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Abstract
Knowledge Discovery and Research Artifact001
Analysis (RAA) are crucial for promoting re-002
producibility and reusability in scientific re-003
search. In this work, we introduce a novel004
end-to-end system to efficiently identify and an-005
alyze tangible research artifacts (RAs), specifi-006
cally datasets and software, within scientific lit-007
erature. Building on recent advancements, our008
architecture employs Large Language Models009
(LLMs) fine-tuned with the Low-Rank Adapta-010
tion (LoRA) method to streamline the process011
of RAA into an instruction-based Question An-012
swering (QA) task. The system comprises five013
stages: (i) candidate detection using a list of014
curated keywords and gazetteers, (ii) RA men-015
tion identification and validation, (iii) extrac-016
tion of RA mention metadata, such as names,017
versions, licenses, and URLs, (iv) classifica-018
tion of RA mentions by usage and provenance,019
and (v) deduplication of RA mentions to ensure020
the uniqueness of each identified RA. Through021
benchmarking on two RA mention datasets, we022
demonstrated robust performance in RAA and023
provided a comprehensive qualitative analysis,024
underscoring the nuances and complexities of025
ensuring reproducibility and reusability in di-026
verse scientific fields.027

1 Introduction028

The continuous advancement of scientific knowl-029

edge necessitates the development of novel method-030

ologies for identifying and analyzing research arti-031

facts (RAs) within scientific literature. Such tools032

should streamline the process of Research Arti-033

fact Analysis (RAA), strengthening both the re-034

producibility of experiments and the reusability of035

data and software. In addition, these tools should036

maintain a balanced parameter-to-performance ra-037

tio, making them more accessible to a broader part038

of the scientific community, especially to research039

groups with limited resources.040

RAs often fall into two broad categories: tan-041

gible and intangible. Tangible RAs include items042

with a physical or digital presence, such as soft- 043

ware and datasets. In contrast, intangible RAs, 044

like methodologies and procedures, represent the- 045

oretical frameworks and structured approaches to 046

research. Despite the apparent simplicity of this dis- 047

tinction, it is important to note that the boundaries 048

between these categories are not always clear-cut, 049

highlighting the complexity of RAA. Significant 050

research efforts have thus been devoted to devel- 051

oping robust architectures and models for RAA, 052

addressing the unique characteristics and require- 053

ments of each category (Wang et al., 2022; Krüger 054

and Schindler, 2020). 055

In this work, we focus on identifying tangible 056

named and unnamed RAs, specifically software and 057

datasets. In order to accomplish this objective, we 058

developed an innovative end-to-end system (Figure 059

1) that utilizes Large Language Models (LLMs) to 060

efficiently identify RAs and extract their associated 061

metadata. More specifically, we expand upon re- 062

cent findings (Stavropoulos et al., 2023), about the 063

efficacy of fine-tuned LLMs, using the Low-Rank 064

Adaptation (LoRA) (Hu et al., 2021) method, in 065

extracting RA mentions and their metadata. Our 066

objective is to further harness and extend the po- 067

tential of these models, aiming for comprehensive 068

RAA within the context of scientific publications. 069

The proposed end-to-end system comprises five 070

steps: 071

• Candidate detection: Through meticulous 072

scanning of the scientific text, potential trigger 073

words for RA mentions are identified. 074

• RA Identification & Validation: Each candi- 075

date RA mention is rigorously assessed as a 076

valid RA mention or an incidental reference. 077

• Metadata extraction: For each valid RA, rel- 078

evant information such as their name, version, 079

license, and URL are extracted. 080

• RA classification: For each valid RA, their 081

usage and provenance by the authors within 082
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Figure 1: Overview of our end-to-end system for extracting research artifacts (RAs) from scientific literature. Yellow
highlights candidate RA mentions, red invalid RA mentions, green dataset mentions, blue software mentions, and
gray RA metadata.

the scientific text are classified.083

• RA Deduplication: RA mentions are consol-084

idated into unique RAs, and their metadata085

and usage/provenance are aggregated and re-086

assessed.087

In the subsequent sections, we detail the LoRA-088

finetuned models that serve as the foundation of089

our RAA system (Section 2) and provide an exten-090

sive overview of the end-to-end system architecture091

(Section 3). We then explore the deployment and092

results of our system on two selected RA mention093

datasets (Pan et al., 2023; Schindler et al., 2021)094

(Section 4) and analyze its performance. Finally,095

we conduct a detailed review of related technolo-096

gies from existing literature (Section 5).097

Our key contributions are:098

1. We developed a novel end-to-end RAA sys-099

tem, identifying both named and unnamed100

RAs, including datasets and software1. Our101

system leverages the LLMs previously fine-102

tuned and fully documented in the work of103

(Stavropoulos et al., 2023) on the task of RA104

mention extraction.105

2. We developed a comprehensive deduplication106

pipeline that consolidates RA mentions into107

unique RAs, enabling document-level RAA.108

3. We evaluated our system against two promi-109

nent RA mention datasets, DMDD and110

SoMeSci. Despite not being trained on these111

datasets, our system performed comparably112

to top-performing models in both dataset and113

software mention identification, metadata ex-114

traction and usage/provenance classification.115

2 LoRA-finetuned LLMs for RAA116

Our proposed architecture employs the LoRA-Sy117

and LoRA-Hy models, which are Flan-T5 Base118

1The code repository will be provided upon acceptance.

(Chung et al., 2022) models fine-tuned, using the 119

LoRA method (Hu et al., 2021), on the Synthetic 120

and Hybrid RA mention datasets, as detailed in 121

(Stavropoulos et al., 2023). These models have 122

been fine-tuned to tackle RAA as an instruction- 123

based Question Answering (QA) task and are inte- 124

gral to the RA identification and validation, meta- 125

data extraction, and RA classification phases of our 126

system. 127

Snippet We used the SciPy <m>library</m> (version 1.7.0)
for scientific computations. SciPy is released
under the BSD license and can be accessed at
https://www.scipy.org/.

Type Software
Valid Yes
Name SciPy

Version 1.7.0
License BSD

URL https://www.scipy.org/
Provenance No

Usage Yes

Figure 2: An example of a named RA mention contain-
ing all metadata.

Snippet To train our introduced learnable parameters,
we compose a dataset of <m>44K fine-grained
masks</m> from several sources.

Type Dataset
Valid Yes
Name N/A

Version N/A
License N/A

URL N/A
Provenance Yes

Usage Yes

Figure 3: An example of an unnamed RA mention.

Each snippet in the task contains RA mentions 128

marked with ’<m>’ and ’</m>’ tags. The model 129

is prompted to respond to a series of questions to 130

establish the validity of each RA mention and ex- 131

tract metadata2, strictly confined to the information 132

presented within the snippet (Figures 2-3). 133

An RA mention is considered valid if it repre- 134

sents a tangible research input or output. Gen- 135

2Metadata includes: Type, Valid, Name, Version, License,
URL, Usage and Provenance.
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eral references to RAs are considered invalid. The136

model eliminates incorrectly identified RA men-137

tions during the candidate detection phase using the138

validity questions. Following the convention used139

by the Synthetic and Hybrid datasets in (Stavropou-140

los et al., 2023), we define a dataset as a systemati-141

cally organized collection of data, and software as142

concrete applications, programs, algorithmic frame-143

works, and implemented model architectures.144

Furthermore, the LoRA fine-tuned LLMs are145

trained to handle situations where the RA mention146

within the ’<m>’ and ’</m>’ tags refers to multiple147

RAs (e.g., ’datasets’). The models generate the re-148

spective validity, metadata, and usage/provenance149

for each RA delineated using the ’|’ symbol. This150

functionality ensures full coverage when multiple151

RAs are closely referenced within the same con-152

text.153

3 System Architecture154

In this section, we outline our end-to-end system155

architecture for the extraction of RAs in scientific156

text. Our approach consists of five phases: (i) candi-157

date detection, (ii) RA identification and validation,158

(iii) metadata extraction, (iv) RA classification, and159

(v) RA deduplication. The system pipeline is illus-160

trated in detail in Appendix A.161

Our system processes the full text of publica-162

tions in a structured format (sections, paragraphs,163

sentences) using GROBID3. It can also handle any164

unstructured text, treating it as a single section and165

paragraph. Before deduplication, the output is a166

list of identified RA mentions with metadata, us-167

age, and provenance information. After deduplica-168

tion, it is a list of RA mention clusters representing169

unique RAs, with usage and provenance reevalu-170

ated based on all mentions within each cluster.171

3.1 Candidate Detection172

In the candidate detection phase, our system iden-173

tifies keywords and key phrases that act as trig-174

gers for datasets and software in scientific texts.175

Initially, we manually crafted a seed list of these176

triggers, meticulously selected from scientific liter-177

ature. This list was then expanded using Word2Vec178

embeddings (Mikolov et al., 2013) to identify near-179

synonyms and underwent thorough manual cura-180

tion to ensure relevance and precision.181

3Tool that converts publication PDFs to TEI XML format.
It can be found at github.com/kermitt2/grobid.

We also incorporated gazetteers from the Pa- 182

persWithCode (PwC) dataset4, aiding in the iden- 183

tification of ’candidate RA mentions’ within the 184

text. Gazetteers within the PwC dataset can share 185

names, which might lead to their identification as 186

both datasets and software, potentially triggering 187

multiple RA candidate mentions. 188

Our system uses regular expressions to scan sci- 189

entific texts for matches of keywords, key phrases, 190

and gazetteers. When a match is found, the sys- 191

tem records the exact location of the RA candidate 192

mention within the text, including the section, para- 193

graph, sentence, and offset, preserving the mention 194

in its proper context. 195

Additionally, the candidate detection stage in- 196

cludes a mechanism that allows the incorporation 197

of gazetteers from external sources beyond the 198

PwC dataset. This mechanism includes additional 199

RA names and triggers collected from the Syn- 200

thetic and Hybrid datasets. During inference, the 201

system uses this mechanism by issuing a ’special’ 202

question (Stavropoulos et al., 2023) for each snip- 203

pet, generating a list of named RAs to incorporate 204

as additional gazetteers. This approach enhances 205

the model’s ability to identify named RAs in new, 206

unseen scientific texts, especially when triggers 207

identified by key phrases or the PwC gazetteers are 208

absent (Appendix D, Figure 8). 209

To enhance detection efficiency, we integrated a 210

Paragraph Relevance Checker into the candidate de- 211

tection phase. This submodule uses the LoRA fine- 212

tuned LLM with the ’special’ question described 213

above to identify and list all RA mentions in a para- 214

graph. If RA mentions are detected, the paragraph 215

is marked for further examination. This method 216

allows the system to check entire paragraphs with a 217

single question, reducing the need to process multi- 218

ple candidate RA mentions and improving overall 219

performance by filtering out generic references and 220

invalid RA mentions. 221

3.2 RA Identification & Validation 222

After candidate detection, the system proceeds to 223

the RA identification and validation phase. This 224

process uses the LoRA fine-tuned LLM model to 225

determine whether the candidate RA mentions are 226

valid RAs or merely incidental references or de- 227

scriptive terms within the text. Validation is per- 228

formed using a ’validity question’, as detailed in 229

(Stavropoulos et al., 2023). 230

4github.com/paperswithcode/
paperswithcode-data
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Our system employs a classification protocol231

(Appendix B) that evaluates a set of possible an-232

swers to a given question and computes the like-233

lihood of each being generated by the LLM. This234

method assesses the validity of a candidate RA235

mention by assigning a score to two definitive re-236

sponses: ’Yes’ or ’No’.237

The probability value of the ’Yes’ response rep-238

resents the validity score of the RA mention. This239

score is compared to a predefined threshold, de-240

faulting to 0.5, allowing control over precision and241

recall. Only candidate RA mentions surpassing242

this threshold are considered valid and proceed243

to the next phase. This ensures that subsequent244

phases handle only relevant and high-quality RA245

mentions.246

3.3 Metadata Extraction247

After validating the RA mentions, the system pro-248

ceeds to the metadata extraction phase. Here, the249

LoRA fine-tuned LLM identifies and extracts es-250

sential metadata associated with each validated RA251

mention, such as name, version, license, and URL.252

These metadata provide a comprehensive under-253

standing of each RA mention and are used in the254

deduplication phase.255

Metadata extraction employs ’metadata ques-256

tions’ directed at the LoRA fine-tuned LLM. As257

described in (Stavropoulos et al., 2023), these mod-258

els are trained to use only the text from the snippet259

for their responses, minimizing hallucinations. Our260

system discards any metadata not found within the261

snippet to maintain accuracy.262

3.4 RA Classification263

In the RA classification phase, the system catego-264

rizes identified RA mentions based on their usage265

and provenance as determined by the authors. This266

phase distinguishes whether the RA was actively267

used in the research, created by the authors, or268

merely cited. It is crucial that this classification269

is based solely on the snippet of the RA mention,270

without relying on external information.271

To achieve this, the system uses ’classification272

questions’ (Stavropoulos et al., 2023) designed to273

determine the usage and provenance of the RA men-274

tion. Using our classification protocol, the system275

evaluates the model’s confidence regarding the RA276

mention’s usage and provenance, with responses277

limited to ’Yes’ or ’No’. Similar to the identifi-278

cation and validation phases, score thresholds for279

usage and provenance are set, with default values 280

at 0.5, allowing control over precision and recall. 281

3.5 RA Deduplication 282

In the final phase, RA deduplication, the system 283

ensures the distinctiveness of each identified RA 284

by aggregating mentions that refer to the same RA 285

through their metadata, including names and trigger 286

phrases. This phase further refines the evaluation 287

of the usage and provenance of each RA by con- 288

sidering the specific context of each RA mention 289

within the scientific text. The result is a unique list 290

of metadata-enriched RAs. 291

The process begins by consolidating RA men- 292

tions based on their names. The system then consid- 293

ers the trigger words for each cluster, generating a 294

list of alternative names for each name cluster (e.g., 295

[Yandex, Yandex dataset]). Name clusters start- 296

ing with the same word substring are grouped to- 297

gether, ensuring distinct clusters for similar names 298

(e.g., [Yandex, Yandex data] and [Yandex testing, 299

Yandex testing dataset] are combined, while [Im- 300

ageNet, ImageNet dataset] remains distinct from 301

[ImageNet1K, ImageNet1K data]). Clusters with 302

the same word tokens in different orders are also 303

merged (e.g., [Human Pose MPII] and [MPII Hu- 304

man Pose]). This process prevents redundant clus- 305

ters due to similar naming patterns. 306

To address the complexity of identifying similar 307

RAs, the system uses the SciCo Longformer model 308

(Cattan et al., 2021), specialized in hierarchical 309

cross-document coreference resolution (H-CDCR). 310

This model handles the diversity in scientific lan- 311

guage, accurately clustering related RA mentions. 312

The system leverages the SciCo model’s similar- 313

ity scores to cluster unnamed mentions with named 314

clusters within the same paragraph, as this local- 315

ity often indicates a strong relationship between 316

mentions. Unnamed mentions not similar enough 317

to any named clusters are independently clustered 318

within the same paragraph. Subsequently, unnamed 319

clusters are matched to named clusters across para- 320

graphs, ensuring all relationships are identified. 321

Finally, the system merges the clusters that re- 322

fer to RA mentions with identical citation marks 323

(Appendix D, Figure 9). This step is crucial in a 324

scientific context, as it often indicates references to 325

the same RA within the same publication. 326

Post-deduplication, the system aggregates meta- 327

data such as licenses, versions, and URLs to create 328

a comprehensive overview for each RA. The eval- 329

uation of usage and provenance is refined based 330
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on the RA’s cluster of mentions. If any mention331

within the cluster indicates usage, the entire RA332

is marked as ’used’. Further analysis of the loca-333

tion of RA mentions within the scientific text is334

conducted. If the initial mention of an RA out-335

side introductory sections, such as ’Background’336

or ’Related Work’, suggests authorial provenance,337

it is presumed the RA was created by the authors.338

This approach filters out potential false positives,339

accurately identifying RAs created by the authors.340

It is important to note that the clustering tech-341

niques leveraging the SciCo model, as well as the342

metadata and usage/provenance reevaluations, are343

not included in the evaluation of our system de-344

tailed in section 4. These components are primarily345

utilized for in-depth analysis of full scientific texts346

and require further experimentation and evaluation.347

4 Experimental results and analysis348

4.1 Evaluation Datasets349

To evaluate our system, we used two prominent RA350

mention datasets: DMDD (Pan et al., 2023) and351

SoMeSci (Schindler et al., 2021). These datasets352

frame RAA as a Named Entity Recognition (NER)353

task, in contrast to our instruction-based Question354

Answering (QA) approach. Below is an overview355

of each dataset:356

• DMDD: DMDD includes full-text articles357

from various scientific disciplines, sourced358

from S2ORC (Lo et al., 2020) and PwC. These359

texts are divided into sections and individual360

sentences. DMDD’s primary goal was to cre-361

ate a large-scale dataset, hence only specific362

named dataset mentions were programmati-363

cally annotated using PwC, omitting mentions364

beyond PwC’s scope. However, the evaluation365

subset, DMDD-E5, incorporates exhaustive366

human curation.367

• SoMeSci: SoMeSci gathers scientific pub-368

lications from the PubMed Central (PMC)369

Open Access (OA) subset. These texts are370

categorized into four subsets, each annotated371

for software mentions and associated meta-372

data. Mention labels cover both software373

and mention types. Software is categorized374

into ’Application’, ’Plugin’, ’Operating Sys-375

tem’, and ’Programming Environment’, with376

added tags for ’Abbreviation’ and ’Alterna-377

tiveName’. Mention types include ’Mention’,378

5Access the DMDD and its DMDD-E subset at kaggle.
com/datasets/panhuitong/dmdd-corpus.

’Usage’, ’Creation’, and ’Deposition’, align- 379

ing with our ’Usage’ and ’Provenance’ def- 380

initions. Specifically, our system interprets 381

’Mention’ as neither usage nor provenance, 382

’Usage’ as usage but not provenance, and both 383

’Creation’ and ’Deposition’ as signifying both 384

usage and provenance. Additional metadata, 385

such as URLs, licenses, extensions, versions, 386

developers, and citations, are linked to the 387

mentioned software. 388

Due to limited computational resources, we con- 389

ducted evaluations on subsets of the DMDD-E and 390

SoMeSci test sets, containing sentences with at 391

least one RA mention. These subsets are referred 392

to as DMDD-E+ and SoMeSci_test+, respectively. 393

We selected these datasets because they align 394

with our definitions of datasets and software. The 395

clarity and rigor of the research conducted by the 396

respective scientific teams allowed for a fair and 397

comprehensive comparison with our results. While 398

many studies focus on RAA, particularly software 399

and dataset mentions, direct comparison is chal- 400

lenging. As noted by (Heddes et al., 2021), despite 401

the widespread use of NER, each study employs 402

different approaches, datasets, and unique modifi- 403

cations, adding complexity to the task. We provide 404

an in-depth exploration of RA mention datasets and 405

related models in Section 5. 406

4.2 Evaluation method 407

The DMDD and SoMeSci datasets comprise 408

sentence-level gold annotations formatted as an 409

NER task. Our system, in contrast, identifies 410

candidate mentions through triggers and uses an 411

instruction-based QA pipeline to fill templates for 412

each RA. To ensure a fair comparison, we adopted 413

the following methodology: 414

• We extracted the unique gold RA mentions 415

per sentence from the BIO schema for both 416

datasets.6 417

• We ran our system architecture, including the 418

first step of the deduplication pipeline, to find 419

all RA mentions clusters in each sentence.7 420

6Our system predicts both named and unnamed RA men-
tions using triggers. Converting to BIO notation using pattern
matching might introduce biases into our system’s results.

7In the current setup, annotations are at the sentence level,
negating the need for the full deduplication pipeline. With-
out paragraph context for the SciCo model, aggregating RA
metadata and reassessing their usage and provenance is unnec-
essary.
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• We excluded all unnamed RA mentions from421

our system results, as both datasets focus on422

named RAs. While SoMeSci has some un-423

named software mentions (software corefer-424

ence mentions), their count was too small for425

a valid comparison. Even though our sys-426

tem identifies unnamed software mentions, in-427

cluding them would be misleading since they428

would be considered incorrect for the dataset,429

potentially biasing the results.430

• In cases where the LoRA-Hy/Sy models pro-431

duce multiple RA mentions from a single432

trigger (e.g., ’datasets’ referring to multiple433

datasets), we used the ’|’ character to separate434

them into individual RA mentions.435

• We incorporated the list of alternative names436

and abbreviations provided by authors of the437

DMDD and SoMeSci datasets to reduce both438

false positives and false negatives by recogniz-439

ing synonyms. For instance, when identifying440

a cluster as [SNLI, SNLI data], and knowing441

’SNLI’ stands for ’Stanford Natural Language442

Inference’, we expanded the cluster to include443

[SNLI, SNLI data, Stanford Natural Language444

Inference, Stanford Natural Language Infer-445

ence data].446

Our experiments encompassed two evaluation447

strategies: Exact Match and Partial Match. Exact448

Match ensures that at least one prediction within an449

RA mention cluster aligns with all word tokens of450

a gold RA mention, regardless of their order. This451

is a stricter measure, serving as an upper boundary452

when compared with BIO-tag-based results. On453

the other hand, Partial Match determines whether454

any prediction within an RA mention cluster is a455

substring of, or contains all word tokens from, a456

gold RA mention, and vice versa. This makes the457

Partial Match closer to BIO-tag-based results, serv-458

ing as a potential lower boundary. If a predicted459

RA mention cluster matches multiple unique gold460

RA mentions, each matched gold RA mention is461

considered a true positive. To avoid potential bias462

and ensure that the count of gold targets remains463

unchanged, the unique gold RA mentions are not464

subjected to the deduplication pipeline’s grouping465

steps.466

In terms of our metrics, we computed both467

Macro and Micro PRF scores. The Macro PRF468

scores were computed by calculating the Precision,469

Recall, and F1-score (PRF) for each instance and470

then averaging them. In contrast, the Micro PRF 471

scores were calculated by aggregating the true pos- 472

itives, false positives, and false negatives across all 473

instances to produce overall PRF scores. While the 474

Micro scores provide insights into the overall sys- 475

tem performance, they can become overly sensitive 476

when the system accumulates multiple false posi- 477

tives in a particularly noisy or problematic instance, 478

leading to an exaggerated decline in overall perfor- 479

mance. Conversely, Macro scores are less impacted 480

by individual problematic instances, as any incor- 481

rect prediction within an instance leads to a score 482

of 0.0. Thus, the Macro metric is less susceptible 483

to instance-level errors and more indicative of the 484

system’s performance.8 485

Additionally, we incorporated an Accuracy met- 486

ric to quantify the number of accurately identified 487

gold RA mentions. Given our system’s design, 488

which responds only upon correct identification of 489

a gold RA mention, smaller models like the Flan- 490

T5 Base might produce disproportionately high 491

PRF metrics for metadata and usage/provenance. 492

This is often due to their evaluation against a 493

smaller number of gold RA mentions, particularly 494

those with well-defined metadata. To provide a 495

holistic perspective, Table 2 presents two variations 496

of PRF scores for metadata and usage/provenance. 497

The first version measures the metrics based on the 498

metadata of correctly identified RA mentions. In 499

contrast, the second version refines these scores by 500

multiplying them with the Accuracy measure, pro- 501

viding a more nuanced evaluation that incorporates 502

the impact of identification errors on each model’s 503

performance. 504

4.3 Evaluation Results & Qualitative Analysis 505

Table 2 showcases the performance of the LoRA- 506

Sy and LoRA-Hy models compared to the Flan- 507

T5 Base and XL models on the DMDD-E+ and 508

SoMeSci_test+ datasets. These results are also 509

compared to the top-performing models provided 510

by the creators of the two datasets. 511

For metadata extraction and RA classification, 512

the scores have two variations. Scores outside 513

parentheses reflect performance based solely on 514

correctly identified RA mentions, while scores in- 515

side parentheses are adjusted using the Accuracy 516

score, as explained in Subsection 4.2. 517

The PRF scores in Table 2 reveal that the LoRA 518

fine-tuned models outperform the Flan-T5 Base 519

8Table 2 presents the results using Macro scores. Results
using Micro scores are available in Appendix C.
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DMDD-E+ SoMeSci_test+
Model Scoring Method Metric mention mention url version license usage provenance

Accuracy 0.214 0.116 - - - - -
Precision 0.223 0.157 0.404 (0.047) 0.421 (0.049) 0.825 (0.096) 0.000 (0.000) 0.737 (0.085)

Flan-T5 Base Exact match Recall 0.213 0.139 0.404 (0.047) 0.421 (0.049) 0.825 (0.096) 0.000 (0.000) 0.560 (0.065)
F1 0.214 0.144 0.404 (0.047) 0.421 (0.049) 0.825 (0.096) 0.000 (0.000) 0.636 (0.074)

Accuracy 0.240 0.177 - - - - -
Precision 0.243 0.220 0.427 (0.076) 0.549 (0.097) 0.817 (0.145) 1.000 (0.177) 0.519 (0.092)

Partial match Recall 0.236 0.196 0.427 (0.076) 0.549 (0.097) 0.817 (0.145) 0.060 (0.011) 0.560 (0.099)
F1 0.235 0.203 0.427 (0.076) 0.549 (0.097) 0.817 (0.145) 0.114 (0.020) 0.538 (0.095)

Accuracy 0.607 0.269 - - - - -
Precision 0.678 0.367 0.873 (0.235) 0.896 (0.241) 0.910 (0.245) 0.958 (0.258) 0.919 (0.247)

Flan-T5 XL Exact match Recall 0.670 0.324 0.873 (0.235) 0.896 (0.241) 0.910 (0.245) 0.919 (0.247) 0.654 (0.176)
F1 0.662 0.336 0.873 (0.235) 0.896 (0.241) 0.910 (0.245) 0.938 (0.252) 0.764 (0.206)

Accuracy 0.683 0.400 - - - - -
Precision 0.724 0.496 0.890 (0.356) 0.868 (0.347) 0.935 (0.374) 0.972 (0.389) 0.900 (0.360)

Partial match Recall 0.731 0.446 0.892 (0.357) 0.874 (0.350) 0.935 (0.374) 0.926 (0.370) 0.643 (0.257)
F1 0.716 0.460 0.891 (0.356) 0.870 (0.348) 0.935 (0.374) 0.948 (0.379) 0.750 (0.300)

Accuracy 0.791 0.592 - - - - -
Precision 0.761 0.658 0.952 (0.564) 0.923 (0.546) 0.943 (0.558) 0.902 (0.534) 0.898 (0.532)

LoRA-Sy Exact match Recall 0.847 0.651 0.960 (0.568) 0.927 (0.549) 0.943 (0.558) 0.812 (0.481) 0.557 (0.330)
F1 0.781 0.638 0.954 (0.565) 0.925 (0.548) 0.943 (0.558) 0.854 (0.506) 0.688 (0.407)

Accuracy 0.836 0.777 - - - - -
Precision 0.791 0.821 0.958 (0.744) 0.890 (0.692) 0.964 (0.749) 0.921 (0.716) 0.887 (0.689)

Partial match Recall 0.887 0.829 0.965 (0.750) 0.893 (0.694) 0.964 (0.749) 0.837 (0.650) 0.553 (0.430)
F1 0.816 0.803 0.960 (0.746) 0.890 (0.692) 0.964 (0.749) 0.877 (0.681) 0.681 (0.529)

Accuracy 0.812 0.606 - - - - -
Precision 0.756 0.660 0.952 (0.577) 0.949 (0.575) 0.932 (0.565) 0.930 (0.564) 0.929 (0.563)

LoRA-Hy Exact match Recall 0.864 0.677 0.968 (0.587) 0.955 (0.579) 0.932 (0.565) 0.794 (0.481) 0.627 (0.380)
F1 0.785 0.649 0.958 (0.581) 0.951 (0.576) 0.932 (0.565) 0.857 (0.519) 0.748 (0.453)

Accuracy 0.859 0.801 - - - - -
Precision 0.786 0.816 0.951 (0.762) 0.889 (0.712) 0.957 (0.767) 0.941 (0.754) 0.898 (0.719)

Partial match Recall 0.904 0.847 0.966 (0.774) 0.898 (0.719) 0.958 (0.767) 0.842 (0.674) 0.631 (0.505)
F1 0.819 0.807 0.956 (0.766) 0.891 (0.714) 0.957 (0.767) 0.889 (0.712) 0.741 (0.594)

Base-cased SciBERT Precision 0.639 ± 0.002 - - - - - -
(Pan et al., 2023) BIO tags Recall 0.919 ± 0.002 - - - - - -

F1 0.754 ± 0.002 - - - - - -
SoMeNLP Precision - 0.820 0.963 0.937 0.786 0.865 0.787

(Schindler et al., 2021) BIO tags Recall - 0.804 0.981 0.932 0.786 0.877 0.815
F1 - 0.803 0.972 0.934 0.786 0.871 0.800

Table 1: Experimental results on the DMDD-E+ and SoMeSci_test+ datasets.

and XL models. Regarding the SoMeSci dataset,520

it is evident that the Base and XL models strug-521

gle in mention extraction. An example of this is522

illustrated in Figure 4, where only the fine-tuned523

models successfully identified the software men-524

tion. While the XL model shows promising results525

in metadata extraction and RA mention classifica-526

tion, its performance is poor when inspecting the527

Accuracy-adjusted PRF scores.528

Initially, the XL model appears comparable to529

the fine-tuned models, seeming superior to the Base530

model. However, a qualitative assessment of the re-531

sults shows that the XL model correctly identifies532

fewer and less complex RA mentions compared533

to the fine-tuned models. For the DMDD dataset,534

the Flan-T5 XL model demonstrates a better un-535

derstanding of the RAA task, yet it still does not536

perform as well as the fine-tuned models (Appendix537

D, Figures 10-11).538

Sentence To address these limitations, we present
4Cin, a <m>method</m> to generate 3D
models and derive virtual Hi-C (vHi-C) heat
maps of genomic loci based on 4C-seq or
any kind of 4C-seq-like data, such as those
derived from NG Capture-C.

Gold RA mentions 4Cin
Predicted RA clusters [’4Cin’, ’4Cin method’]

Figure 4: An example of a successful software cluster
prediction using the LoRA-Hy model. No software was
identified using the Flan-T5 Base and XL models.

The evaluation reveals that the LoRA-Hy model539

excels in RAA, especially in metadata extraction540

and classification. The Partial Match metric is par-541

ticularly effective in capturing model performance, 542

allowing flexibility by including adjacent words 543

in RA mentions. This helps avoid penalizing cor- 544

rect predictions that are slightly broader in scope, 545

thus reducing false negatives (Appendix D, Figure 546

12). The performance gap between LoRA-Sy and 547

LoRA-Hy in Table 2 highlights the potential for im- 548

provement with more comprehensive and diverse 549

RA datasets. 550

By employing the LoRA-Sy and LoRA-Hy mod- 551

els for the evaluation of the SoMeSci dataset, our 552

system operates in a zero-shot setting due to the 553

dataset’s different domain. Remarkably, the sys- 554

tem demonstrated solid performance, particularly 555

in software mentions when assessed using Partial 556

Matching (Appendix D, Figures 13-14). 557

Direct comparison between our system and 558

SoMeNLP is challenging due to significant dif- 559

ferences in model metrics. SoMeNLP excels at 560

analyzing biomedical publications for program- 561

specific software, whereas our system identifies 562

a broader range of software categories, including 563

machine learning models, algorithms, and architec- 564

tures. This indicates that our system’s capabilities 565

are not fully represented when evaluated solely 566

with the SoMeSci dataset. 567

Examining the SoMeSci dataset, we observed 568

that software type mentions (e.g., usage) are 569

categorized at a sentence level, which limits 570

document-level Research Artifact Analysis (RAA). 571

Document-level analysis requires synthesizing 572

sentence-level mentions into cohesive document- 573
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level annotations. Our system’s deduplication574

pipeline is designed to address this challenge, con-575

solidating both named and unnamed software men-576

tions into singular, document-wide annotations that577

capture all their metadata. However, fully realiz-578

ing the potential of this capability requires further579

experimentation.580

5 Related Work581

Our study provided an in-depth examination of582

RA mention datasets, focusing on DMDD and583

SoMeSci, which target dataset and software men-584

tions. However, the research landscape includes585

numerous other RA mention datasets proposed in586

recent literature. Some datasets focus on abstract587

RAs, capturing elements like materials, methods,588

metrics, and tasks (Augenstein et al., 2017; Luan589

et al., 2018; Jain et al., 2020; Färber et al., 2021;590

Zhao et al., 2019), while others emphasize on tangi-591

ble RAs, specifically datasets (Heddes et al., 2021;592

Lafia et al., 2021) and software (Gupta and Man-593

ning, 2011; Istrate et al., 2022).594

RAA within the specified datasets predominantly595

uses NER methods. Leading techniques in this do-596

main include Recurrent Neural Networks (RNNs)597

(Hopfield, 1982) and BERT-based models (Devlin598

et al., 2019). Specifically, the extraction of dataset599

and software mentions has been primarily con-600

ducted using Long Short-Term Memory (LSTM)601

models (Hochreiter and Schmidhuber, 1997) paired602

with conditional random fields (CRFs) (Lafferty603

et al., 2001; Prasad et al., 2019; Schindler et al.,604

2020; Hou et al., 2022; Luan, 2018; Zeng and605

Acuna, 2020). Additionally, transformer-based606

models (Vaswani et al., 2017) such as BERT and607

SciBERT (Beltagy et al., 2019; Schindler et al.,608

2021; Färber et al., 2021) have been applied to609

these tasks. Notably, some works even combine610

both techniques (Pan et al., 2023; Heddes et al.,611

2021; Wadden et al., 2019).612

Several models with complex architectures have613

been developed that perform NER by incorporat-614

ing additional features for a more thorough analy-615

sis. Among them, the SoMeNLP model (Schindler616

et al., 2021) stands out for integrating a relation617

extraction component and a hierarchical clustering-618

based disambiguation mechanism (Schindler et al.,619

2021, 2020). This approach enables the extraction620

of enriched metadata from both text and external621

knowledge bases. Similarly, the Softcite service622

(Lopez et al., 2021) leverages a GROBID module to623

identify software mentions and extract associated624

metadata. 625

Training models on RA datasets introduces in- 626

herent biases, primarily stemming from their scope. 627

While datasets such as DMDD (Pan et al., 2023) 628

and CZ Software Mentions (Istrate et al., 2022) 629

offer extensive coverage, their emphasis on par- 630

ticular scientific domains can cause biases. For 631

instance, models like SoMeNLP show a strong pref- 632

erence for Life Sciences. Various models trained 633

on RA datasets cover a broad range of scientific dis- 634

ciplines, from Biomedical fields (Duck et al., 2013; 635

Schindler et al., 2021) to Economic Science (Du 636

et al., 2021) and Computer Science (Heddes et al., 637

2021; Luan et al., 2018). Additionally, only a few 638

studies, notably the Softcite and SoMeSci datasets 639

(Du et al., 2021; Schindler et al., 2021), have tack- 640

led the complex task of metadata extraction and 641

linking. 642

6 Discussion and Conclusions 643

In this work, we introduced a novel end-to-end 644

system utilizing fine-tuned LLMs to effectively ex- 645

tract RAs from scientific literature. By employing 646

two fine-tuned Flan-T5 models, we demonstrated 647

the potential of even smaller models to perform 648

RAA. This advancement is particularly significant 649

for research teams with limited resources, as it can 650

facilitate the reproducibility and reusability of RAs. 651

Moreover, our system has the potential to revolu- 652

tionize editorial reviews by detecting unnamed RA 653

mentions, highlighting critical information gaps. 654

The performance of our system varied across 655

scientific domains due to the field-specific nature 656

of the keywords and gazetteers used in candidate 657

detection and RA mention identification. This vari- 658

ation underscores the need for tailored model ad- 659

justments for each scientific field. 660

The performance of the LoRA-Hy and LoRA-Sy 661

models, both based on the Flan-T5 Base model, is 662

influenced by their training data quality. The inclu- 663

sion of real-world mentions in the Hybrid dataset 664

used for fine-tuning the LoRA-Hy model resulted 665

in superior performance compared to the LoRA- 666

Sy model, trained only on synthetic data. This 667

highlights the importance of real-world data in im- 668

proving model effectiveness. 669

Looking ahead, enhancing our system involves 670

two key areas: expanding the datasets with diverse 671

real-world RA mentions to improve model perfor- 672

mance, and exploring newer, state-of-the-art LLMs. 673

These steps promise to refine our tools and deepen 674

our understanding of LLMs in RAA. 675
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Limitations676

Despite the promising results demonstrated by677

our novel end-to-end system for Research Artifact678

Analysis (RAA), several limitations must be ac-679

knowledged. These limitations highlight areas for680

further improvement and refinement.681

Our system’s performance is influenced by682

the discipline-specific nature of keywords and683

gazetteers used in candidate detection and RA men-684

tion identification. While effective within certain685

domains, its generalizability across all scientific686

disciplines is limited, requiring further adaptation687

for broader applicability. Additionally, the quality688

and diversity of the training data significantly im-689

pact performance. The LoRA-Sy and LoRA-Hy690

models are trained on datasets specific to certain691

disciplines, which may not fully represent all pos-692

sible RA mentions, leading to biases.693

Furthermore, we currently categorize RAs solely694

as software or datasets, which limits the system’s695

comprehensiveness. Expanding our categorization696

to include a broader range of RA types, which697

vary by discipline, would enhance the system’s698

applicability across diverse scientific fields.699

Errors in candidate detection and RA validation700

can propagate through the pipeline, affecting the701

accuracy of identified RA mentions and extracted702

metadata. Focusing on the early stages of the703

pipeline and introducing stricter thresholds could704

help mitigate error propagation and improve over-705

all performance. Our evaluation metrics, while706

comprehensive, might not capture all complexities707

of RAA tasks, as research artifacts can be found708

under many alternative names. Developing more709

standardized benchmarks, comprehensive metrics,710

or even performing human evaluations would pro-711

vide a clearer picture of system capabilities and712

areas needing improvement. Comparing our sys-713

tem’s results with top-performing models is chal-714

lenging due to differences in task formats, further715

complicating the evaluation process.716

Our system, based on Large Language Models717

(LLMs) and the instruction-based Question An-718

swering (QA) task, requires significant computa-719

tional resources. Larger models, such as Flan-720

T5 XL, which show improved accuracy, neces-721

sitate substantial resources for both training and722

deployment. Additionally, the system’s design723

requires multiple prompts to the LLM, which is724

time-consuming. Balancing model size, efficiency,725

and performance remains a challenge. Investing in726

more real-world instances from diverse scientific 727

disciplines and optimizing smaller LLM models 728

might be a more practical approach for enhancing 729

performance without excessive resource demands. 730

Addressing these limitations involves creating 731

discipline-specific gazetteers, annotating and curat- 732

ing real-world examples for more effective training, 733

refining candidate detection with stricter thresholds 734

to prevent error propagation, balancing computa- 735

tional efficiency with performance, and developing 736

more standardized evaluation benchmarks. Addi- 737

tionally, exploring state-of-the-art LLMs that offer 738

an optimal balance of size and performance could 739

further enhance the system’s capabilities. 740
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A System Architecture Overview941

In this appendix, we provide detailed figures illustrating the system pipeline. The figures show the942

system’s architecture in more detail, using color coding to distinguish different elements. The green dotted943

boxes indicate sections, the blue dotted boxes indicate paragraphs, the black boxes indicate sentences, and944

the black rounded boxes indicate RA mentions. The red boxes indicate irrelevant paragraphs or sentences945

with no RA mentions.946

Figure 5 illustrates the Candidate Detection using the system’s gazetteers, keywords, and key phrases,947

as well as the Paragraph Relevance Check for all paragraphs of a publication, which we receive in a948

structured layout format (sections, paragraphs, and sentences). It also shows the RA validation process to949

determine which candidate RA mentions are valid and which are merely generic references.950

Figure 5: Candidate Detection, Paragraph Relevance and RA validation

Figure 6 illustrates the RA Metadata Extraction and RA Usage and Provenance Classification for the951

valid RA mentions. This phase involves extracting key metadata such as name, version, license, and URL952

for each RA mention. Additionally, it classifies each RA mention based on its usage (e.g., whether the RA953

is used in the study) and provenance (e.g., whether the RA was created by the authors).954

Figure 6: RA Metadata Extraction and RA Usage and Provenance Classification.

Figure 7 illustrates the clustering and deduplication of the RA mentions (both named and unnamed)955

into unique RAs. This process involves clustering similar RA mentions using their metadata and the956

SciCo model to aggregate all relevant metadata. It ensures each RA is distinctly represented and includes957

the reevaluation of their usage and provenance based on their clusters.958

12



Figure 7: Clustering and deduplication of RA mentions into unique RAs, with usage and provenance reevaluation.

B Classification Protocol for LLMs 959

Our end-to-end system employs a unique classification protocol for Large Language Models (LLMs). 960

This protocol leverages the probability scores of text generated by LLMs, converting unrestricted outputs 961

into a controlled set of answers or choices. This methodology is critical in reducing the tendency of LLMs 962

to generate ’hallucinations’ or inaccurate information. 963

The protocol builds upon the method outlined in (Reppert et al., 2023). By incorporating this method, 964

we calculate scores based on the probabilities of predefined answers generated by the LLM. This scoring 965

mechanism is particularly advantageous during the RA validation and RA classification phases, converting 966

these tasks into conventional classification tasks and facilitating the use of output thresholds. 967

An essential component of this protocol is the calculation of relative probabilities for a set of choices 968

based on LLM predictions. The process begins with tokenizing each choice and calculating an absolute 969

score for each tokenized choice. The score for a choice c is computed by summing the probabilities of 970

tokens in the LLM’s predictions that match the tokens in the tokenized choice. 971

Mathematically, this is expressed as: 972

abs_probs[c] =
∑
t∈c

n∑
i=0

predictions[i][t] 973

where abs_probs is a dictionary storing the absolute probabilities of the choices, n is the length of the 974

predictions, and predictions[i][t] denotes the probability of token t at position i in the predictions. 975

After computing the absolute probabilities for all choices, the algorithm normalizes these scores to 976

derive relative probabilities. This normalization is performed by dividing each absolute score by the sum 977

of all absolute scores, Z, which serves as a normalization factor. The relative probability for choice c is 978

calculated as: 979

rel_probs[c] =
abs_probs[c]

Z
980

where 981

Z =
∑
c

abs_probs[c] 982

A known limitation of this approach is its bias towards longer choices, as they contain more tokens 983

and thus accumulate a higher absolute score. This can lead to an overestimation of the probability for 984

longer choices. Nevertheless, experimental observations indicate that the initial tokens in the choices have 985

a more significant impact on the absolute score. This mitigates the bias towards longer choices to some 986

extent, as the leading tokens contribute more substantially to the score. However, in scenarios where two 987

choices begin with the same tokens, the ability to differentiate based on subsequent tokens is preserved, 988

though with reduced impact. 989
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C Additional Experimental Results990

DMDD-E+ SoMeSci_test+
Model Scoring Method Metric mention mention url version license usage provenance

Accuracy 0.214 0.116 - - - - -
Precision 0.836 0.682 0.091 (0.011) 0.059 (0.007) 0.000 (0.000) 0.000 (0.000) 0.737 (0.085)

Flan-T5 Base Exact Match Recall 0.223 0.120 0.333 (0.039) 0.333 (0.039) 0.000 (0.000) 0.000 (0.000) 0.560 (0.065)
F1 0.352 0.205 0.143 (0.017) 0.100 (0.012) 0.000 (0.000) 0.000 (0.000) 0.636 (0.074)

Accuracy 0.240 0.177 - - - - -
Precision 0.902 0.957 0.140 (0.025) 0.349 (0.062) 0.136 (0.024) 1.000 (0.177) 0.519 (0.092)

Partial Match Recall 0.250 0.179 0.583 (0.103) 0.846 (0.150) 0.750 (0.133) 0.060 (0.011) 0.560 (0.099)
F1 0.392 0.301 0.226 (0.040) 0.494 (0.088) 0.231 (0.041) 0.114 (0.020) 0.538 (0.095)

Accuracy 0.607 0.269 - - - - -
Precision 0.825 0.726 0.469 (0.126) 0.517 (0.139) 0.077 (0.021) 0.958 (0.258) 0.919 (0.247)

Flan-T5 XL Exact Match Recall 0.634 0.277 0.789 (0.212) 1.000 (0.269) 0.250 (0.067) 0.919 (0.247) 0.654 (0.176)
F1 0.717 0.401 0.588 (0.158) 0.682 (0.183) 0.118 (0.032) 0.938 (0.252) 0.764 (0.206)

Accuracy 0.683 0.400 - - - - -
Precision 0.884 0.985 0.524 (0.210) 0.648 (0.259) 0.190 (0.076) 0.972 (0.389) 0.900 (0.360)

Partial Match Recall 0.713 0.398 0.880 (0.352) 0.920 (0.368) 1.000 (0.400) 0.926 (0.370) 0.643 (0.257)
F1 0.790 0.567 0.657 (0.263) 0.760 (0.304) 0.320 (0.128) 0.948 (0.379) 0.750 (0.300)

Accuracy 0.791 0.592 - - - - -
Precision 0.734 0.657 0.689 (0.408) 0.660 (0.391) 0.000 (0.000) 0.902 (0.534) 0.898 (0.532)

LoRA-Sy Exact Match Recall 0.826 0.608 0.721 (0.427) 0.814 (0.482) 0.000 (0.000) 0.812 (0.480) 0.557 (0.330)
F1 0.777 0.632 0.705 (0.417) 0.729 (0.432) 0.000 (0.000) 0.854 (0.506) 0.688 (0.407)

Accuracy 0.836 0.777 - - - - -
Precision 0.765 0.821 0.722 (0.561) 0.763 (0.593) 0.250 (0.194) 0.921 (0.716) 0.887 (0.689)

Partial Match Recall 0.873 0.771 0.736 (0.572) 0.733 (0.569) 0.857 (0.666) 0.837 (0.650) 0.553 (0.430)
F1 0.816 0.795 0.729 (0.566) 0.747 (0.581) 0.387 (0.301) 0.877 (0.682) 0.681 (0.529)

Accuracy 0.812 0.606 - - - - -
Precision 0.718 0.631 0.660 (0.400) 0.708 (0.429) 0.000 (0.000) 0.930 (0.563) 0.929 (0.563)

LoRA-Hy Exact Match Recall 0.848 0.631 0.778 (0.471) 0.810 (0.491) 0.000 (0.000) 0.794 (0.481) 0.627 (0.380)
F1 0.778 0.631 0.714 (0.433) 0.756 (0.458) 0.000 (0.000) 0.857 (0.519) 0.748 (0.453)

Accuracy 0.859 0.801 - - - - -
Precision 0.750 0.782 0.656 (0.525) 0.793 (0.635) 0.227 (0.182) 0.941 (0.754) 0.898 (0.720)

Partial Match Recall 0.897 0.791 0.769 (0.616) 0.644 (0.515) 1.000 (0.801) 0.842 (0.675) 0.631 (0.505)
F1 0.817 0.786 0.708 (0.567) 0.710 (0.569) 0.370 (0.297) 0.889 (0.712) 0.741 (0.594)

Table 2: Experimental results on the DMDD-E+ and SoMeSci_test+ datasets, using Micro instead of Macro metrics.

D Additional Examples991

Snippet We used AmoebaNet-A as a teacher with 83.9% of
ImageNet validation top-1 accuracy.

Candidate triggers [dataset]: ImageNet
External gazetteers [software]: AmoebaNet-A

Candidate RA Mention We used <m>AmoebaNet-A</m> as a teacher with
83.9% of ImageNet validation top-1 accuracy.

Type software
Name AmoebaNet-A

License N/A
Version N/A

URL N/A
Usage Yes

Provenance No

Figure 8: An example of a successful software identification in DMDD using the ’special’ question of LoRA-Hy.
No keyword or keyphrase from the PwC gazetteer was present, yet the correct instance was found.

Snippet 1 To evaluate the perception modules, we make use of three datasets with different sensory modalities:
The Berlin Emotional Speech Database (EmoDB) [17] corpus is used to train and evaluate the auditory
channel, the Face Expression Recognition Plus dataset (FER+) [9] corpus is used for the visual channel
and The One-Minute Gradual-Emotional Behavior dataset (OMG-Emotion dataset) [7] is used for the
cross-channel evaluation and the emotional concept clustering.

Snippet 2 To solve this, the FER+ dataset [9] was proposed.
RA names Face Expression Recognition Plus dataset | FER+ dataset | FER+ corpus

Citation mark [9]

Figure 9: Example of deduplication where two snippets with the same citation mark are consolidated. The snippets
refer to the same dataset, the FER+ dataset, with one using the complete name and the other using a shorthand.
Despite these differences, they are correctly identified as references to the same dataset.
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Snippet Table 5 shows that DivCNN performs better than
best baselines on NEWSROOM, REDDIT and
reaches incredible ROUGE scores more than 60
(but no baseline is reported in the dataset paper so
the result is not comparable).

Gold RAs (datasets) NEWSROOM, REDDIT
Flan-T5 XL Predictions -
LoRA-Hy Predictions NEWSROOM, REDDIT

Figure 10: Comparison of gold targets and predictions from Flan-T5 XL and LoRA-Hy models for a DMDD-E+
test set instance. The example shows that the Flan-T5 XL model fails to predict any datasets, while the LoRA-Hy
model successfully predicts NEWSROOM and REDDIT. This indicates that the XL model struggles in the absence
of obvious trigger phrases.

Snippet We select four widely used pedestrian datasets,
namely Virtual [21] , INRIA [22] , Daimler [23]
and KITTI [24] , to evaluate the RF-DA methods.

Gold RAs (datasets) Virtual, INRIA, Daimler, KITTI
Flan-T5 XL Predictions KITTI
LoRA-Hy Predictions Virtual, INRIA, Daimler, KITTI

Figure 11: Comparison of gold targets and predictions from Flan-T5 XL and LoRA-Hy models for a DMDD-E+
test set instance. This example demonstrates that the Flan-T5 XL model only predicts KITTI, whereas the LoRA-Hy
model correctly identifies all four datasets: Virtual, INRIA, Daimler, and KITTI. This indicates that the XL model
struggles in scenarios involving multiple datasets.

Snippet Picture luminance was calculated with Adobe Photoshop CS2 (Adobe Systems
Inc., USA) in 0-255 gray scale.

Gold RAs (software) Photoshop
LoRA-Hy Prediction Adobe Photoshop CS2

Exact Match False
Partial Match True

Figure 12: Example from SoMeSci_test+ that the Partial Match is more effective in capturing model performance,
as it allows adjacent words in RA mentions, thus avoiding penalizing correct predictions that are slightly broader in
scope, reducing false negatives.

Snippet Real-time PCR gene-specific primers for s100a8, s100a9, and -actin were designed using
Oligo Calc (Kibbe, 2007) as follows: s100a8, 5’-ACCATGCCCTCTACAAGAATGACT-3’; 5’-
ACTCCTTGTGGCTGTCTTTGTG-3’; s100a9, 5’-AACCAGGACAATCAGCTGAGCTTT-3’; 5’-
AGGCCATTGAGTAAGCCATTCCC-3’; -actin, 5’-ACCACAGCTGAGAGGGAAATCGT-3’; 5’-
AACCGCTCGTTGCCAATAGTGA-3’.

Gold RAs (software) Oligo Calc
Flan-T5 XL Prediction -
LoRA-Hy Prediction Oligo Calc

Figure 13: Example from SoMeSci_test+ in the biomedical domain where our system performed well, accurately
identifying the reference to the software.

Snippet To estimate the cumulative incidence of T2D within strata defined by quartiles of the genetic risk score
(cutoffs derived from the distribution in the sub-cohort) and modifiable risk factors, we used the Stata
bsample command to recreate the full cohort by resampling with replacement from the sub-cohort,
according to the distributions of the stratum variables within the sub-cohort.

Gold RAs (software) Stata
Flan-T5 XL Prediction Stata
LoRA-Hy Prediction Stata bsample

Figure 14: Example from SoMeSci_test+ in the biomedical domain where our system performed well, accurately
identifying the reference to Stata using partial matching.
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