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ABSTRACT

Large language models (LLMs) have demonstrated impressive performance
across a variety of reasoning tasks in domains such as mathematics, coding, and
planning, particularly when guided by chain-of-thought prompting to elicit inter-
mediate reasoning steps. However, their problem-solving ability often declines on
more complex tasks due to hallucinations and the accumulation of errors within
these intermediate steps. Recent work has introduced the notion of critical to-
kens—tokens in the reasoning process that exert significant influence on subse-
quent steps. Prior empirical studies suggest that replacing critical tokens can
refine reasoning trajectories and lead to correct answers. Nonetheless, reliably
identifying and exploiting critical tokens to enhance LLM reasoning remains chal-
lenging. To address this, we propose the Paraphrastic Probing and Consistency
Verification (PPCV) framework, which leverages critical tokens to improve rea-
soning performance. PPCV operates in two stages. In the first stage, we roll out
an initial reasoning path from the original question and then concatenate para-
phrased versions of the question with this reasoning path. Feeding these inputs
into the LLM yields token-level logits, from which we identify critical tokens
based on mismatches between the predicted top-1 token and the expected token
in the reasoning path. A criterion is employed to confirm the final critical token.
In the second stage, we substitute critical tokens with candidate alternatives and
roll out new reasoning paths for both the original and paraphrased questions. The
final answer is determined by checking the consistency of outputs across these
parallel reasoning processes. We evaluate PPCV on mainstream LLMs, including
Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.2 and Qwen3-32B, across multi-
ple benchmarks covering mathematics and logical reasoning. Extensive experi-
ments demonstrate that PPCV substantially enhances the reasoning performance
of LLMs compared to baseline methods.

1 INTRODUCTION

The emergence of large language models (LLMs) (Brown
et al.| 2020 [Grattafiori et al.l 2024; [Achiam et all, 2023} *
Yang et al.,|2025a) has astonished the Al community with

their remarkable capabilities across a wide range of rea- ¥
soning tasks, including mathematical problem solving, &
programming, and planning. By generating intermedi-
ate reasoning steps through techniques such as chain-of- <

thought prompting (Wei et al., 2022} [Kojima et al., 2022} —+— critical tokens
Zhang et al} [2022; [Sprague et al.,[2025), LLMs can em- w0 —— self-consistency
ulate human-like reasoning processes and achieve strong 1 20 30 a0 50

. . number of sample k
performance on diverse reasoning benchmarks. P

Despite their success, the problem-solving ability of Figure 1: Comparison of the effects

LLMs often declines on complex reasoning tasks due to ©f critical tokens and Self-Consistency
hallucinations and the accumulation of errors in inter- ©n the reasoning performance of LLMs,

mediate steps (Cightman et al 2023} [Ling et al. 2023} eva}h}ated on samples from the MATH
training data.
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Bubeck et al.| [2023). To mitigate this issue, prior works (Wang et al.| 2024} |Yuan et al.| 2025}
Chen et al., |2024a; |(Chen & Li, [2024)) have proposed the inference-time optimization paradigm,
which evaluates and refines reasoning trajectories through self-correction by the LLM itself or with
feedback from external verifiers such as process reward models (PRMs) (Uesato et al.,2022)). How-
ever, existing studies (Yang et al., 2025bj [Tyen et al., 2024} Stechly et al., [2025)) suggest that LLMs
struggle to reliably identify errors in their reasoning and often fail to correct previous outputs with-
out external guidance. Moreover, obtaining high-quality, stepwise process supervision for training
external verifiers is challenging and limits the practicality of these approaches (Feng et al., 2025).

Case study on critical tokens

Recent work has introduced the concept of crit-
ical tokens (Lin et al., [2025), which play piv-
otal roles in intermediate reasoning steps and
exert strong influence on subsequent reason-
ing and final outcomes. Prior studies suggest
that critical tokens often diverge from human-
annotated error tokens. Moreover, as illus-
trated in Figure 2] replacing critical tokens
in an incorrect reasoning trajectory with suit-
able candidate tokens can correct subsequent
steps and lead to the right answer in new roll-
outs. To quantitatively assess the effective-
ness of critical tokens, we conduct an empiri-
cal study using LLMs such as Llama-3.1-8B-
Instruct (Grattafiori et al. 2024) on reason-
ing tasks. Specifically, we randomly sample

Question: There were 10000 spectators at a basketball match. 7000 of them were men.
Of the remaining spectators, there were 5 times as many children as women. How many
children were there? (ground truth answer: 2500)

Response:

To find the number of children, we need to first find the number of women and then
multiply it by 5.

Step 1: Find the number of women. Total spectators = 10000. Men = 7000. Women = Total
spectators — Men. Women = 10000 - 7000. Women = 3000.

Step 2: Find the number of children. There are 5 times as many children as women.
Children =5 * Women. Children = 5 * 3000. Children = 15000.

So, the number of children is 15000. 0

Response(replacement of critical tokens):

To find the number of children, we need to first find the number of remaining spectators
(excluding men) and then calculate the number of women and children.

Step 1: Find the number of remaining spectators (excluding men). Total spectators =
10000. Men = 7000. Remaining spectators = Total spectators — Men = 10000 - 7000= 3000
Step 2: Let's assume the number of women is 'X'. Since there are 5 times as many children
as women, the number of children will be 5x.

Step 3: The total number of remaining spectators is the sum of women and children. We
can write this as an equation: x + 5x = 3000. Combine like terms:\n6x = 3000. Divide both
sides by 6: x = 3000/ 6. x = 500.

Step 4: Now that we have the number of women, we can find the number of children.
Number of children = 5x= 5 * 500= 2500.

Therefore, the number of children is 2500. °

Figure 2: An example demonstrating how substi-
tution of a critical token (red) with a candidate to-
ken (purple) modifies the reasoning path and pro-
duces the correct answer.

100 instances with incorrect reasoning steps
from the GSMS8K (Cobbe et al.. 2021) and
Math500 (Hendrycks et al.|[2021) training data.
Following the procedure in prior work, we lo-
cate critical tokens through exhaustive search. We then truncate the reasoning path at the critical to-
ken, substitute it with alternative tokens, and roll out new reasoning paths. For example, as shown in
Figure [2] the token “woman” is replaced with “remaining”. We evaluate performance using Pass @k
and compare against Self-Consistency (Wang et al.l [2023)), which also samples multiple reasoning
paths. As shown in Figure [I] critical token replacement provides a clear advantage in correcting
errors compared to plain sampling. Nonetheless, reliably identifying and leveraging critical tokens
for reasoning remains a nontrivial challenge. Additional results can be found in Appendix

Recent studies (Zhou et al.| 2024} (Chen et al.,[2024b), on surface form—the way questions, assump-
tions, and constraints are phrased—have revealed its subtle influence on the trajectory of interme-
diate reasoning steps. This motivates us to explore the role of paraphrasing in the extraction and
utilization of critical tokens for reasoning tasks. To this end, we propose the Paraphrastic Probing
and Consistency Verification (PPCV) framework , a two-stage approach designed to leverage criti-
cal tokens to enhance the reasoning ability of LLMs. In the first stage, we probe critical tokens using
paraphrased questions. Specifically, we first roll out the initial reasoning path from the original ques-
tion, then concatenate paraphrased questions with this reasoning path. The resulting synthetic inputs
are fed into the LLM to obtain token-level logits for each position in the reasoning path. Positions
where the predicted top-1 token diverges from the expected token are flagged as potential pivotal
points, and an empirical criterion is applied to determine the final critical token. In contrast to prior
work (Lin et al.| [2025), which depends on external models for identifying critical tokens with am-
biguous criteria, our method introduces a self-contained mechanism that pinpoints critical tokens.

In the second stage, we leverage the extracted critical tokens to refine the initial reasoning path.
Specifically, we select the top-K tokens (include critical token itself) at the critical token position
and roll out new reasoning paths for both the original and paraphrased questions. Based on the
empirical observation that trajectories leading to correct answers are robust to paraphrastic pertur-
bations, we propose a paraphrase consistency mechanism. In contrast to Self-Consistency (Wang
et al., [2023)), which relies on majority voting across sampled trajectories, our method selects the
final answer by comparing outputs from paraphrased and original questions and choosing the one
with the most consistent matches. To address potential ties across multiple answers, we further in-



Under review as a conference paper at ICLR 2026

8
)
s

—&— critical tokens
—4— random tokens

pass@k(%)
pass@k(%)

3 §o03f
S 3
02 02!

w
ers 07} winc
0.6 correx s w cor
80 061
0.5
o = .
s gos
o —&— critical tokens S04 o4l

01 0.1

0. 0.
0 5 [

1 2 3 a 5
consistency score

(a) (b) (© ()]

Figure 3: Comparison of the impact of critical tokens versus random tokens on LLM reasoning
performance for GSM8K (a) and MATH (b). Comparison of the density distributions of consistency
scores for rollouts with correct and incorrect answers on GSM8K (¢) and MATH (d).
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troduce similarity-weighted paraphrase consistency, which incorporates similarity scores between
paraphrased and original questions when computing consistency.

Compared with self-correction (Wu et al.,[2024; Miao et al.| 2024)) and PRM-based methods (Wang
et al., 2024} |Yuan et al., [2025), our framework exploits critical tokens to refine reasoning trajecto-
ries without requiring step-level error detection by the LLM itself or auxiliary models. We evaluate
our method on mainstream LLMs across mathematical, logical, and commonsense reasoning bench-
marks, demonstrating consistent improvements in reasoning performance. The contributions of the
paper is summarized as follows:

* We propose a novel two-stage framework, Paraphrastic Probing and Consistency
Verification (PPCV) designed to extract and leverage critical tokens to enhance the rea-
soning performance of LLMs.

* We show that critical tokens can more effectively correct erroneous reasoning trajecto-
ries than traditional sampling methods like Self-Consistency. Furthermore, our approach
successfully extracts these tokens through paraphrastic probing, achieving improved final
results via paraphrase consistency.

* We evaluate our method on mainstream LLMs across various reasoning tasks, including
math and logic reasoning. Experimental results show significant performance improve-
ments over baseline methods.

2 RELATED WORK

Inference-Time Optimization for LLM reasoning. With the advent of chain-of-thought (CoT)
prompting, LLMs have demonstrated strong reasoning capabilities by producing intermediate steps
during inference. This success has motivated a growing body of work (Wu et al., 2025} |Snell et al.,
2024)) on augmenting reasoning trajectories at test time to further improve performance. Existing
approaches can be broadly categorized into search-based methods (Bi et al., 20255 |Yao et al.|, 2023}
Hao et al.| 2023} | Xie et al., 2023} Besta et al.,[2024), such as Tree-of-Thoughts (Yao et al.,[2023)), and
sampling-based methods (Wang et al., | 2023; Xu et al.,[2025;/Wan et al., 2025; Ma et al., 2025), such
as Self-Consistency (Wang et al., 2023). However, due to intrinsic hallucinations (Bubeck et al.,
2023)), LLMs often generate erroneous intermediate steps, which can ultimately lead to incorrect
answers, especially on complex problems. This limitation highlights the need for inference-time
optimization of reasoning processes.

To address this issue, one line of research (Yin et al., 2024} (Chen et al.| [2024a} Ling et al., 2023
Wu et al., 2024} Miao et al., 2024; Madaan et al., 2023) designs instructional prompts that guide
LLMs to detect and refine their own mistakes. Despite its appeal, prior work has shown that the
effectiveness of self-correction is limited in practice. Another line of work (Wang et al., 2024} [Yuan
et al.l 2025; |He et al., 2024} Havrilla et al., 2024) introduces external verifiers, such as process
reward models (PRMs) (Snell et al., 2024), to identify and filter out error-prone reasoning steps.
These methods typically require high-quality training data for the verifier, with data scarcity often
mitigated through strategies such as Monte Carlo Tree Search (MCTS)|Guan et al.| (2025); |Q1 et al.
(2025); |L1/ (2025); Zhang et al.|(2024). In addition, a recent line of decoding-based approaches (Xu
et al., 2025 Ma et alJ 2025) seeks to improve reasoning by dynamically adjusting the next-token
prediction based on future trajectory probing. In contrast, our method refines reasoning by directly
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Phase I: Paraphrastic Probing

Step 1: paraphrase the original question.

Phase lI: Consistency Verification
Step 1: Obtain the candidate tokens at the critical

i Step 2: Truncate the initial answer and replace the

| critical token with the critical tokens.
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am | Abakery produces 60 loaves of bread each day ... How
many loaves of bread are sold in the afternoon? Abakery produces 60 loaves of bread each day ... How

many loaves of bread are sold in the afternoon?

Step 1: Calculate the number of loaves sold

g) ‘ Tosolve this problem, we will break it down into steps.

To solve this problem, we will break it down into steps.

i
:
i
i
i
'
To solve this problem, we will break it down into steps. 1
. ; i
for 60 freshly baked loaves... What s the number of loaves S et D M e e T, ' S e B ey e et etedapaer e
sold inthe afternoon? |

i

i

'

i

__________________________________________ : Q[ ‘during) ‘the’, ... ]

Step 2: generate the initial response. [T = T T T e e e e e e e e e oo
Step 3 : Generate new trajectories from partial answers to both the original and paraphrased questions, and the
same procedure is also applied to the initial answer.

Q [ In a bustling bakery, daily production meets the demand }

am | Abakery produces 60 loaves of bread each day ... How
many loaves of bread are sold in the afternoon?

- Ina bustling bakery, dai meets
A | the demand for 60 freshly baked loaves... What is the number|
of loaves sold in the afternoon?

o (" (Original) Abakery produces 60 loaves of bread each day
... How many loaves of bread are sold i the afternoon?

To solve this problem, we will break it down into steps.

Q To solve this problem, we will break it down into steps.
Step 1: Calculate the number of loaves sold in...Therefore,
Step 1: Calculate the number of loaves sold in.

the number of loaves of bread sold in the afternoon is 5. €3 To solve this problem, we will break it down into steps.

Step 1: Calculate the number of loaves sold in.

Step 3: Concatenate the paraphrased question with
the initial answer. And obtain the probabilities for
top-1 tokens and expected tokens at each position.

am [ Inabustling bakery, daily production meets the demand
for 60 freshly baked loaves... What s the number of loaves
soldin the afternoon?

Q

sold in the morning. The bakery produces 60 loaves, and

bread each day. Two-thirds of the loaves are sold in the two-thirds of these loaves are sold in the morning.

..Therefore, the number of loaves of bread sold in the

To solve this problem... Calculate the number of loaves. Q‘ To solve this problem...Calculate the number of loaves
sold in the morning. The bakery produces 60 loaves of
morning...Therefore, the number of loaves of bread sold in

afternoon is 8.

the afternoon is 5.

.

an ((Originel) Abakery produces 60 loaves of bread each day
... How many loaves of bread are sold in the afternoon?

i ( (Peraphrased) In & bustling bakery, daily production meets
the demand for 60 freshly baked loaves... What is the
number of loaves sold in the afternoon?

To solve this problem, we will break it down into steps.
Step 1: Calculate the number of loaves sold in...Therefore,
the number of loaves of bread sold in the afternoon s 5.

To solve this problem, we will break it down into steps.
Step 1: Calculate the number of loaves sold

Q [Tﬂ solve this problem, ... Calculate the number of loaves.

To solve this problem, we will break it down into steps.
Step 1: Calculate the number of loaves sold

0.71, pltotal) = 0.60, ..., p(sold) = 0.85, p(the) = 0.6

To solve this problem,... Calculate the number of loaves
sold the morning after the bakery opens. The bakery
starts with 60 loaves.... Therefore, the number of loaves of
bread sold in the afternoon is 10.

Expected tokens: p(To) = 0.89, p(solve) = 0.92,
25,

sold the first half of the day (before noon). Two-thirds of
60 loaves are sold before noon.... Therefore, the number
of loaves of bread sold i the afternoon is 10.

, p(the) =
22}

0.71, p(number) (sold) = 0.85, p(in]

Q Lmn tokens: p(To) = 0.89, p(solve) =0.92, ...., pithe) =
8,...

N

} Q

Step 4: Identify the critical token with the verifier A. 1

Step 4 : Determine the final answer with consistency mechanism.

@ "Mnumber) = p(total) ~p(number) = 0.60 - 0.25 = 0.35,
Afin) = p(the) - p(in) = 0.22 = 0.68-0.22 = 0.46. 0.46 > 0.35.

N o T (eaiyier iy Q { The answers derived from the second input are more consistent than that from the first input. Thus, the final answer is 10. O }

| —

Figure 4: TIllustration of the proposed paraphrastic probing and consistency verification (PPCV)
framework. The framework comprises two stages: (i) probing critical tokens through paraphrased
forms, and (ii) rolling out new reasoning steps with alternative tokens and selecting the final answer
using the paraphrase consistency verification mechanism.

leveraging critical tokens, without relying on stepwise verification or external verifiers. This design
underscores both the utility and universality of our approach.

Paraphrasing for LLMs. A growing number of work (Zhou et al., 2024} (Chen et al. [2024b;
Gao et al.| 2024) has examined the impact of a problem’s surface form on the reasoning ability of
LLMs. Findings (Zhou et al. 2024} [Chen et al., [2024bj, Huang et al., [ 2025)) suggest that even subtle
modifications in phrasing can substantially affect both the reasoning process and the final outcome.
Building on this observation, several methods (Yadav et al.,2024;|Chen et al.,[2024b) leverage bene-
ficial paraphrasing to enhance LLM performance in tasks such as reasoning and intent classification.
In addition, paraphrasing has been employed to assess model uncertainty (Gao et al.,[2024; [Tanneru
et al.||2024)), thereby enhancing the reliability and trustworthiness of LLLM applications. In our work,
we utilize paraphrasing as a principled tool to extract critical tokens and to aggregate answers.

3 METHODOLOGY

In this section, we present the two components of our framework in detail: paraphrastic probing and
consistency verification. An detailed illustration of our framework is shown in Figure @] We then
discuss the proposed method and provide the complete algorithm.

3.1 PARAPHRASTIC PROBING

Previous findings (Zhou et al.|[2024; |Chen et al.| |2024b}; Huang et al.,[2025)) on the impact of a prob-
lem’s surface form suggest that the quality of intermediate reasoning steps is influenced not only
by the underlying mathematical relationships and logic, but also by how the problem is expressed.
Notably, LLMs are sometimes able to solve a paraphrased version of a problem that they fail to
solve in its original form, highlighting the potential of paraphrasing to uncover pivotal tokens that
are critical for successful reasoning. Motivated by this observation, we introduce paraphrastic prob-
ing to efficiently identify the critical token. Given the original question ¢g, we first prompt the LLM
to generate multiple paraphrased forms, denoted as g1, g2, ..., gn, Where N is the number of the
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Case study on identification of critical tokens via Paraphrastic Probing

Original question: In a card game, you are
awarded 10 points if you win one round. While
playing, Jane ends up with 60 points. If she lost
20 points, then how many rounds did she play?
(ground truth answer: 8)

Response: To solve this problem, we need to
follow these steps:

Step 1: Determine the total points Jane earned by
subtracting the points she lost from her final
score. Total points earned = Final score - Points
lost. Total points earned = 60 - 20. Total points
earned = 40.

Step 2: Since Jane earns 10 points for each round
she wins, we can find the number of rounds she
played by dividing the total points earned by the
points earned per round...

Therefore, Jane played 4 rounds. @

ion: At a high-stakes poker
tournament, the winner receives 10 points for
each match won. After participating in various
matches, Jane accumulated a total of 60 points.
However, she suffered a setback and lost 20
points. How many rounds did she win to reach
herinitial score? (ground truth answer: 8)

Response: To solve this problem, we need to
follow these steps:

Step 1: Determine the total points Jane earned by
adding the points she lost back to her current
score. Current score = 60 points. Points lost = 20
points. Total points earned = Current score +
Points lost. Total points earned = 60 + 20. Total
points earned =80 points

Step 2: Since Jane receives 10 points for each
match won, we can find the number of matches
she won by dividing the total...

Therefore, Jane won 8 matches to reach her
initial score.

Case study on identification of critical tokens via Paraphrastic Probing

Question: James decides to run 3 sprints 3
times a week. He runs 60 meters each sprint.
How many total meters does he run a week?
(ground truth answer: 540)

Response: To find the total meters James runs
aweek, we need to calculate the total meters
he runs in one sprint session and then multiply
it by the number of sessions he has in a week.

Step 1: Calculate the total meters James runs
in one sprint session. James runs 3 sprints of
60 meters each. Total meters in one sprint
session =3 * 60 = 180 meters.

Step 2: Calculate the total meters...
Therefore, James runs a total of 540 meters a

week
The answer is 540. @

Question: James decides to run 3 sprints 3
times a week. He runs 60 meters each sprint.
How many total meters does he run a week?
(ground truth answer: 540)

Response: To find the total distances James
runs in a week, we need to calculate the total
distance he runs in one sprint session and
then multiply it by the number of sessions he
hasin a week.

Step 1: Calculate the total distance James
runs in one sprint session. Distance per sprint
= 60 meters. Number of sprints per session =
3. Total distance per session = Distance per
sprint * Number of sprints per session. Total
distance per session = 60 * 3. Total distance
per session = 180 meters.

Step 2: Calculate the total distance James
runsin a week.

Therefore, James runs a total of 540 meters in
aweek.

(@ (b)

Figure 5: (a) Illustration of paraphrastic probing for critical token identification. (b) Effect of the
critical token on an initial reasoning path that yields the correct answer. Critical tokens are high-
lighted in bold red, and alternative tokens in bold purple.

paraphrased questions. We adopt Automatic Prompt Engineering (APE) (Zhou et al., 2022) to de-
rive paraphrasing instructions that strictly preserve all numerical values, mathematical relationships,
and core logical structures of the problem, while maximizing linguistic and contextual diversity.
Additional details can be found in Appendix We then obtain the initial reasoning path r{° for
the original question using greedy decoding. This reasoning path is subsequently concatenated with
each paraphrased question, and the resulting synthetic inputs are fed into the LLM to compute the
token probability distribution at each position in 7{°. Specifically, the token probability distribution
at ¢th position conditioned on the paraphrased question g,, is expressed as

P! = LLM(a;|Z, qnﬂ“&”@)’ M

where Z denotes the instruction prefix and a; represents the sampled token at ith position. The token
a; is regarded as a candidate critical token if predicted top-1 token does not match the expected token
at the same position in 7“80, ie.,

arg max P" # a;,

2

where a; denotes the expected token at the ith position in 78°.

To validate the effectiveness of our method and demonstrate the pivotal role of the critical tokens
extracted through paraphrastic probing, we conduct a case study illustrated in Figure [5(a)] In this
example, the token “subtracting” is identified as a critical token. By substituting it with an al-
ternative (i.e., “adding”), the new rollout corrects the errors in the original reasoning steps and
yields the correct answer, underscoring the utility of our method in identifying critical tokens. In
addition, we conduct a quantitative analysis to investigate the impact of critical tokens extracted
through paraphrastic probing, comparing them against randomly selected tokens. Specifically, we
sample 100 instances with incorrect reasoning trajectories from the GSM8K (Cobbe et al., 2021)
and MATHS500 (Hendrycks et al.l 2021)) training sets. Following the paraphrastic probing pipeline,
we identify candidate critical tokens in the initial reasoning steps, substitute them with alternative
tokens, and roll out multiple new reasoning paths. We randomly sample 40% of the candidate
critical tokens for evaluation in each run and repeat the experiments 10 times independently. For
comparison, we apply the same procedure to randomly chosen tokens. We evaluate performance us-
ing pass@k on Llama-3.1-8B-Instruct (Grattafior1 et al.,|2024), with results presented in Figure
and Figure 3(b)] The findings demonstrate that substituting critical tokens significantly improves
reasoning performance compared to random tokens, thereby further validating the pivotal role ex-
tracted critical tokens as well as the effectiveness of our method.

We introduce a heuristic verifier to select the final critical token from multiple candidates. For a
candidate token a; and paraphrased question ¢, the verification score is defined as

A, (a;) = max P — P! (a;

3)

where P/" denotes the predictive distribution at position i on question g,,. Intuitively, A measures
how much the predicted top-1 token deviates from the expected token, indicating the token’s po-
tential impact on the reasoning trajectory. For each extracted token a;,we take the maximum score

= a;).
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Algorithm 1 PPCV Framework

Input: LLM; original question gg; number of paraphrased questions /V; number of sampled alter-
native tokens K; temperature-scaling coefficient \.

Output: Final answer ans.
(Paraphrasing) Generate paraphrased variants ¢, q2, ..., qn from gy using the LLM.
(Initial reasoning) Obtain the initial reasoning path r{° for go.
(Token influence analysis) For each araphrased questlon qn, compute the token distribution
P4 by concatenating g, with {° (Eq.|l
(Candidate selection) Identify cand1date critical token positions based on the mismatch between
the top-1 predicted tokens and the expected tokens in go (Eq. [2).
(Critical token verification) Select the final critical token a. using the criteria (Eqgs. [3H5).
(Alternative token sampling) Sample K alternative tokens a2, al, ..., aX~! (including a
a.) using top-K sampling on qq.
(Truncated rollouts) Truncate the initial reasoning path r{° at position a. and form synthetic
inputs 7, 7! by appendlng each alternative token

0
c

for each synthetlc 1nput FEk = O —1do
Generate rollouts 7, r{*, ... r} for the original and paraphrased questions using the LLM.
end for

(Consistency verification) Compute the final answer ans ; using (similarity-weighted) paraphrase
consistency (Eq. [6).

across paraphrases,
Ala;) = max Ay, (a;), 4)
an

and select the final critical token as
a. = arg max A(a;). (5)

i
3.2 CONSISTENCY VERIFICATION

After identifying the final critical token a., we aim to refine the original reasoning path with al-
ternative tokens and achieve final answer with paraphrase consistency mechanism. Specifically,
we generate a set of alternanve tokens a?, al, a2 e alTl using the LLM conditioned on original
question qo, where a? is the original token inrg and the remaining tokens are sampled via top-K
sampling. The initial reasoning path is truncated at the position of critical token, and each alternative
token is concatenated to form synthetic inputs 70, 7L, 72, ..., 75=1_ We then roll out new reasoning
trajectories for each synthetic 1nput with respect to both the original and paraphrased questions using
greedy decoding, denoted as r/°, rf*, ..., riV for k = 0,1,2,..., K — 1. Next, for the rollout with

the kth alternative token, we compare the answers obtained from the paraphrased forms with that

from the original form and compute a consistency score ¢, = Zf:[_l I(®(rf) = ®(r]")), where
®(-) and I(+) denotes the function that extracts the final answer from a reasoning trajectory and the
indicator function, respectively. The answer associated with the highest consistency score is then

selected as the final prediction
ansy = ®(r}°), where k = arg max cy,. (6)
k

To justify our paraphrase consistency mechanism, we investigate the impact of paraphrased forms
on LLM reasoning. We sample instances from the GSM8K (Cobbe et al.,2021)) and MATH training
sets (Hendrycks et al., 2021)) and follow our pipeline to extract critical tokens. From each truncated
reasoning trajectory, we roll out multiple reasoning paths by concatenating alternative tokens. For
each original question, we generate five paraphrased variants and compute the consistency score for
resulting rollouts. The evaluation is conducted on Llama-3.1-8B-Instruct (Grattafiori et al., 2024)).
We then analyze the distribution of consistency scores for rollouts that yield correct versus incorrect
answers. As shown in Figure [3(c)| and Figure [3(d)} more than 90% of rollouts with correct answers
achieve a consistency score of at least 1, whereas this proportion drops to around 30% for rollouts
with incorrect answers. This sharp contrast indicates that correct rollouts are more robust across
paraphrased variants, motivating the design of our paraphrase consistency mechanism to exploit this
property for improved final predictions.
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Table 1: Comparison of our method with baseline approaches on Llama-3.1-8B-Instruct and Mistral-
7B-Instruct-v0.2.

Model Method GSM8K GSM-Hard Math500 SVAMP ARC
Chain-of-Thought 77.40 28.00 31.00 83.00 5891
Self-Consistency 80.60 31.80 37.80 85.10  60.75
Tree-of-Thought 75.74 33.28 31.60 81.20  80.72
Llama-3.1-8B-Instruct Guided Decoding 75.51 32.45 31.20 81.70  81.74
Predictive Decoding 81.43 40.26 34.00 8590 84.56
Phi-Decoding 86.58 39.88 38.20 84.50 8541
PPCV (Ours) 88.24 49.73 50.00 89.60  88.31
Chain-of-Thought 46.45 26.91 12.20 6240 4142
Self-Consistency 50.38 28.65 14.20 66.70  44.54
Tree-of-Thought 50.49 25.78 11.40 60.60 41.04
Mistral-7B-Instruct-v0.2 | Guided Decoding 50.79 27.07 14.00 62.90  39.51
Predictive Decoding 55.67 27.07 14.40 62.10  47.87
Phi-Decoding 56.60 28.43 13.40 6320 60.24
PPCV (Ours) 56.58 31.08 14.60 69.30  69.88

Table 2: Comparison of our method with baseline approaches on Qwen3-32B (non-thinking mode).

Model | Method | AIME2024 AIME2025 BRUMO2025 HMMT2025
Chain-of-Thought 30.00 23.67 30.00 9.67
Guided Decoding 26.67 22.67 28.67 7.33

Qwen3-32B | Predictive Decoding 32.67 24.00 33.33 10.33
Phi-Decoding 33.60 24.33 36.67 10.67
PPCV (Ours) 40.00 26.00 43.33 13.33

To address potential collisions when multiple answers obtain the same maximum consistency score,
we introduce similarity-weighted consistency verification. Inspired by weighted majority vot-
ing (Dogan & Birant, 2019), this approach adjusts the influence of each paraphrased form on the
consistency score according to its similarity to the original form. Intuitively, paraphrased forms
with lower similarity should exert greater weight, as they provide stronger evidence of robustness,
whereas those closely resembling the original form contribute less. Concretely, we first extract
embeddings for both the original and paraphrased questions and compute their similarity scores

as s, = sim(qo, gn), wWhere sim(-) denotes a similarity measure such as cosine similarity. We
then derive weights via a softmax function w,, = softmax(s,) = %, where ) is the

temperature scaling coefficient. Finally, the similarity-weighted consistency score is defined as

ek = Ziv_l wpI(®(rf®) = ®(r{")). This ensures agreement with more diverse paraphrases con-
tributes more strongly to the final decision.

3.3 DISCUSSION

We have shown that replacing critical tokens can correct intermediate reasoning paths and lead to
the correct answer. In this section, we examine how our method influences reasoning paths that
are already correct. First, we conduct a case study on an instance with a correct answer, where we
follow our pipeline to identify the critical token and roll out new reasoning paths using alternative
tokens. As illustrated in Figure the new rollouts also yield the correct answer. Second, our
pipeline incorporates both the initial reasoning path r¢° and its paraphrased variants r{" for evalu-
ation. The robustness of correct rollouts across paraphrased forms ensures high consistency scores,
allowing them to stand out as the final answer. These findings suggest that our pipeline preserves the
performance of LLMs on problems that can already be solved correctly by CoT (Wei et al., 2022).
Finally, the complete algorithm of our proposed PPCV framework is illustrated in Algo. [I}

Our technical contributions differ from prior works in three distinct ways. First, prior works (Zhou
et al.,[2024} |Chen et al., |2024b; | Yadav et al.,|2024) typically use paraphrasing merely to expand the
solution space. In contrast, we introduce Paraphrastic Probing, a mechanism that uses paraphras-
ing to test the model’s internal confidence. By analyzing the discrepancy in token-level logits of
the initial trajectory between the original and paraphrased questions, we can rigorously pinpoint the
critical tokens that may lead to errors in the following steps.This transforms paraphrasing from a
generation tool into a precise, token-level diagnostic tool. Second, prior works (Zhou et al., 2024
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Table 3: Comparison of model performance when using critical tokens versus random tokens.

Method \ GSM8K GSM-Hard Math500 SVAMP ARC
Chain-of-Thought 77.40 28.00 31.00 83.00 5891
random tokens 82.08 40.29 42.12 84.77 75.68
critical tokens (Ours) 88.24 49.73 50.00 89.60 88.31

Table 4: Comparison of our proposed paraphrase consistency against the majority voting.

Method | GSM8K GSM-Hard Math500 SVAMP ARC
Chain-of-Thought 77.40 28.00 31.00 83.00 5891
majority voting 87.20 47.36 48.19 88.80  86.16
paraphrase consistency (Ours) 88.24 49.73 50.00 89.60  88.31

Chen et al., 2024b) typically rely on simple majority voting across multiple solutions. Our Para-
phrase Consistency mechanism is technically distinct. It validates answers based on their robustness
across semantic variations of the problem constraint. We further introduce a similarity-weighted
consistency metric that weighs answers based on the linguistic diversity of the paraphrase, offering
a more nuanced selection criterion than simple frequency counts. At last, a major technical limita-
tion in current reasoning research is the reliance on external models or human-annotated error steps.
Our method contributes a fully self-contained pipeline that identifies and corrects errors using the
model’s own sensitivity to surface-form perturbations. We believe our proposed framework repre-
sents a significant methodological advancement, offering a way to “find the cracks” in reasoning
without the heavy computational or data overhead of training separate verifiers.

Although we select the top candidate for the primary experiments to maintain computational effi-
ciency, the framework itself naturally extends to the multi—critical-token setting. For multiple critical
tokens, we can generate alternative tokens for each identified position and apply paraphrase consis-
tency across the new rollouts. This allows the model to refine multiple segments of its intermediate
reasoning steps rather than only one.

4 EXPERIMENTS

In this section, we first describe the experimental setup, followed by the main results of our proposed
method compared to the baselines. We then analyze the contribution of each stage individually.
Finally, we examine the actual running time of our method and compare it against the baselines.

4.1 SETUP

Datasets. To comprehensively assess our method, we evaluate it on seven benchmarks. Six fo-
cus on mathematical reasoning, including GSM8K (Cobbe et all 2021), GSM-Hard (Gao et al.,
2023), SVAMP (Patel et all [2021), Math500 (Hendrycks et al. [2021), and the more challeng-
ing competition-level datasets AIME2024, AIME2025, BRUMO2025, and HMMT?2025 (Balunovi¢
et al.| [2025). In addition, we use ARC-Challenge (Clark et al.l|2018) to evaluate knowledge reason-
ing ability of large language models.

Baselines. In our experiments, we use Chain-of-Thought (CoT) (Wei et al. 2022), Tree-of-
Thought (ToT) (Yao et al., [2023), Guided Decoding (Xie et al., [2023), Predictive Decoding (Ma
et al.,[20235)), and Phi-Decoding (Xu et al.}[2025) as baselines.

Metric. Following prior work, we adopt pass@1 accuracy as the primary evaluation metric.

Implementation Details. In our experiments, we adopt Llama-3.1-8B-Instruct (Grattafior1 et al.,
2024)), Mistral-7B-Instruct-v0.2 (Jiang et al. |2023), Qwen-3-32B (Yang et al., |2025a) and
DeepSeek-R1-Distill-Llama-70B as the target models. we employ the non-thinking mode for Qwen-
3-32B. Throughout our method, we employ the same model for generating paraphrased problems,
identifying critical tokens, and producing new rollouts. In the first stage, we generate three para-
phrased variants of each problem, while for the other datasets we generate five variants. In the
second stage, we select the top 10 tokens for new rollouts, with the temperature scaling coefficient
A set to 2. We also adopt a zero-shot CoT prompt to elicit the new rollouts. For the baselines,
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Figure 6: (a) The impact of number of sampled alternative tokens on the performance. (b) Latency
comparison between the baselines and our method, measured as the average inference time per
question (in seconds). 11, 15, T3, T, denote time for paraphrased question generation, initial answer
generation, forward pass and new rollouts from truncated trajectories. (c¢) Throughput comparison
between the baselines and our method, measured in output tokens per second.

we strictly follow their original settings, including temperature values, sampling strategies, and the
number of few-shot examples. All experiments are conducted on NVIDIA A100 GPUs.

4.2 MAIN RESULTS

The main results are summarized in Table[I]and Table 2] The results indicate that Self-Consistency
effectively improves the reasoning performance of LLMs compared to vanilla Chain-of-Thought
prompting. For example, Llama-3.1-8B-Instruct (Grattafiori et al.| [2024) achieves about 3% higher
accuracy with Self-Consistency than with CoT. These findings suggest that augmenting reason-
ing during inference through sampling is an effective way to refine reasoning trajectories. Recent
decoding-based methods, such as Predictive Decoding (Ma et al., 2025) and Phi-Decoding (Xu
et al.,|2025)), also achieve strong results.Unlike prior works that rely on carefully designed prompts
to self-correct errors in intermediate steps, these two methods modify the current step by probing
future steps with pre-defined reward signals. Furthermore, our experimental results demonstrate
that the proposed method consistently outperforms the baselines across most tasks, spanning both
mathematical and knowledge reasoning, thereby highlighting its generalization ability across differ-
ent reasoning settings. Notably, our method even surpasses the latest approaches such as Predictive
Decoding (Ma et al., [2025) and Phi-Decoding (Xu et al., |[2025). In particular, it achieves approxi-
mately 50.00% accuracy on the Math500 dataset (Hendrycks et al., 2021)), exceeding these baselines
considerably. The results on competition-level datasets further demonstrate the effectiveness of our
method in enhancing the reasoning ability of LLMs. These results indicate that our method can ef-
fectively extract critical tokens that play a pivotal role in the final outcome and correct the reasoning
trajectory by leveraging alternative tokens. Additional results can be found in Appendix [A.3]

4.3 ABLATION STUDY
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Effectiveness of extracted critical tokens. To demonstrate the effectiveness of our extracted critical
tokens, we conduct an evaluation in which the critical tokens are replaced with random tokens in the
first stage, while keeping the second stage unchanged. This evaluation is performed across multiple
benchmark datasets, with pass@1 as the metric. The results, shown in Table EL reveal a substantial
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decline in performance. These findings highlight the pivotal role of critical tokens and indicate that
our method can effectively identify and extract them.

Effectiveness of paraphrase consistency. We also evaluate the effectiveness of our proposed para-
phrase consistency and compare it with traditional majority voting. While keeping the first stage
unchanged, instead of using paraphrased forms to generate new reasoning steps, we simply sample
multiple new steps from alternative tokens conditioned on the original question and use majority
voting to determine the final answer. The results, shown in Table EL reveal a noticeable decline
in performance, highlighting the importance of paraphrased forms in improving the intermediate
reasoning steps.

Impact of number of sampled alternative tokens.We investigate the influence of the number of
sampled alternative tokens in the second stage by selecting values of 3, 5, 7, and 10. The results,
shown in Figure[6(a)] demonstrate that performance improves as the number of alternative tokens in-
creases. This suggests that exploring more reasoning steps with additional alternative tokens during
inference can be beneficial for reasoning tasks.

5 COMPUTATIONAL COST ANALYSIS

In this section we examine the composition of the latency in our method. The latency arises from
four components: Paraphrased question generation (77 ); initial answer generation (75), equivalent to
vanilla CoT; a forward pass for identifying critical tokens (73), which does not generate new tokens
and is computationally lightweight; rollouts of truncated trajectories using alternative tokens under
both the original and paraphrased questions (7)), which constitutes the main source of overhead.

We evaluate all components on Llama-3.1-8B-Instruct using vLLM on NVIDIA A100 GPUs, with
a maximum output length of 4096 tokens for each question. For our method, we use 5 paraphrased
questions on math datasets and 3 on ARC, and select the top-10 candidate tokens as alternatives. The
updated average latency results are reported in Figure[6(b)] As expected, T3 scales with the number
of paraphrases, 75 remains minimal, and 7); dominates the total cost. Specifically, T depends on
the number of top-k alternative tokens, the number of paraphrased questions and the position of
the critical token in the trajectory. Since the new rollouts from truncated trajectories for different
alternative tokens and paraphrased questions are independent, 7 can take advantage of vLLM’s par-
allelism. These rollouts can therefore be processed concurrently, improving overall efficiency. This
is reflected in the higher throughput (tokens/sec) shown in Figure And results of our method
in latency comparable to baseline methods, even on challenging benchmarks such as MATH500 and
GSM-Hard where the critical token tends to occur in later reasoning steps. On benchmarks such as
GSME8K and SVAMP, both our method and baselines like Predictive Decoding exhibit higher latency
compared to vanilla Chain-of-Thought.

We also conduct a trade-off analysis between performance and efficiency by varying the number of
alternative tokens considered at the critical position. Specifically, we test top-3, top-5, top-7, and
top-10 alternatives using GSMS8K, sampling 200 random questions and repeating the experiment
five times to compute confidence intervals. The results are presented in Figure [7]] We observe a
clear trade-off. Reducing the number of alternative tokens lowers both latency and throughput,
while causing a slight reduction in accuracy. This provides a practical mechanism for adjusting
performance-efficiency trade-offs in real deployments. Depending on resource availability and target
accuracy, practitioners can choose the appropriate number of alternative tokens.

6 CONCLUSION

In this study, we further investigate the pivotal role of critical tokens in shaping the reasoning tra-
jectory, as well as the beneficial impact of paraphrase forms on reasoning. To leverage these two
factors, we propose the Paraphrastic Probing and Consistency Verification (PPCV) framework. Our
framework consists of two stages: Paraphrastic Probing, which identifies and extracts critical to-
kens, and Consistency Verification, which uses paraphrase forms to generate new reasoning trajec-
tories with alternative tokens to reach the final answer. We evaluate our proposed framework with
different LLMs and extensive evaluations across multiple benchmarks demonstrate the promising
performance of our method.

10
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Figure 8: Comparison of the effects of critical tokens and Self-Consistency on the reasoning perfor-
mance of LLMs, evaluated on samples from the GSMS8K training data.

A APPENDIX

A.1 EMPIRICAL STUDY

We follow the heuristic criterion introduced in prior work (Lin et al., 2025) to evaluate the impact
of critical tokens on the reasoning performance of LLMs and compare our approach with baselines
such as Self-Consistency (Wang et al., |2023). In our empirical study, we sample multiple new
rollouts at each token position along the reasoning path and evaluate their pass@k performance. A
token is identified as critical if it satisfies two conditions: (1) the performance of its new rollouts is
0, and (2) the performance of subsequent tokens’ rollouts falls below 5%. After identifying a critical
token, we truncate the initial reasoning path at its position, replace it with alternative tokens, and
then continue rolling out new reasoning paths. We compare the performance of these new rollouts
against baselines such as Self-Consistency (Wang et al., |2023). The results on GSM8K (Cobbe
et al., [2021), shown in Figure |8} highlight the pivotal role of critical tokens in shaping reasoning
performance.

A.2 AUTOMATIC PROMPT ENGINEERING FOR PARAPHRASING

The quality of paraphrased questions is crucial for our framework, as it directly affects both the iden-
tification of critical tokens and the stability of paraphrase-based consistency verification. To ensure
high-quality paraphrasing, we adopt Automatic Prompt Engineering (APE) (Zhou et al., 2022) as
an evaluation to optimize the paraphrasing instruction. This allows us to systematically control the
quality of paraphrases rather than relying solely on manually written prompts. The APE procedure
we employ consists of four steps:

* We create a small set of original questions paired with valid paraphrased variants. Using
this exemplar set, the model generates multiple candidate instructions that could produce
the paraphrased outputs from the original questions.

* Prompt each candidate instruction to the language model to generate paraphrases for the
original problems and compare the mean solve rate change before and after paraphrasing.

* Choose the instruction that maximizes the mean solve rate change.
* Repeat the previous steps multiple times.
In our experiments, we initialize the paraphrasing instruction and iteratively refine it using APE

with samples drawn from the GSM8K and MATHS500 training sets. With this approach, the refined
paraphrasing prompt helps us reliably produce high-quality paraphrased questions.

A.3 MAIN RESULTS

To further assess the effectiveness of our method, we evaluate it on a larger reasoning model such
as DeepSeek-R1-Distill-Llama-70B. We apply our full pipeline and compare against all baselines
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Table 5: Comparison between our method and baselines with DeepSeek-R1-Distill-Llama-70B
model on mathematical reasoning benchmarks.

Method AIME2024 AIME2025 BRUMO2025 HMMT2025
Chain-of-Thought 56.67 38.00 43.33 30.00
Predictive Decoding 60.00 40.66 44.66 30.66
Phi-Decoding 64.00 46.67 48.00 31.33
PPCV (Ours) 70.00 56.66 56.66 33.33

Table 6: Comparison of our method and the baseline approach on Llama-3.1-8B-Instruct, evaluated
using pass @k (k=4).

Method GSM8K GSM-Hard Math500 SVAMP ARC
Phi-Decoding | 92.15 53.57 52.60 91.19  90.73
PPCV (Ours) 93.83 61.41 59.39 9448 94.24

Table 7: Comparison of our method and the baseline approach on Qwen3-32B, evaluated using
pass@k (k=4).

Method | AIME2024 AIME2025 BRUMO2025 HMMT2025

Phi-Decoding 41.61 30.19 45.09 13.11

PPCV (Ours) 49.71 34.28 51.42 19.28
Table 8: The comparison of performance between Paraphrased Majority Voting (PMV) and our
proposed PPCV.

Method | GSM8K GSM-Hard Math500 SVAMP ARC

Chain-of-Thought | 77.40 28.00 31.00 83.00 5891

PMV 78.55 30.16 32.60 84.10  60.63

PPCV (Ours) 88.24 49.73 50.00 89.60  88.31

across multiple mathematical reasoning benchmarks. The results, presented in Table[5] show that our
method consistently outperforms the baselines. These improvements demonstrate that our approach
remains effective for stronger reasoning models and generalizes well beyond the smaller models.

we also conduct additional experiments to report pass @k performance for both our method and the
baselines. In these experiments, we use Phi-Decoding as the representative baseline and evaluate
on two models: Llama-3.1-8B-Instruct and Qwen3-32B. We set k= 4 and generate 12 samples per
question to obtain stable estimates of pass@4. The results across multiple benchmarks are pre-
sented in Table[6]and Table[7} respectively. Consistent with our main findings, our method achieves
higher pass@k scores compared to the baseline methods, indicating that paraphrastic critical-token
refinement continues to provide benefits in a multi-sample setting. These results further validate
the robustness of our approach under stochastic sampling and demonstrate improved hit rates when
multiple outputs are available.

A.4 ABLATION STUDY

We also perform a comparison against a Paraphrased Majority Voting (PMV) strategy is essential
to demonstrate that the performance gains of our method are indeed derived from the critical token
correction, rather than simply the benefit of having multiple paraphrased samples. Thus, we have
performed the suggested additional experiment. We adopt Paraphrased Majority Voting (PMV) as
the baseline. This approach uses the same total number of trajectories generated from the para-
phrased questions as PPCV, and reaches the final answer using standard majority voting over the
rollouts from the paraphrased questions. We compare the PMV baseline against our full PPCV
method and ensure the same number of paraphrased questions as in our method. The results shown
in Table 8| demonstrate that the performance yielded by PMYV is significantly lower than that of our
proposed PPCV method. This result confirms that simply rolling out trajectories from paraphrased
questions and aggregating the answers is insufficient. The substantial performance gap between
PMYV and PPCV decisively highlights the necessity and effectiveness of our extracted critical tokens
and the subsequent corrective reasoning step.
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A.5 PROMPTS

Prompts for reasoning (for math datasets)
System: You are a specialized Al assistant designed to solve mathematical problems.

User: Please solve the following problem step by step, and put your final answer within
boxed{}.

Each pack of dvds costs 76 dollars. If there is a discount of 25 dollars on each pack How
much do you have to pay to buy each pack?

Assistant: To find the price after the discount, we need to subtract the discount amount from
the original price.

Step 1: Identify the original price and the discount amount.Original price = $76. Discount
amount = $25

Step 2: Subtract the discount amount from the original price. Price after discount = Original
price - Discount amount. Price after discount = $76 - $25. Price after discount = $51

So, you have to pay $51 to buy each pack.

boxed{$51}

Prompts for reasoning (for ARC dataset)
System: You are a specialized Al assistant designed to solve complex reasoning problems.

User: Your task is to carefully read the following question, apply logical reasoning, scientific
knowledge, and commonsense inference, and arrive at the correct answer. Always explain
your reasoning step by step in clear language. At the end of your response, output the final
choice in the following format: The answer is: (option), where option is the correct option
letter (A, B, C, D, etc.), enclosed in parentheses.

A group of engineers wanted to know how different building designs would respond during
an earthquake. They made several models of buildings and tested each for its ability to with-
stand earthquake conditions. Which will most likely result from testing different building
designs?

(A) buildings will be built faster

(B) buildings will be made safer

(C) building designs will look nicer

(D) building materials will be cheaper?

Assistant: We are given a scenario in which engineers are testing different building designs
to see how well they withstand earthquake conditions. The goal is to determine which of the
listed outcomes is most likely to result from such testing.

Let 2019s evaluate each option in turn:

(A) Buildings will be built faster. 2013 This is not directly related to how well a building
withstands earthquakes. Earthquake resistance is about structural integrity, not construction
speed. While a good design might simplify construction, the primary purpose of the test is
not speed. So this is not the most likely result.

(B) Buildings will be made safer 2013 This is directly aligned with the purpose of the exper-
iment. Testing building designs under earthquake conditions helps identify which designs
can better absorb or resist seismic forces. The goal is to improve safety during earthquakes.
Therefore, this outcome is a direct and logical result of such testing.

(C) Building designs will look nicer 2013 Aesthetics are not the focus of earthquake testing.
While a design might be both safe and attractive, the test itself does not evaluate visual
appeal. So this is not a likely result of the testing.

(D) Building materials will be cheaper 2013 Cost of materials is not necessarily a result of
testing for earthquake resistance. ...

The answer is: (B)
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Prompts to paraphrase the question (for math datasets)

System: You are a paraphrasing assistant specialized in math problems. Your task is to para-
phrase a given math word problem. The core objective is to create a new, diverse expression
of the problem while strictly preserving all numerical values, mathematical relationships,
and the core logic required to solve it.

User: Please create 5 paraphrased versions of the question below. Do NOT change any
numbers or quantities. Maintain the exact mathematical operations and relationships. And
vary the context and language. Please output paraphrased questions starting with a bracketed
serial number like [1] [2] and ending with a new line.

A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?

Assistant:
[1] Two bolts of blue fabric and one and a half times that amount of white fabric are required
to make a robe. How many bolts in all are needed?

[2] A robe is made from 2 bolts of blue yarn and an additional amount equal to half of that
for white yarn. In total, how many bolts does it call for?

[3] To create a robe, you’ll need 2 bolts of blue thread and another half-quantity of white
thread. How many bolts of thread in total should you purchase?

[4] For a single robe, the production process demands 2 bolts of blue fabric and 1.5 times as
much white fabric. What is the total number of bolts required?

[5] The manufacture of a robe necessitates the usage of 2 bolts of blue material and slightly
less than double that quantity for white material. How many total bolts does this equate to?
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Prompts to paraphrase the question (for ARC dataset)

System: You are given a multiple-choice question from a reasoning benchmark. Your task
is to generate multiple different paraphrased versions of the question. Each version must
preserve the original meaning, answer choices, and scientific/commonsense accuracy.
Guidelines: - Keep the question logically equivalent to the original. - Do not change the
correct answer. - Do not add or remove details that would alter the difficulty. - Use different
phrasing, sentence structures, or synonyms for each version. - Keep the multiple-choice
options (A, B, C, D, etc.) unchanged.

Example Input: A large gene has dozens of exons, of which the central ones code for folded
triple helical repeats that connect the cytoskeleton with sarcolemma and extracellular space.
Each exon usually codes for one folded triple alpha helix. The most common mutations
of the gene are central exon deletions that create out-of-frame peptides and progressive de-
generative organ waste. A solution is to deliver a Morpholino that recognizes the 5’ end of
the out-of-frame exon in pre-mRNA. The molecule prevents binding of the spliceosome and
creates exon skipping and in-frame joining. Several missing exons are well tolerated by an
organism. Which structure below is not involved in the proposed therapy?

(A) antisense (B) lariat (C) R-loops (D) polyA tail

User: Please create 3 paraphrased versions of the question below. Only paraphrases the ques-
tion and leaves the multiple-choice options untouched. Please output paraphrased questions
starting with a bracketed serial number like [1] [2] and ending with a new line,

An astronomer observes that a planet rotates faster after a meteorite impact. Which is the
most likely effect of this increase in rotation?

(A) Planetary density will decrease.

(B) Planetary years will become longer.

(C) Planetary days will become shorter.

(D) Planetary gravity will become stronger.

Assistant:

[1] An astronomer notices that a planet’s rotational speed increases following a meteorite
collision. What is the most probable consequence of this accelerated rotation? (A) Planetary
density will decrease.

(B) Planetary years will become longer.

(C) Planetary days will become shorter.

(D) Planetary gravity will become stronger.

[2] After a meteorite strikes a planet, the astronomer observes an increase in its rotational
velocity. What is the most likely outcome of this faster rotation? (A) Planetary density will
decrease.

(B) Planetary years will become longer.

(C) Planetary days will become shorter.

(D) Planetary gravity will become stronger.

[3] A planet begins to rotate more quickly after experiencing a meteorite impact. Which of
the following is most likely to result from this increased spin? (A) Planetary density will
decrease.

(B) Planetary years will become longer.

(C) Planetary days will become shorter.

(D) Planetary gravity will become stronger.

A.6 USE OF LARGE LANGUAGE MODELS
In our work, we focus on improving large Malaguena models, and LLMs are used in our experi-

mental evaluation. In addition, we employ LLMs to check grammatical errors and refine sentence
structures.
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