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Abstract

Knowledge Discovery and Research Artifact
Analysis (RAA) are crucial for promoting re-
producibility and reusability in scientific re-
search. In this work, we introduce a novel
end-to-end system to efficiently identify and an-
alyze tangible research artifacts (RAs), specifi-
cally datasets and software, within scientific lit-
erature. Building on recent advancements, our
architecture employs Large Language Models
(LLMs) fine-tuned with the Low-Rank Adapta-
tion (LoRA) method to streamline the process
of RAA into an instruction-based Question An-
swering (QA) task. The system comprises five
stages: (i) candidate detection using a list of
curated keywords and gazetteers, (ii) RA men-
tion identification and validation, (iii) extrac-
tion of RA mention metadata, such as names,
versions, licenses, and URLs, (iv) classifica-
tion of RA mentions by usage and provenance,
and (v) deduplication of RA mentions to ensure
the uniqueness of each identified RA. Through
benchmarking on two RA mention datasets, we
demonstrated robust performance in RAA and
provided a comprehensive qualitative analysis,
underscoring the nuances and complexities of
ensuring reproducibility and reusability in di-
verse scientific fields.

1 Introduction

The continuous advancement of scientific knowl-
edge necessitates the development of novel method-
ologies for identifying and analyzing research arti-
facts (RAs) within scientific literature. Such tools
should streamline the process of Research Arti-
fact Analysis (RAA), strengthening both the re-
producibility of experiments and the reusability of
data and software. In addition, these tools should
maintain a balanced parameter-to-performance ra-
tio, making them more accessible to a broader part
of the scientific community, especially to research
groups with limited resources.

RAs often fall into two broad categories: tan-
gible and intangible. Tangible RAs include items

with a physical or digital presence, such as soft-
ware and datasets. In contrast, intangible RAs,
like methodologies and procedures, represent the-
oretical frameworks and structured approaches to
research. Despite the apparent simplicity of this dis-
tinction, it is important to note that the boundaries
between these categories are not always clear-cut,
highlighting the complexity of RAA. Significant
research efforts have thus been devoted to devel-
oping robust architectures and models for RAA,
addressing the unique characteristics and require-
ments of each category (Wang et al., 2022; Kriiger
and Schindler, 2020).

In this work, we focus on identifying tangible
named and unnamed RAs, specifically software and
datasets. In order to accomplish this objective, we
developed an innovative end-to-end system (Figure
1) that utilizes Large Language Models (LLMs) to
efficiently identify RAs and extract their associated
metadata. More specifically, we expand upon re-
cent findings (Stavropoulos et al., 2023), about the
efficacy of fine-tuned LL.Ms, using the Low-Rank
Adaptation (LoRA) (Hu et al., 2021) method, in
extracting RA mentions and their metadata. Our
objective is to further harness and extend the po-
tential of these models, aiming for comprehensive
RAA within the context of scientific publications.

The proposed end-to-end system comprises five
steps:

* Candidate detection: Through meticulous

scanning of the scientific text, potential trigger
words for RA mentions are identified.

* RA Identification & Validation: Each candi-
date RA mention is rigorously assessed as a
valid RA mention or an incidental reference.

e Metadata extraction: For each valid RA, rel-
evant information such as their name, version,
license, and URL are extracted.

* RA classification: For each valid RA, their
usage and provenance by the authors within
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Figure 1: Overview of our end-to-end system for extracting research artifacts (RAs) from scientific literature. Yellow
highlights candidate RA mentions, red invalid RA mentions, green dataset mentions, blue software mentions, and

gray RA metadata.

the scientific text are classified.

* RA Deduplication: RA mentions are consol-
idated into unique RAs, and their metadata
and usage/provenance are aggregated and re-
assessed.

In the subsequent sections, we detail the LoRA-
finetuned models that serve as the foundation of
our RAA system (Section 2) and provide an exten-
sive overview of the end-to-end system architecture
(Section 3). We then explore the deployment and
results of our system on two selected RA mention
datasets (Pan et al., 2023; Schindler et al., 2021)
(Section 4) and analyze its performance. Finally,
we conduct a detailed review of related technolo-
gies from existing literature (Section 5).

Our key contributions are:

1. We developed a novel end-to-end RAA sys-
tem, identifying both named and unnamed
RAs, including datasets and software'. Our
system leverages the LLMs previously fine-
tuned and fully documented in the work of
(Stavropoulos et al., 2023) on the task of RA
mention extraction.

2. We developed a comprehensive deduplication
pipeline that consolidates RA mentions into
unique RAs, enabling document-level RAA.

3. We evaluated our system against two promi-
nent RA mention datasets, DMDD and
SoMeSci. Despite not being trained on these
datasets, our system performed comparably
to top-performing models in both dataset and
software mention identification, metadata ex-
traction and usage/provenance classification.

2 LoRA-finetuned LLMs for RAA

Our proposed architecture employs the LoRA-Sy
and LoRA-Hy models, which are Flan-T5 Base

'The code repository will be provided upon acceptance.

(Chung et al., 2022) models fine-tuned, using the
LoRA method (Hu et al., 2021), on the Synthetic
and Hybrid RA mention datasets, as detailed in
(Stavropoulos et al., 2023). These models have
been fine-tuned to tackle RAA as an instruction-
based Question Answering (QA) task and are inte-
gral to the RA identification and validation, meta-
data extraction, and RA classification phases of our
system.

Snippet We used the SciPy <m>library</m> (version 1.7.0)
for scientific computations. SciPy is released
under the BSD license and can be accessed at
https://www.scipy.org/.

Type Software
Valid Yes

Name SciPy

Version 1.7.0

License BSD

URL https://www.scipy.org/
Provenance  No
Usage Yes

Figure 2: An example of a named RA mention contain-
ing all metadata.

Snippet To train our introduced learnable parameters,
we compose a dataset of <m>44K fine-grained
masks</m> from several sources.

Type Dataset
Valid Yes

Name N/A

Version N/A

License N/A

URL N/A
Provenance  Yes
Usage Yes

Figure 3: An example of an unnamed RA mention.

Each snippet in the task contains RA mentions
marked with ’<m>" and ’</m>’ tags. The model
is prompted to respond to a series of questions to
establish the validity of each RA mention and ex-
tract metadata?, strictly confined to the information
presented within the snippet (Figures 2-3).

An RA mention is considered valid if it repre-
sents a tangible research input or output. Gen-

*Metadata includes: Type, Valid, Name, Version, License,
URL, Usage and Provenance.



eral references to RAs are considered invalid. The
model eliminates incorrectly identified RA men-
tions during the candidate detection phase using the
validity questions. Following the convention used
by the Synthetic and Hybrid datasets in (Stavropou-
los et al., 2023), we define a dataset as a systemati-
cally organized collection of data, and software as
concrete applications, programs, algorithmic frame-
works, and implemented model architectures.

Furthermore, the LoRA fine-tuned LLMs are
trained to handle situations where the RA mention
within the <m>’ and ’</m>’ tags refers to multiple
RAs (e.g., *datasets’). The models generate the re-
spective validity, metadata, and usage/provenance
for each RA delineated using the ’I” symbol. This
functionality ensures full coverage when multiple
RAs are closely referenced within the same con-
text.

3 System Architecture

In this section, we outline our end-to-end system
architecture for the extraction of RAs in scientific
text. Our approach consists of five phases: (i) candi-
date detection, (ii) RA identification and validation,
(ii1) metadata extraction, (iv) RA classification, and
(v) RA deduplication. The system pipeline is illus-
trated in detail in Appendix A.

Our system processes the full text of publica-
tions in a structured format (sections, paragraphs,
sentences) using GROBID?. It can also handle any
unstructured text, treating it as a single section and
paragraph. Before deduplication, the output is a
list of identified RA mentions with metadata, us-
age, and provenance information. After deduplica-
tion, it is a list of RA mention clusters representing
unique RAs, with usage and provenance reevalu-
ated based on all mentions within each cluster.

3.1 Candidate Detection

In the candidate detection phase, our system iden-
tifies keywords and key phrases that act as trig-
gers for datasets and software in scientific texts.
Initially, we manually crafted a seed list of these
triggers, meticulously selected from scientific liter-
ature. This list was then expanded using Word2Vec
embeddings (Mikolov et al., 2013) to identify near-
synonyms and underwent thorough manual cura-
tion to ensure relevance and precision.

3Tool that converts publication PDFs to TEI XML format.
It can be found at github.com/kermitt2/grobid.

We also incorporated gazetteers from the Pa-
persWithCode (PwC) dataset*, aiding in the iden-
tification of ’candidate RA mentions’ within the
text. Gazetteers within the PwC dataset can share
names, which might lead to their identification as
both datasets and software, potentially triggering
multiple RA candidate mentions.

Our system uses regular expressions to scan sci-
entific texts for matches of keywords, key phrases,
and gazetteers. When a match is found, the sys-
tem records the exact location of the RA candidate
mention within the text, including the section, para-
graph, sentence, and offset, preserving the mention
in its proper context.

Additionally, the candidate detection stage in-
cludes a mechanism that allows the incorporation
of gazetteers from external sources beyond the
PwC dataset. This mechanism includes additional
RA names and triggers collected from the Syn-
thetic and Hybrid datasets. During inference, the
system uses this mechanism by issuing a ’special’
question (Stavropoulos et al., 2023) for each snip-
pet, generating a list of named RAs to incorporate
as additional gazetteers. This approach enhances
the model’s ability to identify named RAs in new,
unseen scientific texts, especially when triggers
identified by key phrases or the PwC gazetteers are
absent (Appendix D, Figure 8).

To enhance detection efficiency, we integrated a
Paragraph Relevance Checker into the candidate de-
tection phase. This submodule uses the LoRA fine-
tuned LLM with the ’special’ question described
above to identify and list all RA mentions in a para-
graph. If RA mentions are detected, the paragraph
is marked for further examination. This method
allows the system to check entire paragraphs with a
single question, reducing the need to process multi-
ple candidate RA mentions and improving overall
performance by filtering out generic references and
invalid RA mentions.

3.2 RA Identification & Validation

After candidate detection, the system proceeds to
the RA identification and validation phase. This
process uses the LoRA fine-tuned LLM model to
determine whether the candidate RA mentions are
valid RAs or merely incidental references or de-
scriptive terms within the text. Validation is per-
formed using a ’validity question’, as detailed in
(Stavropoulos et al., 2023).

4gi thub.com/paperswithcode/
paperswithcode-data
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Our system employs a classification protocol
(Appendix B) that evaluates a set of possible an-
swers to a given question and computes the like-
lihood of each being generated by the LLM. This
method assesses the validity of a candidate RA
mention by assigning a score to two definitive re-
sponses: ’Yes’ or 'No’.

The probability value of the *Yes’ response rep-
resents the validity score of the RA mention. This
score is compared to a predefined threshold, de-
faulting to 0.5, allowing control over precision and
recall. Only candidate RA mentions surpassing
this threshold are considered valid and proceed
to the next phase. This ensures that subsequent
phases handle only relevant and high-quality RA
mentions.

3.3 Metadata Extraction

After validating the RA mentions, the system pro-
ceeds to the metadata extraction phase. Here, the
LoRA fine-tuned LLM identifies and extracts es-
sential metadata associated with each validated RA
mention, such as name, version, license, and URL.
These metadata provide a comprehensive under-
standing of each RA mention and are used in the
deduplication phase.

Metadata extraction employs 'metadata ques-
tions’ directed at the LoRA fine-tuned LLM. As
described in (Stavropoulos et al., 2023), these mod-
els are trained to use only the text from the snippet
for their responses, minimizing hallucinations. Our
system discards any metadata not found within the
snippet to maintain accuracy.

3.4 RA Classification

In the RA classification phase, the system catego-
rizes identified RA mentions based on their usage
and provenance as determined by the authors. This
phase distinguishes whether the RA was actively
used in the research, created by the authors, or
merely cited. It is crucial that this classification
is based solely on the snippet of the RA mention,
without relying on external information.

To achieve this, the system uses ’classification
questions’ (Stavropoulos et al., 2023) designed to
determine the usage and provenance of the RA men-
tion. Using our classification protocol, the system
evaluates the model’s confidence regarding the RA
mention’s usage and provenance, with responses
limited to *Yes’ or 'No’. Similar to the identifi-
cation and validation phases, score thresholds for

usage and provenance are set, with default values
at 0.5, allowing control over precision and recall.

3.5 RA Deduplication

In the final phase, RA deduplication, the system
ensures the distinctiveness of each identified RA
by aggregating mentions that refer to the same RA
through their metadata, including names and trigger
phrases. This phase further refines the evaluation
of the usage and provenance of each RA by con-
sidering the specific context of each RA mention
within the scientific text. The result is a unique list
of metadata-enriched RAs.

The process begins by consolidating RA men-
tions based on their names. The system then consid-
ers the trigger words for each cluster, generating a
list of alternative names for each name cluster (e.g.,
[Yandex, Yandex dataset]). Name clusters start-
ing with the same word substring are grouped to-
gether, ensuring distinct clusters for similar names
(e.g., [Yandex, Yandex data] and [Yandex testing,
Yandex testing dataset] are combined, while [Im-
ageNet, ImageNet dataset] remains distinct from
[ImageNet1K, ImageNet1K data]). Clusters with
the same word tokens in different orders are also
merged (e.g., [Human Pose MPII] and [MPII Hu-
man Pose]). This process prevents redundant clus-
ters due to similar naming patterns.

To address the complexity of identifying similar
RAs, the system uses the SciCo Longformer model
(Cattan et al., 2021), specialized in hierarchical
cross-document coreference resolution (H-CDCR).
This model handles the diversity in scientific lan-
guage, accurately clustering related RA mentions.

The system leverages the SciCo model’s similar-
ity scores to cluster unnamed mentions with named
clusters within the same paragraph, as this local-
ity often indicates a strong relationship between
mentions. Unnamed mentions not similar enough
to any named clusters are independently clustered
within the same paragraph. Subsequently, unnamed
clusters are matched to named clusters across para-
graphs, ensuring all relationships are identified.

Finally, the system merges the clusters that re-
fer to RA mentions with identical citation marks
(Appendix D, Figure 9). This step is crucial in a
scientific context, as it often indicates references to
the same RA within the same publication.

Post-deduplication, the system aggregates meta-
data such as licenses, versions, and URLSs to create
a comprehensive overview for each RA. The eval-
uation of usage and provenance is refined based



on the RA’s cluster of mentions. If any mention
within the cluster indicates usage, the entire RA
is marked as "used’. Further analysis of the loca-
tion of RA mentions within the scientific text is
conducted. If the initial mention of an RA out-
side introductory sections, such as ’Background’
or 'Related Work’, suggests authorial provenance,
it is presumed the RA was created by the authors.
This approach filters out potential false positives,
accurately identifying RAs created by the authors.

It is important to note that the clustering tech-
niques leveraging the SciCo model, as well as the
metadata and usage/provenance reevaluations, are
not included in the evaluation of our system de-
tailed in section 4. These components are primarily
utilized for in-depth analysis of full scientific texts
and require further experimentation and evaluation.

4 Experimental results and analysis

4.1 Evaluation Datasets

To evaluate our system, we used two prominent RA
mention datasets: DMDD (Pan et al., 2023) and
SoMeSci (Schindler et al., 2021). These datasets
frame RAA as a Named Entity Recognition (NER)
task, in contrast to our instruction-based Question
Answering (QA) approach. Below is an overview
of each dataset:

e DMDD: DMDD includes full-text articles
from various scientific disciplines, sourced
from S20RC (Lo et al., 2020) and PwC. These
texts are divided into sections and individual
sentences. DMDD’s primary goal was to cre-
ate a large-scale dataset, hence only specific
named dataset mentions were programmati-
cally annotated using PwC, omitting mentions
beyond PwC’s scope. However, the evaluation
subset, DMDD-E?, incorporates exhaustive
human curation.

* SoMeSci: SoMeSci gathers scientific pub-
lications from the PubMed Central (PMC)
Open Access (OA) subset. These texts are
categorized into four subsets, each annotated
for software mentions and associated meta-
data. Mention labels cover both software
and mention types. Software is categorized
into ’Application’, ’Plugin’, Operating Sys-
tem’, and "’Programming Environment’, with
added tags for ’Abbreviation’ and ’Alterna-
tiveName’. Mention types include "Mention’,

3Access the DMDD and its DMDD-E subset at kaggle.
com/datasets/panhuitong/dmdd-corpus.

"Usage’, *Creation’, and ’Deposition’, align-
ing with our *Usage’ and 'Provenance’ def-
initions. Specifically, our system interprets
’Mention’ as neither usage nor provenance,
’Usage’ as usage but not provenance, and both
"Creation’ and *Deposition’ as signifying both
usage and provenance. Additional metadata,
such as URLs, licenses, extensions, versions,
developers, and citations, are linked to the
mentioned software.

Due to limited computational resources, we con-
ducted evaluations on subsets of the DMDD-E and
SoMeSci test sets, containing sentences with at
least one RA mention. These subsets are referred
to as DMDD-E+ and SoMeSci_test+, respectively.

We selected these datasets because they align
with our definitions of datasets and software. The
clarity and rigor of the research conducted by the
respective scientific teams allowed for a fair and
comprehensive comparison with our results. While
many studies focus on RAA, particularly software
and dataset mentions, direct comparison is chal-
lenging. As noted by (Heddes et al., 2021), despite
the widespread use of NER, each study employs
different approaches, datasets, and unique modifi-
cations, adding complexity to the task. We provide
an in-depth exploration of RA mention datasets and
related models in Section 5.

4.2 Evaluation method

The DMDD and SoMeSci datasets comprise
sentence-level gold annotations formatted as an
NER task. Our system, in contrast, identifies
candidate mentions through triggers and uses an
instruction-based QA pipeline to fill templates for
each RA. To ensure a fair comparison, we adopted
the following methodology:

* We extracted the unique gold RA mentions
per sentence from the BIO schema for both
datasets.®

* We ran our system architecture, including the
first step of the deduplication pipeline, to find
all RA mentions clusters in each sentence.’

Qur system predicts both named and unnamed RA men-
tions using triggers. Converting to BIO notation using pattern
matching might introduce biases into our system’s results.

"In the current setup, annotations are at the sentence level,
negating the need for the full deduplication pipeline. With-
out paragraph context for the SciCo model, aggregating RA
metadata and reassessing their usage and provenance is unnec-
essary.
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¢ We excluded all unnamed RA mentions from
our system results, as both datasets focus on
named RAs. While SoMeSci has some un-
named software mentions (software corefer-
ence mentions), their count was too small for
a valid comparison. Even though our sys-
tem identifies unnamed software mentions, in-
cluding them would be misleading since they
would be considered incorrect for the dataset,
potentially biasing the results.

* In cases where the LoRA-Hy/Sy models pro-
duce multiple RA mentions from a single
trigger (e.g., ’datasets’ referring to multiple
datasets), we used the ’I” character to separate
them into individual RA mentions.

* We incorporated the list of alternative names
and abbreviations provided by authors of the
DMDD and SoMeSci datasets to reduce both
false positives and false negatives by recogniz-
ing synonyms. For instance, when identifying
a cluster as [SNLI, SNLI data], and knowing
’SNLI" stands for ’Stanford Natural Language
Inference’, we expanded the cluster to include
[SNLI, SNLI data, Stanford Natural Language
Inference, Stanford Natural Language Infer-
ence data].

Our experiments encompassed two evaluation
strategies: Exact Match and Partial Match. Exact
Match ensures that at least one prediction within an
RA mention cluster aligns with all word tokens of
a gold RA mention, regardless of their order. This
is a stricter measure, serving as an upper boundary
when compared with BIO-tag-based results. On
the other hand, Partial Match determines whether
any prediction within an RA mention cluster is a
substring of, or contains all word tokens from, a
gold RA mention, and vice versa. This makes the
Partial Match closer to BIO-tag-based results, serv-
ing as a potential lower boundary. If a predicted
RA mention cluster matches multiple unique gold
RA mentions, each matched gold RA mention is
considered a true positive. To avoid potential bias
and ensure that the count of gold targets remains
unchanged, the unique gold RA mentions are not
subjected to the deduplication pipeline’s grouping
steps.

In terms of our metrics, we computed both
Macro and Micro PRF scores. The Macro PRF
scores were computed by calculating the Precision,
Recall, and F1-score (PRF) for each instance and

then averaging them. In contrast, the Micro PRF
scores were calculated by aggregating the true pos-
itives, false positives, and false negatives across all
instances to produce overall PRF scores. While the
Micro scores provide insights into the overall sys-
tem performance, they can become overly sensitive
when the system accumulates multiple false posi-
tives in a particularly noisy or problematic instance,
leading to an exaggerated decline in overall perfor-
mance. Conversely, Macro scores are less impacted
by individual problematic instances, as any incor-
rect prediction within an instance leads to a score
of 0.0. Thus, the Macro metric is less susceptible
to instance-level errors and more indicative of the
system’s performance.®

Additionally, we incorporated an Accuracy met-
ric to quantify the number of accurately identified
gold RA mentions. Given our system’s design,
which responds only upon correct identification of
a gold RA mention, smaller models like the Flan-
TS Base might produce disproportionately high
PRF metrics for metadata and usage/provenance.
This is often due to their evaluation against a
smaller number of gold RA mentions, particularly
those with well-defined metadata. To provide a
holistic perspective, Table 2 presents two variations
of PRF scores for metadata and usage/provenance.
The first version measures the metrics based on the
metadata of correctly identified RA mentions. In
contrast, the second version refines these scores by
multiplying them with the Accuracy measure, pro-
viding a more nuanced evaluation that incorporates
the impact of identification errors on each model’s
performance.

4.3 Evaluation Results & Qualitative Analysis

Table 2 showcases the performance of the LoRA-
Sy and LoRA-Hy models compared to the Flan-
T5 Base and XL models on the DMDD-E+ and
SoMeSci_test+ datasets. These results are also
compared to the top-performing models provided
by the creators of the two datasets.

For metadata extraction and RA classification,
the scores have two variations. Scores outside
parentheses reflect performance based solely on
correctly identified RA mentions, while scores in-
side parentheses are adjusted using the Accuracy
score, as explained in Subsection 4.2.

The PRF scores in Table 2 reveal that the LoRA
fine-tuned models outperform the Flan-T5 Base

8Table 2 presents the results using Macro scores. Results
using Micro scores are available in Appendix C.



DMDD-E+ SoMeSci_test+
Model Scoring Method Metric mention i url version Ticense usage provenance
Accuracy 0.214 0.176 - - - - -
Precision 0.223 0.157  0.404 (0.047) 0.421 (0.049) 0.825 (0.096) 0.000 (0.000) 0.737 (0.085)
Flan-T5 Base Exact match Recall 0.213 0.139  0.404 (0.047) 0.421 (0.049) 0.825 (0.096) 0.000 (0.000) 0.560 (0.065)
F1 0.214 0.144  0.404 (0.047) 0.421 (0.049) 0.825 (0.096) 0.000 (0.000) 0.636 (0.074)
Accuracy 0.240 0.177 - - - - -
Precision 0.243 0.220  0.427 (0.076) 0.549 (0.097) 0.817 (0.145) 1.000 (0.177) 0.519 (0.092)
Partial match Recall 0.236 0.196  0.427 (0.076) 0.549 (0.097) 0.817 (0.145) 0.060 (0.011) 0.560 (0.099)
F1 0.235 0.203  0.427 (0.076) 0.549 (0.097) 0.817 (0.145) 0.114 (0.020) 0.538 (0.095)
Accuracy 0.607 0.269 - - - - -
Precision 0.678 0.367 0.873(0.235) 0.896 (0.241) 0.910 (0.245) 0.958 (0.258) 0.919 (0.247)
Flan-T5 XL Exact match Recall 0.670 0.324  0.873(0.235) 0.896 (0.241) 0.910 (0.245) 0.919 (0.247) 0.654 (0.176)
Fl1 0.662 0.336 0.873(0.235) 0.896 (0.241) 0.910 (0.245) 0.938 (0.252) 0.764 (0.206)
Accuracy 0.683 0.400 - - - - -
Precision 0.724 0.496  0.890 (0.356) 0.868 (0.347) 0.935 (0.374) 0.972 (0.389) 0.900 (0.360)
Partial match Recall 0.731 0.446  0.892(0.357) 0.874 (0.350) 0.935 (0.374) 0.926 (0.370) 0.643 (0.257)
Fl1 0.716 0.460 0.891 (0.356) 0.870 (0.348) 0.935 (0.374) 0.948 (0.379) 0.750 (0.300)
Accuracy 0.791 0.592 - - - - -
Precision 0.761 0.658 0.952(0.564) 0.923 (0.546) 0.943 (0.558) 0.902 (0.534) 0.898 (0.532)
LoRA-Sy Exact match Recall 0.847 0.651  0.960 (0.568) 0.927 (0.549) 0.943 (0.558) 0.812 (0.481) 0.557 (0.330)
Fl 0.781 0.638  0.954 (0.565) 0.925 (0.548) 0.943 (0.558) 0.854 (0.506) 0.688 (0.407)
Accuracy 0.836 0.777 - - - - -
Precision 0.791 0.821  0.958 (0.744) 0.890 (0.692) 0.964 (0.749) 0.921 (0.716) 0.887 (0.689)
Partial match Recall 0.887 0.829  0.965 (0.750) 0.893 (0.694) 0.964 (0.749) 0.837 (0.650) 0.553 (0.430)
F1 0.816 0.803  0.960 (0.746) 0.890 (0.692) 0.964 (0.749) 0.877 (0.681) 0.681 (0.529)
Accuracy 0.812 0.606 - - - - -
Precision 0.756 0.660 0.952(0.577) 0.949 (0.575) 0.932 (0.565) 0.930 (0.564) 0.929 (0.563)
LoRA-Hy Exact match Recall 0.864 0.677 0.968 (0.587) 0.955 (0.579) 0.932 (0.565) 0.794 (0.481) 0.627 (0.380)
Fl1 0.785 0.649  0.958 (0.581) 0.951 (0.576) 0.932 (0.565) 0.857 (0.519) 0.748 (0.453)
Accuracy 0.859 0.80T - - - - -
Precision 0.786 0.816  0.951(0.762) 0.889 (0.712) 0.957 (0.767) 0.941 (0.754) 0.898 (0.719)
Partial match Recall 0.904 0.847  0.966 (0.774) 0.898 (0.719) 0.958 (0.767) 0.842 (0.674) 0.631 (0.505)
Fl 0.819 0.807 0.956 (0.766) 0.891 (0.714) 0.957 (0.767) 0.889 (0.712) 0.741 (0.594)
Base-cased SCIBERT Precision 0.639 +0.002 - - - - -
(Pan et al., 2023) BIO tags Recall 0.919 + 0.002 -
Fl1 0.754 + 0.002 - - - - - -
SoMeNLP Precision - 0.820 0.963 0.937 0.786 0.865 0.787
(Schindler et al., 2021) BIO tags Recall 0.804 0.981 0.932 0.786 0.877 0.815
F1 0.803 0.972 0.934 0.786 0.871 0.800

Table 1: Experimental results on the DMDD-E+ and SoMeSci_test+ datasets.

and XL models. Regarding the SoMeSci dataset,
it is evident that the Base and XL models strug-
gle in mention extraction. An example of this is
illustrated in Figure 4, where only the fine-tuned
models successfully identified the software men-
tion. While the XL model shows promising results
in metadata extraction and RA mention classifica-
tion, its performance is poor when inspecting the
Accuracy-adjusted PRF scores.

Initially, the XL model appears comparable to
the fine-tuned models, seeming superior to the Base
model. However, a qualitative assessment of the re-
sults shows that the XL model correctly identifies
fewer and less complex RA mentions compared
to the fine-tuned models. For the DMDD dataset,
the Flan-T5 XL model demonstrates a better un-
derstanding of the RAA task, yet it still does not
perform as well as the fine-tuned models (Appendix
D, Figures 10-11).

Sentence To address these limitations, we present
4Cin, a <m>method</m> to generate 3D
models and derive virtual Hi-C (vHi-C) heat
maps of genomic loci based on 4C-seq or
any kind of 4C-seq-like data, such as those
derived from NG Capture-C.

4Cin

[’4Cin’, ’4Cin method’]

Gold RA mentions
Predicted RA clusters

Figure 4: An example of a successful software cluster
prediction using the LoRA-Hy model. No software was
identified using the Flan-T5 Base and XL models.

The evaluation reveals that the LoORA-Hy model
excels in RAA, especially in metadata extraction
and classification. The Partial Match metric is par-

ticularly effective in capturing model performance,
allowing flexibility by including adjacent words
in RA mentions. This helps avoid penalizing cor-
rect predictions that are slightly broader in scope,
thus reducing false negatives (Appendix D, Figure
12). The performance gap between LoRA-Sy and
LoRA-Hy in Table 2 highlights the potential for im-
provement with more comprehensive and diverse
RA datasets.

By employing the LoRA-Sy and LoRA-Hy mod-
els for the evaluation of the SoMeSci dataset, our
system operates in a zero-shot setting due to the
dataset’s different domain. Remarkably, the sys-
tem demonstrated solid performance, particularly
in software mentions when assessed using Partial
Matching (Appendix D, Figures 13-14).

Direct comparison between our system and
SoMeNLP is challenging due to significant dif-
ferences in model metrics. SoMeNLP excels at
analyzing biomedical publications for program-
specific software, whereas our system identifies
a broader range of software categories, including
machine learning models, algorithms, and architec-
tures. This indicates that our system’s capabilities
are not fully represented when evaluated solely
with the SoMeSci dataset.

Examining the SoMeSci dataset, we observed
that software type mentions (e.g., usage) are
categorized at a sentence level, which limits
document-level Research Artifact Analysis (RAA).
Document-level analysis requires synthesizing
sentence-level mentions into cohesive document-



level annotations. Our system’s deduplication
pipeline is designed to address this challenge, con-
solidating both named and unnamed software men-
tions into singular, document-wide annotations that
capture all their metadata. However, fully realiz-
ing the potential of this capability requires further
experimentation.

5 Related Work

Our study provided an in-depth examination of
RA mention datasets, focusing on DMDD and
SoMeSci, which target dataset and software men-
tions. However, the research landscape includes
numerous other RA mention datasets proposed in
recent literature. Some datasets focus on abstract
RAs, capturing elements like materials, methods,
metrics, and tasks (Augenstein et al., 2017; Luan
et al., 2018; Jain et al., 2020; Firber et al., 2021;
Zhao et al., 2019), while others emphasize on tangi-
ble RAs, specifically datasets (Heddes et al., 2021;
Lafia et al., 2021) and software (Gupta and Man-
ning, 2011; Istrate et al., 2022).

RAA within the specified datasets predominantly
uses NER methods. Leading techniques in this do-
main include Recurrent Neural Networks (RNNs)
(Hopfield, 1982) and BERT-based models (Devlin
et al., 2019). Specifically, the extraction of dataset
and software mentions has been primarily con-
ducted using Long Short-Term Memory (LSTM)
models (Hochreiter and Schmidhuber, 1997) paired
with conditional random fields (CRFs) (Lafferty
et al., 2001; Prasad et al., 2019; Schindler et al.,
2020; Hou et al., 2022; Luan, 2018; Zeng and
Acuna, 2020). Additionally, transformer-based
models (Vaswani et al., 2017) such as BERT and
SciBERT (Beltagy et al., 2019; Schindler et al.,
2021; Farber et al., 2021) have been applied to
these tasks. Notably, some works even combine
both techniques (Pan et al., 2023; Heddes et al.,
2021; Wadden et al., 2019).

Several models with complex architectures have
been developed that perform NER by incorporat-
ing additional features for a more thorough analy-
sis. Among them, the SoMeNLP model (Schindler
et al., 2021) stands out for integrating a relation
extraction component and a hierarchical clustering-
based disambiguation mechanism (Schindler et al.,
2021, 2020). This approach enables the extraction
of enriched metadata from both text and external
knowledge bases. Similarly, the Softcite service
(Lopez et al., 2021) leverages a GROBID module to
identify software mentions and extract associated

metadata.

Training models on RA datasets introduces in-
herent biases, primarily stemming from their scope.
While datasets such as DMDD (Pan et al., 2023)
and CZ Software Mentions (Istrate et al., 2022)
offer extensive coverage, their emphasis on par-
ticular scientific domains can cause biases. For
instance, models like SoOMeNLP show a strong pref-
erence for Life Sciences. Various models trained
on RA datasets cover a broad range of scientific dis-
ciplines, from Biomedical fields (Duck et al., 2013;
Schindler et al., 2021) to Economic Science (Du
et al., 2021) and Computer Science (Heddes et al.,
2021; Luan et al., 2018). Additionally, only a few
studies, notably the Softcite and SoMeSci datasets
(Du et al., 2021; Schindler et al., 2021), have tack-
led the complex task of metadata extraction and
linking.

6 Discussion and Conclusions

In this work, we introduced a novel end-to-end
system utilizing fine-tuned LLMs to effectively ex-
tract RAs from scientific literature. By employing
two fine-tuned Flan-T5 models, we demonstrated
the potential of even smaller models to perform
RAA. This advancement is particularly significant
for research teams with limited resources, as it can
facilitate the reproducibility and reusability of RAs.
Moreover, our system has the potential to revolu-
tionize editorial reviews by detecting unnamed RA
mentions, highlighting critical information gaps.

The performance of our system varied across
scientific domains due to the field-specific nature
of the keywords and gazetteers used in candidate
detection and RA mention identification. This vari-
ation underscores the need for tailored model ad-
justments for each scientific field.

The performance of the LoORA-Hy and LoRA-Sy
models, both based on the Flan-T5 Base model, is
influenced by their training data quality. The inclu-
sion of real-world mentions in the Hybrid dataset
used for fine-tuning the LoRA-Hy model resulted
in superior performance compared to the LoRA-
Sy model, trained only on synthetic data. This
highlights the importance of real-world data in im-
proving model effectiveness.

Looking ahead, enhancing our system involves
two key areas: expanding the datasets with diverse
real-world RA mentions to improve model perfor-
mance, and exploring newer, state-of-the-art LLMs.
These steps promise to refine our tools and deepen
our understanding of LLMs in RAA.



Limitations

Despite the promising results demonstrated by
our novel end-to-end system for Research Artifact
Analysis (RAA), several limitations must be ac-
knowledged. These limitations highlight areas for
further improvement and refinement.

Our system’s performance is influenced by
the discipline-specific nature of keywords and
gazetteers used in candidate detection and RA men-
tion identification. While effective within certain
domains, its generalizability across all scientific
disciplines is limited, requiring further adaptation
for broader applicability. Additionally, the quality
and diversity of the training data significantly im-
pact performance. The LoRA-Sy and LoRA-Hy
models are trained on datasets specific to certain
disciplines, which may not fully represent all pos-
sible RA mentions, leading to biases.

Furthermore, we currently categorize RAs solely
as software or datasets, which limits the system’s
comprehensiveness. Expanding our categorization
to include a broader range of RA types, which
vary by discipline, would enhance the system’s
applicability across diverse scientific fields.

Errors in candidate detection and RA validation
can propagate through the pipeline, affecting the
accuracy of identified RA mentions and extracted
metadata. Focusing on the early stages of the
pipeline and introducing stricter thresholds could
help mitigate error propagation and improve over-
all performance. Our evaluation metrics, while
comprehensive, might not capture all complexities
of RAA tasks, as research artifacts can be found
under many alternative names. Developing more
standardized benchmarks, comprehensive metrics,
or even performing human evaluations would pro-
vide a clearer picture of system capabilities and
areas needing improvement. Comparing our sys-
tem’s results with top-performing models is chal-
lenging due to differences in task formats, further
complicating the evaluation process.

Our system, based on Large Language Models
(LLMs) and the instruction-based Question An-
swering (QA) task, requires significant computa-
tional resources. Larger models, such as Flan-
TS5 XL, which show improved accuracy, neces-
sitate substantial resources for both training and
deployment. Additionally, the system’s design
requires multiple prompts to the LLM, which is
time-consuming. Balancing model size, efficiency,
and performance remains a challenge. Investing in

more real-world instances from diverse scientific
disciplines and optimizing smaller LLM models
might be a more practical approach for enhancing
performance without excessive resource demands.

Addressing these limitations involves creating
discipline-specific gazetteers, annotating and curat-
ing real-world examples for more effective training,
refining candidate detection with stricter thresholds
to prevent error propagation, balancing computa-
tional efficiency with performance, and developing
more standardized evaluation benchmarks. Addi-
tionally, exploring state-of-the-art LLLMs that offer
an optimal balance of size and performance could
further enhance the system’s capabilities.
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A System Architecture Overview

In this appendix, we provide detailed figures illustrating the system pipeline. The figures show the
system’s architecture in more detail, using color coding to distinguish different elements. The green dotted
boxes indicate sections, the blue dotted boxes indicate paragraphs, the black boxes indicate sentences, and
the black rounded boxes indicate RA mentions. The red boxes indicate irrelevant paragraphs or sentences
with no RA mentions.

Figure 5 illustrates the Candidate Detection using the system’s gazetteers, keywords, and key phrases,
as well as the Paragraph Relevance Check for all paragraphs of a publication, which we receive in a
structured layout format (sections, paragraphs, and sentences). It also shows the RA validation process to
determine which candidate RA mentions are valid and which are merely generic references.

RA
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Figure 5: Candidate Detection, Paragraph Relevance and RA validation

Figure 6 illustrates the RA Metadata Extraction and RA Usage and Provenance Classification for the
valid RA mentions. This phase involves extracting key metadata such as name, version, license, and URL
for each RA mention. Additionally, it classifies each RA mention based on its usage (e.g., whether the RA
is used in the study) and provenance (e.g., whether the RA was created by the authors).

Metadata Extraction &
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Figure 6: RA Metadata Extraction and RA Usage and Provenance Classification.

Figure 7 illustrates the clustering and deduplication of the RA mentions (both named and unnamed)
into unique RAs. This process involves clustering similar RA mentions using their metadata and the
SciCo model to aggregate all relevant metadata. It ensures each RA is distinctly represented and includes
the reevaluation of their usage and provenance based on their clusters.
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Figure 7: Clustering and deduplication of RA mentions into unique RAs, with usage and provenance reevaluation.

B Classification Protocol for LLMs

Our end-to-end system employs a unique classification protocol for Large Language Models (LLMs).
This protocol leverages the probability scores of text generated by LLMs, converting unrestricted outputs
into a controlled set of answers or choices. This methodology is critical in reducing the tendency of LLMs
to generate "hallucinations’ or inaccurate information.

The protocol builds upon the method outlined in (Reppert et al., 2023). By incorporating this method,
we calculate scores based on the probabilities of predefined answers generated by the LLM. This scoring
mechanism is particularly advantageous during the RA validation and RA classification phases, converting
these tasks into conventional classification tasks and facilitating the use of output thresholds.

An essential component of this protocol is the calculation of relative probabilities for a set of choices
based on LLM predictions. The process begins with tokenizing each choice and calculating an absolute
score for each tokenized choice. The score for a choice c is computed by summing the probabilities of
tokens in the LLM’s predictions that match the tokens in the tokenized choice.

Mathematically, this is expressed as:

n
abs_probs|c] = Z Z predictions]i][t]
tec i=0

where abs_probs is a dictionary storing the absolute probabilities of the choices, n is the length of the
predictions, and predictions[i|[t] denotes the probability of token ¢ at position ¢ in the predictions.

After computing the absolute probabilities for all choices, the algorithm normalizes these scores to
derive relative probabilities. This normalization is performed by dividing each absolute score by the sum
of all absolute scores, Z, which serves as a normalization factor. The relative probability for choice c is
calculated as:

abs_probs|c]

rel_probs|c] = Z

where
Z = Z abs_probs|c]

A known limitation of this approach is its bias towards longer choices, as they contain more tokens
and thus accumulate a higher absolute score. This can lead to an overestimation of the probability for
longer choices. Nevertheless, experimental observations indicate that the initial tokens in the choices have
a more significant impact on the absolute score. This mitigates the bias towards longer choices to some
extent, as the leading tokens contribute more substantially to the score. However, in scenarios where two
choices begin with the same tokens, the ability to differentiate based on subsequent tokens is preserved,
though with reduced impact.
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C Additional Experimental Results

DMDD-E+ SoMeSci_test+
Model Scoring Method Metric i mention url version Ticense usage provenance
Accuracy 0274 0.116 - - - - -
Precision 0.836 0.682 0.091 (0.011) 0.059 (0.007) 0.000 (0.000) 0.000 (0.000) 0.737 (0.085)
Flan-T5 Base Exact Match Recall 0.223 0.120  0.333(0.039) 0.333 (0.039) 0.000 (0.000) 0.000 (0.000) 0.560 (0.065)
F1 0.352 0.205  0.143 (0.017) 0.100 (0.012) 0.000 (0.000) 0.000 (0.000) 0.636 (0.074)
Accuracy 0.240 0.177 - - - - -
Precision 0.902 0.957 0.140 (0.025) 0.349 (0.062) 0.136 (0.024) 1.000 (0.177) 0.519 (0.092)
Partial Match Recall 0.250 0.179  0.583(0.103) 0.846 (0.150) 0.750 (0.133) 0.060 (0.011) 0.560 (0.099)
F1 0.392 0.301  0.226 (0.040) 0.494 (0.088) 0.231 (0.041) 0.114 (0.020) 0.538 (0.095)
Accuracy 0.607 0.269 - - - - -
Precision 0.825 0.726  0.469 (0.126) 0.517 (0.139) 0.077 (0.021) 0.958 (0.258) 0.919 (0.247)
Flan-T5 XL Exact Match Recall 0.634 0.277  0.789 (0.212) 1.000 (0.269) 0.250 (0.067) 0.919 (0.247) 0.654 (0.176)
F1 0.717 0.401  0.588 (0.158) 0.682 (0.183) 0.118 (0.032) 0.938 (0.252) 0.764 (0.206)
Accuracy 0.683 0.400 - - - - -
Precision 0.884 0.985 0.524(0.210) 0.648 (0.259) 0.190 (0.076) 0.972 (0.389) 0.900 (0.360)
Partial Match Recall 0.713 0.398  0.880(0.352) 0.920 (0.368) 1.000 (0.400) 0.926 (0.370) 0.643 (0.257)
Fl 0.790 0.567  0.657 (0.263) 0.760 (0.304) 0.320 (0.128) 0.948 (0.379) 0.750 (0.300)
Accuracy 0.791 0.592 - - - - -
Precision 0.734 0.657 0.689 (0.408) 0.660 (0.391) 0.000 (0.000) 0.902 (0.534) 0.898 (0.532)
LoRA-Sy Exact Match Recall 0.826 0.608 0.721(0.427) 0.814 (0.482) 0.000 (0.000) 0.812 (0.480) 0.557 (0.330)
F1 0.777 0.632  0.705 (0.417) 0.729 (0.432) 0.000 (0.000) 0.854 (0.506) 0.688 (0.407)
Accuracy 0.836 0.777 - - - - -
Precision 0.765 0.821 0.722(0.561) 0.763 (0.593) 0.250 (0.194) 0.921 (0.716) 0.887 (0.689)
Partial Match Recall 0.873 0.771  0.736 (0.572) 0.733 (0.569) 0.857 (0.666) 0.837 (0.650) 0.553 (0.430)
F1 0.816 0.795 0.729 (0.566) 0.747 (0.581) 0.387 (0.301) 0.877 (0.682) 0.681 (0.529)
Accuracy 0.812 0.606 - - - - -
Precision 0.718 0.631  0.660 (0.400) 0.708 (0.429) 0.000 (0.000) 0.930 (0.563) 0.929 (0.563)
LoRA-Hy Exact Match Recall 0.848 0.631  0.778 (0.471) 0.810 (0.491) 0.000 (0.000) 0.794 (0.481) 0.627 (0.380)
F1 0.778 0.631  0.714 (0.433) 0.756 (0.458) 0.000 (0.000) 0.857 (0.519) 0.748 (0.453)
Accuracy 0.859 0.801 - - - - -
Precision 0.750 0.782  0.656 (0.525) 0.793 (0.635) 0.227 (0.182) 0.941 (0.754) 0.898 (0.720)
Partial Match Recall 0.897 0.791  0.769 (0.616) 0.644 (0.515) 1.000 (0.801) 0.842 (0.675) 0.631 (0.505)
F1 0.817 0.786  0.708 (0.567) 0.710 (0.569) 0.370 (0.297) 0.889 (0.712) 0.741 (0.594)

Table 2: Experimental results on the DMDD-E+ and SoMeSci_test+ datasets, using Micro instead of Macro metrics.

D Additional Examples

Snippet We used AmoebaNet-A as a teacher with 83.9% of
ImageNet validation top-1 accuracy.
Candidate triggers [dataset]: ImageNet
External gazetteers [software]: AmoebaNet-A
Candidate RA Mention  We used <m>AmoebaNet-A</m> as a teacher with
83.9% of ImageNet validation top-1 accuracy.
Type software
Name AmoebaNet-A
License N/A
Version N/A
URL N/A
Usage Yes
Provenance No

Figure 8: An example of a successful software identification in DMDD using the ’special’ question of LoRA-Hy.
No keyword or keyphrase from the PwC gazetteer was present, yet the correct instance was found.

Snippet 1 To evaluate the perception modules, we make use of three datasets with different sensory modalities:
The Berlin Emotional Speech Database (EmoDB) [17] corpus is used to train and evaluate the auditory
channel, the Face Expression Recognition Plus dataset (FER+) [9] corpus is used for the visual channel
and The One-Minute Gradual-Emotional Behavior dataset (OMG-Emotion dataset) [7] is used for the
cross-channel evaluation and the emotional concept clustering.

To solve this, the FER+ dataset [9] was proposed.

Face Expression Recognition Plus dataset | FER+ dataset | FER+ corpus

(9]

Snippet 2
RA names
Citation mark

Figure 9: Example of deduplication where two snippets with the same citation mark are consolidated. The snippets
refer to the same dataset, the FER+ dataset, with one using the complete name and the other using a shorthand.
Despite these differences, they are correctly identified as references to the same dataset.
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Snippet Table 5 shows that DivCNN performs better than
best baselines on NEWSROOM, REDDIT and
reaches incredible ROUGE scores more than 60
(but no baseline is reported in the dataset paper so
the result is not comparable).
Gold RAs (datasets) NEWSROOM, REDDIT
Flan-T5 XL Predictions -
LoRA-Hy Predictions NEWSROOM, REDDIT

Figure 10: Comparison of gold targets and predictions from Flan-T5 XL and LoRA-Hy models for a DMDD-E+
test set instance. The example shows that the Flan-T5 XL model fails to predict any datasets, while the LoRA-Hy
model successfully predicts NEWSROOM and REDDIT. This indicates that the XL model struggles in the absence
of obvious trigger phrases.

Snippet We select four widely used pedestrian datasets,
namely Virtual [21] , INRIA [22] , Daimler [23]
and KITTI [24] , to evaluate the RF-DA methods.

Gold RAs (datasets) Virtual, INRIA, Daimler, KITTI
Flan-T5 XL Predictions  KITTI
LoRA-Hy Predictions Virtual, INRIA, Daimler, KITTI

Figure 11: Comparison of gold targets and predictions from Flan-T5 XL and LoRA-Hy models for a DMDD-E+
test set instance. This example demonstrates that the Flan-T5 XL model only predicts KITTI, whereas the LoRA-Hy
model correctly identifies all four datasets: Virtual, INRIA, Daimler, and KITTI. This indicates that the XL model
struggles in scenarios involving multiple datasets.

Snippet Picture luminance was calculated with Adobe Photoshop CS2 (Adobe Systems
Inc., USA) in 0-255 gray scale.
Gold RAs (software) Photoshop
LoRA-Hy Prediction  Adobe Photoshop CS2
Exact Match False
Partial Match True

Figure 12: Example from SoMeSci_test+ that the Partial Match is more effective in capturing model performance,
as it allows adjacent words in RA mentions, thus avoiding penalizing correct predictions that are slightly broader in
scope, reducing false negatives.

Snippet Real-time PCR gene-specific primers for s100a8, s100a9, and -actin were designed using

Oligo Calc (Kibbe, 2007) as follows: s100a8, 5’-ACCATGCCCTCTACAAGAATGACT-3’; 5’-
ACTCCTTGTGGCTGTCTTTGTG-3’; s100a9, 5’-AACCAGGACAATCAGCTGAGCTTT-3’; 5°-
AGGCCATTGAGTAAGCCATTCCC-3’; -actin, 5’-ACCACAGCTGAGAGGGAAATCGT-3’; 5°-
AACCGCTCGTTGCCAATAGTGA-3".

Gold RAs (software) Oligo Calc

Flan-T5 XL Prediction -

LoRA-Hy Prediction Oligo Calc

Figure 13: Example from SoMeSci_test+ in the biomedical domain where our system performed well, accurately
identifying the reference to the software.

Snippet To estimate the cumulative incidence of T2D within strata defined by quartiles of the genetic risk score
(cutoffs derived from the distribution in the sub-cohort) and modifiable risk factors, we used the Stata
bsample command to recreate the full cohort by resampling with replacement from the sub-cohort,
according to the distributions of the stratum variables within the sub-cohort.

Gold RAs (software) Stata
Flan-T5 XL Prediction  Stata
LoRA-Hy Prediction Stata bsample

Figure 14: Example from SoMeSci_test+ in the biomedical domain where our system performed well, accurately
identifying the reference to Stata using partial matching.
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