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Abstract

Self-consistent Field (SCF) equation is a type of nonlinear eigenvalue problem in
which the matrix to be eigen-decomposed is a function of its own eigenvectors. It is
of great significance in computational science for its connection to the Schrödinger
equation. Traditional fixed-point iteration methods for solving such equations
suffer from non-convergence issues. In this work, we present a novel perspective
on such SCF equations as a principal component analysis (PCA) for non-stationary
time series, in which a distribution and its own top principal components are mutu-
ally updated over time, and the equilibrium state of the model corresponds to the
solution of the SCF equations. By the new perspective, online PCA techniques are
able to engage in so as to enhance the convergence of the model towards the equi-
librium state, acting as a new set of tools for converging the SCF equations. With
several numerical adaptations, we then develop a new algorithm for converging the
SCF equation, and demonstrated its high convergence capacity with experiments
on both synthesized and real electronic structure scenarios.

1 Introduction

In this work, we are concerned with the convergence issue of solving the following type of nonlinear
eigenvalue problem:

F (v)v = λv (1)

in which F (v) is a given mapping from an N -dimensional unit vector to an N ×N positive semi-
definite matrix, λ is the largest eigenvalue of F (v), and v is the normalized eigenvector of F (v)
corresponding to λ. The core challenge of this problem is the involvement of self-consistency, that
is, the form of the eigenvalue equation (i.e., the matrix F (v) to be decomposed) is defined by its
final solution v, but the solution itself is not directly accessible unless the form of the equation is
given, which is a paradox. Such type of nonlinear eigenvalue problem is especially concerned in
computational science, since some variations of Equation (1) like Hartree-Fock equations [10, 11] and
Kohn-Sham equations [15, 19] are the foundation of electronic structure calculation by approximating
the Schrödinger equation, in which F (v) corresponds to the Fock operator approximating the
Hamiltonian operator of a quantum system, and the eigenvector v corresponds to the coefficients of an
orbital wave function under certain basis [33, 25]. Such equations are usually called “self-consistent
field (SCF) equations”.

However, like many other types of nonlinear equations, no existing numerical algorithms can solve
SCF equations with theoretical convergence guarantee, while many works are committed to improve
the practical “successful rate” for the solution to be converged. To be more specific, the iterative
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method to solve SCF equations is generally referred to as self-consistent field (SCF) method [30, 23],
whose basic idea is to regard the SCF equation as a fixed-point equation v = f(v) so as to perform
fixed-point iteration. For Equation (1), we can rewrite it as v = Eig(F (v)) in which Eig(·) returns
the eigenvector of a matrix corresponding to its largest eigenvalue. Then the fixed-point iteration
is performed by generating an initial solution v0 and performing vt+1 = Eig(F (vt)) iteratively
until convergence. Note that there is no theoretical guarantee that the above iteration step leads to
a converged solution1. In practice, vanilla SCF method also easily fails in real electronic structure
calculation under Hartree-Fock or Kohn-Sham equations, acting as oscillating between two or more
different states that are not solutions of the equations [4]. To mitigate the convergence issue of SCF
method, existing works mainly follow two directions: one is to generate better-quality initial solutions
v0 in a semi-empirical way [14, 35, 22], another one is to mix F (vt) with those in previous iterations
F (vt−1), F (vt−2), · · · to stabilize the iteration process [28, 21, 16, 6].

In this work, we propose a different direction to converge SCF equations. We have an insight that the
essence of SCF equation is a special type of eigen-decomposition where the matrix to be decomposed
is not determined during the decomposition. In this way, it shares a key similarity with principal
component analysis (PCA) in a non-stationary time-series environment, as PCA is also rooted on
eigen-decomposition, and the covariance matrix of the data distribution is not determined as it may
change over time. By transiting to the PCA perspective, it is possible to apply a series of online PCA
techniques that are successfully developed to handle PCA in non-stationary time-series (or streaming)
environments. They are able to adapt to new patterns in the data stream dynamically by incremental
updates of the principal component. Connecting it with SCF equations, such an incremental feature is
potentially helpful in mitigating the convergence issue, especially by preventing long-range oscillation
between successive iterations. Motivated by these insights, we propose a dynamic PCA model with an
auto-encoder structure, whose equilibrium state is the solution of Equation (1). In this model, we view
the eigenvector v in the SCF equation as a principal component for a certain data distribution P(x; Σ)
in PCA, and interpret F (v) in the SCF equation as a “reconstruction function” that convert a vector v
to the covariance matrix Σ of a certain distribution. Then we utilize online learning techniques to
lead the dynamic PCA model towards equilibrium state.

For some important real-world applications of SCF equations, such as Hartree-Fock and Kohn-Shan
equations for electronic struction calculation, we also show that our PCA-based model can be adapted
to these applications, and proposed several numerical adaptations to converge these more complicated
equations. Particularly, we proposed an adaptive mechanism that allow the iteration to switch between
online mode for convergency and regular mode for accuracy, which provides unlimited chances
of trials to reach a converged trajectory, which is lacking in standard SCF methods when stuck in
oscillation.

Experimental result on synthesis and real scenarios shows that our proposed approach largely reduce
the occurrence of oscillation, leading to a significant improvement of convergence performance. In
this way, our work expands the reach of online PCA methods into handling self-consistency. In
summary, we make the following contributions:

• A novel formulation of the SCF equation as finding the equilibrium state of a dynamic PCA
model for non-stationary time series.

• A new application of online learning techniques to the proposed model so as to enhance
its convergence to the equilibrium state and avoid oscillation, improving the convergence
performance of SCF equations solving in a generic way.

• A new algorithm based on online PCA with several numerical adaptations, which is capable of
converging the SCF equation in real-world electronic structure calculation with high successful
rate.

• Extensive experiments on a synthetic problem and real datasets for electronic structure
calculation, demonstrating the high capacity of the proposed algorithm in converging the SCF
equation.

1To have an insight, consider that the mapping Eig(F (·)) : RN → RN is generally not a contraction
mapping so that the Banach fixed-point theorem [2] does not work here.
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2 Related work

With the prosperity of deep learning and differentiable optimization in recent years, there are
works combining machine learning with computational science and electronic structure calculation,
including deep-learning-aided wave function representation of quantum Monte Carlo methods such as
FermiNet [27], PauliNet [13] and [3] and neural representation of the exchange-correlation functional
in density functional theory [24, 18]. However, these works stay within traditional formalism of the
problem, focusing more on improving simulation accuracy towards physical reality by using neural
networks as better functional approximators, while our work’s focus is very different, stressing on
a machine learning oriented formalism of the SCF equation, which has not been explored in the
literature to the best of our knowledge.

To converge SCF equations, existing works mainly follow two directions. One is to generate better-
quality initial solutions v0 [14, 35, 22]. However, these methods are generally semi-empirical as they
require specific assumption of F , and leverage domain knowledge (e.g., quantum mechanism) for the
initialization. another one is to mix F (vt) with those in previous iterations F (vt−1), F (vt−2), · · ·
to stabilize the iteration process [28, 21, 16, 6]. While these methods perform well on converging
SCF equations efficiently, they can still be stuck in indefinite oscillating between non-solution states
without the chance of escaping from it.

Principal component analysis (PCA) is a fundamental, well-studied tool used to for data analysis
and compression [17]. The principal components, which are “representative directions” of the data
distribution that preserve the data’s variation, can be computed by eigen-decomposition of the data
covariance matrix. However, when the data are formed as an online, non-stationary stream whose
distribution (or more specifically, the covariance matrix) may shift over time, specialized online
learning techniques are required to estimate the top-k principal components in a real-time manner,
and dynamically adapt to new patterns in the data stream. Starting from Hebb’s rule in neuroscience
[12], a series of works [26, 34, 1, 7] focus on this direction named Online k-PCA.

3 Solving SCF Equations with Online PCA

To mitigate the convergence issue in the solving of the SCF equation (1), we connect it with PCA
by proposing a new PCA model for non-stationary time series, showing that the solving of the SCF
equation is equivalent to finding the equilibrium state of the proposed PCA model. In this way, online
learning techniques for PCA can be exploited to accelerate the convergence. We also propose some
numerical adaptations so as to solve real-world SCF equations in electronic structure computation.

3.1 The Connection between SCF Equations and PCA

Figure 1: SCF equations as finding a distribution that is invariant before and after being processed by
an auto-encoder structure involving PCA. An input distribution P(x;Σ) is compressed yielding a set
of principal components v1:n. Those are then used to produce a reconstructed distribution P(x;Σ′),
where ideally we would like Σ = Σ′.

To connect the SCF equation with PCA, notice that Equation (1) can also be stated as

v = Eig(F (v)) (2)

or equivalently
Σ = F (Eig(Σ)) (3)
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Figure 2: A diagram of the dynamic PCA model, in which a distribution P(x;Σ) and its top principal
component v1:n are mutually updated over time. Importantly, we notice that we can regard the
approach as applying PCA on non-stationary distributions that evolve over time. Given that such
a formalism is novel and is an outcome of SCFs, the machine learning literature is yet to devise
effective solutions. In this work, we take the first steps in devising such algorithms and demonstrate
successful applications in SCFs.

where Eig(·) is the eigenvector of a matrix corresponding to its largest eigenvalue, and v = Eig(Σ).
Here, if we consider the function Σ = F (v) as a “reconstruction function” that convert a vector v
to the covariance matrix Σ of a certain data distribution P(x; Σ), then the function v = Eig(Σ) is
equivalent to a “compression function” that finds the top principal component v of this distribution
P(x; Σ) with PCA, since the top principal component is exactly the eigenvector of the distribution’s
covariance matrix corresponding to the largest eigenvalue. From this perspective, the solving of
Equation (3) (and equivalently (2)) can be seen as finding a distribution P(x; Σ) parameterized by the
covariance matrix Σ that is invariant before and after being processed by the following two stages:

• Compression (PCA): perform PCA on the distribution P(x; Σ) so as to obtain its top principal
component v, which is the representative direction of the distribution.

• Reconstruction (F (v)): process v with the given reconstruction function Σ′ = F (v) so as to
obtain the reconstructed distribution P(x; Σ′).

which is shown in Figure 1. While its architecture seems similar to the autoencoder [20], the
encoder (PCA) and decoder (reconstruction function F (v)) here are both fixed without any adjustable
parameters. Instead of training the encoder and decoder, here we aim to find an input distribution
P(x; Σ) which remains invariant after been “encoded” and “decoded”.

3.2 A New PCA Model for Non-stationary Time Series

For solving of the SCF equation (2), traditionally we perform fixed-point iteration by letting the
fixed-point mapping f(v) = Eig(F (v)) and performing vt+1 = f(vt) iteratively until convergence.
Here, by replacing f with the reconstruction and compression stages mentioned above, we obtain an
equivalent form of the fixed-point iteration, which is presented as a dynamic model that a distribution
P(x; Σ) and its top principal component v are mutually updated over time, shown in Figure 2. The
evolution process of the dynamic PCA model is as follows:

Given initial top principal component v0, reconstruction function F (v)
For t = 1, 2, · · · until converge (‖vt − vt−1‖ < ε)

• Reconstruct the distribution P(x; Σt) by Σt = F (vt−1).
• Perform PCA on Xt ∼ P(x; Σt) and obtain the top principal component vt ← PCA(Xt).

In this model, the top principal component is updated by performing PCA on the current distribution,
and the distribution is updated by performing reconstruction on the current top principal component.
As it is equivalent to the fixed-point iteration, the equilibrium state of the new dynamic model is also
the fixed point of Equation (2), which corresponds to the solution of Equation (1).

An important feature of the dynamic PCA model is that, it can be regarded as applying PCA on a
non-stationary distribution over time, as the distribution that is processed by PCA is subject to change
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Figure 3: Convergence comparison between vanilla fixed-point iteration and Online PCA given
F (v) =

[
v22 v1v2
v1v2 v21

]
, if we set the initial solution v0 as [1/2,

√
3/2]>. The principal component at

time step 0 is set to be [1/2,
√

3/2]> for both models. While the vanilla fixed-point iteration oscillates
between [1/2,

√
3/2]> and [

√
3/2, 1/2]> along with the time step, the dynamic PCA model proposed

in Section 3.2 converges to the ground-truth solution [
√

2/2,
√

2/2]> steadily after applying online
PCA technique.

over time in the evolving process. This new perspective enables a variety of PCA techniques for
non-stationary environments to be applied on the solving of the problem, whose details are discussed
below.

3.3 Online PCA for Converging SCF Equations

As we have discussed in the introduction, vanilla fixed-point iteration method has serious convergence
issues. acting as oscillating between two or more different points, neither of which are the solution
of Equation (2). For example, given F (v) =

[
v22 v1v2
v1v2 v21

]
, if we set the initial solution v0 as

[1/2,
√

3/2]> and perform fixed-point iteration vk = Eig(F (vk−1)), we will find it oscillating
between [1/2,

√
3/2]> and [

√
3/2, 1/2]> along with the time step. Neither of them are close to the

analytical solution [
√

2/2,
√

2/2]>. However, the new PCA-based perspective allows us to apply
online learning techniques to mitigate this issue. In online PCA, the principal components are
usually updated in an incremental manner so as to adapt to new patterns in the data distribution.
The incremental property is especially appealing to us, since the oscillation of fixed-point iteration
behaves as infinite “jumps” between different states, and incremental updates can reduce such jumps
by adding soft restrictions to the difference of principal components between successive time steps.
After applying online learning techniques, the evolution process of the dynamic PCA model is as
follows:

Given initial top principal component v0, reconstruction function F (v)
For t = 1, 2, · · · until converge (‖vt − vt−1‖ < ε)

• Reconstruct the distribution P(x; Σt) by Σt = F (vt−1).
• Sample xt from P(x; Σt)
• Update v by online PCA with xt

and an illustrative example is shown in Figure 3.

3.4 A Case Study for the Convergence Behavior of Online PCA

For the iterative methods solving Equation (1), while the convergence analysis is generally intractable
due to the arbitrariness of F (v) (usually nonlinear by involving vv>), here we provide a case study
for a specific form of F (v) whose analytical ground truth solutions are available. While vanilla
fixed-point iteration method doesn’t work in this case, we can derive and visualize the convergence
behavior of our proposed online PCA method in an analytical way. Here we let

F (v) = (Av)(Av)> = Avv>A> (4)

in which A is an orthogonal matrix. Substitute Equation (4) into (1) and we obtain

(Avv>A>)v = λv (5)

The analytical solution of Equation (5) is the normalized eigenvector of A corresponding to the
eigenvalue 1, since the largest eigenvalue of matrix Avv>A> is 1 with corresponding eigenvector
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Figure 4: Convergence analysis of our proposed online PCA method for solving Equation (5). Note
that vanilla fixed-point iteration can never converge in this case.

Av (i.e., Eig(Avv>A>) = Av), reducing Equation (5) to a standard eigenvalue problem v = Av.
However, The vanilla fixed-point iteration method cannot converge when solving Equation (5). Note
that the mapping in each iteration will be reduced to vt+1 = Avt, which seems very similar to the
power method on A for finding the eigenvector with the largest eigenvalue, but with convergence
ratio |λ2

λ1
| = 1 (i.e., cannot converge) since all the absolute value of A’s eigenvalues are 1 as A is an

orthogonal matrix.

Now we turn to the convergence analysis of our proposed online PCA method for this case. For the
sake of visualization, we further restrict A to be three-dimensional as a rotation transformation matrix
around the z-axis with angle θ, that is

A =

[
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

]
(6)

so that the solution of Equation (5) will be v∗ = [0, 0,±1]>, the two unit vectors on the z-axis. Then,
we let the initial top principal component v0 to be a unit vector on the yz plane

v0 = [0, cosϕ0, sinϕ0]>, ϕ0 ∈ [0,
π

2
] (7)

where ϕ0 is the initial angle between the vector and the xy plane.

We analytically derived the convergence behavior of the online PCA method described in Section 3.3
for solving Equation (5), whose detail is leaved in the appendix. The result is as follows: for
θ ∈ (0, π2 ), the online PCA method is guaranteed to converge to the ground-truth solution on z-axis.
However, for θ ∈ [π2 , π), there is a phase transition of convergence behavior w.r.t. the initial angle
ϕ0, shown in Figure 4b. While the online PCA method stays converged for ϕ0 > arccos

√
x1(θ), it

will fail to converge otherwise. Assuming the initial vector is sampled uniformly on the unit sphere,
the probability of convergence for the online PCA method w.r.t. the rotation angle θ is shown in
Figure 4c.

3.5 Numerical Adaptations for Converging Real-world SCF Equations

Now we investigate a more complicated and applicative scenario in electronic structure calculation,
which is usually known as Hartree-Fock equations or Kohn-Sham equations. The form of such SCF
equations [33] is

F (V )V = SV Λ, (8)
where

• F (V ): an N ×N real symmetric matrix to be decomposed, as a given function of V . It is
defined as follows:

F (V )
def
= H + Ueff(2V V

>), (9)
in which H is an N ×N real symmetric matrix and Ueff(·) is an N ×N real symmetric matrix
as a function of 2V V >. Both of them are given in the equation.

• S: an N ×N positive semi-definite matrix, which is a constant input in the problem.
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• Λ: Λ = diag(λ1, · · · , λk) is a k×k diagonal matrix containing the top-k smallest eigenvalues.
• V : V = [v1, · · · , vk] is an N × k matrix containing k normalized column eigenvectors

corresponding to the top-k smallest eigenvalues.

Our proposed model can be adapted to handle it as follows

1. While F (v) is not guaranteed to be positive semi-definite, note that we can always make an
“eigenvalue shift” towards F (v) by adding it with σI (σ is a moderately large number) to make
it positive semi-definite, without changing its eigenvectors (i.e., the solution of Equation (8)).

2. For S 6= I , Equation (1) becomes F (v)v = λSv which is a generalized eigen-decomposition
problem[8]. We can then perform standard orthogonalization technique that transforms the
generalized eigenvalue problem into a standard one [33].

3. To tackle the smallest eigenvalues instead of the largest ones, we can simply add a minus sign
to F (v), so that the order of its eigenvalues will be reversed without changing its eigenvectors.

4. For k > 1, our proposed model can be trivially extended to k > 1 cases by retaining k top
principal components rather than one.

And we name the adapted model as “Online SCF”. Then, we introduce some practical improvements
that can further enhance the efficiency and convergence capability of our proposed model for solving
Equation (8):

Adaptive Update Interval: Instead of updating Σ in every iteration, we control the update interval of
Σ via a parameter IΣ to improve efficiency. Since V is only updated slightly in each iteration step with
a small learning rate η, it may not be necessary to do a fresh computation of Σ = F (V ) in each time
step, especially considering that the computation of Ueff(·) in Equation (9) can be costly. Moreover,
we change IΣ adaptively in the iteration to improve the efficiency by the following intuition: if
there is a significant change between Σt and Σt−1, our dynamic PCA model is in an unstable state
and we should apply online PCA method in a more responsive way to improve the convergence by
setting a smaller IΣ. However, if the gap is small, then our dynamic PCA model is very likely to
be already close to a stable state, in which case the precision of PCA result is more dominant for
obtaining a highly precise solution (especially for electronic structure calculation requiring error
< 10−10), and a larger IΣ is more reasonable. In this way, we set IΣ to be inversely proportional to
the difference between Σt and Σt−1, as ItΣ = d 1

∆(Σt,Σt−1)e in which ∆(Σt,Σt−1) ≥ 0 is a properly
scaled function evaluating the difference between successive Σ.

Adaptive PCA Mode Switching: Note that, the larger IΣ is, the more costly in time between two
updates of Σ, and the closer the result is to regular PCA on P(x; Σ). Thus a cut-off value Tcut-off is
set so that the PCA model will switch from online to regular when ItΣ > Tcut-off, avoiding exhausted
iteration on a single Σ. Moreover, this brings the preciseness needed for the final stage of the iteration
when the error is small and convergence may not be a problem. Empirically, such a mode switching
will introduce temporary disturbance for a few iterations, so we also set a small “tabu tenure”2 Ttabu
prohibiting switching back to the original PCA mode in Ttabu steps. Such switching between online
and regular PCA can be triggered multiple times. A high amount of switches indicates that the
convergence of the iteration may be hard, so Tcut-off will increase by a small value Tcut-off-inc after each
switching to increase the proportion of online PCA to handle the convergence issue.

Additionally, we also applied the direct inversion of the iterative subspace (DIIS) method, which is
empirically effective in traditional methods for electronic structure calculation. The basic idea is to
update Σt at iteration t as a linear combination of matrices in previous T iterations Σt−T , · · · ,Σt−1,
whose detail can be found in [28] and the appendix. In the experiments involving electronic structure
calculation, we apply DIIS on all tested methods.

Some other numerical adaptations, including the application of momentum and sample-free update,
are also leaved in the appendix. Summarizing all considerations above, we propose an algorithm for
solving Equation (8), named “Adaptive Online SCF”, shown in Algorithm 1

2This term is borrowed from Tabu Search [9].
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Algorithm 1 Adaptive Online SCF for solving Equation (8) in electronic structure calculation

Input: H,S,Ueff(·) in Equation (8) and (9), learning rate η, difference evaluation function
∆1(Σt,Σt−1) for convergence criteria and ∆2(Σt,Σt−1) for the computation of IΣ, cut-off
threshold Tcut-off and increment value Tcut-off-inc, tabu tenure Ttabu, convergence threshold ε

Output: V ∗, the solution of Equation (8)
1: Initialize V ′0 ∈ RN×k randomly.
2: Σ0 ← H
3: Find X satisfying X>SX = I .
4: s0 ← Online
5: t← 0, i← 0
6: while ∆1(Σt,Σt−1) > ε do
7: Vt ← XV ′t
8: Σt ← DIIS(Σt−S , · · · ,Σt−1, F (V ))
9: Σ′t ← X>ΣtX

10: ItΣ = d1/∆2(Σt,Σt−1)e
11: if ItΣ ≤ Tcut-off and not (st = Regular and i < Ttabu) or (st = Online and i < Ttabu) then
12: for t′ = 0, 1, 2, · · · , ItΣ do
13: Use online PCA to update V ′t towards “covariance matrix” −Σ′t, with momentum.
14: end for
15: st ← Online
16: else
17: Use regular PCA to compute “principal component” V ′t from “covariance matrix” −Σ′t.
18: st ← Regular
19: end if
20: i← i+ 1 if st = st−1 else 0
21: Tcut-off ← Tcut-off if st = st−1 else Tcut-off + Tcut-off-inc
22: t← t+ 1
23: end while
24: V ∗ ← XV ′

4 Experiments

4.1 Experimental Verification of the Case Study

To verify the convergence analysis in Section 3.4, we conduct Monte Carlo experiments to solve
Equation (5) for rotation matrix A with different rotation angle θ. For each angle, we uniformly
sample 1,000 initial vectors v0 on the unit sphere, perform the online PCA method and traditional
fixed-point iteration (vanilla SCF) starting from these vectors to solve Equation (5), and use the
proportion of converged vectors as an approximation of convergence probability. To be aligned with
the next section, we also included the DIIS method described in the appendix that is extensively used
in solving Equation (8).

The result is shown in Figure 5. While vanilla SCF (fixed-point iteration) cannot converge on any
instance, the convergence probability of online PCA is aligned with the analytical result shown in
Figure 4c. DIIS achieves around 40% convergence probability regardless of the rotation angle, which
is significantly better than vanilla SCF but still fall behind for θ < 3π/4 compared with online PCA
method. The result validates the convergence analysis in Section 3.4, showing the potentially high
convergence capacity of online PCA method.

4.2 Convergence Capability Evaluation on Electron Structures

In this section, we perform extensive benchmarks on the QM9 dataset [31, 29], a diverse, large dataset
to evaluate the capacity of converging Equation (8), the SCF equation in the scenario of electronic
structure calculation. The QM9 dataset contains the atomic coordinates of 133,885 molecules in
total, which is huge in size, thus we sampled 1% of the dataset (1,338 molecules) in a purely random
manner for our evaluation. The effective potential matrix function Ueff(·) in Equation (9) is based
on Hartree-Fock theory and Density Functional Theory (DFT) with B3LYP exchange-correlation
functional, provided by PySCF [32]. We evaluated the methods on the two theories separately.
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Figure 5: Performance evaluation of solving Equation (5) whose analytical solutions are available.
(a) While vanilla SCF (fixed-point iteration) cannot converge on any instance, the convergence
probability of online PCA is aligned with the analytical result shown in Figure 4c. (b) An example of
convergence trajectories, traditional SCF (fixed-point iteration) fails to converge (cycling around the
solutions) while our Online PCA method converges to the solutions (red and blue arrow) smoothly.

Methods Hartree-Fock DFT with B3LYP
#(Nonconverged

molecules)
Average

#(iterations)
#(Nonconverged

molecules)
Average

#(iterations)
Regular SCF 124 (9.27%) 25.49 407 (30.42%) 21.09

Full Online SCF 13 (0.97%) 584.68 217 (16.22%) 1835.24
Adaptive Online SCF 0 (0%) 42.97 0 (0%) 60.58

Table 1: Results on 1,338 randomly sampled molecules in QM9 dataset. All methods are initialized
with core Hamiltonian and accelerated by DIIS. Average #(iterations) is for converged molecules
only.

Standard 6-31G basis set [5] are applied for the computation of all molecules. All tested methods are
initialized with core Hamiltonian and accelerated by DIIS. Three methods are evaluated as follows:

• Regular SCF: The default method in PySCF with DIIS enabled, as similar to most of the
quantum chemistry software.

• Full Online SCF: Algorithm 1 without the adaptive mode switching mechanism. Online SCF
is applied throughout the whole iteration process, with a learning rate of 10−2. To avoid the
explosion of update interval ItΣ when approaching to convergence, we simply set an upper
limit of 10,000 for ItΣ.

• Adaptive Online SCF: Algorithm 1 including the adaptive mode switching mechanism.
Regular SCF is allow to kick in when the iteration process is close to convergence. Tcut-off and
Tcut-off-inc are set to be 100 and 10 respectively. Ttabu is set to be 10.

The result is shown in Table 1. Compared with regular SCF approach, full online SCF method
significantly reduced the number of nonconverged molecules in both Hartree-Fock and DFT scenarios,
demonstrating its high convergence capacity in solving Equation (8). However, the gradient-like
update rule of online methods results in comparatively low precision. This not only increases the
number of required iterations significantly, but also restricts it from achieving higher convergence
capacity under strict convergence criteria. The adaptive mode switching mechanism successfully
resolved the issue. By allowing regular SCF to kick in at a later stage, with the flexibility to return
back to online mode when oscillation occurs, adaptive online SCF achieves converged solution for all
test molecules, with a moderate increase of average iteration number.

The behavior of adaptive online SCF is shown in Figure 6. While most of the molecules get converged
with only one mode transition in Figure 6a, there are also a few “hard cases” like Figure 6b that
require multiple mode transitions between online and regular SCF. The detailed statistics is shown in
Table 2. The capability of mode switching is essential for the convergence capacity, since it provides
unlimited chances of trials to reach a converged trajectory, which is lacking in regular SCF methods
with only a few choices of starting point to select.

9



5 10 15 20 25 30 35 40
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101
102
103

Online
SCF

Regular
SCF

iterations

E
rr

or

(a) Converge with one mode transition.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101
102
103

Online
SCF

Regular
SCF

Online
SCF

Regular
SCF

Online
SCF

Regular
SCF

iterations

E
rr

or

(b) Converge with multiple mode transitions.

Figure 6: Examples of converge curves for adaptive online SCF.

#(mode transition) 1 2 3 4 5 6 7 8 > 8
Hartree-Fock 1143 179 13 2 0 0 1 0 0

DFT with B3LYP 1025 189 60 27 18 6 6 3 4

Table 2: Mode transition statistics of adaptive online SCF on sampled QM9 dataset. While all
molecules finally converged on both Hartree-Fock and DFT scenarios and most of the them only
require one mode transition from online to regular, the distribution of mode transition for DFT is
more long-tailed (the 4 molecules with #(mode transition) > 8 have 12, 13, 15 and 32 transitions
respectively).

5 Conclusion

In this work, we take the first steps in devising PCA-based algorithms for converging non-linear
equations, and demonstrate successful applications in SCFs. This work contributes to both the field
of computational science and machine learning as follows:

• For computational science, this work presents a new algorithm to converge SCF equations in
electronic structure calculation with high successful rate, especially without any heuristics
based on prior quantum mechanism knowledge to bootstrap the solving stage.

• For machine learning, this work explores a brand new area of “self-consistent” eigenvalue
problems, especially SCF equations, for online PCA methods such as Oja’s algorithm and
EigenGame, which are previously regarded as specialized methods for k-PCA. While such
methods can properly handle data stochasticity, this work shows that they are also capable
of handling self-consistency, which leads to a potential of application in a broader field of
scientific computing.
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