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Abstract

Black-box adversarial attacks on Large Vision—Language Models (LVLMs) present
unique challenges due to the absence of gradient access and complex multimodal
decision boundaries. While prior M-Attack demonstrated notable success with
exceeding 90% attack success rate on GPT-40/01/4.5 by leveraging local crop-
level matching between source and target data, we show this strategy introduces
high-variance gradient estimates. Specifically, we empirically find that gradients
computed over randomly sampled local crops are nearly orthogonal, violating the
implicit assumption of coherent local alignment and leading to unstable optimiza-
tion. To address this, we propose a theoretically grounded gradient denoising
framework that redefines the adversarial objective as an expectation over local
transformations. Our first component, Multi-Crop Alignment (MCA), estimates
the expected gradient by averaging gradients across diverse, independently sam-
pled local transformations. This manner significantly reduces gradient variance,
thus enhancing convergence stability. Recognizing an asymmetry in the roles of
source and target transformations, we also introduce Auxiliary Target Alignment
(ATA). ATA regularizes the optimization by aligning the adversarial example not
only with the primary target image but also with auxiliary samples drawn from a
semantically correlated distribution. This constructs a smooth semantic trajectory
in the embedding space, acting as a low-variance regularizer over the target distri-
bution. Finally, we reinterpret prior momentum as replay through the lens of local
matching as variance-minimizing estimators under the crop-transformed objective
landscape. Momentum replay stabilizes and amplifies transferable perturbations by
maintaining gradient directionality across local perturbation manifolds. Together,
MCA, ATA, momentum replay, and a delicately selected ensemble set constitute
M-Attack-V2, a principled framework for robust black-box LVLM attack. Empir-
ical results show that our framework improves the attack success rate on GPT-40
(&) from 95% —99 %, on Claude-3.7 (9€) from 37 % —67 %, and on Gemini-2.5-
Pro () from 83% —97 %, significantly surpassing all existing black-box LVLM
attacking methods.

1 Introduction

Large Vision-Language Models (LVLMs) have become foundational to modern Al systems, enabling
multimodal tasks like image captioning [[14} 134} [7| 37], VQA [27, 132], and visual reasoning [30].
However, their visual modules remain vulnerable to adversarial attacks, subtle perturbations that
mislead models while remaining imperceptible to humans. Prior efforts, including Attack VLM [41],
CWA [6]], SSA-CWA [8], AdvDiffVLM [13]], and most effectively, M-Attack [22], which have
exploited this weakness through local-level matching and surrogate model ensembles, surpassing
90% success rates on models like GPT-4o.
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Figure 1: Improvment of M-Attack-V2 over M-Attack on up-to-date commercial black-box models.

Despite its effectiveness, our analysis reveals that M-Attack’s gradient signals are highly unstable:
Even overlapping large pixel regions, two consecutive local crops share nearly orthogonal gradients.
In other words, high similarity in pixel and embedding space does not translate to high similarity
in gradient space. The reason is that ViTs’ gradient pattern is sensitive to translation. A tiny shift
changes pixels contained in each token, altering self-attention. Moreover, patch-wise, spike-like
gradient amplifies the mismatch within just a few pixels. We counter this effect by aggregating
gradients from multiple crops within the same iteration, a strategy we call Multi-Crop Alignment
(MCA). From a theoretical angle, MCA aggregates gradients across multiple views in a single
iteration, smoothing local inconsistencies and improving cross-crop gradient stability.

We further observe that the source and target transformations in M-Attack operate in different se-
mantic spaces: one emphasizing extraction, the other generalization. Aggressive target augmentation
introduces harmful variance. Our Auxiliary Target Alignment (ATA) mitigates this by identifying
semantically similar auxiliary images to create a low-variance embedding subspace, then applying
only mild shifts to enhance transferability without destabilizing the optimization.

Classic momentum is reinterpreted under this framework as Patch Momentum (PM), a replay mech-
anism that recycles past gradients across random crops to stabilize optimization. In parallel, we
also re-examine and enrich M-Attack’s model selection criterion and choose a delicately selected
ensemble set with diverse patch sizes to mitigate the difficulty in cross-patch transfer, of which we
find that the attention concentrates more on the main object. We term it Patch Ensemble™ (PE™).

Together, these components, MCA, ATA, PM, and PE+, form the basis of M-Attack-V2, a robust
gradient denoising framework that significantly outperforms existing black-box attack methods. Our
method raises attack success rates from 95%—99% on GPT-40, 37%—67% on Claude-3.7, and
83%—97% on Gemini-2.5-Pro, achieving state-of-the-art performance across the board. This study
not only offers a practical, modular attack strategy but also sheds light on the gradient behavior of
ViT-based LVLMs under local perturbations. We hope these insights will drive further research into
transferable adversarial optimization under realistic black-box constraints.

2 Method

2.1 Limitations of Local Crop Matching in M-Attack

Recall local matching framework in M-Attack. To iteratively extract meaningful semantic details
from the X, to X0y (or called X,qy), M-Attack proposes the local-level matching framework. Each
region X; (1€{1,2,...,n}) is generated independently at a different training iteration i

{5(?, ce 7)A(n} = TS(XSOU)

(R /R = T (X, M
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where 7T, 7; are the set of random local mappings and subsequent preprocessing (i.e., crops and
resize) applied to the source and target images, respectively. )Eg is the globally transformed target

image across iterations. Without loss of generality, each pair x§ and X! is matched in iteration .

M-Attack introduces a local-matching strategy for attacking LVLMs in the black-box setting
by aligning spatial crops between source and target images. While effective, this approach
suffers from inherent instability in gradient-based optimization. Formally, consider a loss
function L£(f(75(Xsou)), f(Tt(Xtar))), where T denotes a random local transformation (e.g., a
crop), f is the white-box model like CLIP [33], and Xy, is the adversarial input. Because
Vx o LOf (Ts(Xsou)), f(Te(Xiar))) varies significantly across 7, (same to T¢), the stochastic gra-
dients become nearly orthogonal, i.e., (Vx,, L7, meﬁﬁﬁ ~ 0, leading to high variance and poor
convergence during optimization. ‘

Extremely low gradient overlap. In M-Attack two random crops X5 C 75(Xou) and X! C 77 (Xiar)
are matched at every iteration. One would expect the gradients inside the shared region of two
successive source crops (f(f X7 +1) to correlate, because the underlying pixels partly coincide.
Supursingly, Fig.|2b|shows the opposite: their cosine similarity is almost zero. We then keep one
crop fixed and vary the other across scales and IoUs (Fig. [2a)). Our finding reveals an exponential
decay that plateaus below 0.1 once the overlap is smaller than 0.80 IoU.
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Figure 2: Similarities of gradients from different crops. a) similarity over IoU for different crops by
fixing in one iteration; b) similarity between two consecutive gradients across iterations. Results are
averaged from 200 runs.

Source. We find two main reasons behind this high variance: ViT’s inherent sensitivity to translation
and asymmetry within the local matching framework. We discuss them below.

Patch-wise, spike-like gradient sensitive to translation. Because ViTs tokenize images on a fixed,
non-overlapping grid, even sub-pixel changes each patch’s token mix. These token changes ripple
through self-attention, altering weights and redirecting gradients for all tokens, so the resulting
pixel-level gradient pattern diverges sharply. Worse, gradient magnitudes are uneven. Therefore, even
similar patterns but missing a few pixels might break gradient similarity (Fig. [3b).

Asymmetric Transform Branches. In M-Attack, both the source and target images are cropped, yet
playing distinct roles. Cropping the source acts directly in pixel space: it rearranges patch embeddings
and attention weights in the forward pass, ending up with guidance of different views. By contrast,
cropping the target sorely translate the target representation, thereby shifting the reference embedding
in feature space. One sculpts the perturbation, while another moves the goalpost, formulating
asymmetric matching. M-Attack overlooked this and implementations target translation alternate
between a radical crop and an identity map, struggles between explore-exploitation trade-off and
potentially risk in high variance of target embedding.

Asymmetric Matching over Expectation. To mitigate the issues above, we begin by concisely

reformulating the original objective function as an expectation over local transformations within an

asymmetric matching framework:
min ETND,yNy [E(f(T(XSOU))»Y)] ) )

(1% soull p<e

d where D represents the distribution of local transformations, and )’ denotes the distribution over

target semantics. |-||,, is £, constraint for imperceptibility. Conceptually, this formulation corresponds

to embedding specific semantic content y into a locally transformed area T (X0, ), thus highlighting
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Figure 3: Comparison of: a) different trajectories against different K'; b) gradient pattern of single
crop alignment against multi-crop alignment (MCA). The gradient pattern of ResNet 50 remains
consistent when large pixels are overlapped, while the gradient pattern of ViTs changes dramatically.
MCA helps to smooth out this impact.

the intrinsic asymmetry compared to M-Attack’s original formulation. Within this framework, our
proposed enhancements, i.e., Multi-Crop Alignment (MCA) and Auxiliary Target Alignment (ATA),
can be interpreted as strategies to improve the accuracy of the expectation estimation and the sampling
quality of the semantic distribution ).

2.2 Gradient Denoising via Multi-Crop Alignment (MCA)

To obtain a low-variance estimate of the expected loss gradient E7p y~y [Vx.. L(f (T (Xsou)), ¥)],
we draw K independent crops {7 } sz1 and average their individual gradients:

1 K
VX LX) = 72 D Vo L (Th(Ksaw)). ¥)- 3)
k=1

This Multi-Crop Alignment (MCA ) acts as an unbiased Monte-Carlo estimator, thus naturally reducing
the variance with K > 1.

Theorem 1. Let g, = Vx,,, L(f(Te(Xsou)),y) denote the gradient from Ty, n = E[gi],0? =
E[||lgx — u|3] denote the mean and variance, and pyy denote the pair-wise correlation pyy =
(gr—14,90—p1)

Tor—rlZlge=rTZ" The gradient variance from K averaged crops is bounded by

K
1 o2 K-—-1_ 9
Var (Kkz_lgk> < ?"‘ K po-, 4

where p = Elpy], k # £ is the expectation of pair-wise correlation

All crops share the same underlying image, so p # 0. The ideal 02/ K decay is therefore tempered
by the correlation term po2. Empirically, averaging a modest number (K = 10) of almost-orthogonal
gradients still yields benefit, since the uncorrelated component of the variance shrinks as 1/K.
Simultaneously, the optimizer leverages multiple diverse transformations per update, with minimal
interference among almost orthogonal gradients. Fig. [3aillustrates an accelerated convergence with
K = 10, with margin improvement provided by K = 100.
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This averaging also alleviates the known translation sensitivity of ViTs. As shown in Fig. 3
using two crop sets yields noticeably higher gradient consistency than the single-crop alignment
in M-Attack. In MCA, high-activity regions remain stable (upper left and center right), while the
single-crop case shifts focus from center right to lower left. As a result, gradient similarity across
iterations increases from near zero in M-Attack to around 0.2 (Fig. [2b).

2.3 Improved Sampling Quality via Auxiliary Target Alignment (ATA)

Selecting a representative target embedding y € ) is challenging because the underlying distribution
Y is not observable. M-Attack mitigates this by seeding at the unaltered target embedding f(Xar)
and exploring its vicinity with transformed views f(7;(Xy,y)) thereby sketching a locally semantic
manifold that serves as a proxy for ). However, the exploration—exploitation trade-off remains
problematic. Radical transformations leap too far, dragging y outside the genuine target region;
conservative transformations, while semantically faithful, barely shift the embedding, leaving the
optimization starved of informative signal.

To stabilize this process, we introduce P auxiliary images {X&ﬁ’,{ 11;1 that act as additional anchors,
collectively forming a richer sub-manifold of aligned embeddings. During each update, we apply
a mild random transformation 7 ~ D to every anchor, nudging the ensemble in a coherent yet
restrained manner and thus providing low-variance, information-rich gradients for optimization. Let

vo = f(To(Xar))s Up = f (ﬁ)(xgﬁﬁ)) denote sampled semantics in one iteration. The objective £ in
Equ. (3) becomes

n P
=3 LT ) 0) + 5 D LU (Ti(x). 5y) )
k=1 p=1

where A € [0, 1] interpolates between the original target and its auxiliary neighbors. A = 0 reduce
to M-Attack local-local matching with single target. ATA trade-off exploration (auxiliary diversity)
and exploitation (main-target fidelity), providing low-variance, semantics-preserving updates. The
auxiliary set can be built variously, i.e., through image-image retrieval or diffusion methods.

Cost. Each iteration back-propagates through the K source crops and only forward-propagates the
P auxiliary targets. Since a backward pass is roughly twice as expensive as a forward pass, the
per-iteration complexity is O(K 3+ P)), roughly twice the overhead when P = 3.

2.4 Patch Momentum with Built-in Replay Effect

Momentum, introduced in MI-FGSM [[11]], is widely adopted to improve the transferability. Define
the momentum buffer as: m, = fym,_1 + (1 — B1)Vx:L,.(X%), where 51 € [0,1) is the first-order
momentum coefficient and V- L,.(X*) is our MCA-ATA-estimated gradient g, at iteration 7.

Under the local-matching view, this mechanism can be reinterpreted as formulating a streaming MCA
to enforce temporal consistency across gradient directions in the space of random crops. Unrolling
the EMA for pixel k exposes an alternative interpretation:

(k) = (- )" 871k € My gus (b) ®

=0

where M; denotes the pixel indices included in iteration i, m;(k) and g;(k) respectively denotes
momentum and gradient for pixel k. Each crop that involves pixel k is therefore replayed in future
iterations with geometrically decaying weight, allowing rarely sampled regions (such as corners) to
persist long enough to combat the gradient starvation. Spike-shaped gradients are further moderated
by the Adam-style [18] second moment, v, = Bov,—1 + (1 — 52) g?,, whose scaling effect is essential
in our empirical study. The momentum does not directly improve gradient similarity but continuously
re-injects historical crops across patches, effectively maintaining gradient directionality across local
perturbation manifolds. We therefore term it Patch Momentum to distinguish.

The whole procedure, combining MCA, ATA, and PM, is detailed in Alg. E} We use a different color
to differentiate between M-Attack-V2 and M-Attack. We use PGD [29] with ADAM [18]] for line 13.

The appendix presents analogous results for FGSM and I-FGSM variants.
5
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Algorithm 1 M-Attack-V2

Require: clean image X jean; primary target Xia,; auxiliary set A = {Xéﬁ)x ;;1; patch ensemble™
ot = {¢; }jL1; iterations n, step size o, perturbation budget e; number of crops K, auxiliary weight
A0< A<

1: Xadv <~ Xcleany
2: fori=1tondo

3 Draw K transforms {7z }5_; ~ D

4 g+ 0 > accumulate over crops
5: for k = 1to K do > — crop loop —
6 Draw {7;}5;0 ~D

7 for j = 1tom do

8: yo = f(Tp( X)), wp = f(To(XE)),p=1,...,P > Transform target and auxiliary data
9: Compute L. = (o, (Te(Xson)) v0) + 3 32,1 L(fo, (Ti(x)). 7p)

10: g+ g+ ﬁmeuﬁk
11: end for

12: end for
13: Updated X4y based on g with Patch Momentum

14: end for

15: return X4+

3 Experiments

3.1 Experimental Setup

Metrics. We follow the evaluation protocol of M-Attack, reporting the Attack Success Rate
(ASR) computed with GPTScore and the Keywords Matching Rate (KMR) at three thresholds
{0.25,0.5,1.0}, denoted as KMR,, KMR;, and KMR.. [22]. KMR leverages human-annotated
semantic keywords and measures different levels of keywords matching, treating the matching rate
greater than x as a successful attack, denoting the final success rate KMR,. The evaluation prompt
and the keyword sets are identical to those in M-Attack.

Surrogate candidates. We adopt the exact surrogate selections used in their original papers for
ensemble-based baselines [40, (8} [13, [22]]. Our candidate pool includes CLIP series (CLIP-B/16,
CLIP-B/32, CLIPT-G/14| CLIPf-B/32, CLIP'-H/14, CLIP-L/14, CLIP-B/16, CLIPT-BG/14), Di-
noV2 family [31] (Dino-Small, Dino-Base, Dino-Large), and the shared vision encoder of BLIP-2
family [20]. See the appendix for more details.

Victim black-box models and dataset. We evaluate four cutting-edge commercial multimodal LLMs:
GPT-4o0 [1]], 03 [30], Claude-3.7-Sonnet-extended [3], and Gemini-2.5-Pro-Preview [36]. Clean
images are drawn from the NIPS 2017 Adversarial Attacks and Defenses Competition dataset [17].
Following SSA-CWA [9] and M-Attack [22], we randomly sample 100 images. Auxiliary sets are
retrieved from the COCO training set [23] using CLIP-B/16 embedding similarity. Further results on
a 1k image subset are in the appendix.

Hyperparameters. Unless otherwise noted, perturbations are bounded by /., with ¢ = 16 and
optimized for 300 steps. We set the step size to o = (.75 for Claude and o = 1.0 for all other
victims, mirroring M-Attack. Our M-Attack-V2 attack utilizes, « = 1.275, 51 = 0.9, B2 = 0.999 for
momentum K = 10, P = 2, and A = 0.3 for MCA and ATA. Ablation on « is in the appendix. The
target transformation 7 includes random resized crop ([0.9, 1.0]), random horizontal flip (p = 0.5),
and random rotation (£15°).

3.2 Selection of surrogate model

Ensembling surrogate models is typical for enhancing black-box adversarial transferability. To further
improve, advanced gradient aggregation methods [40, [13] are proposed, yet another practical and
efficient way parallel to aggregation is to select models strategically.

We first profile the embedding transferability on different surrogate models, presented in Tab. [T]
Results show that cross-model, especially cross-patchsize transfer, is difficult. Therefore, we retain
models with diverse patch sizes that perform well in Tab[I] Trails of different combinations in

IT denotes trained on LAION [35]] dataset
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the appendix yield our Patch Ensemblet (PE"), comprising CLIP'-G/14, CLIP-B/16, CLIP-B/32,
and CLIPT-B/32. Attention maps reveal a possible explanation: PE* models tend to concentrate
attention on the main object, whereas others exhibit dispersed focus across unrelated regions. We
hypothesize that focusing on the main object enhances transferability, as all models share the common
objective of identifying core semantic content. In contrast, attention to scattered regions may capture
model-specific biases that do not generalize well across architectures.

BLIP 2/14 CLIP-L/14 DinoV2-base/14 CLIP-B/16 Clip-Laion-G/14

Figure 4: Comparison of two types of attention maps. Left: attention map that sparsely separates in
different regions; right: attention map that focus to the main object.

Surrogate C-L/14 Cf-L/14 D-S/14 D-B/14 D-L/14 C-B/16 Ci-B/16 C-B/32 Ci-B/32 BLIP2 Avg/l4 Avg/l6 Avg/32 Avg/All

C-L/14 N/A 0.40 0.10 0.13 0.12 0.45 0.40 0.34 0.24 048 025 042 029 0.30
cf-L/14 044 N/A 0.24 0.24 0.21 0.55 0.57 0.37 0.33 061 035 056 035 0.39
D-S/14 0.25 0.39 N/A 0.45 0.38 0.41 0.45 0.32 0.25 046 039 043 028 0.37
D-B/14 0.29 0.36 0.33 N/A 0.51 0.37 0.39 0.31 0.23 047 039 038 027 0.36
D-L/14 0.26 0.31 0.12 0.32 N/A 0.31 0.34 0.30 0.21 042 029 033 026 0.29
C-B/16 0.44 0.43 0.21 0.18 0.13 N/A 0.53 0.37 0.27 051 032 053 032 0.34
Cf-B/16  0.43 0.51 0.22 0.21 0.15 0.57 N/A 0.39 0.34 052 034 057 036 0.37
C-B/32 0.37 0.43 0.21 0.11 0.09 0.55 0.53 N/A 0.49 046 028 054 049 0.36
Ccf-B/32 031 0.49 0.27 0.18 0.12 0.53 0.61 0.58 N/A 0.50 031 0.57 058 0.40
BLIP2 0.39 0.43 0.15 0.20 0.26 0.45 0.43 0.33 0.25 N/A 029 044 029 0.32

Table 1: Comparison of embedding transferability over 1k images. MCA/ATA excluded to show
standalone performance. C/D = CLIP/DinoV2. Gray denotes selected models.

Method ‘ Model ‘ GPT-40 | Claude 3.7-extended | Gemini 2.5-Pro | Imperceptibility
|KMR, KMR;, KMR. ASR|KMR, KMR, KMR, ASR|KMR, KMR, KMR. ASR| ¢1] (5]

B/16 0.09 0.04 0.00 0.02| 0.04 0.02 0.00 000 008 0.04 0.00 0.00[0.034 0.040
AttackVLM [4T] B/32 0.07 003 0.00 003 006 0.04 0.00 001 009 005 0.00 0.02]0.036 0.041
Laiont | 007 004 000 0.02] 005 002 0.04 001| 009 005 0.00 0.01|0.035 0.040

AdvDiffVLM [I3] |Ensemble| 0.02 0.00 0.00 0.02| 0.01 0.00 0.00 001] 0.03 0.01 0.00 0.00]0.064 0.095
SSA-CWA [8]  |Ensemble| 0.11 0.06 0.00 0.09| 0.06 0.04 0.01 0.12| 0.05 0.03 0.0l 0.08]/0.059 0.060
AnyAttack Ensemble| 044 020 0.04 042| 0.19 0.08 0.01 022| 035 0.06 0.01 0.34]0.048 0.052
M-Attack [22] |Ensemble| 0.82 0.54 0.13 0.95| 031 021 0.04 037| 0.81 0.57 0.15 0.83/0.030 0.036

M-Attack-V2 (Ours) |[Ensemble| 091 0.78 040 099 056 032 0.11 0.67| 087 0.72 0.22 0.97 |0.038 0.044

Table 2: Comparison of M-Attack-V2 with other black-box LVLM attack methods.

3.3 Extensive Evaluation Across LVLMs and Settings

Transferability across LVLMs. Tab. ]illustrates the superiority of our M-Attack-V2 compared to
the other black-box LVLM attack method. Our method leads others by a large margin, including
M-Attack. On GPT-40 and Geimin 2.5-Pro, our M-Attack-V2 even achieves ASR close to 100%,
with ASR on Claude 3.7-extended further improved by 30%, which is difficult for M-Attack to attack.
Note that these improvements come with a slight increase in the perturbation norms for Iy and [s.
Previous /; and /5 norms are caused by insufficient optimization through near-orthogonal gradients;
thus, the perturbation norm only increases in a sub-linear pattern. Our M-Attack-V2 mitigates this
issue, exploring more sufficiently inside the [, ball. Thus, it slightly increases the perturbation
magnitude. See the appendix for visualizations of these adversarial samples.

Performance under budget constraints. Tab. 3] compares performance under varying perturbation
budgets (¢). Our method consistently ranks among the top, achieving the best or second-best results
across all settings. Notably, the margin is substantial when it leads, demonstrating its superior ability
to explore within different /., balls.

Fig.[5|compares performance under different optimization budgets (total steps). Our method converges
faster than M-Attack, reaching near-optimal results by 300 steps. In contrast, M-Attack continues to
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improve with an additional 200 steps, indicating slower convergence. At 100 and 200 steps, M-Attack
shows a significant performance drop, while our method maintains more stable ASR and KMRj,. This
robustness stems from reduced variance, as M-Attack is more affected by random cropping on the
source and radical transformations on the target image, requiring more iterations to stabilize.

Robustness Against Vision-Reasoning Models. We further evaluate M-Attack-V2 against GPT-03,
a model enhanced with visual reasoning capabilities. As shown in Tab.[5] GPT-03 exhibits slightly
better robustness than GPT-40. However, the limited improvement suggests that its reasoning module
is not explicitly trained to detect adversarial manipulations. Thus, even after reasoning, GPT-03
remains susceptible to M-Attack-V2. Its reasoning process is presented in the appendix.

e Method \ GPT-40 |  Claude 3.7-thinking | Gemini 2.5-Pro | Imperceptibility

| |KMR, KMR;, KMR. ASR|KMR., KMR, KMR. ASR|KMR, KMR, KMR. ASR| €1}  £2{

AttackVLM [41] | 0.08 0.04 0.00 0.02| 004 001 0.00 0.00] 0.10 0.04 0.00 0.01|0.010 0.011
SSA-CWA [8] 0.05 003 0.00 0.03| 0.04 0.01 000 002 004 001 0.00 0.04]0.015 0.015
4 AnyAttack [40] 0.07 002 000 0.05| 0.05 0.05 002 006 005 002 0.00 0.10]0.014 0.015
M-Attack [22] 030 0.16 003 026| 0.06 0.01 000 001 024 0.14 0.02 0.15]0.009 0.010
M-Attack-V2 (Ours)| 0.59 034 0.10 0.58| 0.06 0.02 000 002 048 033 0.07 0.380.012 0.013

AttackVLM [41] | 0.08 0.02 0.00 0.01| 0.04 002 0.00 0.01] 007 0.01 0.00 0.01{0.020 0.022
SSA-CWA [8] 0.06 002 0.00 0.04| 0.04 0.02 000 002 002 000 0.00 0.05]0.030 0.030
8 AnyAttack [40] 0.17 006 0.00 0.13| 0.07 0.07 002 005 012 0.04 0.00 0.13]0.028 0.029
M-Attack [22] 074 050 0.12 0.82| 0.12 0.06 0.00 009 062 034 0.08 0.48]0.017 0.020
M-Attack-V2 (Ours)| 0.87 0.69 020 093 023 0.4 0.02 022 0.72 049 021 0.77|0.023 0.023

AttackVLM [41] | 0.08 0.02 0.00 0.02| 0.01 000 0.00 0.01] 003 0.01 0.00 0.00|0.036 0.041
SSA-CWA [8] 0.11 006 0.00 0.09| 0.06 0.04 001 0.12| 005 0.03 0.01 0.08]0.059 0.060
16 AnyAttack [40] 044 020 0.04 042| 0.19 0.08 001 022 035 006 0.01 0.34]0.048 0.052
M-Attack [22] 082 054 013 095| 031 021 004 037 081 057 0.15 0.83]0.030 0.036
M-Attack-V2 (Ours)| 091 0.78 040 0.99| 056 032 0.11 0.67| 0.87 0.72 0.22 0.97|0.038 0.044

Table 3: Ablation study on the impact of perturbation budget (¢).
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(&)
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085 070 021 092 | 052 035 008 0.6 0 = 0
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1002 1004 1001 1004|1001 L0.10 L0.01 10.05

X X 0.82 0.62 0.22 093 0.44 0.31 0.08 0.62

. - 10.04 | L0.12 1001 10.03 |0.05
082 071 021 09 | 052 032 010 0.66
1005 1001 1001 [0.01] {004 1000 1001 {0.01
039 023 0.08 035 | 007 003 0.00 0.08
1048 1049 1014 [0.62| L049 1029 [011 }0.59

Geimini-2.5 Pro

Table 4: Effect of removing each component. Numbers

o~
below each value denote the change relative to the full
model (first row). X marks the component(s) disabled. *
removes only the first-order term. o
Model | KMR, KMR, KMR.|ASR Step
GPT-03 (03-2025-04-16) | 091 071  0.23 | 0.98 —— AttackVLM - AnyAttack ~ —— v2
—- SSACWA  -+- vl

Table 5: Results of M-Attack-V2 on vision reasoning Figure 5: Comparison of different methods
model under different step budgets.

3.4 Ablation Study

Contribution of each component. Tab. @] presents the performance changes when removing each
component. Results on GPT-40 are excluded due to non-significant differences. Both MCA and
ATA contribute approximately 5% improvement. Removing first-order momentum causes a slight
drop, while eliminating both first- and second-order momentum leads to a substantial decline. This
highlights the importance of second-order momentum in the PGD framework, as it helps normalize
the varying gradient scales in ViTs, potentially enhancing alignment.

Hyperparameter. Fig. [6] (left) shows that transferability initially improves with increasing K,
then declines. The optimal K lies around 10 ~ 20. Moderate noise helps escape local minima
and enhances transferability. However, as K grows, training becomes more stable but loses this
regularizing effect. Fig. [6] (right) illustrates the impact of X on the transferability. Larger A provides
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Figure 6: ASR and KMR,/KMR;, vs. differ- Figure 7: Ablation study on auxiliary set size P and
ent K and \. momentum parameter 3.

better diversity, drags the semantics more towards the auxiliary data, and is also at the risk of
damaging the embedded semantics’ accuracy, as KMR illustrates. Fig.[7((a) and Fig.[7(b) provides
the impact of P and 3. Both of these factors are non-significant. Since P is related to computation
complexity, choosing a smaller P, like P = 2 can balance the efficiency and performance. For the
momentum coefficient 3, using the default setting 5 = 0.9 yields well-balanced performance on
different models and metrics.

4 Related Work

Large Vision Language Models. Transformer-based LVLMs learn visual-semantic representa-
tions from large-scale image-text data, enabling tasks like image captioning [34} [14] [7, 371, visual
QA [32]], and cross-modal reasoning [38]]. Open-source models such as BLIP-2 [21]],
Flamingo [2], and LLaVA [24] show strong benchmark performance. Commercial models like
GPT-40, Claude-3.5 [4]], and Gemini-2.0 [36] offer advanced reasoning and real-world adaptability,
with their successors, GPT-03 [30], Claude 3.7-Sonnet [3]], and Gemini-2.5-Pro, able to reason in the
text modality and vision modality.

LVLM transfer-based attack. Black-box attacks include query-based [10} [16] and transfer-
based [[11] methods; this work focuses on the latter. AttackVLM [41] introduced transfer-
based targeted attacks on LVLMs using CLIP [33] and BLIP as surrogates, showing that
image-to-image feature matching outperforms cross-modal optimization, a strategy adopted by later
works [6] 13} [8] 22]]. CWA [i6] and SSA-CWA [8]] applied this principle to commercial models like
Bard [36], with CWA enhancing transferability via sharpness-aware minimization [12,[5], and SSA-
CWA introducing spectrum-guided augmentation via SSA [26]. AnyAttack [40] utilizes image-image
matching through large-scale pertaining and a subsequent fine-tuning. AdvDiffVLM [13] embeds
feature matching into diffusion guidance, introduces Adaptive Ensemble Gradient Estimation (AEGE)
for smoother ensemble scores. However, M-Attack outperforms these methods by a large margin
through a simple local-level matching framework and an ensemble with diverse path sizes.

5 Conclusion

We find that M-Attack suffers from unstable gradients and identify the root causes as high variance
and overlooked asymmetric matching. To this end, we introduce a principled framework that includes
Multi-Crop Alignment (MCA) for variance reduction, Auxiliary Target Alignment (ATA) for semantic
consistency, and Patch Momentum (PM) for replay-based stabilization. Combined with a refined
surrogate model ensemble (PE™), these components form M-Attack-V2, which achieves state-of-
the-art results across multiple black-box LVLMs. We hope this study provides practical insights
and encourages further research into stable and transferable adversarial optimization under realistic
black-box constraints.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The last paragraph of introduction conclude our contribution. By integrating
our proposed methods, we greatly improve the results from M-Attack by a large margin,
achieving a new stage of the art black-box attack method on commercial LVLMs.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The discussion of limitations is provided in the appendix

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The analysis part is provided in the appendix.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our main experiment following M-Attack, in which the full setting of the
prompt can be found. Also, we provide a full set of parameters in the experiment section,
with complementary details in the appendix. The algorithm’s pseudo-code clearly outlines
every step of our method.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.



562

563
564
565

566

568
569
570

571

572

573
574

575
576
577
578

579
580
581

583

584
585
586

587
588

589
590

591

592

594

595

596

597

598

599
600

601
602

603

604
605

606

607
608
609

610

611

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use open access data, sampling source and target images from NIPS 2017
competition [17] and COCO validation [23], following the same procedure of M-Attack.
We also include a complete code base to reproduce our results with just a few steps to set up
API keys for different black-box models.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The full details are presented in the code and the appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We average across the 200 runs for the gradient similarity, thus providing error
bars and corresponding statements. We set the temperature to 0 for LLM to avoid significant
statistical differences.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The appendix reports the computation resources.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have ensured the submission is anonymous and follows the rules.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: the discussion of broader impacts is located in the appendix

Guidelines:


https://neurips.cc/public/EthicsGuidelines
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: We have clearly stated that the generated adversarial images can only be used
for detecting possible vulnerabilities in the model and robust training. However, it is still
hard to prevent all the potential bad outcomes. Considering the scale of the dataset, the
impact should be limited.

Justification: The paper releases an optimized dataset intended solely for academic research
purposes. The dataset does not involve sensitive or high-risk content, and therefore no
specific safeguards or access restrictions were implemented. The risk of misuse is considered
minimal in the context of the dataset’s scope and intended use.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: It is mentioned in our code.

Guidelines:
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13.

14.

15.

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not include crowdsourcing
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve such research


paperswithcode.com/datasets

768 Guidelines:

769 * The answer NA means that the paper does not involve crowdsourcing nor research with
770 human subjects.

771 * Depending on the country in which research is conducted, IRB approval (or equivalent)
772 may be required for any human subjects research. If you obtained IRB approval, you
773 should clearly state this in the paper.

774 * We recognize that the procedures for this may vary significantly between institutions
775 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
776 guidelines for their institution.

777 * For initial submissions, do not include any information that would break anonymity (if
778 applicable), such as the institution conducting the review.

779 16. Declaration of LLM usage

780 Question: Does the paper describe the usage of LLMs if it is an important, original, or
781 non-standard component of the core methods in this research? Note that if the LLM is used
782 only for writing, editing, or formatting purposes and does not impact the core methodology,
783 scientific rigorousness, or originality of the research, declaration is not required.

784 Answer: [Yes]

785 Justification: In evaluation, we used LLM-as-judge only as automatic metric, following
786 M-Attack, which is clearly stated. We also manually check 20% of the evaluation process
787 to ensure it correctness. We did not use LLM for other core parts, such as the originality of
788 the research.

789 Guidelines:

790 * The answer NA means that the core method development in this research does not
791 involve LLMs as any important, original, or non-standard components.

792 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
793 for what should or should not be described.


https://neurips.cc/Conferences/2025/LLM
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