Extending PIBT to support Heterogeneous Robot Fleets

Arjo Chakravarty®, Michael X. Grey?, M. A. Viraj J. Muthugala® and Mohan Rajesh Elara®

Abstract— Priority Inheritance and Backtracking (PIBT) has
demonstrated significant success as a heuristic for large-scale
Multi-Agent Path Finding (MAPF), but its application has been
limited to scenarios where all robots move at uniform speeds.
This work addresses the critical question of extending PIBT’s
capabilities to heterogeneous fleets, where robots may vary in
size and speed. We introduce a novel collision-checking-based
reservation system integrated within the WinPIBT framework
and a new backtracking mechanism. Heterogeneous PIBT (Het-
PIBT) effectively scales to hundreds of robots of various sizes.
Our findings confirm that this scheme enables the application
of heterogeneous MAPF to large robot populations. To facilitate
further research, we also provide a new set of heterogeneous
MAPF benchmark scenarios along with a Python package
for the generation of such problems and visualization tools.
However, we observe that HetPIBT, similar to its homogeneous
counterpart, can yield suboptimal solutions. We provide an open
source implementation of the algorithm in Rust.

I. INTRODUCTION

The problem of Multi-Agent Path Finding (MAPF) is crit-
ical for large-scale logistics, warehousing, and autonomous
vehicle systems [1]. Solving MAPF at the scale demanded by
modern industrial applications—often involving thousands of
agents—requires extremely fast, high-throughput planners.
Heuristic-based, rule-following approaches, such as Priority
Inheritance and Back Tracking Planner (PIBT) [2] and its
derivatives like LaCAM [3], have successfully demonstrated
real-time planning for thousands of homogeneous robots on
modest hardware.

However, there is a growing interest in having heteroge-
neous fleets, composed of agents with diverse footprints (e.g.,
small mobile robots versus large AGVs) and varying dynam-
ics or maximum velocities. Although existing approaches
like Conflict-Based Search (CBS) extensions (e.g., LA-CBS
[4]) can accommodate such heterogeneity through modular
low-level planners, their reliance on global tree searches
leads to an unpredictable branching factor and failure to
scale beyond a few hundred agents. Crucially, highly scalable
heuristics like PIBT fundamentally rely on the assumption
of uniform agent size and identical travel dynamics, making

This research is supported by the National Robotics Programme under
category National Robotics Programme 2.0, LEO 1.0: A New Class of Bed
Making Robot, Award No. M25N4N2028, and also supported by A*STAR
under its RIE2025 IAF-PP programme, Modular Reconfigurable Mobile
Robots (MR)2, Grant No. M24N2a0039.

LArjo Chakravarty is with Intrinsic LLC and Singapore University
of Technology and Design, Singapore. arjoc@intrinsic.ai,
arjo_chakravarty@mymail.sutd.edu.sg

2Michael X. Grey is with Intrinsic LLC mxgrey@intrinsic.ai

3M. A. Viraj J. Muthugala and Mohan Rajesh Elara are
with Singapore University of Technology and Design, Singapore.
{viraj_-jagathpriya,rajeshelara}@sutd.edu.sg

them unsuitable for deployment in heterogeneous environ-
ments.

This paper addresses the core challenge of achieving
high-throughput MAPF for heterogeneous fleets. We intro-
duce Het-PIBT, a novel extension of the PIBT framework
that retains the priority-based scalability while rigorously
guaranteeing collision-free paths for multi-sized agents with
asynchronous movement. Het-PIBT leverages an extension
of the WinPIBT reservation system [5] to model time-space
conflicts, enabling the planner to account for the physical size
and variable travel time of each agent. This approach allows
us to bridge the critical gap between high-scalability and real-
world applicability in MAPF. Our key technical contributions
are:

e A general reservation-based extension to PIBT that
enables safe path planning for heterogeneous footprints
and varying asynchronous velocities.

o A conservative multi-graph space-time collision model
to accurately detect conflicts between differently sized
agents.

o A dependency-based time reconstruction mechanism
integrated into the planning loop, enabling safe motion
planning despite inconsistent travel speeds and ensuring
the integrity of reservations.

e A Heterogeneous MAPF benchmark set and an open-
source solver to facilitate future research in this under-
explored domain.

The remainder of this paper is structured as follows:
Section [lI| reviews related work in MAPF scalability and
heterogeneity. Section details the formulation of the
Heterogeneous MAPF problem. Section presents the
core Het-PIBT algorithm. Section [V| presents our benchmark
generation pipeline and Section |VI| presents our results and
associated discussion.

II. BACKGROUND AND RELATED WORK
A. Multi-Agent Path Finding (MAPF) and Scalability

The fundamental challenge in Multi-Agent Path Finding
(MAPEF) lies in efficiently finding a set of collision-free paths
for N agents from their start to their goal locations. Given
that finding an optimal solution is NP-hard, the history of
MAPF is characterized by methods that consider the trade-
offs between optimality guarantees and computational speed.

Initial scalable attempts often relied on simple priority-
based systems; however, these suffered from inherent in-
completeness and were prone to deadlocks. More rig-
orous approaches emerged through compilation methods—
transforming MAPF into SAT [6] [7] or MILP-but these
were limited to small graphs and low agent counts [7] [2].

The landscape shifted significantly with the introduction of
Conflict-Based Search (CBS) [8]. CBS achieves optimality
by employing a high-level search over conflicts and a low-
level path planner. While extensions like Extended Enhanced
CBS (EECBS) [9] have pushed the envelope by relaxing
the optimality constraints, the scalability of CBS is funda-
mentally limited by the unpredictable branching factor of its
conflict tree, making it unsuitable for thousands of conflicting
agents.

To achieve industrial-scale throughput, the focus shifted
to high-speed heuristics. PIBT (Priority Inheritance and
Backtracking) [2] and its successors, such as LaCAM [3],
represent the current state-of-the-art for throughput, enabling
planning for thousands of robots in real time. Separately,
learning-based planners [10] have also been explored to
achieve high scale, often trained on the results of fast heuris-
tic solvers like PIBT or LaCAM. However, their primary
challenge remains the difficulty in providing strong, veri-
fiable collision-free guarantees necessary for safety-critical
real-world deployment. Our work operates within the domain
of rule-based, deterministic planners that provide guaranteed
collision-free paths.

B. Heterogeneity in MAPF

Heterogeneous robot fleets are increasingly seen as a tool
to unlock new capabilities in brown field industrial settings.
Having the ability to mix robots from different vendors can
unlock new capabilities in many cases. For instance, in a
warehouse you may have large autonomous pallet jacks being
used to move heavy items while a smaller AMR might be
used for sorting items.

One of the initial pieces of work towards heterogeneity
in MAPF was Large Agent MAPF (LA-MAPF) [4]. In
Large-Agent MAPF, rather than modeling agents as a single
point, individual agents have different sizes. An extension
to CBS called LA-CBS was proposed, where the low level
A* in CBS was replaced with an A* that is aware of
agent footprints. More recent efforts in this direction have
extended this to kinodynamics and task heterogeneity [11]
by allowing CBS to incorporate a variety of different low-
level planners (e.g., diffusion-based or RRT-based) instead
of being restricted to A*.

Although CBS provides a flexible way to implement
heterogeneous systems by modularly swapping its low-level
components, its main downside is an unpredictable branching
factor, which can lead to performance stagnation. To ad-
dress this, iterative alternatives like PIBT offer an appealing
performance guarantee, while maintaining completeness for
multi-agent pickup and delivery on any bi-connected graph.
However, as discussed in the following section, PIBT makes
the critical assumption that every agent moves in unison
during each time step. This may not always be true in LA-
MAPF as one agent might move more slowly than another.
Our work seeks to answer the question: Is there an iterative
extension of PIBT suitable for agents with heterogeneous
footprints and dynamics?

C. PIBT

PIBT was first introduced by Okumura Et al. in 2022.
Unlike traditional MAPF solvers, PIBT does not focus on
optimality. Rather, it is a configuration generator: given a
biconnected graph, PIBT will give another valid configura-
tion.

PIBT generates new configurations using a priority based
scheme. First, it ranks agents according to their priorities.
Priorities are calculated based on the distance from the final
goal. A common cause of deadlocks in priority based systems
is Priority Inversion. Priority inversion occurs when a lower
priority agent blocks the progress of a high priority agent. In
PiBT, blocking agents inherit the priority of the agent that
needs to move. In the event that we reach a deadlock while
performing priority inheritance, we backtrack by picking
another agent to have a higher priority [2]. PIBT itself is
extremely fast as it is a greedy algorithm picking the next
best configuration according to an approximate cost function.
Given a biconnected graph, PIBT will always output a safe
configuration as a next step. However, PIBT assumes that
all robots behave according to the same dynamics, making
it unsuitable for heterogeneous systems.

D. WinPIBT

WinPIBT [5] is an extension to PIBT that extends the
look up of PIBT from 1 step ahead to n-steps ahead.
The key idea in WinPIBT is that instead of just looking
one step ahead, one maintains a reservation table of robot
trajectories. Higher priority robots reserve their trajectories
in this table as they find new trajectories that do not collide
with previously reserved trajectories. In the event that no
solution is found, back tracking can be performed to help
find a solution. WinPIBT is particularly useful when dealing
with tight constrained passages such as narrow aisles in a
warehouse. In our work, we adapt the longer lookup horizon
of WinPIBT to accommodate variability in the time steps of
different robots.

E. Reservation Systems

Fleet management systems often use reservation subrou-
tines to be more effective at managing contention between
agents. They are often used to ensure that robots do not
collide when parked. They may also be used for emergency
parking and resource allocation [12]. PIBT can be framed as
running a reservation system at every time step. This insight
is critical for us to be able to scale PIBT to heterogeneous
fleets. We propose a simple reservation system that takes into
account robot footprints and configurations.

F. Benchmarks in the context of MAPF

One of the most commonly used benchmarks for MAPF
are the maps and scenarios described in [1]. More recent
additions to the field include POGEMA, which provides
scripts to generate instances of homogeneous MAPF so that
one can train RL models [13]. Amazon runs an annual com-
petition for the fastest MAPF solver. In 2024, the competition
introduced a new variation of MAPF with Turns [14]. All of

Fig. 1: Example instance of Heterogeneous Agents. Here the
red dot represents an agent and the blue dot another. Their
goals are represented by the circles. Each agent can move a
different amount per time step. In particular the red agents
footprint is smaller but its velocity is also lower.

these benchmarks and simulations assume a uniform cell size
with uniform speeds across all robots.

Although heterogeneity is not often addressed in the field
of MAPEF, the Multi-Agent Reinforcement Learning field has
a number of gyms that exercise this capability. Recent work
in this domain includes VMAS, which provides a set of
scenarios in which multiple agents must cooperate to achieve
their end goals [15]. In fact, VMAS covers a much broader
scope of multi-agent cooperation.

Another work of interest here is REMROC which provides
a nice end-to-end framework for MAPF in unstructured
environments [16]. REMROC’s key feature is the fact that
it simulates the entire navigation stack of each robot along
with some crowd. However, running such an end-to-end test
is expensive, and for the purpose of studying scalability up
to thousands of agents, simulating the entire physical stack
introduces variables that obfuscate analysis.

III. PROBLEM STATEMENT

This paper aims to introduce a derivative of Priority Inher-
itance with Backtracking (PIBT) tailored for heterogeneous
multi-agent systems. An illustrative example of this system
is provided in Figure

Given a set of Agents AY that move on a graph GY, where
each agent has a different start position and end position
(s7,e?) € GY, find a collision free trajectory for each agent
from s? to ef

A collision-free trajectory for an agent is a sequence of
discrete locations (vertices in the graph) over time, ensuring
that:

o The agent’s path starts at its designated start position
and ends at its goal position.

o At no point in time are two agents in collision with each
other.

o The trajectory respects the specific movement capabil-
ities and constraints of each agent type (specifically,
speed and footprint in this case).

We define G’ as the base occupancy grid with static

obstacles. The cell size of G’ must be equal to or smaller
than the smallest graph G*.

To better categorize agent types within a heterogeneous
system, we introduce the term “fleet”. A fleet refers to a
group of robots (agents) that share identical characteristics,
including their dynamics, size (footprint), and the specific
graph or sub-graph on which they operate. Consequently,
agents with different dynamics or footprints are considered
to belong to different fleets.

IV. PROPOSED ALGORITHM
A. Handling Heterogeneity

To handle heterogeneity, we need to consider the fact that
traditionally PIBT assumes that at each time step agents
can fully clear out of the cell they currently occupy. In
heterogeneous scenarios, this is not always the case. A robot
that moves slowly might not be able to evacuate a cell within
a single timestep of another robot. Thus, we have to employ
WinPIBT’s approach [5]. Instead of looking ahead just one
timestep into the future, we extend the look-ahead to be the
area of the cell that needs clearing. However, that alone is
not sufficient as the start time of the highest priority agent
will be affected by the amount of time it takes to clear the
cell. This is demonstrated by Figure [2]

Decisions are made sequentially according to the priority
of an agent. We first determine the path for the highest-
priority agent without regard for lower-priority positions;
these positions are then updated by treating the highest-
priority agent’s path as a hard constraint. We recursively
travel down all blocking agents by asking them to move
out and pick the next best location. However, unlike vanilla
PiBT we don’t know that a child agent can move out in
one time step, so we simply build up a dependency graph
of who needs to move out. We then backtrack and fill the
timing information up. This is similar to the causal-PIBT’s
approach, where we first try to figure out the order of the
motion and then execute the motion [17].

B. Reservation System

We represent the reservation system as P in our subse-
quent discourse. P is defined as the map of agents AY to
their trajectories £. Due to the possibility that robots have
different sizes, each fleet may have its own occupancy graph
representation, but these graphs may overlap in Cartesian
space (see Figure . We define a mapping T}, between every
cell in GY9 and the base occupancy grid G’ as shown in
equation (I). A single cell on a graph can map to multiple
occupied cells on the base occupancy grid.

Ty: () — G (1)

Here we use ¢f to refer to a cell on the graph GY9. Two cells
c1,co in between two graphs G, G? overlap if Tgi(cp) N
Taz(c2) # {}. A trajectory refers to a timed series of cells
of a graph (see [2).

€i = [(Cio,to), (Cio-i-Av to + A)’ (Ci0+2A7 to+ QA)’] (2)

Path For Red
Priority: Age m.
HIGH .

Priority:

. HIGH

Path For Blue
Agent
Start: 77

Path For Red
Agent

Path For Red
Agent Priority:

HIGH "
Move: 1 step: [! M slep=

Path For Blue Path For Blue
Agent Agent

St Start
Move: 3 step: | | Move: 3 sle

Fig. 2: Resolving timing dependencies later in order for the agents to safely complete an action

Where A is the uniform timestep used across all agents when
planning.

A path, on the other hand, refers to a series of cells with
no timing information (see [3).

II = [01702,...] (3)

We say two trajectories &', €2 collide if there exists a ¢
such that there are common nodes (see (@)

Ti(c) NTo(ci) # {})

Or the agents swap positions. That is, given two trajectories
€' and €2, there is a situation at time ¢ such that T3 (cj,) N
To(c?) # {} and Ty (c}) N Ta(c2, ») # {}-

When adding a trajectory £ to P we must ensure that none
of the trajectories £* € P, collide with £. We achieve this
via space time search when generating new trajectories. See
[[V-El for more details.

C. High level iterative process

The high level iterative search is largely identical to the
iterative process used in WinPIBT [5]. At each time step, we
choose the agent with the highest priority that does not have
a trajectory allocated and then try to assign it a trajectory
using Algorithm [} If the ordering fails, we backtrack and
try picking another agent as a high priority agent. We call
this the Priority Traversal Search.

D. Priority traversal search

The priority determination is described by the Algorithm
[I] We greedily pick the next best location for the agent, while
making sure that we do not violate the trajectories in P.

In the event a low priority agent blocks a high priority
agent, as seen in Figure [2] we perform priority inheritance
by creating “Keep Out Zones”. These “Keep Out Zones”
define a region that the low priority agent must vacate so
higher priority agents can move in. Once we know that
we have a valid set of movements that free up space for
high priority agents, we then backtrack and figure out at
what time the agents should move. This is represented
by BACKTRACKANDRESERVE, in Algorithm [I} The back
tracking is done via Figure

As it takes longer for a small agent to move out of a large
agent’s way, we adjust the look-ahead depth d based on the
ratio of their sizes.

GETNEXTLOCATIONS represents the Per-Agent Search
described in Its goal is to enumerate the best path

for the current agent under consideration to leave the “Keep
Out Zone” and which unassigned agents need to move out
in order for the current agent to be able to move to its goal.
The path which the current agent takes is added to the “Keep
Out Zone” as all agents that block this area need to inherit
priority and leave the “Keep Out Zone”.

Algorithm 1 Reservation Algorithm

1: function PRIORITYTRAVERSAL(a;: Agent, P: Reserved
Trajectories, ¢t: Time)

2: keep-out + {} > Cells which the current agent

must avoid

3: d«1 > The search depth for WinPiBT

4: Q + {({ai},d,keep_out)}

5: while Q) # {} do

6: a;,d,keep_out < Q.pop ()

7: for b, Il + GetNextLocations (a, P, t,keep_out,d)
do

8: b : List of blocking agents

9: IT : Path of each agent

10: if b.1len = 0 then

11: BackTrackAndReserve (P)

12: return

13: end if

14: if b.1en > 1 then

15: continue > While possible to do
more than one, this will lead to exponential state-space
explosion

16: end if

17: if a;.size > b;.size then

18: d= [%W

19: end if

20: Q@ .push ((b,d,keep_out UII))

21: end for

22: end while

23: return > Failed to reserve anything stay put

24: end function

E. Per Agent Path Search

To get successor locations for each agent, we rely on
Algorithm [2] The goal of this function is to return a list
of agents that need to move out and the relevant paths that
the agents need to take. We perform space-time BFS so that
the agent inheriting the priority of the higher priority agent

leaves the keep out zone. We order potential destinations by
their distance from the desired goal for the current agent.

To make swaps work, we break ties by the number of
agents that would need to be moved out to allow the current
agent some free space. This process yields a path rather
than a full trajectory for blocked agents; the complete, timed
trajectory is then reconstructed using the method shown
in Figure [2] Blocked agents will effectively act as static
obstacles until the trajectories of the blocking agents are
determined.

Algorithm 2 Per-agent Search Algorithm

1: function GETNEXTLOCATIONS(a;: Agent, P: Reserved
Paths, d: Depth, K: path-finding successful if we are not
in this location, ¢:current time)

2: Q + {(a;.pos,t)}

3: solutions = {}

4: affects ={}

5: while @ # {} do

6: pos, time + Q.pop-front()

7: if pos ¢ K then

8: solutions.add (path_to (pos))

9: end if

10: if time > d then

11: continue

12: end if

13: for neighbour of pos do

14: if moving from pos to neighbour collides
with a trajectory in P after t ime then

15: continue

16: end if

17: if moving from pos to neighbour collides
with the last know position of a; in P then

18: if time > a;.1ast_time then

19: affects[pos] =a;

20: end if

21: end if

22: end for

23: end while

24: sort solutions by distance to goal for a; and then
by number of affected agents

25: return solutions and affected agents by solution

26: end function

V. BENCHMARKS

After some survey, we determined that there is not a
sufficiently representative set of benchmarks for heteroge-
neous fleets. We reuse Stern Et al.’s MAPF benchmarks
for maps, but we generate our own agent footprints and
starting positions [1]. The occupancy map for each scenario
is projected onto the grid cells of every fleet. In order
to generate valid agent paths, we randomly select a start
position for each agent and then set a goal for each agent. We
make sure that each goal can be reached from its respective
start position.

Our benchmarks are designed to answer these key ques-
tions:

o How does HetPIBT scale with the number of robots of
the same kind?

e How does HetPIBT scale with the number of robot
types?

o How far from optimal are the solutions generated by
HetPIBT?

We implement our solver in Rust and provide an open source
packag

A. Benchmark Design

MAPF Map I-

Generate IREELaily
random “fleets”
:‘> with different I::>
velocities and
sizes.

select start
Fig. 3: Benchmark Generation Pipeline

locations, and
end locations.
Make sure they
are feasible.

—

Figure [3] shows how the benchmarks are generated. We
reuse the MAPF benchmark maps [1]. We overlay a set of
different grids that are dynamically generated to represent the
motion of a robot moving from a starting point to a goal at a
certain speed. An important consideration is making sure that
the goal can be reached from its associated starting point.

We generate 10 instances per map using this methodology
and save them as files. The benchmark scenarios are available
ina repositor Each scenario is formatted as a plain text file
with lines specifying the agent, the agent’s fleet, the fleet’s
footprint, the fleet’s velocity, and start and goal positions.
To ensure that the benchmarks capture conflicts between
different fleets, all navigation graphs cover the same area
but may have different velocity and cell size components.

A Python package is provided to generate further bench-
mark scenarios and visualization tools to support future
research.

VI. RESULTS AND DISCUSSION
A. Scaling in Robot Dimension

In the event that there is only one fleet, HetPIBT and
WinPIBT are identical. This means that for one fleet we
can easily search for thousands of robots. As the number
of fleets increases, there is an additive performance penalty.
We discuss this in more depth in the next section. Despite
this penalty, figure] shows that we can plan for 700 robots
across 14 different fleets within a minute.

B. Scaling in terms of multiple fleets

Figure {4 illustrates the scaling capabilities of Heteroge-
neous PIBT (HetPIBT) in relation to the number of fleets.
The results demonstrate that HetPIBT effectively scales to 14

Ihttps://github.com/arjol29/pibt_rs
2https://github.com/arjol29/pypibt/tree/main/het_
bench

https://github.com/arjo129/pibt_rs
https://github.com/arjo129/pypibt/tree/main/het_bench
https://github.com/arjo129/pypibt/tree/main/het_bench

Solution Time vs. Number of Fleets

a0

40 6
L]
: W]
- I
£ 0 +
3 s !'
..‘
10 ..
o 0

2 4 i 8 10 12 14

Mumber of Fleets

Fig. 4: Solution time for HetPIBT given number of
fleets. Each fleet consists of 55 robots, each nav-graph is
of a different size. The environment was based on the
room-64-64-8 map.

Overlapping Cell-Size Ratio vs Maximum Solver Time (s)
22

®
®
1.65
%)
(0]
£
oo
S 11 ®
5 °
= ...
= [)
0.55
e ©
[)
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Overlapping Cell-Size Ratio

Fig. 5: Overlapping Cell-Size Ratio vs time to solve. We
keep the number of fleets at 3 and the number of agents per
fleet at 55.

fleets, each composed of 55 robots, for a total of 770 robots
within a single instance. However, it is important to note that
increasing the number of fleets incurs a significantly higher
cost compared to increasing the number of robots within
existing fleets.

One thing to note is that the “Overlapping Cell-Size Ratio”
is very important for the performance of HetPIBT. This de-
scribes the size ratio between the largest and the smallest set
of robots. Figure 5] shows the effect that the overlapping ratio
has with respect to the maximum solver time. For this set of
experiments, we ran the solver 100 times at each cell size
ratio across a set of different random scenarios. We plot the
maximum time the solver takes to solve the instance against
the overlapping cell size ratio. As the size difference in
individual cells across the fleets’ occupancy graphs increases,
we observe that the maximum solver time increases. This
results from an increase in planning complexity as larger
robots will tend to be obstructed by an increasing number of
smaller robots as the difference in cell size grows.

TABLE I: CCBS vs HetPIBT

Scenario HetPIBT CCBS
Len. Time (s) Opt. Len. Time (s)

room-64-64-8.0 375 2.87 375 15.1
room-64-64-8.2 105 0.96 - TLE
room-64-64-8.3 138 1.21 - TLE
room-64-64-8.5 398 1.81 - TLE
room-64-64-8.6 358 2.51 188 17.2
room-64-64-8.7 133 2.09 133 28.1
room-64-64-8.8 503 2.04 122 29.0

room-64-64-8.9 664 2.05 322 28.1

C. Comparing baselines and sub-optimality

The best baseline we have for multi-agent path finding
in heterogeneous domains is Conflict Based Search (CBS).
Particularly, we rely on a CCBS based approach using the
Open-RMF MAPF library, which supports heterogeneous
agents. While it may be difficult to scale CBS to 1000 robots,
we can still compare how far from optimality HetPIBT is for
smaller scales. This is important because PIBT is known to
produce suboptimal trajectories. The instances we used in
this case have 9 robots spread across 3 fleets. Each fleet
has a footprint which is about 3 times the size of the next
smaller fleet. We give an upper limit of 1 minute for each
solver to solve each instance. Based on our results in Table
[we can see that HetPiBT has a much higher success rate
than CCBS but can at times give suboptimal solutions. This
is particularly true in dense scenarios with more conflicts.

VII. CONCLUSION AND FUTURE WORKS

Our work presents a novel extension of the PIBT algorithm
that enables large-scale heterogeneous MAPF. This approach
addresses a critical gap in the original PIBT which was
limited to homogeneous agents with uniform speeds and
sizes. By introducing a collision-checking-based reservation
system, HetPIBT can successfully plan paths for hundreds
of robots with different footprints and dynamics.

The results demonstrate that HetPIBT scales effectively
with an increasing number of fleets handling up to 14 fleets
each composed of 55 robots for a total of 770 agents in
under a minute. Crucially, the overlapping cell-size factor has
a significant impact on performance. For practical purposes,
we recommend using the approach taken in E-PIBT [18] and
limiting the number of agents that can be affected by a single
agent’s move.

While HetPIBT provides a viable solution for large-
scale heterogeneous problems, the observed sub-optimality
presents a clear avenue for future work.

Future research could focus on the following:

« Improving Solution Optimality: The sub-optimality of
HetPIBT suggests a need for an optimizer. Integrating
HetPIBT with a hierarchical planner, such as a large
neighborhood search (LNS) or a similar approach, could
help to improve solution quality while retaining the
scalability of the base algorithm.

o Alternative Prioritization Schemes: The current prior-
ity scheme in HetPIBT is based on the distance to the

[1]

[2]

[3]

[4]

[5]

[6

=

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

final goal. Exploring more sophisticated prioritization
schemes could potentially address sub-optimality.
Data generation: Using HetPIBT could be of interest to
generate feasible trajectories for heterogeneous systems
to seed ML based models.

REFERENCES

R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T.
Walker, J. Li, D. Atzmon, L. Cohen, T. K. S. Kumar, E. Boyarski,
and R. Bartak, “Multi-agent pathfinding: Definitions, variants, and
benchmarks,” Symposium on Combinatorial Search (SoCS), pp. 151—
158, 2019.

K. Okumura, M. Machida, X. Défago, and Y. Tamura, “Priority
inheritance with backtracking for iterative multi-agent path finding,”
Artificial Intelligence, p. 103752, 2022.

K. Okumura, “Lacam: Search-based algorithm for quick multi-agent
pathfinding,” in Proceedings of AAAI Conference on Artificial Intelli-
gence (AAAI), 2023.

D. Atzmon, Y. Zax, E. Kivity, L. Avitan, J. Morag, and A. Felner,
“Generalizing multi-agent path finding for heterogeneous agents,” in
Proceedings of the International Symposium on Combinatorial Search,
vol. 11, no. 1, 2020, pp. 101-105.

K. Okumura, Y. Tamura, and X. Défago, “winpibt: Extended priori-
tized algorithm for iterative multi-agent path finding,” arXiv preprint
arXiv:1905.10149, 2019.

P. Surynek, “Problem compilation for multi-agent path finding: a
survey.” in IJCAI, 2022, pp. 5615-5622.

P. Surynek, A. Felner, R. Stern, and E. Boyarski, “Sub-optimal sat-
based approach to multi-agent path-finding problem,” in Proceedings
of the International Symposium on Combinatorial Search, vol. 9, no. 1,
2018, pp. 99-105.

G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40-66, 2015. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0004370214001386

J. Li, W. Ruml, and S. Koenig, “Eecbs: A bounded-suboptimal search
for multi-agent path finding,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 35, no. 14, 2021, pp. 12353-12362.
G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. S. Kumar, S. Koenig,
and H. Choset, “Primal: Pathfinding via reinforcement and imitation
multi-agent learning,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, pp. 2378-2385, 2019.

R. Veerapaneni, A. Tang, H. He, S. Zhao, V. Shah, Y. Cen, Z. Ji,
G. Olin, J. Arrizabalaga, Y. Shaoul, et al., “Conflict-based search
as a protocol: A multi-agent motion planning protocol for het-
erogeneous agents, solvers, and independent tasks,” arXiv preprint
arXiv:2510.00425, 2025.

A. Chakravarty, M. X. Grey, M. V. J. Muthugala, and M. R.
Elara, “Time-ordered ad-hoc resource sharing for independent robotic
agents,” in 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2024, pp. 10081-10088.

A. Skrynnik, A. Andreychuk, A. Borzilov, A. Chernyavskiy,
K. Yakovlev, and A. Panov, “Pogema: A benchmark platform for
cooperative multi-agent pathfinding,” in The Thirteenth International
Conference on Learning Representations, 2025.

S.-H. Chan, Z. Chen, T. Guo, H. Zhang, Y. Zhang, D. Harabor,
S. Koenig, C. Wu, and J. Yu, “The league of robot runners compe-
tition: Goals, designs, and implementation,” in /ICAPS 2024 System’s
Demonstration track, 2024.

M. Bettini, R. Kortvelesy, J. Blumenkamp, and A. Prorok, “Vmas:
A vectorized multi-agent simulator for collective robot learning,” in
International Symposium on Distributed Autonomous Robotic Systems.
Springer, 2022, pp. 42-56.

L. Heuer, L. Palmieri, A. Mannucci, S. Koenig, and M. Magnus-
son, “Benchmarking multi-robot coordination in realistic, unstructured
human-shared environments,” in 2024 IEEE International Conference
on Robotics and Automation (ICRA). 1EEE, 2024, pp. 14 541-14 547.
K. Okumura, Y. Tamura, and X. Defago, “Time-independent planning
for multiple moving agents,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 35, no. 13, 2021, pp. 11299-11307.
E. Yukhnevich and A. Andreychuk, “Enhancing pibt via multi-action
operations,” arXiv preprint arXiv:2511.09193, 2025.

https://www.sciencedirect.com/science/article/pii/S0004370214001386
https://www.sciencedirect.com/science/article/pii/S0004370214001386

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Multi-Agent Path Finding (MAPF) and Scalability
	Heterogeneity in MAPF
	PIBT
	WinPIBT
	Reservation Systems
	Benchmarks in the context of MAPF

	PROBLEM STATEMENT
	PROPOSED ALGORITHM
	Handling Heterogeneity
	Reservation System
	High level iterative process
	Priority traversal search
	Per Agent Path Search

	BENCHMARKS
	Benchmark Design

	RESULTS AND DISCUSSION
	Scaling in Robot Dimension
	Scaling in terms of multiple fleets
	Comparing baselines and sub-optimality

	CONCLUSION AND FUTURE WORKS
	References

