
GBA: A Tuning-free Approach to Switch between
Synchronous and Asynchronous Training for

Recommendation Models

Wenbo Su∗, Yuanxing Zhang∗, Yufeng Cai, Kaixu Ren, Pengjie Wang, Huimin Yi,
Yue Song, Jing Chen1, Hongbo Deng, Jian Xu, Lin Qu1, Bo Zheng†

Alibaba Group
{vincent.swb, yuanxing.zyx, baike.cyf, kaixu.rkx,

pengjie.wpj, huimin.yhm, yue.song, dhb167148,
xiyu.xj, bozheng}@alibaba-inc.com

1{gongcheng.cj, xide.ql}@taobao.com

Abstract

High-concurrency asynchronous training upon parameter server (PS) architecture
and high-performance synchronous training upon all-reduce (AR) architecture
are the most commonly deployed distributed training modes for recommendation
models. Although synchronous AR training is designed to have higher training
efficiency, asynchronous PS training would be a better choice for training speed
when there are stragglers (slow workers) in the shared cluster, especially under
limited computing resources. An ideal way to take full advantage of these two
training modes is to switch between them upon the cluster status. However, switch-
ing training modes often requires tuning hyper-parameters, which is extremely
time- and resource-consuming. We find two obstacles to a tuning-free approach:
the different distribution of the gradient values and the stale gradients from the
stragglers. This paper proposes Global Batch gradients Aggregation (GBA) over
PS, which aggregates and applies gradients with the same global batch size as the
synchronous training. A token-control process is implemented to assemble the
gradients and decay the gradients with severe staleness. We provide the conver-
gence analysis to reveal that GBA has comparable convergence properties with the
synchronous training, and demonstrate the robustness of GBA the recommenda-
tion models against the gradient staleness. Experiments on three industrial-scale
recommendation tasks show that GBA is an effective tuning-free approach for
switching. Compared to the state-of-the-art derived asynchronous training, GBA
achieves up to 0.2% improvement on the AUC metric, which is significant for the
recommendation models. Meanwhile, under the strained hardware resource, GBA
speeds up at least 2.4x compared to synchronous training.

1 Introduction

Nowadays, recommendation models with a large volume of parameters and high computational
complexity have become the mainstream in the deep learning communities [13]. Accelerating the
training of these recommendation models is a trending issue, and recently synchronous training upon
high-performance computing (HPC) has dominated the training speed records [18, 16, 31]. The
resource requirements of the synchronous training upon AR are more rigorous than the asynchronous

∗∗ These authors contributed equally to this work.
†† Corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



training upon PS [1]. In a shared training cluster with dynamic status [3], the synchronous training
would be retarded by a few straggling workers. Thus, its training speed may be even much slower
than the high-concurrency asynchronous training.

Should it be possible to switch the training mode according to the cluster status, we will have
access to making full use of the limited hardware resources. Switching the training mode for a
specific model usually demands tuning of the hyper-parameters for guarantees of accuracy. Re-tuning
the hyper-parameters is common in the one-shot training workloads (e.g., the general CV or NLP
workloads) [20]. However, it is not applicable for the continual learning or the lifelong training of
the recommendation models [10], as tuning would be highly time- and resource-consuming. When
switching the training mode of representative recommendation models, we confront three main
challenges from our shared cluster: 1) Model accuracy may suffer from a sudden drop after switching,
requiring the model to be retrained on a large amount of data to reach the comparable accuracy
before switching; 2) The distribution of gradient values is different between synchronous training
and asynchronous training, making the models under two training modes difficult to reach the same
accuracy by tuning the hyper-parameters;3) The cluster status imposes staleness on the asynchronous
training, and staleness negatively impacts the aggregation of gradients, especially for the dense
parameters.

We conduct a systematic investigation of the training workloads of recommendation models to tackle
the above challenges. It is found that when the global batch size (i.e., the actual batch size of gradient
aggregation) is the same, the distribution of gradient values of asynchronous training tends to be
similar to that of synchronous training. Besides, we notice that due to the high sparsity, the embedding
parameters in recommendation models are less frequently updated than the dense parameters, leading
to a stronger tolerance for staleness than the general CV or NLP deep learning models. Based on
these insights, we propose Global Batch gradients Aggregation (GBA), which ensures the model
keeps the same global batch size when switched between the synchronous and asynchronous training.
GBA is implemented by a token-control mechanism, which resorts to bounding the staleness and
making gradient aggregation [12]. The mechanism suppresses the staleness following a staleness
decay strategy over the token index. The faster nodes would take more tokens without waiting,
and thereby GBA trains as fast as the asynchronous mode. Furthermore, the convergence analysis
shows that GBA has comparable convergence properties with the synchronous mode, even under
high staleness for recommendation models. We conduct an extensive evaluation on three continual
learning of recommendation tasks. The results reveal that GBA performs well on both accuracy and
efficiency with the same hyper-parameters. Particularly, GBA improves the AUC metric by 0.2%
on average compared to the state-of-the-art training modes of asynchronous training. Besides, GBA
presents at least 2.4x speedup over the synchronous AR training in the cluster with strained hardware
resources.

To the best of our knowledge, this is the first work to approach switching between synchronous and
asynchronous training without tuning the hyper-parameters. GBA has been deployed in our shared
training cluster. The tuning-free switching enables our users to dynamically change the training
modes between GBA and the synchronous HPC training for the continual learning tasks. The overall
training efficiency of these training workloads is thereby significantly improved, and the hardware
utilization within the cluster is also raised by a large margin.

2 Related Work

Distributed training mode. PS [21] and AR [18] are two mainstream architectures for the training
workloads of recommendation models, accompanied by the asynchronous training and synchronous
training, respectively. Researchers are enthusiastic about the pipeline, communication, and compu-
tation optimization for the AR architecture of recommender systems [31]. Meanwhile, to improve
the training efficiency of the PS architecture, researchers propose a category of semi-synchronous
training mode [12]. For example, Hop-BS [24] restricts the gradient updates under the bounded
staleness, and Hop-BW [24] ignores the gradients from the stragglers with the well-shuffled and
redundancy data. Recently, a category of decentralized training has been proposed in many studies to
scale out the AR architecture. Local all-reduce [25], local update [26], exponential graph [28], and
many topology-aware solutions have proven promising in the NLP and CV tasks. However, owing to
the sparsity in recommendation models, the inconsistent parameters among workers and the dropped
gradients of the scarce IDs would intolerably degrade the accuracy. Besides, these training modes

2



0:00 12:00 23:00
Time in a day

0

0.5

1.0

N
or

m
al

iz
ed

 v
al

ue

CPU Util.
Sync.
Async.

Prague
SwarmAdam

Figure 1: Normalized QPS of four training
modes in training YouTubeDNN models in a
shared cluster, with CPU utilization in a day.

0.8043

D
ee
pF
M

Yo
uT
ub
eD
N
NAU

C

Training progress

Sw
itc

hi
ng

0.7680

Figure 2: The AUC on the validation set of
Criteo-4GB and Private by every 5% progress
during training, switching at 50% progress.

hardly consider the requirements to switch to another training mode according to the cluster status,
though switching is beneficial to improve the training efficiency in the shared training clusters.

Staleness and noisy gradients. The indeterminate or even inferior model accuracy of asynchronous
training is mainly attributed to the staleness [7] and the noisy gradients [27] caused by the small batch.
Although prior research has pointed out that the converged giant model is less sensitive to staleness
[8], staleness is still a negative factor in the accuracy of the continual recommendation training. Many
efforts have been put into controlling staleness via Taylor expansion [32], weighted penalty [35], etc.
Recent works present a large-batch training paradigm with specially-designed optimizers to scale the
gradients before updating [29], and point out that it can reach the best accuracy by merely adjusting
batch size [11, 30]. There are also attempts to change gradient aggregation strategies during the
asynchronous training to achieve stable model accuracy [22]. GBA generalizes the staleness control
paradigm to the recommendation workloads by token-control mechanism, which finds the balance
between bounding staleness and ignoring gradients. GBA runs with the same global batch size as the
synchronous mode, ensuring the effective switching between GBA and synchronous training without
tuning hyper-parameters.

3 Preliminaries

3.1 Distributed Training of Recommendation Models

Recommendation models usually comprise two modules: the sparse module contains the embedding
layers with the embedding parameters, mapping the categorical IDs into numerical space; the dense
module contains the computational blocks with the dense parameters, such as attention and MLP
[4, 33], to exploit the feature interactions. The main difference between the two kinds of parameters
is the occurrence ratio in each training batch. Each training batch needs all the dense parameters,
yet only a tiny amount of embedding parameters are required according to the feature IDs in the
data shard. The latest development of recommendation models introduces high complexity and a
large volume of parameters, making distributed training essential to improve training efficiency. The
synchronous HPC training mode usually adopts the AR architecture, where the dense parameters are
replicated, and the embedding parameters are partitioned on each worker. HPC should be deployed by
monopolizing a few high-performance workers and making full use of the associated resources, which
may be retarded by the slow workers [19]. PS architecture is usually coupled with asynchronous high
concurrency training where the parameters are placed on PSs, and the workers are responsible for the
computation. On the one hand, the high concurrency mechanism activates the fragmentary resources
in the training cluster by deploying hundreds of workers. On the other hand, the asynchronous
training brings in gradient staleness, which occurs when the gradient is calculated based on the
parameters of an old version and applied to the parameters of a new version.

3.2 Observations and Insights within a Shared Training Cluster

We investigate the training workloads of recommendation models from a shared training cluster to
observe the obstacles and necessities of switching training modes.

3



3 6 9 12
L2-norm of Gradients (×10−5 )

0

0.12

0.25

P
ro

po
rti

on

Sync. BSP-1K BSP-2K BSP-4K BSP-6K

Figure 3: The distribution of L2-norm of gra-
dients from the synchronous training and BSP
with various size of aggregation.

1 20 50 80
Occurences per 100 batches

10−7

10−4

10−1

P
ro

po
rti

on

Figure 4: The skewed distribution of ID occur-
rences across batches, reflecting the frequency
that an ID gets updated.

Observation 1: Cluster status determines the performance of training modes. Figure 1 illustrates
the average CPU utilization within a real shared cluster, and the corresponding samples/queries per
second (QPS) of a YouTubeDNN [6] model by the synchronous and asynchronous training mode. The
utilization and QPS are normalized by their maximal value, respectively. When the cluster is relatively
vacant, models trained in the synchronous mode can fully occupy the hardware resources, satisfying
HPC conditions and presenting high efficiency. When there are plenty of heterogeneous workloads
in the cluster, slow workers dominate the training speed, making the asynchronous training mode
run much faster than the synchronous mode. We also implement two approaches of local all-reduce3.
Since the status of each device in the cluster is constantly changing, the local all-reduce-based mode
would not work well when confronting resource shortages.

Observation 2: Directly switching training mode brings sudden drop on accuracy. We run
DeepFM [23] over Criteo-4GB [15] (few parameters, fast convergence) and YouTubeDNN on Private
dataset (trillions of parameters, slow convergence) in the shared cluster. We tune the hyper-parameters
from scratch for the best model accuracy of both asynchronous and synchronous mode, and denote
the two sets of hyper-parameters as set A and set S, respectively. After training in one training mode,
we evaluate the tendency of the training AUC after switching to the other training mode with set A
or set S. Figure 2 illustrates that after switching from the synchronous mode to the asynchronous
mode, the AUC encounters sudden drop and even decreases to 0.5. The AUC drop also appears in the
opposite-side switching, indicating that this condition is irrelevant to whether the model had been
converged. These observations imply that directly switching the training mode requires heavy effort
in re-tuning the hyper-parameter. Inherently, training modes would lead to different convergence
or minima owing to the difference in batch size, learning rate and many other factors, which have
already received in-depth theoretical research [2, 17]. We provide theoretical analysis to explain the
sudden drop in Appendix D.

We then probe into the insights from asynchronously training recommendation models.

Insight 1: Distribution of the gradient values is related to the aggregated batch size. We attempt
to investigate the reason for observation 2 from the gradient aspect. We implement asynchronous
bulk synchronous parallel (BSP) on the YouTubeDNN recommendation task, which asynchronously
aggregates K gradients from workers before applying the values to the parameters. Here, we set
K to 100, the same as the number of workers. Besides, we compare the synchronous training
in 6.4K local batch size (64 workers). Figure 3 plots the distribution of the L2-norm of gradient
values from the synchronous training and BSP with various local batch sizes. It is evident that the
batch size determines the mean and variance of the distribution. The distribution of BSP resembles
synchronous training when the aggregation size is similar (i.e., BSP-4K). The result suggests that the
same aggregation size could lead to a similar distribution of gradient values. However, there is still a
gap in model accuracy after equalizing the global batch size between the asynchronous training and
the synchronous training, mainly induced by gradient staleness.

Insight 2: The gradient staleness imposes different impact on the embedding parameters and
the dense parameters. Due to the skewed distribution, most IDs would merely appear in a small
number of batches, as depicted in Fig. 4. It means that in the recommendation models, only a tiny
portion of IDs would be involved in every single batch, and the embedding parameters are less

3SwarmAdam is a variant of SwarmSGD [26] with Adam optimizer. It is uncommon to use SwarmAdam and
Prague [25] in recommendation models as they may lead to accuracy loss which is not tolerable in the business.

4



PS

Worker
𝟎

Worker
𝑵𝒂 − 𝟏

Worker
𝟐

Worker
𝟏

PS

……

2 1 1 … 2

∇ ∇ ∇ … ∇

Gradient Buffer
𝑀 − 10

token

gradient
(partition)

1 2 …

2 1 1 … 2

∇ ∇ ∇ … ∇

Gradient Buffer
𝑀 − 10

token

1 2 …

0 0 … 0 1 1 … 1 2 2 … 2 …

𝐝0 𝐝1 𝐝2 … 𝐝𝑄−1

Token List (Size 𝑄)

Data List (Size 𝑄) worker sends token 
and gradient to PSdata and token are 

sent to worker 

𝑀 gradients in gradient buffer would be aggregated

Size 𝑀 Size 𝑀 Size 𝑀

Dense Parameters

St
al

en
es

s 2 ∇

1 ∇

1 ∇

… …

2 ∇

…

Embedding Parameters

Non-UpdateUpdate

gradient
(partition)

token gradient

Figure 5: Illustration of the token-control mechanism in GBA: every M gradients would be aggregated
in the buffer before the PSs apply them to the parameters; workers report gradients to the PSs along
with a token indicating the degree of data staleness.

frequently updated than the dense parameters. Therefore, the embedding parameters tend to be more
robust on the gradient staleness than the dense parameters (for example, considering a worker in
training, there could be five updates for the dense parameters, yet only two updates for the embedding
of a specific ID).

4 Global Batch based Gradients Aggregation

4.1 Training Recommendation Models with GBA

Switching the distributed training mode for recommendation models should get rid of tuning the
hyper-parameters. We introduce the concept of global batch size, which is defined as the actual batch
size when gradients are aggregated and applied, and propose GBA for the tuning-free switching. We
denote the local batch size, i.e., the actual batch size on each worker and the number of workers, as
Bs and Ns for the synchronous training, Ba and Na for the asynchronous training. Then, the global
batch size in synchronous training, denoted by Gs, can be calculated as Bs ×Ns. Following Insight
1, GBA remains the global batch size unchanged when we switch the distributed training model
from synchronous training to asynchronous training. For each step, all the dense parameters would
be updated, and only a small number of embedding parameters would be updated. Then the dense
parameters and embedding parameters obtain different gradient staleness during training. Hence,
we define the data staleness as the unified staleness in training recommendation models. The data
staleness describes the gap between the global step when the worker begins to ingest a data batch
and the global step when the calculated gradient is applied. Obviously, the data staleness in the
synchronous training mode is constantly zero. Based on data staleness, we implement GBA by a
token-control mechanism on the PS architecture to cope with the sparsity and the dynamic cluster
status.

Figure 5 illustrates the architecture of the proposed token-control mechanism. Over the canonical PS,
we prepare a queue called data list to arrange the data (addresses) by batches. Given a dataset D,
suppose we can split it into Q batches of size Ba, denoted by D = (d0,d1, . . . ,dQ−1). Meanwhile,
we establish another queue called token list to yield the token of each individual batch. The token
list contains Q tokens, denoted by (t0, t1, . . . , tQ−1), each attached to one batch in the data list to
indicate the global step when this batch is sent to a worker. The token value starts from zero, and
each token value repeats M times in the token list. Here, M is the number of batches we use to
aggregate gradients. Under this setting, we can deduce that there will be K = ⌈ Q

M ⌉ gradient updates
during the training. Then we set ti = ⌊ i

K ⌋,∀i ∈ {0, 1, . . . , Q− 1} to ensure that the token list yields
the token value in ascending order. Apart from the two queues, we also employ a gradient buffer to
receive the gradients calculated by the workers with the corresponding tokens of the gradients. To
be consistent with the tokens, the capacity of the gradient buffer is set to M , and therefore the PSs
would aggregate M gradients before applying them to the variables. Note that each PS maintains an
individual gradient buffer to deal with the gradients of the corresponding partitions of the variables.

5



During the training process, a worker would pull the parameters from PS, a batch from the data
list, and a token from the token list simultaneously before ingesting the data and computing the
gradient locally. When a worker completes calculating the gradient of a batch, the gradient and the
corresponding token are sent to the gradient buffer on PS. Then, the worker immediately proceeds
to work on the next batch. In this way, the fast workers can keep working without waiting for the
slow ones. When the gradient buffer reaches the capacity of M pairs of gradients and tokens, all
the gradients are aggregated to apply once, and at the same time, the buffer will be cleared. This is
what we call finishing a global step, and thereby the global batch size in GBA can be calculated as
Ga = Ba×M . According to the design, we aim to keep the global batch size consistent in switching,
that is, Gs = Ga. Hence, we can set the size of the gradient buffer to be M = Bs×Ns

Ba
. We would use

M workers in GBA, i.e., Na = M , to avoid the intrinsic gradient staleness led by the inconsistency
between the number of workers and the number of batches to aggregate.

At the update of global step k, denote τ(m, k) the m-th token in the gradient buffer. When we
aggregate the gradients in the gradient buffer, we shall decay the gradients that suffer from severe
staleness. GBA could employ different staleness decay strategies to mitigate the negative impact
from the staleness according to the token index, and in this work we define it as:

f(τ(m, k), k) =

{
0, k − τ(m, k) > ι

1, k − τ(m, k) ≤ ι,
(1)

where ι is the threshold of tolerance. If f(τ(m, k), k) = 0, we exclude the m-th gradient in the buffer
due to the severe staleness; otherwise, we aggregate the gradient. As we can see, tokens help identify
whether the corresponding gradients are stale and how many stale steps are behind the current global
step. In this case, although the token is designed over the data staleness, the negative impact from the
canonical gradient staleness can also be mitigated.

4.2 Convergence Analysis

We have seen much research on the convergence analysis of the synchronous and asynchronous
training. Following the assumptions and convergence analysis in Dutta et al. [7], the expectation of
error after k steps of gradient updates in the synchronous training can be deduced by:

E[F (wk)]− F ∗ ≤ ηLσ2

2cNsBs
+ (1− ηc)k(F (w0)− F ∗ − ηLσ2

2cNsBs
), (2)

where wk denotes the parameter in step k, η denotes learning rate, L is the Lipschitz constant and σ
denotes the variance of gradients. F (w) is the empirical risk function that is strongly convex with
parameter c. E[F (wk)]− F ∗ is the expected gap of the risk function from its optimal value, used as
the error after k steps. As mentioned in Eqn. (2), The first term in the right, i.e. ηLσ2

2c(NsBs)
, would be

the error floor, and (1− ηc) is the decay rate. The proposed GBA is derived upon the asynchronous
gradient aggregation. We assume that, for some γ ≤ 1,

γ ≥
ζE[||∇F (wk)−∇F (wτ(m,k))||22]

E[||∇F (wk)||22]
. (3)

Here, γ is a measure of gradients impact induced by the staleness; smaller value of γ indicates that
staleness makes less accuracy deterioration of the model. Besides, ζ indicates the average probability
that any parameter in the model would be both updated in step k and step τ(m, k). Intuitively, ζ
would be far below 1 in the recommendation models due to the strong sparsity. Then, the error of
GBA after k steps of aggregated updates would become (Appendix A presents the proof):

E[F (wk)]− F ∗ ≤ ηLσ2

2cγ′MBa
+ (1− ηγ′c)k(E[F (w0)]− F ∗ − ηLσ2

2cγ′MBa
), (4)

where γ′ = 1− γ+ p0

2 and p0 is a lower bound on the conditional probability that the token equals to
the global step, i.e., τ(m, k) = k. Equation (4) proves the convergence of GBA. Considering the error
floors of Eqn. (2) and Eqn. (4), M ×Ba should be set close to Ns ×Bs to make GBA tuning-free. It
is exactly the global batch size we use in GBA, consistent with our main idea of keeping global batch
size unchanged. Recall that with the embedding parameters, ζ < 1 makes γ lower than the training
of general CV or NLP models. Consequently, the error floor remains low in GBA.

6



(d) Criteo (to Sync.) (e) Alimama (to Sync.) (f) Private (to Sync.)
Test day

(a) Criteo (from Sync.) (b) Alimama (from Sync.) (c) Private (from Sync.)
Test day

0.785
0.644

0.653

0.777

0.653

0.636 0.770

1st day Last day Average
Sync. +0.0011 -0.0002 +0.0002

Hop-BW -0.0012 -0.0046 -0.0025
Hop-BS -0.0015 -0.0979 -0.0716

BSP -0.0017 -0.0045 -0.0034
Async. -0.1513 -0.1542 -0.1518

1st day Last day Average
Sync. +0.0011 +0.0001 +0.0002

Hop-BW -0.0060 -0.0021 -0.0036
Hop-BS -0.0018 -0.0005 -0.0009

BSP -0.0079 -0.0021 -0.0040
Async. -0.0080 -0.0980 -0.0875

(g) Diff. from GBA (from Sync.)

(h) Diff. from GBA (to Sync.)

Figure 6: The AUC tendencies on the test days of the three datasets after inheriting a base model:
(a-c) from the synchronous training modes and switching to the compared training modes; (d-f) from
the compared training modes and switching to the synchronous training modes; (g-h) AUC difference
between GBA and the other training modes after switching from/to synchronous training.

5 Evaluation

5.1 Settings

Table 1: Settings of the three continual recommendation tasks by the compared training modes.

Task Model
description

Data parts Sample
per day

Optimizer Learning
rate # of workers Local batch

size
Private
hyper-param.

Criteo
(DeepFM)

19M(x40K) FLOPS
45B params.
16 avg. dim.

12 days (base)
11 days (eval)

190M Adagrad (Async.)
Adam (Others)

0.006 (Async.)
0.0011 (Others)

32 (Sync.)
100 (Others)

5K (Async.)
12.8K (GBA)
40K (Others)

Hop-BS (b1=2)
BSP (b2=20)
Hop-BW (b3=20)
GBA (ι=3)

Alimama
(DIEN)

112M(x3K) FLOPS
160B params.
19 avg. dim.

5 days (base)
3 days (eval)

90M Adagrad (Async.)
Adam (Others)

0.008 (Async.)
0.0015 (Others)

32 (Sync.)
128 (Others)

1K (Async.)
0.75K (GBA)
3K (Others)

Hop-BS (b1=2)
BSP (b2=20)
Hop-BW (b3=20)
GBA (ι=4)

Private
(YouTubeDNN)

746M(x6.4K) FLOPS
1.9T params.
24 avg. dim.

14 days (base)
8 days (eval)

2B Adagrad (Async.)
Adam (Others)

0.001 (Async.)
0.0006 (Others)

64 (Sync.)
400 (Others)

1K (Async.)
1K (GBA)
6.4K (Others)

Hop-BS (b1=2)
BSP (b2=50)
Hop-BW (b3=100)
GBA (ι=4)

We conduct systematical evaluations to examine the performance of GBA and make a fine-grained
analysis. The evaluations involve three industrial-scale recommendation tasks: 1) On the Criteo-1TB
dataset [14], we implement DeepFM, where the hyper-parameters on Criteo-4GB (AUC 0.8043)
are utilized; 2) On the Alimama dataset [9], we implement DIEN [34] and use the recommended
hyper-parameters in the original design; 3) On the Private dataset, we implement YouTubeDNN, and
we tune the best hyper-parameters. The models are implemented in DeepRec [5] with the expandable
HashTables. Detailed information on the dataset and the models are listed in Tab. 1. We imitate the
continual training without changing the hyper-parameters to the models, and ensure a similar cluster
status for all evaluations. Inheriting from a pre-trained checkpoint, we repeatedly train on the data
of every day and evaluate the data of the subsequent day. The training cluster is equipped with a
Tesla-V100S GPU and Skylake CPU. We focus on AUC as the accuracy metric and global/local QPS
(QPS of all/single workers) as the efficiency metric.

We select several state-of-the-art PS-based training modes: Bounded staleness (Hop-BS) restricts
the maximal differences of gradient version between the fastest and the slowest workers, controlled
by b1; Bulk synchronous parallel (BSP) aggregates a pre-set number b2 of gradients when applying
gradients to the parameters, regardless of the gradient version; Backup worker (Hop-BW) ignores
the pre-set number b3 of gradients from the slowest workers during each gradient aggregation. We
enumerate the specialized hyper-parameters of each training mode and record the statistics when
reaching its best AUC.

7



Table 2: Global QPS of the compared training mode on the three tasks.

Sync. Async. Hop-BS BSP Hop-BW GBA
Criteo 1,436K(±224K) 3,253K(±84K) 2,227K(±336K) 3,247K(±93K) 2,559K(±294K) 3,240K(±97K)
Alimama 182K(±52K) 403K(±33K) 217K(±65K) 403K(±33K) 288K(±48K) 399K(±35K)
Private 43K(±21K) 90K(±15K) 29K(±11K) 88K(±17K) 66K(±24K) 87K(±19K)

Table 3: Fine-grained analysis between GBA and the other training modes.

Local QPS AUC # of drop Avg. grad. staleness (max)
Async. GBA Sync. GBA Hop-BW GBA Hop-BS GBA BSP

78K(±23K) 74K(±25K) 0.7864 0.7864 300K 1,454 0.06 (2) 0.21 (11) 2.61 (12)
90K(±15K) 87K(±19K) 0.7864 0.7866 300K 898 0.04 (2) 0.15 (11) 1.92 (12)
99K(±12K) 98K(±12K) 0.7864 0.7865 300K 786 0.03 (2) 0.12 (9) 1.62 (10)

5.2 Performance of Training Modes

We first examine the performance of GBA. Figure 6(a-c) records the AUC tendencies after switching
from synchronous to the other training modes over the three recommendation tasks. We mainly focus
on the AUC at the first day and the last day, as well as the average AUC scores throughout the datasets.
Although Hop-BW eliminates staleness, the ignorance of a large volume of data makes it perform
the worst (also taken as evidence why we tend not to use local all-reduce in training recommender
systems). The manipulation of global batch size contributes to the best performance on both sides of
switching. Compared to the best baselines (i.e., Hop-BW), GBA improves AUC by at least 0.2% on
average over the three datasets, which has the potential to increase by 1% revenue in the real-world
business. Meanwhile, after switching from synchronous training, GBA obtains immediate good
accuracy (AUC at the first day), while there are explicit re-convergence on the other training modes,
as depicted in Figure 6(g).

Figure 6(d-f,h) illustrates the AUCs of these training modes after switching to synchronous train-
ing.We can see that GBA tends to obtain at least equal accuracy to the continuous synchronous
training without switching. On the contrary, the models inherited from the other baselines require
consuming more data to reach the desired accuracy of the synchronous training. The tendency of
the AUC gaps between the synchronous training and the compared training modes reflects that the
parameters trained by GBA are the most compatible with the synchronous training. It verifies that
switching from GBA to synchronous training is also tuning-free.

We collect metrics of the training efficiency during the above experiments, and report their global
QPS in Tab. 2. The results reveal that GBA performs similarly to the asynchronous training. Although
Hop-BS works better than BSP and Hop-BW in accuracy, it struggles to deal with the slow workers.
It indicates that when facing a resource shortage in the shared cluster, GBA can provide similar
accuracy with synchronous training mode, while running as fast as the asynchronous training mode.

5.3 Fine-grained Analysis

We further probe into the performance of GBA. Here, we take the recommendation task on the Private
dataset (the most complex model) as an example, switching from the synchronous mode to GBA.

We first analyze how the cluster status affects the performance of GBA. The experiments are repeated
in the cluster during different periods of a day. We collect AUC, QPS, average gradient staleness on
the dense parameters (for fair comparison among the baselines), and the number of excluded batches,
as shown in Tab. 3. From the results, we can infer that GBA properly finds the balance between
the staleness and the excluded data (as defined in Eqn. (1)), i.e., excluding fewer data compared
to Hop-BW and suppressing the staleness to the same level of Hop-BS. GBA also shows strong
robustness on the dynamic cluster status, obtaining stable performance on AUC.

We then examine the impact of the batch sizes in GBA. Figure 7 depicts the average AUC score and
the global QPS when we modify the local batch size (the number of workers is thereby changed)
and keep the global batch size unchanged. Considering the hardware limitation on worker and the
communication overhead on PS, we vary the number of workers from 100 to 800. We can see a
steady state of the AUC score (i.e., absolute difference less than 10−4), while the training achieves

8



100 200 400 800
# of workers

0.7865
0.7866

A
U

C
25

86

152

G
lo

ba
l Q

P
S

 / 
K

Figure 7: The average AUC on the 8-day test sets
and the training efficiency via GBA, varying the
number of workers while maintaining the global
batch size.

250 500 1K 2K 4K
Local batch size

0.78

0.79

A
U

C

Figure 8: The range of AUC on the 8-
day test sets via GBA of 400 workers,
varying the local batch size.

a significant efficiency boost when using more workers. It can thereby be inferred that GBA has a
good capability of scaling out. Besides, we fix the number of workers to 400 and change the local
batch size for each worker, which means that the global batch size would differ. As shown in Fig. 8,
the inconsistent global batch size with the synchronous training makes the training encounter lower
AUC scores after switching. Although the larger global batch size may have the potential to achieve
better accuracy (i.e., owing to the stable and accurate gradient), the experiment indicates the model
would hardly reach its best accuracy without tuning. These results verify that using the same global
batch size in GBA as in the synchronous training is necessary to get rid of tuning when switching the
training mode.

6 Conclusion

A tuning-free switching approach is demanded to take full advantage of the synchronous and
asynchronous training, which can improve the training efficiency in the shared cluster. We raise
insights from the investigation over the production training workloads that the inconsistent batch size
and the gradient staleness are two main reasons to fail the switching regarding the model accuracy.
Then GBA training mode is proposed for asynchronously training recommendation models via
aggregating gradients by the global batch size. GBA enables switching between synchronous training
and asynchronous training of the continual learning tasks with the accuracy and efficiency guarantees.
With GBA, users can freely switch the training modes according to the status of the shared training
clusters, without tuning hyper-parameters. GBA is implemented through a token-control mechanism
to ensure that the faster worker should contribute more gradients to the aggregation while the gradients
from the straggling workers would be decayed. Evaluations of three representative continual training
tasks of recommender systems reveal that GBA achieves similar accuracy with the synchronous
training, while resembling the efficiency of the canonical asynchronous training. Currently, GBA
requires the users to select the training mode according to their own judgment on the cluster status. In
the future, we will attempt to make GBA be adaptive to the cluster status. The guidelines of automatic
switching would be derived from more analyses upon the training trace logs. It could be formulated
as an optimization problem under many control factors including but not limited to the overall QPS,
training cost, and task scheduling with priority.

References
[1] B. Acun, M. Murphy, X. Wang, J. Nie, C.-J. Wu, and K. Hazelwood. Understanding training

efficiency of deep learning recommendation models at scale. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages 802–814. IEEE, 2021.

[2] S. Barkai, I. Hakimi, and A. Schuster. Gap aware mitigation of gradient staleness. In ICLR,
2020.

[3] Y. Chen, J. Wang, Y. Lu, Y. Han, Z. Lv, X. Min, H. Cai, W. Zhang, H. Fan, C. Li, et al. Fangorn:
adaptive execution framework for heterogeneous workloads on shared clusters. Proceedings of
the VLDB Endowment, 14(12):2972–2985, 2021.

[4] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado,
W. Chai, M. Ispir, et al. Wide & deep learning for recommender systems. In Proceedings of the
1st workshop on deep learning for recommender systems, pages 7–10, 2016.

9



[5] D. community. Deeprec. https://github.com/alibaba/DeepRec 2022.5.11.

[6] P. Covington, J. Adams, and E. Sargin. Deep neural networks for youtube recommendations. In
Proceedings of the 10th ACM conference on recommender systems, pages 191–198, 2016.

[7] S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar. Slow and stale gradients can win the
race: Error-runtime trade-offs in distributed SGD. In International Conference on Artificial
Intelligence and Statistics, pages 803–812. PMLR, 2018.

[8] S. Eliad, I. Hakimi, A. De Jagger, M. Silberstein, and A. Schuster. Fine-tuning giant neural
networks on commodity hardware with automatic pipeline model parallelism. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages 381–396, 2021.

[9] A. Group. Ad display/click data on taobao.com. https://tianchi.aliyun.com/dataset/
dataDetail?dataId=56&lang=en-us under CC BY-NC-SA 4.0, visited on 2022.5.11.

[10] Y. Guo, M. Liu, T. Yang, and T. Rosing. Improved schemes for episodic memory-based lifelong
learning. Advances in Neural Information Processing Systems, 33:1023–1035, 2020.

[11] F. He, T. Liu, and D. Tao. Control batch size and learning rate to generalize well: Theoretical
and empirical evidence. Advances in Neural Information Processing Systems, 32, 2019.

[12] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger, and E. P.
Xing. More effective distributed ml via a stale synchronous parallel parameter server. Advances
in neural information processing systems, 26, 2013.

[13] J. Hron, K. Krauth, M. Jordan, and N. Kilbertus. On component interactions in two-stage
recommender systems. Advances in Neural Information Processing Systems, 34, 2021.

[14] C. Inc. Criteo 1tb click logs dataset. https://ailab.criteo.com/
download-criteo-1tb-click-logs-dataset/ visited on 2022.5.11, .

[15] C. Inc. Kaggle display advertising challenge dataset. http://labs.criteo.com/2014/02/
kaggle-display-advertising-challenge-dataset/ visited on 2020.1.10, .

[16] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo. A unified architecture for accelerating
distributed {DNN} training in heterogeneous {GPU/CPU} clusters. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20), pages 463–479, 2020.

[17] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch
training for deep learning: Generalization gap and sharp minima. In ICLR, 2017.

[18] S. Kim, G.-I. Yu, H. Park, S. Cho, E. Jeong, H. Ha, S. Lee, J. S. Jeong, and B.-G. Chun. Parallax:
Sparsity-aware data parallel training of deep neural networks. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–15, 2019.

[19] A. Kumar, A. Beutel, Q. Ho, and E. Xing. Fugue: Slow-worker-agnostic distributed learning for
big models on big data. In Artificial Intelligence and Statistics, pages 531–539. PMLR, 2014.

[20] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, J. Ben-Tzur, M. Hardt, B. Recht, and
A. Talwalkar. A system for massively parallel hyperparameter tuning. Proceedings of Machine
Learning and Systems, 2:230–246, 2020.

[21] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita,
and B.-Y. Su. Scaling distributed machine learning with the parameter server. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14), pages 583–598, 2014.

[22] S. Li, O. Mangoubi, L. Xu, and T. Guo. Sync-switch: Hybrid parameter synchronization
for distributed deep learning. In 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS), pages 528–538. IEEE, 2021.

[23] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun. xdeepfm: Combining explicit
and implicit feature interactions for recommender systems. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1754–1763,
2018.

10

https://github.com/alibaba/DeepRec
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56&lang=en-us
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56&lang=en-us
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/


[24] Q. Luo, J. Lin, Y. Zhuo, and X. Qian. Hop: Heterogeneity-aware decentralized training.
In Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 893–907, 2019.

[25] Q. Luo, J. He, Y. Zhuo, and X. Qian. Prague: High-performance heterogeneity-aware asyn-
chronous decentralized training. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems, pages 401–416,
2020.

[26] G. Nadiradze, A. Sabour, P. Davies, S. Li, and D. Alistarh. Asynchronous decentralized sgd
with quantized and local updates. Advances in Neural Information Processing Systems, 34,
2021.

[27] J. Wu, W. Hu, H. Xiong, J. Huan, V. Braverman, and Z. Zhu. On the noisy gradient descent
that generalizes as sgd. In International Conference on Machine Learning, pages 10367–10376.
PMLR, 2020.

[28] B. Ying, K. Yuan, Y. Chen, H. Hu, P. Pan, and W. Yin. Exponential graph is provably efficient
for decentralized deep training. Advances in Neural Information Processing Systems, 34, 2021.

[29] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel, K. Keutzer,
and C.-J. Hsieh. Large batch optimization for deep learning: Training bert in 76 minutes. In
ICLR, 2020.

[30] H. Yu and R. Jin. On the computation and communication complexity of parallel sgd with
dynamic batch sizes for stochastic non-convex optimization. In International Conference on
Machine Learning, pages 7174–7183. PMLR, 2019.

[31] Y. Zhang, L. Chen, S. Yang, M. Yuan, H. Yi, J. Zhang, J. Wang, J. Dong, Y. Xu, Y. Song,
et al. Picasso: Unleashing the potential of gpu-centric training for wide-and-deep recommender
systems. In 2022 IEEE International Conference on Data Engineering (ICDE), 2022.

[32] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and T.-Y. Liu. Asynchronous
stochastic gradient descent with delay compensation. In International Conference on Machine
Learning, pages 4120–4129. PMLR, 2017.

[33] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li, and K. Gai. Deep
interest network for click-through rate prediction. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 1059–1068, 2018.

[34] G. Zhou, N. Mou, Y. Fan, Q. Pi, W. Bian, C. Zhou, X. Zhu, and K. Gai. Deep interest evolution
network for click-through rate prediction. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 5941–5948, 2019.

[35] Y. Zhou, Y. Yu, W. Dai, Y. Liang, and E. Xing. On convergence of model parallel proximal
gradient algorithm for stale synchronous parallel system. In Artificial Intelligence and Statistics,
pages 713–722. PMLR, 2016.

11



Paper Checklist

For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Yes.

(b) Have you read the ethics review guidelines and ensured that your paper conforms to them?

Yes.

(c) Did you discuss any potential negative societal impacts of your work?

Not applicable.

(d) Did you describe the limitations of your work?

Yes. We mentioned in the conclusion that the users have to manually select the training mode based
on their own judgement of the status of the training cluster.

If you are including theoretical results...

Did you state the full set of assumptions of all theoretical results?

Yes.

Did you include complete proofs of all theoretical results?

Yes. The theories in this paper can be deduced in a straightforward manner. We provide the full
proofs in the appendix.

If you ran experiments...

Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)?

The code would be released at the HybridBackend project
(https://github.com/alibaba/HybridBackend).

Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)?

Yes, as listed in Table 1.

Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)?

No. The status of the training cluster and the asynchronous training manner introduce the randomness
to the accuracy. The experiments were conducted on data of many days in the continual learning to
show that the results are convincing.

Did you include the amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)?

Yes, as listed in Table 1.

If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

If your work uses existing assets, did you cite the creators?

Yes.

Did you mention the license of the assets?

Not applicable. We provide the URLs of three out of the four datasets (Criteo-4GB, Criteo-1TB,
Alimama, Private) used in this paper and the last visited time.

Did you include any new assets either in the supplemental material or as a URL?

12



No.

Did you discuss whether and how consent was obtained from people whose data you’re us-
ing/curating?

Not applicable.

Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content?

Not applicable. The data used in this paper does not contain personally identifiable information or
offensive content.

If you used crowdsourcing or conducted research with human subjects...

Not applicable.

13


