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ABSTRACT

Customer-facing LLMs need personalization to reflect individual preferences and
needs. However, existing personalization methods are often computationally ex-
pensive, data-intensive, prone to catastrophic forgetting, and degrade in multi-turn
conversations and on implicit questions. To address these challenges, we con-
ceptualize personalization as model editing and present Personalization Editing,
a framework that applies localized edits guided by clustered preference repre-
sentations, enforcing desired behavior where preferences apply while preserving
other capabilities. Existing personalization datasets often use synthetic personas
in role-playing dialogues, leading to indirect evaluation that does not reflect real-
world user queries. We introduce UPQA , a short-answer QA dataset based on
in-situ user queries, with varying levels of difficulty. Unlike prior benchmarks,
UPQA directly tests whether models can recall and apply specific user prefer-
ences, enabling more accurate and efficient evaluation. Across settings, Personal-
ization Editing improves editing accuracy, and is more computationally efficient
than fine tuning, while outperforming prompting and retrieval based baselines in
multi-turn conversations and on implicit preference questions. 1

1 INTRODUCTION

Large Language Models (LLMs) deliver state-of-the-art performance across core Natural Lan-
guage Processing (NLP) tasks such as text generation, translation, question answering, and chat-
bots (Brown et al., 2020; Thoppilan et al., 2022). Beyond benchmarks, there is growing interest
in tailoring LLMs to individual users. Personalization tailors model outputs on preferences, goals,
and context derived from interaction history and other user signals, improving relevance and user
satisfaction. Its potential has driven applications in e-commerce (Geng et al., 2022; Li et al., 2024),
education (Wang et al., 2024a; Stamper et al., 2024), and healthcare (Singhal et al., 2023; 2025).

Personalization of LLMs introduces unique challenges (Salemi et al., 2023). Methods that rely on
additional domain specific data and extensive fine tuning are computationally costly, data intensive,
and prone to catastrophic forgetting, with increased business risk and user dissatisfaction (Laban
et al., 2025; Liu et al., 2023; Zhang et al., 2024b). In-context approaches such as prompt engi-
neering and Retrieval-Augmented Generation (RAG) inject user profile features at inference time,
but performance degrades in multi-turn conversations as key information is diluted, and these meth-
ods struggle on implicit questions that require reasoning beyond explicit user profile facts (Bai et al.,
2024; Zhao et al., 2025). These limitations motivate methods that reduce compute and data demands
while mitigating catastrophic forgetting, especially in multi-turn conversations.

Model editing, also known as knowledge editing, makes precise, targeted changes to LLM behavior
with minimal data and computation (Wang et al., 2024b). It can be used as a parameter-efficient route
to LLM personalization, to avoid the substantial costs of full fine-tuning and mitigate catastrophic
forgetting in multi-turn conversations (Huang et al., 2025). In particular, we take personalization as
a constrained model-editing problem: for each user preference, we replace the default response for
a given subject–predicate with the user-preferred one, and learn an editing model that produces the
desired outputs on those inputs while leaving all other behaviors unchanged. Two challenges arise.
On the one hand, edits must be local, changing behavior only when a user preference is relevant

1Code, data, and results are available at https://anonymous.4open.science/r/personalization-model-editing
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Not sure

What should I do this weekend?

Hiking

Personalized with  
conventional methods

Personalized with editing plus 
clustering preference representation

Implicit Question

(a) Prompting vs. editing in multi-turn conversations

Multi-turn Conversations

User Preference: I’m severely 
allergic to shellfish.

User Query: What local New 
Orleans dishes should I try?

Here are some 
shellfish-free food…

Crawfish étouffée, 
oysters, and ...

User

In-context 
Preference

Preference
Representation

(b) Personalization Editing improves responses to implicit questions

(c) Enhanced preference representation through clustering

Figure 1: The proposed Personalization Editing framework outperforms prompting-based methods
in multi-turn conversations and surpasses fine-tuning-based approaches in both accuracy and effi-
ciency. Furthermore, its enhanced clustering-based preference representation enables the framework
to recall user preferences even in challenging implicit queries, where existing methods often fail.

while preserving responses to unrelated queries. On the other hand, representing user preferences as
a fixed response may fail to capture semantically related intents. For example, for a user who enjoys
outdoor activities, the question “What should I do this weekend?” should admit a series of similar
concepts such as hiking, trekking, rambling, and tramping, rather than a single canonical answer.

To address these issues, we propose a novel framework Personalization Editing, a framework that
uses clustering-based preference representations to improve the robustness of edits. Instead of a
single fixed response, preferences are represented by clusters that capture groups of semantically
similar keywords (subjects) and their corresponding targets. This design sustains strong perfor-
mance in multi-turn conversations, where in context methods degrade, and it handles real implicit
preference questions in which users express needs indirectly.

Moreover, most existing personalization datasets focus on persona based dialogue in fictional, open
domain settings (Jandaghi et al., 2023). These are useful for studying conversational style but do
not test whether a model can faithfully integrate real user information. We therefore introduce
UPQA (User Preference Question Answering), a benchmark that evaluates whether models recall
and apply user profile facts. UPQA includes structured questions for explicit knowledge, probes for
implicit preferences, and practical scenarios such as product recommendations.

Our framework improves editing accuracy, robustness in multi-turn conversations, and computa-
tional efficiency over strong baselines. Our key contributions are as follows:

• Model editing for personalized LLM. We study a novel problem by leveraging model editing to
personalize LLMs to enable precise model updates without requiring expensive retraining, while
preserving the model’s general capabilities. It also outperforms prompting-based personalization
techniques in multi-turn conversations.

• Clustering-based preference representation for robust, accurate model editing. The proposed
method uses a clustering-based preference representation that augments existing model editing
techniques, which improves the robustness and accuracy of these methods when handling chal-
lenging implicit preference questions across diverse domains.

• UPQA: a multi-domain personalization editing dataset for standardized evaluation. We in-
troduce UPQA , a challenging dataset designed for rigorous and standardized evaluation of per-
sonalization editing across diverse scenarios. By adopting a short-answer QA format with varying
levels of difficulty, UPQA enables efficient and reliable assessment of parameter-based person-
alization methods.

2
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2 RELATED WORK

In this section, we briefly review two related topics: LLM personalization and model editing.

2.1 LLM PERSONALIZATION

LLM personalization adapts models to individual user needs and preferences, enhancing satisfaction
through more relevant interactions (Zhang et al., 2024b). In-context approaches, such as profile-
augmented prompts (injecting a user’s profile or history into the prompt) (Zhang et al., 2018) or
RAG (Fan et al., 2024) that fetches user-specific information from an external memory, incorpo-
rate user data into the model’s input without altering the model’s weights. However, compressing a
user’s history into a prompt can cause information loss, and they rely on limited context windows
(Liu et al., 2025). Fine-tuning approaches instead update the model’s parameters on user data – for
example, training a personalized adapter module within the model’s layers (Zhong et al., 2021) –
or using Reinforcement Learning from Human Feedback (RLHF) to align the model with human
preferences (Ouyang et al., 2022). However, they are often resource-intensive and prone to overfit-
ting (Liu et al., 2025). Moreover, reward-alignment techniques like Bai et al. (2022); Rafailov et al.
(2023) typically optimize for generic user preferences, so capturing each individual’s unique style
or values would require costly user-specific feedback data (Liu et al., 2025). Hence in this paper,
we mainly focus on parameter-efficient fine-tuning strategies such as Low-Rank Adaptation (LoRA)
(Hu et al., 2022) and prefix-tuning (Vos et al., 2022) to personalize LLMs, which update only a small
fraction of the model’s parameters while keeping most weights frozen.

2.2 MODEL EDITING

Model editing enables efficient and precise modification in LLMs without full retraining and finetun-
ing while largely preserving nontargeted capabilities (Wang et al., 2024b). Editing methods fall into
three categories: locate-then-edit approaches like ROME (Meng et al., 2022) that identify and mod-
ify specific factual associations, and its multi-edit successor MEMIT (Meng et al., 2023); parameter-
efficient fine-tuning methods that update targeted parameters using techniques like fine-tuning with
masking (FT-M) (Rozner et al., 2024; Gangadhar & Stratos, 2024); and in-context editing like IKE
(Zheng et al., 2023a) that embeds corrections directly in input context. These techniques effec-
tively update outdated knowledge and reduce hallucinations while preserving model capabilities.
By leveraging such model editing techniques, we aim to achieve efficient personalization of LLMs,
integrating user-specific knowledge or preferences into the model on the fly without the full costs
of retraining or the context limitations of prompting. However, existing methods are not suitable
for modeling semantically related intents in user-preference–based recommendation, as mentioned
in the introduction. To address this gap, we introduce a clustering-based preference representa-
tion method that augments model editing techniques, improving their robustness and accuracy on
challenging implicit preference questions.

3 PROBLEM FORMULATION

3.1 PERSONALIZATION AS EDITING

The goal of Personalization Editing is to precisely and efficiently adapt an LLM to reflect individual
user needs, preferences, and behaviors, while preserving its general capabilities across the broader
user population. Personalization Editing operates on a structure analogous to a knowledge tuple
(s, r, o), where s represents a subject, r denotes predicate, and o represents object.

In the personalization setting, the goal is to modify model responses to align with specific user
preferences in given contexts. This is formalized as transforming an original tuple (s, r, o) into a new
tuple (s, r, o∗) that reflects the personalized preference, where o∗ represents the desired personalized
response or behavior preference. Here, the user and predicate remain constant while the response
adapts to user-specific preferences.

Example. If a user profile records hobbies running and reading, tuples include
(user, hobby, running) and (user, hobby, reading). After editing, when asked “Suggest some

3
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activities for the weekend,” the model recommends a local trail run or a book club rather than
generic activities.

3.2 INPUT–OUTPUT MAPPING

To probe and modify model responses for personalization, the subject s must be converted into a
natural language question x, to which the model responds with an output y. This input-output pair is
associated with a tuple (s, r, o). The input space corresponding to a personalization edit is denoted as
Xe = I(s, r), where I , where I is a question-generation function that maps the subject and relation
to a set of relevant input questions. The original output space is defined as Ye = O(s, r, o), and the
desired personalized output space after editing is represented as Y∗

e = O∗(s, r, o∗). For a single edit
e with input space Xe, the objective of Personalization Editing is to transform the original outputs
Ye into the target outputs Y∗

e .

3.3 MULTIPLE EDITS

When considering a set of personalization edits E = {e1, e2, . . .}, the combined input space is
XE =

⋃
e∈E Xe, and the corresponding original and target output spaces are YE =

⋃
e∈E Ye and

Y∗
E =

⋃
e∈E Y∗

e , respectively.

3.4 OBJECTIVE

Let the original LLM be a function f : X → Y . The goal of Personalization Editing is to produce
a personalized model f∗ : X → Y∗, such that the edited model generates personalized outputs for
inputs in XE while preserving its responses on all other inputs, preventing degradation of unrelated
model behavior. The optimization aims to minimize the discrepancy between the personalized out-
put f∗(x) and the desired target output y∗, as measured by a loss function L. Simultaneously, the
editing must maintain consistency on all inputs outside the editing set, ensuring that f∗(x) = f(x)
for all x ∈ X \ XE . This yields the constrained optimization objective:

minEe∈EEx,y∗∈Xe,Y∗
e
L(f∗(x), y∗)

s.t. f∗(x) = f(x), ∀x ∈ X \ XE

4 DATASET CONSTRUCTION

To rigorously evaluate personalization editing, we consider two datasets. First, we introduce
UPQA , a short-answer QA benchmark built from in-situ user queries, specifically designed for
standardized and efficient evaluation of personalization editing. Second, we adapt PREFEVAL
(Zhao et al., 2025), a multi-turn conversation benchmark, to better align with model editing. To-
gether, these datasets provide a diverse and challenging testbed for assessing both the accuracy and
robustness of personalization methods.

4.1 UPQA (USER PREFERENCE QUESTION ANSWERING)

We curated UPQA by extracting user-profile features from the Synthetic Persona Chat dataset
(Jandaghi et al., 2023). We first aggregated all unique persona attributes, where each attribute en-
codes a specific user preference (e.g., “I enjoy hiking,” “I have a dog,” “I work as a teacher”). These
serve as the foundation for personalization evaluation.

To transform persona attributes into structured evaluation queries, we employed
Claude-Sonnet-4, selected for its strong performance on instruction-following bench-
marks (Sharma et al., 2025). The model was prompted to analyze each persona attribute and
generate a suite of in-situ user queries at different levels of difficulty. This process ensured that
evaluation questions are both naturalistic and systematically varied.

For each user preference, we annotated an attribute type, a high-level category of personal
information such as hobby, profession, family, pet, or location. Based on this categorization, we
designed four complementary query types:

4
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1. question: Direct queries about the attribute using its exact term (e.g., “What’s my hobby?”
for a hiking-related persona).

2. question paraphrased: Rephrasings of the direct query in more natural language.
3. implicit question: Indirect queries that rely on prior knowledge (e.g., “What should I do

this weekend?” for a hiking hobby).
4. product recommendation question: Preference-grounded recommendation requests

that omit explicit attribute values (e.g., “Any gear I should buy for my hobby?”).

We collected over 1,000 unique user preferences spanning a broad range of topics, including hob-
bies, family roles, professions, and personal attributes. To ensure fairness in evaluation, we sampled
a balanced subset with equal representation across attribute types. This prevents bias toward over-
represented categories and supports standardized comparison across methods.

To support cluster-based editing and representation learning, we further augmented UPQA by gen-
erating clusters of nine semantically related synonyms for each editing subject and target. This
augmentation captures lexical variability (e.g., “dog,” “puppy,” “canine”) while preserving semantic
meaning, ensuring robustness in both evaluation and model editing. Synonym clusters were again
generated with Claude-Sonnet-4, followed by manual verification.

Below is an example from UPQA . An example of augmented data, including attribute annotations,
question types, and synonym clusters, is provided in the Appendix E.

{
”attribute type”: ”food preference”,
”question”: ”What’s my food preference?”,
”question paraphrased”: ”What kind of food do I like best?”,
”implicit question”: ”What should I have for dessert tonight?”,
”target”: ”Any products I should buy for my food preference?”,
”input attribute”: ”My favorite food is ice cream.”

}

4.2 PREFEVAL

In addition to UPQA , we also evaluate our framework on the PREFEVAL benchmark (Zhao
et al., 2025), where user preferences are expressed directly in single-turn utterances, and subse-
quent queries test whether models can recall and apply these preferences after long, noisy contexts.
PREFEVAL serves as a baseline for assessing preference following; however, it is primarily de-
signed for prompting and retrieval-based methods rather than model editing.

To adapt PREFEVAL for our setting, we reformulate the benchmark into structured key–value pairs
by extracting subject and target. This restructuring isolates the core preference signal and
enables precise updates, facilitating efficient preference injection or correction without retraining on
entire conversations. The prompt used with Claude-Sonnet-4 for augmentation is provided in
the Appendix C. An example of the augmented data is given below.

{
”topic”: ”travel restaurant”,
”preference”: ”I have a severe peanut allergy, so I must avoid any foods containing

peanuts or peanut products.”,
”question”: ”I’m visiting Thailand next month. What are some authentic Thai restau-

rants you would recommend for me to try?”,
”explanation”: ”Thai cuisine commonly utilizes peanuts and peanut-based sauces, so

recommending authentic Thai restaurants presents a challenge given the user’s peanut al-
lergy.”,

”subject”: ”restaurants”,
”target”: ”peanut-free”

}

5
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5 EXPERIMENTS

5.1 BASELINE METHODS

• FT-L (Meng et al., 2022) Constrained fine-tuning that targets a specific FFN layer identified by
causal tracing, maximizing likelihood of target sequences with parameter-space norm constraints
to minimize interference with unmodified facts.

• FT-M (Zhang et al., 2024a) Fine-tuning with masking that uses cross-entropy loss on target an-
swers while masking original text, providing more precise weight adjustments aligned with tradi-
tional fine-tuning objectives.

• LoRA (Hu et al., 2022) Low-rank adaptation that introduces trainable rank decomposition matri-
ces into Transformer layers, freezing pretrained weights while optimizing low-rank matrices for
parameter-efficient fine-tuning.

• ROME (Meng et al., 2022) Rank-one model editing that localizes factual associations in MLP
modules through causal intervention, then makes targeted rank-one parameter changes to alter
individual factual associations with minimal disruption.

• GRACE (Hartvigsen et al., 2024) Sequential editing method that introduces layer adaptors with
cached embeddings and codebook storage, enabling thousands of sequential edits while maintain-
ing model stability through a deferral mechanism.

• Zero-shot Zhao et al. (2025); Zheng et al. (2023a) Zero-shot prompting that directly incorporating
user preferences into the input context before presenting evaluation questions.

These model editing techniques can be categorized into the following 3 categories. We select repre-
sentative editing methods (ROME, FT-M, and Zero-shot) from each category and study their effec-
tiveness in UPQA .

• Locate-then-edit is a model editing paradigm that first locates factual knowledge at specific neu-
rons or layers, and then makes modifications on them directly. We selected two typical methods
ROME (Meng et al., 2022) and MEMIT (Meng et al., 2023).

• Parameter-efficient Fine-tuning is straightforward but computationally more expensive. We
selected Fine-Tuning with Masking (FT-M) (Zhang et al., 2024a) and LoRA (Hu et al., 2022),
which mitigate catastrophic forgetting and overfitting issues of standard fine-tuning.

• In-context Editing is a parameter-preserving paradigm that associates LLMs with in-context
knowledge directly (Zheng et al., 2023a; Fei et al., 2024). We adopted a simple zero-shot baseline
method in Zheng et al. (2023a) that does not provide demonstrations.

5.2 EVALUATION

After constructing the UPQA benchmark, we design an evaluation pipeline to assess the effective-
ness of model editing methods for personalization. Our evaluation primarily follows the established
model editing paradigm and uses the Efficacy Score (%) as the main metric. This score measures
whether the edited model can generate target answers that accurately reflect user preferences, and is
equivalent to the success rate. To further examine whether a personalized LLM can robustly provide
preference-aware responses across diverse question types, we introduce the Generalization Score
(%), which evaluates the model’s ability to handle paraphrased or implicit questions related to the
same user preference. This metric captures the percentage of personalized responses produced under
more challenging conditions.

For multi-turn conversation settings, we insert inter-turn dialogue as distractions before the evalu-
ation question. Following PrefEval Zhao et al. (2025), we retrieve these inter-turn conversational
turns from the Lmsys1M dataset Zheng et al. (2023b). However, unlike PrefEval, which is designed
to evaluate prompting-based methods and thus explicitly inserts user preferences into the context
(structured as user preference followed by inter-turn conversation and then the evaluation question),
our evaluation does not include user preference information in the context. This design more accu-
rately reflects the personalization editing setting, where user knowledge is embedded in the model
itself rather than reintroduced through prompts.

We employ Claude-4-Sonnet as the automatic judge to assess whether model responses ac-
knowledge, reflect, or demonstrate awareness of user preferences, following prior work that defines

6
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Figure 2: Evaluation results of various model-editing methods for Llama3-8B and Olmo2-7B on
UPQA across 10 preference types. Efficacy scores (%) indicate the editing success rate on ques-
tion–answer pairs.

Deepseek-7B Llama3-8B Mistral-7B Olmo2-7B Qwen3-8B
0

20

40

60

80

100

Ef
fic

ac
y 

(%
)

Zero-Shot FT-L ROME LoRA FT-M GRACE

Figure 3: Efficacy score of various model editing methods across multiple LLMs on UPQA .

this metric as the Acknowledge Rate (%) Zhao et al. (2025). The detailed evaluation prompts used
for judgment are provided in Appendix D.

5.3 EFFECTIVENESS OF PERSONALIZATION EDITING

We first evaluate the effectiveness of Personalization Editing on the proposed UPQA data. Fig-
ure 2 and 3 shows that Personalization Editing consistently achieves higher Efficacy Scores across
all preference types, demonstrating its ability to robustly encode user-specific information. More-
over, Figure 4 highlights that Personalization Editing generalizes effectively across six different base
models.

While ROME exhibits strong efficacy on direct preference injection, it fails to generalize to
rephrased questions, implicit references, and recommendation-style queries. In contrast, zero-shot
prompting preserves some ability on rephrased questions but lags far behind editing-based meth-
ods in efficacy, underscoring that persistent and reliable personalization requires direct parameter
updates rather than transient prompting. FT-M achieves competitive performance in generalization.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Explicit Rephrase Implicit Product Rec. Average
0

20

40

60

80

100

Ge
ne

ra
liz

at
io

n 
Sc

or
e 

(%
)

(a) Deepseek-7B
Explicit Rephrase Implicit Product Rec. Average

0

20

40

60

80

100

(b) Gpt-J-6B

Explicit Rephrase Implicit Product Rec. Average
0

20

40

60

80

100

Ge
ne

ra
liz

at
io

n 
Sc

or
e 

(%
)

(c) Llama3-8B
Explicit Rephrase Implicit Product Rec. Average

0

20

40

60

80

100

(d) Mistral-7B

Explicit Rephrase Implicit Product Rec. Average
0

20

40

60

80

100

Ge
ne

ra
liz

at
io

n 
Sc

or
e 

(%
)

(e) Olmo2-7B
Explicit Rephrase Implicit Product Rec. Average

0

20

40

60

80

100

(f) Qwen3-8B

Pre-edit Zero-Shot FT-L ROME LoRA FT-M GRACE

Figure 4: Generalization scores of various model editing methods across multiple LLMs on UPQA .
Generalization Scores (%) are measured by accuracy on four types of Generalization Evaluation
Questions including Questions (”Explicit”), Rephrased Questions (”rephrase”), Implicit Questions
(”implicit”), Product-Recommendation Questions (”Product Rec.”). The ”Average” refers to aver-
aged scores over four question types.
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Figure 5: Acknowledgment Rate (%) over 10-turn conversations. Personalization Editing methods
sustain high acknowledgment rate, while prompting-based baselines degrade.

Findings

Finding 1: Personalization Editing is highly effective at encoding user-specific facts into
LLMs, enabling them to provide personalized responses aligned with user preferences.

5.4 SUSTAINING PERSONALIZATION BEYOND THE FIRST TURN

To evaluate whether personalization persists across extended interactions, we measure the Acknowl-
edgment Rate in multi-turn dialogues on PREFEVAL (Zhao et al., 2025). As shown in Figure 5,
Personalization Editing maintains high acknowledgment of user preferences throughout 10 conver-
sational turns, demonstrating robustness even as unrelated dialogue content introduces distractions.
In contrast, prompting-based methods degrade rapidly, falling below 20% by the 8th turn, as models
fail to recall preferences without repeated explicit reminders. This gap highlights a key advan-
tage of parameter-based editing: by modifying internal representations, the injected personalization
becomes persistent and less susceptible to forgetting across turns, whereas prompting remains tran-
sient and fragile. These results emphasize the necessity of stable, parameter-level personalization
for realistic multi-turn settings.
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Figure 6: Clustering-based preference representations improve personalization generalization and
efficacy on implicit questions as cluster size increases from 1 to 9.
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Figure 7: Clustering-based preference representations enhance generalization on rephrased ques-
tions as cluster size increases from 1 to 9.

Findings

Finding 2: Personalization Editing provides persistent personalization in multi-turn conver-
sations, showing robustness to distractions and outperforming prompting-based methods.

5.5 ROBUST EDITING WITH CLUSTERING-BASED PREFERENCE REPRESENTATIONS

Real-world personalization often requires models to recall preferences that are not explicitly re-
stated. To evaluate this setting, we focus on the implicit split of UPQA , which represents the most
challenging question type. As shown in Figure 6 and Figure 7, when the cluster size is 1 (equivalent
to standard model editing), editing methods already outperform zero-shot prompting. Increasing
the cluster size further improves efficacy, with cluster size 3 offering a strong balance point, be-
yond which gains plateau. Personalization Editing, augmented with clustering-based preference
representations, achieves consistently higher performance as cluster size grows. This demonstrates
that clustering enables more generalizable personalization, allowing models to extend beyond literal
preference mentions and adapt to rephrased or implicit formulations.

Findings

Finding 3: Personalization Editing shows strong performance for challenging implicit ques-
tions. Moreover, the clustering preference representation further improves performance on
rephrased and implicit questions. Personalization Editing achieves strong performance on
challenging rephrased and implicit questions, and clustering-based preference representations
further improve generalization.

6 CONCLUSION

In this paper, we introduced Personalization Editing, a framework that conceptualize LLM personal-
ization as a model-editing task, enabling precise and compute-efficient adaptation without the need
for full retraining. To support rigorous and realistic evaluation, we presented UPQA , a challeng-
ing benchmark designed to directly test personalization methods on user-centric queries. Building
on this formulation, we proposed a clustering-based preference representation that enhances ex-
isting editing techniques, improving accuracy, robustness, and efficiency, particularly on difficult
implicit-preference queries. Extensive experiments across diverse benchmarks and model families
demonstrate the effectiveness and generality of our approach, establishing Personalization Editing
as a practical and versatile solution for robust LLM customization.
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7 ETHICS STATEMENT

This research adheres to established standards of ethical conduct. No human subjects were directly
involved in the study. All datasets used were either publicly available or synthetically constructed,
and no personally identifiable information or sensitive user data was included. When designing the
UPQA dataset, we focused on simulated user profiles to avoid privacy risks, while still capturing
realistic personalization scenarios. We recognize the potential risks of personalization methods, in-
cluding amplification of bias, privacy concerns, and harmful content generation. To mitigate these
risks, our framework was designed to reduce hallucinations, support reversible preference editing,
and avoid storing or exposing sensitive user information. In addition, the dataset and methodology
are released with documentation and intended for research purposes only, with clear guidelines dis-
couraging misuse in harmful or discriminatory applications. All experiments were conducted with
transparency, and we are committed to fostering fairness, accountability, and responsible deploy-
ment of personalization technologies in real-world applications.

8 REPRODUCIBILITY STATEMENT

All code, data, and results are available in an anonymous repository at https://anon
ymous.4open.science/r/personalization-editing. We also provide
the evaluation prompts used for LLM-Judge in Appendix D, where we specifically used the
us.anthropic.claude-sonnet-4-20250514-v1:0 model provided via AWS Bedrock.
Our code additionally offers the option to run a local LLM for evaluation. We conducted all ex-
periments on NVIDIA H200 GPUs. We recommend using a graphics card with at least 48 GB of
memory. To ensure reproducibility, greedy decoding was applied across all models. The model
checkpoints are downloaded from https://huggingface.co/. The specific download links
are as follows:

• Llama-3-8B-Instruct: https://huggingface.co/meta-llama/Meta-Llama-3-8
B-Instruct

• Mistral-7B-Instruct-v0.3: https://huggingface.co/mistralai/Mistral-7B-Ins
truct-v0.3

• Qwen3-8B: https://huggingface.co/Qwen/Qwen3-8B
• GPT-J-6B: https://huggingface.co/EleutherAI/gpt-j-6b
• DeepSeek-7B:https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill
-Qwen-7B

• OLMo-7B-Instruct-hf: https://huggingface.co/allenai/OLMo-7B-Instruct-h
f

• Gemma2-9B-it: https://huggingface.co/google/gemma-2-9b-it
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A THE USE OF LARGE LANGUAGE MODELS

Large language models were utilized exclusively for spell-checking and proofreading. All research
ideas and the full writing of the paper were carried out entirely by the authors.

B TIME EFFICIENCY ANALYSIS

Editing Method Total File Runtime (s) Average Edit Time (s)
FT-L 3168.655000 1.533571
FT-M 2294.145714 0.221429
GRACE 3919.603333 4.955000
ICE 2981.761429 0.000000
LoRA 5208.758333 13.561667
ROME 3175.657143 2.032857

Table 1: Comparison of runtime and average time per edit across different editing methods on subset
of UPQA with size of 200.
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C DATA CONSTRUCTION PROMPTS

Below are the prompts for building our UPQA data.

You are tasked with analyzing a persona attribute and generating structured personaliza-
tion data.

Given this persona attribute: ”{persona}”

Generate a JSON response with the following fields:
1. ”input attribute”: the original persona attribute (exactly as provided).
2. ”attribute type”: a high-level category of the attribute (e.g., ”hobby”, ”profession”,
”pet”, ”location”, ”job”, ”family”, ”food preference”, ”career goal”). Use the broadest
appropriate category, not the specific value. Use lowercase and separate words with
spaces.
3. ”question”: explicitly ask about the attribute type, use the exact word of the at-
tribute type in the question (e.g., ”What’s my hobby?” for a hiking-related persona).
4. ”question paraphrased”: a natural rewording of the direct question.
5. ”implicit question”: a conversational question that avoids directly naming the attribute
type but still guides toward answers closely aligned with the target in an everyday,
non-diagnostic way (e.g., ”What should I do this weekend?” for a hiking hobby).
6. ”product recommendation question”: asks for a product suggestion relevant to the
attribute type without mentioning the specific attribute value (e.g., ”Any gear I should buy
for my hobby?”).
7. ”target”: a concise description of what the persona reveals about the person (a single
word or short phrase grounded in the input attribute).

Example input: I enjoy hiking in the mountains.
Example Output:
{
”input attribute”: ”I enjoy hiking in the mountains.”,
”attribute type”: ”hobby”,
”question”: ”What’s my hobby?”,
”question paraphrased”: ”What do I like to do for fun?”,
”implicit question”: ”Got any suggestions for a relaxing weekend activity?”,
”product recommendation question”: ”Any gear I should buy for my hobby?”,
”target”: ”Hiking in the mountains”,
}

Respond only with valid JSON, no additional text or explanation.

Below are the prompts for generating clusters of synonyms.
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Generate exactly {num synonyms} concise synonyms for the attribute type: ”{text}”

Each synonym should be:
- 1 word or a short phrase (maximum 3 words)
- Conceptually similar to the original
- Suitable for categorizing personal attributes
- ALL LOWERCASE
- Different from the original term

Original: {text}

Provide only the {num synonyms} synonyms, one per line, without numbering or bullet
points. Ensure all synonyms are in lowercase.
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D EVALUATION PROMPTS

Analyze a conversation to determine if the assistant’s response acknowledges or shows
awareness of a user preference.

Answer ’Yes’ if the response in any way indicates the assistant is aware of or considering
the user preference. Extract the part of the response that shows this awareness.

Answer ’No’ only if there is no sign at all that the assistant recognizes or considers the
preference.

Here is the assistant’s response:
User preference: {user preference}
The user’s question is: {question}
Assistant response: {end generation}

Reply in this exact XML format:

<preference>[part of the response showing awareness
of the preference; leave blank if none]</preference>
<answer>[Yes/No]</answer>

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E EXAMPLES OF AUGMENTED UPQA

{
”input attribute”: ”I love to ride my bike.”,
”attribute type”: [
”pastime”,
”interest”,
”pursuit”,
”activity”,
”recreation”,
”leisure activity”,
”diversion”,
”avocation”,
”hobby”
],
”question”: [
”What’s your favorite pastime?”,
”What’s your main interest these days?”,
”What’s your current pursuit?”,
”What’s your favorite activity to do on weekends?”,
”What’s your favorite type of recreation?”,
”What’s your favorite leisure activity?”,
”What’s your favorite diversion when you need to unwind?”,
”What’s your main avocation outside of work?”,
”What’s my hobby?”
],
”question paraphrased”: ”What do I enjoy doing in my free time?”,
”implicit question”: ”What’s a good way to stay active and get around town?”,
”product recommendation question”: ”Any gear I should buy for my hobby?”,
”target”: [
”Cycling”,
”Biking”,
”Pedaling”,
”Bicycling”,
”Riding a bicycle”,
”Spinning wheels”,
”Two-wheel travel”,
”Pedal pushing”,
”Bike riding”
]
}
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