 0.098 0.036 0.062 0.052 0.115 0.036 0.062 0.057 0.123 0.031 0.057 0.041 0.094 0.031 0.055 0.036 0.083
0.5 0.031 0.051 0.037 0.090 0.039 0.066 0.043 0.092 0.040 0.068 0.060 0.126 0.040 0.067 0.066 0.137 0.034 0.062 0.046 0.102 0.034 0.059 0.040 0.090
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Table 25: Ablation study about RevIN on short-term forecasting. Results are weighted averaged
from several datasets under different sample intervals. +Rev means with RevIN. -Rev means without
RevIN. Since removing RevIn in PatchTST will make the training loss become NaN, making it hard
to train on short-term forecasting, we don’t report the result of PatchTST without RevIN.

Models ModernTCN PatchTST RMLP RLinear TimesNet SCINet
(Ours) (2023) (2023a) (2023a) (2023) (2022a)

+Rev
SMAPE 11.698 11.807 12.072 12.473 11.829 12.369
MASE 1.556 1.590 1.624 1.677 1.585 1.677
OWA 0.838 0.851 0.870 0.898 0.851 0.894

-Rev
SMAPE 12.241 - 14.984 12.777 90.132 12.950
MASE 1.796 - 2.716 1.789 20.17 1.955
OWA 0.921 - 1.262 0.939 8.597 0.989

Table 26: Ablation study about RevIN on anomaly detection. We report F1-score as metric. +Rev
means with RevIN. -Rev means without RevIN.

Models ModernTCN PatchTST RMLP RLinear TimesNet SCINet
(Ours) (2023) (2023a) (2023a) (2023) (2022a)

+Rev
SMD 85.81 84.44 82.46 83.70 85.81 84.24
MSL 84.92 85.14 74.48 81.15 85.15 83.38
PSM 97.23 96.37 92.76 96.33 97.47 96.00

-Rev
SMD 81.42 71.17 73.63 81.32 71.20 83.75
MSL 82.07 81.70 78.05 81.86 82.20 81.28
PSM 96.36 95.93 93.36 96.00 90.66 95.93
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M FULL RESULTS

Due to the space limitation of the main text, we place the full results of all experiments in the
following: long-term forecasting in Table 27, short-term forecasting in Table 28, imputation in Table
29, classification in Table 30 and anomaly detection in Table 31.

And some showcases are provided in Appendix N.

M.1 LONG-TERM

M.2 SHORT-TERM

M.3 IMPUTATION

M.4 CLASSIFICATION

M.5 ANOMALY DETECTION
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Table 27: Full results for the long-term forecasting task. We compare extensive competitive models
under four prediction lengths. The input sequence length is searched to the best for a fairer comparison.
Avg is averaged from all four prediction lengths.

Models ModernTCN PatchTST Crossformer FEDformer MTS-mixer LightTS DLinear TimesNet MICN SCINet RLinear RMLP
(Ours) (2023) (2023) (2022) (2023b) (2022) (2022) (2023) (2023) (2022a) (2023a) (2023a)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.292 0.346 0.290 0.342 0.316 0.373 0.326 0.390 0.314 0.358 0.374 0.400 0.299 0.343 0.338 0.375 0.314 0.360 0.325 0.372 0.301 0.342 0.298 0.345
192 0.332 0.368 0.332 0.369 0.377 0.411 0.365 0.415 0.354 0.386 0.400 0.407 0.335 0.365 0.371 0.387 0.359 0.387 0.354 0.386 0.335 0.363 0.344 0.375
336 0.365 0.391 0.366 0.392 0.431 0.442 0.392 0.425 0.384 0.405 0.438 0.438 0.369 0.386 0.410 0.411 0.398 0.413 0.394 0.415 0.370 0.383 0.390 0.410
720 0.416 0.417 0.416 0.420 0.600 0.547 0.446 0.458 0.427 0.432 0.527 0.502 0.425 0.421 0.478 0.450 0.459 0.464 0.476 0.469 0.425 0.414 0.445 0.441

Avg 0.351 0.381 0.351 0.381 0.431 0.443 0.382 0.422 0.370 0.395 0.435 0.437 0.357 0.379 0.400 0.406 0.383 0.406 0.387 0.411 0.358 0.376 0.369 0.393

E
T

T
m

2

96 0.166 0.256 0.165 0.255 0.421 0.461 0.180 0.271 0.177 0.259 0.209 0.308 0.167 0.260 0.187 0.267 0.178 0.273 0.186 0.281 0.164 0.253 0.174 0.259
192 0.222 0.293 0.220 0.292 0.503 0.519 0.252 0.318 0.241 0.303 0.311 0.382 0.224 0.303 0.249 0.309 0.245 0.316 0.277 0.356 0.219 0.290 0.236 0.303
336 0.272 0.324 0.274 0.329 0.611 0.580 0.324 0.364 0.297 0.338 0.442 0.466 0.281 0.342 0.321 0.351 0.295 0.350 0.311 0.369 0.273 0.326 0.291 0.338
720 0.351 0.381 0.362 0.385 0.996 0.750 0.410 0.420 0.396 0.398 0.675 0.587 0.397 0.421 0.497 0.403 0.389 0.406 0.403 0.412 0.366 0.385 0.371 0.391

Avg 0.253 0.314 0.255 0.315 0.632 0.578 0.292 0.343 0.277 0.325 0.409 0.436 0.267 0.332 0.291 0.333 0.277 0.336 0.294 0.355 0.256 0.314 0.268 0.322

E
T

T
h1

96 0.368 0.394 0.370 0.399 0.386 0.429 0.376 0.415 0.372 0.395 0.424 0.432 0.375 0.399 0.384 0.402 0.396 0.427 0.375 0.406 0.366 0.391 0.390 0.410
192 0.405 0.413 0.413 0.421 0.419 0.444 0.423 0.446 0.416 0.426 0.475 0.462 0.405 0.416 0.557 0.436 0.430 0.453 0.416 0.421 0.404 0.412 0.430 0.432
336 0.391 0.412 0.422 0.436 0.440 0.461 0.444 0.462 0.455 0.449 0.518 0.521 0.439 0.443 0.491 0.469 0.433 0.458 0.504 0.495 0.420 0.423 0.441 0.441
720 0.450 0.461 0.447 0.466 0.519 0.524 0.469 0.492 0.475 0.472 0.547 0.533 0.472 0.490 0.521 0.500 0.474 0.508 0.544 0.527 0.442 0.456 0.506 0.495

Avg 0.404 0.420 0.413 0.431 0.441 0.465 0.428 0.454 0.430 0.436 0.491 0.479 0.423 0.437 0.458 0.450 0.433 0.462 0.460 0.462 0.408 0.421 0.442 0.445

E
T

T
h2

96 0.263 0.332 0.274 0.336 0.628 0.563 0.332 0.374 0.307 0.354 0.397 0.437 0.289 0.353 0.340 0.374 0.289 0.357 0.295 0.361 0.262 0.331 0.288 0.352
192 0.320 0.374 0.339 0.379 0.703 0.624 0.407 0.446 0.374 0.399 0.520 0.504 0.383 0.418 0.402 0.414 0.409 0.438 0.349 0.383 0.320 0.374 0.343 0.387
336 0.313 0.376 0.329 0.380 0.827 0.675 0.400 0.447 0.398 0.432 0.626 0.559 0.448 0.465 0.452 0.452 0.417 0.452 0.365 0.409 0.325 0.386 0.353 0.402
720 0.392 0.433 0.379 0.422 1.181 0.840 0.412 0.469 0.463 0.465 0.863 0.672 0.605 0.551 0.462 0.468 0.426 0.473 0.475 0.488 0.372 0.421 0.410 0.440

Avg 0.322 0.379 0.330 0.379 0.835 0.676 0.388 0.434 0.386 0.413 0.602 0.543 0.431 0.447 0.414 0.427 0.385 0.430 0.371 0.410 0.320 0.378 0.349 0.395

E
le

ct
ri

ci
ty

96 0.129 0.226 0.129 0.222 0.187 0.283 0.186 0.302 0.141 0.243 0.207 0.307 0.153 0.237 0.168 0.272 0.159 0.267 0.171 0.256 0.140 0.235 0.129 0.224
192 0.143 0.239 0.147 0.240 0.258 0.330 0.197 0.311 0.163 0.261 0.213 0.316 0.152 0.249 0.184 0.289 0.168 0.279 0.177 0.265 0.154 0.248 0.147 0.240
336 0.161 0.259 0.163 0.259 0.323 0.369 0.213 0.328 0.176 0.277 0.230 0.333 0.169 0.267 0.198 0.300 0.196 0.308 0.197 0.285 0.171 0.264 0.164 0.257
720 0.191 0.286 0.197 0.290 0.404 0.423 0.233 0.344 0.212 0.308 0.265 0.360 0.233 0.344 0.220 0.320 0.203 0.312 0.234 0.318 0.209 0.297 0.203 0.291

Avg 0.156 0.253 0.159 0.253 0.293 0.351 0.207 0.321 0.173 0.272 0.229 0.329 0.177 0.274 0.192 0.295 0.182 0.292 0.195 0.281 0.169 0.261 0.161 0.253

W
ea

th
er

96 0.149 0.200 0.149 0.198 0.153 0.217 0.238 0.314 0.156 0.206 0.182 0.242 0.152 0.237 0.172 0.220 0.161 0.226 0.178 0.233 0.175 0.225 0.149 0.202
192 0.196 0.245 0.194 0.241 0.197 0.269 0.275 0.329 0.199 0.248 0.227 0.287 0.220 0.282 0.219 0.261 0.220 0.283 0.235 0.277 0.218 0.260 0.194 0.242
336 0.238 0.277 0.245 0.282 0.252 0.311 0.339 0.377 0.249 0.291 0.282 0.334 0.265 0.319 0.280 0.306 0.275 0.328 0.337 0.345 0.265 0.294 0.243 0.282
720 0.314 0.334 0.314 0.334 0.318 0.363 0.389 0.409 0.336 0.343 0.352 0.386 0.323 0.362 0.365 0.359 0.311 0.356 0.396 0.413 0.329 0.339 0.316 0.333

Avg 0.224 0.264 0.226 0.264 0.230 0.290 0.310 0.357 0.235 0.272 0.261 0.312 0.240 0.300 0.259 0.287 0.242 0.298 0.287 0.317 0.247 0.279 0.225 0.265

Tr
af

fic

96 0.368 0.253 0.360 0.249 0.512 0.290 0.576 0.359 0.462 0.332 0.615 0.391 0.410 0.282 0.593 0.321 0.508 0.301 0.613 0.395 0.496 0.375 0.430 0.327
192 0.379 0.261 0.379 0.256 0.523 0.297 0.610 0.380 0.488 0.354 0.601 0.382 0.423 0.287 0.617 0.336 0.536 0.315 0.559 0.363 0.503 0.377 0.451 0.340
336 0.397 0.270 0.392 0.264 0.530 0.300 0.608 0.375 0.498 0.360 0.613 0.386 0.436 0.296 0.629 0.336 0.525 0.310 0.555 0.358 0.517 0.382 0.470 0.351
720 0.440 0.296 0.432 0.286 0.573 0.313 0.621 0.375 0.529 0.370 0.658 0.407 0.466 0.315 0.640 0.350 0.571 0.323 0.620 0.394 0.555 0.398 0.513 0.372

Avg 0.396 0.270 0.391 0.264 0.535 0.300 0.604 0.372 0.494 0.354 0.622 0.392 0.434 0.295 0.620 0.336 0.535 0.312 0.587 0.378 0.518 0.383 0.466 0.348

E
xc

ha
ng

e 96 0.080 0.196 0.093 0.214 0.186 0.346 0.139 0.276 0.083 0.201 0.116 0.262 0.081 0.203 0.107 0.234 0.102 0.235 0.116 0.254 0.083 0.201 0.083 0.201
192 0.166 0.288 0.192 0.312 0.467 0.522 0.256 0.369 0.174 0.296 0.215 0.359 0.157 0.293 0.226 0.344 0.172 0.316 0.218 0.345 0.170 0.293 0.170 0.292
336 0.307 0.398 0.350 0.432 0.783 0.721 0.426 0.464 0.336 0.417 0.377 0.466 0.305 0.414 0.367 0.448 0.272 0.407 0.294 0.413 0.309 0.401 0.309 0.401
720 0.656 0.582 0.911 0.716 1.367 0.943 1.090 0.800 0.900 0.715 0.831 0.699 0.643 0.601 0.964 0.746 0.714 0.658 1.110 0.767 0.817 0.680 0.816 0.680

Avg 0.302 0.366 0.387 0.419 0.701 0.633 0.478 0.478 0.373 0.407 0.385 0.447 0.297 0.378 0.416 0.443 0.315 0.404 0.435 0.445 0.345 0.394 0.345 0.394

IL
I

24 1.347 0.717 1.319 0.754 3.040 1.186 2.624 1.095 1.472 0.798 8.313 2.144 2.215 1.081 2.317 0.934 2.684 1.112 2.150 1.005 4.337 1.507 4.445 1.536
36 1.250 0.778 1.430 0.834 3.356 1.230 2.516 1.021 1.435 0.745 6.631 1.902 1.963 0.963 1.972 0.920 2.507 1.013 2.103 0.983 4.205 1.481 4.409 1.519
48 1.388 0.781 1.553 0.815 3.441 1.223 2.505 1.041 1.474 0.822 7.299 1.982 2.130 1.024 2.238 0.940 2.423 1.012 2.432 1.061 4.257 1.484 4.388 1.507
60 1.774 0.868 1.470 0.788 3.608 1.302 2.742 1.122 1.839 0.912 7.283 1.985 2.368 1.096 2.027 0.928 2.653 1.085 2.325 1.035 4.278 1.487 4.306 1.502

Avg 1.440 0.786 1.443 0.798 3.361 1.235 2.597 1.070 1.555 0.819 7.382 2.003 2.169 1.041 2.139 0.931 2.567 1.055 2.252 1.021 4.269 1.490 4.387 1.516

1st Count 43 23 0 0 0 0 2 0 2 0 10 1
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Table 28: Full results for the short-term forecasting task in the M4 dataset. ∗. in the Transformers
indicates the name of ∗former.

Models ModernTCN CARD PatchTST Crossformer FEDformer RMLP RLinear MTS-mixer LightTS DLinear TimesNet MICN SCINet N-HiTS N-BEATS
(Ours) (2023) (2023) (2023) (2022) (2023a) (2023a) (2023b) (2022) (2022) (2023) (2023) (2022a) (2023) (2019)

Y
ea

rl
y SMAPE 13.226 13.302 13.258 13.392 13.728 13.418 13.994 13.548 14.247 16.965 13.387 14.935 13.717 13.418 13.436

MASE 2.957 3.016 2.985 3.001 3.048 3.006 3.015 3.091 3.109 4.283 2.996 3.523 3.076 3.045 3.043
OWA 0.777 0.786 0.781 0.787 0.803 0.789 0.807 0.803 0.827 1.058 0.786 0.900 0.807 0.793 0.794

Q
ua

rt
er

ly SMAPE 9.971 10.031 10.179 16.317 10.792 10.382 10.702 10.128 11.364 12.145 10.100 11.452 10.845 10.202 10.124
MASE 1.167 1.176 0.803 2.197 1.283 1.234 1.299 1.196 1.328 1.520 1.182 1.389 1.295 1.194 1.169
OWA 0.878 0.884 0.803 1.542 0.958 0.921 0.959 0.896 1.000 1.106 0.890 1.026 0.965 0.899 0.886

M
on

th
ly SMAPE 12.556 12.670 12.641 12.924 14.260 12.998 13.363 12.717 14.014 13.514 12.670 13.773 13.208 12.791 12.667

MASE 0.917 0.933 0.930 0.966 1.102 0.976 1.014 0.931 1.053 1.037 0.933 1.076 0.999 0.969 0.937
OWA 0.866 0.878 0.876 0.902 1.012 0.909 0.940 0.879 0.981 0.956 0.878 0.983 0.928 0.899 0.880

O
th

er
s SMAPE 4.715 5.330 4.946 5.493 4.954 5.098 5.437 4.817 15.880 6.709 4.891 6.716 5.423 5.061 4.925

MASE 3.107 3.261 2.985 3.690 3.264 3.364 3.706 3.255 11.434 4.953 3.302 4.717 3.583 3.216 3.391
OWA 0.986 1.075 1.044 1.160 1.036 1.067 1.157 1.02 3.474 1.487 1.035 1.451 1.136 1.040 1.053

W
ei

gh
te

d
A

ve
ra

ge SMAPE 11.698 11.815 11.807 13.474 12.840 12.072 12.473 11.892 13.252 13.639 11.829 13.130 12.369 11.927 11.851
MASE 1.556 1.587 1.590 1.866 1.701 1.624 1.677 1.608 2.111 2.095 1.585 1.896 1.677 1.613 1.599
OWA 0.838 0.850 0.851 0.985 0.918 0.870 0.898 0.859 1.051 1.051 0.851 0.980 0.894 0.861 0.855

∗ The original paper of N-BEATS (Oreshkin et al., 2019) adopts a special ensemble method to promote the performance. For fair
comparisons, we remove the ensemble and only compare the pure forecasting models.
∗ CARD is re-implemented by us based on the pseudo-code in the original paper (Xue et al., 2023). In original paper, CARD is
trained with cosine learning rate decay and linear warm-up. For fair comparisons, we remove this additional training scheme.
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Table 29: Full results for the imputation task. We randomly mask 12.5%, 25%, 37.5% and 50% time
points to compare the model performance under different missing degrees.

Models ModernTCN PatchTST Crossformer FEDformer MTS-mixer LightTS DLinear TimesNet MICN SCINet RLinear RMLP
(Ours) (2023) (2023) (2022) (2023b) (2022) (2022) (2023) (2023) (2022a) (2023a) (2023a)

Mask Ratio MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 12.5% 0.015 0.082 0.041 0.128 0.037 0.137 0.035 0.135 0.043 0.134 0.075 0.180 0.058 0.162 0.019 0.092 0.039 0.137 0.031 0.116 0.047 0.137 0.049 0.139
25% 0.018 0.088 0.043 0.130 0.038 0.141 0.052 0.166 0.051 0.147 0.093 0.206 0.080 0.193 0.023 0.101 0.059 0.170 0.036 0.124 0.061 0.157 0.057 0.154

37.5% 0.021 0.095 0.044 0.133 0.041 0.142 0.069 0.191 0.060 0.160 0.113 0.231 0.103 0.219 0.029 0.111 0.080 0.199 0.041 0.134 0.077 0.175 0.067 0.168
50% 0.026 0.105 0.050 0.142 0.047 0.152 0.089 0.218 0.070 0.174 0.134 0.255 0.132 0.248 0.036 0.124 0.103 0.221 0.049 0.143 0.096 0.195 0.079 0.183

Avg 0.020 0.093 0.045 0.133 0.041 0.143 0.062 0.177 0.056 0.154 0.104 0.218 0.093 0.206 0.027 0.107 0.070 0.182 0.039 0.129 0.070 0.166 0.063 0.161

E
T

T
m

2 12.5% 0.017 0.076 0.025 0.092 0.044 0.148 0.056 0.159 0.026 0.096 0.034 0.127 0.062 0.166 0.018 0.080 0.060 0.165 0.023 0.093 0.026 0.093 0.026 0.096
25% 0.018 0.080 0.027 0.095 0.047 0.151 0.080 0.195 0.030 0.103 0.042 0.143 0.085 0.196 0.020 0.085 0.100 0.216 0.026 0.100 0.030 0.103 0.030 0.106

37.5% 0.020 0.084 0.029 0.099 0.044 0.145 0.110 0.231 0.033 0.110 0.051 0.159 0.106 0.222 0.023 0.091 0.163 0.273 0.028 0.105 0.034 0.113 0.034 0.113
50% 0.022 0.090 0.032 0.106 0.047 0.150 0.156 0.276 0.037 0.118 0.059 0.174 0.131 0.247 0.026 0.098 0.254 0.342 0.031 0.111 0.039 0.123 0.039 0.121

Avg 0.019 0.082 0.028 0.098 0.046 0.149 0.101 0.215 0.032 0.107 0.046 0.151 0.096 0.208 0.022 0.088 0.144 0.249 0.027 0.102 0.032 0.108 0.032 0.109

E
T

T
h1

12.5% 0.035 0.128 0.094 0.199 0.099 0.218 0.070 0.190 0.097 0.209 0.240 0.345 0.151 0.267 0.057 0.159 0.072 0.192 0.089 0.202 0.098 0.206 0.096 0.205
25% 0.042 0.140 0.119 0.225 0.125 0.243 0.106 0.236 0.115 0.226 0.265 0.364 0.180 0.292 0.069 0.178 0.105 0.232 0.099 0.211 0.123 0.229 0.120 0.228

37.5% 0.054 0.157 0.145 0.248 0.146 0.263 0.124 0.258 0.135 0.244 0.296 0.382 0.215 0.318 0.084 0.196 0.139 0.267 0.107 0.218 0.153 0.253 0.145 0.250
50% 0.067 0.174 0.173 0.271 0.158 0.281 0.165 0.299 0.160 0.263 0.334 0.404 0.257 0.347 0.102 0.215 0.185 0.310 0.120 0.231 0.188 0.278 0.176 0.274

Avg 0.050 0.150 0.133 0.236 0.132 0.251 0.117 0.246 0.127 0.236 0.284 0.373 0.201 0.306 0.078 0.187 0.125 0.250 0.104 0.216 0.141 0.242 0.134 0.239

E
T

T
h2

12.5% 0.037 0.121 0.057 0.150 0.103 0.220 0.095 0.212 0.061 0.157 0.101 0.231 0.100 0.216 0.040 0.130 0.106 0.223 0.061 0.161 0.057 0.152 0.058 0.153
25% 0.040 0.127 0.062 0.158 0.110 0.229 0.137 0.258 0.065 0.163 0.115 0.246 0.127 0.247 0.046 0.141 0.151 0.271 0.062 0.162 0.062 0.160 0.064 0.161

37.5% 0.043 0.134 0.068 0.168 0.129 0.246 0.187 0.304 0.070 0.171 0.126 0.257 0.158 0.276 0.052 0.151 0.229 0.332 0.065 0.166 0.068 0.168 0.070 0.171
50% 0.048 0.143 0.076 0.179 0.148 0.265 0.232 0.341 0.078 0.181 0.136 0.268 0.183 0.299 0.060 0.162 0.334 0.403 0.069 0.172 0.076 0.179 0.078 0.181

Avg 0.042 0.131 0.066 0.164 0.122 0.240 0.163 0.279 0.069 0.168 0.119 0.250 0.142 0.259 0.049 0.146 0.205 0.307 0.064 0.165 0.066 0.165 0.068 0.166

E
le

ct
ri

ci
ty 12.5% 0.059 0.171 0.073 0.188 0.068 0.181 0.107 0.237 0.069 0.182 0.102 0.229 0.092 0.214 0.085 0.202 0.090 0.216 0.073 0.185 0.079 0.199 0.073 0.188

25% 0.071 0.188 0.082 0.200 0.079 0.198 0.120 0.251 0.083 0.202 0.121 0.252 0.118 0.247 0.089 0.206 0.108 0.236 0.081 0.198 0.105 0.233 0.090 0.211
37.5% 0.077 0.190 0.097 0.217 0.087 0.203 0.136 0.266 0.097 0.218 0.141 0.273 0.144 0.276 0.094 0.213 0.128 0.257 0.090 0.207 0.131 0.262 0.107 0.231
50% 0.085 0.200 0.110 0.232 0.096 0.212 0.158 0.284 0.108 0.231 0.160 0.293 0.175 0.305 0.100 0.221 0.151 0.278 0.099 0.214 0.160 0.291 0.125 0.252

Avg 0.073 0.187 0.091 0.209 0.083 0.199 0.130 0.259 0.089 0.208 0.131 0.262 0.132 0.260 0.092 0.210 0.119 0.247 0.086 0.201 0.119 0.246 0.099 0.221

W
ea

th
er 12.5% 0.023 0.038 0.029 0.049 0.036 0.092 0.041 0.107 0.033 0.052 0.047 0.101 0.039 0.084 0.025 0.045 0.036 0.088 0.028 0.047 0.029 0.048 0.030 0.051

25% 0.025 0.041 0.031 0.053 0.035 0.088 0.064 0.163 0.034 0.056 0.052 0.111 0.048 0.103 0.029 0.052 0.047 0.115 0.029 0.050 0.032 0.055 0.033 0.057
37.5% 0.027 0.046 0.034 0.058 0.035 0.088 0.107 0.229 0.037 0.060 0.058 0.121 0.057 0.117 0.031 0.057 0.062 0.141 0.031 0.055 0.036 0.062 0.036 0.062
50% 0.031 0.051 0.039 0.066 0.038 0.092 0.183 0.312 0.041 0.066 0.065 0.133 0.066 0.134 0.034 0.062 0.080 0.168 0.034 0.059 0.040 0.067 0.040 0.068

Avg 0.027 0.044 0.033 0.057 0.036 0.090 0.099 0.203 0.036 0.058 0.055 0.117 0.052 0.110 0.030 0.054 0.056 0.128 0.031 0.053 0.034 0.058 0.035 0.060

1st Count 48 0 0 0 0 0 0 0 0 0 0 0

Table 30: Full results for the classification task. ∗. in the Transformer-based models indicates the
name of ∗former. We report the classification accuracy (%) as the result. The standard deviation is
within 0.1%.

Datasets / Models
RNN-based Convolution-based MLP-based Transformer-based

LSTNet/LSSL/Rocket/SCINet/MICN/TimesNet/DLinear/LightTS/MTS-Mixer/RLinear/RMLP /FED. /Flow. /Cross./PatchTST/ModernTCN
(2018b)(2022) (2020) (2022a) (2023) (2023) (2022) (2022) (2023b) (2023a) (2023a)(2022)(2022)(2023) (2023) (Ours)

EthanolConcentration 39.9 31.1 45.2 34.4 35.3 35.7 36.2 29.7 33.8 28.9 31.3 31.2 33.8 38.0 32.8 36.3
FaceDetection 65.7 66.7 64.7 68.9 65.2 68.6 68.0 67.5 70.2 65.6 67.3 66.0 67.6 68.7 68.3 70.8
Handwriting 25.8 24.6 58.8 23.6 25.5 32.1 27.0 26.1 26.0 28.1 30.0 28.0 33.8 28.8 29.6 30.6

Heartbeat 77.1 72.7 75.6 77.5 74.7 78.0 75.1 75.1 77.1 72.6 72.7 73.7 77.6 77.6 74.9 77.2
JapaneseVowels 98.1 98.4 96.2 96.0 94.6 98.4 96.2 96.2 94.3 95.9 95.9 98.4 98.9 99.1 97.5 98.8

PEMS-SF 86.7 86.1 75.1 83.8 85.5 89.6 75.1 88.4 80.9 82.7 83.9 80.9 86.0 85.9 89.3 89.1
SelfRegulationSCP1 84.0 90.8 90.8 92.5 86.0 91.8 87.3 89.8 91.7 91.1 92.1 88.7 92.5 92.1 90.7 93.4
SelfRegulationSCP2 52.8 52.2 53.3 57.2 53.6 57.2 50.5 51.1 55.0 56.1 51.0 54.4 56.1 58.3 57.8 60.3
SpokenArabicDigits 100.0 100.0 71.2 98.1 97.1 99.0 81.4 100.0 97.4 96.5 97.6 100.0 98.8 97.9 98.3 98.7

UWaveGestureLibrary 87.8 85.9 94.4 85.1 82.8 85.3 82.1 80.3 82.3 82.5 83.8 85.3 86.6 85.3 85.8 86.7

Average Accuracy 71.8 70.9 72.5 71.7 70.0 73.6 67.5 70.4 70.9 70.0 70.6 70.7 73.0 73.2 72.5 74.2
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Table 31: Full results for the anomaly detection task. The P, R and F1 represent the precision, recall
and F1-score (%) respectively. F1-score is the harmonic mean of precision and recall. A higher value
of P, R and F1 indicates a better performance.

Datasets SMD MSL SMAP SWaT PSM Avg F1

Metrics P R F1 P R F1 P R F1 P R F1 P R F1 (%)

SCINet (2022a) 85.97 82.57 84.24 84.16 82.61 83.38 93.12 54.81 69.00 87.53 94.95 91.09 97.93 94.15 96.00 84.74
MICN (2023) 88.45 83.47 85.89 83.02 83.67 83.34 90.65 61.42 73.23 91.87 95.08 93.45 98.40 88.69 93.29 85.84
TimesNet (2023) 88.66 83.14 85.81 83.92 86.42 85.15 92.52 58.29 71.52 86.76 97.32 91.74 98.19 96.76 97.47 86.34
DLinear (2022) 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26 80.91 95.30 87.52 98.28 89.26 93.55 82.46
LightTS (2022) 87.10 78.42 82.53 82.40 75.78 78.95 92.58 55.27 69.21 91.98 94.72 93.33 98.37 95.97 97.15 84.23
MTS-Mixer (2023b) 88.60 82.92 85.67 85.35 84.13 84.74 92.13 58.01 71.19 84.49 93.81 88.91 98.41 88.63 93.26 84.75
RLinear (2023a) 87.79 79.98 83.70 89.26 74.39 81.15 89.94 54.01 67.49 92.27 93.18 92.73 98.47 94.28 96.33 84.28
RMLP (2023a) 87.35 78.10 82.46 86.67 65.30 74.48 90.62 52.22 66.26 92.32 93.20 92.76 98.01 93.25 95.57 82.31
Reformer (2020) 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40 72.50 96.53 82.80 59.93 95.38 73.61 77.31
Informer (2021) 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92 70.29 96.75 81.43 64.27 96.33 77.10 78.83
Anomaly∗ (2021) 88.91 82.23 85.49 79.61 87.37 83.31 91.85 58.11 71.18 72.51 97.32 83.10 68.35 94.72 79.40 80.50
Pyraformer (2021a) 85.61 80.61 83.04 83.81 85.93 84.86 92.54 57.71 71.09 87.92 96.00 91.78 71.67 96.02 82.08 82.57
Autoformer (2021) 88.06 82.35 85.11 77.27 80.92 79.05 90.40 58.62 71.12 89.85 95.81 92.74 99.08 88.15 93.29 84.26
Stationary (2022c) 88.33 81.21 84.62 68.55 89.14 77.50 89.37 59.02 71.09 68.03 96.75 79.88 97.82 96.76 97.29 82.08
FEDformer (2022) 87.95 82.39 85.08 77.14 80.07 78.57 90.47 58.10 70.76 90.17 96.42 93.19 97.31 97.16 97.23 84.97
Crossformer (2023) 83.06 76.61 79.70 84.68 83.71 84.19 92.04 55.37 69.14 88.49 93.48 90.92 97.16 89.73 93.30 83.45
PatchTST (2023) 87.42 81.65 84.44 84.07 86.23 85.14 92.43 57.51 70.91 80.70 94.93 87.24 98.87 93.99 96.37 84.82
ModernTCN (ours) 87.86 83.85 85.81 83.94 85.93 84.92 93.17 57.69 71.26 91.83 95.98 93.86 98.09 96.38 97.23 86.62

∗ The original paper of Anomaly Transformer (Xu et al., 2021) adopts the temporal association and
reconstruction error as a joint anomaly criterion. For fair comparisons, we only use reconstruction error
here.
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N SHOWCASES

We provide showcases to the regression tasks, including the imputation (Figure 13), long-term
forecasting (Figure 14 and 15) and short-term forecasting (Figure 16), as an intuitive comparison
among different models.

N.1 IMPUTATION

Figure 13: Visualization of ETTh1 imputation results given by models under the 50% mask ratio
setting. The blue lines stand for the ground truth and the orange lines stand for predicted values.
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N.2 LONG-TERM FORECASTING

Figure 14: Visualization of ETTm2 predictions by different models under the input-336-predict-192
setting. The blue lines stand for the ground truth and the orange lines stand for predicted values.
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Figure 15: Visualization of ETTm2 predictions by different models under the input-336-predict-336
setting. The blue lines stand for the ground truth and the orange lines stand for predicted values.
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N.3 SHORT-TERM FORECASTING

Figure 16: Visualization of M4 predictions by different models. The blue lines stand for the ground
truth and the orange lines stand for predicted values.
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