
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FINDING THE CRACKS: IMPROVING LLMS REASON-
ING WITH PARAPHRASTIC PROBING AND CONSIS-
TENCY VERIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated impressive performance
across a variety of reasoning tasks in domains such as mathematics, coding, and
planning, particularly when guided by chain-of-thought prompting to elicit inter-
mediate reasoning steps. However, their problem-solving ability often declines on
more complex tasks due to hallucinations and the accumulation of errors within
these intermediate steps. Recent work has introduced the notion of critical to-
kens–tokens in the reasoning process that exert significant influence on subse-
quent steps. Prior empirical studies suggest that replacing critical tokens can
refine reasoning trajectories and lead to correct answers. Nonetheless, reliably
identifying and exploiting critical tokens to enhance LLM reasoning remains chal-
lenging. To address this, we propose the Paraphrastic Probing and Consistency
Verification (PPCV) framework, which leverages critical tokens to improve rea-
soning performance. PPCV operates in two stages. In the first stage, we roll out
an initial reasoning path from the original question and then concatenate para-
phrased versions of the question with this reasoning path. Feeding these inputs
into the LLM yields token-level logits, from which we identify critical tokens
based on mismatches between the predicted top-1 token and the expected token
in the reasoning path. A criterion is employed to confirm the final critical token.
In the second stage, we substitute critical tokens with candidate alternatives and
roll out new reasoning paths for both the original and paraphrased questions. The
final answer is determined by checking the consistency of outputs across these
parallel reasoning processes. We evaluate PPCV on mainstream LLMs, including
Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.2 and Qwen3-32B, across multi-
ple benchmarks covering mathematics and logical reasoning. Extensive experi-
ments demonstrate that PPCV substantially enhances the reasoning performance
of LLMs compared to baseline methods.

1 INTRODUCTION

Figure 1: Comparison of the effects
of critical tokens and Self-Consistency
on the reasoning performance of LLMs,
evaluated on samples from the MATH
training data.

The emergence of large language models (LLMs) (Brown
et al., 2020; Grattafiori et al., 2024; Achiam et al., 2023;
Yang et al., 2025a) has astonished the AI community with
their remarkable capabilities across a wide range of rea-
soning tasks, including mathematical problem solving,
programming, and planning. By generating intermedi-
ate reasoning steps through techniques such as chain-of-
thought prompting (Wei et al., 2022; Kojima et al., 2022;
Zhang et al., 2022; Sprague et al., 2025), LLMs can em-
ulate human-like reasoning processes and achieve strong
performance on diverse reasoning benchmarks.

Despite their success, the problem-solving ability of
LLMs often declines on complex reasoning tasks due to
hallucinations and the accumulation of errors in inter-
mediate steps (Lightman et al., 2023; Ling et al., 2023;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Bubeck et al., 2023). To mitigate this issue, prior works (Wang et al., 2024; Yuan et al., 2025;
Chen et al., 2024a; Chen & Li, 2024) have proposed the inference-time optimization paradigm,
which evaluates and refines reasoning trajectories through self-correction by the LLM itself or with
feedback from external verifiers such as process reward models (PRMs) (Uesato et al., 2022). How-
ever, existing studies (Yang et al., 2025b; Tyen et al., 2024; Stechly et al., 2025) suggest that LLMs
struggle to reliably identify errors in their reasoning and often fail to correct previous outputs with-
out external guidance. Moreover, obtaining high-quality, stepwise process supervision for training
external verifiers is challenging and limits the practicality of these approaches (Feng et al., 2025).

Figure 2: An example demonstrating how substi-
tution of a critical token (red) with a candidate to-
ken (purple) modifies the reasoning path and pro-
duces the correct answer.

Recent work has introduced the concept of crit-
ical tokens (Lin et al., 2025), which play piv-
otal roles in intermediate reasoning steps and
exert strong influence on subsequent reason-
ing and final outcomes. Prior studies suggest
that critical tokens often diverge from human-
annotated error tokens. Moreover, as illus-
trated in Figure 2, replacing critical tokens
in an incorrect reasoning trajectory with suit-
able candidate tokens can correct subsequent
steps and lead to the right answer in new roll-
outs. To quantitatively assess the effective-
ness of critical tokens, we conduct an empiri-
cal study using LLMs such as Llama-3.1-8B-
Instruct (Grattafiori et al., 2024) on reason-
ing tasks. Specifically, we randomly sample
100 instances with incorrect reasoning steps
from the GSM8K (Cobbe et al., 2021) and
Math500 (Hendrycks et al., 2021) training data.
Following the procedure in prior work, we lo-
cate critical tokens through exhaustive search. We then truncate the reasoning path at the critical to-
ken, substitute it with alternative tokens, and roll out new reasoning paths. For example, as shown in
Figure 2, the token “woman” is replaced with “remaining”. We evaluate performance using Pass@k
and compare against Self-Consistency (Wang et al., 2023), which also samples multiple reasoning
paths. As shown in Figure 1, critical token replacement provides a clear advantage in correcting
errors compared to plain sampling. Nonetheless, reliably identifying and leveraging critical tokens
for reasoning remains a nontrivial challenge. Additional results can be found in Appendix A.1.

Recent studies (Zhou et al., 2024; Chen et al., 2024b), on surface form—the way questions, assump-
tions, and constraints are phrased—have revealed its subtle influence on the trajectory of interme-
diate reasoning steps. This motivates us to explore the role of paraphrasing in the extraction and
utilization of critical tokens for reasoning tasks. To this end, we propose the Paraphrastic Probing
and Consistency Verification (PPCV) framework , a two-stage approach designed to leverage criti-
cal tokens to enhance the reasoning ability of LLMs. In the first stage, we probe critical tokens using
paraphrased questions. Specifically, we first roll out the initial reasoning path from the original ques-
tion, then concatenate paraphrased questions with this reasoning path. The resulting synthetic inputs
are fed into the LLM to obtain token-level logits for each position in the reasoning path. Positions
where the predicted top-1 token diverges from the expected token are flagged as potential pivotal
points, and an empirical criterion is applied to determine the final critical token. In contrast to prior
work (Lin et al., 2025), which depends on external models for identifying critical tokens with am-
biguous criteria, our method introduces a self-contained mechanism that pinpoints critical tokens.

In the second stage, we leverage the extracted critical tokens to refine the initial reasoning path.
Specifically, we select the top-K tokens (include critical token itself) at the critical token position
and roll out new reasoning paths for both the original and paraphrased questions. Based on the
empirical observation that trajectories leading to correct answers are robust to paraphrastic pertur-
bations, we propose a paraphrase consistency mechanism. In contrast to Self-Consistency (Wang
et al., 2023), which relies on majority voting across sampled trajectories, our method selects the
final answer by comparing outputs from paraphrased and original questions and choosing the one
with the most consistent matches. To address potential ties across multiple answers, we further in-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) (b) (c) (d)

Figure 3: Comparison of the impact of critical tokens versus random tokens on LLM reasoning
performance for GSM8K (a) and MATH (b). Comparison of the density distributions of consistency
scores for rollouts with correct and incorrect answers on GSM8K (c) and MATH (d).

troduce similarity-weighted paraphrase consistency, which incorporates similarity scores between
paraphrased and original questions when computing consistency.

Compared with self-correction (Wu et al., 2024; Miao et al., 2024) and PRM-based methods (Wang
et al., 2024; Yuan et al., 2025), our framework exploits critical tokens to refine reasoning trajecto-
ries without requiring step-level error detection by the LLM itself or auxiliary models. We evaluate
our method on mainstream LLMs across mathematical, logical, and commonsense reasoning bench-
marks, demonstrating consistent improvements in reasoning performance. The contributions of the
paper is summarized as follows:

• We propose a novel two-stage framework, Paraphrastic Probing and Consistency
Verification (PPCV) designed to extract and leverage critical tokens to enhance the rea-
soning performance of LLMs.

• We show that critical tokens can more effectively correct erroneous reasoning trajecto-
ries than traditional sampling methods like Self-Consistency. Furthermore, our approach
successfully extracts these tokens through paraphrastic probing, achieving improved final
results via paraphrase consistency.

• We evaluate our method on mainstream LLMs across various reasoning tasks, including
math and logic reasoning. Experimental results show significant performance improve-
ments over baseline methods.

2 RELATED WORK

Inference-Time Optimization for LLM reasoning. With the advent of chain-of-thought (CoT)
prompting, LLMs have demonstrated strong reasoning capabilities by producing intermediate steps
during inference. This success has motivated a growing body of work (Wu et al., 2025; Snell et al.,
2024) on augmenting reasoning trajectories at test time to further improve performance. Existing
approaches can be broadly categorized into search-based methods (Bi et al., 2025; Yao et al., 2023;
Hao et al., 2023; Xie et al., 2023; Besta et al., 2024), such as Tree-of-Thoughts (Yao et al., 2023), and
sampling-based methods (Wang et al., 2023; Xu et al., 2025; Wan et al., 2025; Ma et al., 2025), such
as Self-Consistency (Wang et al., 2023). However, due to intrinsic hallucinations (Bubeck et al.,
2023), LLMs often generate erroneous intermediate steps, which can ultimately lead to incorrect
answers, especially on complex problems. This limitation highlights the need for inference-time
optimization of reasoning processes.

To address this issue, one line of research (Yin et al., 2024; Chen et al., 2024a; Ling et al., 2023;
Wu et al., 2024; Miao et al., 2024; Madaan et al., 2023) designs instructional prompts that guide
LLMs to detect and refine their own mistakes. Despite its appeal, prior work has shown that the
effectiveness of self-correction is limited in practice. Another line of work (Wang et al., 2024; Yuan
et al., 2025; He et al., 2024; Havrilla et al., 2024) introduces external verifiers, such as process
reward models (PRMs) (Snell et al., 2024), to identify and filter out error-prone reasoning steps.
These methods typically require high-quality training data for the verifier, with data scarcity often
mitigated through strategies such as Monte Carlo Tree Search (MCTS) Guan et al. (2025); Qi et al.
(2025); Li (2025); Zhang et al. (2024). In addition, a recent line of decoding-based approaches (Xu
et al., 2025; Ma et al., 2025) seeks to improve reasoning by dynamically adjusting the next-token
prediction based on future trajectory probing. In contrast, our method refines reasoning by directly

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Phase I: Paraphrastic Probing

A bakery produces 60 loaves of bread each day … How
many loaves of bread are sold in the afternoon?

Step 1: paraphrase the original question.

In a bustling bakery, daily production meets the demand
for 60 freshly baked loaves… What is the number of loaves
sold in the afternoon?

A bakery produces 60 loaves of bread each day … How
many loaves of bread are sold in the afternoon?

To solve this problem, we will break it down into steps.
Step 1: Calculate the number of loaves sold in…Therefore,
the number of loaves of bread sold in the afternoon is 5.

Step 2: generate the initial response.

In a bustling bakery, daily production meets the demand
for 60 freshly baked loaves… What is the number of loaves
sold in the afternoon?

To solve this problem, we will break it down into steps.
Step 1: Calculate the number of loaves sold in…Therefore,
the number of loaves of bread sold in the afternoon is 5.

Top-1 tokens: 𝑝(To) = 0.89, 𝑝(solve) = 0.92, …. , 𝑝(the) =
0.71, 𝒑(total) = 0.60, …, 𝑝(sold) = 0.85, 𝒑(the) = 0.68,…

Expected tokens: 𝑝(To) = 0.89, 𝑝(solve) = 0.92, …. , 𝑝(the) =
0.71, 𝒑(number) = 0.25, …, 𝑝(sold) = 0.85, 𝒑(in) = 0.22,…

Step 3: Concatenate the paraphrased question with
the initial answer. And obtain the probabilities for
top-1 tokens and expected tokens at each position.

Step 4: Identify the critical token with the verifier Δ.

Δ(number) = 𝑝(total) −𝑝(number) = 0.60 - 0.25 = 0.35,
Δ(in) = 𝑝(the) - 𝑝(in) = 0.22 = 0.68-0.22 = 0.46. 0.46 > 0.35.
The token ‘in’ is the chosen critical token.

Phase II: Consistency Verification
Step 1: Obtain the candidate tokens at the critical
token position.

A bakery produces 60 loaves of bread each day … How
many loaves of bread are sold in the afternoon?

To solve this problem, we will break it down into steps.
Step 1: Calculate the number of loaves sold in.

‘during’, ‘the’, …

Step 2: Truncate the initial answer and replace the
critical token with the critical tokens.

To solve this problem, we will break it down into steps.
Step 1: Calculate the number of loaves sold during

To solve this problem, we will break it down into steps.
Step 1: Calculate the number of loaves sold the

Step 3 : Generate new trajectories from partial answers to both the original and paraphrased questions, and the
same procedure is also applied to the initial answer.

(Original) A bakery produces 60 loaves of bread each day
… How many loaves of bread are sold in the afternoon?

To solve this problem, we will break it down into steps.
Step 1: Calculate the number of loaves sold in.

To solve this problem… Calculate the number of loaves
sold in the morning. The bakery produces 60 loaves of
bread each day. Two-thirds of the loaves are sold in the
morning…Therefore, the number of loaves of bread sold in
the afternoon is 5.

(Paraphrased) In a bustling bakery, daily production meets
the demand for 60 freshly baked loaves… What is the number
of loaves sold in the afternoon?

To solve this problem, we will break it down into steps.
Step 1: Calculate the number of loaves sold in.

To solve this problem…Calculate the number of loaves
sold in the morning. The bakery produces 60 loaves, and
two-thirds of these loaves are sold in the morning.
…Therefore, the number of loaves of bread sold in the
afternoon is 8.

(Original) A bakery produces 60 loaves of bread each day
… How many loaves of bread are sold in the afternoon?

To solve this problem, we will break it down into steps.
Step 1: Calculate the number of loaves sold the.

To solve this problem,… Calculate the number of loaves
sold the first half of the day (before noon). Two-thirds of
60 loaves are sold before noon.… Therefore, the number
of loaves of bread sold in the afternoon is 10.

(Paraphrased) In a bustling bakery, daily production meets
the demand for 60 freshly baked loaves… What is the
number of loaves sold in the afternoon?

To solve this problem, we will break it down into steps.
Step 1: Calculate the number of loaves sold the.

To solve this problem,… Calculate the number of loaves
sold the morning after the bakery opens. The bakery
starts with 60 loaves…. Therefore, the number of loaves of
bread sold in the afternoon is 10.

Step 4 : Determine the final answer with consistency mechanism.

The answers derived from the second input are more consistent than that from the first input. Thus, the final answer is 10.

Figure 4: Illustration of the proposed paraphrastic probing and consistency verification (PPCV)
framework. The framework comprises two stages: (i) probing critical tokens through paraphrased
forms, and (ii) rolling out new reasoning steps with alternative tokens and selecting the final answer
using the paraphrase consistency verification mechanism.

leveraging critical tokens, without relying on stepwise verification or external verifiers. This design
underscores both the utility and universality of our approach.

Paraphrasing for LLMs. A growing number of work (Zhou et al., 2024; Chen et al., 2024b;
Gao et al., 2024) has examined the impact of a problem’s surface form on the reasoning ability of
LLMs. Findings (Zhou et al., 2024; Chen et al., 2024b; Huang et al., 2025) suggest that even subtle
modifications in phrasing can substantially affect both the reasoning process and the final outcome.
Building on this observation, several methods (Yadav et al., 2024; Chen et al., 2024b) leverage bene-
ficial paraphrasing to enhance LLM performance in tasks such as reasoning and intent classification.
In addition, paraphrasing has been employed to assess model uncertainty (Gao et al., 2024; Tanneru
et al., 2024), thereby enhancing the reliability and trustworthiness of LLM applications. In our work,
we utilize paraphrasing as a principled tool to extract critical tokens and to aggregate answers.

3 METHODOLOGY

In this section, we present the two components of our framework in detail: paraphrastic probing and
consistency verification. An detailed illustration of our framework is shown in Figure 4. We then
discuss the proposed method and provide the complete algorithm.

3.1 PARAPHRASTIC PROBING

Previous findings (Zhou et al., 2024; Chen et al., 2024b; Huang et al., 2025) on the impact of a prob-
lem’s surface form suggest that the quality of intermediate reasoning steps is influenced not only
by the underlying mathematical relationships and logic, but also by how the problem is expressed.
Notably, LLMs are sometimes able to solve a paraphrased version of a problem that they fail to
solve in its original form, highlighting the potential of paraphrasing to uncover pivotal tokens that
are critical for successful reasoning. Motivated by this observation, we introduce paraphrastic prob-
ing to efficiently identify the critical token. Given the original question q0, we first prompt the LLM
to generate multiple paraphrased forms, denoted as q1, q2, ..., qN , where N is the number of the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 5: (a) Illustration of paraphrastic probing for critical token identification. (b) Effect of the
critical token on an initial reasoning path that yields the correct answer. Critical tokens are high-
lighted in bold red, and alternative tokens in bold purple.

paraphrased questions. We adopt Automatic Prompt Engineering (APE) (Zhou et al., 2022) to de-
rive paraphrasing instructions that strictly preserve all numerical values, mathematical relationships,
and core logical structures of the problem, while maximizing linguistic and contextual diversity.
Additional details can be found in Appendix A.2. We then obtain the initial reasoning path rq00 for
the original question using greedy decoding. This reasoning path is subsequently concatenated with
each paraphrased question, and the resulting synthetic inputs are fed into the LLM to compute the
token probability distribution at each position in rq00 . Specifically, the token probability distribution
at ith position conditioned on the paraphrased question qn is expressed as

P qn
i = LLM(ãi|I, qn, rq00,<i), (1)

where I denotes the instruction prefix and ãi represents the sampled token at ith position. The token
ãi is regarded as a candidate critical token if predicted top-1 token does not match the expected token
at the same position in rq00 , i.e.,

argmaxP qn
i ̸= ai, (2)

where ai denotes the expected token at the ith position in rq00 .

To validate the effectiveness of our method and demonstrate the pivotal role of the critical tokens
extracted through paraphrastic probing, we conduct a case study illustrated in Figure 5(a). In this
example, the token “subtracting” is identified as a critical token. By substituting it with an al-
ternative (i.e., “adding”), the new rollout corrects the errors in the original reasoning steps and
yields the correct answer, underscoring the utility of our method in identifying critical tokens. In
addition, we conduct a quantitative analysis to investigate the impact of critical tokens extracted
through paraphrastic probing, comparing them against randomly selected tokens. Specifically, we
sample 100 instances with incorrect reasoning trajectories from the GSM8K (Cobbe et al., 2021)
and MATH500 (Hendrycks et al., 2021) training sets. Following the paraphrastic probing pipeline,
we identify candidate critical tokens in the initial reasoning steps, substitute them with alternative
tokens, and roll out multiple new reasoning paths. We randomly sample 40% of the candidate
critical tokens for evaluation in each run and repeat the experiments 10 times independently. For
comparison, we apply the same procedure to randomly chosen tokens. We evaluate performance us-
ing pass@k on Llama-3.1-8B-Instruct (Grattafiori et al., 2024), with results presented in Figure 3(a)
and Figure 3(b). The findings demonstrate that substituting critical tokens significantly improves
reasoning performance compared to random tokens, thereby further validating the pivotal role ex-
tracted critical tokens as well as the effectiveness of our method.

We introduce a heuristic verifier to select the final critical token from multiple candidates. For a
candidate token ai and paraphrased question qn, the verification score is defined as

∆qn(ai) = maxP qn
i − P qn

i (ãi = ai). (3)

where P qn
i denotes the predictive distribution at position i on question qn. Intuitively, ∆ measures

how much the predicted top-1 token deviates from the expected token, indicating the token’s po-
tential impact on the reasoning trajectory. For each extracted token ai,we take the maximum score

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 PPCV Framework
Input: LLM; original question q0; number of paraphrased questions N ; number of sampled alter-

native tokens K; temperature-scaling coefficient λ.
Output: Final answer ansf .

(Paraphrasing) Generate paraphrased variants q1, q2, . . . , qN from q0 using the LLM.
(Initial reasoning) Obtain the initial reasoning path rq00 for q0.
(Token influence analysis) For each paraphrased question qn, compute the token distribution
P qn by concatenating qn with rq00 (Eq. 1).
(Candidate selection) Identify candidate critical token positions based on the mismatch between
the top-1 predicted tokens and the expected tokens in q0 (Eq. 2).
(Critical token verification) Select the final critical token ac using the criteria (Eqs. 3–5).
(Alternative token sampling) Sample K alternative tokens a0c , a

1
c , . . . , a

K−1
c (including a0c =

ac) using top-K sampling on q0.
(Truncated rollouts) Truncate the initial reasoning path rq00 at position ac and form synthetic
inputs r̃0c , r̃

1
c , . . . , r̃

K−1
c by appending each alternative token.

for each synthetic input r̃kc , k = 0, . . . ,K − 1 do
Generate rollouts rq0k , rq1k , . . . , rqNk for the original and paraphrased questions using the LLM.

end for
(Consistency verification) Compute the final answer ansf using (similarity-weighted) paraphrase
consistency (Eq. 6).

across paraphrases,
∆(ai) = max

qn
∆qn(ai), (4)

and select the final critical token as
ac = argmax

i
∆(ai). (5)

3.2 CONSISTENCY VERIFICATION

After identifying the final critical token ac, we aim to refine the original reasoning path with al-
ternative tokens and achieve final answer with paraphrase consistency mechanism. Specifically,
we generate a set of alternative tokens a0c , a

1
c , a

2
c , ..., a

K−1
c using the LLM conditioned on original

question q0, where a0c is the original token in rq00 and the remaining tokens are sampled via top-K
sampling. The initial reasoning path is truncated at the position of critical token, and each alternative
token is concatenated to form synthetic inputs r̃0c , r̃

1
c , r̃

2
c , ..., r̃

K−1
c . We then roll out new reasoning

trajectories for each synthetic input with respect to both the original and paraphrased questions using
greedy decoding, denoted as rq0k , rq1k , ..., rqNk for k = 0, 1, 2, ...,K − 1. Next, for the rollout with
the kth alternative token, we compare the answers obtained from the paraphrased forms with that
from the original form and compute a consistency score ck =

∑N
n−1 I(Φ(r

q0
k) = Φ(rqnk)), where

Φ(·) and I(·) denotes the function that extracts the final answer from a reasoning trajectory and the
indicator function, respectively. The answer associated with the highest consistency score is then
selected as the final prediction

ansf = Φ(rq0k),where k = argmax
k

ck. (6)

To justify our paraphrase consistency mechanism, we investigate the impact of paraphrased forms
on LLM reasoning. We sample instances from the GSM8K (Cobbe et al., 2021) and MATH training
sets (Hendrycks et al., 2021) and follow our pipeline to extract critical tokens. From each truncated
reasoning trajectory, we roll out multiple reasoning paths by concatenating alternative tokens. For
each original question, we generate five paraphrased variants and compute the consistency score for
resulting rollouts. The evaluation is conducted on Llama-3.1-8B-Instruct (Grattafiori et al., 2024).
We then analyze the distribution of consistency scores for rollouts that yield correct versus incorrect
answers. As shown in Figure 3(c) and Figure 3(d), more than 90% of rollouts with correct answers
achieve a consistency score of at least 1, whereas this proportion drops to around 30% for rollouts
with incorrect answers. This sharp contrast indicates that correct rollouts are more robust across
paraphrased variants, motivating the design of our paraphrase consistency mechanism to exploit this
property for improved final predictions.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of our method with baseline approaches on Llama-3.1-8B-Instruct and Mistral-
7B-Instruct-v0.2.

Model Method GSM8K GSM-Hard Math500 SVAMP ARC

Llama-3.1-8B-Instruct

Chain-of-Thought 77.40 28.00 31.00 83.00 58.91
Self-Consistency 80.60 31.80 37.80 85.10 60.75
Tree-of-Thought 75.74 33.28 31.60 81.20 80.72
Guided Decoding 75.51 32.45 31.20 81.70 81.74
Predictive Decoding 81.43 40.26 34.00 85.90 84.56
Phi-Decoding 86.58 39.88 38.20 84.50 85.41
PPCV (Ours) 88.24 49.73 50.00 89.60 88.31

Mistral-7B-Instruct-v0.2

Chain-of-Thought 46.45 26.91 12.20 62.40 41.42
Self-Consistency 50.38 28.65 14.20 66.70 44.54
Tree-of-Thought 50.49 25.78 11.40 60.60 41.04
Guided Decoding 50.79 27.07 14.00 62.90 39.51
Predictive Decoding 55.67 27.07 14.40 62.10 47.87
Phi-Decoding 56.60 28.43 13.40 63.20 60.24
PPCV (Ours) 56.58 31.08 14.60 69.30 69.88

Table 2: Comparison of our method with baseline approaches on Qwen3-32B (non-thinking mode).

Model Method AIME2024 AIME2025 BRUMO2025 HMMT2025

Qwen3-32B

Chain-of-Thought 30.00 23.67 30.00 9.67
Guided Decoding 26.67 22.67 28.67 7.33
Predictive Decoding 32.67 24.00 33.33 10.33
Phi-Decoding 33.60 24.33 36.67 10.67
PPCV (Ours) 40.00 26.00 43.33 13.33

To address potential collisions when multiple answers obtain the same maximum consistency score,
we introduce similarity-weighted consistency verification. Inspired by weighted majority vot-
ing (Dogan & Birant, 2019), this approach adjusts the influence of each paraphrased form on the
consistency score according to its similarity to the original form. Intuitively, paraphrased forms
with lower similarity should exert greater weight, as they provide stronger evidence of robustness,
whereas those closely resembling the original form contribute less. Concretely, we first extract
embeddings for both the original and paraphrased questions and compute their similarity scores
as sn = sim(q0, qn), where sim(·) denotes a similarity measure such as cosine similarity. We
then derive weights via a softmax function wn = softmax(sn) = exp(−λsn)∑

n exp(−λn) , where λ is the
temperature scaling coefficient. Finally, the similarity-weighted consistency score is defined as
c̃k =

∑N
n−1 wnI(Φ(rq0k) = Φ(rqnk)). This ensures agreement with more diverse paraphrases con-

tributes more strongly to the final decision.

3.3 DISCUSSION

We have shown that replacing critical tokens can correct intermediate reasoning paths and lead to
the correct answer. In this section, we examine how our method influences reasoning paths that
are already correct. First, we conduct a case study on an instance with a correct answer, where we
follow our pipeline to identify the critical token and roll out new reasoning paths using alternative
tokens. As illustrated in Figure 5(b), the new rollouts also yield the correct answer. Second, our
pipeline incorporates both the initial reasoning path rq00 and its paraphrased variants rqn0 for evalu-
ation. The robustness of correct rollouts across paraphrased forms ensures high consistency scores,
allowing them to stand out as the final answer. These findings suggest that our pipeline preserves the
performance of LLMs on problems that can already be solved correctly by CoT (Wei et al., 2022).
Finally, the complete algorithm of our proposed PPCV framework is illustrated in Algo. 1.

Our technical contributions differ from prior works in three distinct ways. First, prior works (Zhou
et al., 2024; Chen et al., 2024b; Yadav et al., 2024) typically use paraphrasing merely to expand the
solution space. In contrast, we introduce Paraphrastic Probing, a mechanism that uses paraphras-
ing to test the model’s internal confidence. By analyzing the discrepancy in token-level logits of
the initial trajectory between the original and paraphrased questions, we can rigorously pinpoint the
critical tokens that may lead to errors in the following steps.This transforms paraphrasing from a
generation tool into a precise, token-level diagnostic tool. Second, prior works (Zhou et al., 2024;

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Comparison of model performance when using critical tokens versus random tokens.

Method GSM8K GSM-Hard Math500 SVAMP ARC
Chain-of-Thought 77.40 28.00 31.00 83.00 58.91
random tokens 82.08 40.29 42.12 84.77 75.68
critical tokens (Ours) 88.24 49.73 50.00 89.60 88.31

Table 4: Comparison of our proposed paraphrase consistency against the majority voting.

Method GSM8K GSM-Hard Math500 SVAMP ARC
Chain-of-Thought 77.40 28.00 31.00 83.00 58.91
majority voting 87.20 47.36 48.19 88.80 86.16
paraphrase consistency (Ours) 88.24 49.73 50.00 89.60 88.31

Chen et al., 2024b) typically rely on simple majority voting across multiple solutions. Our Para-
phrase Consistency mechanism is technically distinct. It validates answers based on their robustness
across semantic variations of the problem constraint. We further introduce a similarity-weighted
consistency metric that weighs answers based on the linguistic diversity of the paraphrase, offering
a more nuanced selection criterion than simple frequency counts. At last, a major technical limita-
tion in current reasoning research is the reliance on external models or human-annotated error steps.
Our method contributes a fully self-contained pipeline that identifies and corrects errors using the
model’s own sensitivity to surface-form perturbations. We believe our proposed framework repre-
sents a significant methodological advancement, offering a way to ”find the cracks” in reasoning
without the heavy computational or data overhead of training separate verifiers.

Although we select the top candidate for the primary experiments to maintain computational effi-
ciency, the framework itself naturally extends to the multi–critical-token setting. For multiple critical
tokens, we can generate alternative tokens for each identified position and apply paraphrase consis-
tency across the new rollouts. This allows the model to refine multiple segments of its intermediate
reasoning steps rather than only one.

4 EXPERIMENTS

In this section, we first describe the experimental setup, followed by the main results of our proposed
method compared to the baselines. We then analyze the contribution of each stage individually.
Finally, we examine the actual running time of our method and compare it against the baselines.

4.1 SETUP

Datasets. To comprehensively assess our method, we evaluate it on seven benchmarks. Six fo-
cus on mathematical reasoning, including GSM8K (Cobbe et al., 2021), GSM-Hard (Gao et al.,
2023), SVAMP (Patel et al., 2021), Math500 (Hendrycks et al., 2021), and the more challeng-
ing competition-level datasets AIME2024, AIME2025, BRUMO2025, and HMMT2025 (Balunović
et al., 2025). In addition, we use ARC-Challenge (Clark et al., 2018) to evaluate knowledge reason-
ing ability of large language models.

Baselines. In our experiments, we use Chain-of-Thought (CoT) (Wei et al., 2022), Tree-of-
Thought (ToT) (Yao et al., 2023), Guided Decoding (Xie et al., 2023), Predictive Decoding (Ma
et al., 2025), and Phi-Decoding (Xu et al., 2025) as baselines.

Metric. Following prior work, we adopt pass@1 accuracy as the primary evaluation metric.

Implementation Details. In our experiments, we adopt Llama-3.1-8B-Instruct (Grattafiori et al.,
2024), Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), Qwen-3-32B (Yang et al., 2025a) and
DeepSeek-R1-Distill-Llama-70B as the target models. we employ the non-thinking mode for Qwen-
3-32B. Throughout our method, we employ the same model for generating paraphrased problems,
identifying critical tokens, and producing new rollouts. In the first stage, we generate three para-
phrased variants of each problem, while for the other datasets we generate five variants. In the
second stage, we select the top 10 tokens for new rollouts, with the temperature scaling coefficient
λ set to 2. We also adopt a zero-shot CoT prompt to elicit the new rollouts. For the baselines,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) (b) (c)

Figure 6: (a) The impact of number of sampled alternative tokens on the performance. (b) Latency
comparison between the baselines and our method, measured as the average inference time per
question (in seconds). T1, T2, T3, T4 denote time for paraphrased question generation, initial answer
generation, forward pass and new rollouts from truncated trajectories. (c) Throughput comparison
between the baselines and our method, measured in output tokens per second.

we strictly follow their original settings, including temperature values, sampling strategies, and the
number of few-shot examples. All experiments are conducted on NVIDIA A100 GPUs.

4.2 MAIN RESULTS

The main results are summarized in Table 1 and Table 2. The results indicate that Self-Consistency
effectively improves the reasoning performance of LLMs compared to vanilla Chain-of-Thought
prompting. For example, Llama-3.1-8B-Instruct (Grattafiori et al., 2024) achieves about 3% higher
accuracy with Self-Consistency than with CoT. These findings suggest that augmenting reason-
ing during inference through sampling is an effective way to refine reasoning trajectories. Recent
decoding-based methods, such as Predictive Decoding (Ma et al., 2025) and Phi-Decoding (Xu
et al., 2025), also achieve strong results.Unlike prior works that rely on carefully designed prompts
to self-correct errors in intermediate steps, these two methods modify the current step by probing
future steps with pre-defined reward signals. Furthermore, our experimental results demonstrate
that the proposed method consistently outperforms the baselines across most tasks, spanning both
mathematical and knowledge reasoning, thereby highlighting its generalization ability across differ-
ent reasoning settings. Notably, our method even surpasses the latest approaches such as Predictive
Decoding (Ma et al., 2025) and Phi-Decoding (Xu et al., 2025). In particular, it achieves approxi-
mately 50.00% accuracy on the Math500 dataset (Hendrycks et al., 2021), exceeding these baselines
considerably. The results on competition-level datasets further demonstrate the effectiveness of our
method in enhancing the reasoning ability of LLMs. These results indicate that our method can ef-
fectively extract critical tokens that play a pivotal role in the final outcome and correct the reasoning
trajectory by leveraging alternative tokens. Additional results can be found in Appendix A.3.

4.3 ABLATION STUDY

Figure 7: Trade-off between performance and efficiency for our
method under different numbers of top-k tokens (k = 3, 5, 7, 10),
measured by latency (left) and throughput (right).

In this section, we analyze
the contribution of each
stage individually. Ad-
ditionally, we investigate
how the number of sam-
pled alternative tokens af-
fects the overall perfor-
mance. All the evaluations
are conducted on Llama-
3.1-8B-Instruct (Grattafiori
et al., 2024). Additional
ablation study can be found in Appendix A.4.

Effectiveness of extracted critical tokens. To demonstrate the effectiveness of our extracted critical
tokens, we conduct an evaluation in which the critical tokens are replaced with random tokens in the
first stage, while keeping the second stage unchanged. This evaluation is performed across multiple
benchmark datasets, with pass@1 as the metric. The results, shown in Table 3, reveal a substantial

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

decline in performance. These findings highlight the pivotal role of critical tokens and indicate that
our method can effectively identify and extract them.

Effectiveness of paraphrase consistency. We also evaluate the effectiveness of our proposed para-
phrase consistency and compare it with traditional majority voting. While keeping the first stage
unchanged, instead of using paraphrased forms to generate new reasoning steps, we simply sample
multiple new steps from alternative tokens conditioned on the original question and use majority
voting to determine the final answer. The results, shown in Table 4, reveal a noticeable decline
in performance, highlighting the importance of paraphrased forms in improving the intermediate
reasoning steps.

Impact of number of sampled alternative tokens.We investigate the influence of the number of
sampled alternative tokens in the second stage by selecting values of 3, 5, 7, and 10. The results,
shown in Figure 6(a), demonstrate that performance improves as the number of alternative tokens in-
creases. This suggests that exploring more reasoning steps with additional alternative tokens during
inference can be beneficial for reasoning tasks.

5 COMPUTATIONAL COST ANALYSIS

In this section we examine the composition of the latency in our method. The latency arises from
four components: Paraphrased question generation (T1); initial answer generation (T2), equivalent to
vanilla CoT; a forward pass for identifying critical tokens (T3), which does not generate new tokens
and is computationally lightweight; rollouts of truncated trajectories using alternative tokens under
both the original and paraphrased questions (T4), which constitutes the main source of overhead.

We evaluate all components on Llama-3.1-8B-Instruct using vLLM on NVIDIA A100 GPUs, with
a maximum output length of 4096 tokens for each question. For our method, we use 5 paraphrased
questions on math datasets and 3 on ARC, and select the top-10 candidate tokens as alternatives. The
updated average latency results are reported in Figure 6(b). As expected, T1 scales with the number
of paraphrases, T3 remains minimal, and T4 dominates the total cost. Specifically, T4 depends on
the number of top-k alternative tokens, the number of paraphrased questions and the position of
the critical token in the trajectory. Since the new rollouts from truncated trajectories for different
alternative tokens and paraphrased questions are independent, T4 can take advantage of vLLM’s par-
allelism. These rollouts can therefore be processed concurrently, improving overall efficiency. This
is reflected in the higher throughput (tokens/sec) shown in Figure 6(c). And results of our method
in latency comparable to baseline methods, even on challenging benchmarks such as MATH500 and
GSM-Hard where the critical token tends to occur in later reasoning steps. On benchmarks such as
GSM8K and SVAMP, both our method and baselines like Predictive Decoding exhibit higher latency
compared to vanilla Chain-of-Thought.

We also conduct a trade-off analysis between performance and efficiency by varying the number of
alternative tokens considered at the critical position. Specifically, we test top-3, top-5, top-7, and
top-10 alternatives using GSM8K, sampling 200 random questions and repeating the experiment
five times to compute confidence intervals. The results are presented in Figure 7. We observe a
clear trade-off. Reducing the number of alternative tokens lowers both latency and throughput,
while causing a slight reduction in accuracy. This provides a practical mechanism for adjusting
performance-efficiency trade-offs in real deployments. Depending on resource availability and target
accuracy, practitioners can choose the appropriate number of alternative tokens.

6 CONCLUSION

In this study, we further investigate the pivotal role of critical tokens in shaping the reasoning tra-
jectory, as well as the beneficial impact of paraphrase forms on reasoning. To leverage these two
factors, we propose the Paraphrastic Probing and Consistency Verification (PPCV) framework. Our
framework consists of two stages: Paraphrastic Probing, which identifies and extracts critical to-
kens, and Consistency Verification, which uses paraphrase forms to generate new reasoning trajec-
tories with alternative tokens to reach the final answer. We evaluate our proposed framework with
different LLMs and extensive evaluations across multiple benchmarks demonstrate the promising
performance of our method.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint, 2023.

Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Math-
arena: Evaluating llms on uncontaminated math competitions, May 2025. URL https:
//matharena.ai/.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 17682–17690, 2024.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling test-
time compute for enhancing llm reasoning. In Forty-second International Conference on Machine
Learning, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint, 2023.

Sijia Chen and Baochun Li. Toward adaptive reasoning in large language models with thought
rollback. In Forty-first International Conference on Machine Learning, 2024.

Sijia Chen, Baochun Li, and Di Niu. Boosting of thoughts: Trial-and-error problem solving with
large language models. In The Twelfth International Conference on Learning Representations,
2024a.

Wenqing Chen, Weicheng Wang, Zhixuan Chu, Kui Ren, Zibin Zheng, and Zhichao Lu. Self-para-
consistency: Improving reasoning tasks at low cost for large language models. In Findings of the
Association for Computational Linguistics ACL 2024, pp. 14162–14167, 2024b.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint, 2021.

Alican Dogan and Derya Birant. A weighted majority voting ensemble approach for classification.
In 2019 4th international conference on computer science and engineering (UBMK), pp. 1–6.
IEEE, 2019.

Shengyu Feng, Xiang Kong, Shuang Ma, Aonan Zhang, Dong Yin, Chong Wang, Ruoming Pang,
and Yiming Yang. Step-by-step reasoning for math problems via twisted sequential monte carlo.
In The Thirteenth International Conference on Learning Representations, 2025.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Xiang Gao, Jiaxin Zhang, Lalla Mouatadid, and Kamalika Das. Spuq: Perturbation-based uncer-
tainty quantification for large language models. In Proceedings of the 18th Conference of the
European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 2336–2346, 2024.

11

https://matharena.ai/
https://matharena.ai/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint, 2024.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao
Yang. rstar-math: Small llms can master math reasoning with self-evolved deep thinking. In
Forty-second International Conference on Machine Learning, 2025.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. Rea-
soning with language model is planning with world model. In NeurIPS 2023 Workshop on Gen-
eralization in Planning, 2023.

Alexander Havrilla, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, and Roberta Raileanu. Glore: When, where, and how
to improve llm reasoning via global and local refinements. In Forty-first International Conference
on Machine Learning, 2024.

Mingqian He, Yongliang Shen, Wenqi Zhang, Zeqi Tan, and Weiming Lu. Advancing process
verification for large language models via tree-based preference learning. In Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, pp. 2086–2099, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

Kaixuan Huang, Jiacheng Guo, Zihao Li, Xiang Ji, Jiawei Ge, Wenzhe Li, Yingqing Guo, Tianle
Cai, Hui Yuan, Runzhe Wang, et al. Math-perturb: Benchmarking llms’ math reasoning abilities
against hard perturbations. In Forty-second International Conference on Machine Learning, 2025.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, and William El Sayed. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Yang Li. Policy guided tree search for enhanced llm reasoning. In Forty-second International
Conference on Machine Learning, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Zicheng Lin, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xing Wang, Ruilin Luo, Chufan Shi, Siheng Li, Yu-
jiu Yang, and Zhaopeng Tu. Critical tokens matter: Token-level contrastive estimation enhances
llm’s reasoning capability. In Forty-second International Conference on Machine Learning, 2025.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao Su.
Deductive verification of chain-of-thought reasoning. Advances in Neural Information Processing
Systems, 36:36407–36433, 2023.

Chang Ma, Haiteng Zhao, Junlei Zhang, Junxian He, and Lingpeng Kong. Non-myopic generation
of language models for reasoning and planning. In The Thirteenth International Conference on
Learning Representations, 2025.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: Using llms to zero-shot check their own
step-by-step reasoning. In The Twelfth International Conference on Learning Representations,
2024.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 2080–2094,
2021.

Zhenting Qi, MA Mingyuan, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual rea-
soning makes smaller llms stronger problem-solver. In The Thirteenth International Conference
on Learning Representations, 2025.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint, 2024.

Zayne Rea Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa,
Prasann Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot?
chain-of-thought helps mainly on math and symbolic reasoning. In The Thirteenth International
Conference on Learning Representations, 2025.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. On the self-verification limita-
tions of large language models on reasoning and planning tasks. In The Thirteenth International
Conference on Learning Representations, 2025.

Sree Harsha Tanneru, Chirag Agarwal, and Himabindu Lakkaraju. Quantifying uncertainty in nat-
ural language explanations of large language models. In International Conference on Artificial
Intelligence and Statistics, pp. 1072–1080. PMLR, 2024.

Gladys Tyen, Hassan Mansoor, Victor Cărbune, Yuanzhu Peter Chen, and Tony Mak. Llms cannot
find reasoning errors, but can correct them given the error location. In Findings of the Association
for Computational Linguistics ACL 2024, pp. 13894–13908, 2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint, 2022.

Guangya Wan, Yuqi Wu, Jie Chen, and Sheng Li. Reasoning aware self-consistency: Leveraging
reasoning paths for efficient llm sampling. In Proceedings of the 2025 Conference of the Nations
of the Americas Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 3613–3635, 2025.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for llm problem-solving. In The Thirteenth
International Conference on Learning Representations, 2025.

Zhenyu Wu, Qingkai Zeng, Zhihan Zhang, Zhaoxuan Tan, Chao Shen, and Meng Jiang. Large
language models can self-correct with key condition verification. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 12846–12867, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael
Xie. Self-evaluation guided beam search for reasoning. Advances in Neural Information Process-
ing Systems, 36:41618–41650, 2023.

Fangzhi Xu, Hang Yan, Chang Ma, Haiteng Zhao, Jun Liu, Qika Lin, and Zhiyong Wu. Phi-
decoding: Adaptive foresight sampling for balanced inference-time exploration and exploitation.
In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 13214–13227, 2025.

Vikas Yadav, Zheng Tang, and Vijay Srinivasan. Pag-llm: Paraphrase and aggregate with large lan-
guage models for minimizing intent classification errors. In Proceedings of the 47th international
ACM SIGIR conference on research and development in information retrieval, pp. 2569–2573,
2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint, 2025a.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Minkai Xu, Joseph E Gonzalez, Bin CUI, and Shuicheng
YAN. Supercorrect: Advancing small llm reasoning with thought template distillation and self-
correction. In The Thirteenth International Conference on Learning Representations, 2025b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Zhiyuan Zeng, Xiaonan Li, Junqi Dai, Qinyuan Cheng,
Xuan-Jing Huang, and Xipeng Qiu. Reasoning in flux: Enhancing large language models reason-
ing through uncertainty-aware adaptive guidance. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2401–2416, 2024.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan
Liu, and Hao Peng. Free process rewards without process labels. In Forty-second International
Conference on Machine Learning, 2025.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. Advances in Neural Information Processing
Systems, 37:64735–64772, 2024.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. In The Eleventh International Conference on Learning Representations,
2022.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The eleventh interna-
tional conference on learning representations, 2022.

Yue Zhou, Yada Zhu, Diego Antognini, Yoon Kim, and Yang Zhang. Paraphrase and solve: Ex-
ploring and exploiting the impact of surface form on mathematical reasoning in large language
models. In Proceedings of the 2024 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers),
pp. 2793–2804, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 8: Comparison of the effects of critical tokens and Self-Consistency on the reasoning perfor-
mance of LLMs, evaluated on samples from the GSM8K training data.

A APPENDIX

A.1 EMPIRICAL STUDY

We follow the heuristic criterion introduced in prior work (Lin et al., 2025) to evaluate the impact
of critical tokens on the reasoning performance of LLMs and compare our approach with baselines
such as Self-Consistency (Wang et al., 2023). In our empirical study, we sample multiple new
rollouts at each token position along the reasoning path and evaluate their pass@k performance. A
token is identified as critical if it satisfies two conditions: (1) the performance of its new rollouts is
0, and (2) the performance of subsequent tokens’ rollouts falls below 5%. After identifying a critical
token, we truncate the initial reasoning path at its position, replace it with alternative tokens, and
then continue rolling out new reasoning paths. We compare the performance of these new rollouts
against baselines such as Self-Consistency (Wang et al., 2023). The results on GSM8K (Cobbe
et al., 2021), shown in Figure 8, highlight the pivotal role of critical tokens in shaping reasoning
performance.

A.2 AUTOMATIC PROMPT ENGINEERING FOR PARAPHRASING

The quality of paraphrased questions is crucial for our framework, as it directly affects both the iden-
tification of critical tokens and the stability of paraphrase-based consistency verification. To ensure
high-quality paraphrasing, we adopt Automatic Prompt Engineering (APE) (Zhou et al., 2022) as
an evaluation to optimize the paraphrasing instruction. This allows us to systematically control the
quality of paraphrases rather than relying solely on manually written prompts. The APE procedure
we employ consists of four steps:

• We create a small set of original questions paired with valid paraphrased variants. Using
this exemplar set, the model generates multiple candidate instructions that could produce
the paraphrased outputs from the original questions.

• Prompt each candidate instruction to the language model to generate paraphrases for the
original problems and compare the mean solve rate change before and after paraphrasing.

• Choose the instruction that maximizes the mean solve rate change.
• Repeat the previous steps multiple times.

In our experiments, we initialize the paraphrasing instruction and iteratively refine it using APE
with samples drawn from the GSM8K and MATH500 training sets. With this approach, the refined
paraphrasing prompt helps us reliably produce high-quality paraphrased questions.

A.3 MAIN RESULTS

To further assess the effectiveness of our method, we evaluate it on a larger reasoning model such
as DeepSeek-R1-Distill-Llama-70B. We apply our full pipeline and compare against all baselines

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Comparison between our method and baselines with DeepSeek-R1-Distill-Llama-70B
model on mathematical reasoning benchmarks.

Method AIME2024 AIME2025 BRUMO2025 HMMT2025
Chain-of-Thought 56.67 38.00 43.33 30.00
Predictive Decoding 60.00 40.66 44.66 30.66
Phi-Decoding 64.00 46.67 48.00 31.33
PPCV (Ours) 70.00 56.66 56.66 33.33

Table 6: Comparison of our method and the baseline approach on Llama-3.1-8B-Instruct, evaluated
using pass@k (k=4).

Method GSM8K GSM-Hard Math500 SVAMP ARC
Phi-Decoding 92.15 53.57 52.60 91.19 90.73
PPCV (Ours) 93.83 61.41 59.39 94.48 94.24

Table 7: Comparison of our method and the baseline approach on Qwen3-32B, evaluated using
pass@k (k=4).

Method AIME2024 AIME2025 BRUMO2025 HMMT2025
Phi-Decoding 41.61 30.19 45.09 13.11
PPCV (Ours) 49.71 34.28 51.42 19.28

Table 8: The comparison of performance between Paraphrased Majority Voting (PMV) and our
proposed PPCV.

Method GSM8K GSM-Hard Math500 SVAMP ARC
Chain-of-Thought 77.40 28.00 31.00 83.00 58.91
PMV 78.55 30.16 32.60 84.10 60.63
PPCV (Ours) 88.24 49.73 50.00 89.60 88.31

across multiple mathematical reasoning benchmarks. The results, presented in Table 5, show that our
method consistently outperforms the baselines. These improvements demonstrate that our approach
remains effective for stronger reasoning models and generalizes well beyond the smaller models.

we also conduct additional experiments to report pass@k performance for both our method and the
baselines. In these experiments, we use Phi-Decoding as the representative baseline and evaluate
on two models: Llama-3.1-8B-Instruct and Qwen3-32B. We set k= 4 and generate 12 samples per
question to obtain stable estimates of pass@4. The results across multiple benchmarks are pre-
sented in Table 6 and Table 7, respectively. Consistent with our main findings, our method achieves
higher pass@k scores compared to the baseline methods, indicating that paraphrastic critical-token
refinement continues to provide benefits in a multi-sample setting. These results further validate
the robustness of our approach under stochastic sampling and demonstrate improved hit rates when
multiple outputs are available.

A.4 ABLATION STUDY

We also perform a comparison against a Paraphrased Majority Voting (PMV) strategy is essential
to demonstrate that the performance gains of our method are indeed derived from the critical token
correction, rather than simply the benefit of having multiple paraphrased samples. Thus, we have
performed the suggested additional experiment. We adopt Paraphrased Majority Voting (PMV) as
the baseline. This approach uses the same total number of trajectories generated from the para-
phrased questions as PPCV, and reaches the final answer using standard majority voting over the
rollouts from the paraphrased questions. We compare the PMV baseline against our full PPCV
method and ensure the same number of paraphrased questions as in our method. The results shown
in Table 8 demonstrate that the performance yielded by PMV is significantly lower than that of our
proposed PPCV method. This result confirms that simply rolling out trajectories from paraphrased
questions and aggregating the answers is insufficient. The substantial performance gap between
PMV and PPCV decisively highlights the necessity and effectiveness of our extracted critical tokens
and the subsequent corrective reasoning step.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.5 PROMPTS

Prompts for reasoning (for math datasets)

System: You are a specialized AI assistant designed to solve mathematical problems.

User: Please solve the following problem step by step, and put your final answer within
boxed{}.

Each pack of dvds costs 76 dollars. If there is a discount of 25 dollars on each pack How
much do you have to pay to buy each pack?

Assistant: To find the price after the discount, we need to subtract the discount amount from
the original price.
Step 1: Identify the original price and the discount amount.Original price = $76. Discount
amount = $25
Step 2: Subtract the discount amount from the original price. Price after discount = Original
price - Discount amount. Price after discount = $76 - $25. Price after discount = $51
So, you have to pay $51 to buy each pack.
boxed{$51}

Prompts for reasoning (for ARC dataset)

System: You are a specialized AI assistant designed to solve complex reasoning problems.

User: Your task is to carefully read the following question, apply logical reasoning, scientific
knowledge, and commonsense inference, and arrive at the correct answer. Always explain
your reasoning step by step in clear language. At the end of your response, output the final
choice in the following format: The answer is: (option), where option is the correct option
letter (A, B, C, D, etc.), enclosed in parentheses.

A group of engineers wanted to know how different building designs would respond during
an earthquake. They made several models of buildings and tested each for its ability to with-
stand earthquake conditions. Which will most likely result from testing different building
designs?
(A) buildings will be built faster
(B) buildings will be made safer
(C) building designs will look nicer
(D) building materials will be cheaper?

Assistant: We are given a scenario in which engineers are testing different building designs
to see how well they withstand earthquake conditions. The goal is to determine which of the
listed outcomes is most likely to result from such testing.
Let 2019s evaluate each option in turn:
(A) Buildings will be built faster. 2013 This is not directly related to how well a building
withstands earthquakes. Earthquake resistance is about structural integrity, not construction
speed. While a good design might simplify construction, the primary purpose of the test is
not speed. So this is not the most likely result.
(B) Buildings will be made safer 2013 This is directly aligned with the purpose of the exper-
iment. Testing building designs under earthquake conditions helps identify which designs
can better absorb or resist seismic forces. The goal is to improve safety during earthquakes.
Therefore, this outcome is a direct and logical result of such testing.
(C) Building designs will look nicer 2013 Aesthetics are not the focus of earthquake testing.
While a design might be both safe and attractive, the test itself does not evaluate visual
appeal. So this is not a likely result of the testing.
(D) Building materials will be cheaper 2013 Cost of materials is not necessarily a result of
testing for earthquake resistance. ...
The answer is: (B)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Prompts to paraphrase the question (for math datasets)

System: You are a paraphrasing assistant specialized in math problems. Your task is to para-
phrase a given math word problem. The core objective is to create a new, diverse expression
of the problem while strictly preserving all numerical values, mathematical relationships,
and the core logic required to solve it.

User: Please create 5 paraphrased versions of the question below. Do NOT change any
numbers or quantities. Maintain the exact mathematical operations and relationships. And
vary the context and language. Please output paraphrased questions starting with a bracketed
serial number like [1] [2] and ending with a new line.

A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?

Assistant:
[1] Two bolts of blue fabric and one and a half times that amount of white fabric are required
to make a robe. How many bolts in all are needed?

[2] A robe is made from 2 bolts of blue yarn and an additional amount equal to half of that
for white yarn. In total, how many bolts does it call for?

[3] To create a robe, you’ll need 2 bolts of blue thread and another half-quantity of white
thread. How many bolts of thread in total should you purchase?

[4] For a single robe, the production process demands 2 bolts of blue fabric and 1.5 times as
much white fabric. What is the total number of bolts required?

[5] The manufacture of a robe necessitates the usage of 2 bolts of blue material and slightly
less than double that quantity for white material. How many total bolts does this equate to?

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Prompts to paraphrase the question (for ARC dataset)

System: You are given a multiple-choice question from a reasoning benchmark. Your task
is to generate multiple different paraphrased versions of the question. Each version must
preserve the original meaning, answer choices, and scientific/commonsense accuracy.
Guidelines: - Keep the question logically equivalent to the original. - Do not change the
correct answer. - Do not add or remove details that would alter the difficulty. - Use different
phrasing, sentence structures, or synonyms for each version. - Keep the multiple-choice
options (A, B, C, D, etc.) unchanged.
Example Input: A large gene has dozens of exons, of which the central ones code for folded
triple helical repeats that connect the cytoskeleton with sarcolemma and extracellular space.
Each exon usually codes for one folded triple alpha helix. The most common mutations
of the gene are central exon deletions that create out-of-frame peptides and progressive de-
generative organ waste. A solution is to deliver a Morpholino that recognizes the 5’ end of
the out-of-frame exon in pre-mRNA. The molecule prevents binding of the spliceosome and
creates exon skipping and in-frame joining. Several missing exons are well tolerated by an
organism. Which structure below is not involved in the proposed therapy?

(A) antisense (B) lariat (C) R-loops (D) polyA tail

User: Please create 3 paraphrased versions of the question below. Only paraphrases the ques-
tion and leaves the multiple-choice options untouched. Please output paraphrased questions
starting with a bracketed serial number like [1] [2] and ending with a new line,

An astronomer observes that a planet rotates faster after a meteorite impact. Which is the
most likely effect of this increase in rotation?
(A) Planetary density will decrease.
(B) Planetary years will become longer.
(C) Planetary days will become shorter.
(D) Planetary gravity will become stronger.

Assistant:
[1] An astronomer notices that a planet’s rotational speed increases following a meteorite
collision. What is the most probable consequence of this accelerated rotation? (A) Planetary
density will decrease.
(B) Planetary years will become longer.
(C) Planetary days will become shorter.
(D) Planetary gravity will become stronger.

[2] After a meteorite strikes a planet, the astronomer observes an increase in its rotational
velocity. What is the most likely outcome of this faster rotation? (A) Planetary density will
decrease.
(B) Planetary years will become longer.
(C) Planetary days will become shorter.
(D) Planetary gravity will become stronger.

[3] A planet begins to rotate more quickly after experiencing a meteorite impact. Which of
the following is most likely to result from this increased spin? (A) Planetary density will
decrease.
(B) Planetary years will become longer.
(C) Planetary days will become shorter.
(D) Planetary gravity will become stronger.

A.6 USE OF LARGE LANGUAGE MODELS

In our work, we focus on improving large Malaguena models, and LLMs are used in our experi-
mental evaluation. In addition, we employ LLMs to check grammatical errors and refine sentence
structures.

19

	Introduction
	Related Work
	Methodology
	Paraphrastic Probing
	Consistency Verification
	Discussion

	Experiments
	Setup
	Main Results
	Ablation Study

	Computational Cost Analysis
	Conclusion
	Appendix
	Empirical Study
	Automatic Prompt Engineering for Paraphrasing
	Main results
	Ablation Study
	Prompts
	Use of Large Language Models

