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Abstract

Low-rank adaptation (LoRA) is a popular001
parameter-efficient fine-tuning (PEFT) method002
for large language models (LLMs). In this pa-003
per, we analyze the impact of low-rank updat-004
ing, as implemented in LoRA. Our findings005
suggest that the low-rank updating mechanism006
may limit the ability of LLMs to effectively007
learn and memorize new knowledge. Inspired008
by this observation, we propose a new method009
called MoRA, which employs a square matrix010
to achieve high-rank updating while maintain-011
ing the same number of trainable parameters.012
To achieve it, we introduce the corresponding013
non-parameter operators to reduce the input di-014
mension and increase the output dimension for015
the square matrix. Furthermore, these opera-016
tors ensure that the weight can be merged back017
into LLMs, which makes our method can be018
deployed like LoRA. We perform a compre-019
hensive evaluation of our method across five020
tasks: instruction tuning, mathematical reason-021
ing, continual pretraining, memory and pre-022
training. Our method outperforms LoRA on023
memory-intensive tasks and achieves compara-024
ble performance on other tasks.025

1 Introduction026

As the size of language models increases,027

parameter-efficient fine-tuning (PEFT) (Houlsby028

et al., 2019) has emerged as a popular technique to029

adapt these models to specific downstream tasks.030

Compared to Full Fine-Tuning (FFT), which up-031

dates all model parameters, PEFT modifies only a032

small part of the parameters. For example, it can033

achieve similar performance with FFT by updating034

less than 1% of the parameters in some tasks (Hu035

et al., 2021), which significantly reduces the mem-036

ory requirements for the optimizer and facilitates037

the storage and deployment of fine-tuned models.038

Among the existing PEFT methods, Low-Rank039

Adaptation (LoRA) (Hu et al., 2021) is particu-040

larly prevalent for LLMs. LoRA enhances perfor-041

(a) LoRA (r = 8) (b) MoRA (r = 256)

Figure 1: An overview of our method compared to
LoRA under same number of trainable parameters. W
is the frozen weight from model. A and B are trainable
low-rank matrices in LoRA. M is the trainable matrix in
our method. Gray parts are non-parameter operators to
reducing the input dimension and increasing the output
dimension. r represents the rank in two methods.

mance over other PEFT methods such as prompt 042

tuning (Lester et al., 2021) or adapters (Houlsby 043

et al., 2019) by updating parameters via low-rank 044

matrices. These matrices can be merged into the 045

original model parameters, thereby avoiding addi- 046

tional computational costs during inference. There 047

are numerous methods that aim to improve LoRA 048

for LLMs. However, most methods primarily vali- 049

date their efficiency based on GLUE (Wang et al., 050

2018), either by achieving better performance or 051

by requiring fewer trainable parameters. Recent 052

methods (Liu et al., 2024; Meng et al., 2024; Zhu 053

et al., 2024) leverage instruction tuning task such 054

as Alpaca (Wang et al., 2024) or reasoning tasks 055

like GSM8K (Cobbe et al., 2021) to better eval- 056

uate their performance on LLMs. However, the 057

diverse settings and datasets used in the evaluation 058

complicate the understanding of their progression. 059

In this paper, we conduct a comprehensive eval- 060

uation of LoRA across various tasks under the 061

1



same settings, including instruction tuning, mathe-062

matical reasoning, and continual pretraining. We063

find that LoRA-like methods demonstrate similar064

performance across these tasks and they perform065

comparably to FFT in instruction tuning but fall066

short in mathematical reasoning and continual pre-067

training. Among these tasks, instruction tuning068

primarily focuses on interacting with the format,069

rather than acquiring knowledge and capabilities,070

which are learned almost entirely during pretrain-071

ing (Zhou et al., 2024). We observe that LoRA072

is easily adapted to follow response formats in073

instruction tuning but struggles with other tasks074

that require enhancing knowledge and capabilities075

through fine-tuning.076

One plausible explanation for this limitation ob-077

served with LoRA could be its reliance on low-rank078

updates (Lialin et al., 2023). The low-rank update079

matrix, ∆W , struggles to estimate the full-rank080

updates in FFT, particularly in memory-intensive081

tasks like continual pretraining that require memo-082

rizing domain-specific knowledge. Since the rank083

of ∆W is significantly smaller than the full rank,084

this limitation restricts capacity to store new infor-085

mation via fine-tuning. Moreover, current variants086

of LoRA cannot alter the inherent characteristic of087

low-rank updates. To validate this, we conducted a088

memorization task using pseudo-data to assess the089

performance of LoRA in memorizing new knowl-090

edge. We found that LoRA performed significantly091

worse than FFT, even with a large rank such as 256.092

Given these observations, we introduce a method093

called MoRA, which employs a square matrix as094

opposed to low-rank matrices, aiming to maximize095

the rank in ∆W while maintaining the same num-096

ber of trainable parameters. For instance, when097

utilizing 8 rank with the hidden size 4096, LoRA098

employs two low-rank matrices A ∈ R4096×8 and099

B ∈ R8×4096, with rank(∆W ) ≤ 8. Under same100

number of parameters, our method uses a square101

matrix M ∈ R256×256, with rank(∆W ) ≤ 256,102

as depicted in Figure 1. Notably, our method ex-103

hibits a greater capacity than LoRA with a large104

rank. To decrease the input dimension and increase105

the output dimension for M , we develop corre-106

sponding non-parameter operators. Furthermore,107

these operators and M can be substituted by a ∆W ,108

ensuring our method can be merged back into LLM109

like LoRA.110

Our contributions are as follows:111

1. We introduce MoRA, a novel method that em-112

ploys a square matrix instead of low-rank ma- 113

trices in LoRA to achieve high-rank updating, 114

while maintaining the same number of train- 115

able parameters. 116

2. We discuss four kinds of non-parameter op- 117

erators of MoRA to reduce the input dimen- 118

sion and increase the output dimension for the 119

square matrix, while ensures that the weight 120

can be merged back into LLMs. 121

3. We evaluate MoRA across five tasks: mem- 122

ory, instruction tuning, mathematical reason- 123

ing, continual pretraining, and pretraining. 124

Our method outperforms LoRA on memory- 125

intensive tasks and achieves comparable per- 126

formance on other tasks, which demonstrates 127

the effectiveness of high-rank updating. 128

2 Related Work 129

2.1 LoRA 130

LoRA is one of the most popular PEFT methods 131

for fine-tuning LLM, owing to its broad applicabil- 132

ity and robust performance in comparison to other 133

methods. To approximate the updated weight ∆W 134

in FFT, LoRA employs two low-rank matrices for 135

its decomposition. By adjusting the rank of these 136

two matrices, LoRA can accordingly modify the 137

trainable parameters. Benefit from it, LoRA can 138

merge these matrices after fine-tuning without the 139

inference latency compared to FFT. There are many 140

methods to further improve LoRA, particularly for 141

the application in LLMs. DoRA(Liu et al., 2024) 142

further decomposes the original weight into mag- 143

nitude and direction components and uses LoRA 144

to update the direction component. LoRA+(Hayou 145

et al., 2024) employs different learning rates for 146

the two low-rank matrices to improve learning ef- 147

ficiency. ReLoRA(Lialin et al., 2023) integrates 148

LoRA into the LLM during training to increase the 149

rank of the final ∆W . 150

2.2 Fine-Tuning with LLMs 151

Despite the impressive performance of LLMs with 152

in-context learning, certain scenarios still necessi- 153

tate fine-tuning, which can be broadly categorized 154

into three types. The first type, instruction tuning, 155

aims to better align LLMs with end tasks and user 156

preferences, without significantly enhancing the 157

knowledge and capabilities of LLMs (Zhou et al., 158

2024). This approach simplifies the process of 159
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dealing with varied tasks and understanding com-160

plex instructions. The second type involves com-161

plex reasoning tasks such as mathematical problem-162

solving (Collins et al., 2023; Imani et al., 2023; Yu163

et al., 2023), where general instruction tuning often164

falls short in handling complex, symbolic, multi-165

step reasoning tasks. To improve the reasoning166

abilities of LLMs, the majority of research focuses167

on creating corresponding training datasets, either168

by leveraging larger teacher models like GPT-4 (Fu169

et al., 2023), or by rephrasing questions along a170

reasoning path (Yu et al., 2023). The third type,171

continual pretraining (Cheng et al., 2023; Chen172

et al., 2023; Han et al., 2023; Liu et al., 2023),173

aims to enhance the domain-specific capabilities174

of LLMs. Unlike instruction tuning, it necessitates175

fine-tuning to augment the corresponding domain-176

specific knowledge and capabilities.177

However, most variants of LoRA (Kopiczko178

et al., 2023; Lialin et al., 2023; Dettmers et al.,179

2024; Zhu et al., 2024) predominantly employ in-180

struction tuning or text classification tasks from181

GLUE (Wang et al., 2018) to validate their efficacy182

on LLMs. Given that instruction tuning requires183

the least capacity for fine-tuning compared to other184

types, it may not accurately reflect the effectiveness185

of LoRA variants. To better evaluate their meth-186

ods, recent works (Meng et al., 2024; Liu et al.,187

2024; Shi et al., 2024; Renduchintala et al., 2023)188

have employed reasoning tasks to test their meth-189

ods. But the training sets used are often too small190

for LLMs to effectively learn reasoning. For in-191

stance, some methods (Meng et al., 2024; Renduch-192

intala et al., 2023) utilize the GSM8K (Cobbe et al.,193

2021) with only 7.5K training samples. Compare to194

the SOTA method with 395K training samples (Yu195

et al., 2023), this small training set achieves worse196

performance on reasoning and makes it hard to197

evaluate the effectiveness of these methods.198

3 Analysis the Influence of Low-rank199

Updating200

The key idea of LoRA (Hu et al., 2021) involves201

the use of low-rank updates to estimate full-rank202

updates in FFT. Formally, given a pretrained pa-203

rameter matrix W0 ∈ Rd×k, LoRA employs two204

low-rank matrices to calculate the weight update205

∆W :206

h = W0x+∆Wx = W0x+BAx (1)207

where A ∈ Rr×k and B ∈ Rd×r represent the low-208

rank matrices in LoRA. To ensure that ∆W = 0209

Figure 2: Performance of memorizing UUID pairs
through fine-tuning with FFT and LoRA.

at the beginning of training, LoRA initializes A 210

with a Gaussian distribution and B with zero. Due 211

to the low-rank decomposition of ∆W into BA, 212

the rank(∆W ) ≤ r. The weight update in LoRA 213

exhibits a markedly low rank, r ≪ min(d, k), in 214

comparison to the full-rank updating in FFT. Low- 215

rank updating by LoRA shows on-par performance 216

with full-rank updating in some tasks such as text 217

classification or instruction tuning (Liu et al., 2024; 218

Meng et al., 2024). However, for tasks like complex 219

reasoning or continual pretraining, LoRA tends to 220

show worse performance (Liu et al., 2023). 221

Based on these observations, we propose a hy- 222

pothesis that low-rank updating is easy to lever- 223

age original knowledge and capabilities of LLM 224

to solve task, but it is struggle to handle tasks that 225

require enhancing knowledge and capabilities of 226

LLM. 227

To substantiate this hypothesis, we examine the 228

differences between LoRA and FFT in terms of 229

memorizing new knowledge through fine-tuning. 230

In order to circumvent leveraging the original 231

knowledge of the LLM, we randomly generate 10K 232

pairs of Universally Unique Identifiers (UUIDs), 233

each pair comprising two UUIDs with 32 hexadec- 234

imal values. The task requires the LLM to gen- 235

erate the corresponding UUID based on the in- 236

put UUID. For instance, given a UUID such as 237

“205f3777-52b6-4270-9f67-c5125867d358”, the 238

model should generate the corresponding UUID 239

based on 10K training pairs. This task can also 240

be viewed as a question-answering task, while the 241

knowledge indispensable for accomplishing it is 242

exclusively from the training datasets rather than 243

the LLM itself. 244

For the training settings, we employ LLaMA-2 245

3



7B as base model, utilizing 1,000 pairs per batch246

and conducting 100 epochs. For the LoRA, we ap-247

ply low-rank matrices to all linear layers and search248

learning rate from {1e-4,2e-4,3e-4} to enhance per-249

formances. We conduct the experiment on LoRA250

using various ranks r ∈ {8, 16, 32, 64, 128, 256}.251

For the FFT, we directly use a learning rate of 3e-5.252

Based on Figure 2, we observe low-rank updating253

are hard to memorizing new knowledge compared254

to FFT. Although constantly increasing the rank255

of LoRA can alleviate this problem, the gap still256

exists.257

In contrast to the memory task, we also evaluate258

the performance gap between LoRA and FFT on259

instruction tuning, which merely introduces new260

knowledge. Similar to previous results (Meng et al.,261

2024; Zhu et al., 2024), we also find that LoRA262

matches the performance of FFT with small rank263

r = 8 in Table 1. This indicates that LoRA can264

easily leverage the original knowledge of LLMs by265

fine-tuning like FFT.266

4 Method267

Based on the above analysis, we propose a new268

method to alleviate the negative effects of low-rank269

updating. The main idea of our method is to utilize270

the same trainable parameters as much as possible271

to achieve a higher rank in ∆W . Consider to the272

pretrained weight W0 ∈ Rd×k, LoRA uses two273

low-rank matrices A and B with (d + k)r total274

trainable parameters for rank r. Under same train-275

able parameters, a square matrix M ∈ Rr̂×r̂ where276

r̂ = ⌊
√
(d+ k)r⌋ can achieve the highest rank due277

to r ≪ min(d, k).278

To accomplish this, we need to reduce the input279

dimension and increase the output dimension for280

M . Formally,281

h = W0x+ fdecomp
(
Mfcomp (x)

)
(2)282

where fcomp : Rk → Rr̂ denotes the function that283

decreases the input dimension of x from k to r̂,284

and fdecomp : Rr̂ → Rd represents the function285

that enhances the output dimension from r̂ to d.286

Furthermore, these two functions ought to be non-287

parameterized operators and expected to execute in288

linear time corresponding to the dimension. They289

should also have corresponding function, fcomp :290

Rr̂×r̂ → Rr̂×k and fdecomp : Rr̂×k → Rd×k, to291

transform M into ∆W . For any x, the following292

should hold:293

fdecomp
(
Mfcomp (x)

)
= ∆Wx,∀x ∈ Rk (3)294

where ∆W = fdecomp

(
fcomp (M)

)
. If Eq. 3 holds, 295

M can be losslessly expanded to ∆W based on 296

fcomp and fdecomp. This allows our method to merge 297

back into the LLM like LoRA. 298

For the design of fcomp and fcomp, we explore 299

several methods to implement these functions. One 300

straightforward method is truncating the dimension 301

and subsequently add it in corresponding dimen- 302

sion. Formally, this can be represented as: 303

fcomp (x) = x1:r̂

fdecomp (x) =

[
x
0

]
(4) 304

and the corresponding ∆W is: 305

∆W =

[
M 0
0 0

]
(5) 306

However, this method leads to a significant loss of 307

information during compression and only modifies 308

a segment of the output by appending a zero vector 309

during decompression. To improve it, we can share 310

the rows and columns of M to achieve a more ef- 311

ficient compression and decompression. Formally, 312

this can be represented as: 313

fcomp (x) =
[∑

j∈gi xj
]r
i=1

fdecomp (x) =
[
xg̃′i

]d
i=1

(6) 314

Here, g and g′ represent predefined groups that 315

share the same row and column in M , respectively. 316

The j ∈ gi indicates that the j-th dimension be- 317

longs to the i-th group in g. The term g̃′i is the 318

reverse of g′i, referring to the i-th dimension associ- 319

ated with the g̃′i-th group in g′. The corresponding 320

∆W is as follows: 321

∆Wi,j = Mg̃′i,g̃j
(7) 322

Sharing rows and columns can be efficient for 323

larger ranks such as r = 128 or r = 256, as 324

only a few rows or columns in ∆W share a com- 325

mon row or column. For instance, considering 326

to ∆W ∈ R4096×4096 for r = 128, which has 327

r̂ = 1024 and M ∈ R1024×1024. In this situation, 328

only 4 rows or columns share the same row or col- 329

umn. Conversely, for smaller ranks such as r = 8, 330

where r̂ = 256, it requires average 16 rows or 331

columns in a group to share the same row or col- 332

umn in M . It can lead to inefficiencies due to the 333

significant information loss during compression in 334

Eq. 6. 335
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To enhance performance for smaller ranks, we336

reshape x instead of directly compressing it, to337

preserve the input information. In this context,338

fcomp (x) : Rk → Rn×r̂ and fdecomp : Rn×r̂ →339

Rd. Corresponding fcomp, fdecomp and ∆W are as340

follows:341

fcomp (x) =
[
x1:r̂ xr̂:2r̂ · · · x(n−1)r̂:nr̂

]
fdecomp (x) = concat(x)

∆W =


M 0 · · · 0
0 M · · · 0
...

...
. . .

...
0 0 · · · M


(8)342

where concat(x) refers to concatenate the rows of343

x into a vector. For simplicity, we omit the padding344

and truncation operators in above functions and345

focus on the case where d = k. In comparison346

to sharing columns and rows, this method incurs347

additional computational overhead by reshaping348

x into Rn×r̂ instead of Rr̂. However, given that349

the size of M is significantly smaller than W0, this350

additional computation is very small for rank like 8.351

For instance, when fine-tuning the 7B model with352

rank of 8 (r̂ = 256), this method is only 1.03 times353

slower than previous methods.354

Inspired by RoPE (Su et al., 2024), we can fur-355

ther refine this method by incorporating rotation356

operators into fcomp to augment the expressiveness357

of M by enable it to differentiate between various358

xir̂:(i+1)r̂ by rotating them. We can modify Eq. 8359

as follows:360

fcomp (x) =
[
a1 a2 · · · an−1

]
∆W =


P 1 0 · · · 0
0 P 2 · · · 0
...

...
. . .

...
0 0 · · · Pn−1

 (9)361

where ai and P i represent the corresponding values362

of xir̂:(i+1)r̂ and M post-rotation, respectively. Fol-363

lowing RoPE, we use a r̂× r̂ block diagonal matrix364

to achieve the rotation. However, our method use365

rotation information to enable M distinguish the366

xir̂:(i+1)r̂ instead of token position in RoPE. We367

can define ai and P i as follows:368

ai =


Rθ1,i 0 · · · 0
0 Rθ2,i · · · 0
...

...
. . .

...
0 0 · · · Rθ r̂

2
,i

xir̂:(i+1)r̂

P i = M


Rθ1,i 0 · · · 0
0 Rθ2,i · · · 0
...

...
. . .

...
0 0 · · · Rθ r̂

2
,i


(10)369

Figure 3: Performance of memorizing UUID pairs with
LoRA and our method on rank 8 and 256.

where θj = 10000−2(j−1)/r̂ and Rθj ,i ∈ R2×2 is a 370

rotation matrix: 371

Rθj ,i =

[
cos iθj − sin iθj
sin iθj cos iθj

]
(11) 372

5 Experiment 373

We evaluate our method on various tasks to under- 374

stand the influence of high-rank updating. In Sec- 375

tion 5.1, we evaluate our method with LoRA and 376

our method on memorizing UUID pairs to show 377

the benefit of high-rank updating on memorizing. 378

In Section 5.2, we reproduce LoRA, LoRA vari- 379

ants and FFT on three fine-tuning tasks: instruction 380

tuning, mathematical reasoning and continual pre- 381

training. In Section 5.3, we compare our method 382

with LoRA and ReLoRA on pretraining by training 383

transformer from scratch. 384

5.1 Memorizing UUID Pairs 385

We first compare our method with LoRA and FFT 386

on memorizing UUID pairs to demonstrate im- 387

provements through high-rank updating. Following 388

the training settings in Section 3, we search learn- 389

ing rate from {5e-5,1e-4,2e-4} and use decompress 390

and compress functions in Eq. 8, sharing rows and 391

columns in M . Due to use one matrix M instead 392

of two matrices A and B, we can directly initialize 393

M with zeros. For the predefined groups g and 394

g′, we group every adjacent r̂ rows or columns to- 395

gether. The training loss is presented in Figure3. 396

Our method shows significant improvements over 397

LoRA with the same number of trainable parame- 398

ters, benefiting from high-rank updating. We also 399

report character-level accuracy at various training 400

steps in Table 2. MoRA requires fewer training 401

steps to memorize these UUID pairs compared to 402
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Instruction Tuning Mathematical Reasoning Continual Pretraining

Method Rank MMLU 0 MMLU 5 GSM8K MATH BioMed. Finance

FFT - 50.6 51.3 66.6 20.1 56.4 69.6
LoRA 8 50.2 51.5 64.6 15.1 52.3 64.0
LoRA+ 8 49.2 51.1 64.1 15.8 52.2 64.9
ReLoRA 8 49.3 50.2 61.5 14.5 46.3 61.0
AsyLoRA 8 50.3 52.2 64.5 15.0 52.5 63.5
DoRA 8 50.2 51.5 64.5 14.6 52.5 63.9
MoRA (Ours) 8 49.7 51.5 64.2 15.4 53.3 67.1
LoRA 256 49.7 50.8 67.9 19.9 54.1 67.3
LoRA+ 256 49.2 51.3 68.2 17.1 54.2 66.7
ReLoRA 256 - - 64.0 18.1 52.9 57.9
AsyLoRA 256 50.1 52.0 66.9 19.3 54.1 66.9
DoRA 256 49.6 51.1 67.4 19.5 54.2 66.0
MoRA (Ours) 256 49.9 51.4 67.9 19.2 55.4 68.7

Table 1: Performance of FFT, LoRA, LoRA variants and our method on instruction tuning, mathematical reasoning
and continual pretraining tasks.

Rank 300 500 700 900

FFT - 42.5 100 100 100
LoRA 8 9.9 10.0 10.7 54.2
MoRA 8 10.1 15.7 87.4 100
LoRA 256 9.9 70.6 100 100
MoRA 256 41.6 100 100 100

Table 2: Character-level accuracy of memorizing UUID
pairs by generating the value of corresponding key in
300, 500, 700 and 900 training steps.

LoRA. Compared to FFT, MoRA with 256 rank403

can achieve similar performance and both method404

can memorize all UUID pairs in 500 steps.405

5.2 Fine-tuning Tasks406

5.2.1 Setup407

We evaluate our method across three fine-tuning408

tasks for large language models (LLMs): instruc-409

tion tuning, mathematical reasoning, and contin-410

ual pretraining. For these tasks, we select high-411

quality corresponding datasets to test both LoRA412

and our method. In instruction tuning, we uti-413

lize Tülu v2 (Ivison et al., 2023), a blend of414

several high-quality instruction datasets, contain-415

ing 326k filtered samples. We assess instruc-416

tion performance using the MMLU (Hendrycks417

et al., 2020) in both zero-shot and five-shot set-418

tings. For mathematical reasoning, we employ419

the MetaMath (Yu et al., 2023) with its 395k sam-420

ples to enhance mathematical reasoning capabili-421

ties and also use GSM8K (Cobbe et al., 2021) and422

MATH (Hendrycks et al., 2021) for further evalu-423

ation. In continual pretraining, we adapt an LLM 424

to the biomedicine and finance using PubMed ab- 425

stracts from the Pile (Gao et al., 2020) and financial 426

news, complemented by data preprocessing meth- 427

ods from AdaptLLM (Cheng et al., 2023) to boost 428

performance. We report the average performance 429

of corresponding tasks for continual pretraining. 430

More details can be found in Appendix C. 431

5.2.2 Baselines and Implements 432

For LoRA-like methods and MoRA, we conducted 433

experiments at r = 8 and r = 256, and reproduce 434

following methods across three tasks: FFT, LoRA, 435

LoRA+ (Hayou et al., 2024), AsyLoRA (Zhu 436

et al., 2024), ReLoRA (Lialin et al., 2023) and 437

DoRA (Liu et al., 2024). LoRA+ enhances the 438

learning rate of matrix B in LoRA to facilitate effi- 439

cient feature learning based on theoretical analysis. 440

We search the corresponding the hyperparameter 441

λ from {2,4}. AsyLoRA also analyzes asymme- 442

try in the A and B matrices, and we adopted their 443

initialization strategy. ReLoRA proposes a method 444

to merge low-rank matrices into the model during 445

training to increase the rank of ∆W . we search 446

merge steps from {1k, 2k} and use 50 steps restarts 447

warmup. DoRA leverages weight decomposition to 448

enhance performance as a robust baseline. For FFT, 449

we follow the settings proposed by corresponding 450

datasets. For MoRA, we employed rotation opera- 451

tors as outlined in Eq. 9 to implement compression 452

and decompression for r = 8, and for r = 256, we 453
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(a) Pretraining loss at 250M models. (b) Pretraining loss at 1.3B models.

Figure 4: Pretraining loss with LoRA and MoRA on 250M and 1B models from scratch. Both LoRA and MoRA
use same amount of trainable parameters with r = 128. ReMoRA and ReLoRA refer to merge MoRA or LoRA
back to the model during training to increase the rank of ∆W .

utilized shared rows and columns as specified in454

Eq. 6 and group every adjacent r̂ rows or columns455

together. The details hyperparameters about fine-456

tuning can be found in Appendix A.457

5.2.3 Results and Analysis458

We present the results of fine-tuning tasks in Ta-459

ble 1. We report the results of MMLU with zero-460

shot and 5-shot settings for instruction tuning,461

GSM8K and MATH for mathematical reasoning,462

and average performance on biomedical tasks and463

financial tasks for continual pretraining.464

MoRA shows on par performances with LoRA465

on instruction tuning and mathematical reasoning.466

Benefit from high-rank updating to memorize new467

knowledge, MoRA outperforms LoRA on both468

biomedical and financial domains for continual pre-469

training.470

We also find that LoRA variants exhibit similar471

performances on these fine-tuning tasks as com-472

pared to LoRA. Although AsyLoRA achieves the473

best performance in instruction tuning, it demon-474

strates poor performance in mathematical reason-475

ing. For ReLoRA, merging low-rank matrices dur-476

ing training can harm performance, particularly at477

the the high rank like 256.478

Consider the difference between three tasks, they479

show different requirements for fine-tuning capabil-480

ities. For instruction tuning, which does not learn481

new knowledge from fine-tuning, rank 8 is enough482

to achieve performance similar to FFT. For mathe-483

matical reasoning, rank 8 is unable to match FFT484

performance. However, increasing the rank from485

8 to 256 can eliminate the performance gap. For486

250M 1.3B

LoRA 33.40 28.56
MoRA (Ours) 28.54 25.25
ReLoRA 32.19 27.80
ReMoRA (Ours) 26.74 23.34

Table 3: Perplexity on C4 validation dataset.

continual pretraining, LoRA with rank 256 still 487

underperforms FFT. 488

5.3 Pretraining 489

To understand the influence of high-rank up- 490

dating, we train transformer from scratch on 491

the C4 datasets (Raffel et al., 2020). For the 492

model architeture, we train LLaMA-based model 493

with RMSNorm (Zhang and Sennrich, 2019), 494

SwiGLU (Shazeer, 2020) and RoPE (Su et al., 495

2024) on 250M and 1.3B sizes. For the hyper- 496

parameters, we use 10k steps, 1024 batch size, 512 497

sequence length and follow Lialin et al., using rank 498

r = 128 for LoRA and our methods and also keep 499

modules without applying LoRA-like layernorm or 500

embeddings unfreezed. We compare our method 501

with LoRA and ReLoRA. To better show the dif- 502

ference between high-rank and low-rank updating, 503

we reproduce ReLoRA and other methods with- 504

out full-rank training warmup. For MoRA, we use 505

compression and decompression functions in Eq. 6 506

by sharing columns and rows. 507

We also combine merge-and-reint in ReLoRA 508

with our method called ReMoRA by merging M 509

back into the original parameters during training 510

7



Figure 5: The number of singular values > 0.1 in ∆W
on the 250M pretraining model.

to increase the rank of ∆W . However, if we di-511

rectly merge M with g and g′ in Eq. 6, the final512

rank of ∆W is unchanged due to the same expand513

pattern. To solve this problem, we can change g514

and g′ after merging to ensure the rank of ∆W515

increasing. More details about ReMoRA can be516

found in Appendix B. For the hyperparameters cor-517

responding to ReLoRA and ReMoRA, we merge518

every 2k steps and use 50 steps restarts warmup519

with optimizer reseting and jagged scheduler.520

We show pretraining loss in Figure 4 and corre-521

sponding perplexity on C4 validation dataset in522

Table 3. Our method show better performance523

on pretraining compared to LoRA and ReLoRA524

with same amount of trainable parameters. Ben-525

efiting from high-rank updating, ReMoRA also526

achieves more improvements on MoRA compared527

to ReLoRA, which demonstrates the effectiveness528

of merge-and-reint strategy in ReMoRA.529

6 Analysis530

6.1 High-rank Updating531

To demonstrate the impact of high-rank updating on532

the rank of ∆W , we analyzed the spectrum of sin-533

gular values for the learned ∆W on 250M pretrain-534

ing 250M model. We present the average count of535

singular values exceeding 0.1 across all layers for536

∆Wq, ∆Wk, ∆Wv, ∆Wo, ∆Wup, ∆Wdown, and537

∆Wgate in Figure 5 following (Lialin et al., 2023).538

MoRA and ReMoRA exhibit a substantially higher539

number of significant singular values compared to540

LoRA and ReLoRA, highlighting the effectiveness541

of our methods in increasing the rank of ∆W . We542

find the quantity of singular values shown in Fig-543

ure 5 can be correlated with the perplexity metrics544

listed in Table 3. Moreover, MoRA, without merge- 545

and-reint strategy in ReLoRA and ReMoRA, can 546

achieve a lower perplexity than ReLoRA along 547

with a higher significant singular values. 548

6.2 Influence of Decompression and 549

Compression 550

To explore the impact of decompression and com- 551

pression functions in MoRA, we report the perfor- 552

mance on GSM8K using various methods: trunca- 553

tion, sharing, decoupling, and rotation in Table 4. 554

Among these methods, truncation shows the worst 555

performance due to the significant information loss 556

during compression. Sharing can achieve better per- 557

formance than truncation by leveraging the shared 558

rows or columns to preserve the input information. 559

But in the case of r = 8, sharing shows worse 560

performance than decouple and rotation due to the 561

large number of sharing rows or columns, as we 562

discussed in Section 4. Rotation is more efficient 563

than decouple, due to the rotation information can 564

help the square matrix to distinguish the input in- 565

formation. 566

fcomp, fdecomp r = 8 r = 256

Truncation Eq. 4 59.5 66.6
Sharing Eq. 6 62.5 67.9

Decouple Eq. 8 63.6 67.8
Rotation Eq. 9 64.2 67.9

Table 4: Influence of decompression and compression
functions on r = 8 and r = 256 on GSM8K.

7 Conclusion 567

In this paper, we analyze the impact of low-rank 568

updating through LoRA and observe that such up- 569

dating struggles for memory-intensive tasks, which 570

also limits current LoRA variants. To overcome 571

this limitation, we introduce MoRA, a method that 572

utilizes non-parameterized operators for high-rank 573

updating. Within the MoRA framework, we ex- 574

plore various methods to implement decompres- 575

sion and compression functions. Performance com- 576

parisons indicate that MoRA matches LoRA in 577

instruction tuning and mathematical reasoning, and 578

exhibits superior performance in continual pretrain- 579

ing and memory tasks. Additionally, we conduct 580

pretraining experiments to further demonstrate the 581

effectiveness of high-rank updating and show supe- 582

rior results compared to ReLoRA. 583

8



8 Limitation584

Despite MoRA outperforming LoRA on memory-585

intensive tasks, it achieves similar performance586

on instruction tuning and mathematical reason-587

ing compared to LoRA. Regarding training time588

and GPU memory usage, MoRA uses almost the589

same time and memory, benefiting from the non-590

parameterized operators. However, for small ranks591

like 8, MoRA uses Eq. 9 to compress and decom-592

press input features, which may make it approxi-593

mately 1.15 times slower than LoRA during fine-594

tuning. For the design of compression and decom-595

pression functions, we only explore several meth-596

ods, but there could be more effective methods to597

compress and decompress features, such as directly598

dropping unnecessary rows or columns or grouping599

rows or columns based on the feature distribution.600
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A Hyperparameters803

We propose hyperparameters in Table 5.804

Dataset Method r α LR LR Scheduler Warmup Epochs Batch size fcomp, fdecomp

Tülu v2

FFT - - 2e-5 cosine 500 2 128 -
LoRA-like 8 16 {1e-4,2e-4} cosine 500 2 128 -

MoRA 8 - {2e-4,3e-4} cosine 500 2 128 Eq. 9
LoRA-like 256 128 {1e-4,2e-4} cosine 500 2 128 -

MoRA 256 - {3e-5,5e-5} cosine 500 2 128 Eq. 6

MetaMath

FFT - - 2e-5 cosine 300 3 128 -
LoRA-like 8 16 {1e-4,2e-4} cosine 300 3 128 -

MoRA 8 - {2e-4,3e-4} cosine 300 3 128 Eq. 9
LoRA-like 256 128 {1e-4,2e-4} cosine 300 3 128 -

MoRA 256 - {3e-5,5e-5} cosine 300 3 128 Eq. 6

BioMed./Fiance

FFT - - 3e-5 linear 150 1 128 -
LoRA-like 8 16 {3e-4,4e-4} linear 150 1 128 -

MoRA 8 - {4e-4,5e-4} linear 150 1 128 Eq. 9
LoRA-like 256 128 {3e-4,4e-4} linear 150 1 128 -

MoRA 256 - {5e-5,7e-5} linear 150 1 128 Eq. 6

Table 5: Hyperparameters for fine-tuning on three datasets.

B Implementation of ReMoRA805

We introduce detail implementation of ReMoRA in pretraining. In this case, we simply define two kinds of806

g. The first kind is grouping every adjacent r̂ rows or columns together following the defined in fine-tuning,807

the first groups can be represented as {1, 2, . . . , r̂}. The second kind is grouping every neighboring k of808

the rows or columns together, the first groups can be represented as {1, 1 + k, . . . , 1 + r̂k}. We propose a809

example code about compression and decompression functions in Algorithm 1 and 2. After merging, we810

can change the group type from 0 to 1 or 1 to 0.811

Algorithm 1 Compression
1: function COMPRESS(x, r̂, type)
2: # x ∈ Rbsz×l×k: Input tensor
3: # y ∈ Rbsz×l×r̂: Output tensor
4: # type ∈ {0, 1}: Group type 0 or 1
5: padding x to make k divisible by r̂
6: if type = 0 then
7: y = x.view(bsz, l, k/r̂, r̂).sum(dim=2) # first type of group
8: else
9: y = x.view(bsz, l, r̂, k/r̂).sum(dim=3) # second type of group

10: end if
11: return y
12: end function

Algorithm 2 Decompression
1: function DECOMPRESS(x, r̂, type)
2: # x ∈ Rbsz×l×r̂: Input tensor
3: # y ∈ Rbsz×l×d: Output tensor
4: # type ∈ {0, 1}: Group type 0 or 1
5: if type = 0 then
6: y = repeat(x, d/r̂, dim=2) # first type of group
7: else
8: y = repeat-interleave(x, d/r̂, dim=2) # second type of group
9: end if

10: truncate y to Rbsz×l×d

11: return y
12: end function
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C Downstream Tasks of Continual Pretraining 812

For biomedcine, we use PubMedQA (Jin et al., 2019), RCT (Dernoncourt and Lee, 2017), USMLE (Jin 813

et al., 2021), and selecting biomedicine subjects from MMLU to evaluate the performance. For finance, 814

following BloombergGPT (Wu et al., 2023),we use ConvFinQA (Chen et al., 2022), NER (Salinas Al- 815

varado et al., 2015), Headline (Sinha and Khandait, 2021), FiQA SA (Maia et al., 2018) and FPB (Malo 816

et al., 2014). We report the detail performance of these tasks following: 817

r PubMedQA USMLE BioMMLU RCT Avg.
FFT - 74.1 41.2 47.5 62.7 56.4
LoRA 8 73.1 34.9 45.3 54.9 51.9
MoRA 8 73.3 34.7 45.3 59.9 53.3
LoRA 256 73.8 39.7 46.0 56.9 54.1
MoRA 256 74.4 40.4 46.1 60.6 55.4

Table 6: Performance on biomedical tasks.

r ConvFinQA FiQA SA Headline NER FPB Avg.
FFT - 44.4 78.8 82.3 68.1 74.3 69.6
LoRA 8 44.5 76.2 72.4 61.6 65.1 64.0
MoRA 8 45.8 76.6 76.3 68.9 68.2 67.1
LoRA 256 41.4 78.3 83.0 66.8 66.7 67.3
MoRA 256 47.7 76.3 83.4 68.0 68.1 68.7

Table 7: Performance on financial tasks.
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