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ABSTRACT

Despite significant evolution of CUDA programming and domain-specific li-
braries, effectively utilizing GPUs with massively parallel engines remains dif-
ficult. Large language models (LLMs) show strong potential in generating op-
timized CUDA code from sequential code. However, using LLMs in practice
faces two major challenges: cloud-based APIs pose risks of code leakage, and
local deployment is often computationally expensive and inefficient. These draw-
backs have spurred interest in small language models (SLMs), which are more
lightweight and privacy-friendly. Encouragingly, recent studies show that SLMs
can achieve performance comparable to LLMs on specific tasks. While SLMs
can match LLMs on domain-specific tasks, their limited reasoning abilities lead
to suboptimal performance in complex CUDA generation according to our ex-
periments. To bridge this gap, we propose ReGraphT, a training-free, retrieval-
augmented generation framework that transfers LLM-level reasoning to smaller
models. ReGraphT organizes CUDA optimization trajectories into a structured
reasoning graph, modeling the combined CUDA optimizations as state transi-
tions, and leverages Monte Carlo Graph Search (MCGS) for efficient exploration.
We also present a CUDA-specific benchmark with difficulty tiers defined by rea-
soning complexity to evaluate models more comprehensively. Experiments show
that ReGraphT outperforms HPC-specific fine-tuned models and other retrieval-
augmented approaches, achieving an average 2.33× speedup on CUDAEval and
ParEval. When paired with DeepSeek-Coder-V2-Lite-Instruct and Qwen2.5-
Coder-7B-Instruct, ReGraphT enables SLMs to approach LLM-level performance
without the associated privacy risks or excessive computing overhead.

1 INTRODUCTION

The continuous performance improvement of NVIDIA GPUs (Dally et al., 2021; Lindholm et al.,
2008; Nickolls & Dally, 2010; Owens et al., 2008) has solidified CUDA as a dominant program-
ming model for high-performance computing tasks, including AI and scientific computing. How-
ever, writing efficient CUDA code that fully exploits the massively parallel processing capabilities
of GPUs remains a significant challenge. To alleviate the burden of CUDA programming, prior re-
search has proposed domain-specific libraries, programming frameworks, and even domain-specific
languages (Brahmakshatriya & Amarasinghe, 2022; Tillet et al., 2019; Chen et al., 2018; Che et al.,
2008; Bell & Hoberock, 2012; Hong et al., 2019). While these approaches significantly enhance
productivity and deliver competitive performance, they often demand substantial engineering effort,
are restricted to specific application domains, and suffer from compatibility issues with frequent
NVIDIA software updates.

Recently, large language models (LLMs) have shown remarkable potential in code generation
tasks(Qiu et al., 2020) across a wide range of programming languages—including Python, C/C++,
Verilog, and even high-level synthesis code for FPGAs—demonstrating new opportunities for auto-
matic CUDA code generation from sequential code (Li et al., 2023; Rozière et al., 2024; Luo et al.,
2023; Zheng et al., 2023; Zhang et al., 2024). Encouraging progress has already been observed in
this direction(Bendi-Ouis et al., 2025; Yan et al., 2024; Miranda et al., 2025). Nevertheless, deploy-
ing LLMs such as DeepSeek locally is highly resource-intensive due to their large-scale architec-
ture. On the other hand, using cloud-based APIs raises concerns over potential code leakage and
privacy violations. These limitations have fueled interest in small language models (SLMs), which
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are significantly more lightweight, support convenient local deployment, and mitigate privacy risks.
Notably, recent studies have shown that SLMs can achieve performance on par with LLMs in certain
domain-specific code generation tasks(Brown et al., 2020b).

Despite this promise, training SLMs from scratch remains extremely challenging due to limited
training data and convergence difficulties. Consequently, fine-tuning has emerged as a practi-
cal means to produce compact, domain-specialized, and compute-efficient SLMs. For example,
HPC-Coder-V1 and V2 leverage curated parallel-code datasets to fine-tune large LLMs and substan-
tially improve their ability to generate high-performance parallel programs (Nichols et al., 2024b;
Chaturvedi et al., 2025), while RLPF employs reinforcement learning to further align LLM outputs
with performance objectives (Nichols et al., 2024c). However, we find that the efficacy of these fine-
tuned SLMs degrades markedly on problems demanding deeper, multi-step reasoning. To quantify
this effect, we sampled 20 benchmarks from ParEval and applied chain-of-thought(Wei et al., 2023)
(CoT) prompting to both the 671B DeepSeek-R1 model and smaller 7B/14B code-specific SLMs.
Figure 1 reports each model’s average number of reasoning steps alongside the performance of the
generated code. The results reveal that, while SLMs match LLMs on simpler tasks, they take sig-
nificantly fewer reasoning steps and yield lower code quality on more complex benchmarks. This
gap underscores the need for new techniques that can extend the reasoning capacity of lightweight
models without sacrificing their deployment advantages.

In addition to fine-tuning, retrieval-augmented generation (RAG) is another widely adopted strat-
egy for enhancing SLM performance by injecting external information directly into the model’s
context. Prior works such as EVOR and Repoformer (Su et al., 2024; Wu et al., 2024) have success-
fully applied RAG to general code generation tasks, demonstrating notable improvements in output
quality, especially for code involving recurring patterns or known structures. However, while RAG
effectively enriches contextual knowledge, it does not directly improve the model’s reasoning capa-
bilities. As a result, RAG-enhanced SLMs still struggle with generation tasks that require multi-step
logical reasoning, leaving a critical gap in handling more complex coding problems.
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Figure 1: Average number of reasoning steps and the per-
formance of the generated code with SLMs and LLMs.

To enhance the reasoning capabilities
of SLMs in CUDA code generation,
we propose ReGraphT, a training-free
framework that augments SLMs with a
structured reasoning process of CUDA-
specific optimizations. ReGraphT lever-
ages the reasoning strength of LLMs
to collect step-by-step CUDA optimiza-
tion trajectories, which are then ag-
gregated into a unified CUDA reason-
ing graph. This graph captures the
intermediate states and transitions in-
volved in transforming sequential code
into efficient CUDA implementations.
ReGraphT formulates the CUDA code
generation task for SLMs as a graph-
based reasoning problem and incorpo-
rates Monte Carlo Graph Search (MCGS) to guide the search over the graph efficiently. In addition,
to support systematic evaluation, we also introduce CUDAEval, a benchmark suite specifically de-
signed to assess CUDA code generation. CUDAEval organizes tasks into multiple difficulty levels
based on the complexity of their underlying reasoning trajectories, enabling fine-grained analysis of
model performance across different levels of challenge.

Our contributions are summarized as follows:

• We propose ReGraphT, a novel, training-free framework designed to mitigate the limited
reasoning ability of SLMs in CUDA code generation. ReGraphT employs a CUDA Rea-
soning Graph to encode optimization trajectories extracted from LLMs, thereby enabling
SLMs to benefit from the rich multi-step reasoning encoded by larger models. The frame-
work is open sourced on GitHub1.

1https://anonymous.4open.science/r/ReGraphT-1A47

2

https://anonymous.4open.science/r/ReGraphT-1A47


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We formulate CUDA code generation as a graph-based state transition problem and apply
Monte Carlo Graph Search (MCGS) to efficiently navigate the CUDA Reasoning Graph.
This formulation enables effective decision-making at each optimization stage, enhancing
the quality of generated CUDA code.

• We design CUDAEval, a CUDA-specific benchmark suite that categorizes code generation
tasks into levels of reasoning difficulty. Experimental results show that ReGraphT signif-
icantly improves the reasoning and code generation performance of SLMs, narrowing the
gap between lightweight and large models in CUDA optimization tasks.

2 RELATED WORK

To support efficient CUDA programming, NVIDIA has developed a suite of CUDA Toolkit Libraries
such as cuBLAS, cuDNN, and cuFFT (NVIDIA Corporation, 2023a;b;c), which offer optimized
implementations for common parallel kernels. For effective CUDA code generation for domain-
specific applications such as AI and multimedia, several compilation-based methods (NVIDIA Cor-
poration, 2023d; Chen et al., 2018; Ragan-Kelley et al., 2013; Tillet et al., 2019) have been proposed.

Beyond compiler-based methods, recent research has explored improving code generation via lan-
guage models. LLMs have demonstrated strong capabilities in code generation across various do-
mains, including general-purpose programming, hardware design, and high-performance comput-
ing. However, practical deployment of LLMs presents two major challenges: cloud-based APIs
raise concerns over potential code leakage, while local deployment is often computationally expen-
sive and inefficient. These limitations have driven interest in small language models (SLMs), which
offer lightweight alternatives suitable for local use.

Supervised fine-tuning (SFT) has shown promise in domain-specific tasks—e.g.(Fatemi & Hu,
2023) fine-tunes smaller LLMs for financial sentiment analysis with competitive results. HPC-
Coder (Nichols et al., 2024b; Chaturvedi et al., 2025) enhances LLM performance in generat-
ing high-performance computing (HPC) code through fine-tuning with high-quality synthesized
datasets. However, SFT has limited effectiveness in boosting multi-step reasoning capabilities in
SLMs and often suffers from poor generalization (Ghosh et al., 2024). Knowledge distillation from
LLM-generated synthetic data has emerged as an alternative for improving SLM reasoning ability
(DeepSeek-AI et al., 2025; Wang et al., 2025). While effective, this approach relies heavily on care-
fully crafted data recipes, making the distillation process challenging and sensitive to dataset com-
position. The generalization of LLMs can also be improved by injecting relevant external knowledge
through RAG, but it may also introduce hallucinations or irrelevant information (Sun et al., 2025;
Gao et al., 2024). It becomes problematic particularly for CUDA code generation which typically
combines multiple optimization techniques.

3 THE PROPOSED REGRAPHT FRAMEWORK

To address the reasoning limitations of SLMs in CUDA code generation, we propose ReGraphT,
a lightweight, training-free framework that augments SLMs with structured reasoning guidance.
As shown in Figure 2, ReGraphT first leverages LLMs to extract multi-step CUDA optimization
trajectories from sequential code, organizing them into a CUDA Reasoning Graph. This graph
encodes the step-by-step transformation paths and serves as a reasoning scaffold for SLMs. Then,
it frames CUDA optimization as a graph traversal problem and applies Monte Carlo Graph Search
(MCGS) for guided exploration, which enables SLMs to generate higher-quality CUDA code with
improved multi-step reasoning capabilities.
3.1 REASONING GRAPH (REGRAPH) CONSTRUCTION

CoT (Wei et al., 2023) improves the ability of LLMs to perform complex reasoning through a series
of intermediate reasoning steps, allowing SLMs with limited intelligence to emulate the reasoning
process of LLMs, boosting their performance on tasks involving planning and reasoning. Figure 3
shows how CoT works in CUDA optimization and produces a reasoning trajectory. To efficiently
utilize the intermediate reasoning traces generated by LLMs, we propose to organize the CUDA op-
timization expertise in a novel graph structure called ReGraph. Prior to discussing the construction
of ReGraph, we formally present its definition.

3
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Figure 2: Overview of the proposed ReGraphT framework.

Definition 1. ReGraph can be defined as G = (V, E), referring to a directed graph-based abstrac-
tion derived from CUDA optimization expertise. In ReGraph G, each v ∈ V represents an identify
CUDA optimization technique, each u ∈ E represents the link between two optimization methods.

According to Definition 1, ReGraph adopts a directed graph representation that permits cycles. In
ReGraphT, we formulate CUDA code optimization as a state transition process on the graph. As all
optimization processes start with sequential codes, there exists an initial state vinit in G, which stands
for the starting point of optimization. At initialization, ReGraph G consists exclusively of vertex
vinit, devoid of any edges. Building upon this, ReGraph completes the construction of the entire
graph by merging CUDA optimization trajectories. Algorithm 1 illustrates the complete process of
ReGraph construction.
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Figure 3: ReGraph construction based on LLM optimization trajectory.

To acquire CUDA optimization trajectories, we prompt LLM to perform CUDA optimization step by
step, thus yielding a CUDA optimization trajectory. For each intermediate step of the trajectory, we
instruct LLM to provide CUDA optimization method used, optimized CUDA code and correspond-
ing reasoning process. Due to the stochastic nature of LLM outputs, identical CUDA optimization
methods may be expressed differently by the LLM during different steps. Therefore, during the con-
struction process, ReGraphT systematically records the existing CUDA optimization methods and
prompts LLM to consolidate the current optimization trajectory with documented methods, thereby
ensuring the consistency in the representation of each optimization method.
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Algorithm 1: ReGraph Generation
Require: Sequential code dataset, D
Require: Large language model, LLM
Output: ReGraph G = (V, E)

1 Initialize the set of CUDA optimization methods O = {}
2 Initialize the nodes of CUDA Reasoning Graph V = {vinit}
3 Initialize the edges of CUDA Reasoning Graph E = {}
4 for k ∈ D do
5 — Trajectory of CUDA optimization —
6 τ ← LLM(k)

7 τ
′ ← relabel(LLM, τ,O)

8 — CUDA Reasoning Graph merge —
9 s← vinit

10 for e ∈ τ
′

do
11 Get optimization method o←Method(e)
12 if o ∈ O then
13 Find the node v corresponding to o
14 if v ∈ Succ(s) then
15 Find the edge u between s and v
16 Append optimization example e to u

17 else
18 u← Edge(s, v)
19 Append optimization example e to u
20 Append new edge u to E
21 s← v

22 else
23 v ← Node(o)
24 u← Edge(s, v)
25 Append optimization example e to u
26 Append new node v to V
27 Append new edge u to E
28 s← v

29 return CUDA Reasoning Graph G = (V, E)

After the CUDA optimization trajectory was produced, ReGraphT merges the new trajectory into
ReGraph. As mentioned in Definition 1, CUDA Reasoning Graph composes of CUDA optimization
method nodes and edges representing the link between different optimization methods. From this
perspective, a CUDA optimization trajectory can be regarded as a specific state transition trajectory.
The detailed state transition process is described by Algorithm 1 on lines 8 - 29. For the current
trajectory τ

′
, state s is initialized to vinit. For each intermediate step in τ

′
, ReGraphT determines

whether its corresponding optimization method is already incorporated in CUDA Reasoning Graph
at first. If incorporated, it processes separately based on whether the state transition it represents
exists (lines 13 - 22); otherwise, adds the method to the CUDA Reasoning Graph (lines 24 - 29).
Afterwards, the current state s will be updated, which means moving to the node corresponding to
the optimization method. More detailed construction steps of ReGraph are provided in Appendix.

3.2 REASONING GRAPH (REGRAPH) EXPLORATION

Once ReGraph is constructed, ReGraphT leverages it to achieve the transfer of reasoning capabilities
to SLMs via graph search, which means treating CUDA optimization as state transitions on ReGraph
and determining the next optimization method used following a predefined strategy. A feasible
search strategy is to enumerate all possible combinations of CUDA optimization methods based
on ReGraph. Specifically, for each optimization state, all subsequent viable optimization methods
are attempted until no more methods can be applied. However, despite the pruning of paths due to
certain optimization methods being inapplicable, the time complexity of the enumeration search can

5
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still reach O(nk), where n is the number of nodes in CUDA Reasoning Graph and k represents the
average of subsequent optimization methods for a node.
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Figure 4: An overview of MCGS on ReGraph.
To tackle the complexity of enumeration search, we propose Monte Carlo Graph Search (MCGS),
combining Monte Carlo Tree Search (MCTS) with ReGraph, leveraging rollout feedback from future
states to inform the subsequent choice of optimization methods. To enable MCTS on the graph
structure, we introduce some adaptations to the standard MCTS. As shown in Figure 4, we customize
the key operations of MCGS on CUDA Reasoning Graph as follows:

Selection: As MCGS progresses, nodes and edges from ReGraph are incrementally added to form
a new graph, which stands as a sub-graph of ReGraph. In the current iteration, MCGS select nodes
from the existing graph based on UCB (Upper Confidence Bound):

P-UCB(s) = Q(s) +

√
2ln(N(s′))

N(s)
(1)

Expansion: Unlike MCTS which decomposes problems at thought-leval(Chen et al., 2024; Xie
et al., 2024; Li et al., 2024; Hu et al., 2025), since MCGS method operates on a fixed graph ReGraph,
the action space in each expansion step is also fixed—specifically, the successor nodes of the current
optimization state within the ReGraph. If the node selected in the previous step has not been visited
before, all successors will be expanded in MCGS to extend the entire search scope.

Rollout: A rollout refers to simulating from the current state to evaluate it. Unlike MCTS which
performs estimations on the tree, ReGraph contains cycles, which may cause simulations to fail to
terminate. To facility the problem, we made certain adjustments to the simulation strategy.

• To avoid repeated visits to the same node, we incorporated a regularization term based on the
current visit count in the simulation, balancing exploitation and exploration more effectively than
standard ϵ-greedy:

π(a|s) =
{
argmaxa [Q(s, a)− λN(s, a)] with probability 1− ϵ

random action with probability ϵ
(2)

• We set a maximum step limit for each rollout to prevent non-termination. What’s more, it will
also terminate if the optimization fails at any node.

CUDA optimization requires error-free compilation while maximizing performance. As a result,
at each step of the rollout process, the optimized CUDA code undergoes compilation verification,
functional validation, and performance benchmarking, yielding the following hierarchical reward
design:

reward =


−1, if 0 ≤ vtest < 1,

speedup− 1, if vtest = 1 and speedup < 1,

speedup, if vtest = 1 and speedup ≥ 1.

(3)

6
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In MCGS, each node can be treated as a terminal state, generating the final optimized code. The
rollout’s final reward is defined as the maximum reward observed on its trajectory.

Backpropagation To enable the rewards obtained in the current iteration to guide subsequent pro-
cesses, MCGS backpropagates the rewards along all nodes traversed in the selection path, updating
their Q-values. After backpropagation, MCGS progresses to the next iteration.

4 THE PROPOSED CUDA EVALUATION BENCHMARK (CUDAEVAL)
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Figure 5: CUDAEval curation process.
Existing benchmarks such as HumanEval and MBPP (Chen et al., 2021; Austin et al., 2021) pri-
marily evaluate the functional correctness of LLM-generated code. ParEval (Nichols et al., 2024a),
while designed for assessing parallel code generation, focuses mainly on various parallel paradigms
and includes only 60 CUDA-specific instances—limited in both scale and diversity. Moreover, it
lacks a fine-grained classification scheme that reflects the complexity of real-world CUDA develop-
ment. To address these limitations, we present CUDAEval, a dedicated benchmark for evaluating
LLM performance in CUDA code generation across varying levels of reasoning complexity. Un-
like prior benchmarks that start from sequential code, CUDAEval is built from real-world CUDA
files. Specifically, we sample 10K CUDA files from the Stack v2 cuda hip dataset, which comprises
21.7K CUDA files collected from practical development scenarios.

The benchmark is curated by first applying heuristic rules (e.g., filtering files with local headers) to
remove incomplete or unbuildable samples, followed by LLM-based extraction of CUDA kernels
and completion of missing dependencies. LLMs also generate corresponding CPU serial code and
driver functions, with correctness verified via compilation and execution of both parallel and serial
versions. Only <C++, CUDA> pairs that pass build and output consistency checks are retained.

After validation, we obtain 3,126 high-quality CUDA code pairs. Using DeepSeek-R1 (DeepSeek-
AI et al., 2025), we derive optimization trajectories and classify each sample into one of three dif-
ficulty levels based on reasoning complexity. Specifically, samples with trajectory lengths of 1–2
are assigned to the easy-tier, those with lengths of 3–5 to the medium-tier, and those with longer
trajectories to the hard-tier. Under this definition, the dataset comprises 1,783 easy, 791 medium,
and 552 hard instances. We selected 10% of the tasks for final evaluation while the left are used for
ReGraph construction. To further increase the challenge of the benchmark, we deliberately included
a relatively larger proportion of the harder samples. As a result, the final CUDAEval contains 313
evaluation tasks, distributed across 106 easy, 105 medium, and 102 hard samples. Full details of
CUDAEval pipeline are provided in the Appendix.

5 EXPERIMENTS

We conduct our experiments on a single A100-80GB with Intel(R) Xeon(R) Platinum 8358P CPU
@ 2.60GHz. For inference, we deploy LLMs using vLLM(Kwon et al., 2023) under BF16 precision.

5.1 EXPERIMENT SETUPS
Benchmarks: We have both CUDAEval and an established benchmark ParEval(Nichols et al.,
2024a) to evaluate the CUDA generation performance. ParEval covers 12 different computational
problems and 7 parallel models, but only 60 problems are available for CUDA code generation.

Baselines: We compare ReGraphT with prior prompting and RAG methods. For prompting meth-
ods, we compare it with standard(Brown et al., 2020a) and CoT Prompting(Wei et al., 2023). For
RAG methods, since there are no RAG methods specifically designed for CUDA optimization, we
adopted a code similarity-based retrieval approach as the RAG baseline with the same CUDA op-

7
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timization corpus used in ReGraphT. In detail, we use CodeBertScore(Zhou et al., 2023) as the
embedded model to retrieve relevant CUDA optimization examples based on embedding similarity.

Hyperparameters: ReGraphT and ReGrapht-MCGS are evaluated under the same search budgets
of 200. ReGraphT adopts a random sampling with max attempts of 5. The varying rollout configu-
ration N in Figure 4 is set to 10. More details about Hyperparameter settings are in Appendix.

Metrics: To quantify the correctness of generated CUDA code, we adopt pass@k introduced in
(Chen et al., 2021), while for optimization performance, we use speedup@k(Nichols et al., 2024a)
to evaluate the performance improvement over the original sequential code.

5.1.1 EXPERIMENT RESULTS

Table 1: CUDA generation performance on CUDAEval and ParEval benchmarks.

Model Method
CUDAEval ParEval

pass@n speedup@n pass@n speedup@n
pass@1 pass@10 speedup@1 speedup@10 pass@1 pass@10 speedup@1 speedup@10

DeepSeek-Coder-V2-Lite-Instruct

Standard 61.7 63.9 6.54 6.76 40.0 42.1 4.61 4.82
CoT 64.9 67.4 7.23 7.39 43.3 43.9 4.94 4.97
RAG 68.1 70.9 7.86 7.89 48.3 48.7 5.35 5.34

ReGraphT 73.2 13.02 51.7 10.06
ReGraphT-MCGS 75.1 14.46 55.0 10.78

Qwen2.5-Coder-7B-Instruct

Standard 61.0 63.6 6.34 6.32 38.3 39.2 4.33 4.51
CoT 62.3 64.2 6.31 6.31 35.0 38.8 4.30 4.47
RAG 66.5 67.1 7.09 7.24 45.0 45.3 5.17 5.20

ReGraphT 69.6 12.89 51.7 10.11
ReGraphT-MCGS 72.2 14.31 50.0 10.02

HPC-Coder-V2

Standard 64.2 64.9 6.48 6.53 36.7 37.1 4.47 4.59
CoT 65.8 67.1 6.93 7.02 30.0 40.7 4.73 4.86
RAG 64.8 65.5 6.44 6.50 38.3 39.9 4.51 4.57

ReGraphT 70.6 13.26 50.0 10.21
ReGraphT-MCGS 72.5 14.39 53.3 10.61

DeepSeek-V3-0324 Standard 79.6 80.8 18.71 18.86 63.3 63.8 11.40 10.99
CoT 80.2 81.5 18.58 18.45 61.7 62.1 11.83 11.77

DeepSeek-R1 Standard 80.5 81.5 19.02 19.45 58.3 58.2 11.52 11.57
CoT 82.1 83.1 19.14 19.62 63.3 63.6 12.09 12.13

Table 1 presents the CUDA optimization performance under different methods with various code-
specific SLMs DeepSeek-Coder-V2-Lite-Instruct, Qwen2.5-Coder-7B-Instruct(Yang et al., 2024;
Hui et al., 2024), and HPC-Coder-V2(Chaturvedi et al., 2025), and the SOTA general LLMs
DeepSeek-V3-0324(DeepSeek-AI, 2024) and DeepSeek-R1(DeepSeek-AI et al., 2025). In CUD-
AEval, ReGraphT-MCGS achieves 73.3% in pass@k on average with three code-specific SLMs,
surpassing by +11.0%, +9.0% and +6.8% compared to Standard, CoT and RAG in pass@1, +9.2%,
+7.1% and +5.5% in pass@10. While ensuring the correctness of generated code, ReGraphT-MCGS
also demonstrates superior quality in CUDA code generation, achieving at least ×1.84 speedup in
speedup@1 and ×1.83 in speed@10 compared to other baselines. On the overall more challenging
ParEval, ReGraphT-MCGS also demonstrates outstanding performance.

Beyond baseline comparisons, we further verify the efficacy of the MCGS strategy on ReGraph.
According to Table 1, under the fixed search budgets of 200, ReGraph-MCGS achieves higher per-
formance to ReGraphT, with +2.2% pass@n, +1.33% speedup@n increase on average in CUDAE-
val and +1.7% pass@n, +0.34% speedup@n in ParEval.Our experiments demonstrate that, under
the same search budget constraints, ReGraphT-MCGS enables a more efficient exploration over
ReGraph compared to ReGraphT.

To analyze the impact of reasoning capability on CUDA code optimization performance, we further
investigated the relationship between the length of reasoning trajectories and corresponding perfor-
mance based on performances across different difficulty levels in CUDAEval. As show in Table
2, ReGraph demonstrates varying performance across different difficulty levels. On the easy level
which requires minimal reasoning, ReGraph shows no significant gap compared to other baselines,
and occasionally underperforms CoT and RAG approaches. However, as task difficulty escalates
to medium and hard levels demanding more advanced reasoning, ReGraph begins to demonstrate
marked advantages over alternative methods.

To further demonstrate ReGraphT’s enhancement of SLMs’ reasoning capabilities in CUDA gen-
eration tasks, we perform a deeper examination regarding the correlation between the complexity
of reasoning trajectories and optimization performance. As observed in Figure 6, limited by the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: CUDA Generation Performance Across Three Difficulty Levels in CUDAEval.

Model Method pass@n speedup@n
easy medium hard easy medium hard

DeepSeek-Coder-V2-Lite-Instruct

Standard 81.1 65.7 44.1 8.90 6.32 3.34
CoT 86.8 68.6 46.1 9.65 6.51 4.31
RAG 91.5 73.3 47.1 10.13 6.98 4.82
ReGraphT 90.6 76.2 52.0 15.86 12.38 8.84
ReGraphT-MCGS 90.6 79.0 54.9 17.82 13.79 9.69

Qwen2.5-Coder-7B-Instruct

Standard 81.1 65.7 43.1 8.51 5.62 3.14
CoT 82.1 66.7 43.1 8.47 5.54 3.46
RAG 85.8 69.5 45.1 9.54 6.23 4.29
ReGraphT 85.8 73.3 49.0 15.67 12.26 8.80
ReGraphT-MCGS 88.7 76.2 51.0 17.48 13.64 9.61

HPC-Coder-V2

Standard 83.0 66.7 44.1 8.78 6.17 2.69
CoT 86.8 68.6 45.1 9.31 6.13 3.83
RAG 81.1 66.7 44.1 8.82 6.22 3.08
ReGraphT 88.7 71.4 51.0 16.43 12.45 8.70
ReGraphT-MCGS 90.6 74.3 52.0 17.66 13.58 9.66

DeepSeek-V3-0324 Standard 93.4 87.6 60.8 23.23 18.54 12.36
CoT 93.4 88.6 61.8 22.66 18.38 11.94

DeepSeek-R1 Standard 94.3 87.6 61.8 24.01 18.73 13.26
CoT 95.3 89.5 63.7 24.24 18.96 13.40
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Figure 6: Normalized performance of the generated CUDA code under various difficulty levels

reasoning capacity of SLMs, the length of CoT reasoning trajectories exhibits minimal variation
across difficulty levels, while for ReGraphT series, the difference in the average length of reasoning
trajectories between the easy and hard difficulty levels can reach up to 4.8, thus demonstrating that
ReGraph can boost SLMs reasoning in CUDA generation process. What’s more, in comparison to
ReGraphT, ReGraphT-MCGS exhibits longer average reasoning trajectories, highlighting its advan-
tage in search efficiency. In addition to reasoning boosting, Figure 6 further demonstrates the role
of reasoning in enhancing performance for CUDA optimization tasks. From the figure, we observe
a positive correlation between CUDA generation performance and reasoning chain length across all
difficulty levels, until the reasoning steps reach a certain threshold. Notably, different difficulty tasks
exhibit distinct thresholds, which generally show positive correlation with task difficulty. Beyond
the threshold, the performance gap becomes statistically insignificant.

6 CONCLUSION
In this paper, we propose ReGraphT, a training-free framework which transfers the CUDA opti-
mization reasoning capability of LLMs to SLMs via Reasoning Graph. According to experiment
results, ReGraphT has demonstrated significant effectiveness in enhancing SLM’s reasoning capa-
bility for CUDA-generated content and improving generation quality. This work demonstrates that
the proposed reasoning graph can transfer the reasoning capability of LLMs to SLMs effectively
and ReGraphT can be potentially applied to more code generation scenarios that require complex or
long reasoning procedures. We will investigate this approach in our future work.
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Figure 7: CUDAEval verification process.

Rule-based Preprocession The main goal of our filtering rules is to reduce the cost of LLM api
calling. To achieve this goal, we designed the following heuristic filtering rules:

• Remove CUDA files that include local header files
• Retain only files where code functions contain between 50 to 500 lines.
• Filter out files containing dependencies on CUDA third-party libraries (including but not

limited to cuDNN, cuBLAS).
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Kernel Extraction and Dependency Completion After heuristic rule filtering, we employ prompts
to instruct the LLM to extract CUDA kernels and their corresponding dependencies from the remain-
ing files. Since these CUDA files were collected from repositories, the extracted kernels may still
exhibit issues such as missing macro definitions, absent class definitions, and similar deficiencies.

To address the aforementioned issues, we employ the LLM to attempt dependency completion for
these kernels. The specific prompt used for this purpose is illustrated in the accompanying figure.

Sequential Code and Driver Generation After kernel extraction and dependency completion, we
generate their corresponding serial codes based on the parallel codes and construct the main func-
tions to call them respectively in preparation for the subsequent verification phase.

Verification Pipeline To maintain data correctness and improve quality, we implemented compre-
hensive validation, specifically examining both accuracy and performance metrics. First, we will
compile and verify the two code segments separately. After confirming successful compilation, we
execute both programs using the same test data and compare their outputs to validate correctness.
Once correctness is ensured, we evaluate their runtime performance and select the code that demon-
strates acceleration effects. The complete verification process is illustrated in Figure 7.

B REGRAPH CONSTRUCTION

LLM reasoning for CUDA Optimization trajectory As shown in Figure 8., We instruct LLM to
carry out CUDA optimizations stepwise in order to derive optimization trajectories using prompt
G.3. However, LLM lacks the ability to verify either the correctness or the effectiveness of its own
CUDA optimizations. As a result, prior to merging the CUDA optimization trajectories into Re-
Graph, we need to validate the results and performance of every optimization step. The verification
approach follows the same methodology in Figure 7.

think: The primary 
tasks include converting 
key loop structures into 
CUDA kernels and 
managing memory 
allocation.  ··· employing 
a 1D thread layout to 
parallelize element-wise 
processing.
method: Parallelism
code:

think: Optimize 
memory access patterns 
to reduce global 
memory operations. 
Observations reveal 
frequent global memory 
accesses in ··· employ 
shared memory to 
cache intermediate 
c1/c2 data segments.
method: 
Shared Memory
code:

think: Optimize the 
sequential search in 
fillRemainingKernel by 
employing atomic 
operations for parallel 
vacancy filling ··· replaced 
with parallel atomic CAS 
operations.
method: 
Atomic Operations
code:

You are an excellent high-
performance computing engineer, 
skilled in optimizing CPP code 
using CUDA. Now, the user will 
provide you with CPP code, and 
you need to optimize it step by 
step using CUDA

prompt:

code:

Figure 8: Process of LLM reasoning for CUDA optimization.

Optimization trajectory relabel Following verification, it remains necessary to employ the LLM
to re-annotate every step in the optimization trajectory according to established CUDA optimization
techniques. Specifically, using the prompt illustrated in G.4, we instruct the LLM to determine
whether each optimization method employed in the current trajectory aligns with existing CUDA
optimization methods. When a match is found, the corresponding optimization method is renamed
accordingly.

C ANALYSIS OF REGRAPH DISTRIBUTION

Figure 9 illustrates the relationship between the distribution of ReGraph and the number of sam-
ples used for its construction. Our experiments show that the reasoning graph converges after ap-
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proximately 500 samples. This is reasonable given that the space of effective CUDA optimization
strategies is inherently limited. Therefore, ReGraph is able to capture most of the commonly used
optimizations using only a limited number of samples.
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Figure 9: ReGraph Distribution Across Different Sample Numbers.

Moreover, we further investigated the impact of ReGraph size on code generation quality by inte-
grating different ReGraphs into Qwen2.5-Coder-7B-Instruct, with 200 search budgets and rollout
10. According to Table 3, we observe that the performance continues to improve with increas-
ing ReGraph size before convergence, demonstrating the effectiveness of the CUDA optimization
search space exposed by ReGraph. However, once ReGraph has converged, its size no longer has a
significant impact on performance.

Table 3: Ablation study on the impact of ReGraph size on code generation performance.

ReGraph ID 0 1 2 3 4 5 6

Graph Statistics

#Samples 30 50 100 300 500 600 1000
#Nodes 20 29 59 149 223 227 235
#Edges 25 38 87 225 384 388 399

Performance Metrics

pass@10 61.3 60.1 63.9 64.9 70.0 68.4 71.2
speedup@10 9.43 9.74 11.29 12.63 14.15 14.09 14.21

D ANALYSIS OF OVERHEAD FOR REGRAPHT

We provide both a theoretical analysis and empirical wall-time measurements for the overhead of the
ReGraphT framework, encompassing ReGraph construction as well as the MCGS process. While
ReGraph construction incurs LLM-related costs, we break down its three main stages, assuming N
samples:

LLM Reasoning for Trajectories: Each sample requires a single LLM invocation, resulting in a
total of N calls. With a parallelism degree of C, the time complexity is O(N/C).

Relabeling Optimization Methods: This stage also involves N LLM calls, but they must be exe-
cuted sequentially, yielding a complexity of O(N).

Merging into ReGraph: Each merge operation has complexity O(M), where M denotes the aver-
age trajectory length, resulting in an overall complexity of O(NM).
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When accounting for parallelism, the dominant cost becomes O(NM/C). Importantly, this repre-
sents a one-time overhead, as the ReGraph can be preconstructed and reused. As illustrated in Figure
9, ReGraph typically converges with approximately 500 samples, further enhancing cost efficiency.

In addition to the asymptotical complexity analysis of ReGraph construction, we also provide em-
pirical measurements of the time overhead for ReGraph construction under different sample scales.
Figure 10 illustrates the runtime required to construct a ReGraph with 500 samples, as well as the
overhead distribution across different components of the construction process. The tests were con-
ducted with a parallelism level of 5, meaning that five parallel threads were used to extract CUDA
optimization trajectories. The results show that the time consumption scales approximately linearly
with the size of ReGraph. On the other hand, analyzing the overhead distribution across compo-
nents reveals that the main bottleneck in ReGraph construction lies in verifying the correctness of
generated results, which accounts for 48% of the total runtime. In addition, the trajectory generation
and relabeling steps, which require model-based generation, contribute 32% and 19% of the total
overhead, respectively. In contrast, the cost associated with merging is negligible.
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Figure 10: ReGraph Overhead.

ReGraphT models optimization as state transitions, making the search space grow linearly with
the number of edges rather than nodes. A naive enumeration explores every edge with multiple
attempts, yielding a time complexity of O(CE), where E is the number of edges and C is the
number of attempts per node. Since a converged ReGraph typically has hundreds of edges, this
approach may require thousands of attempts. In contrast, MCGS distributes trials during the rollout
phase, avoiding repeated edge attempts. Its time complexity is O(Nb(d+l)), where N is the number
of iterations, b is branching factor and d,l represents the depth of selection and rollout respectively.
Thus MCGS offers more efficient exploration of ReGraph search space.

Furthermore, we provide empirical data on the code generation overhead of ReGraphT. Inference
tests were conducted on a single A100-80GB GPU paired with an Intel(R) Xeon(R) Platinum 8358P
CPU @ 2.60 GHz, utilizing the Qwen2.5-Coder-7B-Instruct model, with a search budget of 100 and
a batch size of 16. Under these conditions, generating results for the 313 CUDAEval samples takes
approximately 6.02 hours. Moreover, based on benchmark tests of various sub-8B models running
on a single RTX 4090 LLC (2025), comparable results can be achieved on consumer-grade hardware
in about 7.53 hours.

E ABLATIONS ON MCGS TRAVERSAL

We conduct an ablation study on the varying number of rollouts and different reward strategies to
explore the impact of during MCGS traversal. For ReGraphT-MCGS, max attempts is the same as
max rollouts. As show in Table 4, under fixed search budgets and varying configurations, ReGraph-
MCGS outperforms traversal-based methods, demonstrating both higher search efficiency and ef-
fectiveness. What’s more, as the maximum number of rollouts increases, ReGraphT-MCGS demon-
strates sustained performance gains.
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Table 4: Performance of Different Search Methods under Varying Budgets

Search Budgets Search Methods Max Attempts Avg. Trajectory Length pass@n speedup@n

100

ReGraph 5 3.1 64.9 7.91
10 2.3 63.9 7.76

ReGraph-MCGS 5 2.5 64.9 8.13
10 2.9 64.9 8.46
20 3.6 65.5 8.91

200

ReGraph 5 4.9 70.0 11.62
10 4.6 68.7 11.30

ReGraph-MCGS 5 5.2 66.1 11.99
10 5.5 70.0 12.88
20 6.3 71.2 13.43

300

ReGraph 5 7.4 68.7 12.89
10 6.8 70.0 12.45

ReGraph-MCGS 5 7.8 69.6 13.01
10 8.7 72.5 14.76
20 9.1 74.1 14.98

To investigate the effect of reward formulation, we considered three different reward strategies:

strict reward The reward is defined as the average performance speedup of designs that pass all
unit tests:

Rstrict =
1

|Dpass-all|
∑
d∈D

p(d) · 1

[∧
t∈T

pass(d, t)

]
,

where Dpass-all denotes the subset of designs that successfully pass every test in T .

partial-credit reward Compared to strict reward, partial-credit reward does not require all unit
tests to be passed. Instead, it allocates rewards proportionally to the fraction of unit tests that are
successfully passed:

Rpartial =
1

m

∑
t∈T

1

|Dt|
∑
d∈D

p(d) · 1[pass(d, t)],

where Dt is the set of designs passing test t.

rollout-based reward Similar to Baronio et al. (2025), rollout-based reward models the reward as
a Markov decision process (MDP), setting the reward of a given response as the discounted sum
of scores of the current kernel and all subsequent ones and provides fine-grained feedback during
generation:

Rrollout = E

[
T∑

t=0

γtr(st, at)

]
,

where r(st, at) denotes the performance gain associated with the design choice at step t, and γ ∈
[0, 1] is the discount factor.

Under different reward strategies, We conduct experiments using Qwen2.5-Coder-7B-Instruct as the
SLM and a ReGraph built from 500 samples in Figure 9. The search budgets and varying rollout
configurations are fixed to 200 and 10. As show in Figure 11, we observe that strict reward and
rollout-based reward have similar performance, while partial-credit reward leads to a slightly lower
pass rate and speedup performance.

F LIMITATIONS

During the construction of CUDAEval, we employed a multi-stage pipeline to carefully filter and
select high-quality CUDA samples. While this process ensured the reliability and consistency of
the benchmark, it resulted in the exclusion of a substantial portion of the original dataset. Con-
sequently, CUDAEval may not fully capture the diversity and complexity of real-world CUDA
programs, particularly those with uncommon patterns, intricate dependency structures, or uncon-
ventional optimization strategies. This selective filtering could limit the evaluation of models on

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

stric
t

partia
l-credit

rollout-based reward
0

20

40

60

80

100

pa
ss

@
n

70.0 67.4 70.0

stric
t

partia
l-credit

rollout-based reward
0

4

8

12

16

sp
ee

du
p@

n

14.38 13.92 14.51

Performance Comparison Across Different Reward Strategies

Figure 11: Ablation Study on Different Reward Strategies.

edge cases or rare optimization scenarios, potentially underrepresenting certain challenging aspects
of CUDA code generation and optimization. Future work may focus on incorporating a broader
variety of samples to create a more comprehensive and representative benchmark.

G PROMPTS

G.1 PROMPT FOR KERNEL EXTRACTION

(a) Prompt for CUDA Kernel Extraction

**CUDA kernel process prompt**

**Role**:
You are a professional high performance computing(HPC) engineer,
skilled in optimizing C++ serial code using CUDA.

**Responsibility**:
You are supposed to extract the CUDA kernels from the given CUDA code
file and identify the optimization techniques used in them.
If the provided CUDA code file contains multiple CUDA kernels, you
should extract all of them and for each of them analyze all
optimizations used and corresponding code snippet.

**Response Format**:
‘‘‘json
{

"kernels": [

{
"name": <extracted cuda kernel name>,
"content": <extracted cuda kernel content>

}
],
"optimizations": [

[
{

"optimization": <the optimization method used>,
"snippet": <corresponding code snippet>

},
]

]
}
‘‘‘
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**Precautions**
1. You must only return the kernels that exist within this file, not
those imported from other files and merely called here.
2. For each kernel, you must include its complete content without any
omissions or abbreviated formatting.
3. Ensure that in the returned JSON content, the length of kernels
matches the length of optimizations, meaning each kernel corresponds
to a list of optimizations.

G.2 PROMPT FOR DEPENDENCY

(a) Prompt for CUDA Kernel Dependency Completion

You are an HPC engineer proficient in using CUDA. The CUDA kernel is
extracted from the code file, so it may lack some relevant
dependencies.
Now for the CUDA kernel provided by the user, you need to determine
whether this CUDA kernel lacks relevant dependencies.
1. If it lacks standard library dependencies, please supplement them.
2. If it lacks user file dependencies, for example, user-defined
classes, user-defined functions, user-defined macros, etc., attempt to
rewrite it in a simple manner to resolve the dependency issues.

Please return whether the rewrite was successful. If the rewrite is
successful, return the rewritten code. If you are unable to rewrite
the required user dependencies, return None for this item.

Note: that the user’s code where this kernel resides is unavailable.
Therefore, if you think some definitions are likely defined in
the user’s code, you are also supposed to attempt to supplement them
as part of the rewritten code.

# Prompt format

The user will provide you a JSON dictionary in the following format:

‘‘‘json
{

"kernel" : <The CUDA kernel provided by user>
}
‘‘‘

# Response format

You will respond with a JSON dictionary in the following format:

‘‘‘json
{

"success": "<yes/no>",
"reason": "<Your reasoning process>",
"rewrite: "<The rewritten code that doesn’t lack relevant

dependencies/None>"
}
‘‘‘
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G.3 PROMPT FOR CUDA REASONING

(a) Prompt for CUDA Optimization Reasoning

You are an excellent high-performance computing engineer,
skilled in optimizing CPP code using CUDA.
Now, the user will provide you with CPP code,
and you need to optimize it step by step using CUDA.

# Notes
1. Please optimize CUDA step by step. In each step of the optimization
process, you need to provide the reasoning behind the optimization,
explain the optimization methods used, and describe how these methods
are applied. Finally, provide the optimized code. Optimization methods
refer to CUDA optimization techniques such as shared memory, warp
divergence elimination etc. ’How the optimization methods are used’
refers to how these CUDA optimization techniques are applied to
optimize the code.
2. The optimization process should be returned as a JSON list.
3. The function name must remain the same as the initial function
after each optimization step.

# Prompt Format

The user will provide a JSON dictionary in the following format:

‘‘‘json
{

"kernel": "<The CPP code provided by user>",
}
‘‘‘

# Response Format

You should respond in the following JSON format:

‘‘‘json
[

{
"think": "<The thought process for this optimization step>",
"method": "<The optimization method used>",
"detail": "<How the optimization methods are used>",
"code": "<The optimized code obtained in this step>"

}
]
‘‘‘

G.4 PROMPT FOR RELABEL

(a) Prompt for CUDA Optimization Relabel

You are an excellent high-performance computing engineer, skilled in
optimizing CPP code using CUDA. Now, the user will provide you with a
step-by-step optimization process for CPP code along with some
existing CUDA optimization methods. You need to determine whether each
CUDA optimization method used in this step-by-step process falls
within the scope of the existing CUDA optimization methods.

If the method used is part of the existing methods, rename it to the
corresponding method name from the existing ones; otherwise, keep the
optimization method’s name unchanged.
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# Notes
1. The user input is a json dict incluing 2 lists, ’methods’
represents the existing CUDA optimization methods, and ’process’
represents the optimization process, where each item represents one
optimization step.
2. For each optimization step, you need to make a judgment.
3. The CUDA optimization method used in each step is indicated in the
’method’ field.
4. You should return a list in JSON format, with the same length as
the input list.

# Prompt Format

The user will provide a JSON dictionary in the following format:

‘‘‘json
{

"methods: [<CUDA optimization methods existed>],
"process": [

{
"think": "<The thought process for this optimization
step>",
"method": "<The optimization method used>",
"detail": "<How the optimization methods are used>",
"code": "<The optimized code obtained in this step>"

}
]

}
‘‘‘

# Response Format

You should respond in the following JSON format:

‘‘‘json
[

{
"existed": "<yes/no>",
"method": "<If yes, the corresponding method name from the
existing methods; if no, keep the original method name>"

}
]
‘‘‘

G.5 PROMPT FOR STANDARD

(a) Prompt for Standard

You are an excellent high-performance computing engineer, skilled in
optimizing CPP code using CUDA. Now, the user will provide you with
CPP code, and you need to optimize it using CUDA.

# Notes
1. You need to use CUDA to optimize the CPP code provided by user.
2. The optimized function name needs to remain consistent with the
original function. You need to handle the data transfer between host
(CPU) memory and device (GPU) memory, as well as the invocation of
CUDA kernels, within the function.
3. You must provide the complete code without any omissions.
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# Prompt Format

The user will provide a JSON dictionary in the following format:

‘‘‘json
{

"kernel": "<The CPP code provided by user>",
}
‘‘‘

# Response Format

You should respond in the following JSON format:

‘‘‘json
{

"think": "<The thought process for this optimization>",
"code": "<The optimized code using CUDA>"

}
‘‘‘

G.6 PROMPT FOR COT

(a) Prompt for CoT

You are an excellent high-performance computing engineer, skilled in
optimizing CPP code using CUDA. Now, the user will provide you with
CPP code, and you need to optimize it step by step using CUDA.

# Notes
1. Please optimize CUDA step by step. In each step of the optimization
process, you need to provide the reasoning behind the optimization,
explain the optimization methods used, and describe how these methods
are applied. Finally, provide the optimized code. Optimization methods
refer to CUDA optimization techniques such as shared memory, warp
divergence elimination etc. ’How the optimization methods are used’
refers to how these CUDA optimization
techniques are applied to optimize the code.
2. The optimization process should be returned as a JSON list.
3. The function name must remain the same as the initial function
after each optimization step. You need
to handle the data transfer between host (CPU) memory and device (GPU)
memory, as well as the invocation of CUDA kernels, within the function.
4. You must provide the complete code without any omissions.

# Prompt Format

The user will provide a JSON dictionary in the following format:

‘‘‘json
{

"kernel": "<The CPP code provided by user>",
}
‘‘‘

# Response Format

You should respond in the following JSON format:

‘‘‘json
[
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{
"think": "<The thought process for this optimization step>",
"method": "<The optimization method used>",
"detail": "<How the optimization methods are used>",
"code": "<The optimized code obtained in this step>"

}
]
‘‘‘

G.7 PROMPT FOR CODERAG

(a) Prompt for CodeRAG

You are a coding expert that writes very fast code. You write parallel
C and C++ code using CUDA and always strive to make the code as fast
as possible. The user will give you code and you will provide a
modified version of the user’s code that is as fast as possible using
CUDA. At the same time, the user will also provide an optimization
example, including the original program and the optimized program
using CUDA. You can refer to this optimization example for your own
optimization.

# Prompt format

The user will provide you a JSON dictionary in the following format:

‘‘‘json
{

"source_code" : <Initial code>,
"example_orginal" : <Example original program>,
"example_optimized": <Example optimized program>

}
‘‘‘

# Response format

You will respond with a JSON dictionary in the following format:

‘‘‘json
{

"updated_code" : <Optimized code>
}
‘‘‘

"""

G.8 PROMPT FOR REGRAPHT

(a) Prompt for ReGraphT

You are a coding expert that writes very fast code. You write parallel
C and C++ code using CUDA and always strive to make the code as fast
as possible. The user will give you code and you will provide a
modified version of the user’s code that is as fast as possible using
CUDA.
At the same time, the user will also provide an optimization example,
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including an optimization example consisted of the original program
and the optimized program using CUDA, and the CUDA optimization method
used.
This optimization example may not necessarily apply to the current
code to be optimized, so you also need to determine whether the
provided optimization method
is suitable.

# Prompt format

The user will provide you a JSON dictionary in the following format:

‘‘‘json
{

"source_code" : <Initial code>,
"example": {

"origin": <The original program in the optimization example>,
"optimized": <The optimized program using CUDA in the
optimization example>,
"method": <The CUDA optimization method used in the
optimization example>

},
}
‘‘‘

# Response format

You will respond with a JSON dictionary in the following format:

‘‘‘json
{

"suitable": <If the provided optimization method is suitable,
yes/no>,
"optimization": <The optimized code using CUDA>

}
‘‘‘

H LLM USAGE

In preparing this manuscript, we employed a large language model (LLM) solely for grammar cor-
rection and stylistic polishing of the text. The LLM was not used for developing research ideas,
designing methodologies, conducting experiments, or analyzing results. All scientific contributions,
including problem formulation, theoretical analysis, experimental design, implementation, and eval-
uation, were carried out entirely by the authors.
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