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Abstract

The NLP community has long advocated for
the construction of multi-annotator datasets to
better capture the nuances of language interpre-
tation, subjectivity, and ambiguity. This paper
conducts a retrospective study to show how
performance scores can vary when a dataset
expands from a single annotation per instance
to multiple annotations. We propose a novel
multi-annotator simulation process to generate
datasets with varying annotation budgets. We
show that similar datasets with the same anno-
tation budget can lead to varying performance
gains. Our findings challenge the popular belief
that models trained on multi-annotation exam-
ples always lead to better performance than
models trained on single or few-annotation ex-
amples.

1 Introduction

The process of creating datasets often involves prac-
tical constraints such as time, resources, and budget
that limit the number of annotators or experts avail-
able for collecting annotations (Sheng et al., 2008).
As a result, there is a prevalence of single or few la-
bels per instance (depending on the limited number
of annotators) in the collected data. However, train-
ing models on these datasets pose challenges to
their generalization abilities, primarily because the
data lacks diversity. With a scarcity of different per-
spectives and variations in the training data (Basile
et al., 2021; Plank, 2022), models may struggle to
learn robust representations and fail to generalize
effectively (Nie et al., 2020; Meissner et al., 2021).

To address these challenges, the NLP commu-
nity has highlighted the advantages of utilizing
multi-annotator datasets (Davani et al., 2022) and
also emphasized the importance of releasing multi-
annotator datasets and associated information (cul-
tural and demographic, etc.) (Sap et al., 2022; Her-
shcovich et al., 2022). However, this approach
introduces its own set of challenges. Collecting

data with multiple annotators requires significant
time, annotation budget, and annotator expertise
to ensure the creation of high-quality datasets with
diverse perspectives.

Moreover, with a limited annotation budget, it
becomes crucial to determine the optimal number
of annotators within the given constraints. This
not only helps save annotation time and budget
but also ensures efficient utilization of available
resources. While some research (Wan et al., 2023;
Zhang et al., 2021) has provided insights and sug-
gestions on finding the optimal number of annota-
tors, a definitive solution to this problem has yet to
be achieved.

Another challenge is the restricted number of
annotations available per instance, typically not
exceeding 6 – 10, even with a large number of re-
cruited annotators (Plank, 2022). This limitation
arises from the considerable annotation efforts re-
quired for a large volume of instances. As a result,
when models are trained on such datasets, they only
capture the opinions and information of a small
subset of the annotator pool. Additionally, certain
datasets have not released annotator-specific labels
or established mappings to individual annotators
(Nie et al., 2020; Jigsaw, 2018; Davidson et al.,
2017). However, the trend is gradually shifting,
and there is a growing recognition that annotator-
level labels should be made available (Prabhakaran
et al., 2021; Basile et al., 2021; Denton et al., 2021).

This study aims to tackle the challenge of lack-
ing annotator-specific labels by simulating a multi-
annotation process. Through this study, we provide
insights into how the inclusion of more annota-
tors can introduce variations in model performance
and identify the factors that influence this variation.
Considering that previous research (Swayamdipta
et al., 2020) has highlighted the influence of indi-
vidual instance difficulty on model performance,
we examine how the addition of more annotations
alters the difficulty level of instances and conse-



quently affects model performance.
In summary, our main contributions are:
• We propose a novel multi-annotator simula-

tion process to address the issue of missing
annotator-specific labels.

• We demonstrate, that increasing the number of
annotations per instance does not necessarily
result in significant performance gains.

• We also demonstrate, that altering the number
of annotations per instance has a noticeable
impact on the difficulty of instances as per-
ceived by the model and consequently affects
the model performance.

2 The Multi-annotated Dataset

In practical scenarios, the annotation process be-
gins by hiring one or more annotators who annotate
each instance in the dataset. To enhance the rep-
resentation of the true label distribution, we have
the option to extend this process by recruiting addi-
tional annotators. We continue this iterative process
until either the annotation budget is exceeded or
we observe saturation in the model’s performance
in predicting the true label distribution. As a result,
we obtain multiple annotations assigned to each
instance in this multi-annotated dataset.

A multi-annotator dataset D is formally char-
acterized as a triplet D = (X,A, Y ) in this
research paper. The set X represents N text
instances, denoted as x1, x2, . . . , xN . The set
A corresponds to M annotators, represented as
a1, a2, . . . , aM . The annotation matrix Y cap-
tures the annotations, with rows indexed by X
and columns indexed by A. Specifically, Y =
Y [X;A] = Y [x1, x2, . . . , xN ; a1, a2, . . . , aM ]. In
simpler terms, the entry Y [xi; aj ] stores the label
yi,j assigned to instance xi by annotator aj . Fur-
thermore, an annotator-set Ak, which comprises k
annotators where 1 ≤ k ≤ M , is defined. Conse-
quently, the subset of D restricted to Ak is denoted
as Dk = (X,Ak, Y

′
), where Y

′
= Y [X;Ak].

This paper refers to Dk as the dataset subset with k
annotations per instance. Figure 1 illustrates a toy
multi-annotator dataset, showcasing M annotators,
and N instances along with its subsets comprising
2 and k annotators.

3 Simulating the Multi-annotation
Process

Based on our current knowledge, it is worth not-
ing that existing multi-annotator datasets typically

Figure 1: A Toy Multi-Annotator Dataset

do not include annotator-specific labels. Instead,
the available information is limited to the label
distribution for each instance (Nie et al., 2020; Jig-
saw, 2018; Davidson et al., 2017). For instance, in
cases with M annotations per instance and three
possible labels, the label distribution is commonly
represented by a list [p, q, r], where p, q, and r
are positive integers that sum up to M . To ad-
dress this constraint, we introduce a simulation pro-
cess for multi-annotator scenarios that leverages
the instance-level label distribution. Our proposed
approach (see Algorithm 1), encompasses the fol-
lowing steps:

• Initially, we generate a list of annotations
for each instance by considering the actual
instance-level label distribution. [Line 1]

• Subsequently, we randomize these annotation
lists using a consistent random seed across
instances. [Lines 5–6]

• Next, we select the first k annotations from
each randomized list, creating the dataset sub-
set Dk. [Lines 4–8]

By employing this algorithm, we can generate
k annotations per instance, thereby addressing the
limitation of annotator-specific labels in existing
multi-annotator datasets. By repeating the algo-
rithm with different random seeds or parameters,
we can create multiple datasets subsets Dk, each
containing k annotations per instance. This flex-
ibility enables the generation of diverse subsets,
expanding the range of multi-annotator scenarios
that can be explored and analyzed in our research.

4 Experiments

4.1 Datasets
We selected the ChaosNLI dataset (Nie et al., 2020)
for our study, as it contains the highest number of



Algorithm 1 Creation of Annotator Datasets
Input: X: set of N instances

CL: list of C class labels
LC: label counts of shape N × C
M : number of annotators

Output: D′ = {D1,D2, . . . ,DM}
1: AL← GETANNOTATIONLIST()
2: Initialize an empty set D′

3: for k ← 1 to M do
4: Initialize an empty list Y

′

5: for i← 1 to N do
6: SL← RANDOMSHUFFLE(AL[i])
7: Choose first k annotations from AL

and add it to Y ′

8: end for
9: Dk ← (X,Y

′
)

10: Add Dk to D′

11: end for
12: Return D′

annotations (=100) per instance among the pub-
licly available datasets (Plank, 2022). ChaosNLI
is a Natural Language Inference (NLI) task dataset
known for its high ambiguity. Additionally, the
ChaosNLI dataset includes sub-datasets, namely
ChaosNLI-S and ChaosNLI-M, which are subsets
extracted from the development sets of SNLI (Bow-
man et al., 2015) and MNLI-matched(Williams
et al., 2018), respectively. Another sub-dataset,
ChaosNLI-α, is created from the entire develop-
ment set of AbductiveNLI hereafter, referred to as
α-NLI (Bhagavatula et al., 2019).

The ChaosNLI dataset consists of 4,645 in-
stances, each annotated with 100 new annotations.
Additionally, the dataset already includes 5 old an-
notations for ChaosNLI-S and ChaosNLI-M, and
1 old annotation for ChaosNLI-α. Subsequently,
we create Dk’s (see §3) utilizing these datasets and
then divide these Dk’s into train, development, and
test sets using an 80:10:10 ratio. Table 1 provides
detailed statistics of the datasets used in our study.

Datasets #Instances #Annotations
Per Instance

#Class
Labels

SNLI 550,152 5 3
MNLI 392,702 5 3
α-NLI 169,654 1 2
ChaosNLI-S 1,524 100 3
ChaosNLI-M 1,599 100 3
ChaosNLI-α 1,532 100 2

Table 1: Dataset Statistics1

4.2 Pretrained Language Models (PLMs)

In our study, we utilize all the pretrained language
models (PLMs) reported in the ChaosNLI work by
Nie et al. (2020). Specifically, we experiment with
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), XLNet (Yang et al., 2020), ALBERT (Lan
et al., 2020), and DistilBERT (Sanh et al., 2020).
It is important to clarify that our objective is not
to showcase state-of-the-art (SOTA) performance
using these models, but rather to demonstrate the
variations in performance as we incrementally add
annotations to the dataset.

4.3 Training Strategies

In this section, we describe two variants of training
strategies.
Majority Label (ML): The PLMs are finetuned
using the majority label, which is determined by
aggregating annotations from the target list of an-
notations. The training objective aims to minimize
the cross-entropy between the output probability
distribution and the one-hot encoded majority la-
bel.
Label Distribution (LD): The PLMs are finetuned
using the label distribution from the target list of
annotations (Meissner et al., 2021). The training
objective aims to minimize the cross-entropy be-
tween the output probability distribution and the
target label distribution.

4.4 Evaluation

To evaluate the performance of our models, we
utilize the classification accuracy computed on the
test dataset. In the ML setting, the accuracy is
computed by comparing the label associated with
the highest softmax probability predicted by the
model with the majority label derived from the
target annotations. In the LD setting, the accuracy
is computed by comparing the label corresponding
to the highest softmax probability predicted by the
model with the label that has the highest relative
frequency in the target label distribution.

4.5 Experimental Settings

Following the approaches described in the studies
(Nie et al., 2020; Meissner et al., 2021), we con-
struct base models by finetuning PLMs (described
in §4.2) on the combined train sets of SNLI and

1#Instances corresponding to SNLI, MNLI and α-NLI are
of train set as only train set is used for training base models in
our study.



Min. Accuracy Max. Accuracy
ChaosNLI-S ChaosNLI-M ChaosNLI-α ChaosNLI-S ChaosNLI-M ChaosNLI-αModel

ML LD ML LD ML LD ML LD ML LD ML LD
RoBERTa 0.647 (1) 0.647 (1) 0.558 (1) 0.558 (1) 0.695 (1) 0.695 (2) 0.75 (100) 0.741 (20) 0.719 (80) 0.731 (100) 0.734 (30) 0.73 (30)

XLNet 0.647 (1) 0.643 (1) 0.564 (1) 0.561 (1) 0.647 (2) 0.648 (1) 0.743 (100) 0.77 (100) 0.744 (100) 0.751 (80) 0.679 (30) 0.685 (30)
ALBERT 0.639 (1) 0.639 (1) 0.568 (1) 0.568 (1) 0.668 (1) 0.668 (1) 0.796 (100) 0.737 (100) 0.706 (100) 0.751 (90) 0.695 (100) 0.695 (90)

BERT 0.643 (1) 0.643 (1) 0.579 (1) 0.579 (1) 0.598 (6) 0.585 (6) 0.753 (90) 0.757 (100) 0.751 (90) 0.769 (100) 0.613 (3) 0.616 (3)
DistilBERT 0.632 (1) 0.632 (1) 0.533 (1) 0.533 (1) 0.582 (70) 0.584 (90) 0.724 (100) 0.73 (100) 0.692 (80) 0.682 (90) 0.608 (3) 0.61 (3)

Table 2: The performance of various models in both the ML and LD settings is presented in this table. Values
indicate accuracy, and values in braces indicate k. The values highlighted in bold indicate the optimal number of
annotators where the performance reaches its peak compared to the maximum annotation budget allocated (100).
Conversely, the highlighted values in the minimum accuracy column indicate the lowest performance achieved
compared to the minimum budget allocated (1). This information provides insights into the impact of the number of
annotators on the model’s performance.

MNLI for both ChaosNLI-S and ChaosNLI-M. For
the ChaosNLI-α dataset, we construct base models
by finetuning on the train set of α-NLI. We further
finetune these base models with increasing sizes
of annotators. Specifically, we finetune models for
each Dk, where k ∈ [1, 100]. For each k, we re-
port average performance scores over test sets of
10 Dk’s (see §3)

We choose hyperparameters from the experimen-
tal settings of the following work (Nie et al., 2020;
Meissner et al., 2021; Bhagavatula et al., 2019).
Our optimization technique involves employing the
AdamW optimizer (Loshchilov and Hutter, 2019).
More details on hyperparameters can be found in
§A.2. To ensure reproducibility, we conduct our
experiments using the open-source Hugging Face
Transformers2 library (Wolf et al., 2020). Further-
more, all experiments are performed using 2 ×
NVIDIA RTX 2080 Ti GPUs.

5 Results and Discussion

5.1 Is higher performance always guaranteed
by increasing the number of annotations?

Figure 2 presents the accuracy scores as the
number of annotations increases. Notably, the
trends observed in the performance of ChaosNLI-S,
ChaosNLI-M, and ChaosNLI-α challenge the pre-
vailing belief that increased annotations invariably
lead to improved performance. Specifically, for
ChaosNLI-S and ChaosNLI-M, the accuracy scores
exhibit a non-monotonic increasing pattern. In con-
trast, the trend observed for ChaosNLI-α, particu-
larly with BERT and DistilBERT models, deviates
from this expected behavior. In these cases, the
accuracy scores show a decreasing trend as the
number of annotations increases. Upon examining
the RoBERTa accuracy scores for the LD setting

2https://huggingface.co/docs/transformers/

in ChaosNLI-S, it is observed that the performance
reaches a saturation point between 20 to 80 anno-
tations. This means that increasing the number of
annotations beyond this range does not result in
significant improvement in the accuracy scores.

Table 2 provides a complementary perspective
on the observed trends. It highlights that the min-
imum performance is not consistently associated
with the dataset having the fewest annotations, and
vice versa. In the case of ChaosNLI-α with BERT
and DistilBERT, it is interesting to note that the
optimal performance is achieved with just three
annotations. This represents an extreme scenario
where a minimal number of annotations can lead
to the best performance. In general, these findings
shed light on the optimization of our annotation
budget. Similarly, the performance gain (maximum
- minimum accuracy) across different datasets also
significantly varies. The average performance gain
for ChaosNLI-M, ChaosNLI-S and ChaosNLI-α
is 0.106, 0.177, and 0.031, respectively. The no-
table variability in performance gain across differ-
ent datasets further emphasizes that the impact of
increasing annotations on performance improve-
ment is not consistent. It underscores the need to
carefully analyze and understand the specific char-
acteristics of each dataset and model combination
to ascertain the relationship between annotation
quantity and performance.

To provide an explanation for the observed com-
plex behavior, we utilize the V-Information (Etha-
yarajh et al., 2022). V-information is a measure that
quantifies the ease with which a model can predict
the output based on a given input. The higher the V-
information, the easier it is for the model to predict
the output given input. Furthermore V-information
cannot be negative unless model overfits, etc. (see
§A.1).

Figure 3 provides a visual representation of

https://huggingface.co/docs/transformers/
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Figure 2: The figure displays accuracy scores for various models across k for datasets ChaosNLI-S, ChaosNLI-M
and ChaosNLI-α. For every k on X-axis, the mean and standard deviation of the accuracy scores of models trained
on 10 Dk’s are displayed. The detailed plots for ChaosNLI-α BERT and ChaosNLI-α DistilBERT can be found in
Figure 5 in the Appendix.

the V-information scores for the three datasets
across five different PLMs. As anticipated, the V-
information scores are higher for the ChaosNLI-S
and ChaosNLI-M datasets. Models that exhibit
higher V-information scores also tend to yield
higher accuracy scores in the LD-based perfor-
mance evaluation. For instance, RoBERTa out-
performs other models (except XLNet, for which
the performance is similar) in terms of accuracy
for the ChaosNLI-S dataset. The saturation of
V-information scores starting at k = 20 for the
ChaosNLI-S dataset effectively explains the ob-

served saturation of LD-based accuracy after 20
annotations, as depicted in Figure 2. This phe-
nomenon suggests that the model reaches a point
where additional annotations provide diminishing
returns in terms of extracting valuable insights from
the instances. Therefore, the model’s performance
ceases to improve significantly beyond this thresh-
old. For the ChaosNLI-α dataset, except RoBERTa
and XLNet (V-Information ∈ [0, 0.25], compara-
tively low), all models yielded approximately zero
V-information scores3. This implies that adding

3We used same hyperparameters for all k’s due to which
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Figure 3: The figure displays the V-Information values for various models in the LD setting. A higher value
indicates that the data is easier for the respective model V with respect to extracting information from it. These
values can be compared across datasets and models.

more annotations to the ChaosNLI-α dataset does
not establish a clear relationship between the input
and output label distribution. This observation sug-
gests that, for this particular variant of the dataset,
the model might rely on factors other than the pro-
vided annotations to make accurate predictions.

The aforementioned findings indicate that not all
datasets yield similar performance when trained un-
der the same budget, underscoring the importance
of selecting the appropriate dataset for a specific
task. Furthermore, these findings emphasize the
significance of determining the optimal number of
annotators, as the model’s performance varies with
the increase in annotations.

5.2 Does the number of annotations influence
the difficulty of instances as perceived by
the model?

To investigate this question, we employ the
concept of dataset cartography as proposed by
Swayamdipta et al. (2020), which leverages train-
ing dynamics to distinguish instances based on their
(1) confidence, measured as the mean probability of
the correct label across epochs, and (2) variability,
represented by the variance of the aforementioned
confidence. This analysis generates a dataset map
that identifies three distinct regions of difficulty:
easy-to-learn, hard-to-learn, and instances that
are ambiguous with respect to the trained model.
Easy-to-learn (e) instances exhibit consistently
high confidence and low variability, indicating that
the model can classify them correctly with confi-
dence. hard-to-learn (h) instances, on the other
hand, have low confidence and low variability, indi-
cating the model’s struggle to consistently classify

models for k ≤ 3 overfitted resulting in negative V-
Information.

them correctly over multiple epochs. Ambiguous
(a) instances display high variability in predicted
probabilities for the true label. We investigate the
proportion of the transitions between these cate-
gories with the incorporation of additional annota-
tions. For example, e→ a represents proportion
of the transitions from easy-to-learn to ambigu-
ous category among all transitions. This provides
valuable insights into the underlying factors that
contribute to the observed improvements or lack
thereof in the model’s performance.

Figure 4 illustrates an interesting pattern in
ChaosNLI-S and ChaosNLI-M datasets: as the
number of annotations increases, a significant pro-
portion of training instances transition from the a
→ e category. For instance, more than 60% of all
transitions between 1 to 10 annotations involve in-
stances moving from the a→ e category. However,
beyond 10 annotations, the proportion of instances
transitioning to the e from the a category does not
show a substantial increase. On the other hand, the
reverse transition from the e→ a category is the
second most common transition, with an average
proportion of 20%. The difference in proportions
between the transition from a → e and the tran-
sition from e → a becomes more substantial (at
least 29%) as more annotations are added. In the
ChaosNLI-M dataset, we observe a higher propor-
tion of instances transitioning from category a to
category h compared to the ChaosNLI-S dataset.
Specifically, over 15% of the ambiguous instances
in ChaosNLI-M exhibit a shift towards the hard
region, which is more than 50% of similar transi-
tions observed in ChaosNLI-S. We argue that this
substantial difference in transition patterns has a
direct impact on the performance of models on
the ChaosNLI-S dataset compared to ChaosNLI-M.
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Figure 4: The figure provides a visual representation of the transition of instances between different categories
during training as the number of annotators increase from A1 to A10, . . . , A100. e→ a indicates percentage of
instances that transitoned from category e to a.

Despite the presence of higher proportions of a to e
transitions in ChaosNLI-M compared to ChaosNLI-
S, the a to category h consistently leads to better
performance on the ChaosNLI-S dataset across all
models analyzed.

ChaosNLI-α exhibits distinct trends across vari-
ous models. Specifically, in the case of BERT and
DistillBERT, where accuracy scores decline as the
annotation increases (see Figure 2), we witness sig-
nificant proportions of e→ a (∼ 80%) and a→ h
(∼ 43%) transitions, respectively. These transitions
suggest that the models struggle to comprehend

the instances and classify them with reduced con-
fidence. For XLNet and ALBERT, the combined
proportion of low confidence transitions, e → a
and a → h either surpasses or remains equal to
the proportion of high confidence transition a→
e. In the case of RoBERTa, it behaves the same as
ChaosNLI-S and ChaosNLI-M.

These results suggest adding more annotations
has indeed its effects on the difficulty of instance
thereby affecting the performance of the model.



6 Related Works

Human disagreements in annotations. Tradi-
tional approaches like majority voting or averaging
can overlook important nuances in subjective NLP
tasks, where human disagreements are prevalent.
To address this issue, Multi-annotator models treat
annotators’ judgments as separate subtasks, cap-
turing the distribution of human opinions, which
challenges the validity of models relying on a ma-
jority label with the high agreement as ground truth
(Davani et al., 2022; Nie et al., 2020). Human vari-
ation in labeling, which is often considered noise
(Pavlick and Kwiatkowski, 2019), should be ac-
knowledged to optimize and maximize machine
learning metrics, as it impacts all stages of the ML
pipeline (Plank, 2022). Incorporating annotation
instructions that consider instruction bias (Parmar
et al., 2023), which leads to the over-representation
of similar examples, is crucial. This bias can limit
model generalizability and performance. Future
data collection efforts should focus on evaluating
model outputs against the distribution of collec-
tive human opinions to address this issue. All of
the above works study annotator disagreements
and how they affect the performance of models on
downstream tasks. However, in our work, consid-
ering disagreements’ effect on model performance,
we try to find out how the model performance
varies as we increase the number of annotations per
instance, i.e., varying the annotator disagreement,
Overall, we try to answer, does more annotation
per instance leads to better performance or is the
other way around?

Annotation under restricted annotation bud-
get. Also, prior studies have investigated how
to achieve optimal performance in natural language
processing (NLP) models under restricted anno-
tation budgets. One such study by (Sheng et al.,
2008) examined the impact of repeated labeling on
the quality of data and model performance when
labeling is imperfect and/or costly. Another study
by (Bai et al., 2021) framed domain adaptation
with a constrained budget as a consumer choice
problem and evaluated the utility of different com-
binations of pretraining and data annotation un-
der varying budget constraints. Another study by
(Zhang et al., 2021) explored new annotation dis-
tribution schemes, assigning multiple labels per
example for a small subset of training examples,
and proposed a learning algorithm that efficiently

combines signals from uneven training data. Fi-
nally, a study by (Chen et al., 2022) proposed an
approach that reserves a fraction of annotations to
explicitly clean up highly probable error samples to
optimize the annotation process. All these studies
contribute to the understanding of how to maximize
the performance of NLP models under restricted
annotation budgets. Our study aimed to address a
specific question within this context: assuming a
fixed annotation budget, which dataset would yield
the highest performance?

Previous studies have demonstrated that anno-
tation disagreements affect model performance.
However, our study aims to explore how perfor-
mance varies as we change the level of disagree-
ment. we consider ideas from (Zhang et al., 2021)
who proposed a learning algorithm that can learn
from training examples with different amounts of
annotation (5-way, 10-way, 20-way) in a multilabel
setting, but we expand the number of annotations
from 1-way till 100-way and train our model in a
label distribution setting rather than in a multi-label
setting. To investigate the reasons for performance
variation as we increase the number of annotations,
we incorporate (Swayamdipta et al., 2020)’s ideas
and (Ethayarajh et al., 2022)’s concepts of dataset
difficulty. While previous studies focused on build-
ing datasets and models and their impact on per-
formance when the annotation budget is restricted,
our work answers whether increasing the annota-
tion budget necessarily leads to improved model
performance. Overall, our study aims to demon-
strate that, even with less annotation budget than
its upper bound, it is possible to achieve optimal
performance compared to the performance at the
upper bound thereby saving annotation budget and
time. Our findings provide insights into optimizing
annotation budgets.

7 Conclusion

In this paper, we introduced a novel approach to
handle the absence of annotator-specific labels in
the dataset through a multi-annotator simulation
process. Additionally, we investigated the impact
of varying the number of annotations per instance
on the difficulty of instances and its effect on model
performance. Our results highlighted that increas-
ing the number of annotations does not always lead
to improved performance, emphasizing the need to
determine an optimal number of annotators. This
has important implications for optimizing annota-



tion budgets and saving time. Our findings pro-
vide valuable insights for optimizing annotation
strategies and open up new possibilities for future
research in this direction.

Limitations

The current study acknowledges several limitations
that deserve attention. Firstly, the experiments were
conducted using small-size Language Models due
to resource constraints. It is important to recognize
that employing larger language models, such as
BLOOM, GPT, and others, could potentially yield
different outcomes and should be explored in future
research. Furthermore, the scope of the discussion
is constrained by the availability of datasets with
a large number of labels per instance, leading to
the utilization of the ChaosNLI dataset (Nie et al.,
2020). Consequently, the generalizability of the
findings to other datasets, if they emerge in the
future, might be restricted.
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Appendices

A More Details

A.1 V-Information
V-Information (Kulmizev and Nivre, 2023; Etha-
yarajh et al., 2022), where V represents specific
model families such as BERT, GPT, etc., measures
the level of ease with which model V can predict
the output variable Y given the input X . The higher
the V-Information, the easier it is for the model V
to predict the output variable Y given X . To mea-
sure V-Information, we use predictive V-entropy:

HV(Y ) = inf
f∈V

[− log2 f [∅](Y )]

and conditional V-entropy:

HV(Y |X) = inf
f∈V

[− log2 f [X](Y )]

In simple terms, our goal is to find the f ∈ V that
maximizes the log-likelihood of the label data with
and without input X . Using these two quantities,
V-Information can be calculated using the formula:

IV(X → Y ) = HV(Y )−HV(Y |X)

It is important to note that V-Information is com-
puted with respect to HV(Y ), so IV(X → Y ) ≥
0. Additionally, if X is independent of Y , then
IV(X → Y ) = 0.

While V-Information functions as an aggregated
measure calculated for the whole dataset, (Etha-
yarajh et al., 2022) extended this measure to a new
measure called Pointwise V-Information (PVI),
which allows for the calculation of the difficulty of
individual instances. The higher the PVI, the easier
the instance is for V in the given distribution. It
can be depicted by the formula:

PVI(x→ y) = − log2 pf ′(y∗|∅) + log2 pf (y
∗|x)

where fθ, f
′
θ ∈ V are models trained with and with-

out input x ∈ X , respectively, and y∗ refers to
the gold label. Unlike V-Information, PVI can be
negative, indicating that the model predicts the ma-
jority class better without considering the input x
compared to when considering the input.

Refer to Table 6 for a sample of instances from
the ChaosNLI-α dataset with very low PVI, which
demonstrates the high ambiguity in these instances.

A.2 Hyperparameter Details

Referring to Table 4, we initially trained the mod-
els using the hyperparameters provided by (Nie
et al., 2020). However, during our experiments,
we observed signs of overfitting to our datasets.
Consequently, we adjusted the hyperparameters,
leading to the set provided in the table. More hy-
perparameter details can be found in Tables 3 and
5

A.3 Detailed Plots for Figure 2

For a more comprehensive view of the phenomenon
where performance decreases with an increasing
number of annotations, we provide detailed plots
for BERT and DistilBERT, as shown in Figure 5.
While Figure 2 maintains a consistent y-axis for
datasets ChaosNLI-(S, M, and α), these plots fea-
ture distinct axes.
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Figure 5: The figure displays accuracy scores for BERT
and DistilBERT across k for dataset ChaosNLI-α. For
every k on X-axis, the mean and standard deviation of
the accuracy scores of models trained on 10 Dk’s are
displayed.
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Figure 6: The figure presents accuracy scores for various models across different values of k for datasets ChaosNLI-
S, ChaosNLI-M, and ChaosNLI-α. Along the X-axis, each k value corresponds to the mean and standard deviation
of the accuracy scores, based on models evaluated on test instances with the absolute ground truth.

A.4 Data Maps
Refer to the RoBERTa datamaps in the LD setting
in Figures 7, 8, and 9. For ChaosNLI-α, you can
find datamaps for BERT and DistilBERT in the LD
setting in Figures 10 and 11, respectively.

B Results on Absolute Ground Truth

We have extended our evaluation by testing our
models on the absolute ground truth, which repre-
sents the majority label derived from all 100 anno-
tations. In Figure 6, we provide plots for models
trained on datasets with identical training and vali-
dation instances as the Dk datasets. However, the

test set remains the same, retaining 100 annotations
for the LD setting, where the label distribution of
these 100 annotations is considered. In the ML
setting, we use the majority label of the 100 anno-
tations.

In Figure 6, on the whole, we observe little to
no change in performance as we incrementally in-
crease the number of annotations except few cases.
Additionally, it’s important to note that the hyperpa-
rameters for these models are consistent with those
listed in Tables 3, 4 and 5.



Parameters

Models Learning Rate Batch Size Weight Decay Max. Epochs Learning Rate Decay Warmup Ratio

SNLI/MNLI 3e-5 32 0.0 3 Linear 0.1
α-NLI 1e-5 8 0.0 4 Linear 0.2

Table 3: Hyperparameters for base models RoBERTa, XLNet, ALBERT, BERT and DistilBERT

Parameter RoBERTa XLNet ALBERT BERT DistilBERT
Learning Rate 5e-6 5e-6 5e-6 5e-5 5e-6

Batch Size 8 8 8 8 8
Weight Decay 0.0 0.0 0.0 0.0 0.0
Max. Epochs 3 5 5 3 3

Learning Rate Decay Linear Linear Linear Linear Linear
Warmup Ratio 0.1 0.1 0.1 0.1 0.1

Table 4: Hyperparameters for finetuned models for dataset ChaosNLI-α

Parameter RoBERTa XLNet ALBERT BERT DistilBERT

Learning Rate 5e-5
Batch Size 32

Weight Decay 0.0
Max. Epochs 3

Learning Rate Decay Linear
Warmup Ratio 0.0

Table 5: Hyperparameters for finetuned models for dataset ChaosNLI-S and ChaosNLI-M

Index Observation 1 Hypothesis 1 Hypothesis 2 Observation 2 PVI Current Label True Label

1 Jimmy grew up very poor.
A family offered Jimmy

to pay his tuition.
He took out a loan for school. So he repaid them for college. -5.552362 1 2

2
Jake needed to
pick his son up

from soccer practice.

Jake forgot and his
son had to wait alone
for hours at football

practice.

Jake left late and
got caught in traffic.

His son resented him
for it for a long time.

-5.044293 1 2

3
Samuel loved reading old

science fiction stories.

He read the Star Wars
extended universe

material.

Samuel was gifted a
science text book.

He loved it! -4.835824 1 2

4
Lori’s class was supposed

to be dissecting frogs.
Lori’s class didn’t take dissection

serious.

Lori’s teacher confuse
a frog on her desk

with an instruction booklet.

She picked up a
knife and started

dissecting the frog.
-4.214444 1 2

5 Lary was a poor coal miner.
Lary enjoyed his job even

though he was not good at it.
Larry came across

a pile of coal.
Lary was happy and

excited.
-4.207170 2 1

Table 6: High ambiguous instances of ChaosNLI-α dataset – RoBERTa - D100 - LD
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Figure 7: Datamaps across different annotator sets for RoBERTa model trained on ChaosNLI-S dataset in LD setting
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Figure 8: Datamaps across different annotator sets for RoBERTa model trained on ChaosNLI-M dataset in LD
setting
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Figure 9: Datamaps across different annotator sets for RoBERTa model trained on ChaosNLI-α dataset in LD
setting
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Figure 10: Datamaps across different annotator sets for BERT model trained on ChaosNLI-α dataset in LD setting
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Figure 11: Datamaps across different annotator sets for DistilBERT model trained on ChaosNLI-α dataset in LD
setting


