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Abstract. We present Kernel-QuantTree Exponentially Weighted Mov-
ing Average (KQT-EWMA), a non-parametric change-detection algo-
rithm that combines the Kernel-QuantTree (KQT) histogram and the
EWMA statistic to monitor multivariate data streams online. The result-
ing monitoring scheme is very flexible, since histograms can be used to
model any stationary distribution, and practical, since the distribution of
test statistics does not depend on the distribution of datastream in sta-
tionary conditions (non-parametric monitoring). KQT-EWMA enables
controlling false alarms by operating at a pre-determined Average Run
Length (ARL0), which measures the expected number of stationary sam-
ples to be monitored before triggering a false alarm. The latter pecu-
liarity is in contrast with most non-parametric change-detection tests,
which rarely can control the ARL0 a priori. Our experiments on syn-
thetic and real-world datasets demonstrate that KQT-EWMA can con-
trol ARL0 while achieving detection delays comparable to or lower than
state-of-the-art methods designed to work in the same conditions.

Keywords: Online Change Detection · Non-parametric Monitoring ·
Multivariate Data Streams

1 Introduction

Change detection is a frequently faced challenge in data stream analysis, where
the properties of some monitored process, e.g. a measurement acquired by a sen-
sor, may change over time. In machine learning, changes in data distribution are
known as concept drifts and pose challenges for classifiers and learning systems
in general, requiring continuous adaptation.

In many application domains such as industrial monitoring, communication
networks, and computer security, data come in virtually unlimited streams and
need to be monitored online. In particular, each new observation needs to be pro-
cessed immediately after being acquired, and must be evaluated considering the
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whole data stream seen so far, while using a limited amount of memory and per-
forming a fixed number of operations. In this study, we focus on online change-
detection methods for multivariate data streams, which require algorithms capa-
ble of handling multidimensional vectors within these computational requirements
and storage limitations. Another important challenge is posed by monitoring in
a non-parametric manner, i.e., without any assumption on the initial data dis-
tribution. Non-parametric methods are particularly useful in real-world scenar-
ios where the distribution of data is typically unknown. Unfortunately, most non-
parametric change-detection algorithms are designed to monitor univariate data
streams [15]. On top of that, controlling false alarms is a significant concern when
each detected change can trigger costly interventions. Unfortunately, most online
change-detection algorithms for multivariate data streams, particularly the non-
parametric ones, struggle to effectively control false alarms. This paper addresses
these challenges by proposing a method that is online, non-parametric, and capa-
ble of maintaining a target false alarm rate.

Online change detection monitoring techniques can be grouped into two cat-
egories: one-shot methods, which evaluate fixed-size batches of data points, and
sequential methods, which do not require a fixed sample size and take into
account the whole data stream. QuantTree (QT) is a one-shot non-parametric
solution which, supported by theoretical results, guarantees a pre-set constant
false positive rate (FPR). First presented in [2], QT algorithm defines a his-
togram, partitioning the d-dimensional input space. Non-parametric statistics
can be computed over it, enabling change detection in multivariate data streams
batch-wise. A fundamental limitation of QT is discussed in [12]: its splits
are defined along the space axis, resulting in a hyper-rectangular partitioning
that does not always adhere to the input distribution. To address this prob-
lem, a preprocessing stage is typically introduced to align the split directions
to the principal components of the training set. However, it was observed [12]
that this preprocessing can also worsen the control over false alarms. Hence,
Kernel-QuantTree (KQT) was introduced, a generalized version of QT which
partitions the space using kernel functions. The increased flexibility of the his-
togram in modeling the data distribution results in a one-shot monitoring of
multivariate data streams with increased detection power. However, KQT is
a batch-wise monitoring scheme using fixed-size windows and it fails to lever-
age the knowledge of the entire data stream distribution, thereby hindering fast
detection of changes in an online scenario. A sequential version of QT algo-
rithm, QT-EWMA, was presented in [4]. QT-EWMA computes the Exponen-
tially Weighted Moving Average (EWMA) statistic on a QT histogram, thus
considering the entire data stream acquired up to the current time instant t to
monitor the data distribution. Moreover, QT-EWMA can control the average
time elapsed before a false alarm is triggered (ARL0). Although being a truly
sequential extension of QT, QT-EWMA inherits the same weaknesses of its
one-shot counterpart, i.e. the axis-parallel splits.

We propose Kernel-QuantTree Exponentially Weighted Moving Average
(KQT-EWMA), a novel sequential non-parametric change-detection algorithm
for multivariate data streams that extends KQT to the online scenario, following
the approach of QT-EWMA. The theoretical properties of KQT guarantee that
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KQT-EWMA is completely non-parametric since the distribution of our statis-
tic does not depend on the data distribution, hence the thresholds controlling
the ARL0 can be set a priori, as in QT-EWMA. These thresholds guarantee
by design a constant false alarm probability over time, thus a fixed false alarm
rate at any time instant during monitoring.

Our extensive experimental analysis on both synthetic and real datasets
shows that KQT-EWMA outperforms state-of-the-art existing methods, suc-
cessfully extending KQT properties to the online scenario. Specifically, KQT-
EWMA achieves control over the ARL0 at a lower detection delay compared to
competitors. We will show that, by relying on a precise partition of the space,
KQT-EWMA outperforms QT-EWMA in complex scenarios, e.g., when ana-
lyzing data from multimodal distributions.

2 Problem Formulation

We consider a virtually unlimited multivariate data stream x1, x2, . . . in R
d where

data samples xt are i.i.d. realizations of a random variable with unknown distri-
bution φ0. We define the change-point t = τ as the unknown time instant when
the distribution φ0 experiences a change to φ1, i.e.:

xt ∼
{

φ0 if t < τ

φ1 if t ≥ τ.
(1)

We further assume we are provided with a training set TR of N stationary
realizations from φ0, which is used to fit a model φ̂0.

After estimating φ̂0, online change-detection algorithms typically compute
a statistic Tt at each observation xt, to assess whether the new sequence
{x1, . . . , xt} contains a change point or not. The decision rule usually involves
checking whether Tt > ht, where ht is a given threshold. The detection time
t∗ is identified as the earliest time instant when sufficient statistical evidence
indicates a change in the distribution, i.e.:

t∗ = min{t : Tt > ht}. (2)

A desirable property of change-detection algorithms is that the sequence of
thresholds {ht}t can be set a priori to guarantee a predefined ARL0 = Eφ0 [t

∗],
where the expectation is taken assuming that the whole data stream is drawn
from φ0. In practice, ARL0, represents the expected time before a false alarm
occurs, and plays a role similar to Type I error probability control in hypothesis
testing. The change-detection goal is to detect a distribution change as soon as
possible, thereby minimizing the detection delay t∗ − τ , while aiming for an
empirical ARL0 to approximate the predefined target value set beforehand.

3 Related Work

Change-detection algorithms are often parametric since they underpin hypothe-
ses about the data distribution φ0. As an example, the Change Point Model
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(CPM) [15] based on the Hotelling test relies on the assumption that φ0 conforms
to Gaussian distribution. CPM performs online monitoring of data streams with
theoretical guarantees regarding ARL0 control. The CPM formulation can be
extended to detect changes given an unknown non-Gaussian distribution when
implemented with the Lepage statistic [10], always controlling false alarms. Unfor-
tunately, the test statistics based on ranks are not suitable for multivariate
scenarios. A semi-parametric change-detection strategy, Semi-Parametric Log-
Likelihood (SPLL), was presented in [8]. SPLL models the initial data distribu-
tion φ0 by fitting a Gaussian Mixture Model (GMM) φ̂0 on a training set and then
compares new incoming batches with batches from the training set using a likeli-
hood test. SinceSPLLdoes not provide away to set the detection threshold a priori
to control the ARL0, it was combined with CPM [4]. In SPLL-CPM [4], SPLL
reduces the dimensionality of incoming samples by computing their log-likelihood
with respect to a GMM φ̂0 fit on TR, thus the resulting univariate sequence can
be conveniently monitored by a non-parametric extension of CPM leveraging the
Lepage test statistic [10]. Again, the main limitation of both SPLL and SPLL-
CPM is the assumption that φ0 can be well approximated by a probability dis-
tribution of a known family (a GMM), which does not hold in general. There
are only a few other multivariate methods that perform non-parametric change-
detection. Scan-B [9] employs a Maximum Mean Discrepancy (MMD) statistic
and can be configured to achieve a target ARL0. However, the thresholds for this
method are defined by analyzing the asymptotic behavior of ARL0 when the size
B of the sliding window is large [9]. Therefore, it fails at accurately controlling
ARL0. The NEWMA algorithm [7], also based on MMD, examines the relation-
ship between two EWMA statistics with distinct forgetting factors. A limitation
of this approach is that setting the ARL0 thresholds requires the known analyti-
cal expression of φ0. The Kernel-CUSUM [14] algorithm avoids assumptions about
data distribution φ0, but relies on a truncated approximation for ARL0, which
results in the underestimation of the thresholds [14].QT [2] andQT-EWMA [4,5]
are histogram-based change-detection methods featuring the desirable property
that the distribution of test statistics, defined over bin probabilities, does not
depend on the initial distribution φ0. This allows to set detection thresholds a pri-
ori via Monte Carlo procedures, allowing for efficient false alarm control.KQT [12]
defines histogram bins via nonlinear partition of the input space, resulting in a
powerful change-detection algorithm in multivariate data streams. However, being
a one-shot method, it cannot be directly employed for online change detection.
Our proposal, namely KQT-EWMA, aims to extend KQT to the sequential sce-
nario while retaining the capability of controlling false alarms given a target ARL0

defined beforehand.

4 Kernel-QuantTree EWMA

We present KQT-EWMA, a novel change-detection algorithm which combines
a KQT histogram [12], used as a model φ̂0 of the stationary distribution φ0,
and the online statistic Tt based on an Exponential Weighted Moving Aver-
age [4]. In Sect. 4.1, we illustrate the KQT-EWMA algorithm, describing the
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histogram construction, the threshold computation to control ARL0, and the
online monitoring process. In Sect. 4.2, we compare the computation complex-
ity of KQT-EWMA against the alternatives considered in the experimental
section. Finally, in Sect. 4.3 we discuss the limitations of KQT-EWMA.

4.1 The KQT-EWMA Algorithm

Algorithm 1 illustrates the training and inference phases of the KQT-EWMA
algorithm. First, the KQT histogram h = {(Sk, πk)}K

k=1 is constructed over the
training set TR ⊂ R

d to match a set of target probabilities {πj}K
j=1 (line 1),

as described in [12]. The histogram construction process consists in iteratively
splitting the input space into K bins defined as sub-level sets of a measurable
function {fk : Rd → R}K

k=1, which measures distances between training points
and selected centroids using a kernel function. We remark that K−1 bins defined
by KQT are compact subsets of Rd. A sample that does not fall into any of these
is assigned to the residual bin, which covers the unbounded remaining part of
the space. We consider the Mahalanobis and the Weighted Mahalanobis (WM)
distances as kernel functions, (as in [12]), but the properties of KQT hold for any
measurable function projecting a multivariate vector in R

d on a single dimension.
As in [4], KQT-EWMA computes the weighted averages {Zj,t} (line 7),

which keep track of the percentage of data stream samples {x1, . . . , xt} falling in
each bin Sj ; to this purpose, we define K binary statistics {yj,t}j as:

yj,t = 1(xt ∈ Sj), (3)

for each j ∈ {1, . . . , K} and t ≥ 1 (line 6). As discussed in [4], under the assump-
tion that the monitored samples xt ∼ φ0 are stationary, the expected values of
the binary statistics in (3) can be approximated (line 2) as:

E[yj,t] ≈ π̂j :=
N πj

N + 1
, j < K and E[yK,t] ≈ π̂K :=

N πK + 1
N + 1

. (4)

During monitoring, each incoming sample xt is used to update the weighted
averages {Zj,t} and to compute the test statistic Tt. First, the sample is processed
by the histogram h to obtain the binary statistics {yj,t} (line 6), which in turn
are used to update the weighted averages {Zj,t} (line 7) as

Zj,t = (1 − λ) Zj,t−1 + λ yj,t where Zj,0 = π̂j . (5)

The past samples are weighted by an exponential curve which decreases with time
constant λ. The expected value of the Zj,t statistic under φ0 approximates π̂j ,
i.e. E[Zj,t] ≈ π̂j for j = 1, ...,K, thus the change-detection statistic is computed
(line 8) as follows:

Tt =
K∑

j=1

(Zj,t − π̂j)2

π̂j
. (6)
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Algorithm 1: KQT-EWMA

Input: training set TR ⊂ R
d, target probabilities {πj}K

j=1, thresholds {ht}t,
data stream to be monitored x1, x2, . . . , xt, · · · ⊂ R

d

Output: detection flag CD, detection time t∗

1 Construct the KQT histogram {Sj , πj}K
j=1 over TR as in [12]

2 Calculate the expected probabilities {π̂j}K
j=1 as in (4)

3 Initialize the weighted averages Zj,0 ← π̂j for each bin j ∈ {1, . . . , K}
4 Initialize the detection flag CD ← False and the detection time t∗ ← ∞
5 for t = 1 . . . do
6 Compute the binary mask yj,t ← 1(xt ∈ Sj)
7 Update the random variables Zj,t ← (1 − λ) Zj,t−1 + λ yj,t, ∀j = 1 . . . , K

8 Compute the test statistic Tt ← ∑K
j=1(Zj,t − π̂j)

2/π̂j

9 if Tt > ht then
10 CD ← True, t∗ ← t
11 break

12 return CD, t∗

The test statistic Tt measures the overall difference between the proportion of
points in each bin Sj , represented by Zj,t, and their approximated expected val-
ues π̂j under φ0, thus corresponds to the Pearson statistic. The statistic naturally
increases as a consequence of a change φ0 → φ1 that modifies the probability of
at least one bin. Finally, the statistic Tt is compared against the corresponding
threshold ht to detect a change (line 10).

False Alarms and Threshold Computation Strategy. KQT-EWMA algo-
rithm inherits from Kernel-QuantTree the fundamental property that the dis-
tribution of the statistics in (6) does not depend on the data distribution φ0.
The true bin probabilities pj = Pφ0(Sj), i.e. the set of probabilities of a point
sampled from φ0 to belong to the bin Sj , are drawn from the Dirichlet distri-
bution (p1, . . . , pK) ∼ D(π1N,π2N, . . . , πKN + 1) where {πj}K

j=1 is the set of
target probabilities, as demonstrated in [12]. It follows that the distribution of
any statistic based on KQT, including Tt, does not depend on φ0 [2,4]. Thus,
the thresholds {ht}t can be defined a priori to control ARL0 on any data stream,
which is defined as:

ARL0 = Eφ0 [t
∗] =

1
α

. (7)

As explained in [5], detection thresholds ht guarantee the constant false alarm
probability, i.e. thresholds are such that the following equation is satisfied:

P(Tt > ht | Tk ≤ hk ∀k < t) = α ∀t ≥ 1. (8)

Since detection time t∗ is a Geometric random variable with parameter α,
the probability of encountering a false alarm before time t can be determined
through the geometric sum:
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P (t∗ ≤ t) =
t∑

k=1

α(1 − α)k−1 = α · 1 − (1 − α)t

α
= 1 − (1 − α)t. (9)

Thus, we can monitor the control over false alarms in data streams containing
a change point τ by computing the proportion of streams in which t∗ ≤ τ .

We leverage the results in [5] which proves that, to estimate the thresholds
ht, one can directly simulate the construction of QT histograms on a training set
TR ∼ φ0 of size N by drawing its bin probabilities from the Dirichlet distribu-
tion, (p1, . . . , pK) ∼ D(π1N,π2N, . . . , πKN +1). This approach holds with KQT
given any kernel function, i.e. we can use the same threshold sequences given any
measurable function, including linear split functions along the axis, which would
result in a QT histogram. Therefore, the same thresholds, computed in a Monte
Carlo scheme, can be used for QT-EWMA and KQT-EWMA to guarantee a
constant false alarm probability over time. The thresholds do not depend on the
data distribution φ0 nor the data dimension d. The entire simulation procedure
must be repeated when changing the λ parameter of the EWMA statistic, the
target bin probabilities {πj}K

j=1, or the training set size N .

4.2 Computational Complexity

Since efficiency is key in online monitoring, we analyze the computational com-
plexity of KQT-EWMA in comparison with QT, QT-EWMA, KQT, and
SPLL, SPLL-CPM, and Scan-B. The results are summarized in Table 1. Fur-
ther explanations can be found in [5,12].

The training of a KQT given a training set TR of N points comprises i) the
projection of TR by fk, whose cost depends on the specific kernel function, ii) the
computation of the split value, which costs O(N), and iii) the centroid selection.
The cost of computing the Euclidean distance - or other distances based on lp
norms - is O(d), while the Mahalanobis distance costs O(d2) and the Weighted
Mahalanobis (WM) distance costs O(M d2), where M is the number of Gaussian
components fitted to TR and d is the data dimension. The centroid selection
criteria is based on the information gain, which estimate is dominated by the
computation of the determinant of the sample covariance matrix, which costs
O(d3). Overall, the cost of the index computation is multiplied by the number
of centroids V tested during the selection procedure; therefore, an upper bound
for the cost of KQT construction is O(K V (N + M N d2 + d3)) when using
the WM distance and the information gain criteria. During monitoring, the only
operation performed is the projection by fk of the samples, resulting in a cost
of O(K M d2) in case of the WM distance.

4.3 Discussion and Limitations

The main limitation of KQT-EWMA is that it is based on measures requiring
the computation of the sample covariance matrix, which can be challenging in
high-dimensional data streams. In KQT, given any kernel function, the centroid
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Table 1. Training and inference costs of KQT-EWMA with Weighted Mahalanobis
(WM) distance and distances derived from lp norms (e.g. Euclidean distance when
p = 2), compared against the other considered methods. V is the number of centroids
tested to build each bin, M is the number of Gaussian components fit on the dataset,
K is the number of bins, and N is the training set size. As for the other methods, m
is the number of Gaussian components and w is the window length used by SPLL; n
is the number of windows of B samples employed by Scan-B.

Method Training Cost Inference Cost (per sample)

KQT-EWMA (WM) O(K V (N + M N d2 + d3)) O(K M d2)

KQT-EWMA (lp) O(K V (N + N d + d3)) O(K d)

QT-EWMA O(K N log N) O(K)

SPLL (online) O(m N d2) O(m d + w log w)

Scan-B N.A. O(n B d)

selection criteria is the maximum information gain: the best split lowers the data
entropy [12], which is computed as H(B) = (1/2) log

(
(2πe)d det(cov[B])

)
, where

cov[B] is the sample covariance matrix computed over a set of points B. More-
over, the sample covariance matrix estimated from the training set TR is used
to define the Mahalanobis and the WM distances. The problem of determin-
ing the minimal sample size N that guarantees that the sample covariance matrix
approximates the actual covariance matrix depends on the data distribution, as
well explained in [13]. Our experiments shows that KQT-EWMA can lose con-
trol over ARL0 when few training points are provided.

QT-EWMA-update Algorithm [5] is an effective monitoring scheme when N
is relatively small, i.e. when there are a few training samples, as this estimates
the bin probabilities incrementally as new observations are available, as long
as no changes are detected. While an incremental variant of KQT-EWMA can
be implemented, this would be impractical due to computational and memory
requirements, as it would require re-computing covariance matrices and centroids
(possibly in a high dimensional space) at each update.

5 Experiments

The goal of our experiments is to show that KQT-EWMA controls the false
alarms while achieving state-of-the-art detection delays. To do this, we will show
empirical results obtained on both synthetic and real-world data streams. In
KQT-EWMA, as in QT-EWMA [4], we set the number of bins to K = 32 and
uniform target probabilities πj = 1/K. The exponential decay of the EWMA
statistic is given by a time constant λ = 0.05. To monitor with QT and SPLL
we set the batch size ν = 32 as in [4], and we employ the original configuration
of the Scan-B algorithm [9] (n = 5 windows of B = 100 samples), if not specified
otherwise. We set window length w = 1000 for SPLL-CPM. The number of
centroids tested to build each bin of KQT-EWMA is V = 250.
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5.1 Datasets

Synthetic: As in [5], we generate synthetic data streams in spaces of increas-
ing dimension d ∈ {2, 4, 8, 16, 32, 64}. We use Gaussian distributions φ0 with a
random covariance matrix, and then we define the post-change distribution
φ1 = φ0(Q+ v) as a random roto-translation of φ0. The roto-translation param-
eters Q and v are generated using the CCM framework [3] to guarantee a fixed
distance between the two distributions computed as the symmetric Kullback-
Leibler divergence sKL(φ0, φ1) ∈ {0.5, 1, 1.5, 2, 2.5, 3}. We expand our analysis
to datasets sampled from bi-modal and tri-modal Gaussians to show the benefits
of the distribution estimation with a KQT histogram for change detection.

Real-World: As in [4], we test seven multivariate classification datasets of vary-
ing dimensionality: El Niño Southern Oscillation (“niño”, d = 5), Physicochemi-
cal Properties of Protein Ternary Structure (“protein”, d = 9), two of the Forest
Covertype datasets (“spruce” and “lodgepole”, d = 10), Credit Card Fraud
Detection (“credit”, d = 28), Sensorless Drive Diagnosis (“sensorless”, d = 48),
and MiniBooNE particle identification (“particle”, d = 50). We preprocess these
datasets from the UCI Machine Learning Repository [6] as in [4]: “particle”,
“protein”, “credit”, and “sensorless” datasets are standardized with respect to
the standard score, and we sum to each component of “sensorless”, “particle”,
“spruce” and “lodgepole” imperceptible Gaussian noise to avoid repeated val-
ues, which harm the construction of QT histograms. The distributions of these
datasets are considered to be stationary [4]. We randomly sample the data
streams and introduce changes φ0 → φ1 by shifting the each distribution by
a random vector drawn from a d-dimensional Gaussian scaled by the total vari-
ance of the dataset. We show the analysis of UCI datasets as the average results
obtained over all the datasets.

Our experiments also include the INSECTS dataset [11], which contains d =
33 attributes derived from the wing-beat frequency of various insects, captured
via an optical sensor. This dataset, tailor-made for change-detection techniques,
contains records under diverse environmental conditions impacting insect flight
behaviors. We focus on the abrupt-change variant of this dataset, which includes
five distinct distribution changes φ0 → φ1 → · · · → φ5. We sample data points
from these distributions to build our training set TR and test data streams.
Results obtained over the five changes present in the INSECTS datasets are
averaged and shown all together.

5.2 Figures of Merit

Empirical ARL0. To assess whether KQT-EWMA and the other considered
methods control the target ARL0 (see (7)), we compute its empirical value as
the average time before raising a false alarm on data streams we sample from φ0.
Empirical ARL0 values are measured on 4000 data streams drawn from φ0, given
a target ARL0 taking values in {500, 1000, 2000, 5000}. We generate stationary
data streams of length L = 6 · ARL0 - the corresponding probability to detect a
false alarm in each sequence is thus P(t∗ ≤ L) ≈ 0.9975, as in [4].



124 M. O. Nogara Notarianni et al.

Fig. 1. Empirical ARL0 and detection delay achieved by the considered methods
monitoring data streams generated by Gaussian mixtures with increasing number of
components (1, 2, 3). We show that as the number of components increases, KQT-
EWMA with Weighted Mahalanobis (WM) distance advantage in terms of detection
delay increases, achieving in general the lowest delays while controlling false alarms.
In all the experiments, the GMM used to compute the WM distance fits M = 4 com-
ponents.

Detection Delay. We evaluate the detection power of KQT-EWMA and the
other considered methods by their detection delay, i.e., ARL1 = E[t∗ −τ ], where
the expectation is taken assuming that a change point τ is present. Again, we set
the target ARL0 a priori, ARL0 ∈ {500, 1000, 2000, 5000}. Results are averaged
over 4000 data streams of length 6 · ARL0, each containing a change point at
τ = 300. This is a difference compared to the analysis in [4,5], where the average
detection delay is computed at any given target ARL0 on sequences of fixed
length. We use sequences of the same length to estimate detection delay and
ARL0 to achieve a fair comparison between these two quantities.

False Alarm Rate. The False Alarms (FA) rate is computed as the number
of alarms raised at some t < τ , averaged over 4000 experiments. By setting the
target ARL0 to {500, 1000, 2000, 5000}, we expect the percentage of false alarms
to be {45%, 26%, 14%, 6%}, respectively, as stated by (9). The target FA rates
are indicated in the plots by vertical dotted lines.

5.3 Results and Discussion

False Alarms Control. To show the control over false alarms, we plot the
empirical ARL0 obtained in our experiments against the target ARL0 set a
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Fig. 2. Average empirical ARL0 and detection delay on data streams sampled from
the UCI datasets, excluding the highest-dimensional ones (i.e., “particle” and “sensor-
less”). In these two cases, N = 4096 training samples are not enough for KQT-EWMA
based on Mahalanobis and WM distances to properly control ARL0. In this setting,
KQT-EWMA with WM distance achieves by far the best performance, halving the
detection delay of QT-EWMA while controlling the target ARL0.

Fig. 3. Average empirical ARL0 and detection delay on data streams from the
INSECTS dataset [11], with different combinations of φ0 and post-change distribu-
tion φ1. QT-EWMA and KQT-EWMA achieve similar detection delays, while KQT-
EWMA with WM distance struggles in controlling higher values of ARL0.

priori. We compare results obtained over data sampled from monomodal Gaus-
sians with the same performance measures computed over multimodal Gaussian
datasets (bimodal and trimodal, in Fig. 1, first row). In all the experiments, the
number of components used to fit the GMM and compute the WM distance is
M = 4. QT-EWMA and SPLL-CPM can control all the target values chosen
for ARL0, while in general SPLL and Scan-B struggle in achieving high target
ARL0 ∈ {2000, 5000}. This is true also considering the results obtained with
others real-world data sets (see Figs. 2 and 3).
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Fig. 4. Empirical ARL0 and detection delay on Gaussian data streams in d = 4
dimensions, for varying training set sizes N ∈ {128, 256, 1024, 4096}. The empirical
ARL0 (first row) of QT-EWMA and SPLL-CPM always approaches the target values
(500, 1000, 2000, 5000), while the other methods cannot control the ARL0. When the
training set size N is sufficiently large (N ∈ {1024, 4096}), KQT-EWMA can control
the FA rate, and achieves the lowest detection delay when using the Mahalanobis or
the WM distance.

KQT-EWMA effectively controls target values of ARL0, while achieving
the lowest detection delays in these scenarios(see Fig. 1, second row). Figure 2
(first row) shows experimental results averaged over data streams sampled from
5 UCI datasets having d ≤ 28, for which we used N = 4096 training points.
We show two high-dimensional datasets (“particle” and “sensorless”, d = 50
and d = 48 respectively, see Fig. 6) separately, since 4096 training points are not
enough to estimate the sample covariance matrix in high dimensions, and KQT-
EWMA based on Mahalanobis and WM distances do not properly control the
ARL0. In particular, KQT-EWMA with WM distance achieves low empirical
ARL0 values due to the difficulty in fitting a GMM here.

Figure 7 plots the change magnitude sKL(φ0, φ1) against the detection delay
achieved by the considered methods monitoring Gaussian data sequences with
a target ARL0 = 1000. While all methods successfully control the false alarms,
KQT-EWMA achieves the lowest detection delay, even in this setting where the
parametric assumptions of SPLL are met (number of Gaussian components is
set to m = 1). The advantage of KQT-EWMA over the alternatives is especially
noticeable when the divergence between the pre- and post-change distributions
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Fig. 5. Empirical ARL0 and detection delay on data streams drawn from a Gaussian
distribution with dimension d ∈ {2, 4, 16, 64}, trained over N = 4096 stationary sam-
ples. The empirical ARL0 (first row) of KQT-EWMA, QT-EWMA, and SPLL-CPM
always match the target, while Scan-B and SPLL fail. However, KQT-EWMA using
the Mahalanobis distance cannot control the ARL0 well when d = 64, as N = 4096
training points are not sufficient to estimate such a high-dimensional covariance matrix.
When d ≤ 16, the detection delay (second row) achieved with KQT-EWMA with
Mahalanobis distance is the lowest achieved among the methods controlling the ARL0.

is low (sKL = 0.5). As expected, the detection delay of all methods decreases
when the change magnitude increases.

Detection Delay vs False Alarms. To assess the detection power of these
models, we plot the average detection delay against the percentage of false
alarms. Figure 1 (second row) shows that KQT-EWMA with Mahalanobis and
WM distances achieves the lowest detection delay regardless of the number of
modalities, alongside Scan-B. However, Scan-B is unable to control higher val-
ues of ARL0. Similarly, SPLL cannot control ARL0, and the distance from the
target values is even more pronounced. This is also evident in the results on
real data (Figs. 2 and 3). If we compare KQT-EWMA to QT-EWMA, which
has the second-best detection delay values in the Gaussian scenario (Fig. 1, sec-
ond row), we can observe that KQT-EWMA more than halves the detection
delay of QT-EWMA. Moreover, this difference increases as the complexity of
the underlying distribution rises. This result is confirmed by all the experiments
on both real (Figs. 2 and 3) and synthetic (Figs. 4 and 5) datasets, showing that
the histogram construction strategy of KQT-EWMA, coupled with the Maha-
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Fig. 6. Empirical ARL0 and detection delay achieved by the considered methods mon-
itoring the two high-dimensional UCI data sets “particle” (d = 48, above) and “sen-
sorless” (d = 50, below). The N = 4096 training samples used in these experiments
are not enough for KQT-EWMA based on Mahalanobis and WM distances to properly
control ARL0. Results are averaged over 4000 experiments.

lanobis and WM distances, improves the detection performance, achieving lower
detection delays. Figure 5 shows the effects of detectability loss [1]: the ability to
perceive a distribution change diminishes as the data dimensionality d increases
while the distance between pre- and post-change distribution is fixed (sKL = 1),
thus detection delays increase.

Figure 7 illustrates the relation between the detection delay and the change
magnitude between pre- and post-change Gaussian sequences. We set target
ARL0 = 1000 for all methods. All methods successfully control the false
alarms, and KQT-EWMA achieves the lowest detection delay, even when the
parametric assumptions of SPLL are met (number of Gaussian components is
set to m = 1). The advantage of KQT-EWMA over the alternatives is especially
noticeable when the divergence between the pre- and post-change distributions
is low (sKL = 0.5). As expected, the detection delay of all methods decreases
when the change magnitude increases.

Our extensive analysis shows that KQT-EWMA consistently achieves the
lowest detection delays across different scenarios. Overall, KQT-EWMA based
on Mahalanobis and WM distances can detect distribution changes more effec-
tively, especially when the complexity of the underlying distribution rises.
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Fig. 7. Detection delay as a function of the magnitude of the change φ0 → φ1 between
pre- and post-change Gaussian sequences. We set the target ARL0 = 1000. KQT-
EWMA achieves the lowest detection delay, even in the challenging scenario when the
change magnitude is low (sKL = 0.5). As expected, all methods decrease their detec-
tion delays when the change magnitude increases. We remark that the empirical ARL0

achieved by SPLL and Scan-B is lower than the target.

6 Conclusion and Future Works

We introduce KQT-EWMA, a non-parametric online change-detection algo-
rithm for multivariate data streams based on Kernel-QuantTree [12]. The theo-
retical results underpinning KQT-EWMA [5,12] guarantee the control of false
alarms independently on the initial data distribution. Our experiments on syn-
thetic and real-world data streams show that KQT-EWMA achieves state-of-
the-art detection delay while effectively controlling false alarms.

In particular, the algorithm can leverage any measurable kernel function
and it is able to fit complex distributions, resulting in high detection power.
The sequences of thresholds can be computed independently on the data dis-
tribution φ0, the data dimension d, and the selected kernel function. Moreover,
the monitoring scheme is invariant to roto-translation of the input data (when
employing Mahalanobis and Weighted Mahalanobis distances, as shown in [12]),
thus KQT-EWMA does not require any preprocessing step such as PCA.

Our experimental evaluation also delineates some limitations: while the com-
putational complexity of QT-EWMA scales well with the data dimension d
during both training and testing phases, KQT-EWMA’s computational com-
plexity does not, potentially impacting its practical utility in high-dimensional
scenarios. Additionally, KQT-EWMA relies on the sample covariance matrix,
whose estimation can be poor in high-dimensional scenarios where the train-
ing set TR is not sufficiently large. Nevertheless, our experiments show that
KQT-EWMA achieves excellent performance compared to the other methods
designed for online monitoring, including QT-EWMA, while effectively con-
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trolling the false alarms, especially when considering complex data distributions
such as multi-modal Gaussians or real-world datasets.

Future work concerns addressing the limitations of KQT-EWMA with high-
dimensional datasets. Specifically, we plan to design kernels that do not rely on
covariance matrix computation and are specifically tailored for the sequential
high-throughput scenario.
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