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Abstract
When estimating target parameters in nonparamet-
ric models with nuisance parameters, substituting
the unknown nuisances with nonparametric esti-
mators can introduce “plug-in bias.” Traditional
methods addressing this suboptimal bias-variance
trade-off rely on the influence function (IF) of the
target parameter. When estimating multiple target
parameters, these methods require debiasing the
nuisance parameter multiple times using the corre-
sponding IFs, which poses analytical and compu-
tational challenges. In this work, we leverage the
targeted maximum likelihood estimation (TMLE)
framework to propose a novel method named ker-
nel debiased plug-in estimation (KDPE). KDPE
refines an initial estimate through regularized like-
lihood maximization steps, employing a nonpara-
metric model based on reproducing kernel Hilbert
spaces. We show that KDPE: (i) simultaneously
debiases all pathwise differentiable target parame-
ters that satisfy our regularity conditions, (ii) does
not require the IF for implementation, and (iii)
remains computationally tractable. We numeri-
cally illustrate the use of KDPE and validate our
theoretical results.

1. Introduction
Estimating a target parameter ψ(P ) from n independent
samples of an unknown distribution P is a fundamental and
rapidly evolving statistical field. Driven by data-adaptive
machine learning methods and efficiency theory, modern
approaches to estimation can achieve optimal performance
under minimal assumptions on the true data-generating pro-
cess (DGP). These statistical learning advancements enable
researchers to obtain strong theoretical guarantees and em-
pirical performance while avoiding unrealistic assumptions.
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Modern estimation methods rely on the plug-in principle
(van der Vaart, 2000), which substitutes unknown param-
eters of the underlying data-generating process with esti-
mated empirical counterparts (e.g., the sample mean is the
average of observations over the empirical distribution Pn

defined by the dataset). Flexible, machine learning (ML)
estimation methods have further exploited the plug-in ap-
proach. Meta-learners in the causal inference literature use
random forests and neural networks to estimate empirical
conditional density/regression functions for the downstream
task of estimating target parameters such as potential out-
come means and treatment effects (Künzel et al., 2019).
The use of highly adaptive, complex ML algorithms, how-
ever, induces plug-in bias (first-order bias) that impacts the
downstream estimate.

Estimators such as double machine learning (DML) (Cher-
nozhukov et al., 2017), targeted maximum likelihood esti-
mation (van der Laan and Rubin, 2006), and the one-step
correction (Bickel et al., 1998) remove plug-in bias and
achieve efficiency (i.e., lowest possible asymptotic vari-
ance) within the class of regular and asymptotically linear
(RAL) estimators. However, these methods typically require
knowledge of the influence function or the efficient influ-
ence function (EIF)1 of the target parameter. Deriving and
computing these functions analytically is often challenging
for practitioners (Carone et al., 2018; Jordan et al., 2022;
Kennedy, 2022) due to their dependence on both the sta-
tistical functional of interest and the statistical model (e.g.,
assumptions on the DGP). For example, even seemingly in-
nocuous target parameters, such as the average density value,
require specialized knowledge to study with conventional
techniques (Carone et al., 2018). Further, the knowledge of
the IF/EIF is specific to a single target parameter under a
particular statistical model. When estimating multiple target
parameters, existing methods require the derivation of the
IF/EIF for each target parameter, hindering the adoption of
these techniques in practice (Hines et al., 2022).

Contributions We propose a generic approach for con-
structing efficient RAL estimators that combines the TMLE

1The notation of EIF arises when we are in the semi-parametric
setting where the directions in which we can perturb the data
generating distribution are restricted. Otherwise, IF is the EIF.
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(van der Laan and Gruber, 2016) framework with a novel ap-
plication of the reproducing kernel Hilbert spaces (RKHSs).
Leveraging the universal approximation property of RKHSs,
we construct a debiased distribution (or nuisance) estimate
P∞
n that has negligible plug-in bias and attains efficiency

under similar assumptions to existing approaches. Contrary
to popular approaches, our kernel debiased plug-in approach

1. offers an automated framework that does not require the
computation of (efficient) influence function ϕP , debi-
ased/orthogonalized estimating equations, or efficiency
bounds from the user, and

2. the same nuisance/distribution estimate P∞
n can be used

as a plug-in estimate for all pathwise differentiable target
parameters ψ(P ) that satisfy some standard regularity
conditions (provided in Section 3).

The technical contribution of our work is to identify the set
of sufficient conditions to eliminate the plug-in bias under
our proposed framework. In particular, Assumption 5 is our
novel regularity assumption on the model M and functional
ψ needed to control the plug-in bias term of the proposed
KDPE estimator. We numerically validate our results and
illustrate that our method performs as well as state-of-the-art
modern causal inference methods, which explicitly use the
functional form of the IF.

The paper is organized as follows. In Section 2, we describe
the problem setup and introduce key concepts related to
TMLE and RKHSs. To ease presentation, we focus on the
most generic case where 1) the estimation problem is non-
parametric (i.e., no assumption on the DGP), 2) the nuisance
is considered to be the entire distribution P , and 3) the target
parameter ψ is a mapping from the probability distribution
P to real numbers. We extend our procedure to semipara-
metric models and other nuisances in Appendix C.2. In
Section 3, we propose kernel debiased plug-in estimator,
and characterize the assumptions needed for KDPE to be
asymptotically linear and efficient. In Section 4, we provide
concrete empirical examples of KDPE for target parameters
such as the average treatment effect, odds ratio, and relative
risk, in both single-time period and longitudinal settings.

1.1. Related Works
Our work is related to two types of approaches that can
debias a target parameter: 1) IF-based, and 2) IF-free com-
putational approaches. When compared with these two
approaches, KDPE simultaneously debiases multiple target
parameters and does not require the derivation of IF. In addi-
tion, KDPE relates to undersmoothed highly adaptive lasso-
(HAL-) MLE, which can be used to simultaneously debias
multiple parameters. When compared with HAL-MLE, our
method is computationally more efficient.

The main techniques for constructing IF-based efficient
RAL estimators include estimating equations, DML, one-

step correction, and TMLE. A general estimating equation
approach involves solving for the target parameter by setting
the score equations to zero (Robins, 1986; Newey, 1990;
Bickel et al., 1998). Double machine learning characterizes
the estimand as the solution to a population score equation
(Chernozhukov et al., 2017). One-step correction method
adds the empirical average of the IF to an initial estimator
(Bickel et al., 1998). We defer the discussion on TMLE to
Section 2.3.

Current IF-free methods for efficient estimation include a)
approximating IF through finite-differencing (Carone et al.,
2018; Jordan et al., 2022) or Monte Carlo (Agrawal et al.,
2024), and b) AutoDML (Chernozhukov et al., 2022). In
contrast to methods in a), KDPE does not attempt to approx-
imate the IF of a target parameter in any way. AutoDML, on
the other hand, relies on an orthogonal reparameterization
of the problem to achieve debiasing. It automates the esti-
mation of the additional nuisance parameter by exploiting
the structure of the estimating equations in the particular
setting of Chernozhukov et al. (2022). KDPE, in contrast,
directly considers the plug-in bias and eliminates this term
from the final estimate.

The HAL-MLE (van der Laan et al., 2022) solves the score
equation for all cadlag functions with bounded L1 norm
(which is assumed to include the desired EIF). Like HAL,
KDPE solves a rich set of scores, rather than a single tar-
geted score, to approximately solve the score equation at
a
√
n-rate. HAL, however, is highly computationally inef-

ficient for large models due to its basis functions growing
exponentially with the number of covariates d and polyno-
mially with the sample size n. KDPE uses only n basis
functions, improving computational tractability to solve all
scores in a universal RKHS.

2. Problem Setup and Preliminaries
Let O1, . . . , On denote iid observations drawn from a prob-
ability distribution P ∗ on the sample space O. The distribu-
tion P ∗ is unknown but is assumed to belong to a nonpara-
metric2 collection M, which consists of distributions on O
dominated by a common measure. Let ψ : M → Rm be
a functional of the model M, also referred to as the target
parameter. Our goal is to “efficiently” estimate ψ(P ∗) on
the basis of the n observations using a plug-in estimator
(i.e., by estimating P ∗ and evaluating ψ on this estimate)
without using influence functions. Since our method pro-
duces a single debiased estimate P∞

n that is independent of
target parameter ψ, we assume that m = 1 wlog.

Notation The density of P is denoted by the lowercase
p, which we use interchangeably to refer to the probability

2We provide a simple semiparametric extension, where we
restrict the data perturbation directions, in Appendix C.2.
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measure. We use Pf and P [f ] to indicate the expectation
EP [f ] =

∫
f dP and Pn to denote the empirical measure

Pnf := 1
n

∑n
i=1 f(Oi). Let L2

0(P ) be the set of all square-
integrable functions with respect to probability measure P ,
i.e., f : O → R with Pf = 0 and Pf2 < ∞. A complete
notation table is provided in Appendix A.

To formalize the notation of asymptotic efficiency, we first
introduce RAL estimators in Section 2.1. In Section 2.2, we
introduce plug-in bias and provide the assumptions and con-
dition required for plug-in estimators to be asymptotically
linear and efficient. We introduce TMLE in Section 2.3
since KDPE shares the same construction framework as
TMLE, with one main modification. Finally, we introduce
the necessary concepts related to RKHSs in Section 2.4, as
KDPE employs a RKHS-based model.

2.1. Regular and Asymptotic Linear Estimators
Asymptotic linearity of an estimator leads to a tractable lim-
iting distribution, resulting in asymptotically valid inference.
It corresponds to the ability to approximate the difference be-
tween an estimate and the true value of the target parameter
as an average of i.i.d. random variables.

Definition 1 (Asymptotic linearity). An estimator ψ̂n

is asymptotically linear if ψ̂n − ψ(P ∗) = PnϕP∗ +
oP∗(1/

√
n), where ϕP∗ : O → Rm is the corresponding

influence function for estimator ψ̂n.

On the other hand, a regular estimator attains the same
limiting distribution even under perturbations (on the order
of

√
n) of the true data-generating distribution, enforcing

robustness to distributional shifts. Since the most efficient
(i.e., smallest sampling variance) regular estimator is guar-
anteed to be asymptotically linear (van der Vaart, 1991), we
restrict our attention to the class of RAL estimators.3

2.2. Plug-in Bias
To connect plug-in estimators (i.e., ψ̂n ≡ ψ(P̂ ), where
P̂ is our distributional estimate with n samples) and RAL
estimators, we consider target parameters that satisfy path-
wise differentiability (Koshevnik and Levit, 1976). This
means that given a smoothly parametrized one-dimensional
submodel {Pϵ}0−<ϵ<0+ of M, the map ϵ 7→ ψ(Pϵ) is dif-
ferentiable in the ordinary sense,4 and the derivative has
a Riesz representation discussed below. Pathwise differ-
entiability of a target parameter admits regular estimators
that (i) converge at the parametric

√
n-rate and (ii) whose

asymptotic normal distributions vary smoothly with P . To

3Our nonparametric assumption on the model class M implies
that all RAL estimators have the IF.

4For a concrete definition of the one-dimensional sub-model
{Pϵ}0−<ϵ<0+ , we refer readers to Equation (1), which gives an
explicit submodel pϵ,h. There exist many choices for this sub-
model; we opt for the linear model pϵ,h here for simplicity.

see this, we first introduce the tangent space.

Scores Let h = d
dϵ |ϵ=0

log pϵ be the score of the path at P0

(i.e., Pϵ=0). Then, the smoothness requirement on the path
implies that the expected value of the score function under
distribution P0 equals 0, i.e., P0h = 0, and P0h

2 < ∞
(van der Vaart, 2000). The collection of scores of all smooth
paths through P0 forms a linear space, which we refer to
as the tangent space of M at P0. Assuming that M is
nonparametric, for any P ∈ M, its tangent space equals
L2
0(P ).

5 Given any distribution P ∈ M and a score h, we
work with the concrete path6

pϵ,h := p(ϵ|h) := (1 + ϵh)p. (1)

Influence function While the IF defines the limiting sam-
pling variance of a RAL estimator in Definition 1, it has addi-
tional, related interpretations: the IF is the Riesz representer
of the derivative functional. Pathwise differentiability of ψ
at P implies that there exists a continuous linear functional7

DPψ : L2
0(P ) → R such that for any smooth path with a

score of h, the derivative of the functional ψ(·) at distribu-
tion P , d

dϵ |ϵ=0
ψ(Pϵ,h), is equivalent to evaluating DPψ[·]

at score h, i.e., d
dϵ |ϵ=0

ψ(Pϵ,h) = DPψ[h]. The influence
function ϕP ∈ L2

0(P ) of parameter ψ is the Riesz represen-
ter of its derivative DPψ for the L2

0(P ) inner product and is
characterized by the property that DPψ[h] = ⟨h , ϕP ⟩L2

0(P )

for every h ∈ L2
0(P ).

Next, Lemma 1(Bickel et al., 1998) decomposes the esti-
mation error, ψ(P̂ )− ψ(P ∗), by considering the following
concrete path between P̂ and P ∗: p̂(ϵ|h) = (1− ϵ)p̂+ ϵp∗.
We note that under this path, the direction h becomes
h = p∗/p − 1. By leveraging the Riesz Representation
property, we obtain the error decomposition shown below:

Lemma 1 (Bickel et al. 1998). Let ψ : M → R be pathwise
differentiable and P̂ , P ∗ ∈ M. Assume that P̂ satisfies:
(1) P ∗ is absolutely continuous with respect to P̂ , and (2)
Radon–Nikodym derivative dP ∗/dP̂ is square integrable
under P̂ . Then the following von Mises expansion holds:

ψ(P̂ )− ψ(P ∗) = PnϕP∗ − PnϕP̂ (2)

+ (Pn − P ∗)
[
ϕP̂ − ϕP∗

]
+R2(P̂ , P

∗)

whereR2(P̂ , P
∗) is the second-order (quadratic) remainder

in the difference between P̂ and P ∗.

5Intuitively, the tangent space at distribution P contains all
directions through which we can move from the current distribution
P to another distribution in model class M.

6Intuitively, the set of {Pϵ,h}ϵ,h can be thought as a reparame-
terization of the model class M centered around a local distribution
P . We refer to Appendix B.1 for further questions regarding the
validity of our linear submodel.

7Linear with respect to h.
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The expansion in Lemma 1 closely resembles Definition 1.
It motivates the following common assumptions that control
the behavior of the empirical process term (Pn−P ∗)

[
ϕP̂ −

ϕP∗
]

and the second-order reminder R2(P̂ , P
∗) (van der

Laan and Rubin, 2006).

Assumption 1. Assume that (i) ∥ϕP̂ − ϕP∗∥L2(P∗) =
oP∗(1) and that (ii) there exists an event Ω with P ∗(Ω) = 1
such that the set of functions {ϕP̂n(w) ; w ∈ Ω, n ∈ N}
is P ∗-Donsker. Then the empirical process term satisfies:
(Pn − P ∗)

[
ϕP̂ − ϕP∗

]
= oP∗(1/

√
n).

Assumption 2. Assume that P̂ converges sufficiently fast
and ψ is sufficiently regular so that the second-order re-
mainder term R2(P̂ , P

∗) is oP∗(1/
√
n).

We note that Assumptions 1 and 2 are standard in the TMLE
literature (van der Laan and Rubin, 2006). The goal of
this work is to construct a plug-in estimator ψ(P̂ ) that is
asymptotically linear and converges at the parametric (ef-
ficient)

√
n-rate to the Gaussian asymptotic distribution

N(0, P ∗[ϕ2P∗ ]). Since PnϕP∗ governs the asymptotic dis-
tribution of ψ(P̂ ), Assumptions 1 and 2 leave us with a
single term that must converge at an oP∗(1/

√
n) rate:

ψ(P̂ )− ψ(P ∗) = PnϕP∗ − PnϕP̂ + oP∗(1/
√
n).

We denote this remaining term PnϕP̂ as the plug-in bias.
In contrast, a naive plug-in estimator may have a first-
order/plug-in bias term that dominates the

√
n-asymptotics.

2.3. TMLE Preliminaries
We briefly recap TMLE (van der Laan and Rubin, 2006),
as its construction closely resembles that of our estimator.
TMLE is a plug-in estimator that satisfies Definition 1 and
is constructed in two steps. First, one obtains a preliminary
estimate P 0

n of P ∗, which is typically consistent but not ef-
ficient (slower than

√
n-rate). The TMLE solution to debias

P 0
n for the parameter ψ is to perturb P 0

n in a way that (i)
increases the sample likelihood of the distribution estimate,
and (ii) sets the plug-in bias PnϕP̂ = 0, maintaining con-
sistency and mitigating first-order bias. van der Laan and
Rubin (2006) consider the parametric model in (1) with the
score equal to the influence function ϕP 0

n
and update the

estimate to be the MLE p1n = (1 + ϵnϕP 0
n
)p0n, where

ϵn := argmax
ϵ:p0

n(ϵ)∈M

n∑
i=1

log
(
1 + ϵϕP 0

n
(Oi)

)
p0n(Oi). (3)

Assuming that we converge to an interior point such that
first-order conditions hold, the updated estimate p1n solves
the following:

0 = Pn

d
dϵp

0
n(ϵ)

p0n(ϵ)
=

1

n

n∑
i=1

ϕP 0
n
(Oi)

1 + ϵϕP 0
n
(Oi)

= Pn[
ϕP 0

n

1 + ϵϕP 0
n

].

(4)

By iterating the TMLE step, we get a sequence of updated
estimates {pℓn}∞ℓ=0. Assuming that pℓn converges as ℓ→ ∞
sufficiently regularly,8 the limit p∞n is a fixed point of (3),
the corresponding argmax in (3) is ϵn = 0, and (4) becomes
the plug-in bias term: PnϕP∞

n
= 0. This property of P∞

n

achieves asymptotic linearity and efficiency for the plug-in
estimator ψ(P∞

n ) under Assumptions 1 and 2.

We construct KDPE following the TMLE framework with
one modification. Instead of reducing M into a one-
dimensional submodel by perturbing P 0

n in the direction
of ϕP 0

n
, we construct RKHS-based submodels. These sub-

models are of infinite dimensions and are independent of
both ϕP and ψ. Next, we introduce RKHS properties.

2.4. RKHS Preliminaries
Let X be a non-empty set. A function K : X × X → R
is called positive-definite (PD) if for any finite sequence
of inputs x = [x1, ..., xn]

⊤ ∈ Xn, the matrix Kx :=
[K(xi, xj)]ij is symmetric and positive-definite (Micchelli
et al., 2006). The kernel function at x is the univariate map
y 7→ kx(y) := K(x, y); it is common to overload the nota-
tion with vector-valued maps kx := [kx1

, . . . , kxn
]⊤; letting

y = [y1, ..., ym]⊤ be a column vector, we define the kernel
matrix Kxy := [K(xi, yj)]ij ∈ Rn×m and Kx := Kxx.

The reproducing kernel Hilbert space associated with kernel
K, denoted HK , is a unique Hilbert space of functions on
X that satisfies the following properties: (i) for any x ∈ X ,
the function kx ∈ HK , and (ii) ⟨f, kx⟩H = f(x) for all
f ∈ HK . RKHSs have two key features that facilitate
our results: (i) suitable choices of RKHSs, designated as
universal kernels, are sufficiently rich to approximate any
influence function, and (ii) optimization of sample-based ob-
jectives (e.g., likelihood) over the RKHS-based models can
be efficiently carried out using a representer-type theorem,
allowing for a tractable solution.

Denoting C0(X ) as the space of continuous functions that
vanish at infinity with the uniform norm, we say that a kernel
K is C0 provided that HK is a subspace of C0(X ). We say
that a C0-kernel K is universal (Carmeli et al., 2010) if it
satisfies the following property:

Property 1 (Universal kernels). Let X be a closed subset
of Rn, and let K be a PD kernel such that the map x 7→
K(x, x) is bounded and kx ∈ C0(X ) for all x ∈ X . Then
HK ⊂ C0(X ) ⊂ Lp(P ) ⊂ Lq(P ) for all 1 ≤ p < q ≤ ∞
and every probability measure P . Furthermore, the kernel
K is universal if and only if the space HK is dense in
Lp(X , P ) for at least one (and consequently for all) 1 ≤
p <∞ and each probability measure P on X .

8We have omitted details from the main exposition of TMLE
to provide a brief overview of the method. We refer to the last
paragraph on Page 11, (van der Laan and Rubin, 2006), for the full
characterization.
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Property 1 implies that universal kernels contain sequences
that can approximate the influence function ϕP arbitrar-
ily well with respect to the L2(P ) norm for any P . Uni-
versal kernels include the Gaussian kernel K(x, y) =
exp(−∥x−y∥22), which is the primary example in our work.
Our debiasing method relies on constructing local (to P )
submodels of M indexed by a set of scores at P . Since
scores are P -mean-zero, given any PD kernel K on X that
is bounded, C0, and universal, we transform K into a mean-
zero kernel with respect to P (proof in Appendix B.2):

Proposition 1 (Mean-zero RKHS). Let HP := {h ∈
HK ; Ph = 0} be the subspace of HK containing all
P -mean-zero functions. Then 1) HP = HKP

is closed
in HK and is also an RKHS, with reproducing kernel
KP (x, y) := K(x, y)−

∫
X K(x,s)dP (s)

∫
X K(y,s)dP (s)∫

X×X K(s,t)dP (s)dP (t)
, and

2) HP is dense in L2
0(P ).

3. Debiasing with RKHS
We propose a novel distributional estimator P∞

n , which has
the following properties: (i) it takes two user inputs: a pre-
estimate P 0

n and an RKHS HK (equivalently, the kernel
K) on the sample space O; (ii) it provides a debiased and
efficient plug-in ψ(P∞

n ) for estimating any parameter ψ
under the stated regularity conditions; (iii) it solves the in-
fluence curve estimating equation asymptotically, thereby
eliminating the plug-in bias of P 0

n but unlike TMLE this
holds simultaneously for all pathwise differentiable param-
eters; (iv) it does not require the influence function ϕP to
be implemented and does not depend on any ψ. We now
describe each step of this estimator in detail.

Local fluctuations of pre-estimate Let HK be an RKHS
with a bounded kernel K on the sample space O and HP

be the subspace of scores at P within H. For each P ∈ M,

M̃P :={ph := p(h) := (1 + h)p; (5)
h ∈ HP such that (1 + h)p > 0} ∩M.

This submodel9 allows P to be perturbed along any direction
h ∈ HP that results in a valid distribution in the model M.
These directions h must have zero mean under P , requiring
modifying the kernel K as described in Proposition 1.

Regularized MLE To choose the debiasing update from
M̃P , we follow TMLE (Section 2.3) and maximize the
empirical likelihood. However, since our fluctuations are in-
dexed by the infinite-dimensional set HP , the MLE problem
is generally not well-posed (Fukumizu, 2009) and must be
regularized. This is achieved with an RKHS-norm penalty,
leading to the following optimization problem as a mecha-

9We provide further details regarding the RKHS-constrained
model M̃P and its interpretation in Appendix B.1.

nism to choose the update for an estimate P :

argmin
h∈HP :p(h)∈M̃P

Pn

[
− log(1 + h)p

]
+ λ∥h∥2HP

, (6)

where the regularization parameter λ ≥ 0 regularizes the
complexity of the perturbation h to P . Note that (6) is
an infinite-dimensional optimization problem. Next, The-
orem 1 states that the solution to (6) is guaranteed to be
contained in an explicitly characterized finite-dimensional
subspace, simplifying the optimization problem. Let HP

be an RKHS of scores at P with a mean-zero PD kernel
KP on the sample space O, and O = [O1, . . . , On]

⊤ ∈ On

be distinct data points. Define the n-dimensional subspace
Sn := span{kO1

, . . . , kOn
} ⊂ H and let πn : H → Sn be

the orthogonal projection onto Sn.

Theorem 1 (RKHS representer). Assume that M̃P is closed
under the projection onto Sn: whenever p(h) ∈ M̃P , so
is p(πnh) ∈ M̃P . Then for any loss function of the form
Lp,h(O) = L̃(O, p(O), h(O)), the minimizer of the regu-
larized empirical risk

h∗ ∈ argmin
h∈H:p(h)∈M̃P

PnLp,h + λ∥h∥2H (7)

admits the following representation: h∗ = α⊤kO + ȟ, for
some α ∈ Rn, where, if λ = 0, then ȟ ∈ H is any such that
ȟ(Oi) = 0 for each i ∈ [n], and, if λ > 0, then ȟ ≡ 0 ∈ H.

Our choice of loss function in (6), Lp,h(O) =
− log ((1 + h(O))p(O)), satisfies the loss function condi-
tions of Theorem 1, and therefore admits a solution of the
form h = α⊤kO+ ȟ. Thus, Theorem 1 implies that in order
to minimize (6) over the perturbations M̃P , it suffices to
consider the minimization problem over the n-dimensional
submodel

M̃P ⊃ M̃P,n :={p(α⊤kO) := (1 + α⊤kO)p ; (8)

α ∈ Rn such that p(α⊤kO) > 0} ∩M,

leading to the following simpler (parametric) MLE:

αn(p) := αn(p;λ) := (9)

argmin
α∈Rn:p(α⊤kO)∈M̃P,n

Pn

[
− log(1 + α⊤kO)p

]
+ λα⊤KOα.

Remark 1 (Regularization). The MLE step in (6) serves
as an update and stopping criterion in KDPE. It does not
attempt to approximate the values of the IF. Since we are not
initializing an estimation problem from scratch but rather
commencing with a pre-existing estimate assumed to be of
high quality, there is no necessity in MLE (6) to conform
to any specific functional form or regularity, such as spar-
sity or other typical assumptions found in nonparametric
estimation problems that might justify regularization. The
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objective of solving (6) is to update the distributional esti-
mate in a manner that (i) maintains the consistency of the
naive plugin (Assumptions 1 and 2) and (ii) satisfies the
score equation (12) for every function in the RKHS (not a
subset). Consequently, we have the freedom to choose any
solution for (6) that fulfills requirements (i) and (ii), without
imposing any additional constraints on this selection.

The proof of the asymptotic linearity and efficiency of KDPE
(Theorem 2) relies on the universality of the RHKS HP∞

n

rather than the span of {KP∞
n
(O1, ·), ...,KP∞

n
(On, ·)}.

3.1. Kernel Debiased Plug-in Estimator (KDPE)
Given a pre-estimate P 0

n and a PD kernel K, we

(i) construct fluctuations M̃0 ≡ M̃P 0
n

around P 0
n defined

in Equation (5) by computing the zero-mean kernel
KP 0

n
as described in Proposition 1;

(ii) solve the regularized MLE (6) over scores HP 0
n

via
the equivalent simpler optimization (9) to find α0

n ≡
αn(p

0
n), which defines the MLE score [α0

n]
⊤k0O .

As a result, we obtain the 1st-step of our estimator p1n =
p0n

(
[α0

n]
⊤k0O

)
=

(
1 + [α0

n]
⊤k0O

)
p0n. We define the ℓ+ 1th-

step of KDPE recursively by

pℓ+1
n := pℓn

(
[αℓ

n]
⊤kℓO

)
=

(
1 + [αℓ

n]
⊤kℓO

)
pℓn (10)

and αℓ
n ≡ αn(p

ℓ
n). (11)

This recursion terminates when αℓ
n = 0, indicating that pℓn

is a local optimum for the likelihood over submodel M̃ℓ.
Similarly to TMLE, we assume the following about the
convergence (in the iteration step ℓ) of the KDPE recursion:

Assumption 3 (Convergence and termination at an interior
point). We assume that the ℓth-step of KDPE estimate pℓn
converges almost surely to some limit p∞n in the interior
of M, and that this limiting distribution P∞

n is a local
minimum of the regularized empirical risk (6) in the interior
of the perturbation space M̃∞.

Assumption 3 requires the convergence of our procedure
to a limit P∞

n , ensuring that this limit satisfies an interior
condition on 1) the full model class M to ensure that our
problem is regular,10 and 2) the submodel M̃∞ so that
the first-order optimality conditions hold. Proposition 2
highlights a key consequence of Assumption 3:

Proposition 2. Under Assumption 3, the final KDPE esti-
mate P∞

n of the true distribution P ∗ satisfies the following
estimating equations:

Pnh = 0 for all h ∈ HP∞
n
. (12)

10That is, our model is locally fully nonparametric, i.e., the
tangent space is L2

0(P
∞
n ), and our target parameter is pathwise

differentiable, i.e., the conditions in Lemma 1 are satisfied.

While Proposition 2 states that KDPE solves infinitely many
score equations, it guarantees that the plug-in bias, PnϕP∞

n
,

is eliminated if the influence function ϕP∞
n

falls in the
RKHS HP∞

n
. By choosing a universal kernel (Carmeli

et al., 2010; Micchelli et al., 2006), we strengthen the Propo-
sition 2 to achieve our desired debiasing result, under the
regularity conditions below.

Assumption 4. We assume that (i) RKHS HK is universal,
(ii) the estimate P∞

n satisfies p∗/p∞n ∈ L2(P∞
n ), and (iii)

the estimated influence function ϕP∞
n

is in L2(P ∗) P ∗-a.s.

Assumption 5. There exist an event Ω with P ∗(Ω) = 1, and
for every ω ∈ Ω there exists a sequence hj(ω) ∈ HP∞

n (ω)

indexed by ω ∈ Ω such that the following hold for allw ∈ Ω:
(i) ∥hj(ω)− ϕP∞

n (ω)∥L2(P∗) −−−→
j→∞

0 and (ii) there exists

a j0(w) ∈ N, j0(w) < ∞ such that the set of functions
{hj(ω) ; ω ∈ Ω, j > j0(w)} is P ∗-Donsker.

Theorem 2 (Asymptotic linearity and efficiency of KDPE).
Let ψ : M → R be a pathwise-differentiable functional of
the distribution P with influence function ϕP ∈ L2

0(P ) and
von Mises expansion: ψ(P̄ ) − ψ(P ) =

∫
ϕP̄ d(P̄ − P ) +

R2(P̄ , P ) for any P̄ , P ∈ M (which defines the second-
order reminder term R2(P̄ , P ).) Under Assumptions 1 (i),
2, 3, 4, 5, PnϕP∞

n
= oP∗(1/

√
n) and the KDPE estimator

satisfies ψ(P∞
n )− ψ(P ∗) = PnϕP∗ + oP∗(1/

√
n).

Theorem 2 shows that KDPE attains asymptotic efficiency
by converging to the optimal limiting distribution within the
class of RAL estimators. To converge to this asymptotically
optimal distribution, error terms that deviate from this limit
distribution must be on the scale of o(1/

√
n). Thus, the

definition of asymptotic efficiency (van der Vaart, 2000,
Section 8) also implies that KDPE achieves local asymptotic
minimax optimality with respect to the error ψ(P∞

n ) −
ψ(P ∗) on the order of O(1/

√
n). The proof of Theorem 2

(Appendix B.5) requires that as n approaches infinity, the√
n-scaled error between our true value and KDPE estimate

converges to the asymptotically normal distribution implied
by Pn(ϕP∗). The proof consists of three steps: Step 1) our
uniform approximation guarantees are with respect to the
true distribution P ∗ (as opposed to the KDPE distribution
P∞
n ), Step 2) decompose the error of the KDPE estimate

similar to that of Equation (2), and Step 3) showing that the
empirical process term is of order oP∗(1/

√
n).

Remark 2. Assumption 5 is our novel regularity assump-
tion on the model M and functional ψ needed to control the
plug-in bias term PnϕP∞

n
of the proposed KDPE estimator.

Assumptions 1-2 and conclusions derived from them are
used for the one-step correction and TMLE (van der Laan
and Rubin, 2006; Kennedy, 2022), and analogous condi-
tions to Assumptions 3 and 4 are common for TMLE (van der
Laan and Rubin, 2006). This is intentional: considering a
similar set of assumptions directly characterizes the addi-
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tional assumption (Assumption 5) needed for KDPE and its
practical advantages. Our novel assumption, Assumption 5,
controls an additional, nonstandard empirical process term
that arises in the analysis of the KDPE estimator, as shown
in Appendix C.4. One trivial condition for Assumption 5
is that ϕP∞

n
∈ HP∞

n
for all sample paths. For estima-

tion problems with nuisances (e.g., densities, conditional
regression functions, etc.) over a compact, continuous input
space O, sufficient conditions for Assumption 5 are (i) the
choice of the universal kernel (e.g., Gaussian Kernel) and
(ii) bounded total variation of the approximating sequence
{hj(ω)}j∈N for all ω ∈ Ω (see Dudley, 1992). While the
universal approximation property for our choice of kernel is
well-documented, our work is the first to apply this property
to reduce first-order bias in nonparametric estimation.

4. Implementation/Simulation Results
In this section, we provide a detailed implementation of
KDPE, and evaluate it using two simulated DGPs that oc-
cur in the causal inference literature, validating the results
provided by Theorem 2. We note that these models are semi-
parametric due to conditional independence constraints. In
Appendix C, we provide the necessary modifications to Al-
gorithm 1 for our updated distributions to be valid within
the model M. Additional details and results (e.g., boot-
strap confidence intervals, computational complexity, up-
date mechanism) are included in Appendix C.11

Modification for KDPE To use solvers, we work with a
slightly modified algorithm, Algorithm 1. The main modifi-
cations from the baseline KDPE include the incorporation of
a density bound parameter, c, and a convergence tolerance
function. The constant c avoids violations of condition (ii) of
Assumption 4 (square integrability of p∗/p∞n ) and enables
standard convex/concave optimization software for finding
αi+1. The convergence tolerance function, l(·, ·) acts as
a metric tracking the net change in distribution between
iterations.12 For all simulations, we use the convergence
tolerance function l(P, P ′) = ∥p− p′∥L2(η), where η is the
counting measure.

4.1. DGPs and Target Parameters
We consider two common models in causal inference liter-
ature and demonstrate how to use KDPE to debias plug-in
estimators for the desired target parameters. For all DGPs,
we make the standard assumptions of positivity, conditional
ignorability, and the stable unit treatment value assump-
tion (SUTVA), which enable the identification of our target
parameters with a causal interpretation.

11Code: https://github.com/brianc0413/KDPE.
12Because the objective function L(·) = −Pn log(·) is globally

convex, when l(P i+1
n , P i

n) is small, we are close to a solution
satisfying the necessary first-order conditions.

Algorithm 1 KDPE implementation
1: input: data {Oi}ni=1, convergence tolerance function
l(·), convergence tolerance γ, density bound c, regular-
ization parameter λ, pre-estimate P 0

n , PD kernel K.
2: initialize: convergence tracker β(0) = ∞ and ℓ = 0.
3: while β(ℓ) > γ do
4: Construct the mean-zero kernel Kℓ := KP ℓ

n
.

5: Update the distribution according to the log-
likelihood loss function:

6: Set αℓ
n:

αℓ
n = argmin

α∈Rn,

c≤pℓ
n(α

⊤kℓ
O)≤1−c

− Pn log([1 + α⊤kℓO]pℓn)

+ λα⊤Kℓ
Oα

7: set pℓ+1
n = pℓn([α

ℓ
n]

⊤kℓO) = [1 + [αℓ
n]

⊤kℓO]pℓn
8: set β(ℓ+ 1) = l(P ℓ+1

n , P ℓ
n), and ℓ = ℓ+ 1.

9: end while
10: output: P̂KDPE = P ℓ

n.

DGP1: Observational Study We define O ≡ X ×A×Y ,
with baseline covariate X ∈ X ≡ [0, 1], binary treatment
indicator A ∈ A ≡ {0, 1}, and a binary outcome variable
Y ∈ Y ≡ {0, 1}. The DGP can be decomposed as follows:

P ≡ PX × PA|X × PY |A,X .

We place no restrictions on PY |A,X other than being a valid
conditional density function (i.e., nonparametric). The true
DGP in our simulation is given below:

X ∼ Unif[0, 1], A|X ∼ Bern
(
0.5 +

1

3
sin (50X/π)

)
,

Y |A,X ∼ Bern
(
0.4 +A(X − 0.3)2 +

1

4
sin(40X/π)

)
.

DGP2: Longitudinal Observational Study A more com-
plicated DGP represents a two-stage study. We define
O ≡ X × A0 × L1 × A0 × Y , with baseline covariate
X ∈ R, binary treatment indicators A0, A1 (where Ai

is the treatment at time i), and binary outcome variables
L1, Y . The time ordering of the variables is given by:
W → A0 → L1 → A1 → Y . As before, the DGP can be
decomposed as follows:

P ≡ PX×PA0|X×PL1|A0,X×PA1|L1,A0,X×PY |A1,L1,A0,X

which have the following distribution:

X ∼ Unif[0, 8], A0 ∼ Bern(0.5)
L1 = 1[3 +A0 − 0.75X + ϵ1 > 0]

A1 = 1[expit(−3 + 0.5X + 0.4 ∗ L1) ≥ 0.3]

Y = 1[expit(X − 3.5

− 0.3A0 − 0.5L1 − 0.5A1 + ϵ2) ≥ 0.5],

7
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where ϵ1, ϵ2 are i.i.d. noise with distribution N(0, 1).

Target Parameters The target parameters that we con-
sider here are functions of the mean potential outcome under
a specific treatment policy. For DGP1, we denote the mean
potential outcome as:

µa(P ) ≡ PX [PY |A,X [Y |A = a,X = x]].

For DGP2, we consider the mean potential outcome for a
fixed treatment across all time points (A1 = A0 = a):

µa(P ) ≡ PX

[
PL1|A=a,X [PY |A1,L1,A0,X [

Y |A1 = a, L1 = l1, A0 = a,X = x]]
]
.

The target parameters considered in this study are:

• avg. treatment effect, ψATE(P ) = µ1(P )− µ0(P ),

• relative risk, ψRR(P ) = µ1(P )/µ0(P ),

• odds ratio, ψOR(P ) =
µ1(P )/(1−µ1(P ))
µ0(P )/(1−µ0(P )) .

4.2. Simulation Setup
Pre-estimate Initialization For both DGPs, we initialize
the distribution of baseline covariateX as P 0

n(X) = Pn(X)
and use the package SuperLearner (van der Laan et al.,
2007) to estimate the remaining conditional distributions,
obtaining P 0

n . For our testing of highly adaptive lasso (HAL,
van der Laan, 2017), we use the implementation of HAL
provided by package hal9001 (Coyle et al., 2022).13

Baseline Methods for Comparison We compute these
estimators with four different plug-in methods: 1) our pro-
posed method KDPE, 2) TMLE, 3) HAL, and 4) a baseline
using the biased super-learned distribution, SL (van der
Laan et al., 2007), which is our pre-estimate. TMLE has
access to the functional form of the IF of each target pa-
rameter and is known for its efficient limiting distribution.
TMLE serves as a benchmark for examining the asymptotic
efficiency of KDPE. We expect KDPE to perform no worse
than TMLE. HAL serves as a benchmark for the empirical
performance of KDPE against an existing method with sim-
ilar aims: HAL also solves a rich class of score / estimating
equations and can be used as a debiased plug-in for many
different target parameters. In contrast, comparisons against
SL illustrate the effect of the KDPE approach on the dis-
tribution of our estimates, highlighting the need for using
a debiasing approach. For DGP2, we use the longitudinal
version of TMLE, denoted as LTMLE (van der Laan and
Gruber, 2012) as our baseline. For (L)TMLE, we learn a dis-
tinct data-generating distribution for each target parameter,
i.e., P̂RR

TMLE, P̂
OR
TMLE, P̂

ATE
TMLE, to debias the estimate. KDPE,

13We defer additional details on hyperparameter selection and
tuning to Appendix C.

Method ψATE ψRR ψOR

SL 0.0803 0.2623 0.6796
DGP1 TMLE 0.0574 0.1723 0.4059

KDPE 0.0592 0.1752 0.4303
HAL 0.0635 0.1987 0.4795
SL 0.0508 0.0925 0.1555

DGP2 LTMLE 0.0731 0.1481 0.2648
KDPE 0.0295 0.0778 0.0827
HAL 0.0589 0.1084 0.1848

Table 1. Root Mean Squared Error (RMSE) of KDPE, (L)TMLE,
HAL-MLE, and SL for DGP1, DGP2.

HAL, and SL only use a single estimated distribution P̂SL
and P̂KDPE, respectively.

Simulation Settings In all experiments, we use 300 sam-
ples (n = 300) and the mean-zero Gaussian kernel. For
both DGP1 and DGP2, we set c = 0.001. For DGP1, we
use 450 simulations, with λ = 0, γ = 0.002. For DGP2,
we use 350 simulations with λ = 15, γ = 0.0001.14 The
choice of hyperparameters is discussed in Appendix C.

4.3. Comparing Empirical Performance
DGP1 verifies the results of Theorem 2 Our simulations
for DGP1 (Figures 1 and 5) demonstrate two distinct results
of Theorem 2: (i) KDPE is roughly equidistant to the effi-
cient limiting normal distribution as TMLE, and (ii) KDPE
works well as a plug-in distribution for many pathwise dif-
ferentiable parameters.

As an example, the limiting distribution of ψATE(P
∗)

is given by N(0.1233, 0.0025) for DGP1. For
DGP1, the distribution of ψATE(P̂SL) in Figure 1 (and
ψRR(P̂SL), ψOR(P̂SL), shown in Figure 5 of Appendix
C) highlight the necessity of debiasing. Without cor-
rection, the naive plug-in estimator deviates significantly
from the limiting distribution, while all three debiasing ap-
proaches, ψATE(P̂KDPE), ψATE(P̂HAL) and ψATE(P̂

ATE
TMLE),

achieve similar distributions to the limiting normal distri-
bution. Despite no knowledge of the influence function
when performing debiasing, the simulated distribution of
ψATE(P̂KDPE) is as close to the efficient limiting distribu-
tion as ψATE(P̂

ATE
TMLE), and closer to the efficient limiting

distribution than ψATE(P̂HAL). The root-mean-squared er-
ror results provided in Table 1 corroborate this result, where
the RMSE of KDPE is closer to that of TMLE than HAL.

The results for DGP1 in Figure 5 verifies the second con-
sequence of Theorem 2: for all pathwise differentiable pa-
rameters that satisfy the stated regularity conditions, P̂KDPE
is debiased as a plug-in estimator. Across all three target

14Because larger values of λ result in smaller changes, we rec-
ommend setting smaller γ for larger λ.
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Figure 1. Simulated distributions of ψ̂ATE compared to their asymptotic distributions. TMLE distribution in the second row corresponds
to LTMLE for DGP2.

estimands, the KDPE estimate ψ(P̂KDPE) performs simi-
larly (both in terms of similarity to the limiting distribution
and RMSE) compared with TMLE, which uses a distinct
targeted plug-in (P̂ATE

TMLE, P̂
RR
TMLE, P̂

OR
TMLE) for each parameter.

DGP2 demonstrates that KDPE may provide improved
finite sample performance. DGP2 provides an example
where KDPE vastly outperforms TMLE and HAL for fixed
sample size n = 300, despite TMLE using the influence
functions for each estimand. KDPE significantly outper-
forms TMLE, HAL, and the naive SL plug-in estimates
both in terms of RMSE, as shown in Table 1 and conver-
gence to the asymptotic limiting distribution, as shown in
Figure 1 for ψATE. The resulting plug-in estimates from
KDPE demonstrate much smaller variance (Figures 1 and 5)
than SL, HAL, or TMLE for all target parameters, and is cen-
tered correctly for ψATE, ψOR. The performance of KDPE
for n = 300 indicates that for smaller sample sizes, KDPE
may outperform a more targeted approach; in contrast, the
IF-based approach, LTMLE, requires a much larger sample
size (n ≈ 800) to reach the correct limiting distribution.

5. Conclusions and Practical Benefits
In this paper, we introduce KDPE, a new method for de-
biasing plug-in estimators that (i) does not require the IF
as input, and (ii) works as a general plug-in for any target
parameters that satisfy our regularity conditions.

To see the practical benefits of KDPE, let us compare the
required work from the analyst (1) using existing IF-based
methods, (2) using existing IF-free methods, and (3) using
KDPE. An analyst may initially want to estimate k parame-
ters from the distribution, {ψi(P

∗)}ki=1 from the data. Us-

ing IF-based methods (DML, TMLE, one-step), the analyst
is required to derive (or find) the IF for each target parameter
ψi, and uses the IF to debias each parameter, resulting in k
analytical derivations and k runs of the debiasing algorithm.
Using finite-differencing approaches, the analyst approxi-
mates the plug-in bias term 1

n

∑n
i=1 ϕP̂ (Oi), and uses the

one-step correction, resulting in k runs of the finite differenc-
ing algorithm. Using KDPE, the analyst simply obtains a dis-
tributional estimate P̂ from running KDPE once, and uses
this as a plug-in estimator for the k parameters, resulting
in estimates [ψi(P̂ )]

k
i=1. After estimating the k parameters,

the analyst wishes to do a follow-up analysis by estimating
an additional w parameters, indexed [ψi(P

∗)]k+w
i=k+1. Using

IF-based or finite-differencing approaches, the analyst must
derive or approximate the IF w additional times, and per-
form w additional runs of their debiasing algorithm. Using
KDPE, we simply use the same P̂ obtained previously as a
plug-in to obtain estimates [ψi(P̂ )]

k+w
i=k+1.

This example demonstrates the benefits of KDPE; it (1)
avoids any computation/derivation of the IF for all k + w
parameters, and (2) obtains a single debiased plug-in distri-
bution P̂ that can be used to obtain debiasing for many target
parameters. In contrast with existing approaches, KDPE
only needs to be run once to obtain a general plug-in distri-
bution for all k + w parameters, and greatly simplifies the
estimation process for many different parameters of interest.

Future work includes (i) analyzing the effect of RKHS-norm
regularization on the convergence and efficiency, (ii) finding
simple heuristics for setting hyperparameters c, γ, λ, (iii)
investigating how to apply sample-splitting and whether it
can relax our assumptions, and (iv) verifying the validity of
bootstrap.
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Appendix
A. Notation
[n] set of integers 1, . . . , n
O Sample space, with O ⊂ Rd and Borel σ-algebra B;
M Statistical model, collection of probability measures on (O,B);
ψ(P ) Target parameter functional, mapping from M → R
ϕP Influence function, mapping from O → R
Pf, P [f ] Expectation functional Pf = P [f ] =

∫
f dP

Pn,Pnf Empirical distribution function
L2
0(P ) The set of measurable functions {f : O → R : Pf = 0 , Pf2 <∞}

P ∗ (Unknown) data generating distribution;
oP∗(1/

√
n) Represents a sequence of random variables that converges to zero in probability with respect to probability

measure P ∗, at a rate that is faster than 1/
√
n.

K,HK The PSD kernel and associated RKHS with kernel function K(·, ·)
kx The function kx := K(x, ·) : X → R, for x in support X
kx Vectorized version of function kx, where kx := [kx1

, ..., kxn
]T

Kxy,Kx Matrix of values Kx := [K(xi, xj)]i,j ∈ Rn× n, Kxy := [K(xi, yj)]ij ∈ Rn×m

KP ,HP The mean-zero kernel (with respect to P ) and associated RKHS
C0(X ) The space of continuous functions that vanish at infinity with the uniform norm
C0 A kernel K is C0 provided that HK is a subspace of C0(X )

M̃P The collection of perturbations M̃P := {(1 + h)p | h ∈ HP such that (1 + h)p > 0} ∩M
M̃P,n The set of n-dimensional parametric submodels, defined as follows:

M̃P,n :=
{
pα := p(α) := (1 +α⊤kO)p ; α ∈ Rn such that p(α) > 0

}
∩M

M̃ℓ The collection of perturbations M̃P l
n

corresponding to ℓ-th iteration’s distribution, P l
n

p(ϵ|h), pϵ,h 1-dimensional parametric model (1 + ϵh)p

Pϵ,h The distribution corresponding to the density implied by the 1-dimensional parametric model (1 + ϵh)p

p(h), ph RKHS-based model (1 + h)p, where h ∈ HP

Lp,h Log-likelihood likelihood loss, given by Lp,h ≡ − log(ph)

DPψ Derivative functional (assumed to be continuous, linear) that maps L2
0(P ) → R,

d
dϵψ(Pϵ,h)|ϵ=0 = DPψ[h] for all h ∈ L2

0(P )

πS The orthogonal projection operator H → S, projects a function h ∈ H onto a set of functions S
αi

n The optimal perturbation for objective function L(p̂n(α, p), λ) at iteration i for KDPE
P i
n, p

i
n Estimated data distribution of TMLE/KDPE at iteration i

P∞
n , p∞n Limiting/final estimate for TMLE/KDPE

P̂ Generic estimated distribution, subscripts/superscript added accordingly
ψ̂param. Estimated target parameter value ψparam.(P̂ ) using plug-in distribution P̂ , subscripts/superscript added

accordingly
Q(P ) Relevant portion of distribution (e.g. {Qa(X)}a∈{0,1} = {P [Y = 1|X,A = a]}a∈{0,1}).
Ω An event (or set of events) such that has probability 1 under P ∗, i.e. P ∗(Ω) = 1. The standard example is

the set of all possible n-sample realizations {{Oi(w)}ni=1 : w ∈ Ω} from distribution P ∗.
f(w), P (w) The random function / distribution, indexed by events w ∈ Ω. Often, we use w ∈ Ω to index an n-sample

realization, {Oi(w)}ni=1, from DGP P ∗.

12
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B. KDPE Theory
B.1. Additional Details Regarding Pϵ,h and M̃P .
Validity of Linear Submodels. The linear submodel Pϵ,h is indeed a valid submodel (i) for all h ∈ L2

0(P ) and (ii) for
|ϵ| ≤ ϵh,P , where ϵh,P is an upper bound on the magnitude of ϵ depending on h and P . For example, h = p′/p− 1, the
path connecting P and another unique (up to the dominating measure) distribution P ′ ∈ M, has 0 ≤ ϵ ≤ ϵh,P = 1, which
corresponds to pϵ,h = (1 − ϵ)p + ϵp′; for h′ = h/2, our bound ϵh′,P becomes 2. Because we are in the nonparametric
setting, the only constraint on our model class M is that we remain a valid density, and thus our linear paths Pϵ,h are fully
contained in the model class M.

Additional Comments Regarding M̃P . We note that M̃P will never be empty in the nonparametric case. Intuitively,
Eq. 5 simply restricts the feasible scores h ∈ L2

0(P ) to a subset of scores h ∈ HP , which is dense in L2
0(P ) and therefore

nonempty for any P . At each P , the nonparametric tangent space is L2
0(P ), which means that all h ∈ L2

0(P ) are feasible
directions. In other words, one can move at least an infinitesimal amount in each h ∈ L2

0(P ) and remain within the model
class. In our bounded kernel setting with universal (e.g. Gaussian) kernels, HP is a dense subset of L2

0(P ). This implies for
each P and h ∈ HP , p(h) is a valid submodel in , given a correct magnitude (i.e. obeys ϵh,P bounds implied by M, where
h is rescaled to be unit norm). Thus, the restriction imposed in Eq. 5 corresponds to bounding the maximum magnitude ϵ
we can move for each unit-norm h ∈ HP (i.e. ϵh,P ), such that we remain a valid density.

B.2. Proof of Proposition 1
Proof of Proposition 1. Because K is bounded, the expectation functional h 7→ Ph is continuous on HK . Next, we note
that φ ∈ HK and it is the Riesz representer of the expectation functional (we have shown this elsewhere and remark here that
the rigorous argument considers a Riemann approximation to the expectation integral and weakly convergent subsequences).
It follows that h ∈ HP if and only if ⟨h , φ⟩K = 0, and from this we can deduce the projection operator onto HP and the
reproducing kernel of that subspace.

Finally, given h ∈ L2
0(P ), let {gn} ⊂ HK be an approximating sequence of h in Hk. Let gn = g̃n + EP [gn]φ/EP×P [K]

be the RKHS orthogonal decomposition of gn into HP and H⊥
P , and note that this operation is continuous on L2(P ). By

continuity of expectation in L2(P ), EP [gn] → 0 in L2(P ). It follows that the orthogonal part of gn vanishes in L2(P ) and
g̃n → h in L2(P ). Thus, HP is dense in L2

0(P ).

B.3. Proof of Theorem 1
Let L(Q(P )) : X → R be a general loss function that identifies the relevant part, Q(P ), for the target parameter of
interest ψ(P ) = ψ(Q(P )), satisfying the property that EPL(Q(P )) ≤ EPL(Q

′) for every possible Q′. The log-likelihood
L(P ) = − log p is a special case of such a loss function. The risk associated with the log-likelihood identifies the entire
distribution P based on the properties of the Kullback–Leibler divergence.

Proof of Theorem 1. For h ∈ H consider the orthogonal decomposition h = hS + h⊥S into the closed subspaces Sn and
S⊥
n . From the reproducing property it follows that h(Oi) = ⟨hS + h⊥S , KOi⟩ = hS(Oi) and h⊥S (Oi) = 0 for every i ∈ [n].

This means that inputs h and hS yield the same value of the empirical risk
∑

i L̃(Oi) in the objective function of (6).
Furthermore, we have assumed that if h is admissible in the optimization problem (6), then so is hS . The claim follows by
noting that ∥h∥2H = ∥hS∥2H + ∥h⊥S ∥2H.

B.4. Proof of Proposition 2
Remark 3. Assumption 3 assumes that our algorithm converges and terminates in finite time. It is important to highlight
that this assumption is commonly adopted in the TMLE literature (van der Laan and Rubin, 2006). As demonstrated in
Table 2, our algorithm, Algorithm 1, converges effectively in practice, typically requiring only a few iterations. While the
regularization of the perturbation size (i.e., the norm of h) could potentially ensure finite convergence, it is beyond the scope
of this paper and remains a topic for future research.

Proof of Proposition 2. This follows from the first order condition to (6) which must hold at the interior local minimum.
First, consider the variations at p∞n in M̃P∞

n
along the n directions (scores) given by KP∞

n
(O1, ·), . . . ,KP∞

n
(On, ·) and
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observe:

0 =
∂

∂αj

∣∣∣
α=0

∑
i

− log
(
1 +

∑
j

αj(KP∞
n
)(Oj , Oi)

)
p∞n (Oi) + λKα

⊤KOα

=

[
−
∑
i

KP∞
n
(Oj , Oi)p

∞
n (Oi)

(1 +
∑

j αj(KP∞
n
)(Oj , Oi))p∞n (Oi)

+ λK(KOα)j

] ∣∣∣∣∣
α=0

= −
∑
i

KP∞
n
(Oj , Oi).

This shows that the estimating equation holds for each of these scores, and therefore their linear combinations. Second,
by Theorem 1, any h ∈ HP∞

n
that is orthogonal to these scores must have h(Oi) = 0 for all i ∈ [n] and therefore satisfy

Equation (12). From these two observations, we conclude the proposition.

B.5. Proof of Theorem 2
Remark 4. Assumptions 2-3 and conclusions derived from them are standard in the TMLE literature (van der Laan and
Rubin, 2006; Kennedy, 2022). Assumption 4 is mostly technical and ensures that the set of scores that satisfy the estimating
equation (12) is sufficiently rich to achieve debiasing for the target parameter by approximating its efficient influence curve
estimating equation asymptotically.

Assumption 5 is our main regularity assumption on the model M and functional ψ needed to control the plug-in bias term
PnϕP̂ of the proposed KDPE estimator. While this assumption provides a clear intuition for the debiasing mechanism of
KDPE, it is not strictly required for the method to work. Less extreme conditions on the regularity of F , such as Cα or
Sobolev norm bounds (see van der Vaart 2000, Ch 19 and RKHS approximation theory Smale and Zhou 2007), can imply
the Donsker property in S5.

The Donsker assumption S2 has been successfully relaxed for related estimators in the literature (Zheng and van der Laan,
2010; Kennedy, 2022; Chernozhukov et al., 2017) via sample-splitting. Our initial analysis of DKPE crucially relies on
the Donsker assumption in the argument for asymptotic debiasing (based on S5). We leave the analysis of KDPE with
sample-splitting (as done in Zheng and van der Laan 2010) to future work.

Recall that the proof consists of three steps: Step 1) our uniform approximation guarantees are with respect to the true
distribution P ∗ (as opposed to the KDPE distribution P∞

n ), and Step 2) decompose the error of the KDPE estimate similar
to that of Equation (2), and Step 3) showing that the empirical process term is of order oP∗(1/

√
n).

Step 1 is achieved by establishing the existence of a sequence in HP∞
n

that approximates ϕP∞
n

arbitrarily well with respect
to the L2(P ∗) norm via change of measure (via Assumption 4, square integrability of density ratios, and the density of
HP∞

n
in L2

0(P
∞
n ).) In Step 2, by using the result from Step 1, the gradient condition of Assumption 3, and the expansion in

Lemma 1, we obtain that the error of the KDPE estimate can be decomposed as four terms: (i) the empirical average of
ϕP∗ , which gives us our desired result, (ii) a standard empirical process term across other estimation methods (e.g. TMLE,
DML, one-step), (iii) a standard second-order remainder, and (iv) an empirical process term that involves the approximating
sequence hj . Terms (ii) and (iii) are controlled by Assumptions 1 and 2 respectively such that they are oP∗(1/

√
n). In Step

3, we use our novel assumption, Assumption 5, to establish that the nonstandard term (iv) such that it is of order oP∗(1/
√
n).

Thus, terms (ii-iv) vanish at the appropriate rate, resulting in the conclusion of Theorem 2.

Proof of Theorem 2. Because ϕP∞
n

∈ L2
0(P

∞
n ), and the RKHS HP∞

n
is dense in L2

0(P
∞
n ), there must exist a sequence

{hj}j∈N ⊂ HP∞
n

, where for all ϵ > 0, there exists a j(ϵ) ∈ N such that for all j > j(ϵ), ∥hj − ϕP∞
n
∥L2(P∞

n ) < ϵ.

To get the desired convergence rates with respect to true measure P ∗, we first note that under Assumption 4, |P∞
n (p∗/p∞n )|

is bounded by some constant η(ω) for sample paths ω ∈ Ω by Holder’s inequality:

P∞
n (p∗/p∞n ) ≤ P∞

n [1]1/2 × ∥p∗/p∞n ∥L2(P∞
n )︸ ︷︷ ︸

<∞

= η(ω)
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Assumption 4 also enables change of measure by a dominating measure λ. By the Cauchy-Schwartz inequality,

∥hj − ϕP∞
n
∥2L2(P∗) =

∫
(hj − ϕP∞

n
)2 dP ∗ =

∫
(hj − ϕP∞

n
)2(

p∞n
p∞n

)p∗dλ(O)

≤
∫

p∗

p∞n
dP∞

n ×
∫

(hj − ϕP∞
n
)2dP∞

n (O)

≤ η(ω)∥hj − ϕP∞
n
∥2L2(P∞

n )

By setting j > j(ϵ/
√
η(w)), this leads to an equivalent result under L2(P ∗) norm (rather than L2(P∞

n ) norm):

∥hj − ϕP∞
n
∥L2(P∗) ≤

√
η(ω)∥hj − ϕP∞

n
∥L2(P∞

n ) < ϵ.

Thus, for all ϵ > 0, there exists j(ϵ/
√
η(ω)) ∈ N such that j > j(ϵ/

√
η(ω)) implies ∥hj − ϕP∞

n
∥L2(P∗) < ϵ. An

immediate consequence is another useful result for our analysis. By a simple application of Holder’s inequality,

|P ∗(hj − ϕP∞
n
)| ≤ P ∗[1× |hj − ϕP∞

n
|]

≤ P ∗(|hj − ϕP∞
n
|2)1/2 × P ∗(12)1/2 (Holder’s Inequality for p = q = 2.)

= ∥hj − ϕP∞
n
∥L2(P∗) < ϵ.

These two results show that for any sample path ω ∈ Ω, there exists a sequence {hj}P∞
n

⊂ HP∞
n

, such that for all ϵ > 0,
there exists a j(ϵ/

√
η(ω)) ∈ N where j > j(ϵ/

√
η(ω)) implies the following:

(A) : ∥hj − ϕP∞
n
∥L2(P∗) < ϵ, (B) : |P ∗(hj − ϕP∞

n
)| < ϵ.

Under the conditions of Assumption 3 and 4, we analyze our estimator using the expansion in Lemma 1:

ψ(P∞
n )− ψ(P ∗) = PnϕP∗ −PnϕP∞

n
+ (Pn − P ∗)

[
ϕP∞

n
− ϕP∗

]︸ ︷︷ ︸
(a)=“double empirical process term”

+ R2(P
∞
n , P ∗)︸ ︷︷ ︸

(b)=second-order remainder

. (13)

Under Assumption 2, term (b) is oP∗(1/
√
n), and is therefore asymptotically negligible. It remains to show that term (a)

vanishes appropriately. Let {j∗(ω, n)}n∈N be the index sequence such that ϵ = oP∗(1/
√
n) for sample path ω. Under

Assumption 3, Pnh = 0 for every h ∈ HP∞
n

, giving us the following equality:

(a) = −Pn(ϕP∞
n
) + (Pn − P ∗)(ϕP∞

n
− ϕP∗) = −Pn(−hj∗ + ϕP∞

n
) + (Pn − P ∗)(ϕP∞

n
− ϕP∗).

Given property (B), we can rewrite the "double empirical process term" (a) as follows:

(a) = −Pn(ϕP∞
n

− hj∗) + (Pn − P ∗)(ϕP∞
n

− ϕP∗)

= −Pn(ϕP∞
n

− hj∗) + (Pn − P ∗)(ϕP∞
n

− ϕP∗) + P ∗(ϕP∞
n

− hj∗)−P ∗(ϕP∞
n

− hj∗)︸ ︷︷ ︸
=oP∗ (1/

√
n)

= −[Pn(ϕP∞
n
)− P ∗(ϕP∞

n
)] + [Pn(hj∗)− P ∗(hj∗)] + (Pn − P ∗)(ϕP∞

n
− ϕP∗) + oP∗(1/

√
n)

= (Pn − P ∗)(hj∗ − ϕP∗) + oP∗(1/
√
n)

= (Pn − P ∗)(hj∗ − ϕP∞
n
)︸ ︷︷ ︸

=(c)

+(Pn − P ∗)(ϕP∞
n

− ϕP∗)︸ ︷︷ ︸
=(d)

+oP∗(1/
√
n).

Term (d) = oP∗(1/
√
n) by Assumption 1, and term (c) = oP∗(1/

√
n) by Assumption 5 and Property (A) via Lemma

19.24 of van der Vaart, 2000. Thus, term (a) = oP∗(1/
√
n). We conclude that ψP∞

n
− ψ(P ∗) = PnϕP∗ + oP∗(1/

√
n).
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C. Simulation Details and Additional Empirical Results
This section provides pseudocode for the bootstrap procedure, empirical justification for our choice of hyperparameters
c, γ, and additional experiments for the bootstrap variance estimation procedure. All simulations were performed on a Dell
Desktop with 11th Gen Intel Core i7, 16 GB of RAM. All code for the simulations provided in both this section and Section
4 can be found on https://github.com/anonymous/KDPE.

C.1. Baseline Methods
Initializing P 0

n for KDPE For all simulations, we use the SuperLearner (van der Laan et al., 2007) and tmle,
ltmle (Gruber and van der Laan, 2012; van der Laan and Gruber, 2012) packages in R. For SuperLearner, we set our
initial base learners as SL.randomForest, SL.glm, and SL.mean. For tmle, ltmle, we use the default settings,
except for setting the parameter g.bound to 0. For each run of the simulations, we initialize Pn

0 for both TMLE and KDPE
to the same initial density estimate to capture the differences in the two debiasing approaches.

Optimization Step Details For the optimization solver, we use the package CVXR (Fu et al., 2020) with the default settings
to obtain αi+1, which corresponds to the parametric update step in Algorithm 1. Because the log-likelihood loss function
L(α, P ) = Pn log((1 +

∑n
i=1 αiKP (oi, ·))p) is concave and all constraints are linear, our update step can be solved by

existing convex optimization software. To avoid solvers, a potential future direction is to explore alternative loss functions
that have known closed-form solutions, such as the mean squared error (MSE), rather than using the log-likelihood loss.

Construction of KP (oi, ·) To construct our n-dimensional parametric submodels, we use the mean-zero RBF kernel
KP (·, ·) : O ×O → R, which takes the following form:

KP (O,O
′) = exp(−∥O −O′∥22)−

∫
exp(−∥O − s∥22)dP (s)

∫
exp(−∥O′ − s∥22)dP (s)∫ ∫

exp(−∥s− t∥22)dP (s)dP (t)
,

where O,O′ ∈ [0, 1]× {0, 1}2. Following classical examples (van der Laan and Rose, 2018) and existing software (Gruber
and van der Laan, 2012) for TMLE, we fix X ∼ Pn(x) and A ∼ P 0

n(A|X) (the initial estimate for the propensity score
function). This enables us to directly calculate the integral, rather than approximate KP :

KP (O,O
′) = exp(−∥O −O′∥22)−

fP (O)fP (O
′)

cP
, (14)

where fP and cP are defined as follows:

fP (O
′) = fP ((x

′, a′, y′)) =
1

n

n∑
i=1

∑
(a,y)∈{0,1}2

P (A = a, Y = y|X = xi) exp(−∥(x′, a′, y′)− (xi, a, y)∥2),

cP =
1

n

n∑
i=1

∑
a∈{0,1}

∑
y∈{0,1}

P (A = a, Y = y|X = xi)f(xi, a, y).

Note that this calculation is inherent to our setting of binary treatments A and outcomes Y with the empirical marginal
distribution forX – other set-ups may not permit a direct calculation of the integral, and may require integral approximations.
We defer those experiments to future work.

Settings for HAL-MLE We use the HAL implementation provided by Coyle et al., 2022. For DGP1, we estimate the
conditional densities P (Y |A,X); for DGP2, we estimate conditional densities P (Y |A1, L1, A0, X) and P (L1|A0, X). All
estimation with HAL is done with base settings, using the link function setting family = "binomial" to respect the
[0, 1] bounds we make on our data-generating process.

C.2. Restricted Tangent Space Modifications
The following update steps for DGP1 and DGP2 provide the projection step required for the restricted tangent spaces
tested in our simulations. These updates provide explicit examples of conditional tangent space updates, where one is
only allowed to update a specific component of the initial DGP estimate, but imposes non-parametric assumptions on this
component. A simple example of this restricted model setting is treatment effect estimation with known propensity scores,

16



Kernel Debiased Plug-in Estimation

but no restrictions on the conditional outcome function. Another example is offline estimation of a proposed policy’s value,
where the treatment assignment policy is specified by the user, but no restrictions are made on the the reward distribution. In
the exposition of KDPE, we assume that we update the entire density P ℓ

n(O), and therefore L2
0(P

ℓ
n) is the correct tangent

space under our nonparametric assumptions. However, in our simulations, we only aim to perturb the conditional density
functions (i.e. P (Y |A,X) in DGP1, P (L1|A0, X), P (Y |A1, L1, A0, X) in DGP2). For example, in DGP1, the scores
(i.e. perturbation directions) of the conditional density function P (Y |A,X) live in the conditional/projected tangent space
L2
0(P

ℓ
n(Y |A,X)), as opposed to the more general tangent space of L2

0(P
ℓ
n).

To get the specific updates for DGP1, DGP2, we project the chosen score (i.e., h ≡ [αℓ
n]

⊤kℓO) into the relevant tangent
space. The only change in Algorithm 1 is the following step, which occurs at the end of each loop:

pℓ+1
n = pℓn([α

ℓ
n]

⊤kℓO) = [1 + [αℓ
n]

⊤kℓO]pℓn.

For all set-ups in our simulation, the tangent space factorizes nicely, which means we simply need to project our chosen
score h at each iteration. We demonstrate the necessary modifications to obtain our results.

DGP1 Since the conditional density function P ℓ
n(A|X) does not show up in the expression of our final plug-in estimate of

the target parameters (ATE, RR, OR), it suffices to consider only updating the conditional density function P ℓ
n(Y |A,X),

with distribution P ℓ
n(X) = Pn(X) fixed. The tangent space L2

0(P
ℓ
n) decomposes as follows:

L2
0(P

ℓ
n) = L2

0(P
ℓ
n(X))⊕ L2

0(P
ℓ
n(A|X))⊕ L2

0(P
ℓ
n(Y |A,X)),

where L2
0(P

ℓ
n(Y |A,X)) is space of scores (i.e., directions of change) corresponding to P ℓ

n(Y |A,X). To obtain the
component of our chosen score h = [αℓ

n]
⊤kℓO relevant for P ℓ

n(Y |A,X), we simply project this into L2
0(P

ℓ
n(Y |A,X)):

h′ = h− P ℓ
n(h|A,X), pℓ+1(Y |A,X) = (1 + h′)pℓ(Y |A,X).

DGP2 Similarly, since P (A1|L1, A0, X) and P (A0|X) do not show up in the expression of our final plug-in estimate of
the target parameters, we do not need to update these components. We fix the marginal distribution of baseline covariates
as P 0

n(X) = Pn(X). The two components relevant for our target parameters are P (L1|A0, X), and P (Y |A1, L1, A0, X).
The tangent space for DGP2 factorizes as follows:

L2
0(P

ℓ
n) = L2

0(P
ℓ
n(X))⊕ L2

0(P
ℓ
n(A0|X))⊕ L2

0(P
ℓ
n(L1|A0, X))⊕ L2

0(P
ℓ
n(A1|L1, A0, X))⊕ L2

0(P
ℓ
n(Y |A1, L1, A0, X)),

where L2
0(P

ℓ
n(L1|A0, X)) and L2

0(P
ℓ
n(Y |A1, L1, A0, X)) are the corresponding tangent spaces for P ℓ

n(L1|A0, X) and
P ℓ
n(Y |A1, L1, A0, X) respectively. At the end of each iteration, we project the chosen score h into the tangent space of

these relevant components, and update accordingly:

h′ = P ℓ
n(h|L1, A0, X)− P ℓ

n(h|A0, X), pℓ+1
n (L1|A0, X) = (1 + h′)pℓn(L1|A0, X),

h′′ = h− P ℓ
n(h|A1, L1, A0, X), pℓ+1

n (Y |A1, L1, A0, X) = (1 + h′′)pℓn(Y |A1, L1, A0, X).

The steps outlined above project the loss-minimizing / likelihood-maximizing updates from scores in L2
0(P

ℓ
n) to scores in

the correct tangent spaces implied by the component in our density estimate we wish to update (i.e. L2
0(P (Y |A,X)) in

DGP1, L2
0(P (L1|A0, X)), L2

0(P (Y |A1, L1, A0, X)) in DGP2).

Other Semi-Parametric Extensions. Beyond projecting the updates (i.e. loss-minimizing perturbations) directly in our
algorithm, analogous results (i.e. efficiency, asymptotic normality) for semi-parametric models can be directly achieved by
our KDPE framework with the appropriate choice of kernel function. For closed, linear tangent spaces TP , letHP ≡ H∩TP
be the intersection of the tangent space TP and a universal RKHS H . The intersected space HP itself is an RKHS, with
corresponding kernel KP . By using this kernel for KDPE, one obtains the same results for the semiparametric models. For
nonparametric models, KP was simply the kernel corresponding to the projection of H onto mean-zero functions, given
in Proposition 1. In semi-parametric settings, this requires a projection of K onto H ∩ TP in the norm of the RKHS H .
For general semi-parametric settings, this projection for the tangent space may have to be derived analytically. While it
might seem that we have traded analytic derivation of the EIF for an analytic derivation for the appropriate RKHS kernel
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function, the plug-in approach of KDPE works for all target parameters that satisfy our stated assumptions 1-5. In other
words, KDPE replaces the analytic derivation of the IF for each parameter of interest defined on the same semi-parametric
model (requires derivation for each parameter of interest, even within the same set of assumptions) with a single analytic
characterization of the RKHS projection onto the tangent space of the semi-parametric model (only requires derivation for
new modeling assumptions). We chose the non-parametric setting for our paper as the simplest setting to explain KDPE,
and plan to explore these extensions in future work.

C.3. Hyperparameter Testing for KDPE
Density Bound and Convergence Criteria In our experiments, we fixed the sample size at n = 300. We conducted
tests with different values for the density bound c, with c ∈ {0.05, 0.01, 0.002}, and for the stopping criteria, we tested
γ ∈ {0.025, 0.005, 0.001} for DGP1, with λ fixed at 0. For each combination of settings, we performed 100 simulations to
obtain the results presented in Table 2 and Figure 2.

c γ ATE RMSE RR RMSE OR RMSE Avg. Iterations

0.050 0.025 0.019 0.077 0.205 1.062
0.010 0.025 0.016 0.063 0.180 1.135
0.002 0.025 0.026 0.101 0.260 1.120
0.050 0.005 0.015 0.057 0.150 2.293
0.010 0.005 0.004 0.026 0.091 2.445
0.002 0.005 0.006 0.033 0.090 2.505
0.050 0.001 0.001 0.023 0.068 4.756
0.010 0.001 0.009 0.040 0.128 5.329
0.002 0.001 0.009 0.033 0.105 5.802

Table 2. Average RMSE and iterations until convergence for DGP 1. No regularization, i.e., λ = 0.

The empirical results shown in Figure 2 coincide with the theoretical results shown in Appendix B, which are derived
under the setting where we have no explicit density bound (c = 0) and we terminate at a fixed point (γ = 0). As we
see in Figure 2, the simulated distribution of ψATE(P̂KDPE) with the smallest tested values of c, γ obtains a distribution
most similar to limiting normal distribution. When the density bound is set to large values (e.g., c = 0.05), the resulting
distributions become skewed and deviate significantly from the normal distribution. This occurs because termination at the
boundary (i.e., is tight with respect to the density bound) prevents the distributions from satisfying the gradient conditions
shown in Appendix B. When using large values for the convergence tolerance (e.g., γ = 0.025), the algorithm terminates
prematurely at a distribution that deviates significantly from the fixed point P∞

n . Thus, to maintain the guarantees shown
in Appendix B for Algorithm 1, we want the values of (γ, c) to be as small as possible. For DGP1 in Sections 4.3, we
opt for c = 0.001, γ = 0.001, values at least as small as the tested hyperparameter values. The results of this simulation
naturally pose questions of how to set c, γ as functions of n, such that the residual bias caused by these hyperparameters is
oP∗(1/

√
n). This remains an open question for future work.

Regularization Parameter λ While the theoretical guarantees of KDPE hold for any λ ≥ 0, the choice of λ has practical
significance, especially in relation to the convergence tolerance parameter γ. Large values of γ (i.e., looser convergence
tolerances) with heavy regularization (i.e., large λ) results in premature termination. We demonstrate these results with
DGP1, testing λ ∈ {0, 0.001, 0.01, 0.1, 1, 10, 100}15. For each λ, we ran 100 simulations with n = 300 to determine the
best choice of λ. As shown in Figure 3, for a fixed value of convergence tolerance γ = 0.001, we see that larger values of λ
tend to result in skewed distributions and/or heavy tails. The average iterations for convergence corroborate that this is due
to premature termination; the resulting step with heavy regularization results in a relatively small change in distribution and
trivially satisfies our convergence criteria. For this reason, for DGP2 (which uses λ = 20), we set the convergence tolerance
to γ = 0.0001, as compared to γ = 0.001 in the non-regularized case in DGP1. We keep the density bound for DGP2 the
same (c = 0.001). Future extensions of this work include how to set regularization parameter λ as a function of convergence

15Note that for λ = 0, which we use throughout our paper, the solver CVXR fails to obtain a solution roughly 15% of the time. For
those interested in testing the code, we recommend λ = 0.001, which results in similar results, but avoids numerical instability issues.
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Figure 2. Density histogram of ψATE(P̂KDPE) simulations as a function of c, γ for DGP1. X-axis: ATE values. Y -axis: density. Blue
dotted line: the true ATE under P ∗. , and the y-axis indicates the count.

tolerance γ.

C.4. Additional (L)TMLE Results for DGP2
We provide additional results to show that the poor performance of TMLE in DGP2 is due to the relatively small sample size
n = 300. For n = 800, Figure 4 see that the distribution of ψ̂ATE

TMLE is far closer to the limiting distribution (shown in purple)
than when n = 300, as shown in the main body of our paper. This indicates that the performance of TMLE for DGP2 at
n = 300 is indeed due to poor finite sample performance.

C.5. Additional Empirical Results for Relative Risk and Odds Ratio
To show that our asymptotic normality holds for multiple target parameters ψ, we include the simulated distributions of the
KDPE estimate against TMLE and SL in Figure 5, using the same hyperparameter settings described above.

C.6. Runtime Complexity for KDPE
Our algorithm is a meta-algorithm, and thus the computational complexity is dependent on different factors (integration
method, optimization software, number of iterations, etc.). We provide computational complexity results per iteration in the
case of Algorithm 1. The set-up necessary to formulate the optimization problem requires us to obtain KP (Oi, Oj) (Eq. 20)
for all i, j ∈ [n], and occurs the cost O(n2):

• Computing exp(−∥Oi −Oj∥2) for all i, j ∈ [n]: O(n2)
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Figure 3. (a): Average number of iterations, with maximum and minimum number of iterations for each λ tested ;(b): Distribution of
ψ̂ATE

KDPE in DGP1 for different λ, c = 0.002, γ = 0.0001. Blue line denotes true value. 100 simulations for each setting of λ.
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Figure 4. Distribution of ψ̂ATE
TMLE for n = 800, using LTMLE Package for DGP2. Purple shows correct limiting distribution.

20



Kernel Debiased Plug-in Estimation

Figure 5. Simulated distributions of ψ̂RR, ψ̂OR. First row corresponds to DGP1, and second row to DGP2. Red line denotes true value of
the target parameter.

• Computing fP (Oi) for all i ∈ [n]: O(4n2)

• Computing cP : O(4n)

The optimization problem for KDPE involves n regressors, and therefore the computational complexity of this method is
O(n2 + k(n)) per iteration, where k(n) is the complexity for the solver.

In contrast, TMLE (as introduced in the paper) occurs an O(n) cost when calculating the influence function in each iteration,
and involves only 1 regressor, resulting in a complexity of O(n+ k(1)) in each iteration.

The difference in cost per iteration (quadratic, as opposed to linear in n), can be seen as the price to pay for a plug-in
distribution that works with all parameters satisfying our regularity assumptions. Our empirical results corroborate these
scaling results. The median time-per-iteration in DGP1 for 150 samples and 300 samples is 0.22 and 0.91 respectively,
indicating a roughly O(n2) scaling for our method. For DGP1, we average between 5-6 iterations before termination, using
the hyperparameters in Section 4. For DGP2, we average 2 iterations before termination. Across our simulations for DGP1,
the average runtime for our method is 5.8 seconds, with 5.8 iterations on average. TMLE, as implemented in (van der
Laan and Gruber, 2016), uses the one-step method, which performs the MLE optimization in one iteration using logistic
regression. Because this version of TMLE involves no iterations (same time complexity as logistic regression), it is a poor
comparison with KDPE in terms of time complexity. The results of TMLE are included as a standard of comparison for the
distribution of our estimator, rather than its time complexity.

C.7. Bootstrap Algorithm
We use the classical bootstrap procedure (Kotz and Johnson, 1991), i.e., sampling n observations from our observed data
{oi}ni=1 with replacement, to estimate the variance of the estimator. We formally state this procedure in Algorithm 2.

C.8. Bootstrap Intervals for Inference
Table 3 reports average estimated variance, average length of 95% intervals, and the coverage across 237 simulations
of n = 300 for DGP1. For comparison, we include the results of inference for TMLE, which estimates the variance
V̂ar(ψ̂) = Pn[(ϕ

target
P̂TMLE

)2] using knowledge of the (efficient) IF. The baselines for both TMLE and KDPE (in parentheses)
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Algorithm 2 Bootstrap Confidence Interval for KDPE
1: Input: {Oi}ni=1, convergence tolerance function l(·), convergence tolerance γ, density bound c, and bootstrap iterations
m.

2: Obtain distribution P̂KDPE = KDPE({Oi}ni=1, l(·), γ, c).
3: Set the estimate ψ̂ = ψ(P̂KDPE).
4: for j ∈ {1, ...,m} do
5: Sample with replacement {O∗

i }ni=1 from sample {Oi}ni=1, and remove duplicates.
6: Set the estimate ψ̂j = ψ(KDPE({O∗

i }ni=1, l(·), γ, c))
7: end for
8: Calculate the mean estimate ψ̄ =

∑n
j=1 ψ̂j/n.

9: Estimate the variance Ŝ =
∑m

j=1(ψ̂j − ψ̄)2/(n− 1).

10: Return
[
ψ̂ ± Φ−1(1− α)

√
Ŝ
]
.

Parameter V̂ar(ψ̂target) Avg. Length (95% CI) Coverage (95% CI)

KDPE ψATE 0.00427 (0.00287) 0.252 0.945
ψRR 0.04562 (0.02555) 0.826 0.975
ψOR 0.30303 (0.15322) 2.107 0.970

TMLE ψATE 0.00192 (0.00296) 0.172 0.903
ψRR 0.01483 (0.02837) 0.510 0.903
ψOR 0.07016 (0.14981) 1.230 0.907

Table 3. Estimated Variance and Confidence Intervals of ψ̂ATE, ψ̂RR, ψ̂OR of KDPE and TMLE for DGP1 across 237 simulations, with 100
bootstrap iterations each for KDPE.

are the sample variances of the simulated distributions in Section 4.3, and provided next to average estimated variance.
The KDPE-bootstrap variance estimates overestimate the variance for all target parameters relative to the KDPE baseline;
the inflated variance estimates lead to conservative confidence intervals for the bootstrapped KDPE estimates with over-
coverage, as shown in the coverage results of Table 3. By contrast, TMLE’s IF-based variance estimate underestimates
the variance for all target parameters relative to the TMLE baseline, leading to undercoverage. These preliminary results
suggest that bootstrap interval calibration is future direction for improvement, and are intended as a starting point for
future investigation. While these results imply that our bootstrap-estimated confidence intervals are conservative, more
extensive testing is required to empirically validate these results. A large theoretical gap also remains for confirming that
our bootstrap-estimated variances are consistent asymptotically, and providing an analysis for Algorithm 2 under KDPE is
another natural step towards our goal of fully computerized inference. Lastly, as shown in Table 3 and Algorithm 2, we only
use the bootstrap samples to estimate the variance of our estimator and use a normal approximation to construct confidence
intervals. Alternative methods for constructing confidence intervals include directly taking the quantiles of the bootstrap
estimates and/or subsampling while bootstrapping, which we do not explore in this project.
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