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ABSTRACT

Spiking Neural Networks (SNNs) show promise as energy-efficient models in-
spired by the brain. However, there is a lack of efficient training methods for
deep SNNs with online learning rules that mimic biological systems, particularly
for deployment on neuromorphic computing substrates. In this paper, we pro-
pose Surrogate Online Learning at Once (SOLO) for SNNs, which utilizes several
surrogate strategies that could be implemented in a hardware-friendly manner. By
exploiting expanded spatial gradient from only the final time step of forward prop-
agation, SOLO achieves low computational complexity while maintaining com-
parable accruacy and convergence speed. Moreover, the update rule of SOLO
takes the simple form of three-factor Hebbian learning, which could enable online
on-chip learning. Our experiments on both static and neuromorphic datasets show
that SOLO achieves performance comparable to conventional learning algorithms.
Furthermore, SOLO is hardware-friendly, offering robustness against device non-
idealities and sparse access during write operations to memory devices.

1 INTRODUCTION

Spiking neural networks (SNNs) are the next generation of neural network models (Maass, 1997),
highlighting their potential for low-power computation and brain-like cognitive function. In SNNs,
neurons transmit information through sparse and binary spikes, enabling intuitive hardware design
and event-driven computing. From digital neuromorphic computing (NC) chips (Akopyan et al.,
2015; Davies et al., 2018; Pei et al., 2019) to mixed-signal NC chips (Pehle et al., 2022; BÈuchel
et al., 2021; Aamir et al., 2018) and neuromorphic devices (Pedretti et al., 2017; Byun et al., 2022),
interdisciplinary approaches have contributed to remarkable advancements toward achieving energy-
efficient hardware solutions. However, despite the impressive progress in neuromorphic hardware
development, the training of SNNs remains a challenging research topic.

Backpropagation, a powerful learning rule in artificial neural networks (ANNs), has been adapted
for SNNs. Gradient-based direct training methods with surrogate gradient (SG) (Neftci et al., 2019)
are one of the main methods that enable the training of deep SNNs with high performance in large-
scale data sets with extremely low latency. (GÈoltz et al., 2021; Kwon et al., 2020; Lee et al., 2016;
Shrestha & Orchard, 2018; Wu et al., 2018; Zheng et al., 2021; Fang et al., 2021a; Han et al., 2020;
Deng et al., 2022; Roy et al., 2019) However, the most significant challenge faced by SNNs is the
credit assignment problem (Neftci et al., 2019), which arises from representing each spiking neuron
as a self-recurrent neural network. During training, they have significant memory requirements that
scale with the number of time steps. Furthermore, these methods deviate from the principles of
biological online learning, which serve as the learning rule in neuromorphic substrates. (Akopyan
et al., 2015; Davies et al., 2018; Pei et al., 2019; Pehle et al., 2022) While they are compatible with
event-based inputs and multiple spiking neuron models, they are inefficient in terms of memory and
time complexity in practical operation.

In advance, several online training methods (Kag & Saligrama, 2021; Yin et al., 2022; Xiao et al.,
2022) and on-chip training methods (Neftci & Indiveri, 2010; Ambrogio et al., 2018; GrÈubl et al.,
2020; Cramer et al., 2022) have been proposed for SNN. However, direct training methods for scal-
able SNNs often depend on offline off-chip learning due to the credit assignment problem. To im-
prove memory and time complexity, online training methods are typically derived from simplified
real-time recurrent learning (RTRL). (Williams & Zipser, 1989; Tallec & Ollivier, 2017; Menick
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et al., 2021) While being free from temporal dependence and leveraging local information can be
useful strategies for online training, they are not sufficient for large-scale tasks or on-chip imple-
mentation. (Zenke & Ganguli, 2018; Trondheim, 2016; Kaiser et al., 2020; Bellec et al., 2020;
Bohnstingl et al., 2022)

To achieve scalable, online on-chip training for SNNs, it is important to embed neuromorphic sub-
strates (Zenke & Neftci, 2021) in emerging devices (Kim et al., 2015; Ishii et al., 2019a; Geoffrey
W. Burr & Leblebici, 2017; Sebastian et al., 2018), enabling high performance with low latency and
maintaining online learning properties. Fortunately, recent studies have shown that these emerg-
ing devices can be applied to reproduce complex biological functions, most of which exhibit leaky
properties, with low power consumption. (MarkoviÂc et al., 2020; Kumar et al., 2022; Wang et al.,
2017; Xia & Yang, 2019) However, non-idealities in synaptic devices can lead to durability issues
and a significant degradation in accuracy when deploying SNN training on neuromorphic substrates.
(Gonugondla et al., 2018; Tsai et al., 2018) To address these issues, online on-chip learning algo-
rithms are expected to be co-designed with implementable neuromorphic substrates, taking into
account their impact on NC chips. (Gallo et al., 2023; Chen et al., 2018)

In this work, we introduce a novel approach to training spiking neural networks that achieves com-
parable performance with low latency while maintaining the online learning properties necessary
for learning on NCs. We first propose neuron models that include trainable time constant parame-
ters, referred to as the pseudo-Parametric Leaky Integrate-and-Fire (pPLIF) spiking neuron models
and pseudo-Parametric leaky integration (pPLI) neuron models. Next, we propose Surrogate Online
Learning at Once (SOLO) for SNNs, which utilizes surrogate strategies to perform learning with
low computational complexity by exploiting gradient from the final time step. We conduct extensive
experiments, demonstrating that SOLO achieves comparable performance on large-scale static and
neuromorphic datasets. SOLO could also achieve a convergence speed comparable to backpropaga-
tion through time (BPTT) and spatial-temporal backpropagation (STBP) on the CIFAR-10 dataset.
Furthermore, SOLO is designed to be hardware-friendly, performing efficient online on-chip learn-
ing. We verify the effectiveness of SOLO in online learning contexts. We demonstrate that SOLO
can address device durability problems with sparse write access and non-ideality issues of analog
computing substrates, including thermal noise and device mismatch.

2 PRELIMINARIES

2.1 SPIKING NEURON MODELS

pPLIF neuron models. To demonstrate SOLO, we base on Leaky Integrate-and-Fire (LIF) neuron
models (Gerstner & Kistler, 2002), which are transformed into an iterative expression using the
Euler method. The Parametric LIF (PLIF) neuron models (Fang et al., 2021b) were proposed to
enhance the performance of SNNs by introducing trainable membrane time constants, which enable
them to exhibit LSTM-inspired dynamics. We propose the pseudo-Parametric Leaky Integrate-and-
Fire (pPLIF) spiking neuron models to learn the membrane time constants of SNNs. Compared to
the Parametric Leaky Integrate and Fire (PLIF) neuron models, the pPLIF neuron models are more
hardware-implantable and simplifies the computation of gradient flowing to a trainable membrane
time constant τ lmem (see details in Supplementary Section A and Supplementary Section B). The
membrane time constant τ lmem is shared among neurons in the same layer in SNN. We consider

simple current models: I li [t] =
∑

W l
ijS

l−1
j [t] where the subscript i represents the i-th neuron and

Wij are the weights of neurons j to neurons i, without bias. The discrete computational form is:

{

U l
i [t] = βlU l

i [t− 1](1− Sl
i[t− 1]) + I li [t]

Sl
i[t] = Θ(U l

i [t]− ϑth)
(1)

where U l
i are the subthreshold membrane potentials of neurons i, βl = 1/(1 + exp(−τ lmem)) is

the membrane potential decaying constant at layer l, Sl
i are the occurrences of output spikes of

neurons i at layer l, Θ(·) is heaviside function, and ϑth is the threshold. The hard reset operation is
implemented by multiplying the occurrences of an output spikes of neurons i at time step t− 1.
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2.2 ACCUMULATIVE NEURONS

pPLI mode of accumulative neurons. Before computing loss with the spike counting method, the
output spike count is updated in the spike accumulator. We propose accumulative neurons that can
operate in both the integration (I) mode (see details in Supplementary Section A), which is same
as spike accumulator, and the pseudo-Parametric leaky-integration (pPLI) mode with a trainable
membrane time constant. The operation of the pPLI neuron models are similar to the pPLIF neuron
models without firing. It functions as follows:

Ai[t] = βAAi[t− 1] + SL
i [t] (2)

where Ai are the membrane potentials of the accumulative neurons i, βA = 1/(1 + exp(−τAmem))
is the membrane potential decaying constant, and SL

i is the occurrences of output spikes of neurons
i at the last layer L.

2.3 CONVENTIONAL LEARNING ALGORITHMS

Backpropagation Through Time (BPTT) (Neftci et al., 2019) and Spatio-Temporal Backpropagation
(STBP) (Wu et al., 2018) are the popular learning algorithms for training SNNs.

Backpropagation Through Time. BPTT is a training algorithm originally designed for recurrent
neural networks (RNNs), and it has been adapted to interpret SNNs as RNNs for training purposes.
As shown in Supplementary Figure 1(a), the loss is computed at each time step, addressing both
spatial and temporal errors.

Spatio-Temporal Backpropagation. STBP is similar to BPTT, but is designed to leverage spatio-
temporal information in SNNs more effectively. As shown in Supplementary Figure 1(b), while the
loss is computed at the final time step, the gradient of each time step are propagated through the
spike counter, addressing both spatial and temporal errors.

However, both of these methods involve considerable computational intensity due to the necessity
of handling intermediate states and gradient for each time step. This computational demand adds
complexity to the credit assignment process.

3 SURROGATE ONLINE LEARNING AT ONCE

As shown in Figure 1(a), the SOLO follows a forward path through the time steps while considering
a backward path only at the final step.

According to Forstmann et al. (2010), the brain exhibits a trade-off between time and accuracy.
When inference is performed in a short number of time steps, potential errors can arise. We believe
that the information of the accumulative neurons in the final time step could yield the most distinct
and clear error value among all given time steps. Moreover, when considering temporal error and
retracing through the time steps during backward propagation, the gradient vanishing phenomenon
becomes evident. (Ponghiran & Roy, 2022) Given this, we believe that independence from temporal
error might not lead to notable challenges. Consequently, the gradient chain of the SOLO relies on a
spatial gradient at the final step, reducing the emphasis on backpropagation across both the temporal
and spatio-temporal dimensions.

This beneficial behavior is also supported by biological behavior that indicates that neuromodulators
(Lovinger et al., 2022; Mei et al., 2022), which can be interpreted as error signals in SNNs, are not
constantly secreted but are rather spatially released in specific cycles.

3.1 SURROGATE STRATEGIES OF THE SOLO

To realize SOLO, we utilize four surrogate strategies to expand the gradient from the final time step
in SOLO. The term ºsurroº refers to surrogate strategies. (see details in Supplementary Sections B)

surro1: Wide Range of Boxcar Function as Surrogate Gradient. Due to the non-differentiable
nature of the spiking activation function, we employ the surrogate gradient method. In particular, we
utilize the boxcar function, which enables efficient on-chip implementation. We expand the window
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Figure 1: (a) Illustration of the proposed SOLO. (b) Operation of always-on beyond spike accumu-
lation. On the backward path, the gradient is propagated to all elements, ignoring spatial gradient
between accumulative neurons and the occurrences of spikes at the last layer. (c) Operation of
always-on pooling. On the backward path, the gradient is propagated to all elements. These opera-
tions increase the number of candidates that can be updated in the gradient chain.

value to ensure that more neurons fall within the boxcar function.

∂S[T ]

∂U [T ]
= Θ′(U [t]− ϑth) → 1U = Θ(|U [t]− ϑth| < p) (3)

where 1U are the outcomes of the boxcar function applied to the membrane potentials and p is the
window value for the range of membrane potentials that allow the flow of gradient.

surro2: Always-On beyond Spike Accumulation. During backward propagation, output spikes
in the final layer contribute to computing the spatial gradient linked to accumulated neurons. How-
ever, as shown in Figure 1(b), we ignore this spatial gradient to achieve an abundant gradient flow,
ensuring error propagation across all classes.

∂A[T ]

∂SL[T ]
→ 1 (4)

surro3: Always-on pooling. During forward propagation, the operation of always-on pooling func-
tions identically to max pooling. However, during backward propagation, it facilitates the flow of
gradient through all tensors without considering the maximum value. As shown in Figure 1(c), this
operation improves the likelihood of updates.

surro4: pPTRACE. From backpropagation through time (BPTT), the gradient of spikes through
the time steps can be represented as an eligible potential, which takes the form of leaky integration
(LI). (Bellec et al., 2020; Bohnstingl et al., 2022) Expanding on this representation, we propose a
pseudo-Parametric Spike Trace (pPTRACE) that replaces the gradient of spikes at the final time step
with the computation of eligible spikes through the time steps. This approach effectively increases
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the number of spike candidates eligible for weight updates. The computation process for the eligible
spikes can be described as follows (see details in Supplementary Sections B):

{

Ũ l[T ] = k(αlŨ l[T − 1] + alSl−1[T ])

S̃l[T ] = Θ(Ũ l[T ]− ϑ̃l
th)

(5)

where Ũ l are eligible potentials at layer l, k(·) is the clamp function, and αl = 1/(1+ exp(−τ lspk))

is the eligible potential decaying constant, al is the scaling constant, and Sl−1 are the occurrences of

output spikes of neurons j at layer l − 1, S̃l[T ] are eligible spikes at layer l, and ϑ̃l
th is the threshold

of an eligible spike. τ lspk, al and ϑ̃l
th are trainable parameters and shared in the same layer in SNNs.

To enable the gradient propagation towards trainable parameters, we employ the following tech-
niques:







∂U l

i
[T ]

∂S̃l[T ]
= ∂U l[T ]

∂s̃[T ]
∂s̃[T ]

∂S̃l[T ]
= W l

∂S̃l[T ]

∂Ũ l[T ]
= Θ′(Ũ l[t]− ϑ̃th) → 1

l

Ũ
= Θ(Ũ [t]− ϑ̃th)

(6)

where s̃(·) is the switch function, 1l

Ũ
are the outcomes of the heaviside function applied to the

eligible potentials.

Finally, we derive eligible spikes that serve as surrogate gradient of spikes for weight updates.

∂U l[T ]

∂W l
= 1

l−1
S = Sl−1[T ] → 1

l

S̃
= S̃l[T ] (7)

where 1
l−1
S are occurrences of spikes at layer l − 1 and 1

l

S̃
are eligible spikes at layer l.

3.2 DERIVATION OF THE SOLO

We compute the mean squared error (MSE) loss using the firing rate given by A[T ]/T . The loss
function of SOLO is:

LSOLO = LMSE(A[T ]/T, ŷ) (8)

where ŷ is target label.

Following the chain rule, the gradient of trainable parameter W l
ij and τ lmem can be derived as:







∂LSOLO

∂W l = δl[T ] ∂S
l[T ]

∂U l[T ]
∂U l[T ]
∂W l = δl[T ]1l

U1
l−1
S

∂LSOLO

∂τ l
mem

= δl[T ] ∂S
l[T ]

∂U l[T ]
∂U l[T ]
∂τ l

mem

= δl[T ]1l
U

∂U l[T ]
∂τ l

mem

(9)

where

δl[T ] =
∂LSOLO

∂Sl[T ]
=

{

A[T ]/T − ŷ if l = L

δl+1[T ] ∂S
l+1[T ]

∂U l+1[T ]
∂U l+1[T ]
∂Sl[T ]

= δl+1[T ]1l
UW

l if l < L
(10)

3.3 IMPLEMENTATION DETAILS

We consider both versions: SOLO and SOLOet. ’surro 4: pPTRACE’ is utilized in SOLOet (see
details in Supplementary Sections A, B).

3.4 SIMPLIFIED THREE-FACTOR LEARNING RULES

Surrogate gradient learning can be interpreted as three-factor learning rules. (Neftci et al., 2019)
When we specifically outline the gradient of SOLO for the general weight from layer l to layer l− 1
and connections between any two neurons i and j, we have:

∂LSOLOet

∂W l
ij

=
∂LSOLOet

∂Sl
i[T ]

∂Sl
i[T ]

∂U l
i [T ]

∂U l
i [T ]

∂W l
ij

→ δli[T ]1
l
Ui
1
l−1
Si

(11)

where δli is the global modulator, 1l
Ui

is the surrogate gradient of post-synaptic neurons, which

represents post-synaptic activities, and 1
l−1
Si

is pre-synaptic activities. In SOLOet, 1
l−1
Si

corresponds
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to 1
l

S̃i

, which represents the tracked presynaptic activities. This is a kind of three-factor learning

rule (FrÂemaux & Gerstner, 2016; Gerstner et al., 2018; Payeur et al., 2021), where local information
can be represented as 0 or 1. Binary representation could simplify the computational processes in
hardware and offers lower energy consumption.

Neftci et al. (2019); Zenke & Ganguli (2018); Kaiser et al. (2020) utilized a current-based LIF
neuron models to represent pre-synaptic activity and eligibility. However, embedding a current-
based LIF neuron models on hardware is challenging to implement. (Yang et al., 2020; Davies
et al., 2021; Indiveri et al., 2011) In our approach, we utilize a simple LIF neuron models combined
with pPTRACE. In pPTRACE, the pre-synaptic activity can be represented through a binarization
process. Given its similarity with the dynamics of conventional neuron models, our approach has
the potential to ease hardware implementation.

4 EXPERIMENTS

We evaluate the effectiveness of the proposed SOLO on the data classification task with the static
datasets and neuromorphic datasets. Static datasets we used are MNIST (Lecun et al., 1998), F-
MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009), and
Tiny Imagenet (Le & Yang, 2015), and neuromorphic datasets are N-MNIST (Orchard et al., 2015),
CIFAR10DVS (Amir et al., 2017), and DVSgesture (Li et al., 2017). We use the network archi-
tecture (128Ck3-128SRBk5-P2-256SRBk5-skip-P2-512SCBk3-512SRBk5-P2-FC-Voting/10) pro-
posed by AutoSNN (Na et al., 2022). We conduct the experiments with a time step T of 5 for static
datasets and 20 for neuromorphic datasets. (See details of training configuration and additional
experiments in Supplementary Section C)

Table 1: Performance on static dataset. We
evaluate the test accuracy utilizing both pPLI/I
mode of accumulative neurons.

Dataset Method Accuracy(%)

MNIST BPTT 99.15/99.27
STBP 99.47/99.39

SOLO 99.56/99.57
SOLOet 99.36/99.32

F-MNIST BPTT 93.73/93.69
STBP 93.72/93.57

SOLO 94.31/94.16
SOLOet 93.61/93.30

CIFAR-10 AutoSNN 93.15

BPTT 90.44/89.7
STBP 90.43/89.61
BPTT (1.0) 91.98/92.11
STBP (1.0) 90.21/90.71

SOLO 91.33/90.55
SOLOet 90.18/89.31

Table 2: Performance on various dataset. We
evaluate the test accuracy utilizing both pPLI/I
mode of accumulative neurons.

Dataset Method Accuracy(%)

N-MNIST BPTT 98.48/98.60
STBP 98.78/98.34

SOLO 93.80/90.00
SOLOet 94.40/90.40

CIFAR10DVS AutoSNN 72.50

SOLO 71.30/32.30
SOLOet 57.40/40.60

DVS128gesture AutoSNN 96.53

SOLO 90.28/86.81
SOLOet 80.21/81.60

CIFAR-100 AutoSNN 69.16

SOLO 57.86/56.02
SOLOet 55.25/53.69

Tiny ImageNet AutoSNN 46.79

SOLO 42.76/44.45
SOLOet 31.18/31.24

4.1 PERFORMANCE OF PATTERN RECOGNITION

We conduct experiments on large-scale static datasets and neuromorphic datasets to evaluate the
performance of different methods: BPTT, STBP, SOLO and SOLOet. In AutoSNN (Na et al., 2022),
the authors employed STBP along with a spike regularization technique.
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Figure 2: Comparison of the learning curves of SOLO, SOLOet, BPTT and STBP. The experiments
are performed on the CIFAR-10 dataset. The learning curves represent a sequence of validation
accuracies. The learning curves of SOLO and SOLOet closely follow those of BPTT and STBP.

Comparing SOLO and SOLOet with BPTT, STBP and result of AutoSNN, we note that the best
test accuracy drops by less than 2% on static datasets in Table 1 and less than 7% on neuromorphic
datasets in Table 2. This indicates that the expanded gradient from the final time step is sufficient
to successfully achieve similar accuracy levels. Furthermore, We study the effect of the pPLI mode
of accumulative neurons. SNNs with the pPLI mode of accumulative neuron achieve higher test
accuracy than I mode on the most cases. This result suggests that the superior performance can be
attributed to the pPLI mode of accumulative neurons, which could serve as a regularization effect.
(see details in Supplementary Section B)

4.2 COMPARABLE NETWORK CONVERGENCE SPEED

We compare the network convergence speed of SNNs trained with SOLO, SOLOet, BPTT and STBP
on the CIFAR-10 dataset. As shown in Figure 2, the learning curves of SOLO (red line) and SOLOet

(balck line) are closely aligned to BPTT and STBP. The ability of SOLO to closely match these
learning curves, even with its simple gradient chain and fast training speed, highlights its efficacy
and novelty as a learning algorithm.

Table 3: Comparison of memory and time
complexities across various learning rules.

Method Memory Time

STBP O(MLT ) O(NMLT )
E-prop O(NML) O(NML)
DECOLLE O(1) O(NM +NrM)
SOLO O(1) O(NML)

Table 4: Performance on CIFAR-10 dataset for
different batch sizes over 30 epochs.

Method Batch Size Accuracy (%)

BPTT 64/1 79.81/61.92
STBP 64/1 80.40/60.66
SOLO 64/1 84.09/67.64
SOLOet 64/1 83.45/65.01

4.3 LOW MEMORY AND TIME COMPLEXITY

We also examine the memory and time complexity of the proposed SOLO and compare it with other
learning rules, as shown in Table 3, where N is the number of input neurons in a layer, M is the
number of neurons in a layer, Nr is the number of readout neurons in a layer, L is the number of lay-
ers, and T is the size of time steps. In terms of memory complexity, SOLO does not require storing
intermediate states for learning, as the states needed for weight updates are readily available from the
forward pass. Hence, the memory complexity of SOLO is considered to be O(1). Regarding time
complexity, all layers in SOLO need to be sequentially updated from top to bottom. Therefore, the
typical time complexity of SOLO is considered to be O(NML). Additionally, as mentioned above,

7



Under review as a conference paper at ICLR 2024

SOLO utilizes a simple gradient chain with local variables and global errors, allowing a potential
reduction in time complexity to O(L) with specific NC substrates.

4.4 PERFORMANCE OF ONLINE TRAINING

To evaluate the performance of online training, which involves processing one sample per training
step, we performed experiments with a batch size of 1. This approach is consistent with biological
learning and learning on NC substrates. We study the performance of different methods on the
CIFAR-10 dataset with batch size 1 and compare it with the default batch size of 64 for 30 epochs.

As shown in Table 4, the test accuracy at a batch size of 1 is reduced by less than 25% compared
to a batch size of 64. While these results remain less effective than batch learning, they suggest the
potential for conducting full online training with the proposed SOLO. Compared to other algorithms,
both SOLO and SOLOet demonstrate superior performance in online training.

Figure 3: The test accuracy is affected by var-
ious hardware-related noise, such as (a) ther-
mal noise and (b) device mismatch. Even as
the noise level increases, the test accuracy of
SOLO and SOLOet remains relatively stable.

Figure 4: Comparison of the average weight
update for each cell in SOLO, SOLOet, BPTT,
and STBP on the MLP network across all
epochs. SOLO and SOLOet exhibit lower val-
ues compared to BPTT and STBP.

4.5 ROBUST TO HARDWARE-RELATED NOISES

The non-ideality issues associated with NC substrates pose a significant challenge for the deploy-
ment of SNNs on mixed-signal NC chips. However, the proposed SOLO offers a potential solution
by facilitating on-chip training in a noise-aware manner. (Dutta et al., 2022; Neftci et al., 2016; Ishii
et al., 2019b; Lin et al., 2019) In this study, we investigate the effectiveness of SOLO in addressing
hardware-related noises with a thermal noise and device update mismatch.

Thermal Noise. Thermal noise is an intrinsic source of noise that originates from the neuromorphic
circuitry as well as the devices themselves. In our study, we introduce Gaussian noise N(0, σ2) to
the input current I . The parameter σ governs the level of noise, and we adjust it between 0.05 and
0.4 to mimic various noise levels. As shown in Figure 3(a), the test accuracies of SOLO and SOLOet

remain stable even as the noise level increases.

Device Update Mismatch. During the device update process, the update mismatch causes vari-
ations in neuronal and synaptic parameters, leading them to deviate from their target values. To
address this issue, we introduce Gaussian noise N(0, σ2) into the gradient computed at each train-
ing step. Similar to the experiments conducted for thermal noise, the parameter σ governs the level
of mismatch, and we adjust it between 0.05 and 0.4 to mimic various noise levels. As shown in
Figure 3(b), the test accuracies of SOLO and SOLOet also remain stable even as the noise level
increases.

In both noise conditions, SOLO performs better than SOLOet. Along with a simple forward-
backward computation structure, SOLO exhibits resilience to noise and shows potential for main-
taining performance across various noise levels. This suggests that SOLO is expected to effectively
handle the noise present in real-world environments.
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4.6 ROBUST TO HARDWARE-RELATED RELIABILITY

The durability issues associated with NC substrates also pose a significant challenge. As training
progresses, weight update signals are repeatedly applied to the synapse devices, which can lead
to the accumulation of physical stress and eventual breakdown. (Yu, 2018; Sebastian et al., 2020;
Chen, 2016; et al, 2021)

However, the proposed SOLO offers a potential solution by employing a low memory access ratio.
To verify this, we train a multilayer perceptron (MLP) network on the MNIST dataset for 50 epochs
and calculate the average weight update value by summing the values over all batches in one epoch
and then dividing by the number of batches. The test accuracies for 50 epochs are as follows: 97.25%
for SOLO, 95.96% for SOLOet, 97.48% for BPTT, and 97.31% for STBP. As shown in Figure 4,
the average weight update of each cell is smaller in both SOLO and SOLOet compared to BPTT and
STBP. By minimizing the number of write operations on the synapse memory, SOLO helps alleviate
the endurance problems associated with neuromorphic systems, providing a promising approach for
long-term reliability in training spiking neural networks.

5 CONCLUSION

In this work, we introduce a novel training method called Surrogate Online Learning (SOLO) for
spiking neural networks. SOLO employs surrogate strategies, utilizing the expanded spatial gradi-
ent from the final time step without relying on a temporal or spatial-temporal gradient through time.
This approach resolves the credit assignment problem and substantially reduces computational com-
plexity.

We first conduct a case study on large-scale static experiments that demonstrate the effectiveness
of SOLO, yielding levels of accuracy comparable to those of the BPTT and STBP. Additionally,
we compare the convergence speed of SOLO to that of conventional methods. We find that SOLO
achieves a similar learning curve with efficient operations. Moreover, under online on-chip con-
ditions, we demonstrate that SOLO exhibits robustness against online conditions and various non-
ideality issues associated with NC substrates.

In conclusion, the proposed surrogate online learning (SOLO) holds great promise for the efficient
training and deployment of spiking neural networks on mixed-signal NC platforms.

6 FUTURE WORKS

SOLO demonstrates that competitive learning outcomes can be achieved by focusing only on the
information from the final time step. This novel approach and the insights shared in this paper
could serve as a milestone for future research on lightweight learning algorithms for SNNs and
neuromorphic hardware.

In the near future, we intend to implement SOLO on NC platforms. Furthermore, we also aim to
adapt SOLO for spatial-temporal data more sufficiently by utilizing an approach that sparsely per-
forms backward operations. Especially the refinement of SOLOet, which incorporates pPTRACE,
may be even more suitable for spatial-temporal tasks. We are also investigating its potential for
object detection tasks like Su et al. (2023); Kim et al. (2020).
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A PRELIMINARY AND SURROGATE STRATEGIES

A.1 NEURON MODEL

Parametric leaky integrate-and-fire (PLIF) Neuron Model







I li [t] =
∑

W l
ijS

l−1

j [t]

U l
i [t] = (1− βl)U l

i [t− 1](1− Sl
i[t− 1]) + βlI li [t]

Sl
i[t] = Θ(U l

i [t]− ϑth)

(1)

where I li [t] are simple input current models, Wij are the weights from neurons j to neurons i and

Sl−1

j are the occurrences of output spikes of neurons j at layer l − 1, U l
i are the subthreshold

membrane potentials of neurons i in l layer, βl = 1/(1 + exp(−τ lmem)) is the membrane potential
decaying constant at layer l, Sl

i are the occurrences of output spikes of neurons i at layer l, Θ(·) is
heaviside function, and ϑth is the threshold. The hard reset operation is implemented by multiplying
the occurrences of the output spikes of neurons i at time step t− 1.

The PLIF neuron model introduces trainable membrane time constants. In its mathematical rep-
resentation, it employs a weighted sum of the membrane potential and input current. This design
enables the model to exhibit LSTM-inspired dynamics. In contrast, the pPLIF neuron model does
not introduce the membrane time constants with the input current. As a result, the pPLIF neuron
model is more straightforward for hardware implementation.

A.2 ACCUMULATIVE NEURON

Integrate(I) mode of Accumulative Neuron

Ai[t] = Ai[t− 1] + SL
i [t] (2)

where Ai are the membrane potentials of the accumulative neurons i and SL
i are the occurrences of

the output spikes of neurons i at the last layer L.

A.3 BACKPROPAGATION THROUGH TIME AND THE CONCEPT OF SPIKE TRACE

In the gradient chain of Backpropagation Through Time (BPTT), the spike traces of leaky integrate-
and-fire (LIF) neuron models can be represented as follows:

∂LBPTT

∂W l
=
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t

∑
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∂LBPTT
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∂U [t− 1]
. . .

∂U l[t′ − 1]

∂U [t′]

∂U l[t′]

∂W l
(3)

=
∑

t

δl[t]
∂Sl[t]

∂U l[t]

∑
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. . .

∂U l[t′ − 1]

∂U [t′]

∂U l[t′]
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(4)

≃

∑

t

δl[t]
∂Sl[t]

∂U l[t]

∑

t′≤t

βt−t′−1
∂U l[t′]

∂W l
(5)

=
∑

t

δl[t]
∂Sl[t]

∂U l[t]

∑

t′≤t

βt−t′−1Sl−1[t′] (6)

=
∑

t

δl[t]
∂Sl[t]

∂U l[t]
S̄l−1[t] (7)

where β is the membrane potential decaying constant and S̄l[t] are the spike traces at layer l. and
S̄l[t] can be represented as follows:

S̄l[t] = βS̄l[t− 1] + Sl[t] (8)

S̄l[t] operate similarly to a specific potential that can be described in a low-pass filter-like manner
Bellec et al. (2020). This constitutes the fundamental principle of the eligible trace.
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Supplementary Figure 1: Clamp function for eligible potential of pPTRACE.

A.4 SURRO4 : PPTRACE

We intend to utilize the eligible spike, derived from the concept of the spike trace in Supplementary
Equation (8). Given that spike traces can have values exceeding 0, we need a clamp function paired
with a threshold to transform the spike trace into a binary representation.

clamp function for eligible potential

As shown in Supplementary Figure 1, the clamp function for eligible potentials, denoted as k(·),
ensures that the values of eligible potentials range between 0 and 1, centered at (0.5, 0.5). This
guarantees that the eligible potentials stay within the desired range. Furthermore, a threshold is
utilized to convert the eligible potential into a binary representation, which is referred to as the
eligible spike on pPTRACE.

k(x) =
1

1 + e−(x−0.5)·8
(9)

clamp function for trainable parameters

The clamp function for trainable parameters, which is a sigmoid function denoted as σ(·), ensures
that the values of trainable parameters range between 0 and 1. Trainable parameters, denoted as θ,
are the eligible potential decaying constant, the scaling constant, and the threshold of an eligible
spike.

swtich function for eligible spike

The switch function, denoted as s̃(·), enables the use of eligible spikes as substitutes for the occur-
rences of spikes on the backward path. While this function produces only a single output variable on
the forward path, it ensures that both variables retain a continuous gradient chain on the backward
path. This setup ensures the gradient is propagated to both variables, each with a gradient value of
1.

s̃(F, F̃ ) = F (10)

∂s̃(F, F̃ )

∂F
=

∂s̃(F, F̃ )

∂F̃
→ 1 (11)

Therefore, we utilize the switch function with eligible spikes as follows:

s̃(Sl[T ], S̃l[T ]) = Sl[T ] (12)

∂s̃(Sl[T ], S̃l[T ])

∂Sl[T ]
=

∂s̃(Sl[T ], S̃l[T ])

∂S̃l[T ]
→ 1 (13)

A.5 RELATED GRADIENT CHAIN

We introduce an additional gradient chain for trainable membrane constants within SOLO. Rela-
tive to the complete gradient chain, SOLO considerably simplifies the gradient computation terms,
suggesting its suitability for hardware implementation.
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Towards membrane constant on PLIF neurons

∂U l
i

∂τmem

= σ
′(τmem)U l

i [t− 1](1− S
l
i[t− 1])

+ σ(τmem)
∂U l

i [t− 1]

∂τmem

(1− S
l
i[t− 1])− σ(τmem)U l

i [t− 1]
∂(Sl

i[t− 1])

∂(σ(τmem)
) + σ

′(τmem)I li [t] (14)

where σ(·) is the sigmoid function, utilized as a clamp function to ensure that the value of the
membrane constant ranges between 0 and 1. In SOLO, both spatial-temporal and temporal gradients
from the previous time step are detached, and the simplified gradient chain can be described as
follows:

[

∂U l
i

∂τmem

]

SOLO

= −σ
′(τmem)U l

i [t− 1](1− S
l
i[t− 1]) + σ

′(τmem)I li [t] (15)

Towards membrane constant on pPLIF neurons
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∂τmem
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′(τmem)U l
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i[t− 1])

+ σ(τmem)
∂U l
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l
i[t− 1])− σ(τmem)U l

i [t− 1]
∂(Sl

i[t− 1])

∂(σ(τmem)
) (16)

As same as above, the gradient chain toward τmem can be described as follows:

[

∂U l
i

∂τmem

]

SOLO

= σ
′(τmem)U l

i [t− 1](1− S
l
i[t− 1]) (17)

In comparing Supplementary equation (15) to Supplementary equation (17), the gradient chain of
pPLIF is simpler than that of PLIF, facilitating its implementation in hardware.

Towards membrane constant on pPLI mode of accumulative neurons

∂Ai[t]

∂τAmem

= σ
′(τAmem)Ai[t− 1] + σ(τAmem)

∂Ai[t− 1]

∂τAmem

(18)

As same as above, the gradient chain toward τAmem can be described as follows:
[

∂Ai[t]

∂τAmem

]

SOLO

= σ
′(τAmem)Ai[t− 1] (19)

B SURROGATE ONLINE LEARNING AT ONCE

B.1 ILLUSTRATION OF SOLOET

We present illustration of SOLO in our main paper, Figure 2(a). The illustration of SOLOet is shown
in Supplementary Figure 2(c).

B.2 DERIVATION OF THE SOLOET

Following the chain rule, the gradients of trainable parameters W l
ij , and θl can be derived as:







∂LSOLOet

∂W l = δl[T ] ∂S
l[T ]

∂U l[T ]
∂U l[T ]
∂W l = δl[T ]1l

U1
l

S̃
∂LSOLOet

∂θl = δl[T ] ∂S
l[T ]

∂U l[T ]
∂U l[T ]

∂S̃l[T ]

∂S̃l[T ]

∂Ũ l[T ]

∂Ũ l[T ]
∂θl = δl[T ]1l

UW
l
ij1

l

Ũ

∂Ũ l[T ]
∂θl

(20)

Towards trainable parameters on pPTRACE

We introduce gradient chain for pPTRACE parameters without spatial-temporal and temporal gra-
dients.
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[

∂Ũi[t]

∂τspk

]

SOLO

= k
′(σ(τ lspk)Ũ

l[T − 1] + aS
l−1[T ]) · σ′(τ lspk)Ũ

l[T − 1] (21)

[

∂Ũi[t]

∂a

]

SOLO

= k
′(σ(τ lspk)Ũ

l[T − 1] + aS
l−1[T ]) · Sl−1[T ] (22)
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∂Ũi[t]

∂ϑ̃th

]

SOLO

= k
′(σ(τ lspk)Ũ

l[T − 1] + aS
l−1[T ]) · (−Θ′(Ũ l[t]− ϑ̃th)) (23)

Supplementary Figure 2: Illustration of (a) BPTT, (b) STBP and (c) SOLOet.

B.3 COMPARISON OF OPERATIONAL CHARACTERISTICS FOR SURRO2 AND SURRO3.

As shown in Supplementary Figure 3 (a) and (c), the non-always-on beyond spike accumulation and
max pooling determines the spatial gradient based on the occurrence of spikes in a given time step.
As the gradient propagates through all time steps, every occurrence of spikes gets the opportunity
to contribute to the spatial gradient. More specifically, by referring to Supplementary Figure 3
(e) and (f), we can represent the operational characteristics across different time steps. However,
SOLO, which only considers the spatial gradient of the final time step, employs always-on beyond
spike accumulation (as shown in Supplementary Figure 3 (b)) and always-on pooling (as shown in
Supplementary Figure (d)) to capture the extended potential of the gradient.
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Supplementary Figure 3: (a) non always-on beyond spike accumulation. On the backward path,
the gradients are propagated to the occurrences of spikes at the last layer. (b) always-on beyond
spike accumulation. On the backward path, the gradients are propagated to all elements. (c) max
pooling. On the backward path, the gradients are propagated to the elements with a value of max.
(d) always-on pooling. On the backward path, the gradient are propagated to all elements. (e)(f)
operational characteristics of non always-on beyond spike accumulation and max pooling across
time step. Through this approach, the spatial gradient adjusts across time steps.
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B.4 ABLATION STUDY FOR SURRO1: SWEEPING THE WINDOW VALUE p

We perform image classification on the CIFAR10 dataset, sweeping the window value p.

Supplementary Table 1: Results of test accuracy for sweeping p value within SOLO

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

accuracy 15.85 33.87 62.59 72.73 87.25 89.73 90.12 89.99 90.96 91.33

B.5 ABLATION STUDY FOR SURROGATE STRATEGIES

We conduct an ablation study to evaluate the effectiveness of the proposed surrogate strategies. By
analyzing their impact on accuracy, we investigate various configurations within SOLO, specifically
focusing on surro1 (wide range of boxcar function, p), surro2 (always-on beyond spike accumula-
tion, AW), and surro3 (always-on pooling, AW), as well as different modes of accumulative neu-
ron activation. The specific details of surro2 and surro3 are illustrated in Supplementary Figure 3.
We perform image classification on the CIFAR-10 dataset under various configurations. As shown
in Supplementary Table 2, training with a combination of always-on beyond spike accumulation,
always-on pooling, and the PLI mode of accumulative neuron achieves the highest test accuracy.

Supplementary Table 2: Ablation Study for Surrogate Strategies. We evaluate the test accuracy of
SOLO utilizing both pPLI mode/I mode of accumulative neurons.

Dataset p Pooling nonAW AW

CIFAR-10 0.5 Maxpooling 87.82/85.97 86.80/87.15
1.0 Maxpooling 90.8/88.82 89.45/90.69

0.5 Avgpooling 90.01/89.60 90.47/89.99
1.0 Avgpooling 90.99/90.96 90.88/91.02

0.5 AWpooling 87.25/80.50 87.25/88.13
1.0 AWpooling 90.38/90.24 91.33/90.55

B.6 ABLATION STUDY FOR NEURON MODELS

We conduct an ablation study to evaluate the effectiveness of the proposed pPLIF neuron models.
By analyzing their impact on accuracy, we investigate pPLI neuron models and PLIF neuron models
within different algorithms. We perform image classification on the CIFAR10 dataset under different
neuron models.

As shown in Supplementary Table 3, training with the pPLIF neuron model, even with its simpler
gradient chain, yields better results than the PLIF neuron. BPTT (1.0) and STBP (1.0) indicate that
the value of p is 1.0.

Supplementary Table 3: Ablation Study for pPLIF/PLIF neuron models. We evaluate the test accu-
racy of BPTT, STBP, SOLO and SOLOet utilizing pPLI mode of accumulative neuorns.

Dataset Algorithm PLIF pPLIF

CIFAR-10 BPTT (1.0) 90.46 90.44
STBP (1.0) 90.35 90.43

SOLO 90.46 91.33

SOLOet 89.63 90.18
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B.7 REGULARIZATION EFFECT OF PLI MODE

When combined with the MSE loss, the PLI mode of accumulative neurons could consistently ex-
hibit a regularization effect. When leaky potentials are translated into firing rates (normalized by
time step), they never reach 1. Thus, computing the one-hot coded label with the MSE loss always
leads to an error. We derive this effect from Temporal Efficient Training Deng et al. (2022).

B.8 RELATIVE FLOPS OF SOLO

SOLO detaches the gradient chain of spikes and membrane potential through time, maximizing com-
putational efficiency for backpropagation. Generally, backpropagation requires twice the number of
operations as forward propagation during matrix multiplication. When applying the SOLO method
to an SNN with a timestep length of T, the operations required for backpropagation decrease by a
factor of 1/T compared to BPTT. The backpropagation path needs twice the forward path because it
needs computation for updating weight and propagating backward. As a result, it is anticipated that

the total operations will reduce to
(FLOPsforSOLO)
(FLOPsforBPTT ) =

1+ 2

T

3 times. Although the actual runtime of

a program is closely related to memory access and does not directly correlate with FLOPs, it has
been observed that employing the SOLO method accelerates training (refer to Supplementary 3.7).

Supplementary Figure 4: (a) architecture for MNIST, F-MNIST, N-MNIST. (b) architecture for
CIFAR-10 and CIFAR-100. (c) architecture for Tiny Imagenet. (d) architecture for CIFAR10DVS
and DVSgesture. These architectures are searched from AutoSNN. C is channel length, and BN is
batch normalization. (e) spiking convolution block (SCB). (f) spiking residual block (SRB) with
skip connection (g) convolution block used in (c). (h) convolution block2 used in (d)
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C EXPERIMENTS

C.1 DATASETS AND DATA AUGUMENTATION

We conduct experiments on static datasets and neuromorphic datasets. MNIST and F-MNIST in-
clude images with a resolution of 32×32 and 1 channel, composed of 55,000 training data, 5,000
validation data, and 10,000 test data. CIFAR-10 and CIFAR-100 include images with a resolution
of 32×32 and 3 channels (RGB channels), composed of 45,000 training data, 5,000 validation data,
and 10,000 test data. Tiny Imagenet includes images with a resolution of 64×64 and 3 channels
(RGB channels), composed of 100,000 training data, 10,000 validation data, and 10,000 test data.
N-MNIST includes images with a resolution of 34×34 and 2 channels (polarity channels), composed
of 55,000 training data, almost 5,000 validation data, and 10,000 test data. CIFAR10DVS includes
images with a resolution of 128x128 and 2 channels (polarity channels), composed of 8,900 training
data, 100 validation data, and 1,000 test data. DVSgesture includes images with a resolution of
128x128 and 2 channels (polarity channels), composed of 1,176 training data and 288 test data.

We normalize the inputs using the global mean and standard deviation and employ data augmenta-
tion techniques like random cropping, horizontal flipping, and cutout DeVries & Taylor (2017). For
each time step, the first layer of the SNNs receives pixel values directly, serving as a real-valued
input current.

C.2 ARCHITECTURES

We leverage the architecture obtained from AutoSNN, which is a neural architecture search (NAS)
technique specifically for spiking neural networks. The architecture is searched in the SNNs search
space Na et al. (2022). The architectures are illustrated in Supplementary Figure 4.

C.3 HYPERPARAMETER SETTING

Supplementary Table 4: Hyperparameters on SOLO

param Initial Value param Initial Value

C 128 τAacc,init 2.0

τ lmem,init 2.0 τ lspk,init 1.0

ϑth 0.5 ϑ̃th -0.35
p 1.0 a -0.8

The hyperparameters are as shown in Supplementary Table 4. The time steps, T , for forward prop-
agation have a value of 5 for static datasets and 20 for neuromorphic datasets.

C.4 TRAINING CONFIGURATION FOR PATTERN RECOGNITION

MNIST, F-MNIST, and CIFAR-10 datasets. We train SNNs for 300 epochs using the Adam
optimizer. The initial learning rate for Adam is set to 0.0001. The learning rates decay with the
ReduceLROnPlateau scheduler with factor 0.1 and patience 10. We train with batch sizes of 64 on
an NVIDIA A100 Tensor Core GPU with 40 GB of memory.

CIFAR-100 and Tiny Imagenet datasets. We train SNNs for 300 epochs using the Adam opti-
mizer. The initial learning rate for Adam is set to 0.00001. The weight decay is set to 2 × 10

−5 on
Tiny Imagenet, and no dropout is applied. The learning rates decay with the ReduceLROnPlateau
scheduler with factor 0.1 and patience 10. We train with batch sizes of 64.

N-MNIST datasets. We train SNNs for 300 epochs using the Adam optimizer. The initial learning
rate for Adam is set to 0.00005. The learning rates decay with the ReduceLROnPlateau scheduler
with factor 0.1 and patience 10. We train with batch sizes of 64.

CIFAR10DVS datasets. We train SNNs for 300 epochs using the Adam optimizer. The initial
learning rate for Adam is set to 0.0001. The weight decay is set to 1 × 10

−5, and no dropout
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is applied. The learning rates decay with the ReduceLROnPlateau scheduler with factor 0.1 and
patience 10. We train with batch sizes of 64.

DVSgesture datasets. We train SNNs for 300 epochs using the Adam optimizer. The initial learning
rate for Adam is set to 0.0001. The weight decay is set to 1× 10

−5, and no dropout is applied. The
learning rates decay with the cosine annealing learning rate schedular. We train with batch sizes of
16.

C.5 MEASUREMENT OF RUN TIME AND GPU MEMORY ALLOCATION ON CIFAR-10

Supplementary Table 5: Measurement of Run Time and Allocated GPU Memory on CIFAR-10 for
different learning algorithms

Method Run Time GPU memory

BPTT 4 h 10 m 4.32GB
STBP 4 h 7 m 3.94GB
SOLO 2 h 13 m 1.15GB
SOLOet 3 h 6 m 1.99GB

As shown in Supplementary Table 6, we measure the runtime and GPU memory allocation of each
learning algorithm on the CIFAR-10 datasets. To ensure consistent measurement, each GPU is
dedicated to executing only one task at a time. As a result, SOLO demonstrates faster completion of
the learning process and lower memory usage compared to BPTT and STBP.

C.6 RESULTS OF SOLO UTILIZAING VARIOUS ARCHITECTURES

Supplementary Table 6: Results of SOLO utilizaing Various architecture

Dataset Architecture STBP SOLO

CIFAR-10 CIFARNet-Wu (Wu et al., 2019) 89.99/90.22 90.84/89.00
CIFARNet-Fang (Fang et al., 2021) 88.34/81.39 89.57/89.30
ResNet11-Lee (Lee et al., 2020) 89.26/80.99 90.78/90.85
ResNet19-Zheng (Zheng et al., 2020) 89.14/89.31 91.10/91.24

CIFAR-100 ResNet19-Zheng (Zheng et al., 2020) - 65.72/64.12

C.7 TRAINING CONFIGURATION OF ONLINE TRAINING WITH BATCH SIZE 1

We train SNNs for 30 epochs using the Adam optimizer. The initial learning rate for Adam is set to
0.0001 for batch sizes of 64 and 0.0001/64 for batch sizes of 1. The learning rates decay with the
ReduceLROnPlateau scheduler with factor 0.1 and patience 10.

C.8 RESULT OF ONLINE TRAINING WITH PRE-TRAINED WEIGHT

Table 7: Performance on CIFAR-10 for SOLO/SOLOet with different batch sizes for 30 epochs.
Additionally, the results using the pretrained trainable parameters from batch size 64 as initial values
are also included.

Method Batch Acc (%)

BPTT (pretrained) 1 78.45
STBP (pretrained) 1 77.27
SOLO (pretrained) 1 83.76
SOLOet (pretrained) 1 81.88
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C.9 RESULTS OF TRAINING WITH HARDWARE-RELATED NOISE

Supplementary Table 8: Performance of Training with Hardware-Related Noise on CIFAR-10. We
describe the test accuracy of accumulative neurons in pPLI mode with 5 random seed.

Related Noise Method σ=0.05 σ=0.1 σ=0.2 σ=0.4

Thermal Noise SOLO 90.51±0.32 90.30±0.63 90.68±0.30 90.56±0.30
SOLOet 89.69±0.50 89.30±0.55 89.80±0.67 88.93±0.48

Device Miss Match SOLO 90.69±0.30 90.71±0.36 90.38±0.43 90.24±0.52
SOLOet 85.57±0.39 83.34±0.32 83.36±0.69 82.57±0.62

As shown in Supplementary Table 7, we describe test accuracy as influenced by the level of noise.
We train SNNs for 300 epochs using the Adam optimizer in a noisy configuration with five ran-
dom seeds. The initial learning rate for Adam is set to 0.0001. The learning rates decay with the
ReduceLROnPlateau scheduler with factor 0.1 and patience 10.

C.10 TRAINING CONFIGURATION AND RESULTS OF TRAINING ON HARDWARE-RELATED

RELIABILITY

Supplementary Figure 5: MLP architecture for experiment of Training on Hardware-Related Relia-
bility.

As shown in Supplementary Figure 5 (a), we utilize a multi-layer perceptron (MLP) network in this
experiment, which consists of the following layers: fully connected layer 1 (FC1), fully connected
layer 2 (FC2), and a boost layer. We convert the normalized pixel values into spikes utilizing a spike
generator Eshraghian et al. (2023). The FC1 layer connects Input (784 neurons) to Hidden1 (1000
neurons), the FC2 layer connects Hidden1 (1000 neurons) to Hidden2 (100 neurons), and the Boost
layer connects Hidden2 (100 neurons) to Output (10 neurons) with average pooling. We train SNNs
for 50 epochs using the Adam optimizer. The initial learning rate for Adam is set to 0.0001 for batch
sizes of 64.

The graphs (b) and (c), respectively, represent the average weight update values in the FC1 layer
and FC2 layer. Both the SOLO and SOLOet algorithms show smaller average update values per cell
compared to BPTT and STBP, indicating fewer write operations performed on the synapse memory.

The graphs (d), (e), and (f) represent the maximum values updated in a single cell for each layer,
respectively. These measurements were taken for all layers in FC1 and FC2, only in the FC1 layer
and only in the FC2 layer. In these graphs, the transparent lines represent the actual values, while the
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solid lines represent the values when using the exponential moving average (EMA) with an alpha
of 0.1. In all three graphs, it can be observed that in the case of SOLO and SOLOet, the maximum
update value in a single cell is smaller compared to BPTT or STBP, which makes it more hardware-
friendly by reducing the amount of updates required on analog hardware.

C.11 CROSS BAR ARRAY APPLICATION OF SOLO FOR ANALOG SYNAPSES

Supplementary Figure 6: Cross Bar Array(CBA) application for analog synapses. (a) Entire spiking
neural network layout for SOLO. This example illustrates the full setup of a spiking neural network,
incorporating a pulse generator, neuron circuit and error2pulse circuit as peripheral components,
centralized around analog CBA for synaptic connections, and a loss circuit. Local memory, labeled
as ’flag’, captures and represents the states of spikes and the surrogate gradient of membrane poten-
tial at the final time step. (b) Spiking neural network layout for SOLOet with pPTRACE. In SOLOet

configuration, a pPTRACE circuit is attached to the pulse generator, replacing the spike flag. The
pPTRACE circuit also outputs binary values through an Leaky-Integrate operation, similar to opera-
tion of neuron circuit. (c) During weight update phase, operational elements carrying binary values
could be represented as switches within the peripheral circuit, thereby simplifying the hardware
implementation. (d) During weight updates, the rows of CBA could be selected to indicate the oc-
currence of spikes at the previous layer, while the columns of CBA could be selected to indicate the
surrogate gradient of the membrane potential at the current layer. The delta value could be converted
into pulses via the error2pulse circuit before applied to the CBA.

11



C.12 COMPARISON OF RECENT EFFICIENT TRAINING METHODS FOR SNNS
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∑

τ≤t

λt−τ
∂U l+1[τ ]

∂W l
(26)

[

∂L

∂W l

]

SLTT

=

T
∑

t=1

∂L

∂U l+1[t]

∂U l+1[t]

∂Sl[t]

∂Sl[t]

∂U l[t]
Sl−1[t] (27)

[

∂L[t]

∂W

]

FPTT

=
∂L[t]

∂ŷ[t]

∂ŷ[t]

∂S[t]

∂S[t]

∂U [t]

∂U [t]

∂W
where ŷ is a prediction (28)

Supplementary Table 9: Comparison of Recent Efficient Training Methods for SNNs. TG indicates
the presence of Temporal Gradient

Reference Algorithms Architecture CIFAR-10 CIFAR10DVS TG Time step for BP Additional computing components

proposed SOLO AutoSNN (pPLIF) 91.33% (T=5) 71.30% (T=20) x Final time step -
proposed SOLOet AutoSNN (pPLIF) 90.18% (T=5) 57.40% (T=20) x Final time step pPTRACE

Meng et al. (2023b) DSR VGG-11 77.27% (T=20) 95.40% (T=20) x Final time step Spike representation

Wu et al. (2019) STBP CIFARNet-Wu 90.53% (T=8) 60.50% (T=20) o Every time step NeuNorm
Na et al. (2022) STBP AutoSNN (PLIF) 93.15% (T=8) 72.50% (T=20) o Every time step Spike regularization

Bellec et al. (2020) e-prop RSNN (ALIF) - - x Every time step Eligibility trace

Xiao et al. (2022) OTTTa VGG (sWS) 93.58% (T=6) 76.31% (T=20) x Every time step Presynaptic activity
OTTTo VGG (sWS) 93.10% (T=6) 77.10% (T=20) x Every time step (stepwise update) Presynaptic activity

Meng et al. (2023a) SLTT ResNet-18 94.59% (T=6) - x Every time step -
SLTT VGG-11 - 77.30% (T=10) x Every time step -
SLTT-K VGG-11 - 76.70% (T=10) x K time step (K=2) Random sampling for K

Yin et al. (2022) FPTT LTC-RSNNs - 73.20% (T=20) x Every time step (stepwise update) additional weight and loss
FPTT-K LTC-RSNNs - - x K-truncated time step (stepwise update) additional weight and loss

STBP STBP serves as the baseline training algorithm for SOLO. STBP employs backpropagation
at every time step with temporal gradients. On the AutoSNN works, STBP utilizes additional com-
putational components such as spike regularization (Pellegrini et al., 2021) to improve the training
performance. The spike regularization method should require memory for the spikes at every time
step and incorporate an additional computation in the loss term.

SOLO and SOLOet The proposed SOLO employs backpropagation at final time step without tem-
poral gradients. SOLOet requires additional computation for pPTRACE.

Differentiation on Spike Representation (DSR) DSR employs backpropagation at final time step
without temporal gradients. However, as a spike representation method, it operates over a long time
steps and performs additional computations to represent spikes from all time steps at the final time
step. So DSR should require memory for the spikes from all time steps.

e-prop Utilizing RSNN and ALIF, e-prop employs backpropagation at every time step without tem-
poral gradients. e-prop should require additional memory and computation for ’Eligibility trace’.
When using ALIF neurons, the computation for the eligibility trace are complex, making it chal-
lenging to apply to neuromorphic hardware, and it requires memory to store the eligibility trace.

OTTTa and OTTTo Utilizing VGG networks with sWS (scaled weight standardization), both
OTTT methods employ backpropagation at every time step without temporal gradients. OTTTa

requires additional memory and computation for ’Presynaptic activity’ and accumulating gradients.
OTTTo imposes a reduced memory burden due to its stepwise updating approach.

SLTT and SLTT-K SLTT employs backpropagation at every time step, ignoring temporal gradients
to reduce memory/time complexity. SLTT-K employs backpropagate at K randomly sampled time
steps out of the entire sequence.

FPTT and FPTT-K Utilizing RSNN and LTC neuron model (Hasani et al., 2020), FPTT employs
backpropagation at every time step without temporal gradients. FPTT requires additional memory
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and computation for two types of weights and losses that rely on past information. FPTT-K divides
the entire time step into K time windows, requiring memory to accumulate the losses within each
window.
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