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ABSTRACT

We show that training deep neural networks (DNNs) with absolute value activa-
tion and arbitrary input dimension can be formulated as equivalent convex Lasso
problems with novel features expressed using geometric algebra. This formulation
reveals geometric structures encoding symmetry in neural networks. Using the
equivalent Lasso form of DNNs, we formally prove a fundamental distinction
between deep and shallow networks: deep networks inherently favor symmetric
structures in their fitted functions, with greater depth enabling multilevel sym-
metries, i.e., symmetries within symmetries. Moreover, Lasso features represent
distances to hyperplanes that are reflected across training points. These reflection
hyperplanes are spanned by training data and are orthogonal to optimal weight
vectors. Numerical experiments support theory and demonstrate theoretically
predicted features when training networks using embeddings generated by Large
Language Models.

1 INTRODUCTION

Recent advancements have demonstrated that deep neural networks are powerful models that can
perform tasks including natural language processing, synthetic data and image generation, classifica-
tion, and regression. However, research literature still lacks in intuitively understanding why deep
networks are so powerful: what they "look for" in data, or in other words, how each layer extracts
features. We are interested in the following question:

Is there a fundamental difference in the nature of functions learned by deep
networks, as opposed to shallow networks?

We answer this question by transforming non-convex training problems into convex formulations and
analyzing their structure. We show that deep nets favor symmetric structures, with greater depth
representing multilevel symmetries encoded via reflections of reflections of data points.

A neural network of depth L is a parameterized function f, (- ;6) : R*¢ — R of the form
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The trainable parameters are the outermost weights o; €R, an external bias £€R; and the inner
weights WD eR™ 1™ and inner biases b(") R*™! for each layer [. There are m;=mpm;
neurons in each layer. The activation function is o : R—R. Note that m{,=d, which is the input data
dimension, and m/, _;=1. Let N be the number of training samples and X€R™*? be the training
data matrix, where each row of X is a training sample x,, ER'*?. The neural network extends to
matrix inputs row-wise. We consider regression problems, although the results can also be applied to
classification problems. The target or label vector is y R . The neural network training problem is
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where 0= { WD b0 q; ¢ :ielmy],1€[L—1]} denotes the set of trainable parameters and © is
the parameter space. The regularization parameter is 3>0, which is fixed. The [; regularization
penalty in (2) is used for analytical tractability and it is known that I, regularization can approximate
I, regularization Pilanci| (2023a)). Our results generalize to other convex loss functions in addition to
l5 loss, and also applies to the case when §—0 by using the minimum norm problem (14). Neural
networks (T)) and their training problems (2)) are non-convex, which can make understanding and
training even shallow neural networks challenging. We provide a foundational analysis that isolates
the effect of neural network depth by focusing on the deep narrow network. The deep narrow network
is a special case of (I) with absolute value activation o(x)=|z|, arbitrary depth L, and a width
mi=---=mp=m that is arbitrary but constant across layers:

fL(X;9)=Z
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‘XW(ivl) + b(ivl) U)(i’Q) + b(iaQ) . w(iaL_l) + b(ivL_l) o + é’ (3)

Except for W1 €R?, all trainable parameters in the deep narrow network are scalars, as denoted
by the lowercase, non-boldface text in (3]). The total number of neurons across each of the L layers is
m. We show that increasing the number of layers in a deep narrow network even with the constant
width m;=- - -=m_1=m enables the network to learn richer features.

The deep narrow network uses absolute value activation instead of the more standard ReLU. The
absolute value activation is a symmetric function and this allows for tractable, simpler formulations
of neural network features. The absolute value activation is equivalent to the ReLLU activation in
2-layer networks with skip connections (Zeger et al., 2024). Moreover, neural networks with absolute
value activation have been shown to perform comparably to ReLLU and have advantages such as no
exploding or vanishing gradients, making them suitable for deep networks (I.Berngardt, 2023)) and
outperforming other activations in computer vision (Vallés-Pérez et al., 2023). Our results suggest
that absolute value activations are especially primed to capture reflections and symmetries in the data,
leading to their representation power. Extensions to ReLU networks are discussed in Section {.1]

Recently, (Pilanci, [2023b) described neural network features using geometric algebra, also known as
Clifford algebra. Geometric algebra is an extension of vector algebra that centers around geometric
operations such as translation and reflections (Perwass et al., 2009} [Berger, 20095 |(Chisolml, [2012]).
Geometric algebra provides a unified framework for expressing laws of physics (Doran & Lasenby,
2003} |Hestenes}, 2003)) and has applications in computer graphics (Vince} 2008). Geometric algebra
generalizes vector operations such as cross products, inner products, and outer products from a
geometric perspective Berger| (2009). The use of geometric algebra, which is well-studied, also opens
doors to potentially deep connections or applications to physics. In this work, we extend (Pilanci,
2023b)) and leverage geometric algebra to examine the connection between deep neural networks and
Lasso problems. A Lasso problem is a convex optimization problem of the form
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where A is a dictionary matrix, and its columns A;€R”Y are feature vectors. We will show that the
Lasso problem and the deep narrow network training problem are equivalent (Theorem [4.4). The
Lasso problem, its solution set, and solvers for it are well-studied (Efron et al., 2004; Tibshirani,
1996;[2013). Thus the Lasso model sheds new light on the training and geometric interpretability of
neural networks. For training, the convexity of the Lasso problem implies that all of its stationary
points are optimal, which prevents convergence to sub-optimal local minima that can occur with the
non-convex training problem (2). Moreover, there are efficient and interpretable algorithms such as
Least Angle Regression (LARS) for solving the Lasso problem (Efron et al., [2004)).

In terms of geometric interpretability, the [; regularization in the Lasso problem (@) favors a sparse
solution for z. The dictionary columns A; where z;7#0 constitute a sparse set of feature vectors that
we will show correspond to feature functions defining an optimal neural network. We will also show
that the features can be expressed using volumes and wedge products defined in geometric algebra,
and that they measure distances to reflection planes spanned by subsets of training data. For a, beR?,
the reflection of a about b is R, p)=2b—a. With respect to b, a and R, 1) have a single-level
symmetry. Higher-order reflections can be defined to create deeper levels of symmetry (Section[d.2)).
Neural networks encode reflection planes that are based at training data and their reflections about
each other, and which are orthogonal to neuron weights.



Significance: The Lasso model elucidates a quantitative difference between shallow and deep
networks. Deep networks exploit multilevel symmetries through reflections that capture increasingly
more complex relations between data as networks deepen. Every layer in a network creates more
layers of reflective symmetry (see Figure [2).

1.1 RELATED WORK

Convexifying neural networks has been studied in (Bachl 2017; Bengio et al., 2005} Fang et al.,
2019). However, these works assume that the network has infinite width, limiting their practical
application. Recently, the training problem for finite-width, shallow ReLLU networks has been shown
to be equivalent to a convex reformulation with group norm regularization (Ergen & Pilancil |2020;
2021} |Pilanci & Ergen, [2020).

The use of geometric algebra for neuron operations is explored in (Brehmer et al.l |2023; Ruhe
et al.,|2023). In contrast, our work uses conventional, real-valued neuron weights but interprets the
features using geometric algebra. [Pilanci| (2023b) uses geometric algebra to formulate 2 and 3-layer
ReLU neural network training problems as convex Lasso problems with features that represent high-
dimensional volumes of polytopes spanned by training data. From the Lasso problem, an optimal
network can be reconstructed, and its weights are orthogonal to the training data. The input data is of
arbitrary dimension.

Zeger et al.|(2024) shows that for 1-D input data and a variety of activation functions and arbitrarily
deep networks, the training problem can be written as a Lasso problem. Moreover, for absolute value
activations, simple networks with 1-D input exhibit features that represent reflections of training data,
demonstrating that neural networks learn geometric features.

In this paper, we extend [Pilanci (2023a) and |Zeger et al.|(2024) to prove that neural networks with
absolute value activation and arbitrary input dimension and depth can be reformulated as equivalent
Lasso problems with reflection features, using geometric algebra. The Lasso model suggests that
larger models learn features related to symmetries in the data. This work differs from [Pilanci| (2023a))
by considering absolute value instead of ReLU activation, which introduces new reflection features,
and differs from Zeger et al.|(2024) by considering arbitrary d-dimensional input instead of 1-D data.
This work provides foundational analysis of networks with arbitrary dimensional data as functions
that represent higher levels of reflections as networks deepen.

Unlike prior work, this work also reveals a sparsity factor, which is the ratio of [y and I; norms of
a vector, in a network’s equivalent Lasso model, which encourages parsimonious solutions. This
sparsity factor has also been studied in (Yin et al2014; Xu et al., [2021)). Additionally, this paper
proves that the reflection complexity grows linearly with the number of layers in a deep narrow
network. The reflection features suggest that networks such as Large Language Models (LLMs) may
learn analogous structures and concepts in language. The presence of geometric structures in LLMs
has been studied in (Park et al., [2024)). Neural networks trained using LLM embeddings appear to
learn the features predicted in Lasso models (Section [5).

1.2 CONTRIBUTIONS
We show the following:

* Training deep narrow networks of arbitrary depth is equivalent to solving convex Lasso
problems with a finite set of features representing multilevel symmetries via reflections of
increasing complexity (Theorem [4.4] Theorem [4.5).

* There are explicit Lasso dictionaries for 3-layer networks, and reconstructions of optimal
networks from corresponding Lasso models. The reconstructed, optimal first-layer weight is
orthogonal to a subset of augmented training data (Theorem [.T).

* Networks with 3 layers can be described in terms of geometric algebra. They measure
volumes spanned by training data and distances to reflection planes (Theorem [.T)).

* Neural networks trained using LLM text vector embeddings learn similar features as Lasso
models (Section[5] Appendix [C).



1.3 NOTATION

Let ¢;€R? denote the i canonical basis vector. Let [d]={1,---,d}. The number of non-zero
elements in a vector z is ||z||o. Neural network inputs, parameters, and outputs are all real-valued.
Vol(vy, - -+, v4) is the unsigned volume of the polytope spanned by v1, - -, vg4.

2 BACKGROUND: GEOMETRIC ALGEBRA

Consider the Euclidean vector space R? with a scalar product (also called a inner or dot product
for vector inputs). A geometric algebra over R? is a vector space G (over the scalar field R)
of elements called multivectors, equipped with an associative binary operation called a geometric
product that satisfies the following: (i) G? contains R? and is closed under the geometric product, (ii)
geometric product is bilinear and distributes over addition, (iii) scalar multiplication is associative
and commutative with the geometric product, (iv) the geometric product of a vector with itself is
equal to the scalar product of the vector with itself [Perwass et al.| (2009).

The geometric product of A, BEG? is denoted as AB. It can be shown that the geometric product
of the basis vectors ¢;, e; of RYCGY satisfy e;e;=1 and e;e;=—eje; Perwass et al. (2009). Every
multivector is a linear combination of basis blades, which are multivectors that are geometric products
of the form E=eg1)- - -eg(ig)=[ ;g €i» Where GC[d] is an ordered set with no repeated elements

and G[i] is its i element. A basis blade E has grade g(E)=|G|. Scalars are defined to have grade 0.
A dot product A-B and wedge product A A B are defined for multivectors in a way that generalizes
the vector inner product and cross product, respectively (Appendix . For vectors A, BERCGY,
AB=A-B+AADB where the dot product represents the projection of A onto B, and the wedge
product represents the signed (oriented) area of the triangle spanned by A and B.

The generalized cross product Berger (2009), Pilanci| (2023a) of vy, - - -, v4_1€R? is defined as

d—1
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where V;=[v1, -, Vi_1,Viy1, -+, Va_1]isa(d—1)x(d—1) square matrix and e; is the i canonical
basis vector. It can be shown that the generalized cross product is a vector that is orthogonal to
Vi, -, Vg_1. Since e;e;=1 and e;e;=—e;e;, the grade of all multivectors in G® is at most d. A
pseudoscalar is a multivector of grade d. The unit pseudoscalar is I=e; - - -, e4. The unit pseudoscalar
inverse is I"1=e - - -e; which satisfies I"'I=1=II"'. The Hodge star operator * : G*—G% is
defined as «(v)= x v=vI~!. If v is a wedge product of vectors, xv represents the orthogonal
complement of their span. It can be shown that the generalized cross product (5) can be equivalently
written as

x4y, =% Al v (6)
It can be shown that the /3 norm of the generalized cross product of vy, -+, v4_1 gives the d—1
volume of the polytope spanned by vy, - - - , v4—1, while the inner product of x?:_ 11 v; with a vector
v gives the volume of the polytope spanned by vy, - - - , v4 (Berger, [2009).

3  PRIOR WORK ON SHALLOW NETWORKS

This section introduces the equivalences established in prior work between simple 2-layer networks
and Lasso problems. The Lasso problems have features representing volumes spanned by training
data. The convex Lasso problem is equivalent to the non-convex training problem: they have the
same optimal value and a network that is optimal in the training problem can be reconstructed from
an optimal Lasso solution. (Zeger et al., [2024)) shows that

Theorem 3.1 ((Zeger et al.,|[2024)). The training problem for a 2-layer deep narrow network and
1-D data is equivalent to a Lasso problem with dictionary elements

A= |z — ] (7

provided that m > ||z*||o, where z* is a solution to the Lasso problem.
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Figure 1: Example of reflection planes for 3-layer neural networks with data in R?.

The dictionary elements |z; — ;| in Theoremmeasure the distance between training samples
x; and x4, or equivalently, their 1-D volume. (Pilanci,2023b) extends this volume interpretation to
higher dimensions as

Theorem 3.2 ((Pilanci, [2023b)). The training problem for a 2-layer ReLU network with bias
parameters set to O and data of arbitrary dimension is equivalent to a Lasso problem with dictionary
elements

o Vol (x4, X, -+, x5, ) B (* (i A X, /\.../\X;dfl))Jr ®
1,] —
I, A==,y e, A A,
where the multi-index j=(j1, -, ja—1) indexes over all combinations of d—1 samples of
X1, XN, €1, 7, €4

In Theorem [3.2] Vol refers to the positive part of the signed volume. Similar results holds for other
2-layer networks, including those with nonzero bias, and with absolute value activation. This work
extends the above results to deeper layers by analyzing deep narrow networks.

4 MAIN RESULTS

In this section, we state our main results on the equivalence between training deep neural networks
and Lasso problems with geometric features. In contrast to shallow networks (Section [3), the deeper
layers enable features to represent reflections of training data.

4.1 3-LAYER NEURAL NETWORKS

We show that 3-layer deep narrow networks are equivalent to Lasso problems with discrete, explicit
dictionaries. Proofs in this section are deferred to Appendix [E] The next result gives the equivalence
between the training problem (2) for 3-layer deep narrow networks (3)) and Lasso models (@), using the
language of geometric algebra (Section. Let Vol(vy, - - -, v4) denote the volume of the parallelotope
spanned by vy, - - -, vq.

Theorem 4.1. The training problem for a 3-layer deep narrow network and d-dimensional data is
equivalent to a Lasso problem with dictionary elements A; ; = f;(x;) defined as

’VO] (Xix;'pxjé 7X;3’ T Xj2(d—1)7X;-2d—1) — Vol (on 7X;‘1’Xj2 7X;3’ o Xj?“*l)ixg-?d—l) ‘
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provided that m>||z*||o, where z*,&* is a Lasso solution. The multi-index
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structed as f3 (x;0) =", 2 fj(x)+&*, and the corresponding optimal W) is orthogonal to
Xjy =Xy Xy oy "Xy

Theorem [4.T] gives a novel characterization of optimal neural networks as Lasso solutions. The-
orem states that we can train a globally optimal network by constructing a dictionary matrix,
solving the Lasso problem (@) using well-known techniques (Efron et all 2004)), and then using a
Lasso solution to reconstruct an optimal network. The dictionary is constructed from differences of
points in an augmented training data set composed of reflections and averages of training data. For
shorthand, we may refer to these augmented data points as the training data. Taking averages of train-
ing data has been used in effective data augmentation to improve the performance of training (Zhang
et al.l 2018). This Lasso equivalence may suggest theoretical reasons underlying this phenomenon.
We now discuss several advantages of using the Lasso problem to train networks and address various
aspects of the model equivalence.

Training benefits: The convexity of the Lasso problem ensures global optimality. In non-convex
problems, training can get stuck in local, suboptimal optima depending on the initialization. The
convex Lasso model avoids this problem. Additionally, using the Lasso model reduces the need to
tune hyperparameters such as the number of neurons m, as m=||z*||o suffices.

Uniqueness: The training problem and Lasso problems may not have unique solutions. (Zeger et al.|
2024) discusses the relationship between the solution set of the training problem with 1-D data and
the set of neural networks reconstructed from all Lasso solutions. Analysis of the Lasso solution sets
and stationary points in the training problem for higher dimensional data is an area for future work.

Complexity: The complexity of finding a Lasso solution with a dictionary of size N x F'is O(N?F)
(Efron et al.,[2004), which is linear in the number of feature vectors F'. F' is finite and can be bounded.

Lemma 4.2. The 3-layer Lasso dictionary A in Theoremconsists of O ((N d)d) feature vectors.
The exponential complexity in d can not be avoided for global optimization of ReLU networks unless
P=NP.

Lemma[4.2]is an overestimate of the dictionary size, since the Lasso dictionary contains repeated
columns and the presence of linearly dependent vectors x, —x;-kﬂ (9) spanning a polytope will
make its volume 0, resulting in a O vector that does not contribute to the Lasso model. To reduce the
computational overhead of creating the dictionary, the dictionary features can be subsampled (Wang
et al.|[2024). (Wang et al.,|2021) suggests that subsampling hyperplanes corresponds to arriving at a
local optima. Another practical usage of the Lasso model is to use it in a polishing step instead of
using it to train the entire model from scratch. Polishing consists of partially training a network with
the non-convex training problem, extracting the breakplanes from the neurons to estimate a Lasso
dictionary, and then using the Lasso estimate to fine-tune the network (Pilanci} 2023b).

Comparison to ReLU: (Zeger et al.,[2024) shows that 2-layer networks with absolute value activation
are equivalent to those with ReLU when the network uses a skip connection, and increasing the width
of ReLU networks with 1-D input data introduces reflection features. Figure [T2]illustrates a reflection
feature occurring in a network trained on 2-D data. This suggests that wider ReL U architectures with
higher-dimensional data will have reflection features, and is an area for future analysis.

Interpretibility: The /; regularization in the Lasso problem selects a minimal number of feature
vectors which are discrete samples of features f; (x). Intuitively, the network learns these features,
as a linear combination of feature functions corresponds to a parsimonious and optimal network.
The features interpolate subsets of the training data. The mapping between the features and optimal
weights is in the Appendix (Definition[E.2)). Theorem[4.T| gives a volumetric interpretation of features.
The features also have geometric algebraic and a distance-based interpretations.

A vector x is sparse if it has few non-zero elements. The sparsity factor of x#0 is

r(x)= Hi“f € {J%’ 1] The sparsity factor is a measure of a vector’s sparseness. If x has one
1

non-zero element, then r(x)=1 and if x is parallel to 1, then r(x):\/—ﬁ. The more sparse

X is, the larger its sparsity factor. Next, given j_i,j0€[N],weRY, define the hyperplanes
H={xeR%(x—x;_,)w=0}, Ho={x€R% (x—x;,)w=0}. The average of the hyperplanes H and

H, is the hyperplane H 4= {XERCI : (xfW) W:O}. The reflection of the hyperplanes H
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Figure 2: Examples of 3-layer (left) and 4-layer (middle, right) deep narrow network features for 2-D
data. Red dashed lines indicate reflection planes (lines in R?).
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Figure 3: Adam-trained neural net with absolute value activation and 2-D training data, of depth 3
(left), 4 (middle), and 5 (right). There are breakplanes at reflections of up to order L—2 of data points.
The 3 and 4-layer networks match the corresponding features shown in the left and right-most plots
of Figure 2] respectively.

across Ho is Hr= {xeRd : (X—R(Hj 1, )> WZO}. These definitions will be used in the next
1M
result to describe network features.

Theorem 4.3. The 3-layer deep narrow network features in Theorem|4. 1| can be written as
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where w= ((XJ2 X)X X (sz(dil) > ST )) . In the reconstructed optimal nerwork, W) is

a scalar multiple of w.

Theorem [4.3] shows that neural network features represent distances to parallel planes containing
averages and reflections of training data. Moreover, these planes are orthogonal to W) and are
spanned by a subset of training data. Theorem[4.3]also describes the features as wedge products, and
gives a formula to explicitly compute the dictionary elements using wedge products or generalized

cross products (3), (6).

Theorem 43| shows that the Lasso dictionary includes reflection features that measure the minimum
distance to two parallel reflection planes: H, which contains x;_,, and H g, which is the reflection
of H across the hyperplane #H, containing x;,. Since distance is an unsigned value, the network
induces a symmetry about the two planes. Figure[T]illustrates an example of reflection planes H, H g
in R3. The right plot of Figure graphs an example feature f;(x) in R?. The feature outputs the
distance between the reflection "planes" ‘H, H r, which are lines in R? and are plotted as red, dashed
lines. These are axes of symmetry encoded in 3-layer features. In the notation used in Theorem 4.1}



Figure T)and the right plot of Figure 2]both graph the case where x|, =x1, X, =X2, X;, =X3, X}, =X1,
(and additionally x;, =x4,x5=x, for Figure[I).

We can interpret reflection planes as concepts. The concepts collect training data into planes, and the
neural network measures the distance, or similarity, between inputs and concepts. The concepts are
based at a training data point, and a point that is not necessarily in the training set: a reflection of a
data point about another data point. In other words, the neural network predicts single-level reflective
symmetries in the data. Intuitively, these symmetries can act as a translation between analogous
concepts across different domains, with reflections representing shifts in structure while preserving
core functionality.

Another way to view the geometry of a feature is by analysing its breakplanes. A piecewise linear
function f : R—R has a breakpoint at x if f changes slope at x. A function g : R™*¢ — R
defined by g(x)=f(xw) where weR? has a breakplane along the plane {x € R*? : xw-+b=0}
if f has a breakpoint at xw. A breakplane of a function is a "kink" in its graph. As seen above,
the reflection hyperplanes are breakplanes of 3-layer networks and create axes of symmetry. The
reflection breakplanes in 3-layer networks generalize to deeper networks, as shown next.

4.2 DEEPER NETWORKS

Here, we extend a Lasso equivalence to deeper networks. For L > 2, the L-layer feature function is a
parameterized function f; : R?—R defined as

|+ 0D (11)

Fi(x) = ‘me n b(l)‘ L@

A feature function (IT) can be viewed as a basic unit of a deep narrow network (3), or a deep narrow
network where m=1, a=1, £=0 and w(*Y=1 for [>1. A feature function has data feature biases if
for n(l):x;-1 ,n ... n(E=D¢g[N], all of its bias parameters are defined recursively as

(12)
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for [e[L—1]. The data feature sub-library is a set of feature functions with data feature biases. The
next result states that deep narrow networks of any depth are equivalent to Lasso problems.

Theorem 4.4. The training problems for deep narrow networks with arbitrary depth and input
dimension are equivalent to Lasso problems with finite, discrete dictionaries. The set of feature
vectors contains a data feature sub-library and consists of feature functions sampled at training
data points. An optimal network is reconstructed as  , z; f;(x) + &*.

The proof is in Appendix [E] Definition [E.2]describes a mapping between features and optimal weights.
Explicit expressions of features written as (T1) for 2 and 3-layer networks is in Remark [E.T] The
data feature sub-library is a set of novel features representing reflections of increasing complexity,
or order. The order of a reflection is defined recursively as follows. An order-0 reflection of a
point xq€R? is simply Ry (xg) =xo. Given points xg, X, the standard reflections R(x,,x,) and
Rx, x,) are order-1 reflections, which create a single-level symmetry of the point being reflected
and its reflection. An order-2 reflection is a reflection of a reflection, which induces a second-level
symmetry around the reflection. In general for k>0, the order-k reflection of X, - - -, x,, €R? is of the
form R (xo, -, Xg)E {R(kal(xo,‘-v 1) vxi) s B, Rie1 (x0,--- ,kal))}~ Figure 4| plots examples
of reflections of order 0,1 and 2 in R2. As seen in Figure 4, in R?, R, 1) is the point on the line
between a and b, whose distance from b is the same as the distance from b to a, creating a symmetry.

Theorem [4.3] states that the features for a 3-layer network measure distances to reflection planes,
which include breakplanes at first-order reflections. The left plot of Figure [2] illustrates an ex-
ample of a 3-layer feature. The weight W) is orthogonal to x3—x; and the breakplanes occur
along H1={(x—x1) W=0} , H={(x—x2) WH=0} and Hr = {(x—R(sx,)) WIH=0}.
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Figure 4: Reflections in R? of different orders. Order 0: a,b,c. Order I: Rapy. Order 2:
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The height of the graph is the minimum of the distance from the reflection planes H and H . Simi-
larly, 4-layer features can have breakplanes that represent first or second-order reflections, as shown
respectively in the middle and right plots of Figure[2] which plots examples of data feature sub-library
features. The peaks and troughs of the features plotted in Figure [2] are breakplanes. The troughs
are indicated by dashed red lines and depict higher-level symmetries and reflection planes. Deeper
networks have the capacity for learning increasingly complex reflection features and multilevel
symmetries.

Theorem 4.5 (Multilevel symmetries). A deep narrow network of arbitrary input dimension and
depth L is equivalent to a Lasso problem with a dictionary containing features with no reflections for
L = 2, standard reflections for L=3, and up to order-2(L—3) reflections for L > 3.

The proof is in Appendix [F] Theorem[.5]shows that each additional layer in a network induces higher
order reflections and deeper levels of symmetry. Theorem 4.5]describes the data feature sub-library in
Theorem [d.4] and shows that the maximum order of reflections in features grows linearly with depth.
A full analysis of the entire dictionary for networks with more than 3 layers is an area for future work.
Nonetheless, our approaches and proof techniques demonstrate the principle of how to find all of the
dictionary elements for deeper networks, as discussed in the proof of Theorem[4.4]

5 NUMERICAL RESULTS

We perform experiments training the standard network

fr(x;0)=0 ( - (0’ (0‘ (XW(l) + b(l)) W(2)+b(2)) . ) W(L_l)—l-b(L_l)) at+€. (13)

where WD R b(MeR, ... WO eR bW eR, WE-DecR>*™m bL-DcR™>™ ¢cR aeR™.
For 2-layer networks, the standard network (T3)) is equivalent to the network (T)), and (I can be
converted into a standard architecture (Zeger et al., [2024). The standard architecture is more
traditional, and we perform experiments on the standard architecture to demonstrate that the Lasso
model can be useful for this architecture as well.

5.1 SIMULATED DATA

In Figure 3} 3,4, and 5-layer networks are trained with Adam. The second coordinate is 0 in
all samples. The data is given in Appendix [C| We first project the 2-D data to 1-D along the first
coordinate and solve the Lasso problem for the 1-D data as 5—0. The minimum (1) norm subject to
interpolation version of the Lasso problem is

mignHzHl st. Az+ &1 =y. (14)
Loosely speaking, as 5—0, if A has full column rank, the Lasso problem approaches the minimum

norm problem (T4)). For 1-D data, an optimal solution to (T4) for certain simple sets of training data
is known (Zeger et al., |2024). After solving the Lasso problem, the non-convex model with the
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Figure 5: 3-layer, followed by 4-layer (right) deep narrow networks trained on text embeddings of
IMDB reviews outputted by OpenAl GPT4 (left-most 2 plots) and Bert (right-most 2 plots). The
network’s predictions are plotted as a function of the input x projected to 1-D as W(1x. True labels
of 1 and —1 are indicated by red and blue, respectively. The networks exhibit multi-level symmetry.

orignal 2-D data is trained with 3=10~"~0, where a minimum norm problem solution is used to
pre-initialize a subset of the neurons. All other weights (we use m=100) are initialized randomly
according to Pytorch defaults. Only one neuron per layer is pre-initialized, and for the neuron weight
in the first layer, the second coordinate is left to random initialization. A learning rate of 5(10~3)
and weight decay of 10~* are used. The data is trained over 103 epochs. A similar experiment is
performed with a ReLU network, which also demonstrates breakplanes at reflections of training data
(Appendix [C]Figure[I2Z). As shown in Figure[3] the networks exhibit breakplanes at data points and
their reflections which are not among the training data. Additionally, the neural networks exhibit
features matching the shapes of those shown in the right and left plots of Figure|[2|for 3 and 4 layers,
respectively. The 5-layer network shows that features gain more complex reflections with depth.

5.2 LARGE LANGUAGE MODEL EMBEDDINGS

We also train neural networks using Adam to perform binary (y,= =+ 1) classification of text and
observe multi-level symmetries. Models from OpenAl GPT4 and Bert are trained to embed text as
vectors, which deep narrow networks are then trained on as input to classify the corresponding text.
The deep narrow networks are trained using the non-convex regression problem (2)). Positive network
outputs are interpreted as y,=1 and negative outputs as y,=—1.

Figure [3 plots predictions of neural nets that are trained to perform sentiment analysis, rating IMDB
reviews as having positive or negative sentiments (Maas et al., 2011). Figure [5] plots the points
(WWx,,,9,) in red and blue, where §,=fr, (x,;0) is the network’s prediction on the training
sample x,, and the color corresponds to the training labels as red for y,,=1 and blue for y,=—1. The
network prediction on all points x is plotted in gray. For any constant c€R, a Lasso feature (TI)
has constant value along {x : W(1x=c}, so projecting the input along W) can be viewed as a
cross-section of the feature.

In general, there are (possibly sub-optimal) weights and biases that can make a deep narrow network
be an asymmetrical function with many breakplanes that do not contain training samples. However,
the trained networks in Figure [5|appear multilevel symmetric with breakplanes at data samples and
resembles the shapes of the 3 and 4-layer reflection features illustrated in Figure [2] In particular,
the 3-layer networks shown in the first and third plots from the left in Figure [5|resemble the 3-layer
network in left plot of Figure[2| while the 4-layer network shown in the second and fourth plots in
Figure [5| resemble the 4-layer network shown in the middle and right plots, respectively, of Figure [2]
This is consistent with the sparse selection of features in the Lasso problem. Appendix [C|contains
training details and additional results. Code from the github repository for|Wang et al.|(2024) was
used to generate the embeddings.

6 CONCLUSION

We prove an equivalence between neural networks and Lasso problems with novel geometric features.
Our convexification approach can be extended to other piecewise linear activation functions Zeger
et al.|(2024). A limitation of this work is the choice of the activation function and the ¢; regularization
of the weights needed for analytic tractability. We believe that multi-level symmetries hold for
standard ReLU networks, which is left for future work.
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7 REPRODUCIBILITY STATEMENT

Proofs of results proved in prior work:

¢ Theorem 3.1} proof in (Zeger et al.| [2024)

* Theorem 3.2} proof in (Pilanci, 2023b)
Proof of results proved in this work:

* Theorem[d.1} proof in Appendix [E]
* Lemmaf4.2} proof in Appendix [E]

* Theorem 4.3} proof in Appendix[E]
* Theorem .4} proof in Appendix [E]

* Theorem .3} proof in Appendix[H

Code is in the supplementary file. Please run "run.ipynb" to generate figures referenced in Section 3]
and Appendix [C]
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A APPENDIX

B GEOMETRIC ALGEBRA

Wedge and inner product: A dot product of multivectors, unlike a dot product of vectors, can
have multivector outputs. The dot or inner product of arbitrary basis blades E1=]];.ga) e; and
Er= Hieg@) e;is B1-Ey=F1 Es if g(F1 E)=|g(F1)—g(F>)|, and 0 otherwise. In other words, if
GMcG®, then E) Es is composed of basis blades in G2 —G(M), and E; E>=0 otherwise. (Simi-
larly if G cGM). The wedge or outer product is defined by EyAFEy=E, Es if F1F5 has grade
g(E1Fy)=g(E1) + g(E3), and 0 otherwise. So if G(VNGU)=(), then E; F, is composed of basis
blades in GVUG®), and otherwise, FE, E5=0. The dot and wedge product extend to multivectors
linearly. A vector is a special case of a multivector vER?CG? of grade 1. For more detailed
background, see Perwass et al.|(2009).

Note that linearly distributing terms and applying e;e; = 1 shows that /\d 1 Vi= /\d 11 Z j=1Vij€;
consists of a sum of d — 1-vectors, so their product with e - - - €1, as implied by the Hodge star
operator in (6) is a vector, which is consistent with (3).

Remark B.1. 1 holds that  (u A (/\ vy)) =ul (xd “'vi) ERand || AN ville = ||>< 1vz||2
This is because

d
_ _ T
N =) ((A?:fvi) (1 €r—1€pt1- -~ed)) €1 eh_1Ckt1 " €d
=t (15)

d
d-1
= E (Xizl Vi)k €1 €k—1€k+1 """ €d

and ejhex=0 if j#k, we have u A (AZ fvz)—zgl,l uje; A (NS fvz)—zgl:l uje; A
((xf 11V1)k) €1+ €j_1€j41" " €q. So *(u/\(/\f fvl)) = uA (/\fl 11v2-) eq---ex =
u (xd “lvi) R From@]) it also follows that || A=} v;||o = Hx v,
Remark B.2. It holds that

>

[*(vi A Avg)| = Vol(vy, -+ ,vg) (16)

and

*(VI A AVY)
||V1 VAR ,/\VdHQ.

Dist (vq,Span(vy, -+ ,vq)) = a7
Here, v1,vs, let Dist(vyi,vs) denote the unsigned Euclidean distance ||vy — val|2 between v
and vy. The distance between a vector v and a set S is min{Dist(v,x) : x € S}. In other words,
Vi A---AVgq_1 is a vector whose magnitude is the unsigned volume of the d — 1-dimensional polytope
spanned by v, - - - Vq_1, which represents the "base" of the d-dimensional polytope P(v1i, - ,Vq)
and is the signed "height" of P(v1,- -+ ,vq), or the distance of v4 to the span of v1,- - Vq. .
Note the Hodge star operator x converts pseudoscalars into a scalars.

C NUMERICAL RESULTS

C.1 SIMULATED DATA

In Figure the training data is (x1,y1=2), (X2, y2=0) for
3 layers, (x1,y1=2), (X2, y2=0), (X3, y3=—1) for 4 layers, and
(x1,y1=1.75), (x2,¥2=0.25), (x3, y3=0.75), (x4, ya=—1.75) for 5 layers, where
x1=(2,0),x2=(0,0),x3=(—1,0),x4=(—1.75,0).

In Figure the same experiment setup as used for Figure [3]is used for a 3-layer network, except
WM eR>2 b eR, W cR2x™ b(L—1cR2%™ and we require all neuron weights in each layer
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have the same magnitude. The data is x; = (4,0),x2 = (3,0),x3 = (1,0),x4 = (0,0),x5 =
(=1,0),y1 = 2,52 = 1,y3 = 0,y4 = 0,y5 = 1. More general architectures are an area of
exploration in future work.

C.2 LARGE LANGUAGE MODEL DATA

We perform the same experiments as in Section [5.2] but with the GLUE data set, specifically GLUE-
CoLA and GLUE-QQP (Wang et al, |2019; |Warstadt et al., |2018; [Socher et al., [2013; [Dolan &
Brockett, 20055 |Agirre et al., 2007; [Williams et al.l 2018}; Rajpurkar et al.; Dagan et al., [2006;
Bar Haim et al.| 2006} (Giampiccolo et al.L [2007; Levesque et al.,|2011; Bentivogli et al.; 2009). GLUE
(General Language Understanding Evaluation) is a benchmark for testing the performance of models
learning language processing. GLUE-CoLA (Corpus of Linguistic Acceptability) contains text that is
to be binary classified whether it is grammatically correct or not. GLUE-QQP (Quora Question Pairs)
contains pairs of questions that are to be binary classified as having the same semantic meaning or
not. Figure [6] Figure[7] Figure[8] Figure[9] Figure[I0] Figure[IT]plot the results. Vector embeddings
from both GPT4 and Bert (Devlin et al., 2019) LLMs are used. As in Figure@ points with y, =1 are
plotted in red, and points with y,,=—1 are plotted in blue. The overall network is plotted in gray. The
training data is plotted with ’x’ and the validation and test data are plotted with ’." markers.

A standard architecture (T3) was trained using Adam with a learning rate of 5(102), weight decay
of 1074, and f=10"". There were N=10* data points, the network had m=10 neurons, and the
network was trained over 100 epochs.

For OpenAI’'s GLUE-ColA input embeddings, 175 epochs and m = 10 were used. For Bert GLUE-
ColA, 125 epochs and m = 5 were used. For OpenAl and Bert GLUE-QQP, 150 epochs and m = 10
were used. For OpenAl and Bert IMDB, 100 epochs and m = 10 were used. These parameters were
chosen based on validation set results.

The networks are trained on the non-convex problem, and their performance is comparable to results
in (Wang et al.||2024). What distinguishes this experiment is demonstrating that networks learn novel
features consistent with Lasso models.

Networks trained on both OpenAl and Bert embeddings exhibit similarities to Lasso features Figure[3]
However, the networks trained on OpenAl embeddings (Figure[6)) have higher accuracy and closer
matches to Lasso features than those trained using Bert. The higher-performing networks trained
using GPT4, such as Figure[6] have striking similarities to Lasso features Figure 3] This is consistent
with the network’s equivalence to the Lasso model, as a network that is optimal in the Lasso problem
is globally optimal. The figures show that when networks get deeper, they change by increasing their
breakplanes, with more breakpoints appearing in the plots.

D NEURAL NET ARCHITECTURE

Note: The notation and some techniques for convexification are similar to (Zeger et al.,[2024)) and
(Pilanci, [2023b)). For finding the Lasso features, we can assume that the data matrix is full column
rank (Pilanci, [2023b)). All of the Lasso equivalences hold provided that m* > ||z||o.

Let L > 2,mo =d,mgr_1 = land m; € Nforl € [L] — {L — 1}. A neural network (I)) can be
recursively defined as

mr
fr (i 0) = 3 XOD6D) 4 g,

i=1
where X (1) is defined recursively as
X+ — (Xu,wwu,l) i b(i,l)) ’ (18)
with initial condition
XD = x.

We can view XD as an input to to the i™ wnit in layer [. Note that for i &

[mz],l € [L], we have X(#) ¢ R ™-1_ The set of regualarized parameters is 6, =
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Figure 7: 3-layer (left column) and 4-layer (right column) deep narrow networks trained on Bert
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Figure 9: 3-layer (left column) and 4-layer (right column) deep narrow networks trained on Bert
embeddings of GLUE-CoLA text. Each row is a different training initialization.
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Figure 10: 3-layer (left column) and 4-layer (right column) deep narrow networks trained on OpenAl

embeddings of GLUE-QQP text. Each row is a different training initialization.
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Figure 11: 3-layer (left column) and 4-layer (right column) deep narrow networks trained on Bert

embeddings of GLUE-QQP text. Each row is a different training initialization.
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o training data

Figure 12: 3-layer ReLU neural net. A breakplane occurs at a reflection of training data, which is not
in the training set.

{W(“), a; i€ mg],l €L — 1]} C 6. All functions extend to vector and matrix-valued inputs
elementwise.

The training problem (2) can be stated generally as

min £y (1, (X:60)) + 2r(0),

where £, : RY — R is called the loss function that is convex and parameterized by y, and

r(0) is a regularization term that penalizes large weight magnitudes. In (2), the loss function is

Ly()=3] - y||§ We can omit the external bias £ from the network f7, (X; ) by absorbing it into

the loss £,. We assume r(6,,) is of the form

- :mL rD) (@ Lo (60 (i,0) L)
0= 35 ()4 32 (00 (wen)

where (%) is a nonnegative function that is positively homogeneous, i.e., for any positive scalar a,
r@&0 (aW) = ar®D (W). In (@), the regularization is 7D (z) = ||z||,.

Lemma D.1. The training problem is equivalent to the rescaled problem

1 . S (ivL) .
e iy By U (X0 + 6; (c) - (20)

Proof. By the AM-GM inequality on (T9), a lower bound on the training problem is

m L-1
min Ly (11 (X:0)) + 5 Z ) [T s (W), @
Consider the minimization problem
mp L-1 ‘
ey G (500) 83 14D [T (Wwe). @
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Problem (22) is an upper bound on (ZI)). Given optimal {W@! «;} in 1), the rescaled parame-
ters W(ivl)l:W(i’l)/r(ivl) (WD) and o)=a; HlL:_l (0D (WD) (and rescaled bias parameters)
achieve the same objective in (22). Hence (22) and are equivalent. Given an optimal parameter
q € {WW)7 ai} in (22), the rescaled parameters ¢’'=| ;| %q (and rescaled bias parameters) achieve
the same objective in the training problem, which is therefore equivalent to (22)). Simplifying 22)

O

gives (20).

Let X(1) = X(1E) | Assume (00 (z) = ||2]];.

Lemma D.2. A lower bound on the rescaled training problem is

_ T <L>’<
max Ly(N) st I;lg@x’)\ XYW < B, (23)

where f*(x) := maxy {ZTX — f(x)} is the convex conjugate of f.
Proof. Find the dual of the rescaled training problem by rewriting it as
mr,
min Ly (z) + Bllafli, st 2= Zlaix@v”. (24)
mrp, )
The Lagrangian of problem (Z4) is L (X, 0) = Ly (z) + B||e||1 — ATz + Z ATX ) oy Minimize
i=1
the Lagrangian over z and ¢ and use Fenchel duality (Boyd & Vandenberghe, |2004). The dual of
@ is
e T~ (i,L) ’ <3
[max Ly(A) st max ‘)\ X < B,i € [mg]. (25)

Observe X (1) is of the same form for all i € [mp]. So the my, constraints in (23] collapse to just
one constraint. Then we can write 23)) as (23).

E DEEP NARROW NETWORK

Let nM ... n(E=Deg[N], Define the breakplane sets KM)={x,w-n} if L=2 and

(L—-2)

gy XESB 4x
= xE=D) Tae 0T U gherwise. For x, €3), let M;=X—1x’, and
n(L—2) 2 J1 1

fr tRISRY, g (W)=M; W
=(X-1xj,)W (26)
Sw tRIS{-L1}Y, S (W)=sign (fxs_l (W)) .

Ford®) € Sy, (RY), let M= (Diag(d(l))—d(l(l)Enm) M, and

n

fd(1>,x;1,n<2) : Rd%RN, fd(1)7x;1,n(2) (W):MQW

1
oo () w
Sd(1>,x;.1 n® 2Rd*>{*1, 1}NXN7 Sd(l),x;1 n(2) (W):Sign (fd(l),x;.1 ,n(2) (W))

27
where - denotes elementwise multiplication and E,,(2) denotes a N x N matrix whose (n(?))™ column
is 1 and all other elements are 0. These functions (26)), (27) represent the sign patterns of a neuron in
the first and second layers. Given n"), n(®) €[N],x €K%, a fixed sign pattern d!) € Sxi. (R%),

let Wes ! (dW) and
J1

24



X(S): {Xn_X;1 }n U {Xn_xn(z) }’n U {xn_R(xn(2) ’a) }n U {61’ e 76d}

-1 ay 28)
AX = {ixl—lAXl Ax; € X<3>} .

d—
<=3 A
Let 6B={W € R?: ||[W||;=1} be the boundary of the [; ball of radius 1.
Proof of Theorem[d1) In a deep narrow network (@), W2 ... WL=1 p(O) ... pL=1)

are scalar-valued and o(z)=|z|. For fixed W ... W1 bO=bO" is oprimal if

(B and analogously for W), We will

b(l)*e arg maxy (1) Mmaxpe+1) -« - MaXp(L—1) ‘Zﬁf:l A X
analyze the constraint of the dual (23):

I&aé( ‘)\TX(L)‘ <B. (29)

Satisfying (29) requires 17A=0, otherwise maxgce [A\T X | =00. So assume 17A=0. We will
use the following property: if f : R — R is a bounded piecewise linear function, arg max, | f(z)]
contains a breakplane (or a breakpoint in R) of f. The objective in the dual constraint (29) is

ATX] = |20, A X | where
X(F= [X(E-DWED D) .

The breakplanes of X ") a5 a function of bE=1 occur at (L= =—XE~DW(L=1) Therefore for
some n'“=De[N], b(Lil)*:7X£f(1L_711))W(L71) is optimal. Now suppose L>2. Plugging (="
into X%L) (30) gives

X(P = [(XED-xU ) ) W)

_ HX£LI,72)W(L72)+b(L72)‘ _ ‘X(L—2) W(L72)+b(L72)H .

n(L—1)

3D

By (BI), for fixed n'“~Y), the set of breakplanes of 3" A X as a function of b(X—2) is
{—x/ oy WE2 x! ek nE=2)€[N]}. So there exists n“ =2 €[N] and x/, ,_, €K
such that

b2 = x L, WD (32)
is optimal.
Now suppose L=3. Let x}, € K, 1) n. By @2), b= — XQIW(U and plugging this into (3T))
gives

= [ e, ) WO (2, ) WO

J1

By (33), the dual constraint (29) is equivalent to the following:

N
max max max max max ) IIlE]iX < ﬂ 3

_ ’ E d d - - 2

WEE(-1,1} W n@EN] xj, €RD dDES,y R dDES 1) 0 0 (R) WD EST (d<“>ﬁ5d(1)1x51_”<2><d<’>)ﬂﬁB

A X
1

n=

1"x=o.
(34)

For each fixed d<1>esx31 (RY)  and d(2)€Sd(1>7x/_ (@ (Rd), the objective term
g1’
X%L): (((anx;l)W(l))dg)— ((Xn(m*X;l)W(l))dS()z))dg) is linear in W, Let

25



B={W € R?: ||W||;<1} be the filled {; ball of radius 1. If we replace 6B by B in (34), the
constraint remains equivalent since the W (1) that maximizes the left hand side of will have
the largest feasible magnitude. Then for each fixed n(*), n(®,x/ ' b(") d(), the left hand side of the
dual constraint (29) is the maximization of a linear function of W over the polytope

P=5y" (4V) NS o e (42) 0B (35)
which is equivalent to the same maximization over the finite set of extremal points of P. Let
E, be a NxN matrix whose (n(?))® column is 1 and all other elements are 0. The first-
layer sign pattern function is the sign of a linear function of W : sign (X — 1X}1)~ The
second-layer sign pattern function can also be written as the sign of a linear function of W, as
Sa,a,n(W)=sign ((Diag(d) — d,E,) (X — 1x/; ) W), where - denotes elementwise multiplica-
tion. Therefore we can apply Lemma 19 in (Pilanci}, [2023b)) as follows. Let I denote an identity

matrix, and let
M,
M = (M> |
I

The size of M is (2N+d)xd. For S C [N], let Mg denote a submatrix of M consisting of the rows
indexed by S. The matrix M depends on x),,d*) and n(?). Let

Ea ;) = {W<1> eR?:38 C [N],|S|=d—1, s.t. M;WM) =0, rank(M,) = d — 1} :
(36)

Let M, denote the i row of the submatrix M. By the orthogonality property of generalized cross
products (Section 2)),
d—

x M

(B

1=

gd(l) ' @ N 0B = {:l: ¢ : rank(MS) =d— 1} C AX 37
X5

1
1+YEse H 1
where AX is defined in @ By Lemma 19 in (Pilanci, [2023b), the set of extremal points of P is

gdm,d(l)’a’n(z):sg (du)) NS3h o o (d@)) NEa) ;. mNIB. (38)
1 i1 1

Therefore for fixed n(1), n(?) a, plugging into (38) gives

U gd(2>,d(1),a,n<2) CAX. 39)
dWESa(RY),dP €S, 1) |, . (2)(RY)
a1

Plugging in (39) as a superset of extremal points of P into (34) shows that the dual constraint (29) is
equivalent to

N
A X(E)
=1

n=

<B,1Tx =o. (40)

max max max max
W@ e{-1,1} n(1) n@e[N] ngl €’Cn(1) (2 WD eAx

Using (T8), we can write (T2) as b() = —X:()l) for I > 1, where W(I') =1 for I’ > 1.
The dual of (0) is the Lasso problem (@) where A; ; is determined by (33), or

A; =X (X). (41)
In @T), X®) (X) is the output of the network X (®) with data matrix X as input, where W) = 1
and b(") determined by (T2) (with x;, = a, i.e. which have i'" element

Ai,j = ‘ ’ (xifxgl) W(l) ’ — ’ (Xn(2) 7X;1) W(l) ‘ ’ (42)
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The Lasso problem is the bidual of the rescaled problem, and therefore a lower bound on it, which
is equivalent to the original training problem. In fact, Remark [E.3| shows that the Lasso prob-
lem is equivalent to the original training problem, and the reconstruction holds. Lastly, rename
jo=n?, j_1=nM). The volume formulation (©) holds from Remarkand (T6). The orthogonality

property of W (1) holds by the orthogonality property of cross products.
O

Proof of Lemma[2} Since j_1,jo, j2,jas - Jja(a—1) € [IN], there are N%*! choices for determin-

ing X1 Xjos Xijgs Xjgs "+ *5 Xjyy - FOreach j_q, jo there are H{w,x }H = 2 options for
. For each j_1, jo, Xy, , there are ’{ X R(xw’x] )} U{ngk_el}le[d]’ =2-+d options for xj_ .
So the total number of options for j is at most 2(INV d+1)(2+d) = O((Nd)?). The complexity for

training a 2-layer network must be exponential in d unless P = NP |Pilanci & Ergen| (2020). O

Remark E.1. The 2-layer feature function is

WD LA, ,Axg_ 1
—_————

d—1
_ Xiz1 AXi 43
f(X) (X Xn(l)) fo;llAXzHl ( )
Similarly the 3-layer feature function is
WO LAy, ,Axg_1 —p®
d—1 =1
_ Xi=1 A% _ ., 1 Ax; m
109 | peE || O RERE

Definition E.2. Given an optimal solution to the Lasso problem whose features are (I1)), the L-layer
reconstruction is as follows. Set a=z*,y=~*, WD =1 for I>1, and for each dictionary column
A,, consider the corresponding W) | b(l) and let WED=W gnd b =b®. For data feature
biases, use (12) for b). For L=3, WOeAx® [@8). This gives a rescaled network. Then, let
Y= |ai|%. Finally change variables as q'=sign(q)v; for q € {«, W(i’l)} and b0 =p D (%)l
for the reconstructed network. For example, a reconstructed 3-layer neural network from a Lasso
solution z*,£* is

xd- Ax?

d—1 j
Xz Ax;

+&£*.

()% (x =5, ) |

(45)

where the index (j) indexes over all possible wl x X,,2) corresponding to the j** feature vector.

j )
Remark E.3. The rescaled network in Definition|E-2|achieves the same value in the rescaled problem
as the Lasso optimal value. Definition|E.2|then "un-scales" the weights in the rescaled network to
give a reconstructed network that achieves the same objective in the original training problem as the
optimal Lasso value. The rescaled network, reconstructed network and the function ), z¥ fjj (x)+¢&*
are all equivalent as functions, but have different interpretations of neuron weights.

Proof of Theoremd.3] The wedge product formulation follows from Theorem #.3] To show the
distance formulation, observe that the features are given by ([@2) as

1506) =[] e =) WO = | (g — ) W (46)
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with W) = W € AX®) [@8), where w= x=! Ax") Let I, and I, be the hyperplanes
defined by (fo(x 2% )) w=0 and <fo(x 2% )> w=0, respectively. Let [ = [; Uls. By
Remark[B.2} ; ' " '

f(x) = min {’(x — %, ) WD

(X B R(Xn<2> vxé'l)) W(l)’}

)

= r(w) min { (e = Xn )| ‘ (%= R ,)) ﬁ } 47
= r(w)min{d(x,11),d(x,l2)}
= r(w)d(x,1).

Now rename jo = n(?), j_; = ji. Observe that if X;IZM then R( Xt ) = Xy A case

2 Xi0%j,

. Xj_q X .
analysis on x, € {%,x]’q} gives (10). O

Proof of Theorem[{.4] Recall the proof of Theorem [{.T] until (32). Continuing this argument of
finding a finite set of possible breakplanes of AT X (%) as a function of b(*~ plugging them in to
X (L) and further expanding AT X (") as a function of b(“~!=1) until [=L—2 shows that for each
fixed W), there is a finite set of optimal b(!), which determines a finite set of optimal b(?), and
so on determining a finite set of all other possible b("). We also see that for all I>1, W()=1 and
W =_1 are both optimal. Furthermore, the optimal values of b(") include

bO=-X), , W (48)

for n(E=D €[ N]. We can express XL as a function of W1, generalizing (33). Next, partition R?
into a finite set of polytopes P, - - - ,’P, corresponding to all possible sign patterns of activation
arguments (generalizing (33)). The objective linearizes for W) within each polytope, so maz-
imizing })\TX(L) | is equivalent to maximizing over the finite set of extreme points of the polytope,
generalizing (37). So the dual constraint (29) consists of a finite set of linear constraints. As in the
proof of Theorem .1} the bidual of the training problem is a Lasso problem whose dictionary columns
are X (1) (X) (generalizing (@T)) over all possible optimal WO b®, A similar reconstruction as
Definition[E.2] of an optimal neural network from a Lasso solution holds and shows that the Lasso
problem and the training problem are equivalent. And #8]) shows that the dictionary contains a data
feature sub-library. Note that the 4-layer features plotted in the middle and right plots of Figure
depict W) as orthogonal to the difference of training samples. By a similar argument as the proof
of Theorem [4.1] this property holds for deeper layers as well. O

F DEEP FEATURES WITH HIGHER ORDER REFLECTIONS

We define x to be an order-/ reflection of a set S(={xq, - - -, x; } if x can be written recursively
in the form R;=R;(SW)e {R(Rl_l(s(l—l)) ) B Rl—l(s(l)))} where SU=DcS® with possi-

bly repeating elements and ‘8 (l)] =[+1. Note that an order-k reflection is also an order-j reflec-

tion for any j > k. In the following lemma, let o), b(")€R, cW RN jy,-- -, j €[N]. For
l€[L—1], recursively define aV)= ‘G(ZH)—C(HU’ b= ‘b(“’l)—c(lﬂ) (D | D) _ L)
’ Ji+1 |? Ji+1 |20 gt Ji41

Let SO={a® bV} U {cl(,l )1 <1\, We will see that this recursively models the structure of
a feature function in a data feature sub-library.

Lemma F.1. Let[€[L]. Let R(()Z’Jr):Rél’f):R(amyb(l)). Forl'€{0,-- -, L—1—1}, there exist |+1'+1-

order reflections R\ 1) RUFIALS) o0 QUAHY) sych that

2(1'+1) 2(17+1)
I+ ,%) (I+1'+1,4) (I4+U+1)  (I+1'+1) (141" +1,-)
RQl’ S {RZ(Z’+1) - Cl+l’+1 ’Cl+l/+1 - R2(1/+1) } . (49)

for R € {RUH, RGO,
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Proof of Lemmal(F{1] Observe that for any [,

R =R
® b , a+] [ (i+1)
(a®,p®) (|a<l+1>_cjl+1 Hb('“)_cml D

e+ {R(G(H—Uc(’“) b(l+1)7c<l+1)) ) R(a(lr+1)7c(,l+1> J.’“Lb(lﬁ—l)) }
Ji41 Ji+41

Ji41 741

—4 {—a(l+1)+2b(l+1)—c§.l“), _a(z+1)_2b(z+1)+3c(l+1)}

141

(50)
_ ) (1)

= £ Blaw parn)) =Cy, =, —R )
Raen 40y,

41 (H_l)*R

R , cjz+1 7cjz+1 )
1 1
al+ )’R(b(l+1) c<.l+l)) R(,,,(l+1) C(l+1)),b(+ )
TIl41 Il

Therefore for some a(+1)" pU+D" (1) ¢ {a(l“) pU+1) cg-l“)} and
b 9 b b 1+1

R{FHD) RUHLT) ¢ R< (51)

, R
’ ’
R(a(l+1>/ Yb(lJrl)/),c(H—l) ) (c(H—l) 7R(a(1+1)/,b(l+1)/)>

which are order-2 reflections of {a(l“), p+1) cﬁiill) } we have

1+1 I4+1,— I+1,+ 1+1
R0 )= {cgm) — R+t = RUFLH) _ o )}. (52)

Ji+1

Applying (32) for I’ =1 + 1 gives

142 4+2,— 142, 142
R(a(“rl),b(l*l)) S {C;-l;:) _ Ré‘k ) — Ré+ +) _ C;:;Q)} (53)

for some RY ™) RIT27) that are order-2 reflections of {a(l+2), bi+2) c;ljf) } Plugging (53)

into (5T) shows that for R{TH*) ¢ {RSH’H, Rg“*f)} we have

41,4+
Ry =R

’
R(a(l+1),,b(l+1)’)’C(l+1) )

_ {C(l+2) _ Rél+2,—) _ Rél+2,+) . c(l+2)}

Ji42 Jit2

_9 ‘C(Hz)' _ )
Ji+2

m

142 1+2)’ +2,4) (142 1+2)/ I+2,—
{_C.§l+2) + 202 - Ré )’ C§l+2) — 2172 4 Ré )}
(54)
(+2)_ (1+2)
R(R;l+2=+),c(l+2)’) T %ips TG4 - R R s\’
(Rgl+2’+) c(+2)/ ) Ciiga

_ (+2) _ (42
= iy R<R(21+2’*>7C<z+2>’)*R (1+2) Cliga
R(R(Ql+2’7),c(l+2)/)’cjl+2

or alternatively,
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R;Z+1,i) _

( (1+1)/ R a(+1)! 4 (141) ))
{ (1+2) l+2,7) _ R(21+2,+) _ c(l+2)} _ ‘C(H—Q)’ _ )

Jl+2 Ji+2 Ji+2

[\

m

{ () g R(+24) _ 142y C(l+2)_2R§l+2’—)+c(z+z)'}

Jl+2 'V Ji42

(55)
(+2)_ (1+2)

- R(C(HZ)’,RéHz'*)) Ciina —Ciis R (42 )
( (142)/ R(l+2 +)) Ji42

(1+2)

— (1+2)
Csz - R(c(H?)',R(ZHl*)) R<

v\ Jee
R(C(L+2)’ R{H2O)) Clilra

142)’ 14+2) p(1+2) (0+2) ;
for some c(+2) ¢ {a( ) p+2) ¢, } Therefore (54) and (33) show that in all cases,

Rng’i) c {Ril+2,+) - C(l+2) C(l+2) _ R§l+2,—)} (56)

Jit2 O Ji+2

for some order-4 reflections R(l+2 +) Rff”’*) of {a(l+2), bp(i+2) cxjf), cﬁjf) }

Applying a similar argument used to reach (36) for I’ = [ + 2 shows that
1+2,+ 1+3,+ 143) (143 14+3,—
Ré : € {R‘(l = C§z+3)’c§i+3) - Rfl )} (57

for some order-4 reflections Ril+3’+), Rfll+3’_) of a(1+3) pi+3) céi'f’), c%jf) Now plug into
the last lines of (34) and (33). Applying the same argument as @ and (33) but changing the
reflection order subscripts from 1 to 2 and from 2 to 4, and adding 1 to the layer superscripts
I+ 1,1 + 2 shows that

Rflz+2,i)e{Rél+3,+) C(l+3) (1+3) R(H—S } (58)

Ji+s .7L+3
for some order-6 reflections R(l+3 +), RéHS’_) of {a(HB), b(+3), c§f+3), U3 (1+3) }
+1 Ji+2 Ji+3
Comparing (32), (56), (58) and repeating the same argument shows that
Rll = R(a<z>,b<z>)
Réz+1,+) S — 141) R§l+1,—)}
4z+2,+) _ U2 0+42) Riﬂr%*)}

R
R

{
RélJrl,i) c {
R {

59
4l+2,j:) c 61+3,+) _ c(l+3),c(l+3) . Rél+3,—)} (59
I+, +) I+ +1,4) 14+ +1 I+0/+1 I+ +1,-)
Ry < {R(2(l’+1) 3 i '- Rioq i) }
This completes the proof. O

Proof sketch of Theorem [4.5; We can easily show that 2 and 3-layer networks can be written
using reflections. We extend this to deeper layers by first showing that reflections of X() can be
expressed as higher order reflections of X(*) for k<! (Lemma|F.1). Then, we recursively plug the
higher-order reflections into the deeper networks (63)). This will show that for [>>2, the neural net is
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X (L) = | X (L= R(Z 13))‘ for some order-2({—3) reflection of the parallel units (features) at layer

L—1. Finally, plug in [=L—1.

Proof of Theorem[.3] The features f;(x) (IT) of the data feature sub-library have bias parameters
(T2). In other words, f;(x)=X)(x) where for all /[€[L—1] there exists j;€[N] such that for all
xeR?,

XD ) = [ XD () =X O ;)| (60)
For shorthand, denote XV =X (x), X;l):X(l) (x;,). Then
x(L) — ‘X(Lfl) X (E-1)
JL—1
_ L-2 (L-2) (L-2) (L-2)
- HX( = X]L 2 ’X]L 1 Xijz ’ (61)
L—2) (L-2)
€ {\X( ~ X Bl it }
Therefore
X () =[x (=2~ R{F)] 62)

for some order-1 reflection REL‘Z)G{R@(@ 2) X(L*Z)),R(X(L 2) x(L— 2))} Expand

Jp—2'""JiL-2 JL—1 " IL—2
X(=2) in (@) with (60) and apply Lemma to R“"?.  Specifically, we set
a® pe {X(L 2 x(E- 2)} let j,,j, be the subscripts (jz_1 or jr_2) of a,b®), and let

JL—1 77 JL—2

141) 3 (L=3) p+1) _x(L=3) (1+1) _x(L=3) . v
alt )_Xja bl )—ij el )—Xjk3 in (32). This yields

{Részs,Jr) X (E=3) _ x(L=3) _RéLfs,f)H

JL-3 JL-3

XL — HX(L—?,) X (L=3)

JL-3

. (63)
=[x — {09

Next, repeat the same argument (63)) but use (57) instead of (52) to get X (/)=

Continue repeating the same argument by using @9) for general [. Specifically, for fixed j,, j» € [N],
for all I € [L], let a(l)ngf_l)7b(l):X§-f_l) and c(l) XD in B7). We arrive at X(£) =

JL—1
|X — Ry1—3) | Thus for L > 3, the neural net has breakplanes at reflections of training data of up
to order-2(L — 3). The network has breakplanes at reflections of order 0 for L = 2 and order 1 for
L = 3 (62), respectively. O

X = i)
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