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Abstract

Although Symbolic Optimization (SO) can be used to model many challenging1

problems, the computational cost of evaluating large numbers of candidate solutions2

is intractable in many real-world domains for existing SO algorithms based on3

reinforcement learning (RL). While lower-fidelity surrogate models or simulations4

can be used to speed up solution evaluation, current methods for SO are unaware5

of the existence of the multiple fidelities and therefore do not natively account for6

the mismatch between lower and higher fidelities. We propose to explicitly reason7

over the multiple fidelities. For that, we introduce Multi-Fidelity Markov Decision8

Processes (MF-MDPs) and propose a whole new family of multi-fidelity SO9

algorithms that account for multiple fidelities and their associated costs. We conduct10

experimental evaluation in two challenging SO domains, Symbolic Regression and11

Antibody Optimization, and show that our methods outperform fidelity-agnostic12

and fidelity-aware baselines.13

1 Introduction14

Symbolic Optimization (SO) is the problem of searching over sequences of tokens to optimize a15

black-box reward function. Numerous challenging real-world problems can and have been solved16

using SO, including Symbolic Regression (Lu et al., 2016), Neural Architecture Search (Yu et al.,17

2020), and Program Synthesis (Kitzelmann, 2009). Deep Symbolic Optimization (DSO) (Petersen18

et al., 2021) models the token sampling process as a Reinforcement Learning (RL) problem. Although19

DSO has achieved remarkable success in varied domains, such as winning the real-world track in the20

SRBench symbolic regression competition (Kommenda et al., 2022), it makes the key assumption that21

the actual reward function is inexpensive enough that a large number of candidate solutions—typically22

hundreds of thousands—can be evaluated during training. However, this assumption does not hold in23

many real-world SO domains, such as Antibody Optimization (Norman et al., 2020) where even in24

silico simulations of antibody quality are computationally expensive (Barlow et al., 2018).25

One way to cope with expensive evaluation is to rely on a computationally inexpensive but lower26

fidelity surrogate model of the actual reward. However, this incurs on a mismatch between the optimal27

solution for the original and the lower fidelity problems. This mismatch in the reward functions has28

typically been viewed as a Transfer Learning problem (Silva and Costa, 2019) in an ad hoc manner,29

where the learning process is carried out using the cheap simulation and then the resulting policy is30

either adapted (Hanna and Stone, 2017) or transferred directly (MacAlpine and Stone, 2018) to the31

desired domain. Other multi-fidelity methods focus on modifying the simulator, which is often not32

possible (Peherstorfer et al., 2018).33

In this paper, we posit that it is more effective to explicitly reason over multiple reward functions in34

different fidelities, allowing more faithful modeling of the problem and more effective usage of a35

limited budget in the highest fidelity. We propose a new multi-fidelity framework that encapsulates36

many possible strategies for sampling and learning in the presence of multiple reward functions of37

different fidelities, and we provide a number of new concrete multi-fidelity algorithms under this38
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framework. We present empirical evaluations in Symbolic Regression and Antibody Optimization,39

where the former is used for benchmarking and comparing algorithms and the latter is our application40

of interest to find effective antibody sequences for binding SARS-CoV-2 viruses.41

2 Background42

A symbolic optimization problem is specified by a library L and a reward function R. The library43

L = {τ1, . . . , τ t} is a set of tokens τ i that determine the space T of possible token sequences44

τ = (τ1, . . . , τn), n ≤ nmax, that are candidate solutions to the SO problem. The reward function45

R : T → R ∪ {−∞} evaluates the fitness of each sequence; invalid sequences are assigned value46

−∞. The main challenge of SO is to search within T, which scales exponentially with the maximum47

sequence length nmax, for the sequence or set of sequences that maximizes the reward:48

argmax
n∈N,τ∈T

[R(τ)] with τ = (τ1, . . . , τn), τi ∈ L. (1)

Our novel approach for multi-fidelity symbolic optimization builds on Deep Symbolic Optimization49

(DSO) (Petersen et al., 2021), as it is the current state-of-the-art in general purpose, real-world, SO50

domains (Landajuela et al., 2021; Silva et al., 2022). DSO uses a recurrent neural network policy51

to construct a token sequence autoregressively by sampling each token (action) conditioned on the52

sequence of previous tokens generated so far (observation). To optimize for the discovery of the best53

token sequence, DSO maximizes the best-case performance using the Risk-Seeking Policy Gradient54

J(θ) := Eθ [R(τ) | R(τ) ≥ Qϵ] , (2)

∇θJ ≈
1

ϵN

N∑
i=1

[
R(τ (i))− R̃ϵ(θ)

]
· 1R(τ(i))≥R̃ϵ(θ)

∇θ log p(τ
(i)|θ), (3)

where Qϵ is the (1− ϵ)-quantile of the reward distribution under the policy, R̃ϵ(θ) is the empirical55

(1− ϵ)-quantile of the batch of rewards, and 1x returns 1 if condition x is true and 0 otherwise.56

3 Problem Statement57

We introduce the Multi-Fidelity Markov Decision Process (MF-MDP) as the tuple58 (
S,A,TMF ,RMF

)
. As in regular MDPs, S is the state space and A is the action space. However,59

MF-MDPs have multiple state transition and reward functions:60

TMF = ⟨T 0, T 1, . . . , T fmax⟩ RMF = ⟨R0, R1, . . . , Rfmax⟩ ,

where fmax+1 is the number of fidelities. Each pair of transition and reward functions Ξf := (T f , Rf )61

determines a unique source environment for fidelity f ∈ {0, . . . , fmax}. We assume all fidelities62

share the same state-action space. Fidelities can be freely chosen at the start of each finite episode63

and persist until episode termination. The fidelity f = 0 (Ξ0) is the “real environment", and therefore64

the agent objective is to maximize the reward in this fidelity. Since we are here concerned with SO65

problems, for which the rewards are computed only for whole token sequences, we are dealing with a66

sub-class of MF-MDPs where: (i) the transition function is the same for all fidelities; (ii) the reward is67

evaluated only for complete trajectories (token sequences). Hence, for this paper the optimal solution68

can be described as:69

argmax
n∈N,τ

[
R0(τ)

]
with τ = (τ1, . . . , τn), τi ∈ L, (4)

where selecting each token τi is an agent action. However, each source Ξf is associated to a sampling70

cost c, where ∀f > 0 : c(Ξ0) ≫ c(Ξf ), such that solely relying on Ξ0 is infeasible, whereas the71

cost for non-zero fidelities is negligible1 relative to the cost for Ξ0. However, all other sources Ξf72

approximate the real-world source Ξ0, and can be used to bootstrap learning and enable finding a73

good policy for Ξ0 with a reduced number of samples.74

1This holds for many real-world applications, e.g., using a machine learning model approximating antibody
binding affinity is orders of magnitude cheaper than carrying out wet lab experiments.
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MF-MDPs can be used to model a wide variety of domains in both general RL and SO, such as75

robotics (Kober et al., 2013) and antibody design (Norman et al., 2020), where evaluating solutions is76

expensive or dangerous but simulations are available.77

4 Solving Multi-fidelity Symbolic Optimization78

We propose a general framework called Multi-Fidelity Deep Symbolic Optimization (MF-DSO) that79

iterates between two steps: sampling and learning. MF-DSO encapsulates a large set of possible80

concrete algorithms as different multi-fidelity strategies may be designed for each stage.81

1. Multi-fidelity Sampling: At the start of each episode, a SAMPLE method chooses a fidelity, or82

multiple fidelities, and executes the corresponding transition and reward functions for that episode.83

Since only the reward function (not the transition function) changes between fidelities in SO, we84

generate a batch T of trajectories (token sequences) using the current policy and choose a fidelity85

or multiple fidelities for each trajectory.86

2. Multi-fidelity Learning: Given a batch of sampled trajectories T , which may contain a mixture of87

samples with rewards calculated using different fidelities, a multi-fidelity learning strategy LEARN88

takes a policy update step to learn how to sample better token sequences (aiming at Equation (1)).89

Algorithm 1 describes the training loop, which iterates between SAMPLE and LEARN until a termination90

condition is achieved (for example, a budget number of samples in f = 0 or a total wall-clock run91

time). During the course of training, we save the Hall of Fame (HoF), defined as the set of best92

samples (according to the best fidelity seen at the moment) found so far.93

Algorithm 1 Multi-Fidelity Deep Symbolic Optimization
Require: πθ: Policy network parameterized by θ; Ξ: set of available fidelities; nb: Size of the

batch; SAMPLE: method for defining which fidelity to use; LEARN: method for updating the policy
network.

1: HoF← ∅
2: initiate network parameters θ
3: while termination condition not achieved do
4: T ← πθ(nb) ▷ Generate samples
5: {fid(τ)} ← SAMPLE(T ,Ξ) ▷ Fidelity for each sample
6: for ∀τ ∈ T do
7: f ← min(fid(τ.r),fid(τ)) ▷ Define best fidelity
8: τ.r ← Rf (τ) ▷ Define reward according to chosen fidelity
9: end for

10: θ ← LEARN(θ, T ) ▷ Update Policy Network
11: HoF← hof_update(HoF, T )
12: end while
13: return HoF

4.1 Multi-fidelity Sampling94

The sampling algorithm is critical to a multi-fidelity problem, given that a high cost is spent every95

time a sample is evaluated in fidelity f = 0. Hereafter, let fid(·) denote the fidelity of the argument,96

and we use the “object.property“ notation τ.r to denote the highest fidelity reward of τ evaluated so97

far— e.g. fid(τ.r) is the highest fidelity of τ seen so far.98

Our proposed sampling method is called Elite-Pick sampling and is based on an elitism mechanism.99

Similar to Cutler et al. (2014), we follow the intuition that it is advantageous to sample in the100

highest fidelity only when we expect to have a high performance, so that computational budget is101

concentrated on promising solutions. Initially, all samples are initially evaluated in a low (non-zero)102

fidelity: τ.r = Rlow(τ). Thereafter, each SAMPLE step uses τ.r to calculate the empirical (1 − ρ)-103

quantile Qρ(T ), where ρ ∈ (0, 1) is a fixed threshold, and only the samples in the top quantile (i.e.,104

those with τ.r > Qρ) are evaluated in R0:105

SAMPLEρ =

{
0 if τ.r ≥ Qρ

low otherwise : τ ∈ T (5)
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When more than two fidelities are available, one may interpret low by randomly sampling from a106

mixture of the non-zero fidelities.107

4.2 Multi-fidelity Learning108

After each sample is assigned a fidelity, the learning algorithm uses T to update the policy network.109

We propose two learning algorithms that explictly account for the fact that T may contain a mixture110

of samples in different fidelities.111

Weighted Policy Gradient: This is a policy gradient algorithm where the highest fidelity f = 0112

receives weight γ and all other fidelities receive weight 1− γ, for γ ∈ (0, 1).113

JPG(θ) := E

γl(R0(T0)) +
f=fmax∑
f=1

1− γ

fmax − 1
l(Rf (Tf )

 (6)

l is a simple loss function, which we chose to be REINFORCE (Williams, 1992) in this work. This114

learning algorithm with elite-pick sampling is henceforth called PGEP. We also consider a variation115

of the algorithm where all fidelities have the same weight PGEP_u.116

Following PGEP, we introduce a more principled algorithm for this problem.117

Multi-Fidelity Risk-Seeking: Inspired by the risk-seeking policy gradient algorithm described in118

Section 2, we propose a multi-fidelity risk-seeking objective:119

Jϵ(θ) := Eθ

[
R0(τ) | τ.r ≥ Qm

ϵ

]
, (7)

where Qm
ϵ is the top (1− ϵ)-quantile of τ.r for τ ∈ T . Here, and in the following, we use superscript120

“m” to denote “mixture”, since Qm
ϵ is computed on a batch of samples whose τ.r may belong to121

different fidelities. Intuitively, we want to find a distribution such that the top ϵ fraction of samples122

(as evaluated using the best fidelity sampled so far) have maximum performance when evaluated123

using the highest fidelity reward R0. Crucially, note that (7) is well-defined at each iteration of the124

algorithm based on the fidelity of τ.r for each τ ∈ T , while the fidelities may improve after an125

iteration when a better fidelity is sampled. We can find a local maximum of (7) by stochastic gradient126

ascent along (9) in the following result, where the full proof is given in Appendix B.127

Proposition 1. Let random variable τ have distribution πθ, and let R0 and Rm be two func-128

tions of τ with induced distributions p0 and pm. Let Fm
θ denote the CDF of pm. Let Qm

ϵ (θ) =129

infτ∈Ω{Rm(τ) : Fm
θ (r) ≥ 1− ϵ} denote the (1− ϵ)-quantile of pm. The gradient of130

Jϵ(θ) := Eθ

[
R0(τ) | Rm(τ) ≥ Qm

ϵ (θ)
]

(8)

is given by131

∇θJϵ(θ) = Eθ

[
∇θ log πθ(τ)(R

0(τ)−R0(τϵ)) | Rm(τ) ≥ Qm
ϵ (θ)

]
(9)

where τϵ = arg inf{Rm(τ) : Fm
θ (r) ≥ 1− ϵ} is the sample that attains the quantile.132

We call Risk-Seeking learning allied with Elite-Pick sample generation as RSEP henceforth. We133

also consider a variation of the algorithm where, after sampling is applied, all the samples currently134

sampled in f = 0 are used to recalculate Q
fid(τ.r)=0
ϵ2 , filtering out samples with lower rewards than135

the ϵ2-quantile, which can further discard low-quality samples in f = 0. This means that additional136

samples might be discarded from the learning update based on their updated value of τ.r after the137

sampling process. We name this variation as RSEP_0.138

4.2.1 Theoretical Analysis of RSEP139

Since RSEP uses a mixture of low- and high-fidelity samples to compute the quantile for filtering140

(i.e. selecting τ : τ.r ≥ Qm
ϵ ), whereas one would use only Q0

ϵ if this were feasible, we would like141

to understand the probability of wrong exclusion: the probability that a sample would have passed142

the high-fidelity filter Q0
ϵ but was wrongly rejected by the low-fidelity filter Qm

ϵ . Assuming that the143

error between the highest fidelity and other fidelities can be modeled by a distribution, Proposition 2144

below, derived in Appendix B, states that the probability of wrong exclusion scales according to the145

cumulative distribution of the error as a function of the difference in quantiles.146
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Proposition 2. Let R0 and R1 be random variables related by error distribution N : R1 := R0 +N .147

Let Q0
ϵ and Q1

ϵ be the (1− ϵ)-quantiles of the distributions of R0 and R1, respectively. Then148

P (R0 ≥ Q0
ϵ , R

1 ≤ Q1
ϵ) = ϵE

[
FN (Q1

ϵ −R0) | R0 ≥ Q0
ϵ

]
(10)

where FN (r) is the CDF of the error distribution.149

From this, we can make two intuitive observations: 1) the smaller the ϵ used by the “true” high-fidelity150

risk-seeking objective, the smaller the probability of error; 2) The smaller the low-fidelity quantile151

Q1
ϵ , the more likely a sample is to pass the low-fidelity filter, and the smaller the probability of error.152

Furthermore, we show in the following that the RSEP algorithm eventually maximizes the same153

objective as the risk-seeking policy gradient. First, we need the following assumption:154

Assumption 1. One of the following holds:155

• Case 1: As part of the sampling method, we include a non-zero probability of sampling f = 0 for156

each trajectory τ regardless of its current τ.r.157

• Case 2: For all τ ∈ T , we have R0(τ) ≤ Rf (τ) for f ̸= 0.158

Case 2 arises in real-world scenarios where lower-resolution fidelities f ̸= 0 are overly optimistic—159

e.g., a robotics simulation that does not penalize actions that would cause real-world mechanical160

damage. Intuitively, this condition avoids the problematic scenario where a sample with high R0 was161

wrongly filtered out due to a bad lower-fidelity estimate.162

Proposition 3. Let Jrisk be the Risk-Seeking Policy Gradient objective:163

Jrisk(θ) := Eθ

[
R0(τ) | R0(τ) ≥ Q0

ϵ

]
(11)

and JRSEP be the RSEP objective (Equation 7). Given Assumption 1, optimizing for the RSEP164

objective, in the limit of infinite exploration, corresponds to optimizing for the risk-seeking objective.165

However, we expect that high-quality sequences will be found much quicker than when using a single166

fidelity, which will be shown in the empirical evaluation.167

5 Empirical Evaluation168

We empirically evaluate our methods for MF-DSO in two real-world problems, Symbolic Regression169

and Antibody Optimization. While both domains are of practical importance, the former provides170

well-defined benchmarks and experiments can be performed quickly, while the latter represents a171

challenging domain where freely sampling in the highest fidelity is infeasible.172

5.1 Symbolic Regression173

Symbolic regression is the problem of searching over a space of tractable (i.e. concise, closed-form)174

mathematical expressions that best fit a set of observations. This can be used, for example, to175

discover equations that explain physical phenomena. Specifically, given a dataset (X,y), where176

each observation Xi ∈ Rn is related to a target value yi ∈ R for i = 1, . . . ,m, symbolic regression177

aims to identify a function f : Rn → R, in the form of a short mathematical expression, that best178

fits the dataset according to a measure such as mean squared error. Symbolic regression is useful for179

our preliminary evaluation of multi-fidelity symbolic optimization methods because: (i) challenging180

benchmarks (White et al., 2013) and strong baseline methods (Schmidt and Lipson, 2009) are well-181

established ; (ii) success criteria is clearly defined in problems with ground-truth expressions; and182

(iii) computing the quality of candidate expressions is easy, allowing repeated experiments to achieve183

statistically significant results.184

We leverage the Nguyen symbolic regression benchmark suite (Uy et al., 2011), a set of 12 commonly185

used expressions developed and vetted by the symbolic regression community (White et al., 2013).186

We use the ground truth expression to generate training and test data, and we define the highest187

fidelity reward for a candidate function fτ—represented by a token sequence τ that is the pre-order188

traversal of the expression tree of the function—based on its error from the targets y: R0(τ,X) =189

1−
√

1
m

∑m
i=1(fτ (Xi)− yi)2. We define lower-fidelity rewards using (X,y) as follows.190
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1. Ξ1: We add white noise to the targets y, so that the rewards are calculated using (X,y + ϵ).191

2. Ξ2: We train a simple Gaussian Process Regressor m on the data, and use m(X) instead of y.192

This simulates a common situation where a surrogate model is trained in real-world data to provide193

a faster and cheaper low-fidelity estimator.194

We show results for Nguyen 4-6, 9, 10, and 12 for all experiments in the main text of the paper.195

Those benchmarks were chosen because they represent the main trend of the results for both middle-196

and high-difficulty ground truth equations. The results for all 12 benchmarks, as well as the full197

description of their ground truth equations, are shown in the supplemental material.198

5.1.1 Baseline Multi-Fidelity Performance199

This series of experiments aim to answer the question “Is it useful to use multi-fidelity samples?”; and200

to assess the performance of simple multi-fidelity strategies. The following baselines are considered:201

• Upper bound: Only uses Ξ0. Given unlimited samples, this baseline should be the top performer.202

However, we are here interested in the scenario in which samples from the highest fidelity are203

limited.204

• Lower bound: Only uses Ξ1 and Ξ2. This baseline shows the agent performance in the lower205

fidelities when the real world is not available.206

• Sequential: This is a transfer learning approach, whereby learning is carried out in Ξ1 and Ξ2 for207

a number of iterations, before switching to solely using Ξ0 until termination.208

• Shuffled: This baseline randomly samples from different fidelities according to a fixed probability.209

The highest fidelity is set to around 9% of probability to be sampled from.210

Figure 1 shows the best sample found per number of explored samples in f = 0. Although those211

graphs cannot be interpreted alone2, they present a gross estimation of the learning speed of each212

algorithm. Table 1 shows the average quality of the hall of fame after training, providing the213

extra information we needed to assess the performance. As expected, lower bound shows that214

sampling only from the lowest fidelity produces solutions that perform poorly in the highest fidelity.215

Although shuffled sometimes achieves high-performing samples (e.g., on Nguyen-6), the mixture216

of fidelities produces inconsistent reward signal for the same sample, which results in low avg217

metric overall in most of the benchmarks. Despite the poor performance from those aforementioned218

baselines, sequential reveals the the benefit of using lower fidelities to bootstrap learning, as it219

consistently achieves better performance than upper bound with the same budget of samples from220

f = 0 (evidenced in both Figure 1 and Table 1). Having established the advantage of using multiple221

fidelities, our next experiment will show that MF-DSO outperforms the baselines.222

Table 1: The results represent the best (max) and the average (avg) quality of samples in the hall of
fame by the end of the training process. Averages across 150 repetitions.

Lower bound Upper bound Shuffled Sequential

Benchmark Max Avg Max Avg Max Avg Max Avg

Nguyen-4 0.884 0.703 0.890 0.788 0.923 0.786 0.925 0.846
Nguyen-5 0.530 0.257 0.705 0.511 0.728 0.505 0.754 0.563
Nguyen-6 0.800 0.578 0.918 0.820 0.966 0.839 0.969 0.859
Nguyen-9 0.396 0.300 0.832 0.702 0.875 0.720 0.889 0.761
Nguyen-10 0.498 0.355 0.851 0.726 0.872 0.712 0.883 0.744
Nguyen-12 0.526 0.366 0.706 0.561 0.758 0.505 0.777 0.621

5.2 Symbolic Regression Evaluation223

We evaluate the performance of all MF-DSO methods proposed above: RSEP, RSEP_0, PGEP, and224

PGEP_u; as well as the best performing baseline method sequential. Figure 2 and Table 2 show225

2A good sample found by the algorithm is not necessarily stored in the hall of fame. If a sample is
overestimated in another fidelity, the best sample so far might be discarded depending on the algorithm used
(this happens, e.g., with shuffled)
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Figure 1: Average reward of best sample found so far during training (x-axis is the amount of samples
from Ξ0) across 150 repetitions. Nguyen 4-6, 9, 10, 12 are depicted from left to right, top to bottom.
Curves are polynomial interpolation of each experiment curve for ease of visualization.

the results for all benchmarks. For both the max and avg metrics, RSEP outperformed all other226

algorithms in, respectively, 4 and 2 of the benchmarks, which clearly makes it the best performing227

algorithm in this experiment. RSEP_0, a variant of the same algorithm, ranked best of all algorithms228

in 1 and 2 of benchmarks for each of the metrics. Finally, PGEP_u ranked best 1 and 2 times in the229

metrics. Notably, the best baseline method (sequential) was not able to outperform the multi-fidelity-230

specific algorithms in any of the metrics or benchmarks. We conclude from this experiment that the231

proposed algorithms provide significant gains in multi-fidelity environments, and the overall strong232

performance of RSEP and PGEP_u motivates us to use them in the more computationally expensive233

experiments in the next section.234

Figure 2: Average reward of best sample found so far during training (x-axis is the amount of samples
from Ξ0) across 150 repetitions. Nguyen 4-6, 9, 10, and 12 are depicted from left to right.

5.3 Antibody Optimization235

Antibodies are proteins—sequences of amino acids with target-specific complementarity determining236

regions (CDRs) (Wu and Kabat, 1970)—that serve as the human immune system’s primary line237

of defense by binding to, and neutralizing, harmful antigens (e.g., a virus or bacteria). They can238

be manufactured and directly administered to patients (Carter, 2006), but the design of efficacious239

antibodies (Norman et al., 2020) is still a challenge as the set of 20 canonical amino acids define a240

search space of 20L, where L is the number of sequence positions to be optimized. Exhaustively241
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Table 2: The results represent the best (max) and the average (avg) quality of samples in the hall of
fame by the end of the training process. Averages across 150 repetitions. Best results for each metric
are highlighted in bold.

Sequential PGEP PGEP_u RSEP RSEP_0

Benchmark Max Avg Max Avg Max Avg Max Avg Max Avg

Nguyen-4 0.925 0.846 0.946 0.894 0.956 0.921 0.985 0.947 0.991 0.961
Nguyen-5 0.754 0.563 0.832 0.668 0.913 0.761 0.966 0.801 0.960 0.823
Nguyen-6 0.969 0.859 0.983 0.944 0.999 0.981 1.000 0.965 0.999 0.942
Nguyen-9 0.889 0.761 0.941 0.838 0.972 0.849 0.973 0.858 0.968 0.844
Nguyen-10 0.883 0.744 0.925 0.858 0.971 0.901 0.927 0.862 0.908 0.819
Nguyen-12 0.777 0.621 0.786 0.691 0.796 0.762 0.792 0.776 0.795 0.772

searching this space is infeasible due to the high cost of performing wet lab experimentation of242

antibodies, or even the high computational cost of running simulations. We follow a rapid response243

approach. We start with an existing parental antibody that is effective against a known antigen (e.g.244

SARS-CoV-1) in the same viral family as the target (e.g., SARS-CoV-2) , but which does not bind245

effectively to the new target. Given that both antigens are related, the symbolic optimization problem246

is to construct a set of multi-point mutations in the CDR of the existing antibody to improve binding to247

the new target, rather than randomly exploring the space of possible antibodies. For the experiments248

in this paper we have chosen the BQ.1.1 Omicron variant of the SARS-CoV-2 virus to be our target249

(Hefnawy et al., 2023).250

We define reward functions with two fidelities using the opposite of the ddG3 computed, in silico,251

using the Rosetta Flex (Barlow et al., 2018) simulation of antibody-antigen interactions.252

• Ξ0: The highest fidelity reward R0 uses a Rosetta Flex simulation of the full multi-point mutation253

to compute an accurate binding score. In this way, Rosetta Flex utilizes samples of protein254

conformation to generate an ensemble of structures and averages their constituent ddG values.255

Although this provides a good estimation the reward, computing a single reward value in this way256

takes approximately 15 hours of a CPU on our high-performance computing platform described257

below.258

• Ξ1: For a quick estimation of our ddG rewards, before starting the learning process, we run a single259

Rosetta Flex simulation for every single possible individual mutation in the interface between the260

parental antibody and antigen4. After we have an estimate ddG for each possible single-point261

mutation, we estimate the ddG for our candidate antibody as the sum of all single-point mutation262

differences. This measure is correlated to R0 but not as precise, as we show in Appendix D.263

Given the long time needed to run experiments in this domain, we leverage the results from the264

Symbolic Regression experiments to down-select algorithms for the evaluation in this domain. We265

evaluate: (i) Upper Bound: training only on Ξ0; (ii) Sequential: training on Ξ1 for a long time then266

switching to Ξ0; (iii) RSEP; and (iv) PGEP, the top-performing algorithms from each category in267

the last section. Each algorithm was given the same budget of 250 hours to run the experiment, where268

all algorithms were executed in parallel with 72 Intel Xeon E5-2695 v2 CPUs each. As running full269

Rosetta simulations is significantly slower than any other operation, this results in an approximately270

equivalent high-fidelity budget for all algorithms.271

5.4 Antibody Optimization Evaluation272

The results for the antibody optimization domain are shown in Table 3 and Figure 3. For this domain,273

it is more important to have a set of promising antibodies than a single one because other aspects274

apart from the binding score (such as stability, safety, and manufacturability) have to be taken into275

account when the antibodies are evaluated in the wet lab. Hence having a set of candidate antibodies276

increase the probability of finding a candidate good in all properties and thus the figure (right) show277

3ddG, or ∆∆G, is the change in Gibbs free energy upon mutation. A lower value mean that the new antibody
binds to the target better than the parental antibody.

4Notice that this requires running a simulation only for the 20 possible amino acids for every possible position,
which is a much smaller space than the combinatorial space of multiple simultaneous mutations required for Ξ0.
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Figure 3: Best ddG found (left) and average of the ddG in the hall of fame (right) so far during
training. Lower ddG is better.

the average ddG between the 10 best antibodies during training. The results for this domain are278

slightly different from our initial results from the symbolic regression domain. Although upper bound279

initiates with a much worse initial batch of samples, it quickly overtakes Sequential, finishing almost280

tied up with thus baseline. This trend, that is different from what was observed in the first evaluation281

domain, shows that those algorithms were more deeply affected by the difference in fidelities than282

in the symbolic regression domain where we fabricated noise. This makes sense given Sequential283

was trained initially in the low fidelity and can suffer from negative transfer. On the other hand, our284

multifidelity-aware algorithms PGEP and RSEP outperformed the baselines by a large margin since285

the first batch (more visible in the right figure), showing the flexibility and power of our algorithms.286

The table clearly shows that RSEP outperforms the other algorithms in both metrics, improving the287

average significantly over the baselines and PGEP. Those empirical results are very encouraging for288

our multifidelity algorithms, showing in a very complex and relevant application that it is worthy to289

explicitly reason over multiple fidelities in symbolic optimization tasks.

Table 3: Best and Average ddG score for the antibodies in the hall of fame at the end of the training
process. Best results are in bold.

Alg Best Avg

Upper Bound -4.38 -3.46
Sequential -4.64 -3.59
RSEP -5.96 -5.31
PGEP -5.72 -4.48

290

6 Conclusion and Further Work291

Although many applications are naturally modeled as multi-fidelity problems, the literature has292

predominantly coped with those environment in an ad-hoc manner. Those problems are either293

modeled as Transfer Learning problems or as a simulation-optimization problem where the low-294

fidelity environment is iteratively refined but the learning algorithm is unaware of the multiple295

fidelities. We propose to explicitly reason over the multiple fidelities and leverage lower fidelity296

estimates to bias the sampling in the higher, more expensive, fidelity. We contribute the description297

of Multi-Fidelity MDPs (MF-MDPs), defining a new challenge to the community. We also contribute298

two families of algorithms for MF-MDPs specialized for SO problems: RSEP and PGEP. Moreover,299

we perform an empirical evaluation in the Symbolic Regression and Antibody Optimization domains,300

showing that MF-MDP-based algorithms outperform baseline strategies in both domains. The301

conclusion of our experimentation is that RSEP is the best performing algorithm overall and should302

be the first choice, but since PGEP was the best performer in some of the symbolic regression303

benchmarks, it is worthy to also evaluate it in cases where this is feasible. Further work includes304

explicitly reasoning over the cost of sampling from each fidelity, instead of assuming that samples305

are free from all lower fidelities as we do in this paper. Another avenue is proposing algorithms that306

work for a broader class of MF-MDPs, solving more applications of interest, including sim2real RL307

domains.308

9



References309

Pieter Abbeel, Morgan Quigley, and Andrew Y Ng. 2006. Using inaccurate models in reinforcement310

learning. In Proceedings of the 23rd international conference on Machine learning. 1–8.311

Roland Can Aydin, Fabian Albert Braeu, and Christian Johannes Cyron. 2019. General multi-fidelity312

framework for training artificial neural networks with computational models. Frontiers in Materials313

6 (2019), 61.314

Kyle A Barlow, Shane Ó Conchúir, Samuel Thompson, Pooja Suresh, James E Lucas, Markus315

Heinonen, and Tanja Kortemme. 2018. Flex ddG: Rosetta ensemble-based estimation of changes316

in protein–protein binding affinity upon mutation. The Journal of Physical Chemistry B 122, 21317

(2018), 5389–5399.318

Philip S. Beran, Dean Bryson, Andrew S. Thelen, Matteo Diez, and Andrea Serani. 2020. Comparison319

of Multi-Fidelity Approaches for Military Vehicle Design. https://doi.org/10.2514/6.320

2020-3158 arXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.2020-3158321

Paul J Carter. 2006. Potent antibody therapeutics by design. Nature reviews immunology 6, 5 (2006),322

343–357.323

Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua Tobin, Pieter324

Abbeel, and Wojciech Zaremba. 2016. Transfer from simulation to real world through learning325

deep inverse dynamics model. arXiv preprint arXiv:1610.03518 (2016).326

Mark Cutler, Thomas J Walsh, and Jonathan P How. 2014. Reinforcement learning with multi-fidelity327

simulators. In 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE,328

3888–3895.329

Florian Golemo, Adrien Ali Taiga, Aaron Courville, and Pierre-Yves Oudeyer. 2018. Sim-to-real330

transfer with neural-augmented robot simulation. In Conference on Robot Learning. PMLR,331

817–828.332

Josiah P Hanna, Siddharth Desai, Haresh Karnan, Garrett Warnell, and Peter Stone. 2021. Grounded333

action transformation for sim-to-real reinforcement learning. Machine Learning 110, 9 (2021),334

2469–2499.335

Josiah P Hanna and Peter Stone. 2017. Grounded action transformation for robot learning in336

simulation. In Thirty-first AAAI conference on artificial intelligence.337

Mahmoud T Hefnawy, Nour Shaheen, Omar A Abdelwahab, Rehab A Diab, Nishant P Soni, Rababah338

Ala’A, Youssef Soliman, Muhannad Wael, Almoatazbellah Attalla, and Mostafa Meshref. 2023.339

Could the Omicron BQ. 1 sub-variant threaten to reverse the worldwide decline in COVID cases?340

IJS Global Health 6, 1 (2023), e106.341

Luca Iocchi, Fabio D Libera, and Emanuele Menegatti. 2007. Learning humanoid soccer actions342

interleaving simulated and real data. In Second Workshop on Humanoid Soccer Robots.343

Sami Khairy and Prasanna Balaprakash. 2022. Multifidelity reinforcement learning with control344

variates. arXiv preprint arXiv:2206.05165 (2022).345

Emanuel Kitzelmann. 2009. Inductive programming: A survey of program synthesis techniques. In346

Workshop on Approaches and Applications of Inductive Programming. 50–73.347

Jens Kober, J. Andrew Bagnell, and Jan Peters. 2013. Reinforcement Learning in Robotics:348

A Survey. Int. J. Rob. Res. 32, 11 (sep 2013), 1238–1274. https://doi.org/10.1177/349

0278364913495721350

Michael Kommenda, William La Cava, Maimuna Majumder, Fabricio Olivetti de Franca,351

and Marco Virgolin. 2022. SRBench Competition. https://cavalab.org/srbench/352

competition-2022/.353

Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago, Ruben Glatt, Nathan354

Mundhenk, Jacob F Pettit, and Daniel Faissol. 2021. Discovering symbolic policies with deep355

reinforcement learning. In International Conference on Machine Learning. PMLR, 5979–5989.356

10

https://doi.org/10.2514/6.2020-3158
https://doi.org/10.2514/6.2020-3158
https://doi.org/10.2514/6.2020-3158
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://cavalab.org/srbench/competition-2022/
https://cavalab.org/srbench/competition-2022/
https://cavalab.org/srbench/competition-2022/


Qiang Lu, Jun Ren, and Zhiguang Wang. 2016. Using genetic programming with prior formula357

knowledge to solve symbolic regression problem. Computational intelligence and neuroscience358

2016 (2016).359

Patrick MacAlpine and Peter Stone. 2018. Overlapping layered learning. Artificial Intelligence 254360

(2018), 21–43.361

Richard A Norman, Francesco Ambrosetti, Alexandre MJJ Bonvin, Lucy J Colwell, Sebastian362

Kelm, Sandeep Kumar, and Konrad Krawczyk. 2020. Computational approaches to therapeutic363

antibody design: established methods and emerging trends. Briefings in bioinformatics 21, 5364

(2020), 1549–1567.365

Benjamin Peherstorfer, Karen Willcox, and Max Gunzburger. 2018. Survey of multifidelity methods366

in uncertainty propagation, inference, and optimization. Siam Review 60, 3 (2018), 550–591.367

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and368

Joanne T Kim. 2021. Deep symbolic regression: Recovering mathematical expressions from369

data via risk-seeking policy gradients. Proceeding of the International Conference on Learning370

Representations (ICLR) (2021).371

Theresa Robinson, Karen Willcox, Michael Eldred, and Robert Haimes. 2006. Multifidelity op-372

timization for variable-complexity design. In 11th AIAA/ISSMO multidisciplinary analysis and373

optimization conference. 7114.374

Michael Schmidt and Hod Lipson. 2009. Distilling free-form natural laws from experimental data.375

science 324, 5923 (2009), 81–85.376

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. 2015. Trust377

region policy optimization. In International conference on machine learning. PMLR, 1889–1897.378

Felipe Leno da Silva and Anna Helena Reali Costa. 2019. A survey on transfer learning for multiagent379

reinforcement learning systems. Journal of Artificial Intelligence Research 64 (2019), 645–703.380

Felipe Leno da Silva, Andre Goncalves, Sam Nguyen, Denis Vashchenko, Ruben Glatt, Thomas381

Desautels, Mikel Landajuela, Brenden Petersen, and Daniel Faissol. 2022. Leveraging Language382

Models to Efficiently Learn Symbolic Optimization Solutions. In Adaptive and Learning Agents383

(ALA) Workshop at AAMAS.384

Aviv Tamar, Yonatan Glassner, and Shie Mannor. 2014. Policy gradients beyond expectations:385

Conditional value-at-risk. arXiv preprint arXiv:1404.3862 (2014).386

Ilya Trofimov, Nikita Klyuchnikov, Mikhail Salnikov, Alexander Filippov, and Evgeny Burnaev.387

2020. Multi-fidelity neural architecture search with knowledge distillation. arXiv preprint388

arXiv:2006.08341 (2020).389

Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, Robert I McKay, and Edgar Galván-López.390

2011. Semantically-based crossover in genetic programming: application to real-valued symbolic391

regression. Genetic Programming and Evolvable Machines 12, 2 (2011), 91–119.392

David R White, James Mcdermott, Mauro Castelli, Luca Manzoni, Brian W Goldman, Gabriel393
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A Additional Related Works408

Although MF-MDPs have not been formally described before, multi-fidelity rewards have already409

been explored in the literature (Beran et al., 2020; Peherstorfer et al., 2018). Even though the agent410

end goal is to optimize performance in the fidelity 0, a group of works propose ways to iteratively411

finetune lower-fidelity surrogate models to make them more realistic and enable training directly in412

the lower, cheaper to sample from, fidelity. A common way to handle the multiple fidelities is either413

through modifying lower-fidelity transition (Hanna et al., 2021; Christiano et al., 2016; Golemo et al.,414

2018; Abbeel et al., 2006) or reward (Iocchi et al., 2007) functions, by learning a correction factor that415

approximates them to the highest fidelity function. We, on the other hand, focus on explicitly using416

both lower and higher-fidelity estimates to learn, instead of fine tuning the lower fidelity models.417

The multi-fidelity problem has been explored in an ad hoc manner as a Transfer Learning problem418

(Silva and Costa, 2019), where the lower fidelity is solved, and the solution is somehow reused to419

learn in the highest fidelity (Aydin et al., 2019). This approach is mimicked by our sequential baseline420

and, as shown in our experiments, is not as effective and explicitly reasoning over the multiple421

fidelities during learning.422

Some Neural Architecture Search works considered this application as a multi-fidelity problem423

(Trofimov et al., 2020; Yang et al., 2022), because each candidate architecture can be evaluated for an424

arbitrarily number of training iterations, resulting in an as higher fidelity reward as longer you train425

the model. However, the key distinction from our method is that, in their modeling, for evaluating a426

sample in a given fidelity, the rewards for all lower fidelities must be computed, which is not the case427

in our modeling and applications.428

Perhaps most similar to our paper are the works from Khairy and Balaprakash (2022) and Cutler429

et al. (2014). In the former, they consider that the state space of the low-fidelity environment is an430

abstracted version of the high-fidelity one (and therefore smaller). We instead assume that the state431

space is the same and the lower fidelity simply uses a cheaper approximate way of calculating the432

reward. In the latter, the authors assume that the agent can estimate its epistemic uncertainty and only433

queries the high fidelity when the uncertainty is low, so as to avoid exploring low-quality samples in434

the high fidelity. While our method similarly try to bias the evaluations in the highest fidelity towards435

high-performing samples, we do not require uncertainty calculation, which might be difficult to do.436

Outside of the RL/SO communities, several works constrain optimization within a trust-region when437

using lower-fidelity estimates (Robinson et al., 2006). While those methods are not directly-usable438

in RL or SO problems, it might inspire TRPO-like (Schulman et al., 2015) methods using our439

formulation.440

B Proofs441

Proposition 1. Let random variable τ have distribution πθ, and let R0 and Rm be two func-442

tions of τ with induced distributions p0 and pm. Let Fm
θ denote the CDF of pm. Let Qm

ϵ (θ) =443

infτ∈Ω{Rm(τ) : Fm
θ (r) ≥ 1− ϵ} denote the (1− ϵ)-quantile of pm. The gradient of444

Jϵ(θ) := Eθ

[
R0(τ) | Rm(τ) ≥ Qm

ϵ (θ)
]

(8)

is given by445

∇θJϵ(θ) = Eθ

[
∇θ log πθ(τ)(R

0(τ)−R0(τϵ)) | Rm(τ) ≥ Qm
ϵ (θ)

]
(9)

where τϵ = arg inf{Rm(τ) : Fm
θ (r) ≥ 1− ϵ} is the sample that attains the quantile.446

Proof. First, we provide an elementary proof for the case where τ is a scalar random variable, then447

we provide a proof for the multi-dimensional case.448

Single-dimensional case. Define the set of samples for which the mixture reward exceeds the 1− ϵ449

quantile:450

Dθ := {τ ∈ Ω: Rm(τ) ≥ Qm
ϵ (θ)} (12)
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We expand the definition of the objective:451

Jϵ(θ) =

∫
Ω

R0(τ)fθ,Rm(τ)≥Qm
ϵ (θ)(τ)dτ (13)

=

∫
Ω

R0(τ)
fθ(τ,R

m(τ) ≥ Qm
ϵ (θ))

fθ(Rm(τ) ≥ Qm
ϵ (θ))

dτ (14)

=
1

ϵ

∫
Ω

R0(τ)fθ(τ,R
m(τ) ≥ Qm

ϵ (θ))dτ (15)

=
1

ϵ

∫
τ∈Dθ

R0(τ)πθ(τ)dτ (16)

Assuming sufficient continuity of the reward, policy, and quantile as a function of parameter θ, we452

can apply the Leibniz integral rule to differentiate under the integral sign. Differentiating both sides453

of454

ϵ =

∫
τ∈Dθ

πθ(τ)dτ , (17)

and letting b denote the upper bound of the reward, we have455

0 = ∇θ

∫
τ∈Dθ

πθ(τ)dτ (18)

= ∇θ

∫ b

Rm(τϵ(θ))

pmθ (r)dr (19)

= −pmθ (Rm(τϵ))∇θR
m(τϵ(θ)) +

∫ b

Rm(τϵ(θ))

∇θp
m
θ (r)dr (20)

Let τr denote the sample that satisfies Rm(τ) = r. Note in particular that Rm(τRm(τϵ)) = Rm(τϵ),456

so that τRm(τϵ) = τϵ. Using this fact and applying the Leibniz integral rule to the objective (16), we457

have458

∇θJϵ(θ) = ∇θ
1

ϵ

∫ b

Rm(τϵ(θ))

R0(τr)p
m
θ (r)dr (21)

= −1

ϵ
R0(τϵ(θ))p

m
θ (Rm(τϵ(θ)))∇θR

m(τϵ(θ)) (22)

+
1

ϵ

∫ b

Rm(τϵ(θ))

R0(τr)∇θp
m
θ (r)dr

Substituting eq. (20) into eq. (22), we get459

∇θJϵ(θ) = −
1

ϵ
R0(τϵ(θ))

∫ b

Rm(τϵ(θ))

∇θp
m
θ (r)dr (23)

+
1

ϵ

∫ b

Rm(τϵ(θ))

R0(τr)∇θp
m
θ (r)dr

=
1

ϵ

∫ b

Rm(τϵ(θ))

∇θp
m
θ (r)

(
R0(τr)−R0(τϵ(θ))

)
dr (24)

=
1

ϵ

∫
τ∈Dθ

∇θπθ(τ)
(
R0(τr)−R0(τϵ(θ))

)
dτ (25)

= Eπθ

[
∇θ log πθ(τ)(R

0(τ)−R0(τϵ(θ))) | Rm(τ) ≥ Qm
ϵ (θ)

]
(26)

The second-to-last step implicitly uses the change-of-variables formula pmθ (r) =460

πθ(f(r))|detDf(r)|, where f : R 7→ Ω is the inverse function that maps rewards to τ , and461

the fact that the determinant of Jacobian does not depend on θ.462

Multi-dimensional case. For the case where τ is an n-dimensional random variable, we adapt the463

proof of Tamar et al. (2014, Proposition 2), except for two differences: 1) the reward R0 being464
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optimized is different from the reward Rm used in the conditional expectation; 2) we condition on465

the outcomes within the top ϵ quantile, i.e. Rm(τ) ≥ Qm
ϵ (θ), rather than the outcomes below the466

ϵ-Value-at-Risk which would be Rm(τ) ≥ Qm
ϵ (θ). We use the same assumptions as Tamar et al.467

(2014, Assumptions 4 and 5)468

Define the set Dθ := {τ : Rm(τ) ≥ Qm
ϵ (θ)}, which decomposes into Lθ components Dθ =469 ∑Lθ

i=1 D
i
θ (Tamar et al., 2014, Assumption 4). Let v denote the vector field of ∂τ

∂θ at each point of470

Dθ. Let ω := πθ(τ)R
0(τ)dτ and ω̃ := πθ(τ)dτ .471

For every τ ∈ ∂Di
θ, we have either (a) Rm(τ) = Qm

ϵ (θ) or (b) Rm(τ) > Qm
ϵ (θ). Let ∂Di,a

θ and472

∂Di,b
θ be the subset of τ corresponding to cases (a) and (b), respectively. By the same reasoning in473

Tamar et al. (2014), we have474 ∫
∂Di,b

θ

v⌟ω = 0 . (27)

By definition of Dθ, we have475

ϵ =

∫
Dθ

ω̃ . (28)

Taking the derivative, and using eq. (27), we have476

0 =

Lθ∑
i=1

(∫
∂Di,a

θ

v⌟ω̃ +

∫
Di

θ

∂ω̃

∂θ

)
. (29)

In the boundary case τ ∈ ∂Di,a
θ , τ satisfies Rm(τ) = Qm

ϵ (θ), so we can denote it by τϵ as defined477

above. By definition of ω and linearity of the interior product, we have478 ∫
∂Di,a

θ

v⌟ω = R0(τϵ)(θ)

∫
∂Di,a

θ

v⌟ω̃ . (30)

Plugging eq. (29) into eq. (30), we get479

Lθ∑
i=1

∫
∂Di,a

θ

v⌟ω = −R0(τϵ)

Lθ∑
i=1

∫
Di

θ

∂ω̃

∂θ
. (31)

Our objective eq. (8) can be written as480

Jϵ(θ) = Eθ

[
R0(τ) | Rm(τ) ≥ Qm

ϵ (θ)
]

(32)

=

∫
τ∈Ω

R0(τ)πτ |Rm(τ)≥Qm
ϵ (θ)(τ)dτ (33)

=
1

ϵ

∫
τ∈Ω

R0(τ)πθ(τ,R
m(τ) ≥ Qm

ϵ (θ))dτ (34)

=
1

ϵ

∫
Dθ

πθ(τ)R
0(τ)dτ (35)

=
1

ϵ

Lθ∑
i=1

∫
Di

θ

πθ(τ)R
0(τ)dτ . (36)

Its gradient is481

∇θJϵ(θ) =
1

ϵ

Lθ∑
i=1

∇θ

∫
Di

θ

πθ(τ)R
0(τ)dτ . (37)

By the Leibniz rule, we have482

∇θ

∫
Di

θ

πθ(τ)R
0(τ)dτ =

∫
∂Di

θ

v⌟ω +

∫
Di

θ

∂ω

∂θ
(38)

=

∫
∂Di,a

θ

v⌟ω +

∫
Di

θ

∂ω

∂θ
, (39)
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where the last equality follows from eq. (27). Using eq. (31) and eq. (39) in eq. (37), we get483

∇θJϵ(θ) =
1

ϵ

Lθ∑
i=1

(∫
Di

θ

∂ω

∂θ
−R0(τϵ)

∫
Di

θ

∂ω̃

∂θ

)
(40)

=
1

ϵ

∫
Dθ

∇θπθ(τ)
(
R0(τ)−R0(τϵ)

)
dτ (41)

= Eπθ

[
∇θ log πθ(τ)

(
R0(τ)−R0(τϵ)

)
| Rm(τ) ≥ Qm

ϵ (θ)
]

(42)

484

Proposition 2. Let R0 and R1 be random variables related by error distribution N : R1 := R0 +N .485

Let Q0
ϵ and Q1

ϵ be the (1− ϵ)-quantiles of the distributions of R0 and R1, respectively. Then486

P (R0 ≥ Q0
ϵ , R

1 ≤ Q1
ϵ) = ϵE

[
FN (Q1

ϵ −R0) | R0 ≥ Q0
ϵ

]
(10)

where FN (r) is the CDF of the error distribution.487

Proof.

P (R0 ≥ Q0
ϵ ∧R1 ≤ Q1

ϵ) (43)

= P (R0 ≥ Q0
ϵ ∧R0 +N ≤ Q1

ϵ) (44)

=

∫
r≥Q0

ϵ

P (R0 = r,N ≤ Q1
ϵ − r)dr (45)

=

∫
r≥Q0

ϵ

P (R0 = r)P (N ≤ Q1
ϵ − r)dr (46)

=

∫
r≥Q0

ϵ

P (R0 = r)FN (Q1
ϵ − r)dr (47)

= ϵ

∫
r≥Q0

ϵ

P (R0 = r)

P (R0 ≥ Q0
ϵ)
FN (Q1

ϵ − r)dr (48)

= ϵ

∫
r

P (R0 = r,R0 ≥ Q0
ϵ)

P (R0 ≥ Q0
ϵ)

FN (Q1
ϵ − r)dr (49)

= ϵE
[
FN (Q1

ϵ −R0) | R0 ≥ Q0
ϵ

]
(50)

488

Proposition 3. Let Jrisk be the Risk-Seeking Policy Gradient objective:489

Jrisk(θ) := Eθ

[
R0(τ) | R0(τ) ≥ Q0

ϵ

]
(11)

and JRSEP be the RSEP objective (Equation 7). Given Assumption 1, optimizing for the RSEP490

objective, in the limit of infinite exploration, corresponds to optimizing for the risk-seeking objective.491

Proof. We show that for both cases of Assumption 1, we have τ.r = R0(τ) and Qm
ϵ = Q0

ϵ in the492

limit.493

For Case 1: Since all sequences have a non-zero probability of being evaluated in R0 regardless494

of their reward values in the lowest fidelities, in the limit of infinite exploration we have that495

∀τ, τ.r = R0(τ) and Qm
ϵ = Q0

ϵ . This holds because, eventually, all samples will be evaluated496

in f = 0 regardless of their reward values due to the random sampling component, permanently497

replacing τ.r with R0 values.498

For Case 2: We show that RSEP will eventually only train on samples τ that satisfy R0(τ) ≥ Q0
ϵ .499

First, by Assumption 1, for any fixed batch of samples, we have the inequality among the empirical500

quantiles:501

Q0
ϵ ≤ Qm

ϵ . (51)

Now we enumerate all cases that may arise during the evaluation of (9).502
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1. R0(τ) < Q0
ϵ and τ.r ≥ Qm

ϵ . This means it mistakenly passes the multi-fidelity risk-seeking filter.503

However, due to passing the filter, we will have τ.r = R0(τ) subsequently. This means that this504

sample will never pass the filter on subsequent evaluations of the same batch because R0(τ) < Q0
ϵ505

and (51).506

2. R0(τ) ≥ Q0
ϵ and τ.r ≥ Qm

ϵ . This case is correct since τ is supposed to contribute to the gradient507

and it does so by passing the filter. Also note that we will have τ.r = R0(τ) after the gradient508

computation.509

3. R0(τ) < Q0
ϵ and τ.r < Qm

ϵ . This case poses no issue since τ is not supposed to contribute to the510

gradient and it does not do so due to failing to pass the filter.511

4. R0(τ) ≥ Q0
ϵ and τ.r < Qm

ϵ . If this case persists across training, then τ will never be used in512

the gradient computations even though it should. So we need to show that this case eventually513

stops arising. This case occurs only if there exists another τ ′ that is wrongly accepted into the514

quantile: i.e., R0(τ ′) < Q0
ϵ and τ ′.r = Rf ̸=0(τ ′) ≥ Qm

ϵ , which is case (1) above. However,515

we have shown that scenario (1) eventually does not arise, which guarantees that this scenario516

eventually does not arise.517

Therefore, only scenario that persist are scenarios (2) and (3), which are correct. Performing a simple518

substitution in Equation 7:519

lim
training

JRSEP = Eθ

[
R0(τ) | R0(τ) ≥ Q0

ϵ

]
= Jrisk (52)

Therefore, by learning using RSEP we are, in the limit, optimizing for the risk-seeking policy gradient520

objective.521

C Full Empirical Results in Symbolic Regression522

Table 4 and Figure 4 depict the results for all benchmarks in our baseline comparison experiment.523

Qualitatively, the results are the same as the ones shown in the main text. Sequential very clearly524

outperforms the other baselines by rankings as the best algorithm in 11 and 10 of the benchmarks in525

max and avg metrics, respectively.526

Table 4: The results represent the best (max) and the average (avg) quality of samples in the hall of
fame by the end of the training process. Averages across 150 repetitions. Best results for each metric
are highlighted in bold.

Lower bound Upper bound Shuffled Sequential

Benchmark Max Avg Max Avg Max Avg Max Avg

Nguyen-1 0.773 0.555 0.932 0.828 0.985 0.855 0.989 0.881
Nguyen-2 0.844 0.596 0.901 0.815 0.927 0.774 0.945 0.836
Nguyen-3 0.881 0.681 0.903 0.792 0.926 0.786 0.934 0.838
Nguyen-4 0.884 0.703 0.890 0.788 0.923 0.786 0.925 0.846
Nguyen-5 0.530 0.257 0.705 0.511 0.728 0.505 0.754 0.563
Nguyen-6 0.800 0.578 0.918 0.820 0.966 0.839 0.969 0.859
Nguyen-7 0.448 0.335 0.933 0.831 0.945 0.522 0.947 0.616
Nguyen-8 0.322 0.275 0.827 0.660 0.856 0.519 0.877 0.608
Nguyen-9 0.396 0.300 0.832 0.702 0.875 0.720 0.889 0.761
Nguyen-10 0.498 0.355 0.851 0.726 0.872 0.712 0.883 0.744
Nguyen-11 0.324 0.257 0.854 0.707 0.870 0.727 0.862 0.732
Nguyen-12 0.526 0.366 0.706 0.561 0.758 0.505 0.777 0.621

Likewise, our experiment with the proposed multi-fidelity algorithms have similar results as the527

partial experiment shown in the main text. Table 5 and Figure 5 show that the ranking for each metric528

is: (i) max: RSEP with 8 wins, RSEP_0 with 3 wins, and PGEP_u with 1 win; (ii) avg: RSEP with 5529

wins, RSEP_0 with 3 wins, PGEP_u with 2 wins, and PGEP with 2 wins. The baselines were never530

able to beat the multi-fidelity algorithms in any of the benchmarks.531
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Figure 4: Average of best sample found so far during training (x-axis is the amount of samples from
Ξ0) across 150 repetitions. Nguyen 1-12 are depicted from left to right, top to bottom.

Table 5: The results represent the best (max) and the average (avg) quality of samples in the hall of
fame by the end of the training process. Averages across 150 repetitions. Best results for each metric
are highlighted in bold.

Sequential PGEP PGEP_u RSEP RSEP_0

Benchmark Max Avg Max Avg Max Avg Max Avg Max Avg

Nguyen-1 0.989 0.881 0.996 0.940 1.000 0.993 1.000 1.000 1.000 0.998
Nguyen-2 0.945 0.836 0.962 0.915 0.994 0.955 1.000 0.980 1.000 0.957
Nguyen-3 0.934 0.838 0.944 0.897 0.967 0.938 0.988 0.943 0.992 0.959
Nguyen-4 0.925 0.846 0.946 0.894 0.956 0.921 0.985 0.947 0.991 0.961
Nguyen-5 0.754 0.563 0.832 0.668 0.913 0.761 0.966 0.801 0.960 0.823
Nguyen-6 0.969 0.859 0.983 0.944 0.999 0.981 1.000 0.965 0.999 0.942
Nguyen-7 0.947 0.616 0.965 0.933 0.962 0.927 0.961 0.926 0.971 0.921
Nguyen-8 0.877 0.608 0.903 0.813 0.937 0.836 0.976 0.846 0.912 0.798
Nguyen-9 0.889 0.761 0.941 0.838 0.972 0.849 0.973 0.858 0.968 0.844
Nguyen-10 0.883 0.744 0.925 0.858 0.971 0.901 0.927 0.862 0.908 0.819
Nguyen-11 0.862 0.732 0.967 0.843 0.961 0.819 0.978 0.832 0.894 0.761
Nguyen-12 0.777 0.621 0.786 0.691 0.796 0.762 0.792 0.776 0.795 0.772
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Figure 5: Average of best sample found so far during training (x-axis is the amount of samples from
Ξ0) across 150 repetitions. Nguyen 1-12 are depicted from left to right, top to bottom.
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D Comparison between fidelities532

Figure 6 shows a comparison between our low and high fidelity simulations in the Antibody Opti-533

mization domain. While correlated, the ordering of samples are not preserved and the magnitude534

of the error is relatively high for this domain where picking a suboptimal antibody might result in535

wasting thousands of dollars in further wet lab evaluations of the candidate. This motivates the use of536

multi-fidelity approaches, rather than only optimizing in the low fidelity.

Figure 6: Comparison between fidelities in the Antibody domain. The plot contains all samples
evaluated during training of all evaluated algorithms. In black we show the x = y line and the dashed
red line is the observed trend.

537

E Full description of Symbolic Regression Benchmarks538

Table 6: List of Nguyen benchmarks and their respective ground truth expressions.

Benchmark Expression
Nguyen-1 x3 + x2 + x
Nguyen-2 x4 + x3 + x2 + x
Nguyen-3 x5 + x4 + x3 + x2 + x
Nguyen-4 x6 + x5 + x4 + x3 + x2 + x
Nguyen-5 sin(x2) cos(x)− 1
Nguyen-6 sin(x) + sin(x+ x2)
Nguyen-7 log(x+ 1) + log(x2 + 1)
Nguyen-8

√
x

Nguyen-9 sin(x) + sin(y2)
Nguyen-10 2 sin(x) cos(y)
Nguyen-11 xy

Nguyen-12 x4 − x3 + 1
2
y2 − y

F Parameters for the empirical evaluation539
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Table 7: List of parameters used for our empirical evaluation.

Domain Hyperparameters

Symbolic Regression

General: nsamples = 25, 000, nb = 1, 000
RSEP: ρ = 0.1, ϵ : 0.05.
RSEP_0: ρ = 0.05, ϵ : 0.05, ϵ2 : 0.4.
PGEP: ρ = 0.1, γ = 0.7.
PGEP_u: ρ = 0.1
Sequential: ϵ = 0.05. Trains for 100, 000 samples on low fidelities.
Shuffled: prob per fidelity: 0 = 9%, 1 = 45.5%, 2 = 45.5%

Antibody Optimization

General: nb = 72
RSEP: ρ = 0.01, ϵ : 0.01.
PGEP: ρ = 0.1,γ = 0.7.
Sequential: ϵ = 0.1. Trains for 720 samples on low fidelity.
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