
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MALLVI: A MULTI-AGENT FRAMEWORK FOR INTE-
GRATED GENERALIZED ROBOTICS MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Task-planning for robotic manipulation tasks using large language models (LLMs)
is a relatively new phenomenon. Previous approaches have relied on training
specialized models, fine-tuning pipeline components, or adapting LLMs with the
setup through prompt tuning. However, many of these approaches lack environ-
mental feedback. We introduce the MALLVi Framework, a Multi-Agent Large
Language and Vision framework designed to solve robotic manipulation tasks that
leverages closed-loop feedback from the environment. The agents are provided
with an instruction in human language, along with an image of the current envi-
ronment state. After thorough investigation and reasoning, MALLVi generates a
series of realizable atomic instructions necessary for a supposed robot manipula-
tor to complete the task. After extracting and executing low-level actions through
the downstream agents, a Vision-Language Model (VLM) receives environmental
feedback and prompts the framework either to repeat this procedure until success,
or to proceed with the next atomic instruction. Our work shows that with careful
prompt engineering, the integration of four LLM agents (Decomposer, Local-
izer, Thinker, and Reflector) can autonomously manage all compartments of a
manipulation task - namely, initial perception, object localization, reasoning, and
high-level planning. Moreover, the addition of a Descriptor agent can introduce a
visual memory of the initial environment state in the pipeline. Crucially, compared
to previous works, the reflecting agent can evaluate the completion or failure of
each subtask. We validate our framework through experiments conducted both in
simulated environments using VIMABench, RLBench and in real-world settings.
Our framework handles diverse tasks, from standard manipulation benchmarks
to custom user instructions. Our results show that the agents communicating to
plan, execute, and evaluate the tasks iteratively not only lead to generalized per-
formance but also increase average success rate in trials. The essential role of the
reflecting in the pipeline is highlighted in experiments.

1 INTRODUCTION

Natural language tasks are rich, contextual, and often complicated —a simple sentence may be bro-
ken down to several smaller subtasks. With the advent of large language models (LLMs), attempts
in the task-planning field for robotic manipulation have shifted to using complex language models.
The question is clear: “How can we ground abstract instructions into robust, feedback-driven exe-
cution in dynamic environments?” As the scope of robotic applications expands, the core challenge
has shifted: robots are no longer asked to repeat narrow, pre-programmed motions, but to understand
flexible instructions and adapt to unpredictable situations. Existing methods have made progress on
this front, typically following two strategies. The first learns behaviors directly from demonstra-
tions, capturing motion trajectories with imitation or policy learning James et al. (2021); James &
Davison (2021); Shridhar et al. (2022). The second relies on vision-language models (VLMs) to
map natural language and visual input into actions Liu et al. (2024); Kim et al. (2024); Brohan et al.
(2023; 2022). Both approaches have been effective in structured settings, but they falter when tasks
involve open-vocabulary commands, new objects, or novel environments, where limited semantic
understanding and adaptability restrict their use in real-world scenarios Zare et al. (2023); Sapkota
et al. (2025).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

LLMs offer a promising path forward. They excel at reasoning and problem decomposition, and can
translate high-level instructions into structured steps or even executable code Imani et al. (2023);
Fang et al. (2024b). Frameworks that harness these capabilities demonstrate that LLMs can serve as
powerful planners for robots Liang et al. (2022); Wang et al. (2024a); Fang et al. (2024a); Zawalski
et al. (2024). However, these systems often operate in an open-loop manner: they generate plans
once, without checking whether execution succeeds in practice. This makes them fragile in dynamic
environments, where errors accumulate and hallucinations —plans that look valid in text but fail
in the real world— can degrade performance Dhuliawala et al. (2023); Ali et al. (2024); Sun et al.
(2024).

Recent research has taken steps toward closing the loop by integrating visual feedback for error
detection and replanning Mei et al. (2024); Pchelintsev et al. (2025); Huang et al. (2022); Skreta
et al. (2024); Huang et al. (2025). Yet, most of these systems rely on a single, monolithic model,
which creates bottlenecks when tasks are ambiguous or when reasoning and perception need to be
specialized. Moreover, relying on unconstrained LLMs/VLMs raises safety concerns, as unchecked
outputs can lead to unsafe or adversarial behaviors Zhang et al. (2025).

In this paper, we introduce MALLVi (Fig. 1), a multi-agent framework for robotic task planning that
directly addresses these challenges. Instead of relying on monolithic models, MALLVi coordinates
specialized agents for perception, planning, and reflection, enabling them to collaborate through a
shared state. At its core, a decomposer agent translates human prompts into atomic instructions
suitable for robotic execution. Subsequent agents handle environmental understanding, object local-
ization, and trajectory planning through a low-level motion planner. A reflector agent continuously
monitors the environment via visual feedback, providing a closed-loop that identifies and reactivates
only the specific failing agent for efficient error recovery. This distributed, feedback-driven de-
sign enables MALLVi to disambiguate instructions, adapt to unexpected changes, and recover from
errors—capabilities essential for real-world deployment.

Specifically, we:

• Propose MALLVi, a distributed framework that introduces a genuine multi-agent archi-
tecture for robotics, combining LLM-based planning with VLM-based monitoring in a
self-correcting process.

• Highlight the novel role of a reflector agent’s targeted feedback loop, enabling reflection,
error recovery, and adaptation through continuous environmental feedback.

• Validate MALLVi in both simulation (VIMABench Jiang et al. (2022), RLBench James
et al. (2020)) and real-world experiments, demonstrating substantial improvements in suc-
cess rate across diverse manipulation tasks in a zero-shot setting.

���

��������� �������������

����
��� ��
���

	�
����� 	
������
����

User Prompt

Atomic
Instructions

Scene
Understanding

Figure 1: The MALLVi framework architecture. The pipeline processes user prompts through spe-
cialized agents: Decompose breaks instructions into atomic steps, Describe provides scene un-
derstanding, Perceive processes visual inputs, Ground localizes target objects, Project generates
motion trajectories, Think coordinates high-level reasoning, Act executes robotic commands, and
Reflect evaluates outcomes to enable iterative refinement and error recovery.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 LLMS AND VLMS FOR ROBOTIC TASK PLANNING

The use of LLMs as high-level planners for robotics has grown rapidly in recent years. Frameworks
such as Code-as-Policies Liang et al. (2022) treat LLMs as translators that convert natural language
into parameterized API calls or executable code. Inner Monologue Huang et al. (2022) was an early
example of incorporating environmental feedback—including success and failure reports—to guide
the LLM’s planning. Subsequent work, such as LLM-Planner Song et al. (2023), demonstrated
few-shot planning for embodied agents by leveraging LLMs to generate sequences of pre-defined
actions. Similarly, Tree-Planner Hu et al. (2024) iteratively constructs a task tree using an LLM,
decomposing high-level goals into a sequence of executable subtasks.

A central challenge in these approaches is the open-loop nature of the initial plans. To mitigate this,
recent research integrates visual feedback into replanning. For example, Replan Skreta et al. (2024)
combines an LLM for initial planning with a VLM to evaluate execution success, triggering replan-
ning upon failure. ReplanVLM Mei et al. (2024) and LERa Pchelintsev et al. (2025) similarly use
VLMs to detect visual errors and guide corrective action. Look Before You Leap Huang et al. (2025)
leverages GPT-4V to verify pre- and post-conditions for each planned step, while CoPAL Joublin
et al. (2024) introduces a self-corrective planning paradigm where the LLM critiques and refines its
own actions. Despite these advances, these systems are largely monolithic and limited in modularity,
often handling planning, perception, and execution in a tightly coupled manner. They typically lack
task-aware decomposition and flexible perception-action pipelines.

2.2 MULTI-AGENT COLLABORATION AND REFLECTION

The concept of using multiple LLM agents to collaborate, debate, or critique each other has proven
effective for complex problem-solving in non-embodied settings Sprigler et al. (2024); Wang et al.
(2024b). This idea is now being applied to robotics. RoCo Mandi et al. (2023) is a seminal work
that introduces dialectic collaboration between multiple LLM-controlled robots for task planning.

Recent multi-agent approaches have further advanced collaboration in planning and manipulation.
Wonderful Team Wang et al. (2024c) presents a multi-agent VLLM framework where agents jointly
generate action sequences from a visual scene and task description, integrating perception and plan-
ning in an end-to-end system. MALMM Singh et al. (2024) employs three LLM agents (Planner,
Coder, Supervisor) to perform zero-shot block and object manipulation tasks, incorporating real-
time feedback and replanning to mitigate hallucinations and adapt to unseen tasks.

Building on prior multi-agent LLM frameworks, our work adopts a modular multi-agent approach
for manipulation. Unlike previous methods, MALLVi tightly integrates perception, reasoning, and
execution in a collaborative agent pipeline, enabling robust adaptation and closed-loop correction in
complex environments.

2.3 OPEN-VOCABULARY PERCEPTION

Robust manipulation requires not just object localization, but context-aware grounding to resolve
ambiguities (e.g., “the red block” when there are multiple, referring to a past block). While foun-
dational models like OWL-ViT Minderer et al. (2022) and Grounding Dino Liu et al. (2023) pro-
vide open-vocabulary detection, they lack situational context. Segmentation models such as the
Segment Anything Model (SAM) Kirillov et al. (2023) offer general-purpose, high-quality seg-
mentation masks across diverse object categories. These capabilities make them well-suited for
downstream tasks such as grasp point extraction, where precise segmentation underpins reliable in-
teraction. However, they do not incorporate contextual reasoning or task grounding. Approaches
such as SayCan Ahn et al. (2022) address this gap by incorporating environmental cues, and recent
VLMs increasingly combine perception, grounding, and reasoning in a unified framework Bai et al.
(2023); Nasiriany et al. (2024). MALLVi builds on these advances by providing a modular, context-
aware perception pipeline that integrates detection, segmentation, and grounding to enable precise
manipulation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHODOLOGY

The MALLVi framework implements a multi-agent, self-correcting pipeline for robotic manipu-
lation. Given a high-level user instruction and a real-time image of the environment, the system
hierarchically decomposes tasks into atomic subtasks, grounds each to visual inputs, plans execu-
tion trajectories, and adaptively refines actions based on feedback. Specialized agents communicate
through object and memory tags, with automatic retry mechanism ensuring action success.

3.1 MULTI-AGENT

���������

Environment State

User Prompt

Environment State

User Prompt

Visual Perception
& Exploration Visual Perception

& Exploration

Multi-Step
Plan

Multi-Step
Plan

Environmental
Feedback

Env
Env

���
���������

���
�������

���
�����

���
��
�����

Figure 2: Comparison between single-agent and multi-agent frameworks.

Single-agent frameworks often struggle with maintaining task focus and performing sequential rea-
soning in complex environments. As illustrated in Fig. 2, MALLVi mitigates these limitations by as-
signing specialized agents to distinct execution aspects. This modular design reduces hallucinations,
supports iterative refinement through closed-loop feedback, and improves overall task execution by
maintaining focus and coherence.

3.1.1 DECOMPOSER-DESCRIPTOR AGENTS

The Decomposer and Descriptor agents operate in parallel at the first stage of the MALLVi pipeline,
providing complementary functions for task execution.

The Decomposer agent converts a high-level instruction into a structured sequence of atomic sub-
tasks. Each subtask corresponds to a primitive action in the Actor agent’s vocabulary (e.g., move,
reach, push) and is annotated with memory tags containing parameters such as object identities,
positions, or contextual references. Subtasks are executed sequentially, with a retry mechanism that
allows failed steps to be reattempted without replanning the entire sequence. Implementation de-
tails, including subtask representation, memory tagging, and fault-tolerant execution, are provided
in Appendix section A.2, and A.3.

The Descriptor Agent generates a coarse representation of the environment using a vision-language
model (VLM). It identifies objects, extracts the spatial relationships between them, and builds a spa-
tial graph representing the scene. This graph enables the agent to reason about object configurations,
constraints, and interactions, providing critical context for downstream perception, grounding, and
planning agents.

By running in parallel, the Decomposer focuses on what needs to be done (task decomposition),
while the Descriptor focuses on where and how in the environment (scene representation and rea-
soning). Together, they align task objectives with environmental context from the outset.

3.1.2 LOCALIZER AGENT

• The Perceptor agent identifies task-relevant objects from the instruction and labels non-
target objects. It refines grasping strategies (as explained in the Projector tool) across mul-
tiple attempts, adapting to subtask failures and improving manipulation precision.

• The Grounder agent localizes objects in the image plane by integrating outputs from multi-
ple detectors (GroundingDINO and OwlV2) to ensure reliable detection even under partial

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

failures. Beyond simple fusion, the agent employs a confidence-based selection mecha-
nism: for each object, it weighs predictions from each detector according to model confi-
dence and consistency with the spatial graph provided by the Descriptor agent. This allows
the Grounder to provide accurate bounding boxes for downstream planning. By combining
multi-model detection and confidence weighting, the Grounder agent ensures robust, high-
fidelity localization essential for manipulation in dynamic and unstructured environments.

• The Projector tool converts visual perception into actionable 3D grasp points, bridging the
gap between scene understanding and robot execution.

Grasp Point Extraction: Leveraging the Segment Anything Model (SAM), the agent iden-
tifies candidate grasp points on objects. Object-specific heuristics are applied to select ap-
propriate points (e.g., edges for cylindrical objects, centers for rigid blocks). A verification
step ensures that each grasp point lies within the object’s segmentation mask, enhancing
reliability and precision.

3D Projection: The extracted 2D grasp points are projected into 3D space using the depth
map and the pinhole camera model. These 3D coordinates are subsequently converted
into joint angles through inverse kinematics, producing executable targets for downstream
planning and manipulation agents.

By integrating grasp point extraction and 3D projection within a single module, the Pro-
jector agent provides a direct and reliable interface between visual perception and robotic
action. This design enables precise and consistent generation of executable 3D targets,
supports closed-loop feedback during task execution, and preserves the modularity of the
MALLVi framework, allowing seamless interaction with downstream planning and manip-
ulation agents.

3.1.3 THINKER AGENT

The Thinker agent is an LLM responsible for translating high-level subtask information into ac-
tionable parameters for execution. It retrieves relevant objects (see section 3.1.1) and determines 3D
grasp points along with any required rotations.

For tasks without prior memory (memoryless), the Thinker selects pick-and-place positions and ro-
tations directly from the grasp points. For atomic instructions with associated memory tags, the
agent identifies either source or target objects using the stored scene representation and spatial re-
lationships, then computes corresponding pick-and-place positions and rotations based on the scene
context.

3.1.4 ACTOR AGENT

The Actor agent executes the subtasks produced by the upstream agent. In both real-world deploy-
ments and benchmark scenarios, the Actor interfaces with the environment through a predefined
API, receiving the action parameters from the Thinker and performing the corresponding manipula-
tion. This modular design allows the Actor to remain agnostic to high-level reasoning or low-level
motion planning while ensuring accurate execution of planned actions.

3.1.5 REFLECTOR AGENT

The Reflector agent is a VLM responsible for verifying the execution of each subtask in real-time.
After the Actor executes a subtask, the Reflector evaluates success using visual feedback. Suc-
cessfully completed subtasks are removed from the execution queue, while failed subtasks trigger a
reattempt from the beginning of the relevant subtask.
We demonstrate that the Reflector agent is essential for executing complex and sophisticated ma-
nipulation tasks, as evidenced by our ablation in Tables 1, 2, and 3. This iterative verification
mechanism provides robust, closed-loop correction, ensuring that errors are detected and mitigated
promptly. By continuously monitoring task execution, the Reflector agent enhances reliability and
generalization across diverse and dynamic manipulation scenarios while preserving the modularity
of the MALLVi framework.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

task-level

Responsibilities

High-Level

� ��
�����������

� 	���������������������
�������������������������
�
����

� ���������������������������

“The main core”
Demposer Agent

Responsibilities

Mid-Level

� ���

� ���

� �������­����������������������������������

“The computer vision toolkit”
Localizer Agent

Responsibilities

Mid-Level

� ��
��

� ��
��

� ��������������������
�
�
����������������������������

“Compilation of compartments”
Thinker Agent

Responsibilities

Low-Level

� �������������������
���������
��������������

� ��
�������������

� ��
����
���

“The doorway to environment”
Actor Agent

Responsibilities

Mid-Level

� �����������������������������������
�

� ��
������
���������������������������������
��������������

� ���
�����������

“Closed-loop controller”
Reflector Agent

task-level

Responsibilities

High-Level

� ���������������������������������������
�������������

� ��

� ����������������������������
���������

“Enabling memory utilization”
Descriptor Agent

Figure 3: Analysis of specialized agents and their roles in a multi-agent system. Each agent functions
at a designated level (high, mid, or low) to address specific components of task execution, including
instruction decomposition, memory utilization, object localization, task reasoning, action execution,
and closed-loop feedback provision.

4 EXPERIMENTS AND RESULTS

We evaluate MALLVi on both real-world manipulation tasks and benchmarked scenarios from
VIMABench and RLBench. These tasks were selected for their alignment with real-world deploy-
ment settings, where the agent receives natural language instructions from users and perceives the
environment solely through streaming camera input.

Real-world tasks: These are designed to reflect common robotic manipulation objectives:

• Place Food – tests accurate object placement.
• Put Shape – evaluates shape-specific placement.
• Stack Blocks – measures precision in stacking.
• Shopping List – requires sequential task execution.
• Put in Mug – tests fine-grained placement.
• Math Ops – evaluates math reasoning.
• Stack Cups – tests repetitive stacking skills.
• Rearrange Objects – requires organizing multiple objects according to instructions.

Examples of task stages are shown in Fig. 5.

VIMABench tasks: We selected a subset of VIMABench partitions with clear real-world ana-
logues:

• Simple Manipulation – evaluates basic object handling.
• Novel Concepts – tests the agent’s ability to generalize to unseen object–instruction com-

binations.
• Visual Reasoning – requires reasoning under perceptual restrictions.
• Visual Goal Reaching – measures scene understanding and goal-directed planning.

RLBench tasks: These tasks require diverse skill sets in simulated environments:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Task Name

Stack Blocks

Sort Shape

Math Operation

Prompt Environment

Stack the blocks in red,
green, blue order, bottom-up

Put the objects into the
correct place

Solve the mathematic
equation

Figure 4: Example of our real-world tasks. Stack Blocks, Sort Shape, and Math Operation each
combine a specific prompt with a physical environment to assess an agent’s ability to act and solve
problems in tangible settings.

• Put in Safe – tests accurate object placement under safety constraints.

• Put in Drawer – assesses sequential and goal-directed manipulation.

• Stack Cups – evaluates repetitive stacking.

• Place Cups – requires fine motor control in constrained settings.

• Stack Blocks – measures precision and planning in multi-step tasks.

4.1 REAL-WORLD TASKS

Real-world tasks capture conventional manipulation and reasoning skills. We reimplemented
MALMM Singh et al. (2024)VoxPoser Huang et al. (2023),ReKep Huang et al. (2024) and used
it as a baseline to evaluate our results in a real-world setting.

Method Place Food Put Shape Stack Blocks Shopping List Put in Mug Math Ops Stack Cups Rearrange Objects

MALMM 75 65 55 70 55 25 50 -
VoxPoser 70 55 40 45 40 15 35 0
ReKep 80 85 75 90 75 60 40 60
Single-Agent 25 10 15 10 30 5 10 0
w/o Reflector 85 60 60 65 55 70 50 45
MALLVi (Ours) 100 95 90 90 80 80 85 75

Table 1: Success rates (%) on 8 real-world tasks with 20 repetitions.

4.2 VIMABENCH TASKS

VIMABench tasks emphasize spatial reasoning, attribute binding, sequential planning, and state
recall. VIMABench consists of 6 partitions and 17 tasks. We addressed 12 tasks in 4 partitions that
were suitable for evaluating our pipeline. We compared our results against a prior work Wonderful
Team Wang et al. (2024c),CoTDiffusion Ni et al. (2024a) and PERIA Ni et al. (2024b) which was
also benchmarked using similar setup and tasks. For more details on our results for each task, refer
to Table 6.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2 3

4 5

Figure 5: A real-world example of the Stack Blocks task. MALLVi is asked to stack the blocks in
the order red, blue and green. The wooden block acts as a distraction.

Method Simple Manipulation Novel Concepts Visual Reasoning Visual Goal Reaching

Wonderful Team 100 85 90 -
CoTDiffusion 86 70 54 44
PERIA 93 78 76 68
Single-Agent 25 10 15 10
w/o Reflector 100 80 30 40
MALLVi (Ours) 100 95 90 73

Table 2: Success rates (%) on VIMABench tasks on 100 repetitions.

4.3 RLBENCH TASKS

RLBench is another simulation platform that provides a large-scale benchmark for instruction-
conditioned control. As a baseline for comparison, we use PerAct Shridhar et al. (2022) that has
experimented using similar tasks.

Method Put in Safe Put in Drawer Stack Cups Place Cups Stack Blocks

PerAct 44 68 0 0 36
Single-Agent 58 73 15 22 42
w/o Reflector 81 89 63 75 78
MALLVi (Ours) 92 94 83 96 90

Table 3: Success rates (%) on RLBench tasks with 100 repetition.

4.4 ABLATION STUDIES

To better understand the contribution of individual components, we conduct the following ablations:

4.4.1 SINGLE-AGENT BASELINE

We collapse all functionality into a single LLM agent, removing explicit task decomposition and
modular specialization. Tables 1,2, and 3 compare this baseline with our multi-agent system. The
results show that, while a single agent can handle simpler tasks, it struggles with compositional

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

reasoning and grounding. In contrast, the multi-agent system leverages specialized agents, leading
to higher accuracy and greater robustness.

4.4.2 WITHOUT REFLECTOR

We remove the Reflector agent, eliminating the retry mechanism. Although subtasks are still exe-
cuted in sequence, no verification step is performed. Tables 1, 2, and 3 compare the system with and
without the Reflector. While the pipeline remains functional without it, verification and retry sig-
nificantly improve reliability and overall task success rates. This is especially apparent for complex
tasks, where potential for error is higher.

4.4.3 OPEN-SOURCE SUBSTITUTION

We replace GPT-4.1-mini (the default MALLVi backbone LLM) with open source models, including
Qwen Qwen et al. (2025) + Qwen-VL Qwen et al. (2025) (3B and 7B) and LLaMA 3 Grattafiori
et al. (2024) + LLaMA-Vision 3.2 (8B and 11B), to evaluate performance gaps between proprietary
and publicly available systems. Table 4 summarizes the results. Although open source models
perform competitively on simple tasks, they underperform on compositional and multimodal tasks.
However, because MALLVi separates the task into several smaller duties for each agent, the pipeline
still generally demonstrates acceptable accuracy relative to model size, indicating a core strength of
our approach.

Method Simple Manipulation Novel Concepts Visual Reasoning Visual Goal Reaching

GPT-4.1-MINI 100 95 95 73
QWEN-3B w/ QWEN-VL 70 54 10 46
QWEN-7B w/ QWEN-VL 85 50 30 62
LLAMA-3.1-8B w/ LLAMA-VISION-3.2-11B 80 50 27 59

Table 4: Success rates (%) on open-source models over 100 repetitions.

5 CONCLUSION

Our MALLVi framework leverages multiple LLM agents to plan and execute robotic manipulation
tasks using closed-loop environmental feedback. Although this design enables robust high-level
planning and iterative task refinement, it still relies on predefined atomic actions for execution,
which constrains adaptability when the robot encounters unforeseen kinematic constraints, contact
dynamics, or highly dynamic environments. This limitation reflects a broader trade-off between
structured multi-agent reasoning and flexible low-level control.

Future work should explore the integration of adaptive execution mechanisms, such as reinforcement
learning or imitation learning controllers, or differentiable motion planning modules. Such exten-
sions would allow atomic actions to be adapted at deployment time, complementing the iterative
reasoning and reflection already provided by the agents. In addition, incorporating more sophisti-
cated perception and grounding modules could improve performance in tasks with novel objects,
complex textures, or highly dynamic scenes.

MALLVi demonstrates that a multi-agent, closed-loop LLM framework can autonomously manage
all key aspects of manipulation tasks, from perception and reasoning to high-level planning and
reflection, leading to improved generalization and success rates. By combining structured reasoning
with adaptive low-level execution, future iterations of MALLVi have the potential to achieve even
greater robustness and autonomy in real-world robotic manipulation.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alexander Herzog, Daniel Ho, Jasmine Hsu,
Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario M Jauregui Ruano, Kyle Jeffrey, Sally
Jesmonth, Nikhil Jayant Joshi, Ryan C. Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Lee, Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kan-
ishka Rao, Jarek Rettinghouse, Diego M Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan,
Alexander Toshev, Vincent Vanhoucke, F. Xia, Ted Xiao, Peng Xu, Sichun Xu, and Mengyuan
Yan. Do as i can, not as i say: Grounding language in robotic affordances. In Conference on
Robot Learning, 2022.

Hassan Ali, Philipp Allgeuer, Carlo Mazzola, Giulia Belgiovine, Burak Can Kaplan, and Stefan
Wermter. Robots can multitask too: Integrating a memory architecture and llms for enhanced
cross-task robot action generation. 2024 IEEE-RAS 23rd International Conference on Humanoid
Robots (Humanoids), pp. 811–818, 2024.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond. 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alexander Herzog, Jasmine Hsu, Julian Ibarz, Brian
Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J. Joshi, Ryan C. Julian, Dmitry
Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla,
Deeksha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez,
Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael S. Ryoo, Grecia Salazar, Pannag R. San-
keti, Kevin Sayed, Jaspiar Singh, Sumedh Anand Sontakke, Austin Stone, Clayton Tan, Huong
Tran, Vincent Vanhoucke, Steve Vega, Quan Ho Vuong, F. Xia, Ted Xiao, Peng Xu, Sichun Xu,
Tianhe Yu, and Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale.
ArXiv, abs/2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Krzysztof Choromanski, Tianli
Ding, Danny Driess, Kumar Avinava Dubey, Chelsea Finn, Peter R. Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander
Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil J. Joshi, Ryan C. Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Isabel Leal, Sergey Levine, Henryk Michalewski, Igor Mordatch, Karl
Pertsch, Kanishka Rao, Krista Reymann, Michael S. Ryoo, Grecia Salazar, Pannag R. Sanketi,
Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut, Huong Tran, Vincent Vanhoucke,
Quan Ho Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart, Ted Xiao, Tianhe Yu, and Bri-
anna Zitkovich. Rt-2: Vision-language-action models transfer web knowledge to robotic control.
ArXiv, abs/2307.15818, 2023.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz,
and Jason Weston. Chain-of-verification reduces hallucination in large language models. ArXiv,
abs/2309.11495, 2023.

Kuan Fang, Fangchen Liu, Pieter Abbeel, and Sergey Levine. Moka: Open-world robotic manipu-
lation through mark-based visual prompting. Robotics: Science and Systems XX, 2024a.

Meng Fang, Shilong Deng, Yudi Zhang, Zijing Shi, Ling Chen, Mykola Pechenizkiy, and Jun Wang.
Large language models are neurosymbolic reasoners. ArXiv, abs/2401.09334, 2024b.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Andrew Harltey and Andrew Zisserman. Multiple view geometry in computer vision (2. ed.). 2006.
URL https://api.semanticscholar.org/CorpusID:8641226.

Mengkang Hu, Yao Mu, Xinmiao Chelsey Yu, Mingyu Ding, Shiguang Wu, Wenqi Shao, Qiguang
Chen, Bin Wang, Yu Qiao, and Ping Luo. Tree-planner: Efficient close-loop task planning with
large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=Glcsog6zOe.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Tomas Jackson, Noah Brown, Linda
Luu, Sergey Levine, Karol Hausman, and brian ichter. Inner monologue: Embodied reasoning
through planning with language models. In 6th Annual Conference on Robot Learning, 2022.
URL https://openreview.net/forum?id=3R3Pz5i0tye.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023.

Wenlong Huang, Chen Wang, Yunzhu Li, Ruohan Zhang, and Fei-Fei Li. Rekep: Spatio-temporal
reasoning of relational keypoint constraints for robotic manipulation. ArXiv, abs/2409.01652,
2024. URL https://api.semanticscholar.org/CorpusID:272367253.

Yuheng Huang, Jiayang Song, Zhijie Wang, Shengming Zhao, Huaming Chen, Felix Juefei-Xu, and
Lei Ma. Look before you leap: An exploratory study of uncertainty analysis for large language
models. IEEE Transactions on Software Engineering, 51(2):413–429, February 2025. ISSN
2326-3881. doi: 10.1109/tse.2024.3519464. URL http://dx.doi.org/10.1109/TSE.
2024.3519464.

Shima Imani, Liang Du, and H. Shrivastava. Mathprompter: Mathematical reasoning using large
language models. In Annual Meeting of the Association for Computational Linguistics, 2023.

Stephen James and Andrew J. Davison. Q-attention: Enabling efficient learning for vision-based
robotic manipulation. IEEE Robotics and Automation Letters, PP:1–1, 2021.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 2020.

Stephen James, Kentaro Wada, Tristan Laidlow, and Andrew J. Davison. Coarse-to-fine q-attention:
Efficient learning for visual robotic manipulation via discretisation. 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 13729–13738, 2021.

12

https://arxiv.org/abs/2407.21783
https://api.semanticscholar.org/CorpusID:8641226
https://openreview.net/forum?id=Glcsog6zOe
https://openreview.net/forum?id=3R3Pz5i0tye
https://api.semanticscholar.org/CorpusID:272367253
http://dx.doi.org/10.1109/TSE.2024.3519464
http://dx.doi.org/10.1109/TSE.2024.3519464

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi (Jim) Fan. Vima: General robot manipulation with
multimodal prompts. ArXiv, abs/2210.03094, 2022.

Frank Joublin, Antonello Ceravola, Pavel Smirnov, Felix Ocker, Joerg Deigmoeller, Anna Belar-
dinelli, Chao Wang, Stephan Hasler, Daniel Tanneberg, and Michael Gienger. Copal: Corrective
planning of robot actions with large language models. In 2024 IEEE International Conference
on Robotics and Automation (ICRA), pp. 8664–8670, 2024. doi: 10.1109/ICRA57147.2024.
10610434.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag R. Sanketi, Quan Vuong, Thomas Kollar,
Benjamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
Openvla: An open-source vision-language-action model. ArXiv, abs/2406.09246, 2024.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B. Girshick.
Segment anything. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
3992–4003, 2023.

Teyun Kwon, Norman Palo, and Edward Johns. Language models as zero-shot trajectory generators.
IEEE Robotics and Automation Letters, PP:1–8, 07 2024. doi: 10.1109/LRA.2024.3410155.

Jacky Liang, Wenlong Huang, F. Xia, Peng Xu, Karol Hausman, Brian Ichter, Peter R. Florence,
and Andy Zeng. Code as policies: Language model programs for embodied control. 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500, 2022.

Jiaming Liu, Mengzhen Liu, Zhenyu Wang, Pengju An, Xiaoqi Li, Kaichen Zhou, Senqiao Yang,
Renrui Zhang, Yandong Guo, and Shanghang Zhang. Robomamba: Efficient vision-language-
action model for robotic reasoning and manipulation. In Neural Information Processing Systems,
2024.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large
language models. 2024 IEEE International Conference on Robotics and Automation (ICRA), pp.
286–299, 2023.

Aoran Mei, Guo-Niu Zhu, Huaxiang Zhang, and Zhongxue Gan. Replanvlm: Replanning robotic
tasks with visual language models. IEEE Robotics and Automation Letters, 9(11):10201–10208,
2024. doi: 10.1109/LRA.2024.3471457.

Matthias Minderer, Alexey A. Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn,
Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen,
Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. Simple open-vocabulary object
detection with vision transformers. ArXiv, abs/2205.06230, 2022.

Soroush Nasiriany, Fei Xia, Wenhao Yu, Ted Xiao, Jacky Liang, Ishita Dasgupta, Annie Xie, Danny
Driess, Ayzaan Wahid, Zhuo Xu, Quan Ho Vuong, Tingnan Zhang, Tsang-Wei Edward Lee,
Kuang-Huei Lee, Peng Xu, Sean Kirmani, Yuke Zhu, Andy Zeng, Karol Hausman, Nicolas Man-
fred Otto Heess, Chelsea Finn, Sergey Levine, and Brian Ichter. Pivot: Iterative visual prompting
elicits actionable knowledge for vlms. ArXiv, abs/2402.07872, 2024.

Fei Ni, Jianye Hao, Shiguang Wu, Longxin Kou, Jiashun Liu, Yan Zheng, Bin Wang, and Yuzheng
Zhuang. Generate subgoal images before act: Unlocking the chain-of-thought reasoning in
diffusion model for robot manipulation with multimodal prompts. In 2024 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 13991–14000, 2024a. doi:
10.1109/CVPR52733.2024.01327.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Fei Ni, Jianye Hao, Shiguang Wu, Longxin Kou, Yifu Yuan, Zibin Dong, Jinyi Liu, Mingzhi
Li, Yuzheng Zhuang, and Yan Zheng. Peria: Perceive, reason, imagine, act via holistic
language and vision planning for manipulation. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Process-
ing Systems, volume 37, pp. 17541–17571. Curran Associates, Inc., 2024b. doi: 10.52202/
079017-0558. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/1f6af963e891e7efa229c24a1607fa7f-Paper-Conference.pdf.

Svyatoslav Pchelintsev, Maxim Patratskiy, Anatoly Onishchenko, Alexandr Korchemnyi, Aleksandr
Medvedev, Uliana Vinogradova, Ilya Galuzinsky, Aleksey Postnikov, Alexey K. Kovalev, and
Aleksandr I. Panov. Lera: Replanning with visual feedback in instruction following, 2025. URL
https://arxiv.org/abs/2507.05135.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Ranjan Sapkota, Yang Cao, Konstantinos I. Roumeliotis, and Manoj Karkee. Vision-language-action
models: Concepts, progress, applications and challenges. 2025.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. ArXiv, abs/2209.05451, 2022.

Harsh Singh, Rocktim Jyoti Das, Mingfei Han, Preslav Nakov, and Ivan Laptev. Malmm: Multi-
agent large language models for zero-shot robotics manipulation. ArXiv, abs/2411.17636, 2024.

Marta Skreta, Zihan Zhou, Jia Lin Yuan, Kourosh Darvish, Alan Aspuru-Guzik, and Animesh Garg.
RePLan: Robotic replanning with perception and language models, 2024. URL https://
openreview.net/forum?id=gisAooH2TG.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M. Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October
2023.

Asher Sprigler, Alexander Drobek, Keagan Weinstock, Wendpanga Tapsoba, Gavin Childress, Andy
Dao, and Lucas Gral. Synergistic simulations: Multi-agent problem solving with large language
models, 2024. URL https://arxiv.org/abs/2409.13753.

Wenhao Sun, Sai Hou, Zixuan Wang, Bo Yu, Shaoshan Liu, Xu Yang, Shuai Liang, Yiming Gan, and
Yinhe Han. Dadu-e: Rethinking the role of large language model in robotic computing pipeline.
ArXiv, abs/2412.01663, 2024.

Jiaqi Wang, Zihao Wu, Yiwei Li, Hanqi Jiang, Peng Shu, Enze Shi, Huawen Hu, Chong-Yi Ma,
Yi-Hsueh Liu, Xuhui Wang, Yincheng Yao, Xuan Liu, Huaqin Zhao, Zheng Liu, Haixing Dai,
Lin Zhao, Bao Ge, Xiang Li, Tianming Liu, and Shu Zhang. Large language models for robotics:
Opportunities, challenges, and perspectives. ArXiv, abs/2401.04334, 2024a.

Noah Wang, Z.y. Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu, Hongcheng
Guo, Ruitong Gan, Zehao Ni, Jian Yang, Man Zhang, Zhaoxiang Zhang, Wanli Ouyang, Ke Xu,
Wenhao Huang, Jie Fu, and Junran Peng. RoleLLM: Benchmarking, eliciting, and enhancing role-
playing abilities of large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Findings of the Association for Computational Linguistics: ACL 2024, pp. 14743–14777,
Bangkok, Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/
v1/2024.findings-acl.878. URL https://aclanthology.org/2024.findings-acl.
878/.

Zidan Wang, Rui Shen, and Bradly C. Stadie. Wonderful team: Zero-shot physical task planning
with visual llms. 2024c.

14

https://proceedings.neurips.cc/paper_files/paper/2024/file/1f6af963e891e7efa229c24a1607fa7f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/1f6af963e891e7efa229c24a1607fa7f-Paper-Conference.pdf
https://arxiv.org/abs/2507.05135
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=gisAooH2TG
https://openreview.net/forum?id=gisAooH2TG
https://arxiv.org/abs/2409.13753
https://aclanthology.org/2024.findings-acl.878/
https://aclanthology.org/2024.findings-acl.878/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Maryam Zare, Parham Mohsenzadeh Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey
of imitation learning: Algorithms, recent developments, and challenges. IEEE Transactions on
Cybernetics, 54:7173–7186, 2023.

Michal Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine. Robotic
control via embodied chain-of-thought reasoning. In Conference on Robot Learning, 2024.

Hangtao Zhang, Chenyu Zhu, Xianlong Wang, Ziqi Zhou, Changgan Yin, Minghui Li, Lulu Xue,
Yichen Wang, Shengshan Hu, Aishan Liu, Peijin Guo, and Leo Yu Zhang. Badrobot: Jailbreaking
embodied LLMs in the physical world. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=ei3qCntB66.

A APPENDIX

A.1 AGENTS

Each agent serves a critical function in the end-to-end execution pipeline for user instructions. We
demonstrate why each component is indispensable, accompanied by explaining its functionality in
detail.

Our stack uses LangGraph1, enabling easy integration and changes, rendering ablation studies
much simpler. A custom LangGraph wrapper with proper logging (for debugging purposes) was
implemented. A log visualizer utilizing Dash2 serves as the primary debugging tool to visualize
inter-agent interactions over time, using the log outputs from the LangGraph wrapper.

Listing 1: GraphState Class
1 class GraphState:
2

3 taskname: str
4 original_prompt: str
5 initial_decomposition_done: bool
6 decomposed_prompts: list[str]
7 queue: list[str]
8 current_prompt: str
9 should_terminate: bool

10 multi_object: bool
11

12

13 object_of_interest: str
14 not_object_of_interest: str
15 all_objects: list[str]
16 results: dict[str, dict]
17

18

19 image: Image
20 depth_image: Matrix
21 camera_matrix: 3x3 Matrix
22 rotation_matrix: 3x3 Matrix
23 translation_vector: 3x1 Matrix
24

25

26 grounder_output: list[Detection]
27 grasp_points: list[GraspPoint2D]
28 grasp_points_3d: list[GraspPoint3D]
29 thinker_output: dict[str, ThinkerOutput]
30 actor_output: dict[str, ActorOutput]
31 reflection_output: dict[str, ReflectionResult]
32

1link
2link

15

https://openreview.net/forum?id=ei3qCntB66
https://www.langchain.com/langgraph
https://dash.plotly.com/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

33 scene_description: Graph
34 detected_objects: list[dict]
35 descriptor_grasp_points: list[GraspPoint2D]
36 descriptor_grasp_points_3d: list[GraspPoint3D]

Listing 2: MultiAgentRoboticSystem Class

1 class MultiAgentRoboticSystem:
2

3 def initialize_system(self) -> GraphState:
4 state = GraphState()
5 state.should_terminate = False
6 state.initial_decomposition_done = False
7 state.queue = []
8 state.results = {}
9 return state

10

11 def run_main_pipeline(self, state: GraphState) -> GraphState:
12 if not state.initial_decomposition_done:
13 state = decomposer_node(state)
14 state.initial_decomposition_done = True
15

16 descriptor_result = descriptor_node(state)
17

18

19 while state.queue and not state.should_terminate:
20 state.current_prompt = state.queue.pop(0)
21

22 perception_result = perceptor_node(state)
23

24 grounding_result = grounder_node(state)
25

26 segmentation_result = segmentor_node(state)
27

28 projection_result = projector_node(state)
29

30 planning_result = thinker_node(state)
31

32 execution_result = actor_node(state)
33

34 reflection_result = reflector_node(state)
35

36 state.results[state.current_prompt] = {
37 ’thinker_output’: state.thinker_output[state.

current_prompt],
38 ’actor_output’: state.actor_output[state.

current_prompt],
39 ’reflection_output’: state.reflection_output[state.

current_prompt]
40 }
41

42 return state

A.2 DECOMPOSER AS THE MAIN CORE

The Decomposer agent is responsible for converting high-level instructions into structured, exe-
cutable sequences of subtasks, providing the critical interface between abstract task specifications
and the Actor agent’s primitive actions. This appendix details the internal mechanisms, representa-
tion, and execution logic of the Decomposer.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

SUBTASK GENERATION

Upon receiving a high-level instruction, the Decomposer generates a hierarchical sequence of sub-
tasks. Each subtask corresponds to a primitive action in the Actor agent’s vocabulary, such as:

• move — navigating to a target location.

• reach — extending an agent manipulator toward an object.

• push — applying force to move an object.

Each subtask represents an atomic unit of work that can be executed independently while preserving
the logical structure of the overall task.

MEMORY TAGGING AND PARAMETERIZATION

Subtasks are annotated with memory tags that provide all necessary execution parameters. These
tags may include:

• Object identifiers and properties (e.g., size, type, affordances).

• Spatial positions and orientations.

• Contextual references derived from the environment or previous subtasks.

Memory tags enable the Actor agent to resolve ambiguities, maintain task consistency, and adapt
dynamically if the environment changes during execution.

This agent’s instruction prompt is shown in Fig. 8, and 9

A.3 DESCRIPTOR, ENABLING MEMORY UTILIZATION

VISION-LANGUAGE MODEL (VLM) INTEGRATION

The Descriptor leverages a pre-trained vision-language model to interpret raw sensory input and
extract semantically meaningful information. Specifically, it:

• Detects and classifies objects in the environment.

• Generates descriptive embeddings that capture object properties (e.g., type, color, size,
affordances).

• Associates textual and visual modalities, enabling grounding of high-level instructions to
perceptual features.

SPATIAL RELATIONSHIP EXTRACTION

Beyond individual object recognition, the Descriptor agent computes pairwise spatial relationships
to capture the scene configuration. For each object pair, it encodes relationships such as:

• Relative positions (e.g., left, right, above, below).

• Distances and proximities.

• Interaction constraints (e.g., support, containment, adjacency).

These relational encodings are essential for reasoning about feasible actions, dependencies, and
constraints in the environment.

GRAPH-BASED SCENE REPRESENTATION

The agent constructs a spatial graph where nodes correspond to detected objects and edges encode
the extracted spatial relationships. This graph structure provides:

• A structured memory format for storing object and relational information.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• An interface for downstream agents to query object configurations, constraints, and poten-
tial interactions.

• Support for reasoning over both local neighborhoods (adjacent objects) and global scene
layout.

MEMORY UTILIZATION AND AGENT INTERACTION

The spatial graph generated by the Descriptor agent is stored in a memory-accessible format, en-
abling other agents to:

• Query the environment efficiently without repeated perception.

• Ground high-level instructions in the observed scene.

• Plan and decompose tasks based on the current state and object interactions.

By serving as a centralized, structured memory representation, the Descriptor facilitates coordina-
tion among perception, planning, and execution agents. This agent’s prompt is shown in Fig. 10

A.4 THINKER COMPILATION OF COMPARTMENTS

The Thinker agent functions as the reasoning and compilation module that converts high-level sub-
task information into actionable parameters for execution. It leverages the stored scene represen-
tation, memory tags, and spatial relationships to compile task-specific parameters required by the
Actor agent. This agent’s prompt is shown in Fig. 11, and 12.

PARAMETERIZATION OF SUBTASKS

The Thinker processes each subtask by:

• Contextual Analysis: It examines the subtask description alongside the stored scene graph
and memory tags to understand the objects, positions, and spatial constraints relevant to the
task.

• Action Parameter Computation: Based on the context, the agent determines the param-
eters needed for execution. For example, for pick-and-place subtasks, it specifies the target
positions, orientations, and rotations required to complete the action in accordance with the
scene layout.

HANDLING MEMORYLESS VS. MEMORY-ASSOCIATED TASKS

• Memoryless Tasks: When no prior memory is associated, the Thinker collects pick-and-
place parameters directly from the localizer agent’s outputs, while inferring object orienta-
tions from the task’s description.

• Memory-Associated Tasks: For subtasks that reference prior memory, the Thinker uses
the stored scene representation and relational information to identify source or target ob-
jects. It then determines the corresponding action parameters in the context of object posi-
tions and orientations.

INTEGRATION WITH EXECUTION AGENTS

The parameters generated by the Thinker are structured to interface directly with the Actor agent.
Each parameterized subtask includes:

• Target or involved objects (via memory references).

• Action-specific parameters such as positions and rotations.

• Any context or constraints derived from the scene representation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.5 NECESSITY OF REFLECTION

Uncorrected actions can significantly increase task failure rates. Without such an agent, the manip-
ulation pipeline effectively operates in an open-loop manner. During our experiments, we observed
numerous instances where the robot failed to execute generated sub-tasks due to limited joint mobil-
ity and positional inaccuracies. The VLM plays a crucial role by analyzing the scene and identifying
faulty sub-tasks. This capability enables the system to reattempt execution, preventing what would
otherwise be recorded as failure. Furthermore, the VLM can detect positional discrepancies between
target objects and the end-effector, prompting the reasoning agent to revise pick-and-place coordi-
nates accordingly. Details of the instructions provided to this agent can be observed in Fig. 13.

A.6 RLBENCH EXPERIMENT

Table 5 provides the full success-rate results across nine RLBench tasks evaluated over 100 repeti-
tions. For completeness, we report the performance of our proposed MALLVi framework alongside
three baselines: MALMM, the Single-Agent approach Kwon et al. (2024), and our w/o Reflector
ablation. As shown, MALLVi consistently achieves the highest success rates across the majority of
tasks, highlighting its robustness and strong generalization across diverse manipulation skills

Method
Basketball
in Hoop

Close
Jar

Empty
Container

Insert
in Peg

Meat
off Grill

Open
Bottle

Put
Block

Rubbish
in Bin

Stack
Blocks

MALMM 82 76 59 67 88 91 93 81 47
Single-Agent 45 37 34 26 41 78 89 41 22
w/o Reflector 78 67 42 57 82 86 95 83 78
MALLVi (Ours) 89 81 71 66 94 93 100 91 90

Table 5: Success rates (%) on RLBench tasks with 100 repetition.

A.7 VIMABENCH EXPERIMENTAL DETAILS

VIMABench consists of 17 tabletop scenarios in an OpenAI Gym environment, with objects of 29
shapes, 17 colors, and 65 textures. The manipulation tasks range from simple manipulation to novel
concepts and visual reasoning. An example of VIMABench execution frames and its multimodal
prompts can be observed in Fig. 6.

Figure 6: Credits to Wang et al. (2024c) for the figure. Prompts for Visual Manipulation, Novel
Nouns, Without Exceeding, and Pick in Order then Restore tasks.

A.8 OPTIMAL GRASP POINT

A robot’s end-effector requires precise coordinates for stable grasping. While bounding boxes pro-
vide object localization, simply using their center point as the grasp position proves suboptimal for
many objects - particularly those with irregular shapes, surface holes, or non-uniform geometry.

To address this limitation, we employ the Segment Anything Model (SAM) Kirillov et al. (2023)
to generate precise segmentation masks for all detected objects. These binary masks accurately
delineate object boundaries while excluding void regions. the objects are first categories to four
classes based on their geometry : round perfect objects, rimmed ones, ... and irregular shapes.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Category Subtask MALLVi (Ours)

Simple Manipulation
visual manipulation 100
scene understanding 100
rotate 100

Novel Concepts
novel adj 95
novel noun 100
novel adj and noun 90

Visual Reasoning

same texture 95
same shape 90
manipulate old neighbor 90
follow order 85

Visual Goal Reaching rearrange 70
rearrange then restore 76

Table 6: Detailed success rates (%) for all VIMABench subtasks. This table provides a breakdown of the aggregated scores shown in Table
2.

for the first three categories the grasping point is assumed manually for the latter, we compute an
optimal grasp position using:

r∗ = min{r | mask[Cx + r cos θ, Cy + r sin θ] = 1} (1)

where (Cx, Cy) denotes the object’s centroid, calculated as the mean position of all mask pixels,
θ ∼ U(0, 2π) is a uniformly distributed random angle, and r∗ represents the minimal radial distance
from centroid to mask boundary along direction θ. Refer to Fig. 7 for an example of grasping point
calculation.

RGB ImageRGB Image
Task Instruction: Put the
banana on the keyboard

{'boxes': [[262.1648864746094, 183.95689392089844,
340.4281005859375, 234.32931518554688],

[320.5587158203125, 198.81326293945312, 535.3982543945312,
348.8797607421875]],

'labels': ['bananna', 'keyboard'],

'grasp_points': [(296.34086242299793, 214.60643394934976),
(427.0, 273.0)]}

GroundingDINO SAM

Grasp

Figure 7: The pipeline is instructed to put the banana on the keyboard. The optimal grasp point for
the robot’s end-effector is thus determined.

REAL WORLD TASK DESCRIPTIONS

Below we describe the tasks used in our real world evaluation. Each task corresponds to a realistic
robotic manipulation or reasoning scenario, designed to test grounding, planning, and execution
capabilities.

PLACE FOOD

The robot is given food items (e.g., an apple or banana) and instructed to place them in a designated
location such as a plate or bowl. This task evaluates the agent’s ability to recognize semantic cate-
gories (food vs. non-food), perform spatial placement, and follow commonsense constraints (e.g.,
food should not be placed in inappropriate containers like shoes).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

PUT SHAPE IN MATH SORTER

In this task, the traditional shape-sorting toy is adapted for symbolic reasoning. Instead of geometric
shapes (circle, square, triangle), the cutouts correspond to numbers or mathematical operators
(e.g., “3”, “7”, “+”, “-”). The robot must pick the correct block, recognize its symbolic label, and
insert it into the matching slot.

This task tests the integration of symbol recognition and physical manipulation. The robot must
not only align the block physically to fit the slot but also correctly ground the abstract symbol
(distinguishing, for example, between a number and an operator). Errors may occur from visual
misclassification of symbols, confusion between similar digits, or incorrect orientation during inser-
tion.

STACK BLOCKS

The robot must stack a set of cubic blocks on top of each other to form a stable tower. This requires
sequential action planning, stability estimation (avoiding imbalance), and careful execution. Failures
typically arise from slippage or misalignment during stacking, making this a robust test of dexterity
and control.

SHOPPING LIST

The robot is given a shopping list (e.g., “apple, orange, and milk”) and must retrieve the specified
items from a set of available objects while ignoring distractors. This task evaluates multi-step
reasoning, object recognition, and memory maintenance (keeping track of which items have
already been collected).

PUT OBJECT IN MUG

The robot is asked to place a small object (e.g., spoon, pen, or sugar packet) inside a mug. This
requires spatial reasoning about container affordances and careful placement to avoid dropping or
misaligning the object. The task is representative of daily-life kitchen or office manipulations.

MATH OPERATION

In this task, arithmetic reasoning is combined with physical object manipulation. The robot is pre-
sented with blocks representing numbers (e.g., a block labeled “9” and a block labeled “4”). The
instruction specifies a math operation such as “place the result of 9 plus 4”. To complete the task,
the robot must:

1. Interpret the instruction: Identify the operands and operation (e.g., 9 + 4).

2. Compute the result symbolically: Perform the arithmetic (9 + 4 = 13).

3. Ground the result physically: Locate the correct answer block (“13”) from a set of can-
didate number blocks scattered in the workspace.

4. Manipulate the block: Pick up the correct block and place it in the designated answer
area.

This task evaluates the integration of symbolic reasoning (arithmetic computation) and embodied
action (locating and manipulating the correct block). Errors may arise from miscalculating the
arithmetic operation, failing to ground the symbolic answer in the physical workspace, or incorrectly
manipulating the chosen block.

STACK CUPS

The robot must stack a set of cups in a nested manner (placing one inside another) or create a
vertical tower (placing them upright). The task requires reasoning about object affordances, hollow
geometry, and symmetry constraints. Errors often occur if the robot fails to align the cup’s opening
correctly.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

REARRANGE OBJECTS

The robot is tasked with rearranging a set of objects from one spatial configuration to another (e.g.,
“place the book to the left of the laptop, and move the pen to the right of the notebook”). This task
stresses relative spatial reasoning, planning multiple sequential moves, and avoiding collisions
while repositioning objects.

A.9 COMPUTER VISION

The grounders produce a bounding box in pixel space, denoted by the 2D point c = [u v]. How-
ever, to solve the inverse kinematics problem for robotic manipulation, the end-effector requires
target coordinates in real-world 3D space, represented by r = [X Y Z]. Therefore, a trans-
formation T is required to convert pixel-space coordinates into real-world coordinates, such that
T (u, v) = (X,Y, Z).

According to the pinhole camera model Harltey & Zisserman (2006), the inverse mapping from
real-world coordinates to pixel-space coordinates, denoted by T−1(X,Y, Z) = (u, v), is described
by the following projection equation:

zaxial

[
u
v
1

]
= K [R | t]

XYZ
1

 (2)

In this formulation, K is the intrinsic camera matrix that describes the internal characteristics of the
camera. It is given by:

K =

[
fu α u0

0 fv v0
0 0 1

]

The matrix R represents the 3 × 3 rotation from the real-world coordinate frame to the camera
coordinate frame. The vector t represents the 3 × 1 translation from the real-world origin to the
camera origin. The scalar zaxial is a scaling factor that accounts for the axial distance from the
real-world point to the camera’s principle point.

To obtain the zaxial value, we resort to stereo vision. Stereo vision consists of two cameras with
identical configurations fixed at a predetermined horizontal distance apart, both looking towards the
scene. In such a setup, zaxial can be derived as:

zaxial =
B fc
d

(3)

Where B represents the baseline distance between the two cameras (measured in meters), f repre-
sents the focal length (in pixels), and d is the disparity (measured in pixels) between the projections
of the same 3D point in both images.

To recover the real-world position r from a pixel-space point (u, v), the following equation is used:

r =

[
X
Y
Z

]
= R−1

(
zaxialK

−1

[
u
v
1

]
− t

)
(4)

The intrinsic matrix K, the rotation matrix R, and the translation vector t are obtained through
standard camera calibration procedures.

A.10 PROMPTS

The complete instruction prompts to language models are provided in Figures 8 through 13

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

�����������������
You are a robotic arm task planner. Your job is to turn natural language instructions into a list
of atomic actions.

1. Ignore Examples or Descriptions
• The input may include example sentences or object descriptions at the start (like "This is a

red block").
• Ignore everything before the first command verb (pick, place, move, put, etc.).
• If there are no commands, return an empty list [].
• O

2. Objects
• Objects are written as name (color) in the text, e.g., block (red), cube (blue).
• For novel tasks (novel_noun, novel_adj, novel_adj_and_noun), use only the name, ignore color.

Example: square
• For all other tasks, include color in output: red block, blue cube.
•

3. Atomic Actions
Use only these formats:
1. move(<object>object</object>, <object>target</object>, <rotation>0</rotation>)
2. move(<object>object</object>, <memory>previous location</memory>, <rotation>0</rotation>)
3. move(<memory>previous neighbor</memory>, <object>target</object>, <rotation>0</rotation>)
4. move(<object>object</object>, <memory>previous [relationship]</memory>,

<rotation>0</rotation>)
5. move(<memory>previous [relationship]</memory>, <object>target</object>,

<rotation>0</rotation>)

Rotation:
• 0 = no rotation
• Positive = clockwise
• Negative = counterclockwise
•

4. Memory Rules
• <memory>previous location</memory> → return to previous position
• <memory>previous neighbor</memory> → move relative to old neighbor
• <memory>previous [relationship]</memory> → move relative to previous spatial relation (north,

south, left, right, above, below, etc.)

Use memory for object or target depending on context.

5. Output
• Return a Python list of strings.
• Each string = one atomic move.
• No explanations, no extra text.

Figure 8: Decomposer prompt

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Examples

Standard Task:
Input: "Pick up the block (red) and place it on the table"
Output:
["move(<object>red block</object>, <object>table</object>, <rotation>0</rotation>)"]

Input: "Rotate the cube (blue) by 90 degrees and place it on the shelf"
Output:
["move(<object>blue cube</object>, <object>shelf</object>, <rotation>90</rotation>)"]

Novel Task:
Input: "This is a wug square (red). Put a square into a cross"
Output:
["move(<object>square</object>, <object>cross</object>, <rotation>0</rotation>)"]

Memory / Spatial Example:
Input: "Move the yellow ball to the left of its old neighbor"
Output:
["move(<object>yellow ball</object>, <memory>previous left of yellow ball</memory>,
<rotation>0</rotation>)"]t

Figure 9: Decomposer prompt

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

�����������������
You are a scene understanding AI. Analyze the image and output a JSON with all objects and their
spatial relationships.

Steps:
- Identify all objects using only the provided VIMA classes and colors. Combine color + class for
object names (e.g., "red block").
- Generate all possible object pairs. For each pair, create a relationship in both directions.
- Use these spatial relationships: north, south, east, west, above, below, left, right, near,
far, next to, beside, in front of, behind, on top of, underneath.
- Provide a short natural language description of the scene.

Output JSON format (strictly, no extra text):
{
 "description": "Text description of the scene",
 "objects": ["object1", "object2", "..."],
 "spatial_relationships": [
 {"source_obj": "object1", "target_obj": "object2", "spatial_relationship": "relation"},
 {"source_obj": "object2", "target_obj": "object1", "spatial_relationship": "relation"}
]
}

Rules:

- Include all object pairs.
- Be specific with colors and shapes.
- Only use VIMA classes and colors provided.
- Output JSON only, nothing else.
- Be concise but cover all relationships.

Example:

{
 "description": "A red block is south of a blue cube on the table.",
 "objects": ["red block", "blue cube"],
 "spatial_relationships": [
 {"source_obj": "red block", "target_obj": "blue cube", "spatial_relationship": "south"},
 {"source_obj": "blue cube", "target_obj": "red block", "spatial_relationship": "north"}
]
}

Figure 10: Descriptor prompt

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

��������������
You are a robotics task planner. Your job is to generate a structured JSON plan for
pick-and-place operations.

INPUT:
• current_prompt: Task instruction (may contain memory tags)
• object_of_interest: Object to pick (null if memory-based)
• not_object_of_interest: Object to place on (null if memory-based)
• grasp_points_3d: Current 3D grasp points
• descriptor_grasp_points_3d: All objects’ 3D grasp points
• scene_description: Spatial relationships of objects
• object_relations: Spatial relationships from initial environment

TASK:
Generate JSON with:
• "decision": "SUCCESS" or "FAILURE"
• "chosen_grasp_points": list of [pick_position, place_position]
• "reasoning": explanation of decisions
• "rotation_degrees": rotation for each action (0 if none)

RULES:

1. Memory detection:
- If current_prompt has memory terms (previous, old, neighbor, <memory>...</memory>), source or
destination may be memory-based (null).
- Use descriptor_grasp_points_3d and scene_description to find memory objects.

2. No memory:
- If current_prompt has no memory terms, use grasp_points_3d only.
- Pick object_of_interest, place on not_object_of_interest.

3. Move instruction:
- Format: move(source, destination, rotation)
- First object = pick object, second = place object
- Rotation is always included

4. Pick & place positions:
- Use grasp_points_3d for current objects
- Use descriptor_grasp_points_3d for memory objects
- Place positions should be on top of destination object (Z adjusted)

5. Rotation:
- Use 0 if none specified
- If prompt mentions rotation, extract value

6. Output rules:
- Always JSON only, nothing else
- Include "decision", "chosen_grasp_points", "reasoning", "rotation_degrees"
- Coordinates must be numbers
- Match number of rotations to number of actions

Figure 11: Thinker prompt

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

EXAMPLES:

1. No memory, no rotation:

{
 "decision": "SUCCESS",
 "chosen_grasp_points": [[[1.0, 2.0, 0.5], [1.0, 2.0, 0.8]]],
 "reasoning": "Simple pick-place with no memory terms. Used current grasp points.",
 "rotation_degrees": [0.0]
}

2. No memory, with rotation:

{
 "decision": "SUCCESS",
 "chosen_grasp_points": [[[2.0, 3.0, 0.5], [2.0, 3.0, 1.2]]],
 "reasoning": "Pick blue cube from current grasp points. Place on shelf with 90-degree
rotation.",
 "rotation_degrees": [90.0]
}

3. Memory-based operation:

{
 "decision": "SUCCESS",
 "chosen_grasp_points": [[[2.0, 3.0, 0.5], [1.5, 2.5, 0.7]]],
 "reasoning": "Source or destination is memory-based. Used scene description and descriptor
grasp points.",
 "rotation_degrees": [0.0]
}

Figure 12: Thinker prompt

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

���������������
You are a vision-based task verification assistant. Analyze whether a robotic task was
successfully completed using:

1. Original Task Instruction
2. Actor’s Execution Report
3. Image of the current environment

Goal: Determine if the task was completed and output JSON only.

Output JSON Format
{
 "task_complete": true/false,
 "verification_result": "Explanation of decision",
 "confidence": 0.0-1.0
}

Verification Rules
• Inspect the image to see if the task was done.
• Check the actor’s report for success/failure.
• Compare the image with the task requirements.
• Look for objects in expected positions.
• Consider errors or failures reported.
• Success: If object A masks or occludes object B (fully or partially), the task is successful.
• Failure: Only if both objects are visible and separated.
• Evaluate confidence based on visual clarity and evidence.
• Be conservative: if unsure, mark as incomplete with lower confidence.
• Focus only on task completion, not execution quality.

Rules

• "task_complete" = boolean
• "verification_result" = descriptive string
• "confidence" = float 0.0–1.0
• Use both actor feedback and image analysis
• Higher confidence for clear evidence, lower for ambiguous cases
• Output JSON only, no extra text

Examples
{"task_complete": true, "verification_result": "Red block picked up and held in gripper as seen
in image and confirmed by actor report", "confidence": 0.95}

{"task_complete": false, "verification_result": "Blue cube not grasped, remains on floor as
visible in image", "confidence": 0.90}

{"task_complete": true, "verification_result": "M object is masking red container indicating
proper placement", "confidence": 0.90}

{"task_complete": false, "verification_result": "Red block and blue base are visible and
separated, placement failed", "confidence": 0.90}

Figure 13: Reflector prompt

28

	Introduction
	Related work
	LLMs and VLMs for Robotic Task Planning
	Multi-Agent Collaboration and Reflection
	Open-Vocabulary Perception

	Methodology
	Multi-Agent
	Decomposer-Descriptor Agents
	Localizer Agent
	Thinker Agent
	Actor Agent
	Reflector Agent

	Experiments and Results
	Real-world tasks
	VIMABench Tasks
	RLBench Tasks
	Ablation Studies
	Single-Agent Baseline
	Without Reflector
	Open-Source Substitution

	Conclusion
	Appendix
	Agents
	Decomposer as the main core
	Descriptor, enabling memory utilization
	Thinker compilation of compartments
	Necessity of Reflection
	RLBench Experiment
	VIMABench Experimental Details
	Optimal Grasp Point
	Computer Vision
	Prompts

