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ABSTRACT

We show that training deep neural networks (DNNs) with absolute value activa-
tion and arbitrary input dimension can be formulated as equivalent convex Lasso
problems with novel features expressed using geometric algebra. This formulation
reveals geometric structures encoding symmetry in neural networks. Using the
equivalent Lasso form of DNNs, we formally prove a fundamental distinction
between deep and shallow networks: deep networks inherently favor symmetric
structures in their fitted functions, with greater depth enabling multilevel sym-
metries, i.e., symmetries within symmetries. Moreover, Lasso features represent
distances to hyperplanes that are reflected across training points. These reflection
hyperplanes are spanned by training data and are orthogonal to optimal weight
vectors. Numerical experiments support theory and demonstrate theoretically
predicted features when training networks using embeddings generated by Large
Language Models.

1 INTRODUCTION

Recent advancements have demonstrated that deep neural networks are powerful models that can
perform tasks including natural language processing, synthetic data and image generation, classifica-
tion, and regression. However, research literature still lacks in intuitively understanding why deep
networks are so powerful: what they "look for" in data, or in other words, how each layer extracts
features. We are interested in the following question:

Is there a fundamental difference in the nature of functions learned by deep
networks, as opposed to shallow networks?

We answer this question by transforming non-convex training problems into convex formulations and
analyzing their structure. We show that deep nets favor symmetric structures, with greater depth
representing multilevel symmetries encoded via reflections of reflections of data points.

A neural network of depth L is a parameterized function fL (· ; θ) : R1×d → R of the form

fL (x; θ)=

mL∑
i=1

σ
(
· · ·
(
σ
(
σ
(
xW(i,1) + b(i,1)

)
W(i,2)+b(i,2)

)
· · ·
)
W(i,L−1)+b(i,L−1)

)
αi+ξ.

(1)
The trainable parameters are the outermost weights αi∈R, an external bias ξ∈R; and the inner
weights W(i,l)∈Rm′

l−1×m′
l and inner biases b(i,l)∈R1×m′

l for each layer l. There are ml=mLm
′
l

neurons in each layer. The activation function is σ : R→R. Note that m′
0=d, which is the input data

dimension, and m′
L−1=1. Let N be the number of training samples and X∈RN×d be the training

data matrix, where each row of X is a training sample xn∈R1×d. The neural network extends to
matrix inputs row-wise. We consider regression problems, although the results can also be applied to
classification problems. The target or label vector is y∈RN . The neural network training problem is

min
θ∈Θ

1

2
∥fL (X; θ)− y∥22 +

β

L

m∑
i=1

(
|αi|L +

L−1∑
l=1

∥∥W(i,l)
∥∥L
1

)
(2)
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where θ=
{
W(i,l),b(i,l), αi, ξ : i∈[mL], l∈[L−1]

}
denotes the set of trainable parameters and Θ is

the parameter space. The regularization parameter is β>0, which is fixed. The l1 regularization
penalty in (2) is used for analytical tractability and it is known that l1 regularization can approximate
l2 regularization Pilanci (2023a). Our results generalize to other convex loss functions in addition to
l2 loss, and also applies to the case when β→0 by using the minimum norm problem (14). Neural
networks (1) and their training problems (2) are non-convex, which can make understanding and
training even shallow neural networks challenging. We provide a foundational analysis that isolates
the effect of neural network depth by focusing on the deep narrow network. The deep narrow network
is a special case of (1) with absolute value activation σ(x)=|x|, arbitrary depth L, and a width
m1=· · ·=mL=m that is arbitrary but constant across layers:

fL (x; θ) =

m∑
i=1

∣∣∣∣∣∣∣ · · ·
∣∣∣∣∣
∣∣∣∣∣∣∣xW(i,1) + b(i,1)

∣∣∣w(i,2) + b(i,2)
∣∣∣∣ · · ·

∣∣∣∣∣w(i,L−1) + b(i,L−1)

∣∣∣∣∣∣∣αi + ξ. (3)

Except for W(i,1)∈Rd, all trainable parameters in the deep narrow network are scalars, as denoted
by the lowercase, non-boldface text in (3). The total number of neurons across each of the L layers is
m. We show that increasing the number of layers in a deep narrow network even with the constant
width m1=· · ·=mL−1=m enables the network to learn richer features.

The deep narrow network uses absolute value activation instead of the more standard ReLU. The
absolute value activation is a symmetric function and this allows for tractable, simpler formulations
of neural network features. The absolute value activation is equivalent to the ReLU activation in
2-layer networks with skip connections (Zeger et al., 2024). Moreover, neural networks with absolute
value activation have been shown to perform comparably to ReLU and have advantages such as no
exploding or vanishing gradients, making them suitable for deep networks (I.Berngardt, 2023) and
outperforming other activations in computer vision (Vallés-Pérez et al., 2023). Our results suggest
that absolute value activations are especially primed to capture reflections and symmetries in the data,
leading to their representation power. Extensions to ReLU networks are discussed in Section 4.1.

Recently, (Pilanci, 2023b) described neural network features using geometric algebra, also known as
Clifford algebra. Geometric algebra is an extension of vector algebra that centers around geometric
operations such as translation and reflections (Perwass et al., 2009; Berger, 2009; Chisolm, 2012).
Geometric algebra provides a unified framework for expressing laws of physics (Doran & Lasenby,
2003; Hestenes, 2003) and has applications in computer graphics (Vince, 2008). Geometric algebra
generalizes vector operations such as cross products, inner products, and outer products from a
geometric perspective Berger (2009). The use of geometric algebra, which is well-studied, also opens
doors to potentially deep connections or applications to physics. In this work, we extend (Pilanci,
2023b) and leverage geometric algebra to examine the connection between deep neural networks and
Lasso problems. A Lasso problem is a convex optimization problem of the form

min
z,ξ

1

2
∥Az+ ξ1− y∥22 + β∥z∥1 (4)

where A is a dictionary matrix, and its columns Ai∈RN are feature vectors. We will show that the
Lasso problem and the deep narrow network training problem are equivalent (Theorem 4.4). The
Lasso problem, its solution set, and solvers for it are well-studied (Efron et al., 2004; Tibshirani,
1996; 2013). Thus the Lasso model sheds new light on the training and geometric interpretability of
neural networks. For training, the convexity of the Lasso problem implies that all of its stationary
points are optimal, which prevents convergence to sub-optimal local minima that can occur with the
non-convex training problem (2). Moreover, there are efficient and interpretable algorithms such as
Least Angle Regression (LARS) for solving the Lasso problem (Efron et al., 2004).

In terms of geometric interpretability, the l1 regularization in the Lasso problem (4) favors a sparse
solution for z. The dictionary columns Ai where zi ̸=0 constitute a sparse set of feature vectors that
we will show correspond to feature functions defining an optimal neural network. We will also show
that the features can be expressed using volumes and wedge products defined in geometric algebra,
and that they measure distances to reflection planes spanned by subsets of training data. For a,b∈Rd,
the reflection of a about b is R(a,b)=2b−a. With respect to b, a and R(a,b) have a single-level
symmetry. Higher-order reflections can be defined to create deeper levels of symmetry (Section 4.2).
Neural networks encode reflection planes that are based at training data and their reflections about
each other, and which are orthogonal to neuron weights.
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Significance: The Lasso model elucidates a quantitative difference between shallow and deep
networks. Deep networks exploit multilevel symmetries through reflections that capture increasingly
more complex relations between data as networks deepen. Every layer in a network creates more
layers of reflective symmetry (see Figure 2).

1.1 RELATED WORK

Convexifying neural networks has been studied in (Bach, 2017; Bengio et al., 2005; Fang et al.,
2019). However, these works assume that the network has infinite width, limiting their practical
application. Recently, the training problem for finite-width, shallow ReLU networks has been shown
to be equivalent to a convex reformulation with group norm regularization (Ergen & Pilanci, 2020;
2021; Pilanci & Ergen, 2020).

The use of geometric algebra for neuron operations is explored in (Brehmer et al., 2023; Ruhe
et al., 2023). In contrast, our work uses conventional, real-valued neuron weights but interprets the
features using geometric algebra. Pilanci (2023b) uses geometric algebra to formulate 2 and 3-layer
ReLU neural network training problems as convex Lasso problems with features that represent high-
dimensional volumes of polytopes spanned by training data. From the Lasso problem, an optimal
network can be reconstructed, and its weights are orthogonal to the training data. The input data is of
arbitrary dimension.

Zeger et al. (2024) shows that for 1-D input data and a variety of activation functions and arbitrarily
deep networks, the training problem can be written as a Lasso problem. Moreover, for absolute value
activations, simple networks with 1-D input exhibit features that represent reflections of training data,
demonstrating that neural networks learn geometric features.

In this paper, we extend Pilanci (2023a) and Zeger et al. (2024) to prove that neural networks with
absolute value activation and arbitrary input dimension and depth can be reformulated as equivalent
Lasso problems with reflection features, using geometric algebra. The Lasso model suggests that
larger models learn features related to symmetries in the data. This work differs from Pilanci (2023a)
by considering absolute value instead of ReLU activation, which introduces new reflection features,
and differs from Zeger et al. (2024) by considering arbitrary d-dimensional input instead of 1-D data.
This work provides foundational analysis of networks with arbitrary dimensional data as functions
that represent higher levels of reflections as networks deepen.

Unlike prior work, this work also reveals a sparsity factor, which is the ratio of l2 and l1 norms of
a vector, in a network’s equivalent Lasso model, which encourages parsimonious solutions. This
sparsity factor has also been studied in (Yin et al., 2014; Xu et al., 2021). Additionally, this paper
proves that the reflection complexity grows linearly with the number of layers in a deep narrow
network. The reflection features suggest that networks such as Large Language Models (LLMs) may
learn analogous structures and concepts in language. The presence of geometric structures in LLMs
has been studied in (Park et al., 2024). Neural networks trained using LLM embeddings appear to
learn the features predicted in Lasso models (Section 5).

1.2 CONTRIBUTIONS

We show the following:

• Training deep narrow networks of arbitrary depth is equivalent to solving convex Lasso
problems with a finite set of features representing multilevel symmetries via reflections of
increasing complexity (Theorem 4.4, Theorem 4.5).

• There are explicit Lasso dictionaries for 3-layer networks, and reconstructions of optimal
networks from corresponding Lasso models. The reconstructed, optimal first-layer weight is
orthogonal to a subset of augmented training data (Theorem 4.1).

• Networks with 3 layers can be described in terms of geometric algebra. They measure
volumes spanned by training data and distances to reflection planes (Theorem 4.1).

• Neural networks trained using LLM text vector embeddings learn similar features as Lasso
models (Section 5, Appendix C).
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1.3 NOTATION

Let ei∈Rd denote the ith canonical basis vector. Let [d]={1, · · ·, d}. The number of non-zero
elements in a vector z is ∥z∥0. Neural network inputs, parameters, and outputs are all real-valued.
Vol(v1, · · ·,vd) is the unsigned volume of the polytope spanned by v1, · · ·,vd.

2 BACKGROUND: GEOMETRIC ALGEBRA

Consider the Euclidean vector space Rd with a scalar product (also called a inner or dot product
for vector inputs). A geometric algebra over Rd is a vector space Gd (over the scalar field R)
of elements called multivectors, equipped with an associative binary operation called a geometric
product that satisfies the following: (i) Gd contains Rd and is closed under the geometric product, (ii)
geometric product is bilinear and distributes over addition, (iii) scalar multiplication is associative
and commutative with the geometric product, (iv) the geometric product of a vector with itself is
equal to the scalar product of the vector with itself Perwass et al. (2009).

The geometric product of A,B∈Gd is denoted as AB. It can be shown that the geometric product
of the basis vectors ei, ej of Rd⊂Gd satisfy eiei=1 and eiej=−ejei Perwass et al. (2009). Every
multivector is a linear combination of basis blades, which are multivectors that are geometric products
of the form E=eG[1]· · ·eG[|G|]=

∏
i∈G ei, where G⊂[d] is an ordered set with no repeated elements

and G[i] is its ith element. A basis blade E has grade g(E)=|G|. Scalars are defined to have grade 0.
A dot product A·B and wedge product A ∧B are defined for multivectors in a way that generalizes
the vector inner product and cross product, respectively (Appendix B). For vectors A,B∈Rd⊂Gd,
AB=A·B+A∧B where the dot product represents the projection of A onto B, and the wedge
product represents the signed (oriented) area of the triangle spanned by A and B.

The generalized cross product Berger (2009), Pilanci (2023a) of v1, · · ·,vd−1∈Rd is defined as

×d−1
i=1 vi =

d−1∑
i

(−1)i−1|Vi|ei (5)

where Vi= [v1, · · ·,vi−1,vi+1, · · ·,vd−1] is a (d−1)×(d−1) square matrix and ei is the ith canonical
basis vector. It can be shown that the generalized cross product is a vector that is orthogonal to
v1, · · ·,vd−1. Since eiei=1 and eiej=−ejei, the grade of all multivectors in Gd is at most d. A
pseudoscalar is a multivector of grade d. The unit pseudoscalar is I=e1· · ·, ed. The unit pseudoscalar
inverse is I−1=ed· · ·e1 which satisfies I−1I=1=II−1. The Hodge star operator ⋆ : Gd→Gd is
defined as ⋆(v)= ⋆ v=vI−1. If v is a wedge product of vectors, ⋆v represents the orthogonal
complement of their span. It can be shown that the generalized cross product (5) can be equivalently
written as

×d−1
i=1 vi = ⋆ ∧d−1

i=1 vi. (6)

It can be shown that the l2 norm of the generalized cross product of v1, · · ·,vd−1 gives the d−1
volume of the polytope spanned by v1, · · · ,vd−1, while the inner product of ×d−1

i=1 vi with a vector
vd gives the volume of the polytope spanned by v1, · · · ,vd (Berger, 2009).

3 PRIOR WORK ON SHALLOW NETWORKS

This section introduces the equivalences established in prior work between simple 2-layer networks
and Lasso problems. The Lasso problems have features representing volumes spanned by training
data. The convex Lasso problem is equivalent to the non-convex training problem: they have the
same optimal value and a network that is optimal in the training problem can be reconstructed from
an optimal Lasso solution. (Zeger et al., 2024) shows that

Theorem 3.1 ((Zeger et al., 2024)). The training problem for a 2-layer deep narrow network and
1-D data is equivalent to a Lasso problem with dictionary elements

Ai,j = |xi − xj | (7)

provided that m ≥ ∥z∗∥0, where z∗ is a solution to the Lasso problem.
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Figure 1: Example of reflection planes for 3-layer neural networks with data in R3.

The dictionary elements |xi − xj | in Theorem 3.1 measure the distance between training samples
xi and xj , or equivalently, their 1-D volume. (Pilanci, 2023b) extends this volume interpretation to
higher dimensions as
Theorem 3.2 ((Pilanci, 2023b)). The training problem for a 2-layer ReLU network with bias
parameters set to 0 and data of arbitrary dimension is equivalent to a Lasso problem with dictionary
elements

Ai,j =
Vol+(xi,x

′
j1
, · · · ,x′

jd−1
)∥∥x′

j1
∧ · · · ∧ x′

jd−1

∥∥
1

=

(
⋆ (xi ∧ x′

j1
∧ · · · ∧ x′

jd−1
)
)
+∥∥x′

j1
∧ · · · ∧ x′

jd−1

∥∥
1

(8)

where the multi-index j=(j1, · · ·, jd−1) indexes over all combinations of d−1 samples of
x1, · · ·,xN , e1, · · ·, ed.

In Theorem 3.2, Vol+ refers to the positive part of the signed volume. Similar results holds for other
2-layer networks, including those with nonzero bias, and with absolute value activation. This work
extends the above results to deeper layers by analyzing deep narrow networks.

4 MAIN RESULTS

In this section, we state our main results on the equivalence between training deep neural networks
and Lasso problems with geometric features. In contrast to shallow networks (Section 3), the deeper
layers enable features to represent reflections of training data.

4.1 3-LAYER NEURAL NETWORKS

We show that 3-layer deep narrow networks are equivalent to Lasso problems with discrete, explicit
dictionaries. Proofs in this section are deferred to Appendix E. The next result gives the equivalence
between the training problem (2) for 3-layer deep narrow networks (3) and Lasso models (4), using the
language of geometric algebra (Section 2). Let Vol(v1, · · ·,vd) denote the volume of the parallelotope
spanned by v1, · · ·,vd.
Theorem 4.1. The training problem for a 3-layer deep narrow network and d-dimensional data is
equivalent to a Lasso problem with dictionary elements Ai,j = fj(xi) defined as

fj(x)=

∣∣∣Vol(x−x′
j1
,xj2−x′

j3
, · · ·,xj2(d−1)

−x′
j2d−1

)
−Vol

(
xj0−x′

j1
,xj2−x′

j3
, · · ·,xj2(d−1)

−x′
j2d−1

)∣∣∣∥∥∥(xj2−x′
j3

)
×· · ·×

(
xj2(d−1)

−x′
j2d−1

)∥∥∥
1

(9)
provided that m≥∥z∗∥0, where z∗, ξ∗ is a Lasso solution. The multi-index

j=(j−1, j0, j1, j2, · · ·, j2d−1) indexes over all j−1, j2k∈[N ],x′
j1
∈
{

xj−1
+xj0

2 ,xj−1

}
and

x′
j2k+1

∈
{
x′
j1
, R(xj0

,x′
j1
)

}
∪{xj2k−el}l∈[d] for k≥1. An optimal neural network can be recon-
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structed as f3 (x; θ)=
∑

i z
∗
i fj(x)+ξ∗, and the corresponding optimal W(1) is orthogonal to

xj2−x′
j3
, · · ·,xj2(d−1)

−x′
j2d−1

.

Theorem 4.1 gives a novel characterization of optimal neural networks as Lasso solutions. The-
orem 4.1 states that we can train a globally optimal network by constructing a dictionary matrix,
solving the Lasso problem (4) using well-known techniques (Efron et al., 2004), and then using a
Lasso solution to reconstruct an optimal network. The dictionary is constructed from differences of
points in an augmented training data set composed of reflections and averages of training data. For
shorthand, we may refer to these augmented data points as the training data. Taking averages of train-
ing data has been used in effective data augmentation to improve the performance of training (Zhang
et al., 2018). This Lasso equivalence may suggest theoretical reasons underlying this phenomenon.
We now discuss several advantages of using the Lasso problem to train networks and address various
aspects of the model equivalence.

Training benefits: The convexity of the Lasso problem ensures global optimality. In non-convex
problems, training can get stuck in local, suboptimal optima depending on the initialization. The
convex Lasso model avoids this problem. Additionally, using the Lasso model reduces the need to
tune hyperparameters such as the number of neurons m, as m=∥z∗∥0 suffices.

Uniqueness: The training problem and Lasso problems may not have unique solutions. (Zeger et al.,
2024) discusses the relationship between the solution set of the training problem with 1-D data and
the set of neural networks reconstructed from all Lasso solutions. Analysis of the Lasso solution sets
and stationary points in the training problem for higher dimensional data is an area for future work.

Complexity: The complexity of finding a Lasso solution with a dictionary of size N×F is O(N2F )
(Efron et al., 2004), which is linear in the number of feature vectors F . F is finite and can be bounded.

Lemma 4.2. The 3-layer Lasso dictionary A in Theorem 4.1 consists of O
(
(Nd)d

)
feature vectors.

The exponential complexity in d can not be avoided for global optimization of ReLU networks unless
P=NP.

Lemma 4.2 is an overestimate of the dictionary size, since the Lasso dictionary contains repeated
columns and the presence of linearly dependent vectors xjk−x′

jk+1
(9) spanning a polytope will

make its volume 0, resulting in a 0 vector that does not contribute to the Lasso model. To reduce the
computational overhead of creating the dictionary, the dictionary features can be subsampled (Wang
et al., 2024). (Wang et al., 2021) suggests that subsampling hyperplanes corresponds to arriving at a
local optima. Another practical usage of the Lasso model is to use it in a polishing step instead of
using it to train the entire model from scratch. Polishing consists of partially training a network with
the non-convex training problem, extracting the breakplanes from the neurons to estimate a Lasso
dictionary, and then using the Lasso estimate to fine-tune the network (Pilanci, 2023b).

Comparison to ReLU: (Zeger et al., 2024) shows that 2-layer networks with absolute value activation
are equivalent to those with ReLU when the network uses a skip connection, and increasing the width
of ReLU networks with 1-D input data introduces reflection features. Figure 12 illustrates a reflection
feature occurring in a network trained on 2-D data. This suggests that wider ReLU architectures with
higher-dimensional data will have reflection features, and is an area for future analysis.

Interpretibility: The l1 regularization in the Lasso problem selects a minimal number of feature
vectors which are discrete samples of features fj(x). Intuitively, the network learns these features,
as a linear combination of feature functions corresponds to a parsimonious and optimal network.
The features interpolate subsets of the training data. The mapping between the features and optimal
weights is in the Appendix (Definition E.2). Theorem 4.1 gives a volumetric interpretation of features.
The features also have geometric algebraic and a distance-based interpretations.

A vector x is sparse if it has few non-zero elements. The sparsity factor of x ̸=0 is
r(x)=∥x∥2

∥x∥1
∈
[

1√
N
, 1
]
. The sparsity factor is a measure of a vector’s sparseness. If x has one

non-zero element, then r(x)=1 and if x is parallel to 1, then r(x)= 1√
N

. The more sparse
x is, the larger its sparsity factor. Next, given j−1, j0∈[N ],w∈Rd, define the hyperplanes
H={x∈Rd:(x−xj−1

)w=0},H0={x∈Rd:(x−xj0)w=0}. The average of the hyperplanes H and

H0 is the hyperplane HA=
{
x∈Rd :

(
x−xj−1

+xj0

2

)
w=0

}
. The reflection of the hyperplanes H

6
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Figure 2: Examples of 3-layer (left) and 4-layer (middle, right) deep narrow network features for 2-D
data. Red dashed lines indicate reflection planes (lines in R2).
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Figure 3: Adam-trained neural net with absolute value activation and 2-D training data, of depth 3
(left), 4 (middle), and 5 (right). There are breakplanes at reflections of up to order L−2 of data points.
The 3 and 4-layer networks match the corresponding features shown in the left and right-most plots
of Figure 2, respectively.

across H0 is HR=
{
x∈Rd :

(
x−R(Hj−1

,Hj0)

)
w=0

}
. These definitions will be used in the next

result to describe network features.

Theorem 4.3. The 3-layer deep narrow network features in Theorem 4.1 can be written as

fj(x)=

∣∣∣∣∣∣∣⋆(x−x′
j1
∧xj2−x′

j3
∧· · · ∧ xj2(d−1)

−x′
j2d−1

)∣∣∣− ∣∣∣⋆(xj0−x′
j1
∧xj2−x′

j3
∧· · ·∧xj2(d−1)

−x′
j2d−1

)∣∣∣∣∣∣∣∥∥(xj2−x′
j3
) ∧ · · · ∧ (xj2(d−1)

−x′
j2d−1

)
∥∥
1

= r (w)

{
Dist (x,H ∪HR) if x′

j1
= xj−1

Dist (x,H ∪HA) else
(10)

where w=
(
(xj2−x′

j3
)×· · ·×(x′

j2(d−1)
−x′

j2d−1
)
)T

. In the reconstructed optimal network, W(1) is
a scalar multiple of w.

Theorem 4.3 shows that neural network features represent distances to parallel planes containing
averages and reflections of training data. Moreover, these planes are orthogonal to W(1) and are
spanned by a subset of training data. Theorem 4.3 also describes the features as wedge products, and
gives a formula to explicitly compute the dictionary elements using wedge products or generalized
cross products (5), (6).

Theorem 4.3 shows that the Lasso dictionary includes reflection features that measure the minimum
distance to two parallel reflection planes: H, which contains xj−1

, and HR, which is the reflection
of H across the hyperplane H0 containing xj0 . Since distance is an unsigned value, the network
induces a symmetry about the two planes. Figure 1 illustrates an example of reflection planes H,HR

in R3. The right plot of Figure 2 graphs an example feature fj(x) in R2. The feature outputs the
distance between the reflection "planes" H,HR, which are lines in R2 and are plotted as red, dashed
lines. These are axes of symmetry encoded in 3-layer features. In the notation used in Theorem 4.1,
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Figure 1 and the right plot of Figure 2 both graph the case where x′
j1
=x1,xj0=x2,xj2=x3,x

′
j3
=x1,

(and additionally xj4=x4,x
′
5=x1 for Figure 1).

We can interpret reflection planes as concepts. The concepts collect training data into planes, and the
neural network measures the distance, or similarity, between inputs and concepts. The concepts are
based at a training data point, and a point that is not necessarily in the training set: a reflection of a
data point about another data point. In other words, the neural network predicts single-level reflective
symmetries in the data. Intuitively, these symmetries can act as a translation between analogous
concepts across different domains, with reflections representing shifts in structure while preserving
core functionality.

Another way to view the geometry of a feature is by analysing its breakplanes. A piecewise linear
function f : R→R has a breakpoint at x if f changes slope at x. A function g : R1×d → R
defined by g(x)=f(xw) where w∈Rd has a breakplane along the plane {x ∈ R1×d : xw+b=0}
if f has a breakpoint at xw. A breakplane of a function is a "kink" in its graph. As seen above,
the reflection hyperplanes are breakplanes of 3-layer networks and create axes of symmetry. The
reflection breakplanes in 3-layer networks generalize to deeper networks, as shown next.

4.2 DEEPER NETWORKS

Here, we extend a Lasso equivalence to deeper networks. For L ≥ 2, the L-layer feature function is a
parameterized function fj : Rd→R defined as

fj(x) =

∣∣∣∣∣∣∣ · · ·
∣∣∣∣∣
∣∣∣∣∣∣∣xW(1) + b(1)

∣∣∣+ b(2)
∣∣∣∣ · · ·

∣∣∣∣∣+ b(L−1)

∣∣∣∣∣∣∣ . (11)

A feature function (11) can be viewed as a basic unit of a deep narrow network (3), or a deep narrow
network where m=1, α=1, ξ=0 and w(i,l)=1 for l>1. A feature function has data feature biases if
for n(1)=x′

j1
, n(2), · · ·, n(L−1)∈[N ], all of its bias parameters are defined recursively as

b(1)=− x′
j1W

(1), b(l)=−

∣∣∣∣∣ · · ·
∣∣∣∣∣∣∣∣∣xn(l)W(1) + b(1)

∣∣+ b(2)
∣∣∣ · · · ∣∣∣∣+ b(l−1)

∣∣∣∣∣, (12)

for l∈[L−1]. The data feature sub-library is a set of feature functions with data feature biases. The
next result states that deep narrow networks of any depth are equivalent to Lasso problems.

Theorem 4.4. The training problems for deep narrow networks with arbitrary depth and input
dimension are equivalent to Lasso problems with finite, discrete dictionaries. The set of feature
vectors contains a data feature sub-library and consists of feature functions (11) sampled at training
data points. An optimal network is reconstructed as

∑
i z

∗
i fj(x) + ξ∗.

The proof is in Appendix E. Definition E.2 describes a mapping between features and optimal weights.
Explicit expressions of features written as (11) for 2 and 3-layer networks is in Remark E.1. The
data feature sub-library is a set of novel features representing reflections of increasing complexity,
or order. The order of a reflection is defined recursively as follows. An order-0 reflection of a
point x0∈Rd is simply R0 (x0)=x0. Given points x0,x1, the standard reflections R(x0,x1) and
R(x1,x0) are order-1 reflections, which create a single-level symmetry of the point being reflected
and its reflection. An order-2 reflection is a reflection of a reflection, which induces a second-level
symmetry around the reflection. In general for k>0, the order-k reflection of x0, · · ·,xk∈Rd is of the
form Rk(x0, · · ·,xk)∈

{
R(Rk−1(x0,··· ,xk−1),xk), R(xk,Rk−1(x0,··· ,xk−1))

}
. Figure 4 plots examples

of reflections of order 0, 1 and 2 in R2. As seen in Figure 4, in R2, R(a,b) is the point on the line
between a and b, whose distance from b is the same as the distance from b to a, creating a symmetry.

Theorem 4.3 states that the features for a 3-layer network measure distances to reflection planes,
which include breakplanes at first-order reflections. The left plot of Figure 2 illustrates an ex-
ample of a 3-layer feature. The weight W(1) is orthogonal to x3−x1 and the breakplanes occur
along H1=

{
(x−x1)W

(1)=0
}
,H=

{
(x−x2)W

(1)=0
}

and HR =
{(

x−R(x2,x1)

)
W(1)=0

}
.
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Figure 4: Reflections in R2 of different orders. Order 0: a,b, c. Order 1: R(a,b). Order 2:
R(R(a,b),c), R(c,R(a,b)) .

The height of the graph is the minimum of the distance from the reflection planes H and HR. Simi-
larly, 4-layer features can have breakplanes that represent first or second-order reflections, as shown
respectively in the middle and right plots of Figure 2, which plots examples of data feature sub-library
features. The peaks and troughs of the features plotted in Figure 2 are breakplanes. The troughs
are indicated by dashed red lines and depict higher-level symmetries and reflection planes. Deeper
networks have the capacity for learning increasingly complex reflection features and multilevel
symmetries.

Theorem 4.5 (Multilevel symmetries). A deep narrow network of arbitrary input dimension and
depth L is equivalent to a Lasso problem with a dictionary containing features with no reflections for
L = 2, standard reflections for L=3, and up to order-2(L−3) reflections for L > 3.

The proof is in Appendix F. Theorem 4.5 shows that each additional layer in a network induces higher
order reflections and deeper levels of symmetry. Theorem 4.5 describes the data feature sub-library in
Theorem 4.4 and shows that the maximum order of reflections in features grows linearly with depth.
A full analysis of the entire dictionary for networks with more than 3 layers is an area for future work.
Nonetheless, our approaches and proof techniques demonstrate the principle of how to find all of the
dictionary elements for deeper networks, as discussed in the proof of Theorem 4.4.

5 NUMERICAL RESULTS

We perform experiments training the standard network

fL (x; θ)=σ
(
· · ·
(
σ
(
σ
(
xW(1) + b(1)

)
W(2)+b(2)

)
· · ·
)
W(L−1)+b(L−1)

)
α+ξ. (13)

where W(1)∈Rd×1,b(1)∈R, · · ·,W(l)∈R,b(l)∈R,W(L−1)∈R1×m,b(L−1)∈R1×m, ξ∈R,α∈Rm.
For 2-layer networks, the standard network (13) is equivalent to the network (1), and (1) can be
converted into a standard architecture (Zeger et al., 2024). The standard architecture is more
traditional, and we perform experiments on the standard architecture to demonstrate that the Lasso
model can be useful for this architecture as well.

5.1 SIMULATED DATA

In Figure 3, 3, 4, and 5-layer networks (13) are trained with Adam. The second coordinate is 0 in
all samples. The data is given in Appendix C. We first project the 2-D data to 1-D along the first
coordinate and solve the Lasso problem for the 1-D data as β→0. The minimum (l1) norm subject to
interpolation version of the Lasso problem is

min
z,ξ

∥z∥1 s.t. Az+ ξ1 = y. (14)

Loosely speaking, as β→0, if A has full column rank, the Lasso problem approaches the minimum
norm problem (14). For 1-D data, an optimal solution to (14) for certain simple sets of training data
is known (Zeger et al., 2024). After solving the Lasso problem, the non-convex model (2) with the
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Figure 5: 3-layer, followed by 4-layer (right) deep narrow networks trained on text embeddings of
IMDB reviews outputted by OpenAI GPT4 (left-most 2 plots) and Bert (right-most 2 plots). The
network’s predictions are plotted as a function of the input x projected to 1-D as W(1)x. True labels
of 1 and −1 are indicated by red and blue, respectively. The networks exhibit multi-level symmetry.

orignal 2-D data is trained with β=10−7≈0, where a minimum norm problem solution is used to
pre-initialize a subset of the neurons. All other weights (we use m=100) are initialized randomly
according to Pytorch defaults. Only one neuron per layer is pre-initialized, and for the neuron weight
in the first layer, the second coordinate is left to random initialization. A learning rate of 5(10−3)
and weight decay of 10−4 are used. The data is trained over 103 epochs. A similar experiment is
performed with a ReLU network, which also demonstrates breakplanes at reflections of training data
(Appendix C Figure 12). As shown in Figure 3, the networks exhibit breakplanes at data points and
their reflections which are not among the training data. Additionally, the neural networks exhibit
features matching the shapes of those shown in the right and left plots of Figure 2 for 3 and 4 layers,
respectively. The 5-layer network shows that features gain more complex reflections with depth.

5.2 LARGE LANGUAGE MODEL EMBEDDINGS

We also train neural networks using Adam to perform binary (yn= ± 1) classification of text and
observe multi-level symmetries. Models from OpenAI GPT4 and Bert are trained to embed text as
vectors, which deep narrow networks are then trained on as input to classify the corresponding text.
The deep narrow networks are trained using the non-convex regression problem (2). Positive network
outputs are interpreted as yn=1 and negative outputs as yn=−1.

Figure 5 plots predictions of neural nets that are trained to perform sentiment analysis, rating IMDB
reviews as having positive or negative sentiments (Maas et al., 2011). Figure 5 plots the points(
W(1)xn, ŷn

)
in red and blue, where ŷn=fL (xn; θ) is the network’s prediction on the training

sample xn and the color corresponds to the training labels as red for yn=1 and blue for yn=−1. The
network prediction on all points x is plotted in gray. For any constant c∈R, a Lasso feature (11)
has constant value along {x : W(1)x=c}, so projecting the input along W(1) can be viewed as a
cross-section of the feature.

In general, there are (possibly sub-optimal) weights and biases that can make a deep narrow network
be an asymmetrical function with many breakplanes that do not contain training samples. However,
the trained networks in Figure 5 appear multilevel symmetric with breakplanes at data samples and
resembles the shapes of the 3 and 4-layer reflection features illustrated in Figure 2. In particular,
the 3-layer networks shown in the first and third plots from the left in Figure 5 resemble the 3-layer
network in left plot of Figure 2, while the 4-layer network shown in the second and fourth plots in
Figure 5 resemble the 4-layer network shown in the middle and right plots, respectively, of Figure 2.
This is consistent with the sparse selection of features in the Lasso problem. Appendix C contains
training details and additional results. Code from the github repository for Wang et al. (2024) was
used to generate the embeddings.

6 CONCLUSION

We prove an equivalence between neural networks and Lasso problems with novel geometric features.
Our convexification approach can be extended to other piecewise linear activation functions Zeger
et al. (2024). A limitation of this work is the choice of the activation function and the ℓ1 regularization
of the weights needed for analytic tractability. We believe that multi-level symmetries hold for
standard ReLU networks, which is left for future work.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

7 REPRODUCIBILITY STATEMENT

Proofs of results proved in prior work:

• Theorem 3.1: proof in (Zeger et al., 2024)

• Theorem 3.2: proof in (Pilanci, 2023b)

Proof of results proved in this work:

• Theorem 4.1: proof in Appendix E

• Lemma 4.2: proof in Appendix E

• Theorem 4.3: proof in Appendix E

• Theorem 4.4: proof in Appendix E

• Theorem 4.5: proof in Appendix F

Code is in the supplementary file. Please run "run.ipynb" to generate figures referenced in Section 5
and Appendix C.
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A APPENDIX

B GEOMETRIC ALGEBRA

Wedge and inner product: A dot product of multivectors, unlike a dot product of vectors, can
have multivector outputs. The dot or inner product of arbitrary basis blades E1=

∏
i∈G(1) ei and

E2=
∏

i∈G(2) ei is E1·E2=E1E2 if g(E1E2)=|g(E1)−g(E2)|, and 0 otherwise. In other words, if
G(1)⊂G(2), then E1E2 is composed of basis blades in G(2)−G(1), and E1E2=0 otherwise. (Simi-
larly if G(2)⊂G(1)). The wedge or outer product is defined by E1∧E2=E1E2 if E1E2 has grade
g(E1E2)=g(E1) + g(E2), and 0 otherwise. So if G(i)∩G(j)=∅, then E1E2 is composed of basis
blades in G(1)∪G(2), and otherwise, E1E2=0. The dot and wedge product extend to multivectors
linearly. A vector is a special case of a multivector v∈Rd⊂Gd of grade 1. For more detailed
background, see Perwass et al. (2009).

Note that linearly distributing terms and applying eiei = 1 shows that ∧d−1
i=1 vi = ∧d−1

i=1

∑d
j=1 vijej

consists of a sum of d − 1-vectors, so their product with ed · · · e1, as implied by the Hodge star
operator in (6) is a vector, which is consistent with (5).

Remark B.1. It holds that ⋆
(
u ∧

(
∧d−1
i=1 vi

))
= uT

(
×d−1

i=1 vi

)
∈ R and ∥∧d−1

i=1 vi∥2 =
∥∥×d−1

i=1 vi

∥∥
2
.

This is because

∧d−1
i=1 vi =

d∑
k=1

((
∧d−1
i=1 vi

)T
(e1 · · · ek−1ek+1 · · · ed)

)
e1 · · · ek−1ek+1 · · · ed

=

d∑
k=1

(
×d−1

i=1 vi

)
k
e1 · · · ek−1ek+1 · · · ed

(15)

and ej∧ek=0 if j ̸=k, we have u ∧
(
∧d−1
i=1 vi

)
=
∑d

j=1 ujej ∧
(
∧d−1
i=1 vi

)
=
∑d

j=1 ujej ∧((
×d−1

i=1 vi

)
k

)
e1· · ·ej−1ej+1· · ·ed. So ⋆

(
u ∧

(
∧d−1
i=1 vi

))
= u ∧

(
∧d−1
i=1 vi

)
ed · · · e1 =

uT
(
×d−1

i=1 vi

)
∈ R. From (15) it also follows that ∥ ∧d−1

i=1 vi∥2 =
∥∥×d−1

i=1 vi

∥∥
2
.

Remark B.2. It holds that

|⋆ (v1 ∧ · · · ∧ vd)| = Vol(v1, · · · ,vd) (16)

and

Dist (vd, Span(v1, · · · ,vd)) =
⋆(v1 ∧ · · · ,∧vd)

∥v1 ∧ · · · ,∧vd∥2
. (17)

Here, v1,v2, let Dist(v1,v2) denote the unsigned Euclidean distance ∥v1 − v2∥2 between v1

and v2. The distance between a vector v and a set S is min{Dist(v,x) : x ∈ S}. In other words,
v1∧· · ·∧vd−1 is a vector whose magnitude is the unsigned volume of the d−1-dimensional polytope
spanned by v1, · · ·vd−1, which represents the "base" of the d-dimensional polytope P(v1, · · · ,vd)
and (17) is the signed "height" of P(v1, · · · ,vd), or the distance of vd to the span of v1, · · ·vd. .
Note the Hodge star operator ⋆ converts pseudoscalars into a scalars.

C NUMERICAL RESULTS

C.1 SIMULATED DATA

In Figure 3, the training data is (x1, y1=2), (x2, y2=0) for
3 layers, (x1, y1=2), (x2, y2=0), (x3, y3=−1) for 4 layers, and
(x1, y1=1.75), (x2, y2=0.25), (x3, y3=0.75), (x4, y4=−1.75) for 5 layers, where
x1=(2, 0),x2=(0, 0),x3=(−1, 0),x4=(−1.75, 0).

In Figure 12, the same experiment setup as used for Figure 3 is used for a 3-layer network, except
W(1)∈Rd×2,b(2)∈R,W(2)∈R2×m,b(L−1)∈R2×m and we require all neuron weights in each layer
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have the same magnitude. The data is x1 = (4, 0),x2 = (3, 0),x3 = (1, 0),x4 = (0, 0),x5 =
(−1, 0), y1 = 2, y2 = 1, y3 = 0, y4 = 0, y5 = 1. More general architectures are an area of
exploration in future work.

C.2 LARGE LANGUAGE MODEL DATA

We perform the same experiments as in Section 5.2, but with the GLUE data set, specifically GLUE-
CoLA and GLUE-QQP (Wang et al., 2019; Warstadt et al., 2018; Socher et al., 2013; Dolan &
Brockett, 2005; Agirre et al., 2007; Williams et al., 2018; Rajpurkar et al.; Dagan et al., 2006;
Bar Haim et al., 2006; Giampiccolo et al., 2007; Levesque et al., 2011; Bentivogli et al., 2009). GLUE
(General Language Understanding Evaluation) is a benchmark for testing the performance of models
learning language processing. GLUE-CoLA (Corpus of Linguistic Acceptability) contains text that is
to be binary classified whether it is grammatically correct or not. GLUE-QQP (Quora Question Pairs)
contains pairs of questions that are to be binary classified as having the same semantic meaning or
not. Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11 plot the results. Vector embeddings
from both GPT4 and Bert (Devlin et al., 2019) LLMs are used. As in Figure 5, points with yn=1 are
plotted in red, and points with yn=−1 are plotted in blue. The overall network is plotted in gray. The
training data is plotted with ’x’ and the validation and test data are plotted with ’.’ markers.

A standard architecture (13) was trained using Adam with a learning rate of 5(10−3), weight decay
of 10−4, and β=10−7. There were N=104 data points, the network had m=10 neurons, and the
network was trained over 100 epochs.

For OpenAI’s GLUE-ColA input embeddings, 175 epochs and m = 10 were used. For Bert GLUE-
ColA, 125 epochs and m = 5 were used. For OpenAI and Bert GLUE-QQP, 150 epochs and m = 10
were used. For OpenAI and Bert IMDB, 100 epochs and m = 10 were used. These parameters were
chosen based on validation set results.

The networks are trained on the non-convex problem, and their performance is comparable to results
in (Wang et al., 2024). What distinguishes this experiment is demonstrating that networks learn novel
features consistent with Lasso models.

Networks trained on both OpenAI and Bert embeddings exhibit similarities to Lasso features Figure 3.
However, the networks trained on OpenAI embeddings (Figure 6) have higher accuracy and closer
matches to Lasso features than those trained using Bert. The higher-performing networks trained
using GPT4, such as Figure 6, have striking similarities to Lasso features Figure 3. This is consistent
with the network’s equivalence to the Lasso model, as a network that is optimal in the Lasso problem
is globally optimal. The figures show that when networks get deeper, they change by increasing their
breakplanes, with more breakpoints appearing in the plots.

D NEURAL NET ARCHITECTURE

Note: The notation and some techniques for convexification are similar to (Zeger et al., 2024) and
(Pilanci, 2023b). For finding the Lasso features, we can assume that the data matrix is full column
rank (Pilanci, 2023b). All of the Lasso equivalences hold provided that m∗ ≥ ∥z∥0.

Let L ≥ 2,m0 = d,mL−1 = 1 and ml ∈ N for l ∈ [L] − {L − 1}. A neural network (1) can be
recursively defined as

fL (x; θ) =

mL∑
i=1

X(i,L)w(i,L) + ξ,

where X(i,L) is defined recursively as

X(i,l+1) = σ
(
X(i,l)W(i,l) + b(i,l)

)
, (18)

with initial condition
X(i,1) = x.

We can view X(i,l) as an input to to the ith unit in layer l. Note that for i ∈
[mL], l ∈ [L], we have X(i,l) ∈ R1×ml−1 . The set of regualarized parameters is θw =
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Figure 6: 3-layer (left column) and 4-layer (right column) deep narrow networks trained on OpenAI
embeddings of IMDB reviews. Each row is a different training initialization.
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Figure 7: 3-layer (left column) and 4-layer (right column) deep narrow networks trained on Bert
embeddings of IMDB reviews. Each row is a different training initialization.
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Figure 8: 3-layer (left column) and 4-layer (right column) deep narrow networks trained on OpenAI
embeddings of GLUE-CoLA text. Each row is a different training initialization.
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Figure 9: 3-layer (left column) and 4-layer (right column) deep narrow networks trained on Bert
embeddings of GLUE-CoLA text. Each row is a different training initialization.
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Figure 10: 3-layer (left column) and 4-layer (right column) deep narrow networks trained on OpenAI
embeddings of GLUE-QQP text. Each row is a different training initialization.
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Figure 11: 3-layer (left column) and 4-layer (right column) deep narrow networks trained on Bert
embeddings of GLUE-QQP text. Each row is a different training initialization.
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Figure 12: 3-layer ReLU neural net. A breakplane occurs at a reflection of training data, which is not
in the training set.

{
W(i,l), αi : i ∈ [mL], l ∈ [L− 1]

}
⊂ θ. All functions extend to vector and matrix-valued inputs

elementwise.

The training problem (2) can be stated generally as

min
θ∈Θ

Ly (fL (X; θ)) +
β

L
r(θw),

where Ly : RN → R is called the loss function that is convex and parameterized by y, and
r(θ) is a regularization term that penalizes large weight magnitudes. In (2), the loss function is
Ly(·) = 1

2 ∥· − y∥22. We can omit the external bias ξ from the network fL (X; θ) by absorbing it into
the loss Ly. We assume r(θw) is of the form

r(θw) =

mL∑
i=1

((
r(i,L)(αi)

)L
+

L−1∑
l=1

(
r(i,l)

(
W(i,l)

))L)
(19)

where r(i,l) is a nonnegative function that is positively homogeneous, i.e., for any positive scalar a,
r(i,l) (aW) = ar(i,l) (W). In (2), the regularization is r(i,l) (x) = ∥x∥1.

Lemma D.1. The training problem is equivalent to the rescaled problem

min
θ∈Θ:r(i,l)(W(i,l))=1

Ly (fL (X; θ)) + β

mL∑
i=1

r(i,L) (αi) . (20)

Proof. By the AM-GM inequality on (19), a lower bound on the training problem is

min
θ∈Θ

Ly (fL (X; θ)) + β

mL∑
i=1

r(i,L)(αi)

L−1∏
l=1

r(i,l)

(
W(i,l)

)
. (21)

Consider the minimization problem

min
θ∈Θ:r(i,l)(W(i,l))=1

Ly (fL (X; θ)) + β

mL∑
i=1

r(i,L)(αi)

L−1∏
l=1

r(i,l)

(
W(i,l)

)
. (22)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Problem (22) is an upper bound on (21). Given optimal
{
W(i,l), αi

}
in (21), the rescaled parame-

ters W(i,l)′=W(i,l)/r(i,l)
(
W(i,l)

)
and α′

i=αi

∏L−1
l=1 r(i,l)

(
W(i,l)

)
(and rescaled bias parameters)

achieve the same objective in (22). Hence (22) and (21) are equivalent. Given an optimal parameter
q ∈

{
W(i,l), αi

}
in (22), the rescaled parameters q′=|αi|

1
L q (and rescaled bias parameters) achieve

the same objective in the training problem, which is therefore equivalent to (22). Simplifying (22)
gives (20).

Let X(L) = X(1,L). Assume r(i,l) (x) = ∥x∥1.

Lemma D.2. A lower bound on the rescaled training problem is

max
λ∈RN

− L∗
y(λ) s.t. max

θ∈Θ

∣∣∣λTX(L)
∣∣∣ ≤ β, (23)

where f∗(x) := maxx
{
zTx− f(x)

}
is the convex conjugate of f .

Proof. Find the dual of the rescaled training problem by rewriting it as

min
θ∈Θ

Ly(z) + β||α||1, s.t. z =

mL∑
i=1

αiX
(i,L). (24)

The Lagrangian of problem (24) is L (λ, θ) = Ly(z) + β||α||1 − λT z+

mL∑
i=1

λTX(i,L)αi. Minimize

the Lagrangian over z and α and use Fenchel duality (Boyd & Vandenberghe, 2004). The dual of
(24) is

max
λ∈RN

− L∗
y(λ) s.t. max

θ∈Θ

∣∣∣λTX(i,L)
∣∣∣ ≤ β, i ∈ [mL]. (25)

Observe X(i,L) is of the same form for all i ∈ [mL]. So the mL constraints in (25) collapse to just
one constraint. Then we can write (25) as (23).

E DEEP NARROW NETWORK

Let n(1), · · ·, n(L−1)∈[N ]. Define the breakplane sets K(L)={xn(L−1)} if L=2 and

K(L)=

{
X

(L−2)

n(L−2) ,
X

(L−2)

n(L−1)
+X

(L−2)

n(L−2)

2

}
otherwise. For x′

j1
∈K(3), let M1=X−1x′

j1
and

fx′
j1

: Rd→RN , fx′
j1
(W)=M1W

=
(
X− 1x′

j1

)
W

Sx′
j1

: Rd→{−1, 1}N , Sx′
j1
(W)=sign

(
fx′

j1
(W)

)
.

(26)

For d(1) ∈ Sx′
j1

(
Rd
)
, let M2=

(
Diag(d(1))−d

(1)

n(2)En(2)

)
M1 and

fd(1),x′
j1

,n(2) : Rd→RN , fd(1),x′
j1

,n(2)(W)=M2W

=
∣∣∣(X(1)

n −x′
j1

)
W
∣∣∣− ∣∣∣(X(1)

n(2)−x′
j1

)
W
∣∣∣

Sd(1),x′
j1

,n(2) :Rd→{−1, 1}N×N , Sd(1),x′
j1

,n(2)(W)=sign
(
fd(1),x′

j1
,n(2)(W)

)
(27)

where · denotes elementwise multiplication and En(2) denotes a N×N matrix whose (n(2))th column
is 1 and all other elements are 0. These functions (26), (27) represent the sign patterns of a neuron in
the first and second layers. Given n(1), n(2)∈[N ],x′

j1
∈K(3), a fixed sign pattern d(1) ∈ Sx′

j1

(
Rd
)
,

let W(1)∈S−1
x′
j1

(
d(1)

)
and
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X (3)=
{
xn−x′

j1

}
n
∪ {xn−xn(2)}n ∪

{
xn−R(xn(2) ,a)

}
n
∪ {e1, · · · , ed}

∆X =

{
± ×d−1

i=1∆xi∥∥×d−1
i=1∆xi

∥∥
1

: ∆xi ∈ X (3)

}
.

(28)

Let δB=
{
W ∈ Rd : ∥W∥1=1

}
be the boundary of the l1 ball of radius 1.

Proof of Theorem 4.1. In a deep narrow network (3), W(i,2), · · ·,W(i,L−1),b(l), · · ·,b(L−1)

are scalar-valued and σ(x)=|x|. For fixed W(1), · · ·,W(L−1), b(l)=b(l)∗ is optimal if
b(l)∗∈ argmaxb(l) maxb(l+1) · · ·maxb(L−1)

∣∣∣∑N
n=1 λnX

(L)
n

∣∣∣, and analogously for W(l). We will
analyze the constraint of the dual (23):

max
θ∈Θ

∣∣∣λTX(L)
∣∣∣ ≤ β. (29)

Satisfying (29) requires 1Tλ=0, otherwise maxθ∈Θ

∣∣λTX(L)
∣∣=∞. So assume 1Tλ=0. We will

use the following property: if f : R → R is a bounded piecewise linear function, argmaxx |f(x)|
contains a breakplane (or a breakpoint in R) of f . The objective in the dual constraint (29) is∣∣λTX(L)

∣∣= ∣∣∣∑N
n=1 λnX

(L)
n

∣∣∣ where

X(L)
n =

∣∣∣X(L−1)
n W(L−1)+b(L−1)

∣∣∣ . (30)

The breakplanes of X(L)
n as a function of b(L−1) occur at b(L−1)=−X

(L−1)
n W(L−1). Therefore for

some n(L−1)∈[N ], b(L−1)∗=−X
(L−1)

n(L−1)W
(L−1) is optimal. Now suppose L>2. Plugging b(L−1)∗

into X
(L)
n (30) gives

X(L)
n =

∣∣∣(X(L−1)
n −X

(L−1)

n(L−1)

)
W(L−1)

∣∣∣
=
∣∣∣∣∣∣X(L−2)

n W(L−2)+b(L−2)
∣∣∣− ∣∣∣X(L−2)

n(L−1)W
(L−2)+b(L−2)

∣∣∣∣∣∣ . (31)

By (31), for fixed n(L−1), the set of breakplanes of
∑

n λnX
(L)
n as a function of b(L−2) is{

−x′
n(L−2)W

(L−2) : x′
n(L−2)∈K(L), n(L−2)∈[N ]

}
. So there exists n(L−2)∈[N ] and x′

n(L−2)∈K(L)

such that

b(L−2)∗=−x′
n(L−2)W

(L−2) (32)

is optimal.

Now suppose L=3. Let x′
j1

∈ Kn(1),n(2) . By (32), b(1)= − x′
j1
W(1) and plugging this into (31)

gives
X(3)

n =
∣∣∣∣∣∣(X(1)

n −x′
j1

)
W(1)

∣∣∣− ∣∣∣(X(1)

n(2)−x′
j1

)
W(1)

∣∣∣∣∣∣ (33)

By (33), the dual constraint (29) is equivalent to the following:

max
W(2)∈{−1,1}

max
n(1),n(2)∈[N ]

max
x′
j1

∈K(3)
max

d(1)∈Sx′
j1

(Rd)
max

d(2)∈S
d(1),x′

j1
,n(2) (Rd)

max
W(1)∈S−1

a (d(1))∩S−1

d(1),x′
j1

,n(2)
(d(2))∩δB

∣∣∣∣∣
N∑

n=1

λnX
(L)
n

∣∣∣∣∣≤β,

1Tλ = 0.

(34)

For each fixed d(1)∈Sx′
j1
(Rd) and d(2)∈Sd(1),x′

j1
,n(2)

(
Rd
)
, the objective term

X
(L)
n =

(((
Xn−x′

j1

)
W(1)

)
d
(1)
n −

((
Xn(2)−x′

j1

)
W(1)

)
d
(1)

n(2)

)
d
(2)
n is linear in W(1). Let
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B=
{
W ∈ Rd : ∥W∥1≤1

}
be the filled l1 ball of radius 1. If we replace δB by B in (34), the

constraint (34) remains equivalent since the W(1) that maximizes the left hand side of (34) will have
the largest feasible magnitude. Then for each fixed n(1), n(2),x′

j1
,b(1),d(1), the left hand side of the

dual constraint (29) is the maximization of a linear function of W(1) over the polytope

P=S−1
a

(
d(1)

)
∩S−1

d(1),x′
j1

,n(2)

(
d(2)

)
∩B (35)

which is equivalent to the same maximization over the finite set of extremal points of P . Let
En(2) be a N×N matrix whose (n(2))th column is 1 and all other elements are 0. The first-
layer sign pattern function is the sign of a linear function of W : sign

(
X− 1x′

j1

)
. The

second-layer sign pattern function can also be written as the sign of a linear function of W, as
Sd,a,n(W)=sign

(
(Diag(d)− dnEn)

(
X− 1x′

j1

)
W
)
, where · denotes elementwise multiplica-

tion. Therefore we can apply Lemma 19 in (Pilanci, 2023b) as follows. Let I denote an identity
matrix, and let

M =

(
M1

M2

I

)
.

The size of M is (2N+d)×d. For S ⊂ [N ], let MS denote a submatrix of M consisting of the rows
indexed by S. The matrix M depends on x′

j1
,d(1) and n(2). Let

Ed(1),x′
j1

,n(2) =
{
W(1) ∈ Rd : ∃S ⊂ [N ], |S| = d− 1, s.t. MsW

(1) = 0, rank(Ms) = d− 1
}
.

(36)

Let Msi denote the ith row of the submatrix Ms. By the orthogonality property of generalized cross
products (Section 2),

Ed(1),x′
j1

,n(2) ∩ δB =

{
± ×d−1

i=1Msi∥∥×d−1
i=1Msi

∥∥
1

: rank(Ms) = d− 1

}
⊂ ∆X (37)

where ∆X is defined in (28). By Lemma 19 in (Pilanci, 2023b), the set of extremal points of P is

Ed(2),d(1),a,n(2)=S−1
x′
j1

(
d(1)

)
∩S−1

d(1),x′
j1

,n(2)

(
d(2)

)
∩Ed(1),x′

j1
,n(2)∩δB. (38)

Therefore for fixed n(1), n(2),a, plugging (37) into (38) gives⋃
d(1)∈Sa(Rd),d(2)∈S

d(1),x′
j1

,n(2) (Rd)

Ed(2),d(1),a,n(2)⊂∆X . (39)

Plugging in (39) as a superset of extremal points of P into (34) shows that the dual constraint (29) is
equivalent to

max
W(2)∈{−1,1}

max
n(1),n(2)∈[N ]

max
x′
j1

∈K
n(1),n(2)

max
W(1)∈∆X

∣∣∣∣∣
N∑

n=1

λnX
(L)
n

∣∣∣∣∣ ≤ β,1Tλ = 0. (40)

Using (18), we can write (12) as b(l) = −X
(l)

n(l) for l > 1, where W(l′) = 1 for l′ > 1.

The dual of (40) is the Lasso problem (4) where Ai,j is determined by (33), or

Ai = X(3) (X) . (41)

In (41), X(3) (X) is the output of the network X(3) with data matrix X as input, where W(2) = 1
and b(l) determined by (12) (with x′

j1
= a, i.e. which have ith element

Ai,j =
∣∣∣∣∣∣(xi−x′

j1

)
W(1)

∣∣∣− ∣∣∣(xn(2)−x′
j1

)
W(1)

∣∣∣∣∣∣ (42)
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The Lasso problem is the bidual of the rescaled problem, and therefore a lower bound on it, which
is equivalent to the original training problem. In fact, Remark E.3 shows that the Lasso prob-
lem is equivalent to the original training problem, and the reconstruction holds. Lastly, rename
j0=n(2), j−1=n(1). The volume formulation (9) holds from Remark B.1 and (16). The orthogonality
property of W(1) holds by the orthogonality property of cross products.

Proof of Lemma 4.2. Since j−1, j0, j2, j4, · · ·, j2(d−1) ∈ [N ], there are Nd+1 choices for determin-

ing xj−1 ,xj0 ,xj2 ,xj4 , · · ·,xj2(d−1)
. For each j−1, j0 there are

∥∥∥{xj−1
+xj0

2 ,xj−1

}∥∥∥ = 2 options for

x′
j1

. For each j−1, j0,xj2k , there are
∣∣∣{x′

j1
, R(xj0

,x′
j1
)

}
∪{xj2k−el}l∈[d]

∣∣∣=2+d options for x′
j2k+1

.

So the total number of options for j is at most 2(Nd+1)(2+d)d−1 = O((Nd)d). The complexity for
training a 2-layer network must be exponential in d unless P = NP Pilanci & Ergen (2020).

Remark E.1. The 2-layer feature function is

f(x) =

∣∣∣∣∣∣∣∣∣∣
(x− xn(1))

W(1)⊥∆x1,··· ,∆xd−1︷ ︸︸ ︷
×d−1

i=1∆xi∥∥×d−1
i=1∆xi

∥∥
1

∣∣∣∣∣∣∣∣∣∣
. (43)

Similarly the 3-layer feature function is

f(x) =

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
(
x− x′

j1

)W
(1)⊥∆x1,··· ,∆xd−1︷ ︸︸ ︷
×d−1

i=1∆xi∥∥×d−1
i=1∆xi

∥∥
1

∣∣∣∣∣∣∣∣∣∣
−

−b(2)︷ ︸︸ ︷∣∣∣∣∣(xn(2) − x′
j1

) ×d−1
i=1∆xi∥∥×d−1
i=1∆xi

∥∥
1

∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
. (44)

Definition E.2. Given an optimal solution to the Lasso problem whose features are (11), the L-layer
reconstruction is as follows. Set α=z∗, γ=γ∗,W(i,l)=1 for l>1, and for each dictionary column
Ai, consider the corresponding W(1),b(l) and let W(i,1)=W(1) and b(i,l)=b(l). For data feature
biases, use (12) for b(l). For L=3, W(1)∈∆X (3) (28). This gives a rescaled network. Then, let
γi= |αi|

1
L . Finally change variables as q′=sign(q)γi for q ∈

{
αi,W

(i,l)
}

and b(i,l)′=b(i,l) (γi)
l

for the reconstructed network. For example, a reconstructed 3-layer neural network from a Lasso
solution z∗, ξ∗ is

f3 (x; θ)=
∑
j

(z∗j )
1
3

∣∣∣∣∣∣(z∗j ) 1
3

∣∣∣∣∣∣(z∗j ) 1
3

(
x−x′

j1

(j)
) ×d−1

i=1∆x
(j)
i∥∥∥×d−1

i=1∆x
(j)
i

∥∥∥
1

∣∣∣∣∣∣−(z∗j )
1
3

∣∣∣∣∣∣(z∗j ) 1
3

(
x
(j)

n(2)−x′
j1

(j)
) ×d−1

i=1∆x
(j)
i∥∥∥×d−1

i=1∆x
(j)
i

∥∥∥
1

∣∣∣∣∣∣
∣∣∣∣∣∣+ξ∗.

(45)

where the index (j) indexes over all possible W(1),x′
j1
,xn(2) corresponding to the jth feature vector.

Remark E.3. The rescaled network in Definition E.2 achieves the same value in the rescaled problem
as the Lasso optimal value. Definition E.2 then "un-scales" the weights in the rescaled network to
give a reconstructed network that achieves the same objective in the original training problem as the
optimal Lasso value. The rescaled network, reconstructed network and the function

∑
i z

∗
i fjj(x)+ξ∗

are all equivalent as functions, but have different interpretations of neuron weights.

Proof of Theorem 4.3. The wedge product formulation follows from Theorem 4.3. To show the
distance formulation, observe that the features are given by (42) as

fj(x) =
∣∣∣∣∣∣(x− x′

j1

)
W(1)

∣∣∣− ∣∣∣(xn(2) − x′
j1

)
W(1)

∣∣∣∣∣∣ (46)
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with W(1) = w
∥w∥1

∈ ∆X (3) (28), where w= ×d−1
i=1 ∆x

(j)
i . Let l1 and l2 be the hyperplanes

defined by
(
x−R(xn(2) ,x

′
j1
)

)
w=0 and

(
x−R(xn(2) ,x

′
j1
)

)
w=0, respectively. Let l = l1 ∪ l2. By

Remark B.2,

fj(x) = min
{∣∣∣(x− xn(2))W(1)

∣∣∣ , ∣∣∣(x−R(xn(2) ,x
′
j1
)

)
W(1)

∣∣∣}
= r(w)min

{∣∣∣∣(x− xn(2))
w

∥w∥2

∣∣∣∣ , ∣∣∣∣(x−R(xn(2) ,x
′
j1
)

) w

∥w∥2

∣∣∣∣}
= r(w)min{d(x, l1), d(x, l2)}
= r(w)d(x, l).

(47)

Now rename j0 = n(2), j−1 = j1. Observe that if x′
j1
=

xj−1
+xj0

2 then R(xj0
,x′

j1
) = xxj−1

. A case

analysis on x′
j1

∈
{

xj−1
+xj0

2 ,xj−1

}
gives (10).

Proof of Theorem 4.4. Recall the proof of Theorem 4.1 until (32). Continuing this argument of
finding a finite set of possible breakplanes of λTX(L) as a function of b(L−l), plugging them in to
X(L) and further expanding λTX(L) as a function of b(L−l−1) until l=L−2 shows that for each
fixed W(1), there is a finite set of optimal b(1), which determines a finite set of optimal b(2), and
so on determining a finite set of all other possible b(l). We also see that for all l>1, W(l)=1 and
W(l)=−1 are both optimal. Furthermore, the optimal values of b(l) include

b(l)=−X
(l)

n(L−l)W
(l) (48)

for n(L−l)∈[N ]. We can express X(L)
n as a function of W(1), generalizing (33). Next, partition Rd

into a finite set of polytopes P1, · · · ,Pp corresponding to all possible sign patterns of activation
arguments (generalizing (35)). The objective linearizes for W(1) within each polytope, so maz-
imizing

∣∣λTX(L)
∣∣ is equivalent to maximizing over the finite set of extreme points of the polytope,

generalizing (37). So the dual constraint (29) consists of a finite set of linear constraints. As in the
proof of Theorem 4.1, the bidual of the training problem is a Lasso problem whose dictionary columns
are X(L)(X) (generalizing (41)) over all possible optimal W(1),b(l). A similar reconstruction as
Definition E.2 of an optimal neural network from a Lasso solution holds and shows that the Lasso
problem and the training problem are equivalent. And (48) shows that the dictionary contains a data
feature sub-library. Note that the 4-layer features plotted in the middle and right plots of Figure 2
depict W(1) as orthogonal to the difference of training samples. By a similar argument as the proof
of Theorem 4.1, this property holds for deeper layers as well.

F DEEP FEATURES WITH HIGHER ORDER REFLECTIONS

We define x to be an order-l reflection of a set S(l)= {x0, · · ·,xk} if x can be written recursively
in the form Rl=Rl(S(l))∈

{
R(Rl−1(S(l−1)),x′), R(x′,Rl−1(S(l)))

}
where S(l−1)⊂S(l) with possi-

bly repeating elements and
∣∣S(l)

∣∣=l+1. Note that an order-k reflection is also an order-j reflec-
tion for any j ≥ k. In the following lemma, let a(L), b(L)∈R, c(L)∈RN , j1, · · · , jL∈[N ]. For
l∈[L−1], recursively define a(l)=

∣∣∣a(l+1)−c
(l+1)
jl+1

∣∣∣ , b(l)= ∣∣∣b(l+1)−c
(l+1)
jl+1

∣∣∣ , c(l)jl
=
∣∣∣c(l+1)

jl
− c

(l+1)
jl+1

∣∣∣.
Let S(l)=

{
a(l), b(l)

}
∪
{
c
(l)
l′ : l′ ≤ l

}
. We will see that this recursively models the structure of

a feature function in a data feature sub-library.

Lemma F.1. Let l∈[L]. Let R(l,+)
0 =R

(l,−)
0 =R(a(l),b(l)). For l′∈{0, · · ·, L−l−1}, there exist l+l′+1-

order reflections R(l+l′+1,+)
2(l′+1) , R

(l+l′+1,−)
2(l′+1) of S(l+l′+1) such that

R
(l+l′,±)
2l′ ∈

{
R

(l+l′+1,+)
2(l′+1) − c

(l+l′+1)
l+l′+1 , c

(l+l′+1)
l+l′+1 −R

(l+l′+1,−)
2(l′+1)

}
. (49)

for R(l+l′,±)
2l′ ∈

{
R

(l+l′,+)
2l′ , R

(l+l′,−)
2l′

}
.
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Proof of Lemma F.1. Observe that for any l,

R(a(l),b(l))=R(∣∣∣a(l+1)−c
(l+1)
jl+1

∣∣∣,∣∣∣b(l+1)−c
(l+1)
jl+1

∣∣∣)
∈±

{
R(

a(l+1)−c
(l+1)
jl+1

,b(l+1)−c
(l+1)
jl+1

), R(
a(l+1)−c

(l+1)
jl+1

,c
(l+1)
jl+1

−b(l+1)
)}

=±
{
−a(l+1)+2b(l+1)−c

(l+1)
jl+1

,−a(l+1)−2b(l+1)+3c(l+1)
}

=±

R(a(l+1),b(l+1))−c
(l+1)
jl+1

=c
(l+1)
jl+1

−R(
R
(a(l+1),b(l+1))

,c
(l+1)
jl+1

),

Ra(l+1),R(
b(l+1),c

(l+1)
jl+1

)
−c

(l+1)
jl+1

=c
(l+1)
jl+1

−RR(
a(l+1),c

(l+1)
jl+1

),b(l+1)



 .

(50)

Therefore for some a(l+1)′ , b(l+1)′ , c(l+1)′ ∈
{
a(l+1), b(l+1), c

(l+1)
jl+1

}
and

R
(l+1,+)
2 , R

(l+1,−)
2 ∈

R(
R
(a(l+1)′ ,b(l+1)′)

,c(l+1)′
), R(

c(l+1)′ ,R
(a(l+1)′ ,b(l+1)′)

)
 (51)

which are order-2 reflections of
{
a(l+1), b(l+1), c

(l+1)
jl+1

}
, we have

R(a(l),b(l))=
{
c
(l+1)
jl+1

−R
(l+1,−)
2 = R

(l+1,+)
2 − c

(l+1)
jl+1

}
. (52)

Applying (52) for l′ = l + 1 gives

R(a(l+1),b(l+1)) ∈
{
c
(l+2)
jl+2

−R
(l+2,−)
2 = R

(l+2,+)
2 − c

(l+2)
jl+2

}
(53)

for some R
(l+2,+)
2 , R

(l+2,−)
2 that are order-2 reflections of

{
a(l+2), b(l+2), c

(l+2)
jl+2

}
. Plugging (53)

into (51) shows that for R(l+1,±)
2 ∈

{
R

(l+1,+)
2 , R

(l+1,−)
2

}
we have

R
(l+1,±)
2 = R(

R
(a(l+1)′ ,b(l+1)′)

,c(l+1)′
)

= 2
∣∣∣c(l+2)′ − c

(l+2)
jl+2

∣∣∣− {c(l+2)
jl+2

−R
(l+2,−)
2 = R

(l+2,+)
2 − c

(l+2)
jl+2

}
∈
{
−c

(l+2)
jl+2

+ 2c(l+2)′ −R
(l+2,+)
2 , c

(l+2)
jl+2

− 2c(l+2)′ +R
(l+2,−)
2

}
=

R(
R

(l+2,+)
2 ,c(l+2)′

) − c
(l+2)
jl+2

=c
(l+2)
jl+2

−R(
R
(R(l+2,+)

2 ,c(l+2)′)
,c

(l+2)
jl+2

),

= c
(l+2)
jl+2

−R(
R

(l+2,−)
2 ,c(l+2)′

)=R(
R
(R(l+2,−)

2 ,c(l+2)′)
,c

(l+2)
jl+2

) − c
(l+2)
jl+2



(54)

or alternatively,
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R
(l+1,±)
2 = R(

c(l+1)′ ,R
(a(l+1)′ ,b(l+1)′)

)

= 2
{
c
(l+2)
jl+2

−R
(l+2,−)
2 = R

(l+2,+)
2 − c

(l+2)
jl+2

}
−
∣∣∣c(l+2)′ − c

(l+2)
jl+2

∣∣∣
∈
{
−c

(l+2)
jl+2

+ 2R
(l+2,+)
2 − c(l+2)′ , c

(l+2)
jl+2

− 2R
(l+2,−)
2 + c(l+2)′

}
=

R(
c(l+2)′ ,R

(l+2,+)
2

) − c
(l+2)
jl+2

=c
(l+2)
jl+2

−R(
R
(c(l+2)′ ,R(l+2,+)

2 )
,c

(l+2)
jl+2

),

c
(l+2)
jl+2

−R(
c(l+2)′ ,R

(l+2,−)
2

)=R(
R
(c(l+2)′ ,R(l+2,−)

2 )
,c

(l+2)
jl+2

) − c
(l+2)
jl+2



(55)

for some c(l+2)′∈
{
a(l+2), b(l+2), c

(l+2)
jl+1

}
. Therefore (54) and (55) show that in all cases,

R
(l+1,±)
2 ∈

{
R

(l+2,+)
4 − c

(l+2)
jl+2

, c
(l+2)
jl+2

−R
(l+2,−)
4

}
(56)

for some order-4 reflections R(l+2,+)
4 , R

(l+2,−)
4 of

{
a(l+2), b(l+2), c

(l+2)
jl+1

, c
(l+2)
jl+2

}
.

Applying a similar argument used to reach (56) for l′ = l + 2 shows that

R
(l+2,±)
2 ∈

{
R

(l+3,+)
4 − c

(l+3)
jl+3

, c
(l+3)
jl+3

−R
(l+3,−)
4

}
(57)

for some order-4 reflections R(l+3,+)
4 , R

(l+3,−)
4 of a(l+3), b(l+3), c

(l+3)
jl+2

, c
(l+3)
jl+3

. Now plug (57) into
the last lines of (54) and (55). Applying the same argument as (54) and (55) but changing the
reflection order subscripts from 1 to 2 and from 2 to 4, and adding 1 to the layer superscripts
l + 1, l + 2 shows that

R
(l+2,±)
4 ∈

{
R

(l+3,+)
6 − c

(l+3)
jl+3

, c
(l+3)
jl+3

−R
(l+3,−)
6

}
(58)

for some order-6 reflections R(l+3,+)
6 , R

(l+3,−)
6 of

{
a(l+3), b(l+3), c

(l+3)
jl+1

, c
(l+3)
jl+2

, c
(l+3)
jl+3

}
.

Comparing (52), (56), (58) and repeating the same argument shows that

Rl
1 = R(a(l),b(l))

∈
{
R

(l+1,+)
2 − c(l+1) = c(l+1) −R

(l+1,−)
2

}
R

(l+1,±)
2 ∈

{
R

(l+2,+)
4 − c(l+2), c(l+2) −R

(l+2,−)
4

}
R

(l+2,±)
4 ∈

{
R

(l+3,+)
6 − c(l+3), c(l+3) −R

(l+3,−)
6

}
...

R
(l+l′,±)
2l′ ∈

{
R

(l+l′+1,+)
(2(l′+1) − c(l+l′+1), c(l+l′+1) −R

(l+l′+1,−)
(2(l′+1)

}
.

(59)

This completes the proof.

Proof sketch of Theorem 4.5: We can easily show that 2 and 3-layer networks can be written
using reflections. We extend this to deeper layers by first showing that reflections of X(l) can be
expressed as higher order reflections of X(k) for k<l (Lemma F.1). Then, we recursively plug the
higher-order reflections into the deeper networks (63). This will show that for l>2, the neural net is
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X(L)=
∣∣∣X(L−l)−R

(L−l)
2(l−3)

∣∣∣ for some order-2(l−3) reflection of the parallel units (features) at layer
L−l. Finally, plug in l=L−1.

Proof of Theorem 4.5. The features fj(x) (11) of the data feature sub-library have bias parameters
(12). In other words, fj(x)=X(L)(x) where for all l∈[L−1] there exists jl∈[N ] such that for all
x∈Rd,

X(l+1)(x) =
∣∣∣X(l)(x)−X(l)(xjl)

∣∣∣ . (60)

For shorthand, denote X(l)=X(l)(x),X
(l)
j =X(l) (xjl). Then

X(L) =
∣∣∣X(L−1) −X

(L−1)
jL−1

∣∣∣
=
∣∣∣∣∣∣X(L−2) −X

(L−2)
jL−2

∣∣∣− ∣∣∣X(L−2)
jL−1

−X
(L−2)
jL−2

∣∣∣∣∣∣
∈
{∣∣∣X(L−2) −X

(L−2)
jL−2

∣∣∣ , ∣∣∣∣X(L−2) −R(
X

(L−2)
jL−1

,X
(L−2)
jL−2

)∣∣∣∣} .

(61)

Therefore
X(L) =

∣∣∣X(L−2) −R
(L−2)
1

∣∣∣ (62)

for some order-1 reflection R
(L−2)
1 ∈

{
R(

X
(L−2)
jL−2

,X
(L−2)
jL−2

), R(
X

(L−2)
jL−1

,X
(L−2)
jL−2

)}. Expand

X(L−2) in (62) with (60) and apply Lemma F.1 to R
(L−2)
1 . Specifically, we set

a(l), b(l)∈
{
X

(L−2)
jL−1

,X
(L−2)
jL−2

}
, let ja, jb be the subscripts (jL−1 or jL−2) of a(l), b(l), and let

a(l+1)=X
(L−3)
ja

, b(l+1)=X
(L−3)
jb

, c(l+1)=X
(L−3)
jL−3

in (52). This yields

X(L) =
∣∣∣∣∣∣X(L−3) −X

(L−3)
jL−3

∣∣∣− {R(L−3,+)
2 −X

(L−3)
jL−3

= X
(L−3)
jL−3

−R
(L−3,−)
2

}∣∣∣
=
∣∣∣X(L−3) −R

(L−3,±)
2

∣∣∣ . (63)

Next, repeat the same argument (63) but use (57) instead of (52) to get X(L)=
∣∣∣X(L−4) −R

(L−4,±)
2

∣∣∣.
Continue repeating the same argument by using (49) for general l. Specifically, for fixed ja, jb ∈ [N ],
for all l ∈ [L], let a(l)=X

(L−l)
ja

, b(l)=X
(L−l)
ja

and c
(l)
jl
=X

(L−l)
jL−l

in (57). We arrive at X(L) =∣∣X−R2(L−3)

∣∣. Thus for L > 3, the neural net has breakplanes at reflections of training data of up
to order-2(L− 3). The network has breakplanes at reflections of order 0 for L = 2 and order 1 for
L = 3 (62), respectively.
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