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Abstract

Black-box adversarial attacks on Large Vision–Language Models (LVLMs) present1

unique challenges due to the absence of gradient access and complex multimodal2

decision boundaries. While prior M-Attack demonstrated notable success with3

exceeding 90% attack success rate on GPT-4o/o1/4.5 by leveraging local crop-4

level matching between source and target data, we show this strategy introduces5

high-variance gradient estimates. Specifically, we empirically find that gradients6

computed over randomly sampled local crops are nearly orthogonal, violating the7

implicit assumption of coherent local alignment and leading to unstable optimiza-8

tion. To address this, we propose a theoretically grounded gradient denoising9

framework that redefines the adversarial objective as an expectation over local10

transformations. Our first component, Multi-Crop Alignment (MCA), estimates11

the expected gradient by averaging gradients across diverse, independently sam-12

pled local transformations. This manner significantly reduces gradient variance,13

thus enhancing convergence stability. Recognizing an asymmetry in the roles of14

source and target transformations, we also introduce Auxiliary Target Alignment15

(ATA). ATA regularizes the optimization by aligning the adversarial example not16

only with the primary target image but also with auxiliary samples drawn from a17

semantically correlated distribution. This constructs a smooth semantic trajectory18

in the embedding space, acting as a low-variance regularizer over the target distri-19

bution. Finally, we reinterpret prior momentum as replay through the lens of local20

matching as variance-minimizing estimators under the crop-transformed objective21

landscape. Momentum replay stabilizes and amplifies transferable perturbations by22

maintaining gradient directionality across local perturbation manifolds. Together,23

MCA, ATA, momentum replay, and a delicately selected ensemble set constitute24

M-Attack-V2, a principled framework for robust black-box LVLM attack. Empir-25

ical results show that our framework improves the attack success rate on GPT-4o26

( ) from 95%→99%, on Claude-3.7 ( ) from 37%→67%, and on Gemini-2.5-27

Pro ( ) from 83%→97%, significantly surpassing all existing black-box LVLM28

attacking methods.29

1 Introduction30

Large Vision-Language Models (LVLMs) have become foundational to modern AI systems, enabling31

multimodal tasks like image captioning [14, 34, 7, 37], VQA [27, 32], and visual reasoning [30].32

However, their visual modules remain vulnerable to adversarial attacks, subtle perturbations that33

mislead models while remaining imperceptible to humans. Prior efforts, including AttackVLM [41],34

CWA [6], SSA-CWA [8], AdvDiffVLM [13], and most effectively, M-Attack [22], which have35

exploited this weakness through local-level matching and surrogate model ensembles, surpassing36

90% success rates on models like GPT-4o.37
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Figure 1: Improvment of M-Attack-V2 over M-Attack on up-to-date commercial black-box models.

Despite its effectiveness, our analysis reveals that M-Attack’s gradient signals are highly unstable:38

Even overlapping large pixel regions, two consecutive local crops share nearly orthogonal gradients.39

In other words, high similarity in pixel and embedding space does not translate to high similarity40

in gradient space. The reason is that ViTs’ gradient pattern is sensitive to translation. A tiny shift41

changes pixels contained in each token, altering self-attention. Moreover, patch-wise, spike-like42

gradient amplifies the mismatch within just a few pixels. We counter this effect by aggregating43

gradients from multiple crops within the same iteration, a strategy we call Multi-Crop Alignment44

(MCA). From a theoretical angle, MCA aggregates gradients across multiple views in a single45

iteration, smoothing local inconsistencies and improving cross-crop gradient stability.46

We further observe that the source and target transformations in M-Attack operate in different se-47

mantic spaces: one emphasizing extraction, the other generalization. Aggressive target augmentation48

introduces harmful variance. Our Auxiliary Target Alignment (ATA) mitigates this by identifying49

semantically similar auxiliary images to create a low-variance embedding subspace, then applying50

only mild shifts to enhance transferability without destabilizing the optimization.51

Classic momentum is reinterpreted under this framework as Patch Momentum (PM), a replay mech-52

anism that recycles past gradients across random crops to stabilize optimization. In parallel, we53

also re-examine and enrich M-Attack’s model selection criterion and choose a delicately selected54

ensemble set with diverse patch sizes to mitigate the difficulty in cross-patch transfer, of which we55

find that the attention concentrates more on the main object. We term it Patch Ensemble+ (PE+).56

Together, these components, MCA, ATA, PM, and PE+, form the basis of M-Attack-V2, a robust57

gradient denoising framework that significantly outperforms existing black-box attack methods. Our58

method raises attack success rates from 95%→99% on GPT-4o, 37%→67% on Claude-3.7, and59

83%→97% on Gemini-2.5-Pro, achieving state-of-the-art performance across the board. This study60

not only offers a practical, modular attack strategy but also sheds light on the gradient behavior of61

ViT-based LVLMs under local perturbations. We hope these insights will drive further research into62

transferable adversarial optimization under realistic black-box constraints.63

2 Method64

2.1 Limitations of Local Crop Matching in M-Attack65

Recall local matching framework in M-Attack. To iteratively extract meaningful semantic details66

from the Xtar to Xsou (or called Xadv), M-Attack proposes the local-level matching framework. Each67

region x̂i (i∈{1, 2, . . . , n}) is generated independently at a different training iteration i:68

{x̂s
1, . . . , x̂

s
n} = Ts(Xsou)

{x̂t
1, . . . , x̂

t
n}/{x̂t

g} = Tt(Xtar),
(1)
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where Ts, Tt are the set of random local mappings and subsequent preprocessing (i.e., crops and69

resize) applied to the source and target images, respectively. x̂t
g is the globally transformed target70

image across iterations. Without loss of generality, each pair x̂s
i and x̂t

i is matched in iteration i.71

M-Attack introduces a local-matching strategy for attacking LVLMs in the black-box setting72

by aligning spatial crops between source and target images. While effective, this approach73

suffers from inherent instability in gradient-based optimization. Formally, consider a loss74

function L(f(Ts(Xsou)), f(Tt(Xtar))), where T denotes a random local transformation (e.g., a75

crop), f is the white-box model like CLIP [33], and Xsou is the adversarial input. Because76

∇XsouL(f(Ts(Xsou)), f(Tt(Xtar))) varies significantly across Ts (same to Tt), the stochastic gra-77

dients become nearly orthogonal, i.e., ⟨∇XsouLT i
s
,∇XsouLT j

s
⟩ ≈ 0, leading to high variance and poor78

convergence during optimization.79

Extremely low gradient overlap. In M-Attack two random crops x̂s
i ⊂Ts(Xsou) and x̂t

i⊂Tt(Xtar)80

are matched at every iteration. One would expect the gradients inside the shared region of two81

successive source crops
(
x̂s
i , x̂

s
i+1

)
to correlate, because the underlying pixels partly coincide.82

Supursingly, Fig. 2b shows the opposite: their cosine similarity is almost zero. We then keep one83

crop fixed and vary the other across scales and IoUs (Fig. 2a). Our finding reveals an exponential84

decay that plateaus below 0.1 once the overlap is smaller than 0.80 IoU.85
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(a) Similarity over IoU. The results are averaged from
20 runs with different crop parameter a for [a, 1.0].
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(b) Comparison of gradient similarity from full im-
age update and local matching over each iteration

Figure 2: Similarities of gradients from different crops. a) similarity over IoU for different crops by
fixing in one iteration; b) similarity between two consecutive gradients across iterations. Results are
averaged from 200 runs.

Source. We find two main reasons behind this high variance: ViT’s inherent sensitivity to translation86

and asymmetry within the local matching framework. We discuss them below.87

Patch-wise, spike-like gradient sensitive to translation. Because ViTs tokenize images on a fixed,88

non-overlapping grid, even sub-pixel changes each patch’s token mix. These token changes ripple89

through self-attention, altering weights and redirecting gradients for all tokens, so the resulting90

pixel-level gradient pattern diverges sharply. Worse, gradient magnitudes are uneven. Therefore, even91

similar patterns but missing a few pixels might break gradient similarity (Fig. 3b).92

Asymmetric Transform Branches. In M-Attack, both the source and target images are cropped, yet93

playing distinct roles. Cropping the source acts directly in pixel space: it rearranges patch embeddings94

and attention weights in the forward pass, ending up with guidance of different views. By contrast,95

cropping the target sorely translate the target representation, thereby shifting the reference embedding96

in feature space. One sculpts the perturbation, while another moves the goalpost, formulating97

asymmetric matching. M-Attack overlooked this and implementations target translation alternate98

between a radical crop and an identity map, struggles between explore-exploitation trade-off and99

potentially risk in high variance of target embedding.100

Asymmetric Matching over Expectation. To mitigate the issues above, we begin by concisely101

reformulating the original objective function as an expectation over local transformations within an102

asymmetric matching framework:103

min
∥Xsou∥p≤ϵ

ET ∼D,y∼Y [L(f(T (Xsou)),y)] , (2)

d where D represents the distribution of local transformations, and Y denotes the distribution over104

target semantics. ∥·∥p is ℓp constraint for imperceptibility. Conceptually, this formulation corresponds105

to embedding specific semantic content y into a locally transformed area T (Xsou), thus highlighting106

3
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Figure 3: Comparison of: a) different trajectories against different K; b) gradient pattern of single
crop alignment against multi-crop alignment (MCA). The gradient pattern of ResNet 50 remains
consistent when large pixels are overlapped, while the gradient pattern of ViTs changes dramatically.
MCA helps to smooth out this impact.

the intrinsic asymmetry compared to M-Attack’s original formulation. Within this framework, our107

proposed enhancements, i.e., Multi-Crop Alignment (MCA) and Auxiliary Target Alignment (ATA),108

can be interpreted as strategies to improve the accuracy of the expectation estimation and the sampling109

quality of the semantic distribution Y .110

2.2 Gradient Denoising via Multi-Crop Alignment (MCA)111

To obtain a low-variance estimate of the expected loss gradient ET ∼D,y∼Y [∇XsouL(f(T (Xsou)),y)],112

we draw K independent crops {T }Kk=1 and average their individual gradients:113

∇XsouL̂(Xsou) =
1

K

K∑
k=1

∇XsouL(f(Tk(Xsou)),y). (3)

This Multi-Crop Alignment (MCA) acts as an unbiased Monte-Carlo estimator, thus naturally reducing114

the variance with K > 1.115

Theorem 1. Let gk = ∇XsouL(f(Tk(Xsou)), y) denote the gradient from Tk, µ = E[gk], σ2 =116

E[∥gk − µ∥22] denote the mean and variance, and pkℓ denote the pair-wise correlation pkℓ =117
⟨gk−µ,gℓ−µ⟩

∥gk−µ∥2∥gℓ−µ∥2 . The gradient variance from K averaged crops is bounded by118

Var

(
1

K

K∑
k=1

gk

)
≤ σ2

K
+

K − 1

K
pσ2, (4)

where p = E[pkl], k ̸= ℓ is the expectation of pair-wise correlation119

All crops share the same underlying image, so p ̸= 0. The ideal σ2/K decay is therefore tempered120

by the correlation term p̄σ2. Empirically, averaging a modest number (K = 10) of almost-orthogonal121

gradients still yields benefit, since the uncorrelated component of the variance shrinks as 1/K.122

Simultaneously, the optimizer leverages multiple diverse transformations per update, with minimal123

interference among almost orthogonal gradients. Fig. 3a illustrates an accelerated convergence with124

K = 10, with margin improvement provided by K = 100.125

4



This averaging also alleviates the known translation sensitivity of ViTs. As shown in Fig. 3b,126

using two crop sets yields noticeably higher gradient consistency than the single-crop alignment127

in M-Attack. In MCA, high-activity regions remain stable (upper left and center right), while the128

single-crop case shifts focus from center right to lower left. As a result, gradient similarity across129

iterations increases from near zero in M-Attack to around 0.2 (Fig. 2b).130

2.3 Improved Sampling Quality via Auxiliary Target Alignment (ATA)131

Selecting a representative target embedding y ∈ Y is challenging because the underlying distribution132

Y is not observable. M-Attack mitigates this by seeding at the unaltered target embedding f(Xtar)133

and exploring its vicinity with transformed views f(Tt(Xtar)) thereby sketching a locally semantic134

manifold that serves as a proxy for Y . However, the exploration–exploitation trade-off remains135

problematic. Radical transformations leap too far, dragging y outside the genuine target region;136

conservative transformations, while semantically faithful, barely shift the embedding, leaving the137

optimization starved of informative signal.138

To stabilize this process, we introduce P auxiliary images {X(p)
aux}Pp=1 that act as additional anchors,139

collectively forming a richer sub-manifold of aligned embeddings. During each update, we apply140

a mild random transformation T̃ ∼ D̃ to every anchor, nudging the ensemble in a coherent yet141

restrained manner and thus providing low-variance, information-rich gradients for optimization. Let142

y0 = f(T̂0(Xtar)), ỹp = f(T̃p(X(p)
aux)) denote sampled semantics in one iteration. The objective L̂ in143

Equ. (3) becomes144

L̂ =
1

K

n∑
k=1

[
L(f(Tk(Xsou)), y0) +

λ

P

P∑
p=1

L(f(Tk(x)), ỹp)

]
(5)

where λ ∈ [0, 1] interpolates between the original target and its auxiliary neighbors. λ = 0 reduce145

to M-Attack local-local matching with single target. ATA trade-off exploration (auxiliary diversity)146

and exploitation (main-target fidelity), providing low-variance, semantics-preserving updates. The147

auxiliary set can be built variously, i.e., through image-image retrieval or diffusion methods.148

Cost. Each iteration back-propagates through the K source crops and only forward-propagates the149

P auxiliary targets. Since a backward pass is roughly twice as expensive as a forward pass, the150

per-iteration complexity is O
(
K (3 + P )

)
, roughly twice the overhead when P = 3.151

2.4 Patch Momentum with Built-in Replay Effect152

Momentum, introduced in MI-FGSM [11], is widely adopted to improve the transferability. Define153

the momentum buffer as: mr = β1mr−1 + (1− β1)∇x̂sL̂r(x̂
s), where β1 ∈ [0, 1) is the first-order154

momentum coefficient and ∇x̂sL̂r(x̂
s) is our MCA-ATA-estimated gradient gr at iteration r.155

Under the local-matching view, this mechanism can be reinterpreted as formulating a streaming MCA156

to enforce temporal consistency across gradient directions in the space of random crops. Unrolling157

the EMA for pixel k exposes an alternative interpretation:158

mi(k) = (1− β)

i∑
j=0

βj 1{k ∈ Mi−j}gi−j(k), (6)

where Mi denotes the pixel indices included in iteration i, mi(k) and gi(k) respectively denotes159

momentum and gradient for pixel k. Each crop that involves pixel k is therefore replayed in future160

iterations with geometrically decaying weight, allowing rarely sampled regions (such as corners) to161

persist long enough to combat the gradient starvation. Spike-shaped gradients are further moderated162

by the Adam-style [18] second moment, vr = β2vr−1+(1−β2)g
2
r ,, whose scaling effect is essential163

in our empirical study. The momentum does not directly improve gradient similarity but continuously164

re-injects historical crops across patches, effectively maintaining gradient directionality across local165

perturbation manifolds. We therefore term it Patch Momentum to distinguish.166

The whole procedure, combining MCA, ATA, and PM, is detailed in Alg. 1. We use a different color167

to differentiate between M-Attack-V2 and M-Attack. We use PGD [29] with ADAM [18] for line 13.168

The appendix presents analogous results for FGSM and I-FGSM variants.169
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Algorithm 1 M-Attack-V2

Require: clean image Xclean; primary target Xtar; auxiliary set A =
{
X

(p)
aux

}P

p=1
; patch ensemble+

Φ+ = {ϕj}mj=1; iterations n, step size α, perturbation budget ϵ; number of crops K, auxiliary weight
λ (0 ≤ λ ≤ 1);

1: Xadv ← Xclean,
2: for i = 1 to n do
3: Draw K transforms {Tk}Kk=1 ∼ D
4: g ← 0 ▷ accumulate over crops
5: for k = 1 to K do ▷ — crop loop —
6: Draw {T̃p}Pp=0 ∼ D̃
7: for j = 1 to m do
8: y0 = f(T̃p(Xtar)), yp = f(T̃p(X(p)

aux )), p = 1, . . . , P ▷ Transform target and auxiliary data
9: Compute L̂k = (fϕj (Tk(Xsou)), y0) +

λ
P

∑P
p=1 L(fϕj (Tk(x)), ỹp)

10: g ← g + 1
Km
∇Xsou L̂k

11: end for
12: end for
13: Updated Xadv based on g with Patch Momentum
14: end for
15: return Xadv

3 Experiments170

3.1 Experimental Setup171

Metrics. We follow the evaluation protocol of M-Attack, reporting the Attack Success Rate172

(ASR) computed with GPTScore and the Keywords Matching Rate (KMR) at three thresholds173

{0.25, 0.5, 1.0}, denoted as KMRa, KMRb, and KMRc [22]. KMR leverages human-annotated174

semantic keywords and measures different levels of keywords matching, treating the matching rate175

greater than x as a successful attack, denoting the final success rate KMRx. The evaluation prompt176

and the keyword sets are identical to those in M-Attack.177

Surrogate candidates. We adopt the exact surrogate selections used in their original papers for178

ensemble-based baselines [40, 8, 13, 22]. Our candidate pool includes CLIP series (CLIP-B/16,179

CLIP-B/32, CLIP†-G/141 CLIP†-B/32, CLIP†-H/14, CLIP-L/14, CLIP†-B/16, CLIP†-BG/14), Di-180

noV2 family [31] (Dino-Small, Dino-Base, Dino-Large), and the shared vision encoder of BLIP-2181

family [20]. See the appendix for more details.182

Victim black-box models and dataset. We evaluate four cutting-edge commercial multimodal LLMs:183

GPT-4o [1], o3 [30], Claude-3.7-Sonnet-extended [3], and Gemini-2.5-Pro-Preview [36]. Clean184

images are drawn from the NIPS 2017 Adversarial Attacks and Defenses Competition dataset [17].185

Following SSA-CWA [9] and M-Attack [22], we randomly sample 100 images. Auxiliary sets are186

retrieved from the COCO training set [23] using CLIP-B/16 embedding similarity. Further results on187

a 1k image subset are in the appendix.188

Hyperparameters. Unless otherwise noted, perturbations are bounded by ℓ∞ with ϵ = 16 and189

optimized for 300 steps. We set the step size to α = 0.75 for Claude and α = 1.0 for all other190

victims, mirroring M-Attack. Our M-Attack-V2 attack utilizes, α = 1.275, β1 = 0.9, β2 = 0.999 for191

momentum K = 10, P = 2, and λ = 0.3 for MCA and ATA. Ablation on α is in the appendix. The192

target transformation T̃ includes random resized crop ([0.9, 1.0]), random horizontal flip (p = 0.5),193

and random rotation (±15◦).194

3.2 Selection of surrogate model195

Ensembling surrogate models is typical for enhancing black-box adversarial transferability. To further196

improve, advanced gradient aggregation methods [40, 13] are proposed, yet another practical and197

efficient way parallel to aggregation is to select models strategically.198

We first profile the embedding transferability on different surrogate models, presented in Tab. 1.199

Results show that cross-model, especially cross-patchsize transfer, is difficult. Therefore, we retain200

models with diverse patch sizes that perform well in Tab 1. Trails of different combinations in201

1† denotes trained on LAION [35] dataset
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the appendix yield our Patch Ensemble+(PE+), comprising CLIP†-G/14, CLIP-B/16, CLIP-B/32,202

and CLIP†-B/32. Attention maps reveal a possible explanation: PE+ models tend to concentrate203

attention on the main object, whereas others exhibit dispersed focus across unrelated regions. We204

hypothesize that focusing on the main object enhances transferability, as all models share the common205

objective of identifying core semantic content. In contrast, attention to scattered regions may capture206

model-specific biases that do not generalize well across architectures.207

BLIP 2/14 CLIP-B/16CLIP-L/14 DinoV2-base/14 Clip-B/32 Clip-Laion-B/32Clip-Laion-G/14

Figure 4: Comparison of two types of attention maps. Left: attention map that sparsely separates in
different regions; right: attention map that focus to the main object.

Surrogate C−L/14 C†−L/14 D−S/14 D−B/14 D−L/14 C−B/16 C†−B/16 C−B/32 C†−B/32 BLIP2 Avg/14 Avg/16 Avg/32 Avg/All

C−L/14 N/A 0.40 0.10 0.13 0.12 0.45 0.40 0.34 0.24 0.48 0.25 0.42 0.29 0.30
C†−L/14 0.44 N/A 0.24 0.24 0.21 0.55 0.57 0.37 0.33 0.61 0.35 0.56 0.35 0.39
D−S/14 0.25 0.39 N/A 0.45 0.38 0.41 0.45 0.32 0.25 0.46 0.39 0.43 0.28 0.37
D−B/14 0.29 0.36 0.33 N/A 0.51 0.37 0.39 0.31 0.23 0.47 0.39 0.38 0.27 0.36
D−L/14 0.26 0.31 0.12 0.32 N/A 0.31 0.34 0.30 0.21 0.42 0.29 0.33 0.26 0.29
C−B/16 0.44 0.43 0.21 0.18 0.13 N/A 0.53 0.37 0.27 0.51 0.32 0.53 0.32 0.34
C†−B/16 0.43 0.51 0.22 0.21 0.15 0.57 N/A 0.39 0.34 0.52 0.34 0.57 0.36 0.37
C−B/32 0.37 0.43 0.21 0.11 0.09 0.55 0.53 N/A 0.49 0.46 0.28 0.54 0.49 0.36
C†−B/32 0.31 0.49 0.27 0.18 0.12 0.53 0.61 0.58 N/A 0.50 0.31 0.57 0.58 0.40
BLIP2 0.39 0.43 0.15 0.20 0.26 0.45 0.43 0.33 0.25 N/A 0.29 0.44 0.29 0.32

Table 1: Comparison of embedding transferability over 1k images. MCA/ATA excluded to show
standalone performance. C/D = CLIP/DinoV2. Gray denotes selected models.

Method Model GPT-4o Claude 3.7-extended Gemini 2.5-Pro Imperceptibility

KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR ℓ1 ↓ ℓ2 ↓

AttackVLM [41]
B/16 0.09 0.04 0.00 0.02 0.04 0.02 0.00 0.00 0.08 0.04 0.00 0.00 0.034 0.040
B/32 0.07 0.03 0.00 0.03 0.06 0.04 0.00 0.01 0.09 0.05 0.00 0.02 0.036 0.041

Laion† 0.07 0.04 0.00 0.02 0.05 0.02 0.04 0.01 0.09 0.05 0.00 0.01 0.035 0.040

AdvDiffVLM [13] Ensemble 0.02 0.00 0.00 0.02 0.01 0.00 0.00 0.01 0.03 0.01 0.00 0.00 0.064 0.095
SSA-CWA [8] Ensemble 0.11 0.06 0.00 0.09 0.06 0.04 0.01 0.12 0.05 0.03 0.01 0.08 0.059 0.060
AnyAttack [40] Ensemble 0.44 0.20 0.04 0.42 0.19 0.08 0.01 0.22 0.35 0.06 0.01 0.34 0.048 0.052
M-Attack [22] Ensemble 0.82 0.54 0.13 0.95 0.31 0.21 0.04 0.37 0.81 0.57 0.15 0.83 0.030 0.036

M-Attack-V2 (Ours) Ensemble 0.91 0.78 0.40 0.99 0.56 0.32 0.11 0.67 0.87 0.72 0.22 0.97 0.038 0.044

Table 2: Comparison of M-Attack-V2 with other black-box LVLM attack methods.

3.3 Extensive Evaluation Across LVLMs and Settings208

Transferability across LVLMs. Tab. 2 illustrates the superiority of our M-Attack-V2 compared to209

the other black-box LVLM attack method. Our method leads others by a large margin, including210

M-Attack. On GPT-4o and Geimin 2.5-Pro, our M-Attack-V2 even achieves ASR close to 100%,211

with ASR on Claude 3.7-extended further improved by 30%, which is difficult for M-Attack to attack.212

Note that these improvements come with a slight increase in the perturbation norms for l1 and l2.213

Previous l1 and l2 norms are caused by insufficient optimization through near-orthogonal gradients;214

thus, the perturbation norm only increases in a sub-linear pattern. Our M-Attack-V2 mitigates this215

issue, exploring more sufficiently inside the l∞ ball. Thus, it slightly increases the perturbation216

magnitude. See the appendix for visualizations of these adversarial samples.217

Performance under budget constraints. Tab. 3 compares performance under varying perturbation218

budgets (ϵ). Our method consistently ranks among the top, achieving the best or second-best results219

across all settings. Notably, the margin is substantial when it leads, demonstrating its superior ability220

to explore within different ℓ∞ balls.221

Fig. 5 compares performance under different optimization budgets (total steps). Our method converges222

faster than M-Attack, reaching near-optimal results by 300 steps. In contrast, M-Attack continues to223
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improve with an additional 200 steps, indicating slower convergence. At 100 and 200 steps, M-Attack224

shows a significant performance drop, while our method maintains more stable ASR and KMRb. This225

robustness stems from reduced variance, as M-Attack is more affected by random cropping on the226

source and radical transformations on the target image, requiring more iterations to stabilize.227

Robustness Against Vision-Reasoning Models. We further evaluate M-Attack-V2 against GPT-o3,228

a model enhanced with visual reasoning capabilities. As shown in Tab. 5, GPT-o3 exhibits slightly229

better robustness than GPT-4o. However, the limited improvement suggests that its reasoning module230

is not explicitly trained to detect adversarial manipulations. Thus, even after reasoning, GPT-o3231

remains susceptible to M-Attack-V2. Its reasoning process is presented in the appendix.232

ϵ Method GPT-4o Claude 3.7-thinking Gemini 2.5-Pro Imperceptibility

KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR ℓ1 ↓ ℓ2 ↓

4

AttackVLM [41] 0.08 0.04 0.00 0.02 0.04 0.01 0.00 0.00 0.10 0.04 0.00 0.01 0.010 0.011
SSA-CWA [8] 0.05 0.03 0.00 0.03 0.04 0.01 0.00 0.02 0.04 0.01 0.00 0.04 0.015 0.015
AnyAttack [40] 0.07 0.02 0.00 0.05 0.05 0.05 0.02 0.06 0.05 0.02 0.00 0.10 0.014 0.015
M-Attack [22] 0.30 0.16 0.03 0.26 0.06 0.01 0.00 0.01 0.24 0.14 0.02 0.15 0.009 0.010

M-Attack-V2 (Ours) 0.59 0.34 0.10 0.58 0.06 0.02 0.00 0.02 0.48 0.33 0.07 0.38 0.012 0.013

8

AttackVLM [41] 0.08 0.02 0.00 0.01 0.04 0.02 0.00 0.01 0.07 0.01 0.00 0.01 0.020 0.022
SSA-CWA [8] 0.06 0.02 0.00 0.04 0.04 0.02 0.00 0.02 0.02 0.00 0.00 0.05 0.030 0.030
AnyAttack [40] 0.17 0.06 0.00 0.13 0.07 0.07 0.02 0.05 0.12 0.04 0.00 0.13 0.028 0.029
M-Attack [22] 0.74 0.50 0.12 0.82 0.12 0.06 0.00 0.09 0.62 0.34 0.08 0.48 0.017 0.020

M-Attack-V2 (Ours) 0.87 0.69 0.20 0.93 0.23 0.14 0.02 0.22 0.72 0.49 0.21 0.77 0.023 0.023

16

AttackVLM [41] 0.08 0.02 0.00 0.02 0.01 0.00 0.00 0.01 0.03 0.01 0.00 0.00 0.036 0.041
SSA-CWA [8] 0.11 0.06 0.00 0.09 0.06 0.04 0.01 0.12 0.05 0.03 0.01 0.08 0.059 0.060
AnyAttack [40] 0.44 0.20 0.04 0.42 0.19 0.08 0.01 0.22 0.35 0.06 0.01 0.34 0.048 0.052
M-Attack [22] 0.82 0.54 0.13 0.95 0.31 0.21 0.04 0.37 0.81 0.57 0.15 0.83 0.030 0.036

M-Attack-V2 (Ours) 0.91 0.78 0.40 0.99 0.56 0.32 0.11 0.67 0.87 0.72 0.22 0.97 0.038 0.044

Table 3: Ablation study on the impact of perturbation budget (ϵ).

Component Gemini 2.5-Pro Claude 3.7-extended

MCA ATA PM KMRa KMRb KMRc ASR KMRa KMRb KMRc ASR

0.87 0.72 0.22 0.97 0.56 0.32 0.11 0.67

✗ 0.85
↓ 0.02

0.70
↓ 0.02

0.21
↓ 0.01

0.92
↓ 0.05

0.52
↓ 0.04

0.35
↑ 0.03

0.08
↓ 0.03

0.66
↓ 0.01

✗ 0.85
↓ 0.02

0.68
↓ 0.04

0.21
↓ 0.01

0.93
↓ 0.04

0.55
↓ 0.01

0.22
↓ 0.10

0.10
↓ 0.01

0.62
↓ 0.05

✗ ✗ 0.82
↓ 0.05

0.62
↓ 0.10

0.22
–

0.93
↓ 0.04

0.44
↓ 0.12

0.31
↓ 0.01

0.08
↓ 0.03

0.62
↓ 0.05

✗∗ 0.82
↓ 0.05

0.71
↓ 0.01

0.21
↓ 0.01

0.96
↓ 0.01

0.52
↓ 0.04

0.32
↓ 0.00

0.10
↓ 0.01

0.66
↓ 0.01

✗ 0.39
↓ 0.48

0.23
↓ 0.49

0.08
↓ 0.14

0.35
↓ 0.62

0.07
↓ 0.49

0.03
↓ 0.29

0.00
↓ 0.11

0.08
↓ 0.59

Table 4: Effect of removing each component. Numbers
below each value denote the change relative to the full
model (first row). ✗ marks the component(s) disabled. ∗

removes only the first-order term.

Model KMRa KMRb KMRc ASR

GPT-o3 (o3-2025-04-16) 0.91 0.71 0.23 0.98

Table 5: Results of M-Attack-V2 on vision reasoning
model
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Figure 5: Comparison of different methods
under different step budgets.

3.4 Ablation Study233

Contribution of each component. Tab. 4 presents the performance changes when removing each234

component. Results on GPT-4o are excluded due to non-significant differences. Both MCA and235

ATA contribute approximately 5% improvement. Removing first-order momentum causes a slight236

drop, while eliminating both first- and second-order momentum leads to a substantial decline. This237

highlights the importance of second-order momentum in the PGD framework, as it helps normalize238

the varying gradient scales in ViTs, potentially enhancing alignment.239

Hyperparameter. Fig. 6 (left) shows that transferability initially improves with increasing K,240

then declines. The optimal K lies around 10 ∼ 20. Moderate noise helps escape local minima241

and enhances transferability. However, as K grows, training becomes more stable but loses this242

regularizing effect. Fig. 6 (right) illustrates the impact of λ on the transferability. Larger λ provides243
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Figure 7: Ablation study on auxiliary set size P and
momentum parameter β.

better diversity, drags the semantics more towards the auxiliary data, and is also at the risk of244

damaging the embedded semantics’ accuracy, as KMR illustrates. Fig. 7(a) and Fig. 7(b) provides245

the impact of P and β. Both of these factors are non-significant. Since P is related to computation246

complexity, choosing a smaller P , like P = 2 can balance the efficiency and performance. For the247

momentum coefficient β, using the default setting β = 0.9 yields well-balanced performance on248

different models and metrics.249

4 Related Work250

Large Vision Language Models. Transformer-based LVLMs learn visual-semantic representa-251

tions from large-scale image-text data, enabling tasks like image captioning [34, 14, 7, 37], visual252

QA [27, 32], and cross-modal reasoning [39, 28, 38]. Open-source models such as BLIP-2 [21],253

Flamingo [2], and LLaVA [24] show strong benchmark performance. Commercial models like254

GPT-4o, Claude-3.5 [4], and Gemini-2.0 [36] offer advanced reasoning and real-world adaptability,255

with their successors, GPT-o3 [30], Claude 3.7-Sonnet [3], and Gemini-2.5-Pro, able to reason in the256

text modality and vision modality.257

LVLM transfer-based attack. Black-box attacks include query-based [10, 16] and transfer-258

based [11, 25] methods; this work focuses on the latter. AttackVLM [41] introduced transfer-259

based targeted attacks on LVLMs using CLIP [33] and BLIP [21] as surrogates, showing that260

image-to-image feature matching outperforms cross-modal optimization, a strategy adopted by later261

works [6, 13, 8, 22]. CWA [6] and SSA-CWA [8] applied this principle to commercial models like262

Bard [36], with CWA enhancing transferability via sharpness-aware minimization [12, 5], and SSA-263

CWA introducing spectrum-guided augmentation via SSA [26]. AnyAttack [40] utilizes image-image264

matching through large-scale pertaining and a subsequent fine-tuning. AdvDiffVLM [13] embeds265

feature matching into diffusion guidance, introduces Adaptive Ensemble Gradient Estimation (AEGE)266

for smoother ensemble scores. However, M-Attack outperforms these methods by a large margin267

through a simple local-level matching framework and an ensemble with diverse path sizes.268

5 Conclusion269

We find that M-Attack suffers from unstable gradients and identify the root causes as high variance270

and overlooked asymmetric matching. To this end, we introduce a principled framework that includes271

Multi-Crop Alignment (MCA) for variance reduction, Auxiliary Target Alignment (ATA) for semantic272

consistency, and Patch Momentum (PM) for replay-based stabilization. Combined with a refined273

surrogate model ensemble (PE+), these components form M-Attack-V2, which achieves state-of-274

the-art results across multiple black-box LVLMs. We hope this study provides practical insights275

and encourages further research into stable and transferable adversarial optimization under realistic276

black-box constraints.277
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1. Claims457

Question: Do the main claims made in the abstract and introduction accurately reflect the458

paper’s contributions and scope?459

Answer: [Yes]460

Justification: The last paragraph of introduction conclude our contribution. By integrating461

our proposed methods, we greatly improve the results from M-Attack by a large margin,462

achieving a new stage of the art black-box attack method on commercial LVLMs.463

Guidelines:464

• The answer NA means that the abstract and introduction do not include the claims465

made in the paper.466

• The abstract and/or introduction should clearly state the claims made, including the467

contributions made in the paper and important assumptions and limitations. A No or468

NA answer to this question will not be perceived well by the reviewers.469

• The claims made should match theoretical and experimental results, and reflect how470

much the results can be expected to generalize to other settings.471

• It is fine to include aspirational goals as motivation as long as it is clear that these goals472

are not attained by the paper.473

2. Limitations474

Question: Does the paper discuss the limitations of the work performed by the authors?475

Answer: [Yes]476

Justification: The discussion of limitations is provided in the appendix477

Guidelines:478

• The answer NA means that the paper has no limitation while the answer No means that479

the paper has limitations, but those are not discussed in the paper.480

• The authors are encouraged to create a separate "Limitations" section in their paper.481

• The paper should point out any strong assumptions and how robust the results are to482

violations of these assumptions (e.g., independence assumptions, noiseless settings,483

model well-specification, asymptotic approximations only holding locally). The authors484

should reflect on how these assumptions might be violated in practice and what the485

implications would be.486

• The authors should reflect on the scope of the claims made, e.g., if the approach was487

only tested on a few datasets or with a few runs. In general, empirical results often488

depend on implicit assumptions, which should be articulated.489

• The authors should reflect on the factors that influence the performance of the approach.490

For example, a facial recognition algorithm may perform poorly when image resolution491

is low or images are taken in low lighting. Or a speech-to-text system might not be492

used reliably to provide closed captions for online lectures because it fails to handle493

technical jargon.494

• The authors should discuss the computational efficiency of the proposed algorithms495

and how they scale with dataset size.496

• If applicable, the authors should discuss possible limitations of their approach to497

address problems of privacy and fairness.498

• While the authors might fear that complete honesty about limitations might be used by499

reviewers as grounds for rejection, a worse outcome might be that reviewers discover500

limitations that aren’t acknowledged in the paper. The authors should use their best501

judgment and recognize that individual actions in favor of transparency play an impor-502

tant role in developing norms that preserve the integrity of the community. Reviewers503

will be specifically instructed to not penalize honesty concerning limitations.504

3. Theory assumptions and proofs505

Question: For each theoretical result, does the paper provide the full set of assumptions and506

a complete (and correct) proof?507
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Answer: [Yes]508

Justification: The analysis part is provided in the appendix.509
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• The answer NA means that the paper does not include theoretical results.511

• All the theorems, formulas, and proofs in the paper should be numbered and cross-512

referenced.513

• All assumptions should be clearly stated or referenced in the statement of any theorems.514

• The proofs can either appear in the main paper or the supplemental material, but if515

they appear in the supplemental material, the authors are encouraged to provide a short516

proof sketch to provide intuition.517

• Inversely, any informal proof provided in the core of the paper should be complemented518

by formal proofs provided in appendix or supplemental material.519

• Theorems and Lemmas that the proof relies upon should be properly referenced.520
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perimental results of the paper to the extent that it affects the main claims and/or conclusions523

of the paper (regardless of whether the code and data are provided or not)?524

Answer: [Yes]525

Justification: Our main experiment following M-Attack, in which the full setting of the526

prompt can be found. Also, we provide a full set of parameters in the experiment section,527

with complementary details in the appendix. The algorithm’s pseudo-code clearly outlines528

every step of our method.529

Guidelines:530

• The answer NA means that the paper does not include experiments.531

• If the paper includes experiments, a No answer to this question will not be perceived532

well by the reviewers: Making the paper reproducible is important, regardless of533

whether the code and data are provided or not.534

• If the contribution is a dataset and/or model, the authors should describe the steps taken535

to make their results reproducible or verifiable.536

• Depending on the contribution, reproducibility can be accomplished in various ways.537

For example, if the contribution is a novel architecture, describing the architecture fully538

might suffice, or if the contribution is a specific model and empirical evaluation, it may539

be necessary to either make it possible for others to replicate the model with the same540

dataset, or provide access to the model. In general. releasing code and data is often541

one good way to accomplish this, but reproducibility can also be provided via detailed542

instructions for how to replicate the results, access to a hosted model (e.g., in the case543

of a large language model), releasing of a model checkpoint, or other means that are544

appropriate to the research performed.545

• While NeurIPS does not require releasing code, the conference does require all submis-546

sions to provide some reasonable avenue for reproducibility, which may depend on the547

nature of the contribution. For example548

(a) If the contribution is primarily a new algorithm, the paper should make it clear how549

to reproduce that algorithm.550

(b) If the contribution is primarily a new model architecture, the paper should describe551

the architecture clearly and fully.552

(c) If the contribution is a new model (e.g., a large language model), then there should553

either be a way to access this model for reproducing the results or a way to reproduce554

the model (e.g., with an open-source dataset or instructions for how to construct555

the dataset).556

(d) We recognize that reproducibility may be tricky in some cases, in which case557

authors are welcome to describe the particular way they provide for reproducibility.558

In the case of closed-source models, it may be that access to the model is limited in559

some way (e.g., to registered users), but it should be possible for other researchers560

to have some path to reproducing or verifying the results.561
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5. Open access to data and code562

Question: Does the paper provide open access to the data and code, with sufficient instruc-563

tions to faithfully reproduce the main experimental results, as described in supplemental564

material?565

Answer: [Yes]566

Justification: We use open access data, sampling source and target images from NIPS 2017567

competition [17] and COCO validation [23], following the same procedure of M-Attack.568

We also include a complete code base to reproduce our results with just a few steps to set up569

API keys for different black-box models.570

Guidelines:571

• The answer NA means that paper does not include experiments requiring code.572

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/573

public/guides/CodeSubmissionPolicy) for more details.574

• While we encourage the release of code and data, we understand that this might not be575

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not576

including code, unless this is central to the contribution (e.g., for a new open-source577

benchmark).578

• The instructions should contain the exact command and environment needed to run to579

reproduce the results. See the NeurIPS code and data submission guidelines (https:580

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.581

• The authors should provide instructions on data access and preparation, including how582

to access the raw data, preprocessed data, intermediate data, and generated data, etc.583

• The authors should provide scripts to reproduce all experimental results for the new584

proposed method and baselines. If only a subset of experiments are reproducible, they585

should state which ones are omitted from the script and why.586

• At submission time, to preserve anonymity, the authors should release anonymized587

versions (if applicable).588

• Providing as much information as possible in supplemental material (appended to the589

paper) is recommended, but including URLs to data and code is permitted.590

6. Experimental setting/details591

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-592

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the593

results?594

Answer: [Yes]595

Justification: The full details are presented in the code and the appendix.596

Guidelines:597

• The answer NA means that the paper does not include experiments.598

• The experimental setting should be presented in the core of the paper to a level of detail599

that is necessary to appreciate the results and make sense of them.600

• The full details can be provided either with the code, in appendix, or as supplemental601

material.602

7. Experiment statistical significance603

Question: Does the paper report error bars suitably and correctly defined or other appropriate604

information about the statistical significance of the experiments?605

Answer: [Yes]606

Justification: We average across the 200 runs for the gradient similarity, thus providing error607

bars and corresponding statements. We set the temperature to 0 for LLM to avoid significant608

statistical differences.609

Guidelines:610

• The answer NA means that the paper does not include experiments.611
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-612

dence intervals, or statistical significance tests, at least for the experiments that support613

the main claims of the paper.614

• The factors of variability that the error bars are capturing should be clearly stated (for615

example, train/test split, initialization, random drawing of some parameter, or overall616

run with given experimental conditions).617

• The method for calculating the error bars should be explained (closed form formula,618

call to a library function, bootstrap, etc.)619

• The assumptions made should be given (e.g., Normally distributed errors).620

• It should be clear whether the error bar is the standard deviation or the standard error621

of the mean.622

• It is OK to report 1-sigma error bars, but one should state it. The authors should623

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis624

of Normality of errors is not verified.625

• For asymmetric distributions, the authors should be careful not to show in tables or626

figures symmetric error bars that would yield results that are out of range (e.g. negative627

error rates).628

• If error bars are reported in tables or plots, The authors should explain in the text how629

they were calculated and reference the corresponding figures or tables in the text.630

8. Experiments compute resources631

Question: For each experiment, does the paper provide sufficient information on the com-632

puter resources (type of compute workers, memory, time of execution) needed to reproduce633

the experiments?634

Answer: [Yes]635

Justification: The appendix reports the computation resources.636

Guidelines:637

• The answer NA means that the paper does not include experiments.638

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,639

or cloud provider, including relevant memory and storage.640

• The paper should provide the amount of compute required for each of the individual641

experimental runs as well as estimate the total compute.642

• The paper should disclose whether the full research project required more compute643

than the experiments reported in the paper (e.g., preliminary or failed experiments that644

didn’t make it into the paper).645

9. Code of ethics646

Question: Does the research conducted in the paper conform, in every respect, with the647

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?648

Answer: [Yes]649

Justification: We have ensured the submission is anonymous and follows the rules.650

Guidelines:651

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.652

• If the authors answer No, they should explain the special circumstances that require a653

deviation from the Code of Ethics.654

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-655

eration due to laws or regulations in their jurisdiction).656

10. Broader impacts657

Question: Does the paper discuss both potential positive societal impacts and negative658

societal impacts of the work performed?659

Answer: [Yes]660

Justification: the discussion of broader impacts is located in the appendix661

Guidelines:662
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• The answer NA means that there is no societal impact of the work performed.663

• If the authors answer NA or No, they should explain why their work has no societal664

impact or why the paper does not address societal impact.665

• Examples of negative societal impacts include potential malicious or unintended uses666

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations667

(e.g., deployment of technologies that could make decisions that unfairly impact specific668

groups), privacy considerations, and security considerations.669

• The conference expects that many papers will be foundational research and not tied670

to particular applications, let alone deployments. However, if there is a direct path to671

any negative applications, the authors should point it out. For example, it is legitimate672

to point out that an improvement in the quality of generative models could be used to673

generate deepfakes for disinformation. On the other hand, it is not needed to point out674

that a generic algorithm for optimizing neural networks could enable people to train675

models that generate Deepfakes faster.676

• The authors should consider possible harms that could arise when the technology is677

being used as intended and functioning correctly, harms that could arise when the678

technology is being used as intended but gives incorrect results, and harms following679

from (intentional or unintentional) misuse of the technology.680

• If there are negative societal impacts, the authors could also discuss possible mitigation681

strategies (e.g., gated release of models, providing defenses in addition to attacks,682

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from683

feedback over time, improving the efficiency and accessibility of ML).684

11. Safeguards685

Question: Does the paper describe safeguards that have been put in place for responsible686

release of data or models that have a high risk for misuse (e.g., pretrained language models,687

image generators, or scraped datasets)?688

Answer: [No]689

Justification: We have clearly stated that the generated adversarial images can only be used690

for detecting possible vulnerabilities in the model and robust training. However, it is still691

hard to prevent all the potential bad outcomes. Considering the scale of the dataset, the692

impact should be limited.693

Justification: The paper releases an optimized dataset intended solely for academic research694

purposes. The dataset does not involve sensitive or high-risk content, and therefore no695

specific safeguards or access restrictions were implemented. The risk of misuse is considered696

minimal in the context of the dataset’s scope and intended use.697

Guidelines:698

• The answer NA means that the paper poses no such risks.699

• Released models that have a high risk for misuse or dual-use should be released with700

necessary safeguards to allow for controlled use of the model, for example by requiring701

that users adhere to usage guidelines or restrictions to access the model or implementing702

safety filters.703

• Datasets that have been scraped from the Internet could pose safety risks. The authors704

should describe how they avoided releasing unsafe images.705

• We recognize that providing effective safeguards is challenging, and many papers do706

not require this, but we encourage authors to take this into account and make a best707

faith effort.708

12. Licenses for existing assets709

Question: Are the creators or original owners of assets (e.g., code, data, models), used in710

the paper, properly credited and are the license and terms of use explicitly mentioned and711

properly respected?712

Answer: [Yes]713

Justification: It is mentioned in our code.714

Guidelines:715
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• The answer NA means that the paper does not use existing assets.716

• The authors should cite the original paper that produced the code package or dataset.717

• The authors should state which version of the asset is used and, if possible, include a718

URL.719

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.720

• For scraped data from a particular source (e.g., website), the copyright and terms of721

service of that source should be provided.722

• If assets are released, the license, copyright information, and terms of use in the723

package should be provided. For popular datasets, paperswithcode.com/datasets724

has curated licenses for some datasets. Their licensing guide can help determine the725

license of a dataset.726

• For existing datasets that are re-packaged, both the original license and the license of727

the derived asset (if it has changed) should be provided.728

• If this information is not available online, the authors are encouraged to reach out to729

the asset’s creators.730

13. New assets731

Question: Are new assets introduced in the paper well documented and is the documentation732

provided alongside the assets?733

Answer: [NA]734

Justification: This paper does not release new assets.735

Guidelines:736

• The answer NA means that the paper does not release new assets.737

• Researchers should communicate the details of the dataset/code/model as part of their738

submissions via structured templates. This includes details about training, license,739

limitations, etc.740

• The paper should discuss whether and how consent was obtained from people whose741

asset is used.742

• At submission time, remember to anonymize your assets (if applicable). You can either743

create an anonymized URL or include an anonymized zip file.744

14. Crowdsourcing and research with human subjects745

Question: For crowdsourcing experiments and research with human subjects, does the paper746

include the full text of instructions given to participants and screenshots, if applicable, as747

well as details about compensation (if any)?748

Answer: [NA]749

Justification: This paper does not include crowdsourcing750

Guidelines:751

• The answer NA means that the paper does not involve crowdsourcing nor research with752

human subjects.753

• Including this information in the supplemental material is fine, but if the main contribu-754

tion of the paper involves human subjects, then as much detail as possible should be755

included in the main paper.756

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,757

or other labor should be paid at least the minimum wage in the country of the data758

collector.759

15. Institutional review board (IRB) approvals or equivalent for research with human760

subjects761

Question: Does the paper describe potential risks incurred by study participants, whether762

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)763

approvals (or an equivalent approval/review based on the requirements of your country or764

institution) were obtained?765

Answer: [NA]766

Justification: This paper does not involve such research767
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Guidelines:768

• The answer NA means that the paper does not involve crowdsourcing nor research with769

human subjects.770

• Depending on the country in which research is conducted, IRB approval (or equivalent)771

may be required for any human subjects research. If you obtained IRB approval, you772

should clearly state this in the paper.773

• We recognize that the procedures for this may vary significantly between institutions774

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the775

guidelines for their institution.776

• For initial submissions, do not include any information that would break anonymity (if777

applicable), such as the institution conducting the review.778

16. Declaration of LLM usage779

Question: Does the paper describe the usage of LLMs if it is an important, original, or780

non-standard component of the core methods in this research? Note that if the LLM is used781

only for writing, editing, or formatting purposes and does not impact the core methodology,782

scientific rigorousness, or originality of the research, declaration is not required.783

Answer: [Yes]784

Justification: In evaluation, we used LLM-as-judge only as automatic metric, following785

M-Attack, which is clearly stated. We also manually check 20% of the evaluation process786

to ensure it correctness. We did not use LLM for other core parts, such as the originality of787

the research.788

Guidelines:789

• The answer NA means that the core method development in this research does not790

involve LLMs as any important, original, or non-standard components.791

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)792

for what should or should not be described.793
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