
Building Large Machine Learning Models from Small
Distributed Models: A Layer Matching Approach

Anonymous Author(s)
Affiliation
Address
email

Abstract

Cross-device federated learning (FL) enables massive amount of clients to col-1

laborate to train a machine learning model with local data. However, the com-2

putational resource of the client devices restricts FL from utilizing large modern3

machine learning models that requires sufficient computation. In this paper, we4

propose a federated layer matching algorithm that enables the server to build a5

deep server machine learning model from relatively shallow client models. The6

federated layer matching (FLM) algorithm dynamically averages similar layers in7

the client models to the server model, and inserts dissimilar layers as new layers to8

the server model. With the proposed algorithm, the clients are able to train small9

models based on device capacity, while the server can still obtain a larger and10

more powerful server model from the clients with decentralized data. Our numer-11

ical experiments show that the proposed FLM algorithm is able to build a server12

model 40% larger than the client models, and such a model performs much better13

than the model obtained by the classical FedAvg, when using the same amount of14

communication resource.15

1 Introduction16

Machine learning has been widely used in various applications, such as computer vision (CV) and17

natural language processing (NLP). To process large amounts of complex data (image, text, time-18

series, graph), machine learning (ML) models, especially deep learning models, have become ex-19

tremely large in their widths and depths. For example, GPT-3[1] has 175 billion model parameters20

with 96 layers; RegNetY [2] has 145 million model parameters and 62 layers; ViT [3] has 63221

million model parameters with 32 layers.22

Even though large models have become state-of-the-art for many application domains, there are23

several critical drawbacks to building these models. First of all, training such huge models requires24

tremendous amounts of data as well as computation resources. Second, in many applications (such25

as those in federated learning), there is a massive amount of data available but distributed among26

mobile devices such as laptops, tablets, and mobile phones, which have limited bandwidth, memory,27

and computation resources. As a result, it becomes impossible to deploy and train huge ML models28

on resource-constrained devices.29

In this work, we propose a novel approach capable of pooling distributed and heterogeneous re-30

sources (both data and computation) to train a large ML model. This is made possible by making31

the key observation that modern ML models often have certain stacked structures. That is, by repet-32

itively stacking certain components on top of each other, one can build larger and larger models. For33

example, ResNet-50 repeats the third Bottleneck layer 6 times while ResNet-101 repeats the same34

layer 23 times [4]; Bert-small stacks 4 identical attention layers while Bert-large stacks 24 layers [5].35

With this observation, we ask and hope to address the following research question:36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



(Q) Is it possible to progressively and efficiently aggregate small client-side models to construct
deep and powerful server-side models, without degrading model performance?37

38

Our contributions. In this project, we address the above question (Q) by considering the situation39

that many clients are connected to a server, and the clients possess private data and some computa-40

tion power. The goal is to collectively build a large and deep model by utilizing as much local data41

and computation power as possible while minimizing the communication overhead in the system.42

Towards this end, we propose a federated layer matching (FLM) algorithm, which is, to our knowl-43

edge, the first method capable of dynamically constructing a large and deep neural network (located44

at the server) from shallow ones (located at the clients), by using data distributed over the clients.45

The proposed algorithm enjoys many desirable features, such as low communication cost and strong46

theoretical guarantees. More specifically, the main contributions of this work are summarized below.47

• From shallow to deep. To our knowledge, this is the first work that enables distributed and48

systematic construction of a deep neural network from shallow ones, while the closest existing49

works, such as FedMA [6], can only construct wider networks with fixed depth.50

• Flexibility. The proposed method has been carefully designed so that it is flexible, in the sense51

that it can be used to build a wide range of different neural network structures encountered in52

CV and NLP applications. This is made possible by the novel design of certain layer matching53

mechanism, to be introduced in Section 2.2.54

• Communication efficiency. In contrast to the existing (horizontal) FL algorithms such as Fe-55

dAvg, which require frequent exchange of the entire model between the clients and the server, the56

proposed method is communication efficient because it can better utilize the heterogeneous client57

models by the proposed layer matching technique, rather than simply averaging them.58

• Superior empirical performance. Finally, we conduct empirical experiments on ResNet with59

Cifar-10 dataset, showing that the proposed algorithm has better performance (measured by pre-60

diction accuracy, communication/sample efficiency, etc.) compared with state-of-the-art (SOTA)61

algorithms. In certain cases, its performance can even approach that of centralized training algo-62

rithms.63

2 Preliminary and Problem Setup64

2.1 Problem Setup65

Consider the distributed problem with loss function f(·) and K clients. Suppose each client has66

dataset Dk. We aim to solve the following problem:67

min
Θ

K∑
k=1

f(Θ;Dk), (1)

where Θ denotes model parameters. To model the stacked structure of the ML models, let us assume68

that the client k’s model parameters, denoted by Θk, consists of M blocks Θk := [Θk,1; . . . ;Θk,M ,69

where Θk,m represents the parameters of the mth block. Each block m is stacked with Lk,m70

layers of the same structure. Thus, the parameter of the mth block can be further written as71

Θk,m = [Θk,m[1]; · · · ;Θk,m[Lk,m]], where {Θk,m[l]}Lk,m

l=1 have the same dimension, and the72

model of client k has Lk =
∑M

m=1 Lk,m layers in total. In addition, let us use 0 as the index73

of the server, e.g., the server model is denoted as Θ0.74

Federated Learning (FL) studies the setting of solving (1) in a parameter-server/client system. Fe-75

dAvg [7] is a well-studied solution of FL that adopts the computation-then-aggregation strategy. In76

the algorithm, the clients k = 1, . . . ,K locally perform a few steps of model updates by optimizing:77

min
Θk

f(Θk;Dk). (2)

Then, the server aggregates the updated local models and averages them before sending the updated78

global model back to the clients, that is, it performs:79

Θ0 =
1

K

K∑
k=1

Θk.

2



However, due to the limited communication and computation resource on the mobile devices, typical80

FL algorithms can only be used to train small models such as MobileNet or MLPs. These models81

have few parameters than the SOTA models and have sub-optimal performance.82

A more recent approach is to ensemble the client models to construct a larger server model [8, 6,83

9], which aims to train small models on the clients and ensemble the client models into a large84

server model. In this case, the clients still solve (2) locally with multiple updates. Then, the server85

aggregates the client models {Θk}Kk=1 and builds the server model Θ0 by a linear or non-linear86

transformation, denoted by87

Θ0 = Agg(Θ1, . . . ,ΘK).

In these approaches, the server model Θ0 has more parameters than the client models Θk.88

However, this line of work still has scalability, client resource requirement, and computation effi-89

ciency limitations. In our work, we focus on a new model ensemble approach: the layer matching90

technique. The key idea of our approach is to train shallow models in the clients based on the client91

resource capacity, and the server properly stacks the layers of the client model into a deeper server92

model. Compared with FedAvg, our approach can train a deeper server model with better perfor-93

mance and the ability to fully utilize the massive data and limited computation resources on a large94

number of clients.95

2.2 Related Work96

Federated Learning: The FL problems typically consider the setting that the clients are directly97

connected to a parameter-server and that the communication at the server is the bottleneck of the98

system. The FL algorithms, such as the well-known FedAvg [7], perform multiple local updates99

before one communication step. However, when the data is heterogeneous among the agents, it100

is difficult for these algorithms to achieve convergence [10, 11]. Recent algorithms such as the101

FedProx [12], SCAFFOLD [13] and FedPD [14] have developed new techniques to improve upon102

FedAvg. These algorithms require the server and client models to have the same size to perform103

model averaging. This requirement restricts the algorithms from training large ML models when (a104

part of) the clients have limited computation capacity.105

Model Ensembling: Model ensemble method have been widely used in FL [8, 15, 16]. They are106

used to construct server models out of collected client models. In [17, 18], the authors propose107

a straightforward method that directly concatenates local models into a wide model. The server108

model obtained by the above-mentioned stacking method scales linearly with the client number, and109

unfortunately, it omits the interconnection among the client models. These properties can result in110

a waste of memory and computation resource and have less scalability. A perhaps smarter way of111

performing the model ensemble is the neural matching method [6]. This method tries to identify112

the similarity in hidden elements (e.g., hidden states in LSTM, convolution channels in CNN) and113

match them in different client models and construct a wider server model. Note that, this method114

only matches the parameters in the same layer to extend the width of the aggregated model and115

preserves the depth of the client models. However, many studies have theoretically and empirically116

suggested that the depth of the neural network is critical in strengthening the network representation117

ability and increasing network performance [19, 20].118

3 Federated Layer Matching119

3.1 Algorithm Description120

In this section, we discuss the proposed layer matching algorithm. The key idea is that, the server121

matches the layers in different client models based on the similarity of the layer’s parameters instead122

of the layer’s position. In specific, for each block m (i.e., a residual block in ResNet), the server123

first aggregates a total of
∑K

k=1 Lk,m layers of the same structure. It then clusters these layers by124

the similarity between their parameters Θk,m[l], and such clustering operation will result in L0,m125

clustered layers, which can be deeper than the client models, i.e., L0,m ≥ max{Lk,m}Kk=1. By126

stacking the clustered layers, the server can construct a deeper server model.127

Before going into the detailed explanation of the algorithm, let us first define some notations for128

convenience. First, let us define the layer matching pattern for client k as a matching matrix Πk ∈129

3



Algorithm 1 Federated Layer Matching Algorithm

1: Inputs: Data Dk, matching frequency R, maximal iteration T , initial model Θ0
0.

2: Initialization: The server broadcasts the initial server model Θ0
0 to all clients. Π0

k = I
3: for t = 1, . . . , T do
4: for Client k = 1, . . . ,K in parallel do
5: Step 1: Optimize Θt

k = argminΘk
Lk(Θk;Θ

t−1
0 );

6: Send updated model Θt
k to server.

7: end for
8: Server:
9: if t mod R = 0 then

10: Step 2: Solves the matching problem (4) and obtains the layer matching pattern Πt
k

11: else
12: Uses the matching pattern at the previous round, namely to let Πt

k = Πt−1
k

13: end if
14: Step 3: Construct the server model: Θt

0 =
∑K

k=1 Πt
kΘ

t
k∑K

k=1 Πt
k1Lk

.

15: Step 4: Send the updated server model and matching patterns Πt
k
⊤
Θt

0 to the clients
16: end for
17: Return: Parameters ΘT

0 .

{0, 1}L0×Lk , where Πk[l0, lk] = 1 if layer lk of the client model matches layer l0 of the server model130

and Πk[l0, lk] = 0 if layer lk of the client model does not match layer l0 of the server model. As131

the layers can only be matched to the layer in the same block, the matching matrix must be a block132

diagonal matrix with M blocks Πk = diag{Πk,1, . . . ,Πk,M}, where Πk,m ∈ {0, 1}L0,m×Lk,m .133

Further, we define the local loss function as134

Lk(Θk;Θ0)
∆
= f(Θk;Dk) + r(Θk,Θ0),

where r is a regularizer defined as:135

r(Θk,Θ0)
∆
=

∥∥∥Θk −Πk
⊤Θ0

∥∥∥2
2
.

Finally, let 1L := [1; 1; · · · ; 1] ∈ RL denote the all-one vector of size L.136

The algorithm at each round of training consists of the following four major steps. Algorithm 1137

provides a detailed description of the algorithm.138

• Step 1: Each client k ∈ [K] updates local model Θk by optimizing the local loss function Lk, and139

sends the local model to the server;140

• Step 2: The server cluster the layers in the aggregated client models based on the similarity be-141

tween the layer parameters. By optimizing the layer matching problem (4), the server obtains the142

layer matching patterns Πk for all clients;143

• Step 3: The server constructs the server model by stacking the clustered layers and reconstruct the144

client models with the server model and the layer matching patterns;145

• Step 4: The server sends the reconstructed client models to each client and starts the next round146

of training.147

Next, let us provide a detailed explanation to the key step 2 in the proposed algorithm. More detailed148

description of the algorithm are given in Appendix A.149

Step 2: The server-side layer matching is the key step for the proposed FLM algorithm. At the iter-150

ation to perform layer matching t mod R = 0, for each block m ∈ [M ] in parallel, we sequentially151

match each client layers to the server layers for P iterations. The matching procedure is illustrated152

in Algorithm 2, which consists four stages, and the major stages 2 and 3 are discussed below.153

Stage 2-2: In this stage, we compute the cost for each client layer lk = 1, . . . , Lk,m in the block to154

a layer in the server. Assume that we set the maximum number of layers in block m in the server155

4



Algorithm 2 Layer Matching Step 2

1: Inputs: Client models {Θt
k}Kk=1, old server model Θt−1

0 , and matching patterns {Πt−1
k }Kk=1.

2: Initialize: Πt,0
k = Πt−1

k ,∀ k ∈ {1, . . . ,K}
3: for Block m = 1, . . . ,M in parallel do
4: for p = 0, . . . , P − 1 do
5: Randomly select client k in {1, . . . , K} at random;

6: Stage 2-1: Construct server model Θt,p
0,m =

∑
k′ ̸=k Πt,p

k′,mΘt
k′,m∑

k′ ̸=k Πt,p

k′,m1L
k′,m

7: Stage 2-2: Compute cost matrix Ct
k,m matching Θt

k,m to Θt,p
0,m with (3);

8: Stage 2-3: Solve matching pattern Πt,p+1
k,m of block m of client k by optimizing (4);

9: Stage 2-4: Update all other matching patterns {Πk′,m}k′ ̸=k.
10: end for
11: end for
12: Return: Updated matching patterns {Πt

k = Πt,P
k }Kk=1.

model as L̄0,m. Then the costs for matching all layers in block m for client M form a cost matrix156

Ct,p
k,m ∈ RL̄0,m×Lk,m , where its entries are defined as:157

Ct,p
k,m[l0, lk] = c1(Θ

t
k,m[lk],Θ

t,p
0,m[l0]) + c2(Θ

t
k,m[lk], l0, L̄0,m), (3)

where c1(·) is the fidelity score measures the similarity between the client layer and the server layer,158

and c2(·) is the model complexity penalty for increasing the number of the server layer. A reasonable159

choice for c1(·) is a distance metric (e.g., Euclidean distance or cosine angle) between the server and160

client layers, and the choice for c2(·) can be the model selection metric (e.g., K log(Ll0) used in161

BIC) on the model size.162

Stage 2-3 With the cost matrix Ct,p
k,m that describes the cost to match each client layer to the server163

layers, we can optimize the corresponding linear assignment problem:164

min
Πt,p+1

k,m

Trace
(
(Πt,p+1

k,m )⊤Ct,p
k,m

)
, s.t. Πt,p+1

k,m ∈ {0, 1}L̄0,m×Lk,m , (Πt,p+1
k,m )⊤1L̄0,m

= 1Lk,m
, (4)

and obtain the updated matching pattern Πt,p+1
m,k . If any of the rows L0,m + 1, . . . , L̄0,m in the165

matching pattern are not all-zero, then some of the client layers are added to the server model as166

new layers, and the server model becomes deeper. Otherwise, the server model keeps the same167

depth L0,m or even gets shallower.168

By repeating Stage 2-1 to 2-4 for P iterations (P ≥ K), all the client matching patterns {Πt
k}Kk=1169

will be updated. This concludes the entire procedure of Step 2 in Algorithm 1.170

Step 3: In this step, the server constructs the server model with all the updated client matching171

patterns {Πt
k}Kk=1 and the client models {Θt

k}Kk=1, by averaging the client layers that match to the172

same server layer, i.e.,173

Θt
0,m[l0] =

1∣∣∣{lk|Πt
k,m[l0, lk] = 1}

∣∣∣
∑

lk∈{lk|Πt
k,m[l0,lk]=1}

Θt
k,m[lk].

Now the server model has been constructed, the server then reconstructs the client model with Θt
k =174

Πt
k
⊤
Θt

0. Such an updated client model will then be used for the local training at the next iteration175

t+ 1.176

3.2 Discussion177

Before we close this section, let us provide some discussions about the algorithm.178

First, let us discuss the computation/communication resources used at the clients and the servers. In179

each round of training, each client trains a shallow network with parameter Θk, sends the shallow180

5



(a) Testing accuracies of the client models, the server
model, centralized trained model with T = 2, 500 iter-
ations, and the centralized trained model with the same
number of updates.

(b) Testing accuracies of the client models, the server
model trained with FLM, and the model trained with
FedAvg with the same number of communication
rounds.

Figure 1: Test accuracy of a) IID distributed data, b) Non-IID distributed data on Cifar-10 dataset.

network Θt
k and receives the model Πt

k
⊤
Θt

0. The resource cost on the client is the same as Fed-181

Prox [12]. The server needs to solve the layer matching problem described in Step 3, which has182

computation complexity of O(K×
∑M

m=1 N
3
m×P ), and scales linearly with the number of clients.183

Second, let us remark that although the algorithm appears to be rather complicated, in fact its math-184

ematical interpretation is relatively simple. Instead of directly solving (1), we solve the following185

regularized problem:186

min
Θ0,{Θk,Πk}K

k=1

1

K

K∑
k=1

(
f(Θk;Dk) +

∥∥∥Θk −Πk
⊤Θ0

∥∥∥2) . (5)

Note that not only the client/server parameters Θk’s are Θ0 are optimized, the matching pattern Πk’s187

are also getting optimized. The client and the server alternatingly optimize {Θk} and Θ0, {Πk} re-188

spectively by using block coordinate descent (BCD)-type algorithm. In the server-side optimization,189

the shape of Πk and Θ0 are dynamically changing based on the heterogeneity of the layers in the190

client models. Following the line of the proof in [21], we can show that the FLM algorithm generates191

Θ0, {Θk,Πk}Kk=1 that converge to the first-order stationary point of (5) with rate O(1/T ).192

4 Numerical Experiments193

We run the experiment based on ResNet model designed for Cifar-10 dataset [22]. In the experiment,194

we use ResNet[a, b, c] to denote the number of residual layers in the three residual blocks in the195

ResNet model. The dataset is distributed among the clients following one of the two cases: 1) IID196

case: the samples are uniformly distributed to the clients; 2) Non-IID case: 50% of the samples on197

each client belong to two classes while the other 50% of the samples are uniformly picked from the198

rest of the classes. The detailed descriptions of the experiments are included in Appendix B.199

4.1 Numerical Results200

In the IID case, we compare the performance of the models obtained with FLM algorithm on K = 8201

clients with centralized training. The result is shown in Figure 1a. In this setting, the client models202

use ResNet[5, 5, 5] and the matched server model has layer number [5, 5, 6]. We can see that the203

performance of the trained client models and that of the matched server model are comparable to the204

centralized model, but the required number of local update is much less than centralized training.205

In the Non-IID case, we compare the performance of the models obtained with FLM algorithm and206

FedAvg algorithm with K = 5 clients. The result is shown in Figure 1b. The performance of207

the server model, as well as that of the client models trained with FLM under limited number of208

communication round are much better than the model trained with FedAvg. The matched server209

model has layer [6, 7, 8], and the client models are ResNet[5, 5, 5]. In the experiment, FLM can210

better utilize the heterogeneous layers from different clients to build 40% deeper server model to211

deal with data heterogeneity, while FedAvg only averages the client models.212

6



References213

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,214

P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances215

in neural information processing systems, vol. 33, pp. 1877–1901, 2020.216

[2] J. Xu, Y. Pan, X. Pan, S. Hoi, Z. Yi, and Z. Xu, “Regnet: self-regulated network for image217

classification,” IEEE Transactions on Neural Networks and Learning Systems, 2022.218

[3] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-219

hghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Trans-220

formers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.221

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Pro-222

ceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–223

778.224

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional225

transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.226

[6] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni, “Federated learning with227

matched averaging,” arXiv preprint arXiv:2002.06440, 2020.228

[7] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon,229

J. Konečnỳ, S. Mazzocchi, B. McMahan et al., “Towards federated learning at scale: System230

design,” Proceedings of Machine Learning and Systems, vol. 1, pp. 374–388, 2019.231

[8] H.-Y. Chen and W.-L. Chao, “Fedbe: Making bayesian model ensemble applicable to federated232

learning,” arXiv preprint arXiv:2009.01974, 2020.233

[9] R. Liu, F. Wu, C. Wu, Y. Wang, L. Lyu, H. Chen, and X. Xie, “No one left behind: Inclusive234

federated learning over heterogeneous devices,” arXiv preprint arXiv:2202.08036, 2022.235

[10] A. Khaled, K. Mishchenko, and P. Richtárik, “First analysis of local GD on heterogeneous236

data,” arXiv preprint arXiv:1909.04715, 2019.237

[11] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg on non-iid238

data,” in International Conference on Learning Representations, 2019.239

[12] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimization240

in heterogeneous networks,” arXiv preprint arXiv:1812.06127, 2018.241

[13] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh, “Scaffold:242

Stochastic controlled averaging for federated learning,” in International Conference on Ma-243

chine Learning. PMLR, 2020, pp. 5132–5143.244

[14] X. Zhang, M. Hong, S. Dhople, W. Yin, and Y. Liu, “Fedpd: A federated learning framework245

with optimal rates and adaptivity to non-iid data,” arXiv preprint arXiv:2005.11418, 2020.246

[15] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation for robust model fusion in247

federated learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 2351–248

2363, 2020.249

[16] N. Shi, F. Lai, R. A. Kontar, and M. Chowdhury, “Fed-ensemble: Improving generalization250

through model ensembling in federated learning,” arXiv preprint arXiv:2107.10663, 2021.251

[17] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2, pp. 241–259, 1992.252

[18] R. Polikar, “Ensemble learning,” in Ensemble machine learning. Springer, 2012, pp. 1–34.253

[19] B. Hanin, “Universal function approximation by deep neural nets with bounded width and relu254

activations,” Mathematics, vol. 7, no. 10, p. 992, 2019.255

[20] T. Nguyen, M. Raghu, and S. Kornblith, “Do wide and deep networks learn the same things?256

uncovering how neural network representations vary with width and depth,” in International257

Conference on Learning Representations, 2020.258

[21] X. Zhang, W. Yin, M. Hong, and T. Chen, “Hybrid federated learning: Algorithms and imple-259

mentation,” arXiv preprint arXiv:2012.12420, 2020.260

[22] Y. Idelbayev, “Proper ResNet implementation for CIFAR10/CIFAR100 in PyTorch,” https:261

//github.com/akamaster/pytorch_resnet_cifar10, accessed: 20xx-xx-xx.262

[23] Y. Wu and K. He, “Group normalization,” in Proceedings of the European conference on com-263

puter vision (ECCV), 2018, pp. 3–19.264

7

https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10


A Algorithm Details265

In this section, we provide the detailed explanation of step 2 and 3 in Algorithm 1.266

For clarity of the notations, we put a list of notations with their meanings in Table 1.

Notation Notation meaning
(·)0 Server index
(·)k Client index
K Total client number
(·)t Iteration index
T Total training iteration
(·)p Matching index
P Total layer matching iteration
R Layer matching frequency

(·)m Block index
M Total block number
(·)[l] Layer index
L, L̄ Total layer number, maximum layer number
Θ Model parameter
Π Matching pattern

Table 1: Notation Table

267

Step 2: The server-side layer matching is the key step for the proposed FLM algorithm. At the iter-268

ation to perform layer matching t mod R = 0, for each block m ∈ [M ] in parallel, we sequentially269

match each client layers to the server layers for P iterations. The matching procedure is illustrated270

in Algorithm 2, which consist four major stages discussed below.271

Stage 2-1: After randomly choosing a client k to perform layer matching, the first stage is to con-272

struct the server model Θt,p
0,m with the layers of the other clients and their matching patterns, i.e.,273

Θt,p
0,m =

∑
k′ ̸=k Π

t,p
k′,mΘt

k′,m∑
k′ ̸=k Π

t,p
k′,m1Lk′,m

,

which removes the impact of the parameters of client k. Therefore, the layer similarities between the274

client and server models computed in the following matching stages is not affected by the previous275

matching pattern Πt−1
k,m of client m.276

Stage 2-2: In this stage, we compute the cost for each client layer lk = 1, . . . , Lk,m in the block to277

a layer in the server. Assume that we set the maximum number of layers in block m in the server278

model as L̄0,m. Then the costs for matching all layers in block m for client M form a cost matrix279

Ct,p
k,m ∈ RL̄0,m×Lk,m , where its entries are defined as:280

Ct,p
k,m[l0, lk] = c1(Θ

t
k,m[lk],Θ

t,p
0,m[l0]) + c2(Θ

t
k,m[lk], l0, L̄0,m), (6)

where c1(·) is the fidelity score to match a client layer to an existing server layer and c2(·) is the281

penalty to increase the number of the server layer. A reasonable choice for c1(·) is a distance metric282

(e.g., Euclidean distance or cosine angle) between the server and client layers, and the choice for283

c2(·) can be model selection metric (e.g., BIC) on the model size.284

Stage 2-3 With the cost matrix Ct,p
k,m that describe the cost to match each client layer to the server285

layers, we can optimize the corresponding linear assignment problem:286

min
Πt,p+1

k,m

Trace
(
(Πt,p+1

k,m )⊤Ct,p
k,m

)
, s.t. Πt,p+1

k,m ∈ {0, 1}L̄0,m×Lk,m , (Πt,p+1
k,m )⊤1L̄0,m

= 1Lk,m
, (7)

and obtain the updated matching pattern Πt,p+1
m,k . If any of the rows L0,m + 1, . . . , L̄0,m in the287

matching pattern are not all-zero, then some of the client layers are added to the server model as288

new layers, and the server model becomes deeper. Otherwise, the server model keeps the same289

depth L0,m or even gets shallower.290

8



Stage 2-4: After updating the matching pattern from Πt,p
m,k to Πt,p+1

k,m , the server layer order and the291

total layer number may change. So in this stage, we need to update the matching patterns of the292

other clients {Πt,p+1
k′,m }k′ ̸=k accordingly. First, we compute the “average layer index” for each server293

layer lt,p0 :294

l̄0 =
1∣∣∣{lk|Πt

k,m[l0, lk] = 1}
∣∣∣

∑
lk∈{lk|Πt

k,m[l0,lk]=1}

lk.

Then, we reorder the server layers based on the order of the average layer index l̄0 and obtain the295

new server layer indices lt,p+1
0 . Finally, the layer matching patterns for the clients are updated with296

Πt,p+1
k,m [lt,p+1

0 , lk] = Πt,p
k,m[lt,p0 , lk].297

By repeating Stage 2-1 to 2-4 for P iterations (P ≥ K), all the client matching patterns {Πt
k}Kk=1298

will be updated and that finishes the whole procedure of Step 2 in Algorithm 1.299

Step 3: In this step, the server construct the server model with all the updated client matching300

patterns {Πt
k}Kk=1 and the client models {Θt

k}Kk=1 as301

Θt
0 =

∑K
k=1 Π

t
kΘ

t
k∑K

k=1 Π
t
k1Lk

,

which averages the client layers that match to the same server layer, i.e.,302

Θt
0,m[l0] =

1∣∣∣{lk|Πt
k,m[l0, lk] = 1}

∣∣∣
∑

lk∈{lk|Πt
k,m[l0,lk]=1}

Θt
k,m[lk].

With the server model, the server then reconstruct the client models with Θt
k = Πt

k
⊤
Θt

0 that serves303

as the initial client model and the regularizer for the local training at the next iteration t+ 1.304

B Experiment Details305

Model: The structure of the model is summarized in Table 2. Each residual block is constructed with306

two Conv2d layers, each followed by one GroupNorm layer [23] and a ReLU activation layer, and307

finally add an identical mapping to the end. In the experiment, we use ResNet[a, b, c] to denote the308

ResNet model using certain number of residual blocks of block 2, 3 and 4 in the table. During model309

aggregation phase, we perform layer matching to the parameters in block 2, 3B and 4B separately,310

and average the parameters in the other layers.

Block # Shape Parameter #

1 Conv2d(3× 3× 16) 448
BatchNorm2d(16) –

2 ResidualLayer(16, 16) 4,608
3A ResidualLayer(16, 32) 13,824
3B ResidualLayer(32, 32) 18,432
4A ResidualLayer(32, 64) 55,296
4B ResidualLayer(64, 64) 73,728

5 AvgPool() –
Linear(64× 10) 650

Table 2: ResNet model structure for Cifar-10 dataset.

311

Dataset: In the experiment, we use Cifar-10 dataset. There are two data distribution settings: 1)312

IID setting: in this setting the samples are uniformly distributed to clients; 2) Non-IID setting: in313

this setting, 50% of the samples on each client belongs to two classes while the other 50% of the314

samples are uniformly picked from the rest of the classes.315

9


	Introduction
	Preliminary and Problem Setup
	Problem Setup
	Related Work

	Federated Layer Matching
	Algorithm Description
	Discussion

	Numerical Experiments
	Numerical Results

	Algorithm Details
	Experiment Details

