
XC: Exploring Quantitative Use Cases for
Explanations in 3D Object Detection

Sunsheng Gu, Vahdat Abdelzad, Krzysztof Czarnecki
University of Waterloo
ssgu@uwaterloo.ca

vahdat.abdelzad@uwaterloo.ca
krzysztof.czarnecki@uwaterloo.ca

Abstract

Explainable AI (XAI) methods are frequently applied to obtain qualitative insights
about deep models’ predictions. However, such insights need to be interpreted
by a human observer to be useful. In this paper, we aim to use explanations
directly to make decisions without human observers. We adopt two gradient-based
explanation methods, Integrated Gradients (IG) and backprop, for the task of
3D object detection. Then, we propose a set of quantitative measures, named
Explanation Concentration (XC) scores, that can be used for downstream tasks.
These scores quantify the concentration of attributions within the boundaries of
detected objects. We evaluate the effectiveness of XC scores via the task of
distinguishing true positive (TP) and false positive (FP) detected objects in the
KITTI and Waymo datasets. The results demonstrate improvement of more than
100% on both datasets compared to other heuristics such as random guesses and
number of LiDAR points in bounding box, raising confidence in XC’s potential
for application in more use cases. Our results also indicate that computationally
expensive XAI methods like IG may not be more valuable when used quantitatively
compare to simpler methods.

1 Introduction

Figure 1: Overview of the XC calculation process:
PointPillars first process the input point cloud once,
then an XAI method computes feature attribution
map for specific predictions using the pseudo im-
age as input, and XC metrics are obtained.

Recent development in deep neural networks (DNNs)
has led to the state of the art performance on 2D
[8, 9, 16, 21, 22] and 3D [12, 27, 37] object detection
tasks. However, despite of the improvement in model
performance, the lack of model interpretability re-
mains a significant drawback. This issue has sparked
interest in explainable artificial intelligence (XAI).
The primary goal of these XAI methods is to uncover
the logic behind the models’ decisions [14].

Several recent methods have been proposed to gener-
ate interpretable visual explanations [28, 36, 30, 25,
32]. They are usually analyzed by a human observer
to understand the model’s reasoning for some partic-
ular decisions. Hence, explanations are very useful
for debugging and diagnosis. However, it would be
impossible for a human to analyze each instance in
a large dataset. To analyze explanations on a large
scale, it is necessary to derive quantitative measures
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from the explanations. There have been a few works in this direction [24, 6, 23], but the input
data experimented on are 2D image, text, or tabular data. We have not found any experiments on
explanations-related quantitative measures applied to LiDAR point cloud input or to the task of object
detection. Our motivation is to fill in the gap by exploring quantitative usage of explanations for
LiDAR-based object detection.

We study explanations in the form of attribution maps for a 3D object detector named PointPillars [12]
and use them for the problem of distinguishing true positive (TP) vs. false positive (FP) predictions.
Attributions, in the context of XAI, denote the influence of input features on model output. We
generate attribution maps using two XAI methods: 1) Integrated Gradients (IG) [32], selected for
its axiomatic properties; 2) backpropagation [28], selected for its low computational cost. Our main
contributions are 1:

• We demonstrate that quantitative usage of explanation for 3D object detection is a promising
direction for future research: We propose a set of quantitative metrics called Explanation
Concentration (XC), which measures the concentration of attributions within each predicted
object. XC can be used to classify the TP vs. FP predictions effectively, often achieving
more than 100% improvement compared to simple heuristics such as number of LiDAR
points within a predicted box.

• We discover that XC scores derived from backpropagation can perform better than those
derived from IG.

• We propose a new score that can identify TP vs. FP pedestrian predictions better than the
individual XC scores and object class score. This score is generated by combining the XC
scores with object class score using a MLP.

2 Related work

Explanation methods A simple form of explanation is an input feature saliency map obtained via
backpropagation: one computes the partial derivatives of the model output with respect to the input
features [28]. These partial derivatives are a measure of importance (also called attributions) for
the input features. Deconvolution [36] and Guided-backprop [30] are similar methods. Integrated
Gradients (IG) [32] is another gradient-based explanation method that computes multiple inputs along
a straight-line path from a baseline input to the original input through affine transformations. IG then
combines gradients from all these inputs to get feature attributions. The baseline input is defined as an
input which generates zero output. In the case of image input, the baseline is defined as a black image
with pixel values all equals to zero. Sundararajan et al. [32] demonstrate that IG satisfies several
axiomatic properties for explanations such as sensitivity (attribution values for nonzero features
are nonzero, and attribution values for zero-valued features are zero) and completeness (sum of
attributions equals to model output value).

Quantitative usage of explanations Several attempts have been made to utilize explanations quanti-
tatively. Ross et al. [24] use the gradient of the log of model output with respect to input features
as attributions. They design a loss term using prior knowledge about feature relevance to punish
the model for having attributions for irrelevant features, hence forcing the model to be "right for the
right reasons" by focusing on the relevant features only. Rieger et al. [23] and Du et al. [5] also
propose similar methods to constrain feature attribution values. Erion et al. [6] realize that such prior
knowledge about input feature relevance would not always be available, hence they propose a new
loss named “pixel attribution prior" (PAP) which only aims to reduce variations in attribution values
for neighbouring pixels. Their reasoning is that a robust model should not be heavily influenced by
small variations in a few disconnected pixels; rather, it should learn patterns from patches of pixels
and neighbouring pixels should have similar attributions.

LiDAR-based object detection A popular technique for point cloud-based object detection is to
first divide the 3D point cloud into grids called voxels, learn features for each voxel, then apply
convolutional layers to the voxel-wise features to extract higher level features. Techniques used for
2D object detection, such as region proposals and anchor boxes, can then be applied to the extracted
feature maps. VoxelNet [37], SeCOND [35], and PointPillars [12] all partly adopted this strategy.

1Our code is available at https://github.com/SunshengGu/XC_eval_pcdet.
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PointPillars’ fast inference speed (62 Hz) makes it a desirable choice for deployment on embedded
hardware, such as in autonomous vehicles.

False positive detection Several studies have been conducted on identifying false positive (FP)
predictions. Hendrycks and Gimpel [10] demonstrated that the softmax class probability could
effectively distinguish true positive (TP) and false positive (FP) predictions in multiple datasets,
with performance far exceeding random guess. Chen et al. [2] also used class score to filter out FP
pedestrians predictions iteratively. Methods designed for identifying adversarial attacks or detecting
out-of-distribution (OOD) samples may also be applied to detect FP samples. Some notable works
are feature squeezing [34], LID [18], GraN [17], ODIN [15] and Lee et al. [13].

Figure 2: Cropped IG attribution map visualization for a car prediction. The blue box in the point cloud is
the bounding box for the ground truth object. The red box in the attribution map is the 2D projection of the
car prediction bounding box. Positive attributions are indicated by green pixels and negative attributions are
indicated by red pixels; darker color means greater magnitude. Pixels with attribution values less than 0.1 are
filtered out and appear white. Note that the attribution map has the same resolution as the pseudo image.

3 Explanation in the form of attributions

As mentioned before in Section 2, explanation can be presented in the form of input feature attri-
butions, where the magnitude of the attributions corresponds to feature importance, and the sign of
attributions indicates positive or negative influence on the model output. In our approach, attributions
are generated by IG [32] and backprop [28] for PointPillars [12]. PointPillars has three parts as shown
in Fig. 1: a pillar feature net which learns a 2D bird’s eye view (BEV) voxelized feature map called
the psuedo image from the original point cloud, a backbone 2D CNN to extract more features from
the psuedo image, and SSD [16] as detection head to generate 3D object predictions.

IG’s effectiveness on image data is well-recognized. However, there are a fixed number of pixels at
fixed locations in an image; whereas in a point cloud, both the quantity and location of the points can
vary greatly. IG’s input transformations may not be meaningful for point cloud. Hence, we chose to
generate attributions using the pseudo image as input, so that IG could be directly applied. Note that
our pipeline in Fig. 1 is not limited to IG or backprop explanations only, any other XAI method that
produces explanations in the form of feature attributions could be applied too.

There could be many predictions in the same pseudo image. To explain the different predictions
separately, each attribution map is generated for a specific predicted box and its class label. In Fig. 2,
the IG attributions generated for a car prediction is shown. For this particular example, the positive
attributions highlight features that increase the model’s belief that the object is a car, whereas the
negative attributions reduce this belief.

4 Explanation concentration (XC)

We propose a new set of scores called Explanation Concentration (XC) which measures the concen-
tration of attributions within a given predicted object’s boundaries. As shown in Fig. 2, many pixels
outside of the object have noticeable attributions too, indicating that context features can influence
model output as well. The XC scores are partly motivated by previous studies which demonstrate

3



that overly-relying on context can hurt model performance for both image classification [26] and 3D
object detection [27].

The process of computing the XC scores is as follows. First, denote the ith predicted box in a pseudo
image as Predi. Then denote the sum of positive attributions across all channels in the pixel at
location (x, y) of the attribution map as a+(x,y). The idea is to avoid having positive and negative
channel values cancelling each other out at a specific pixel.

Using thresholds to eliminate noisy signals is common practice in computer vision. For example,
in the Canny edge detection algorithm [1], thresholds are used to mask out weak edges. We apply
the same idea to the attribution values. Denote a pixel-wise threshold as athresh, and use it to filter
out insignificant attributions (in other words, the sum a+(x,y) can be called significant if it exceeds
athresh). An indicator function I+(x,y) is defined such that it equals to 1 if a+(x,y) >= athresh, 0
otherwise. One way to quantify the concentration of attributions within the predicted box Predi is
by summing. Two new variables are defined for each Predi in a pseudo image:

s+i =
∑

a+(x,y) × I
+
(x,y), ∀(x, y) in Predi (1)

S+
i =

∑
a+(x,y) × I

+
(x,y), ∀(x, y) in pseudo image (2)

Now the stage is set for defining an XC score by summing:

XC_s+i = s+i /S
+
i (3)

XC_s+i is thus the proportion of the positive attributions which lie within Predi.

The other way to quantify the concentration of attributions for Predi is by counting. For this
purpose, we count the number of pixels in the pseudo image having significant attributions, rather
than summing them:

c+i =
∑

I+(x,y), ∀(x, y) in Predi (4)

C+
i =

∑
I+(x,y), ∀(x, y) in pseudoimage (5)

XC_c+i = c+i /C
+
i (6)

Computing XC by counting might be helpful, because often there are a few outlier pixels with high
magnitude attribution values outside of the bounding bounding box (see Fig. 3 for example). When
XC is computed by counting, these outliers will not have a big effect; but when XC is computed by
summing, the values of these outlier pixels can skew the resulting XC value towards the lower end.
One may also compute a similar set of scores by considering the negative attributions only: call them
XC_s−i and XC_c−i for a certain box Predi.

We observed that pixels located at object boundaries often get labelled as “outside of the box”. Hence,
when calculating any XC scores, the predicted boxes are enlarged by a small margin m on all sides,
so that pixels at object boundaries are labeled as inside the predicted box.

5 Results and discussions

5.1 Evaluation metrics and implementation details

The objective of our experiment is to evaluate XC’s performance on a meta classification task:
classifying predictions as either FP or TP. The predicted objects are categorized as TP or FP based on
KITTI’s conventions [7]. To evaluate the performance of a specific score, we could simply apply a
score threshold: if the score is above the threshold then the corresponding prediction is TP, otherwise
it’s FP. Then we can evaluate the resulting detection accuracy. However, the resulting accuracy is a
function of the threshold. To remove the effect of threshold selection and evaluate the performance of
different XC scores more fairly, we compute area under the precision recall curve (AUPR) [19] and
area under the receiver operating characteristics curve (AUROC) [3], both are threshold-independent
performance measures for binary classification.

In binary classification tasks, typically one class is treated as the “positive” class, whereas the other
class is treated as the “negative” class. We may choose to treat either the TP boxes or the FP boxes as
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the positive class. The AUROC metric treats both classes equally and can reflect the score’s (e.g., one
of the XC scores) ability in correctly identifying both the positive and negative classes. On the other
hand, the AUPR metric puts more emphasis on the score’s ability to correctly identify the positive
class. For both AURP and AUROC, higher values indicate better performance.

Figure 3: Negative attribution map for a
TP pedestrian prediction (the red box). The
patch of outlier attributions is pointed out by
the arrow.

We evaluate the XC scores on three PointPillars [12] mod-
els trained on the KITTI dataset [7] and on one PointPillars
model trained on the Waymo dataset [31]. We use Open-
PCDet’s [33] implementation of PointPillars for our exper-
iments and adapt their default settings for training. The
first three models are trained for 80 epochs on the KITTI
dataset, with 3712 frames for training and 3769 frames for
validation. Due to time and resource constraints, we obtain
only one more model trained for 30 epochs on 20% of the
Waymo dataset, with 31616 frames for training and 7997
frames for validation. To obtain attribution values, we use
Captum [29], a model interpretability library developed
for PyTorch [20]. We explore both IG [32] and backprop
[28] as explanation methods.

For KITTI, the XC scores are obtained on the predicted
objects from the 3769 validation frames. There are on
average 67k predicted objects produced by each model. One pixel in the pseudo image encodes point
features in a 0.16m ×0.16m ×4.00m pillar. For Waymo, we comptue XC scores for 94k predicted
boxes sampled from 800 validation frames. One pixel in the pseudo image represents point features
in a 0.33m ×0.33m ×6.00m pillar. For both datasets, we apply m = 0.2m to the predicted boxes
and apply athresh = 0.1 to the attribution maps.

Figure 4: Distribution of XC_c+ values obtained by IG (upper row) and backprop (lower row) attributions
for TP and FP predicted boxes in each of the object class of the KITTI validation set. “KS” means the
Kolmogorov-Smirnov statistic [4].
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5.2 Distribution of XC values

The distribution of XC_c+ values obtained from one of the models trained on KITTI [7] is shown
in Fig. 4. Both the histograms and the empirical cumulative distribution function plots demonstrate
that the XC values of TP instances tend to be greater than those of the FP instances. Another notable
observation is that XC values derived from IG are well-dispersed within the range of [0, 1] for both
the TP and FP instances, whereas XC values derived from backprop are mostly below 0.5, with
almost all FP instances having XC values below 0.2.

5.3 Using XC to identify TP and FP predictions

The results for TP vs. FP box classification using the XC scores on the KITTI dataset [7] are shown in
Table 1. Each specific metric in this table is averaged over three models. The four XC scores derived
from IG and backprop are evaluated, along with four other box-wise features (random guess, distance
of the predicted box to LiDAR sensor, the number of points inside the predicted box, and the highest
class score for the predicted box) serving as baselines for comparison. Each of the aforementioned
features are evaluated by three metrics on different object classes, making up twelve metrics in total.
Note that the object classes in Table 1 (as well as those in other tables in later sections) represent
the predicted labels, not the ground truth labels. Also, in OpenPCDet’s [33] implementation of
PointPillars [12], the class scores are not softmax scores. Rather, they are class-wise sigmoid scores:
a pair of “class vs. not class” scores for each object class.

When computing AUROC and AUPR, the TP boxes are treated as the positive instances, but AUPR_op
refers to the AUPR value obtained by treating the FP predicted boxes as positive instances. In essence,
AUPR reflects TP detection performance, whereas AUPR_op reflects FP detection performance. The
expected AUROC value for a random score is 0.5, and the expected AUPR value is the proportion of
the positive instances.

Table 1: Comparison of the XC scores’ ability to classify TP and FP predictions for different object types in the
KITTI dataset. The subscripts “IG” and “B” indicate whether the corresponding XC score is derived from IG or
backprop attributions. For each evaluation metric, the XC scores performing worse than number of points are
highlighted by underscore and the best performing feature other than the top class score is highlighted in bold.

Metrics Random Distance Points XC_s+IG XC_c+IG XC_s−IG XC_c−IG XC_s+B XC_c+B XC_s−B XC_c−B Top Class Score

AUROC
All 0.5 0.669 0.720 0.843 0.868 0.827 0.869 0.823 0.903 0.822 0.908 0.971
Car 0.5 0.770 0.779 0.837 0.857 0.822 0.857 0.708 0.861 0.698 0.869 0.964

Pedestrian 0.5 0.779 0.832 0.648 0.699 0.671 0.754 0.864 0.888 0.882 0.894 0.958
Cyclist 0.5 0.635 0.780 0.810 0.797 0.806 0.824 0.808 0.843 0.819 0.855 0.965

AUPR
All 0.232 0.372 0.464 0.585 0.653 0.551 0.635 0.597 0.786 0.577 0.794 0.926
Car 0.391 0.636 0.666 0.713 0.749 0.697 0.747 0.621 0.830 0.597 0.836 0.948

Pedestrian 0.071 0.215 0.250 0.116 0.153 0.136 0.190 0.518 0.557 0.541 0.572 0.759
Cyclist 0.083 0.167 0.203 0.225 0.237 0.239 0.270 0.425 0.534 0.450 0.554 0.829

AUPR_op
All 0.768 0.859 0.878 0.941 0.950 0.937 0.952 0.936 0.965 0.937 0.967 0.989
Car 0.609 0.829 0.839 0.894 0.903 0.885 0.905 0.761 0.888 0.761 0.897 0.974

Pedestrian 0.929 0.976 0.984 0.959 0.967 0.962 0.973 0.986 0.989 0.988 0.990 0.996
Cyclist 0.917 0.939 0.976 0.977 0.975 0.978 0.980 0.975 0.979 0.977 0.982 0.992

Referring to Table 1, it is clear that the top class score beats all other features in every evaluation
metric. However, the improvement brought by XC is certainly non-trivial. One can observe that for
all features evaluated, the second best performing feature is most often XC_c−B . Although distance
to sensor and number of points in predicted box beat the XC scores generated by IG on the three
pedestrian class metrics, they are unable to beat any of the XC scores generated by backprop on the
pedestrian class.

A very notable case is the AUPR for pedestrian predictions: XC_c−B achieves 129% improvement
compared to number of points and 706% improvement compare to random guess. The other three XC
scores derived from backprop also achieve more than 100% on AUPR for pedestrian compared to the
number of points. Improvements of similar magnitude are also achieved by the backprop XC scores
on AUPR for the cyclist class. These observations indicate that the backprop XC scores are much
better at correctly identifying the TP predictions for the pedestrian and cyclist classes than simple
heuristics such as number of points. Another interesting observation is that the XC scores derived
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by counting usually outperforms those derived by summing. Such improvement might be due to the
outlier attenuation effect mentioned in the second last paragraph of Section 4.

Table 2: Comparison of the XC scores’ ability to classify TP and FP predictions for different object types in
the Waymo dataset. For each evaluation metric, the XC scores performing worse than number of points are
highlighted by underscore and the best performing feature other than the top class score is highlighted in bold.

Metrics Random Distance Points XC_s+IG XC_c+IG XC_s−IG XC_c−IG XC_s+B XC_c+B XC_s−B XC_c−B Top Class Score

AUROC
All 0.5 0.609 0.701 0.714 0.758 0.738 0.766 0.729 0.788 0.721 0.793 0.965

Vehicle 0.5 0.703 0.809 0.799 0.821 0.806 0.823 0.754 0.860 0.725 0.860 0.982
Pedestrian 0.5 0.528 0.614 0.529 0.529 0.529 0.545 0.605 0.638 0.646 0.651 0.927

Cyclist 0.5 0.627 0.738 0.766 0.725 0.673 0.689 0.794 0.823 0.799 0.823 0.979

AUPR
All 0.276 0.343 0.476 0.460 0.535 0.483 0.540 0.569 0.700 0.542 0.699 0.936

Vehicle 0.377 0.595 0.721 0.626 0.659 0.624 0.654 0.678 0.827 0.648 0.824 0.973
Pedestrian 0.176 0.121 0.147 0.183 0.184 0.181 0.192 0.284 0.323 0.326 0.340 0.829

Cyclist 0.051 0.072 0.113 0.111 0.096 0.078 0.082 0.279 0.377 0.283 0.394 0.791

AUPR_op
All 0.724 0.811 0.862 0.863 0.881 0.874 0.884 0.850 0.876 0.857 0.882 0.983

Vehicle 0.623 0.784 0.873 0.878 0.891 0.883 0.892 0.809 0.891 0.786 0.893 0.987
Pedestrian 0.824 0.897 0.925 0.841 0.839 0.842 0.846 0.866 0.882 0.889 0.888 0.979

Cyclist 0.950 0.967 0.984 0.984 0.980 0.976 0.978 0.984 0.986 0.985 0.986 0.999

To ensure that the advantages offered by XC are not specific to the KITTI dataset [7], we also present
results from Waymo dataset [31] in Table 2. Again, for most evaluation metrics, one of the XC
scores is the second best performing feature besides the top class score. In addition, the XC scores
obtained from backprop often show 100% or more improvement on AUPR for pedestrian and cyclist
predictions compared to the number of points. And again, XC_c−B is the best performing feature in
most cases. Hence, we believe that the advantages of XC are not limited to the KITTI dataset only.

5.4 Why backprop outperforms IG? Table 3: Average XC performance on distin-
guishing TP vs. FP predictions for the KITTI
dataset. The highest value in each row is high-
lighted in bold.

Metrics XCIG Modified XCIG XCB

AUROC
All 0.852 0.861 0.864

Vehicle 0.843 0.795 0.784
Pedestrian 0.693 0.848 0.882

Cyclist 0.809 0.812 0.831
AUPR

All 0.606 0.657 0.689
Vehicle 0.726 0.707 0.721

Pedestrian 0.149 0.321 0.547
Cyclist 0.243 0.282 0.490

AUPR_op
All 0.945 0.952 0.951

Vehicle 0.897 0.848 0.827
Pedestrian 0.965 0.986 0.988

Cyclist 0.977 0.978 0.978

IG [32] is designed to reflect feature importance more
precisely than other simpler XAI methods such as back-
prop. Thus, it would be interesting to know why IG-
based XC scores underperform backprop-based XC
scores in the task of classifying TP vs. FP predictions,
especially for the pedestrian and cyclist predictions (see
AUPR in Table 1 and Table 2). We suspect that this is
due to the difference in XC distribution. In Fig. 4, we
present the KS statistic [4] between the distributions of
XC values in the TP and FP instances of each object
class. The KS statistic is a measure for goodness of
fit between two distributions: greater value indicates
greater difference between the two distributions. Note
that the backprop-based XC scores are able to produce
much KS statistic between TP and FP distributions
in the pedestrian and cyclist class than the IG-based
scores.

To alter the distribution of IG-based XC scores, we remove the last step in computing IG attributions.
As mentioned before in Section 2, IG zeros out attributions for input features with zero value. This is
often achieved by multiplying the computed attributions at each input location i by (xi − x′i), where
x is the input and x′ is the baseline, which is by default set to zero. We remove this process and
re-calculate IG-derived XC scores on the KITTI dataset [7]. Then we evaluate the new XC scores on
the binary classification task for TP vs. FP predictions. The average results of all four IG-derived
XC scores, all four backprop-derived XC scores (these are averaged over the values presented in
Table 1), and of the four modified IG-derived XC scores are presented in Table 3. Note that the results
are also averaged over all three models trained on KITTI. The modified IG XC scores resulted in
115% improvement in AUPR for pedestrian predictions and in 16% improvement in AUPR for cyclist
predictions compared to the original IG XC scores. Improvement can also be observed in AUROC
and AUPR_op for the pedestrian and cyclist classes.
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Figure 5: Distribution of XC_c+ values obtained by modified IG (without multiplying attributions by input)
attributions for TP and FP predicted boxes in the KITTI validation set.

The improvements on pedestrian and cyclist objects also coincide with a shift in the distribution of
XC values. As shown in Fig. 5, the distribution of XC values now appears very similar to that of
backprop-based XC values, but very different from that of IG-based XC values. By making feature
attributions proportional to input feature magnitude, IG is able to generate attribution maps that
capture salient features in the input, which is one reason why IG attribution maps makes more sense
to a human observer compared to a blurry backprop attribution map (interested readers may visit
Sundararajan et al. [32] for more attribution map examples). As a result, IG zeros out most of the
attributions outside of the bounding box (because the space outside of object bounding boxes are
mostly empty, leading to zero input feature values at such locations), and the remaining attributions
are mostly concentrated within the bounding box or at its close proximity (see Fig. 2). Thus, IG is
unable to produce mostly very low (< 0.1) XC values for the FP predictions, leading to significant
overlap in the values for TP prediction XC scores and FP predictions XC scores, making classification
using XC scores difficult.

These observations echo with Erion et al.’s [6] claim that IG’s choice of a zero-valued baseline is
problematic. Take an image of a digit for example, if the background is white but the digit itself
is black (i.e., zero), then the zero-valued pixels in fact contains the key features of this image and
should not get zero attributions. Similarly for point cloud inputs, not just the presence of points, but
also the absence of points in certain locations can help the model classify the object. For instance,
pedestrian objects are usually filled with points, whereas car objects have points on its boundaries but
are mostly hollow in the middle.

Note that even without multiplying by input values, IG-derived XC scores still cannot beat backprop-
derived XC scores on the pedestrian and cyclist classes (see Table 3). Hence, a more expensive
method such as IG may produce more visually appealing attribution map, but a less expensive method
may have more potential when used quantitatively.

5.5 Combining XC scores with the top class score

In Section 5.3 we demonstrate that the top class score is the best performing box-wise feature in
classifying TP vs. FP predictions. In this subsection, we aim to improve its performance by combining
it with XC scores generated from backprop attributions. We train classifiers for different object
classes in KITTI [7] and perform an ablation study on the box-wise features.

To conduct the ablation study, we build a new dataset Df from five features (the top classs score and
the four XC scores computed based on backprop attributions) for each predicted box produced by
one PointPillars [12] model on the KITTI validation set [7]. Since we have three models trained on
KITTI, we obtain three Df datasets. For each Df , we first group the samples by the predicted object
label, then by the number of LiDAR points: those with less than 100 points forms one set, the rest
forms another set. Thus, from one Df , we generate six smaller datasets df , two for each of the three
object classes.

We then build a 2-layer multilayer perceptron (MLP) with PyTorch [20] as a classifier to be trained
on df . Layer 1 is of size (d× 3) and layer 2 is of size (3× 1), where d represents the number of input
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features per instance. ReLU activation is applied after the first layer, and the sigmoid function is
applied after the second layer to obtain an output score. We train the MLP to classify a predicted box
as TP or FP, using binary cross entropy as the loss function. All input features are normalized based
on the following equation prior to being fed into the MLP: z = (x− µ)/s, where x is the original
feature value, µ is feature mean value, and s is the standard deviation for that feature. We use the
Adam optimizer [11] with learning rate set to 0.001.

For each experiment, we first shuffle df and then augment it by duplicating the instances four
times. Next we apply 5-fold cross validation to the augmented df , obtaining 5 different 80%/20%
train/validation splits. For the training instances, we also add a small uniformly distributed noise
U(−0.05,+0.05) to each feature to help the MLP generalize better. For each different split, we train
the MLP for 12 epochs with batch size = 16 and record three evaluation metrics (AUROC, AUPR,
and AUPR_op) of the output score on the validation instances. We repeat the 5-fold cross validation
5 times, obtaining 5× 5 = 25 different values for each of the metrics, and record the average. Note
that the above process is repeated for each df in the three Df we have, each evaluation metric is
averaged over the three Df and shown in Table 4.

In Table 4, when the top class score is the only input feature, we evaluate its performance directly and
use it as baseline for comparison; when more than one features are used, we evaluate the performance
of the MLP output score. The most notable observation is that for predictions containing less than
100 points, combining the XC scores with top class score can often result in better performance in
distinguishing TP vs. FP predictions, especially among the pedestrian predictions. The AUPR for
pedestrian increased by (0.540 - 0.492) / 0.492 = 9.8% after combining the 4 XC scores with top class
score. The improvement in AUROC for pedestrian predictions and in AUPR for cyclist predictions
also exceed 1%. Among the predictions with more than 100 points, the benefit of incorporating the
XC scores is less observable. Note that the top class score alone is already performing very well for
these predictions with more points. This might be why it is more difficult to get additional benefit
from the XC scores on these predictions.

Table 4: Ablation study on the features used to help classify TP vs. FP predictions on KITTI.

Object Class Features Used Points < 100 Points >= 100
Top class score XC_c− XC_c+ XC_s− XC_s+ AUROC AUPR AUPR_op AUROC AUPR AUPR_op

Car
X 0.958 0.926 0.977 0.956 0.980 0.914
X X 0.958 0.927 0.977 0.950 0.978 0.903
X X X X X 0.960 0.927 0.979 0.957 0.980 0.918

Pedestrian
X 0.932 0.492 0.997 0.969 0.911 0.989
X X 0.938 0.527 0.997 0.973 0.919 0.991
X X X X X 0.944 0.540 0.997 0.973 0.920 0.992

Cyclist
X 0.958 0.765 0.996 0.982 0.947 0.995
X X 0.958 0.777 0.996 0.972 0.931 0.993
X X X X X 0.958 0.779 0.996 0.980 0.946 0.994

6 Conclusion and future work

To use the explanations quantitatively, we proposed four XC scores to measure the concentration of
the attribution values generated for individual predictions. Applying the four XC scores on the task of
classifying TP vs. FP predictions led to over 100% improvement in AUPR on the pedestrian class on
both the KITTI and the Waymo datasets compared to simple heuristics such as distance to sensor and
number of LiDAR points in bounding box. Although the XC scores alone could not outperform class
score in the TP vs. FP classification task, combining class score with the XC scores using an MLP led
to notable improvement compared to using class score alone on the pedestrian predictions. Thus, it is
worthwhile to explore the XC scores further for more use cases such as using it in loss functions to
improve model performance, or use it as a tool for adversarial or out-of-distribution sample detection.

We also discovered that the XC metrics derived from backprop attributions often outperform those
derived from IG attributions on TP vs. FP classification for the pedestrian and cyclist objects. This
indicates that explanations that are more understandable to a human observer, such as IG, may
not offer superior value when analyzed quantitatively and researchers should not discard simpler
explanation methods when exploring quantitative use cases for XAI.
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