

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM LARGE TO SMALL: TRANSFERRING CUDA OPTIMIZATION EXPERTISE VIA REASONING GRAPH

Anonymous authors

Paper under double-blind review

ABSTRACT

Despite significant evolution of CUDA programming and domain-specific libraries, effectively utilizing GPUs with massively parallel engines remains difficult. Large language models (LLMs) show strong potential in generating optimized CUDA code from sequential code. However, using LLMs in practice faces two major challenges: cloud-based APIs pose risks of code leakage, and local deployment is often computationally expensive and inefficient. These drawbacks have spurred interest in small language models (SLMs), which are more lightweight and privacy-friendly. Encouragingly, recent studies show that SLMs can achieve performance comparable to LLMs on specific tasks. While SLMs can match LLMs on domain-specific tasks, their limited reasoning abilities lead to suboptimal performance in complex CUDA generation according to our experiments. To bridge this gap, we propose ReGraphT, a training-free, retrieval-augmented generation framework that transfers LLM-level reasoning to smaller models. ReGraphT organizes CUDA optimization trajectories into a structured reasoning graph, modeling the combined CUDA optimizations as state transitions, and leverages Monte Carlo Graph Search (MCGS) for efficient exploration. We also present a CUDA-specific benchmark with difficulty tiers defined by reasoning complexity to evaluate models more comprehensively. Experiments show that ReGraphT outperforms HPC-specific fine-tuned models and other retrieval-augmented approaches, achieving an average 2.33 \times speedup on CUDAEval and ParEval. When paired with DeepSeek-Coder-V2-Lite-Instruct and Qwen2.5-Coder-7B-Instruct, ReGraphT enables SLMs to approach LLM-level performance without the associated privacy risks or excessive computing overhead.

1 INTRODUCTION

The continuous performance improvement of NVIDIA GPUs (Dally et al., 2021; Lindholm et al., 2008; Nickolls & Dally, 2010; Owens et al., 2008) has solidified CUDA as a dominant programming model for high-performance computing tasks, including AI and scientific computing. However, writing efficient CUDA code that fully exploits the massively parallel processing capabilities of GPUs remains a significant challenge. To alleviate the burden of CUDA programming, prior research has proposed domain-specific libraries, programming frameworks, and even domain-specific languages (Brahmakshatriya & Amarasinghe, 2022; Tillet et al., 2019; Chen et al., 2018; Che et al., 2008; Bell & Hoberock, 2012; Hong et al., 2019). While these approaches significantly enhance productivity and deliver competitive performance, they often demand substantial engineering effort, are restricted to specific application domains, and suffer from compatibility issues with frequent NVIDIA software updates.

Recently, large language models (LLMs) have shown remarkable potential in code generation tasks (Qiu et al., 2020) across a wide range of programming languages—including Python, C/C++, Verilog, and even high-level synthesis code for FPGAs—demonstrating new opportunities for automatic CUDA code generation from sequential code (Li et al., 2023; Rozière et al., 2024; Luo et al., 2023; Zheng et al., 2023; Zhang et al., 2024). Encouraging progress has already been observed in this direction (Bendi-Ouis et al., 2025; Yan et al., 2024; Miranda et al., 2025). Nevertheless, deploying LLMs such as DeepSeek locally is highly resource-intensive due to their large-scale architecture. On the other hand, using cloud-based APIs raises concerns over potential code leakage and privacy violations. These limitations have fueled interest in small language models (SLMs), which

054 are significantly more lightweight, support convenient local deployment, and mitigate privacy risks.
 055 Notably, recent studies have shown that SLMs can achieve performance on par with LLMs in certain
 056 domain-specific code generation tasks(Brown et al., 2020b).

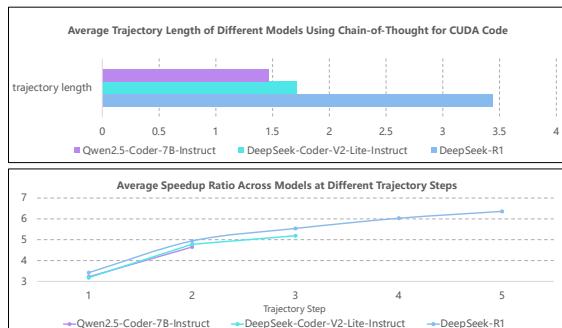
057 Despite this promise, training SLMs from scratch remains extremely challenging due to limited
 058 training data and convergence difficulties. Consequently, fine-tuning has emerged as a practical
 059 means to produce compact, domain-specialized, and compute-efficient SLMs. For example,
 060 HPC-Coder-V1 and V2 leverage curated parallel-code datasets to fine-tune large LLMs and substantially
 061 improve their ability to generate high-performance parallel programs (Nichols et al., 2024b;
 062 Chaturvedi et al., 2025), while RLPF employs reinforcement learning to further align LLM outputs
 063 with performance objectives (Nichols et al., 2024c). However, we find that the efficacy of these fine-
 064 tuned SLMs degrades markedly on problems demanding deeper, multi-step reasoning. To quantify
 065 this effect, we sampled 20 benchmarks from ParEval and applied chain-of-thought(Wei et al., 2023)
 066 (CoT) prompting to both the 671B DeepSeek-R1 model and smaller 7B/14B code-specific SLMs.
 067 Figure 1 reports each model’s average number of reasoning steps alongside the performance of the
 068 generated code. The results reveal that, while SLMs match LLMs on simpler tasks, they take signi-
 069 ficantly fewer reasoning steps and yield lower code quality on more complex benchmarks. This
 070 gap underscores the need for new techniques that can extend the reasoning capacity of lightweight
 071 models without sacrificing their deployment advantages.

072 In addition to fine-tuning, retrieval-augmented generation (RAG) is another widely adopted strat-
 073 egy for enhancing SLM performance by injecting external information directly into the model’s
 074 context. Prior works such as EVOR and Repoformer (Su et al., 2024; Wu et al., 2024) have success-
 075 fully applied RAG to general code generation tasks, demonstrating notable improvements in output
 076 quality, especially for code involving recurring patterns or known structures. However, while RAG
 077 effectively enriches contextual knowledge, it does not directly improve the model’s reasoning capa-
 078 bilities. As a result, RAG-enhanced SLMs still struggle with generation tasks that require multi-step
 079 logical reasoning, leaving a critical gap in handling more complex coding problems.

080 To enhance the reasoning capabilities
 081 of SLMs in CUDA code generation,
 082 we propose ReGraphT, a training-free
 083 framework that augments SLMs with a
 084 structured reasoning process of CUDA-
 085 specific optimizations. ReGraphT lever-
 086 ages the reasoning strength of LLMs
 087 to collect step-by-step CUDA optimiza-
 088 tion trajectories, which are then ag-
 089 gregated into a unified CUDA reason-
 090 ing graph. This graph captures the
 091 intermediate states and transitions in-
 092 volved in transforming sequential code
 093 into efficient CUDA implementations.
 094 ReGraphT formulates the CUDA code
 095 generation task for SLMs as a graph-
 096 based reasoning problem and incorpo-
 097 rates Monte Carlo Graph Search (MCGS)
 098 to guide the search over the graph efficiently. In addition,
 099 to support systematic evaluation, we also introduce CUDAEval, a benchmark suite specifically de-
 100 signed to assess CUDA code generation. CUDAEval organizes tasks into multiple difficulty levels
 101 based on the complexity of their underlying reasoning trajectories, enabling fine-grained analysis of
 102 model performance across different levels of challenge.

103 Our contributions are summarized as follows:

104 • We propose ReGraphT, a novel, training-free framework designed to mitigate the limited
 105 reasoning ability of SLMs in CUDA code generation. ReGraphT employs a CUDA Rea-
 106 soning Graph to encode optimization trajectories extracted from LLMs, thereby enabling
 107 SLMs to benefit from the rich multi-step reasoning encoded by larger models. The frame-
 108 work is open sourced on GitHub¹.



109 Figure 1: Average number of reasoning steps and the per-
 110 formance of the generated code with SLMs and LLMs.

¹<https://anonymous.4open.science/r/ReGraphT-1A47>

- We formulate CUDA code generation as a graph-based state transition problem and apply Monte Carlo Graph Search (MCGS) to efficiently navigate the CUDA Reasoning Graph. This formulation enables effective decision-making at each optimization stage, enhancing the quality of generated CUDA code.
- We design CUDAEval, a CUDA-specific benchmark suite that categorizes code generation tasks into levels of reasoning difficulty. Experimental results show that ReGraphT significantly improves the reasoning and code generation performance of SLMs, narrowing the gap between lightweight and large models in CUDA optimization tasks.

2 RELATED WORK

To support efficient CUDA programming, NVIDIA has developed a suite of CUDA Toolkit Libraries such as cuBLAS, cuDNN, and cuFFT (NVIDIA Corporation, 2023a;b;c), which offer optimized implementations for common parallel kernels. For effective CUDA code generation for domain-specific applications such as AI and multimedia, several compilation-based methods (NVIDIA Corporation, 2023d; Chen et al., 2018; Ragan-Kelley et al., 2013; Tillet et al., 2019) have been proposed.

Beyond compiler-based methods, recent research has explored improving code generation via language models. LLMs have demonstrated strong capabilities in code generation across various domains, including general-purpose programming, hardware design, and high-performance computing. However, practical deployment of LLMs presents two major challenges: cloud-based APIs raise concerns over potential code leakage, while local deployment is often computationally expensive and inefficient. These limitations have driven interest in small language models (SLMs), which offer lightweight alternatives suitable for local use.

Supervised fine-tuning (SFT) has shown promise in domain-specific tasks—e.g. (Fatemi & Hu, 2023) fine-tunes smaller LLMs for financial sentiment analysis with competitive results. HPC-Coder (Nichols et al., 2024b; Chaturvedi et al., 2025) enhances LLM performance in generating high-performance computing (HPC) code through fine-tuning with high-quality synthesized datasets. However, SFT has limited effectiveness in boosting multi-step reasoning capabilities in SLMs and often suffers from poor generalization (Ghosh et al., 2024). Knowledge distillation from LLM-generated synthetic data has emerged as an alternative for improving SLM reasoning ability (DeepSeek-AI et al., 2025; Wang et al., 2025). While effective, this approach relies heavily on carefully crafted data recipes, making the distillation process challenging and sensitive to dataset composition. The generalization of LLMs can also be improved by injecting relevant external knowledge through RAG, but it may also introduce hallucinations or irrelevant information (Sun et al., 2025; Gao et al., 2024). It becomes problematic particularly for CUDA code generation which typically combines multiple optimization techniques.

3 THE PROPOSED REGRAPHT FRAMEWORK

To address the reasoning limitations of SLMs in CUDA code generation, we propose ReGraphT, a lightweight, training-free framework that augments SLMs with structured reasoning guidance. As shown in Figure 2, ReGraphT first leverages LLMs to extract multi-step CUDA optimization trajectories from sequential code, organizing them into a CUDA Reasoning Graph. This graph encodes the step-by-step transformation paths and serves as a reasoning scaffold for SLMs. Then, it frames CUDA optimization as a graph traversal problem and applies Monte Carlo Graph Search (MCGS) for guided exploration, which enables SLMs to generate higher-quality CUDA code with improved multi-step reasoning capabilities.

3.1 REASONING GRAPH (REGRAPH) CONSTRUCTION

CoT (Wei et al., 2023) improves the ability of LLMs to perform complex reasoning through a series of intermediate reasoning steps, allowing SLMs with limited intelligence to emulate the reasoning process of LLMs, boosting their performance on tasks involving planning and reasoning. Figure 3 shows how CoT works in CUDA optimization and produces a reasoning trajectory. To efficiently utilize the intermediate reasoning traces generated by LLMs, we propose to organize the CUDA optimization expertise in a novel graph structure called ReGraph. Prior to discussing the construction of ReGraph, we formally present its definition.

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

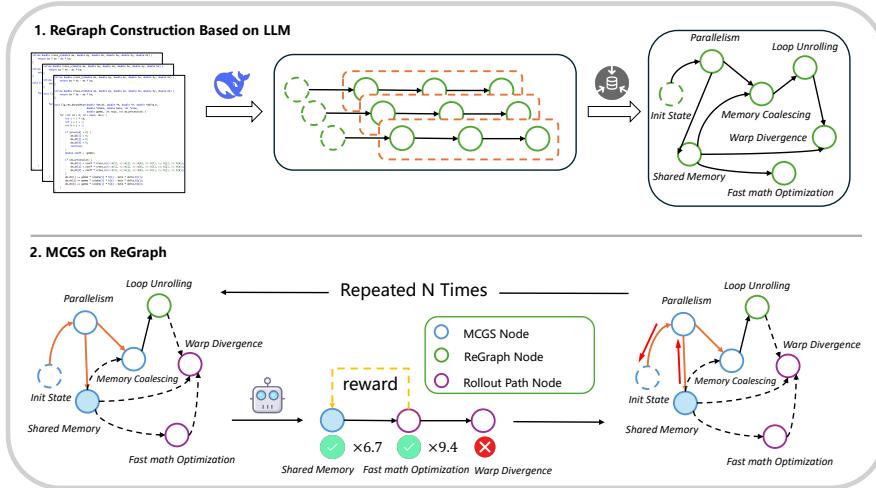


Figure 2: Overview of the proposed ReGraphT framework.

Definition 1. *ReGraph can be defined as $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, referring to a directed graph-based abstraction derived from CUDA optimization expertise. In ReGraph \mathcal{G} , each $v \in \mathcal{V}$ represents an identified CUDA optimization technique, each $u \in \mathcal{E}$ represents the link between two optimization methods.*

According to Definition 1, ReGraph adopts a directed graph representation that permits cycles. In ReGraphT, we formulate CUDA code optimization as a state transition process on the graph. As all optimization processes start with sequential codes, there exists an initial state v_{init} in \mathcal{G} , which stands for the starting point of optimization. At initialization, ReGraph \mathcal{G} consists exclusively of vertex v_{init} , devoid of any edges. Building upon this, ReGraph completes the construction of the entire graph by merging CUDA optimization trajectories. Algorithm 1 illustrates the complete process of ReGraph construction.

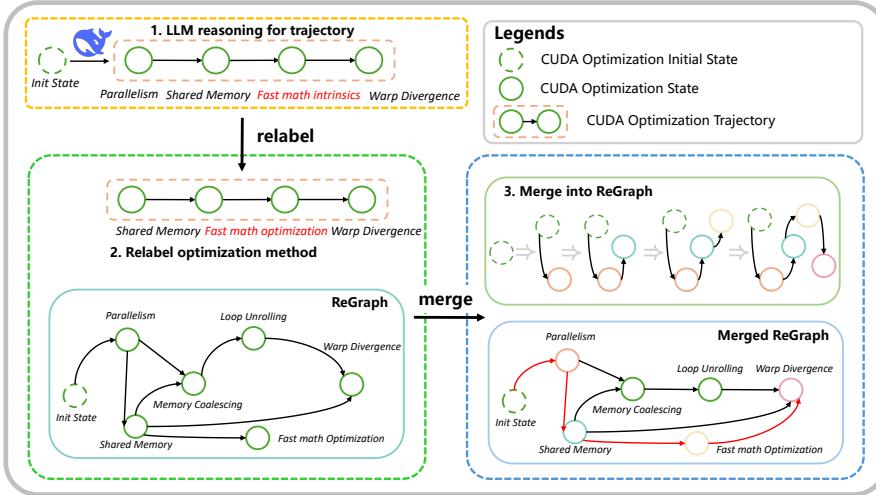


Figure 3: ReGraph construction based on LLM optimization trajectory.

To acquire CUDA optimization trajectories, we prompt LLM to perform CUDA optimization step by step, thus yielding a CUDA optimization trajectory. For each intermediate step of the trajectory, we instruct LLM to provide CUDA optimization method used, optimized CUDA code and corresponding reasoning process. Due to the stochastic nature of LLM outputs, identical CUDA optimization methods may be expressed differently by the LLM during different steps. Therefore, during the construction process, ReGraphT systematically records the existing CUDA optimization methods and prompts LLM to consolidate the current optimization trajectory with documented methods, thereby ensuring the consistency in the representation of each optimization method.

216 **Algorithm 1:** ReGraph Generation

217 **Require:** Sequential code dataset, D

218 **Require:** Large language model, LLM

219 **Output:** ReGraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

220 1 Initialize the set of CUDA optimization methods $\mathcal{O} = \{\}$

221 2 Initialize the nodes of CUDA Reasoning Graph $\mathcal{V} = \{v_{init}\}$

222 3 Initialize the edges of CUDA Reasoning Graph $\mathcal{E} = \{\}$

223 4 **for** $k \in D$ **do**

224 5 — *Trajectory of CUDA optimization* —

225 6 $\tau \leftarrow LLM(k)$

226 7 $\tau' \leftarrow relabel(LLM, \tau, \mathcal{O})$

227 8 — *CUDA Reasoning Graph merge* —

228 9 $s \leftarrow v_{init}$

229 10 **for** $e \in \tau'$ **do**

230 11 Get optimization method $o \leftarrow Method(e)$

231 12 **if** $o \in \mathcal{O}$ **then**

232 13 Find the node v corresponding to o

233 14 **if** $v \in Succ(s)$ **then**

234 15 Find the edge u between s and v

235 16 Append optimization example e to u

236 17 **else**

237 18 $u \leftarrow Edge(s, v)$

238 19 Append optimization example e to u

239 20 Append new edge u to \mathcal{E}

240 21 $s \leftarrow v$

241 22 **else**

242 23 $v \leftarrow Node(o)$

243 24 $u \leftarrow Edge(s, v)$

244 25 Append optimization example e to u

245 26 Append new node v to \mathcal{V}

246 27 Append new edge u to \mathcal{E}

247 28 $s \leftarrow v$

248

249 29 **return** CUDA Reasoning Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

251 After the CUDA optimization trajectory was produced, ReGraphT merges the new trajectory into

252 ReGraph. As mentioned in Definition 1, CUDA Reasoning Graph composes of CUDA optimization

253 method nodes and edges representing the link between different optimization methods. From this

254 perspective, a CUDA optimization trajectory can be regarded as a specific state transition trajectory.

255 The detailed state transition process is described by Algorithm 1 on lines 8 - 29. For the current

256 trajectory τ' , state s is initialized to v_{init} . For each intermediate step in τ' , ReGraphT determines

257 whether its corresponding optimization method is already incorporated in CUDA Reasoning Graph

258 at first. If incorporated, it processes separately based on whether the state transition it represents

259 exists (lines 13 - 22); otherwise, adds the method to the CUDA Reasoning Graph (lines 24 - 29).

260 Afterwards, the current state s will be updated, which means moving to the node corresponding to

261 the optimization method. More detailed construction steps of ReGraph are provided in Appendix.

262 3.2 REASONING GRAPH (REGRAPH) EXPLORATION

264 Once ReGraph is constructed, ReGraphT leverages it to achieve the transfer of reasoning capabilities

265 to SLMs via graph search, which means treating CUDA optimization as state transitions on ReGraph

266 and determining the next optimization method used following a predefined strategy. A feasible

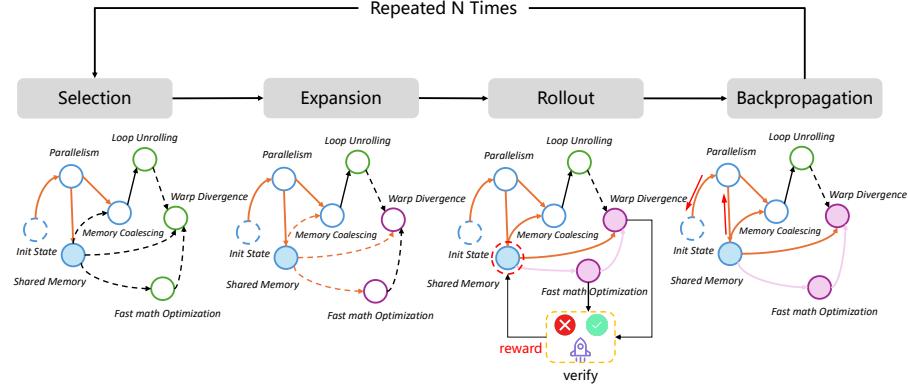
267 search strategy is to enumerate all possible combinations of CUDA optimization methods based

268 on ReGraph. Specifically, for each optimization state, all subsequent viable optimization methods

269 are attempted until no more methods can be applied. However, despite the pruning of paths due to

certain optimization methods being inapplicable, the time complexity of the enumeration search can

270 still reach $O(n^k)$, where n is the number of nodes in CUDA Reasoning Graph and k represents the
 271 average of subsequent optimization methods for a node.



272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 Figure 4: An overview of MCGS on ReGraph.

To tackle the complexity of enumeration search, we propose Monte Carlo Graph Search (MCGS), combining Monte Carlo Tree Search (MCTS) with ReGraph, leveraging rollout feedback from future states to inform the subsequent choice of optimization methods. To enable MCTS on the graph structure, we introduce some adaptations to the standard MCTS. As shown in Figure 4, we customize the key operations of MCGS on CUDA Reasoning Graph as follows:

Selection: As MCGS progresses, nodes and edges from ReGraph are incrementally added to form a new graph, which stands as a sub-graph of ReGraph. In the current iteration, MCGS select nodes from the existing graph based on UCB (Upper Confidence Bound):

$$P\text{-UCB}(s) = Q(s) + \sqrt{\frac{2\ln(N(s'))}{N(s)}} \quad (1)$$

Expansion: Unlike MCTS which decomposes problems at thought-level(Chen et al., 2024; Xie et al., 2024; Li et al., 2024; Hu et al., 2025), since MCGS method operates on a fixed graph ReGraph, the action space in each expansion step is also fixed—specifically, the successor nodes of the current optimization state within the ReGraph. If the node selected in the previous step has not been visited before, all successors will be expanded in MCGS to extend the entire search scope.

Rollout: A rollout refers to simulating from the current state to evaluate it. Unlike MCTS which performs estimations on the tree, ReGraph contains cycles, which may cause simulations to fail to terminate. To facility the problem, we made certain adjustments to the simulation strategy.

- To avoid repeated visits to the same node, we incorporated a regularization term based on the current visit count in the simulation, balancing exploitation and exploration more effectively than standard ϵ -greedy:

$$\pi(a|s) = \begin{cases} \arg \max_a [Q(s, a) - \lambda N(s, a)] & \text{with probability } 1 - \epsilon \\ \text{random action} & \text{with probability } \epsilon \end{cases} \quad (2)$$

- We set a maximum step limit for each rollout to prevent non-termination. What's more, it will also terminate if the optimization fails at any node.

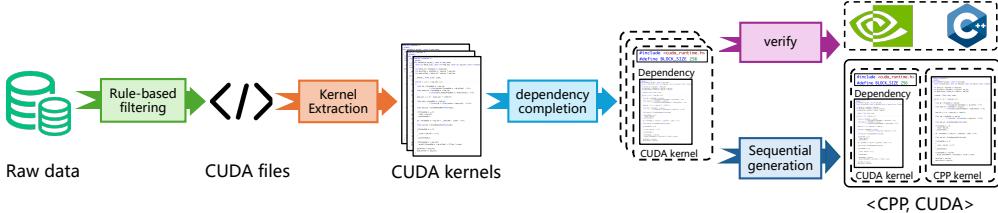
CUDA optimization requires error-free compilation while maximizing performance. As a result, at each step of the rollout process, the optimized CUDA code undergoes compilation verification, functional validation, and performance benchmarking, yielding the following hierarchical reward design:

$$\text{reward} = \begin{cases} -1, & \text{if } 0 \leq v^{\text{test}} < 1, \\ \text{speedup} - 1, & \text{if } v^{\text{test}} = 1 \text{ and speedup} < 1, \\ \text{speedup}, & \text{if } v^{\text{test}} = 1 \text{ and speedup} \geq 1. \end{cases} \quad (3)$$

324 In MCGS, each node can be treated as a terminal state, generating the final optimized code. The
 325 rollout’s final reward is defined as the maximum reward observed on its trajectory.
 326

327 **Backpropagation** To enable the rewards obtained in the current iteration to guide subsequent
 328 processes, MCGS backpropagates the rewards along all nodes traversed in the selection path, updating
 329 their Q-values. After backpropagation, MCGS progresses to the next iteration.
 330

331 4 THE PROPOSED CUDA EVALUATION BENCHMARK (CUDAEVAL)



340 Figure 5: **CUDAEval curation process.**

341 Existing benchmarks such as HumanEval and MBPP (Chen et al., 2021; Austin et al., 2021) pri-
 342 marily evaluate the functional correctness of LLM-generated code. ParEval (Nichols et al., 2024a),
 343 while designed for assessing parallel code generation, focuses mainly on various parallel paradigms
 344 and includes only 60 CUDA-specific instances—limited in both scale and diversity. Moreover, it
 345 lacks a fine-grained classification scheme that reflects the complexity of real-world CUDA develop-
 346 ment. To address these limitations, we present CUDAEval, a dedicated benchmark for evaluating
 347 LLM performance in CUDA code generation across varying levels of reasoning complexity. Un-
 348 like prior benchmarks that start from sequential code, CUDAEval is built from real-world CUDA
 349 files. Specifically, we sample 10K CUDA files from the Stack_v2_cuda_hip dataset, which comprises
 350 21.7K CUDA files collected from practical development scenarios.
 351

352 The benchmark is curated by first applying heuristic rules (e.g., filtering files with local headers) to
 353 remove incomplete or unbuildable samples, followed by LLM-based extraction of CUDA kernels
 354 and completion of missing dependencies. LLMs also generate corresponding CPU serial code and
 355 driver functions, with correctness verified via compilation and execution of both parallel and serial
 356 versions. Only <C++, CUDA> pairs that pass build and output consistency checks are retained.
 357

358 After validation, we obtain 3,126 high-quality CUDA code pairs. Using DeepSeek-R1 (DeepSeek-
 359 AI et al., 2025), we derive optimization trajectories and classify each sample into one of three dif-
 360 ficulty levels based on reasoning complexity. Specifically, samples with trajectory lengths of 1–2
 361 are assigned to the easy-tier, those with lengths of 3–5 to the medium-tier, and those with longer
 362 trajectories to the hard-tier. Under this definition, the dataset comprises 1,783 easy, 791 medium,
 363 and 552 hard instances. We selected 10% of the tasks for final evaluation while the left are used for
 364 ReGraph construction. To further increase the challenge of the benchmark, we deliberately included
 365 a relatively larger proportion of the harder samples. As a result, the final CUDAEval contains 313
 366 evaluation tasks, distributed across 106 easy, 105 medium, and 102 hard samples. Full details of
 367 CUDAEval pipeline are provided in the Appendix.
 368

369 5 EXPERIMENTS

370 We conduct our experiments on a single A100-80GB with Intel(R) Xeon(R) Platinum 8358P CPU
 371 @ 2.60GHz. For inference, we deploy LLMs using vLLM(Kwon et al., 2023) under BF16 precision.
 372

373 5.1 EXPERIMENT SETUPS

374 **Benchmarks:** We have both CUDAEval and an established benchmark ParEval(Nichols et al.,
 375 2024a) to evaluate the CUDA generation performance. ParEval covers 12 different computational
 376 problems and 7 parallel models, but only 60 problems are available for CUDA code generation.
 377

378 **Baselines:** We compare ReGraphT with prior prompting and RAG methods. For prompting meth-
 379 ods, we compare it with standard(Brown et al., 2020a) and CoT Prompting(Wei et al., 2023). For
 380 RAG methods, since there are no RAG methods specifically designed for CUDA optimization, we
 381 construct several RAG variants with the same CUDA optimization corpus used in ReGraphT. Specif-
 382 ically, we adopted a code similarity-based retrieval approach as the RAG baseline, which employ
 383

378 CodeBERTScore(Zhou et al., 2023) as the embedding model to retrieve relevant CUDA optimization
 379 examples based on embedding similarity. In addition to this similarity-based RAG baseline, we
 380 further include two stronger baselines—RethinkMCTS(Li et al., 2024) and MCTS-RAG(Hu et al.,
 381 2025)—to provide a more comprehensive comparison within the RAG family.

382 **Hyperparameters:** ReGraphT and ReGraphT-MCGS are evaluated under the same search budgets
 383 of 200. ReGraphT adopts a random sampling with max attempts of 5. The varying rollout configu-
 384 ration N in Figure 4 is set to 10. More details about Hyperparameter settings are in Appendix.
 385

386 **Metrics:** To quantify the correctness of generated CUDA code, we adopt pass@k introduced in
 387 (Chen et al., 2021), while for optimization performance, we use speedup@k(Nichols et al., 2024a)
 388 to evaluate the performance improvement over the original sequential code.

390 5.2 EXPERIMENT RESULTS

392 Table 1: CUDA generation performance on CUDAEval and ParEval benchmarks.
 393

394 Model	395 Method	396 CUDAEval				397 ParEval			
		398 pass@n		399 speedup@n		400 pass@n		401 speedup@n	
402 pass@1	403 pass@10	404 speedup@1	405 speedup@10	406 pass@1	407 pass@10	408 speedup@1	409 speedup@10	410	411
396 DeepSeek-Coder-V2-Lite-Instruct	397 Standard	61.7	63.9	6.54 ± 0.74	6.76 ± 0.71	40.0	42.1	4.61 ± 0.69	4.82 ± 0.67
	CoT(Wei et al., 2023)	64.9	67.4	7.23 ± 0.72	7.39 ± 0.70	43.3	43.9	4.94 ± 0.67	4.97 ± 0.67
	RAG(Zhou et al., 2023)	68.1	70.9	7.86 ± 0.79	7.89 ± 0.76	48.3	48.7	5.35 ± 0.74	5.34 ± 0.73
	RethinkMCTS(Li et al., 2024)	68.7		7.76 ± 0.93		50.0		5.12 ± 0.89	
	MCTS-RAG(Hu et al., 2025)	71.6		8.09 ± 0.82		51.7		5.78 ± 0.84	
399 ReGraphT-MCGS	399 ReGraphT	73.2		13.02 ± 0.85		51.7		10.06 ± 0.79	
	399 ReGraphT-MCGS	75.1		14.46 ± 0.87		55.0		10.78 ± 0.82	
400 Qwen2.5-Coder-7B-Instruct	401 Standard	61.0	63.6	6.34 ± 0.77	6.32 ± 0.74	38.3	39.2	4.33 ± 0.70	4.51 ± 0.68
	CoT(Wei et al., 2023)	62.3	64.2	6.31 ± 0.76	6.31 ± 0.75	35.0	38.8	4.30 ± 0.75	4.47 ± 0.72
	RAG(Zhou et al., 2023)	66.5	67.1	7.09 ± 0.86	7.24 ± 0.82	45.0	45.3	5.17 ± 0.79	5.20 ± 0.73
	RethinkMCTS(Li et al., 2024)	66.5		6.84 ± 1.02		48.3		5.09 ± 0.86	
	MCTS-RAG(Hu et al., 2025)	68.4		7.51 ± 0.94		50.0		5.56 ± 0.84	
403 ReGraphT-MCGS	403 ReGraphT	69.6		12.89 ± 0.85		51.7		10.11 ± 0.75	
	403 ReGraphT-MCGS	72.2		14.31 ± 0.81		50.0		10.02 ± 0.75	
404 HPC-Coder-V2	405 Standard	64.2	64.9	6.48 ± 0.68	6.53 ± 0.65	36.7	37.1	4.47 ± 0.72	4.59 ± 0.70
	CoT(Wei et al., 2023)	65.8	67.1	6.93 ± 0.73	7.02 ± 0.70	30.0	40.7	4.73 ± 0.72	4.86 ± 0.68
	RAG(Zhou et al., 2023)	64.8	65.5	6.44 ± 0.73	6.50 ± 0.69	38.3	39.9	4.51 ± 0.69	4.57 ± 0.69
	RethinkMCTS(Li et al., 2024)	67.1		7.48 ± 1.26		41.3		5.01 ± 0.93	
	MCTS-RAG(Hu et al., 2025)	68.4		7.15 ± 0.97		40.7		4.92 ± 0.88	
407 ReGraphT-MCGS	407 ReGraphT	70.6		13.26 ± 0.84		50.0		10.21 ± 0.80	
	407 ReGraphT-MCGS	72.5		14.39 ± 0.83		53.3		10.61 ± 0.82	
408 DeepSeek-R1-Distill-Qwen-7B	409 Standard	63.9	64.9	7.52 ± 0.67	7.59 ± 0.71	43.9	45.3	5.08 ± 0.65	5.17 ± 0.61
	CoT(Wei et al., 2023)	67.1	69.3	8.16 ± 0.69	8.16 ± 0.69	48.1	50.0	5.40 ± 0.65	5.54 ± 0.59
	RAG(Zhou et al., 2023)	66.5	68.4	8.43 ± 0.66	8.65 ± 0.62	48.3	50.0	5.73 ± 0.67	5.81 ± 0.67
	RethinkMCTS(Li et al., 2024)	71.6		7.92 ± 0.89		51.7		6.34 ± 0.82	
	MCTS-RAG(Hu et al., 2025)	71.6		8.06 ± 0.91		53.3		6.57 ± 0.85	
411 ReGraphT-MCGS	411 ReGraphT	75.8		14.15 ± 0.77		55.0		10.92 ± 0.72	
	411 ReGraphT-MCGS	76.4		14.72 ± 0.73		55.0		11.25 ± 0.67	
412 DeepSeek-V3-0324	413 Standard	79.6	80.8	18.71 ± 0.64	18.86 ± 0.59	63.3	63.8	11.40 ± 0.60	10.99 ± 0.61
	CoT(Wei et al., 2023)	80.2	81.5	18.58 ± 0.57	18.45 ± 0.55	61.7	62.1	11.83 ± 0.62	11.77 ± 0.59
413 DeepSeek-R1	414 Standard	80.5	81.5	19.02 ± 0.73	19.45 ± 0.71	58.3	58.2	11.52 ± 0.69	11.57 ± 0.75
	CoT(Wei et al., 2023)	82.1	83.1	19.14 ± 0.75	19.62 ± 0.70	63.3	63.6	12.09 ± 0.68	12.13 ± 0.68

415 Table 1 presents the CUDA optimization performance under different methods with various code-
 416 specific SLMs DeepSeek-Coder-V2-Lite-Instruct, Qwen2.5-Coder-7B-Instruct(Yang et al., 2024;
 417 Hui et al., 2024), and HPC-Coder-V2(Chaturvedi et al., 2025), and the SOTA general LLMs
 418 DeepSeek-V3-0324(DeepSeek-AI, 2024) and DeepSeek-R1(DeepSeek-AI et al., 2025). In CUD-
 419 AEval, ReGraphT-MCGS achieves 73.3% in pass@k on average with three code-specific SLMs,
 420 surpassing by +11.0%, +9.0% and +6.8% compared to Standard, CoT and RAG in pass@1, +9.2%,
 421 +7.1% and +5.5% in pass@10. While ensuring the correctness of generated code, ReGraphT-MCGS
 422 also demonstrates superior quality in CUDA code generation, achieving at least $\times 1.84$ speedup in
 423 speedup@1 and $\times 1.83$ in speed@10 compared to other baselines. **For the search-based variants**
 424 **RethinkMCTS and MCTS-RAG, although they achieve some improvement over other baselines,**
 425 **they still fall short of our ReGraphT-MCGS method.** On the overall more challenging ParEval,
 426 ReGraphT-MCGS also demonstrates outstanding performance.

427 Beyond baseline comparisons, we further verify the efficacy of the MCGS strategy on ReGraph.
 428 According to Table 1, under the fixed search budgets of 200, ReGraph-MCGS achieves higher per-
 429 formance to ReGraphT, with +2.2% pass@n, +1.33% speedup@n increase on average in CUDAE-
 430 val and +1.7% pass@n, +0.34% speedup@n in ParEval. Our experiments demonstrate that, under
 431 the same search budget constraints, ReGraphT-MCGS enables a more efficient exploration over
 ReGraph compared to ReGraphT.

Table 2: CUDA Generation Performance Across Three Difficulty Levels in CUDAEval.

Model	Method	pass@n			speedup@n		
		easy	medium	hard	easy	medium	hard
DeepSeek-Coder-V2-Lite-Instruct	Standard	81.1	65.7	44.1	8.90 ± 0.69	6.32 ± 0.72	3.34 ± 0.72
	CoT	86.8	68.6	46.1	9.65 ± 0.67	6.51 ± 0.71	4.31 ± 0.72
	RAG	91.5	73.3	47.1	10.13 ± 0.78	6.98 ± 0.74	4.82 ± 0.73
	ReGraphT	90.6	76.2	52.0	15.86 ± 0.80	12.38 ± 0.87	8.84 ± 0.86
	ReGraphT-MCGS	90.6	79.0	54.9	17.82 ± 0.80	13.79 ± 0.80	9.69 ± 0.82
Qwen2.5-Coder-7B-Instruct	Standard	81.1	65.7	43.1	8.51 ± 0.73	5.62 ± 0.76	3.14 ± 0.80
	CoT	82.1	66.7	43.1	8.47 ± 0.75	5.54 ± 0.79	3.46 ± 0.78
	RAG	85.8	69.5	45.1	9.54 ± 0.80	6.23 ± 0.81	4.29 ± 0.84
	ReGraphT	85.8	73.3	49.0	15.67 ± 0.81	12.26 ± 0.86	8.80 ± 0.88
	ReGraphT-MCGS	88.7	76.2	51.0	17.48 ± 0.83	13.64 ± 0.83	9.61 ± 0.84
HPC-Coder-V2	Standard	83.0	66.7	44.1	8.78 ± 0.63	6.17 ± 0.67	2.69 ± 0.66
	CoT	86.8	68.6	45.1	9.31 ± 0.72	6.13 ± 0.69	3.83 ± 0.70
	RAG	81.1	66.7	44.1	8.82 ± 0.69	6.22 ± 0.69	3.08 ± 0.68
	ReGraphT	88.7	71.4	51.0	16.43 ± 0.82	12.45 ± 0.85	8.70 ± 0.83
	ReGraphT-MCGS	90.6	74.3	52.0	17.66 ± 0.81	13.58 ± 0.86	9.66 ± 0.83
DeepSeek-V3-0324	Standard	93.4	87.6	60.8	23.23 ± 0.59	18.54 ± 0.58	12.36 ± 0.61
	CoT	93.4	88.6	61.8	22.66 ± 0.52	18.38 ± 0.56	11.94 ± 0.57
DeepSeek-R1	Standard	94.3	87.6	61.8	24.01 ± 0.68	18.73 ± 0.71	13.26 ± 0.71
	CoT	95.3	89.5	63.7	24.24 ± 0.69	18.96 ± 0.72	13.40 ± 0.70

To analyze the impact of reasoning capability on CUDA code optimization performance, we further investigated the relationship between the length of reasoning trajectories and corresponding performance based on performances across different difficulty levels in CUDAEval. As shown in Table 2, ReGraph demonstrates varying performance across different difficulty levels. On the easy level which requires minimal reasoning, ReGraph shows no significant gap compared to other baselines, and occasionally underperforms CoT and RAG approaches. However, as task difficulty escalates to medium and hard levels demanding more advanced reasoning, ReGraph begins to demonstrate marked advantages over alternative methods.

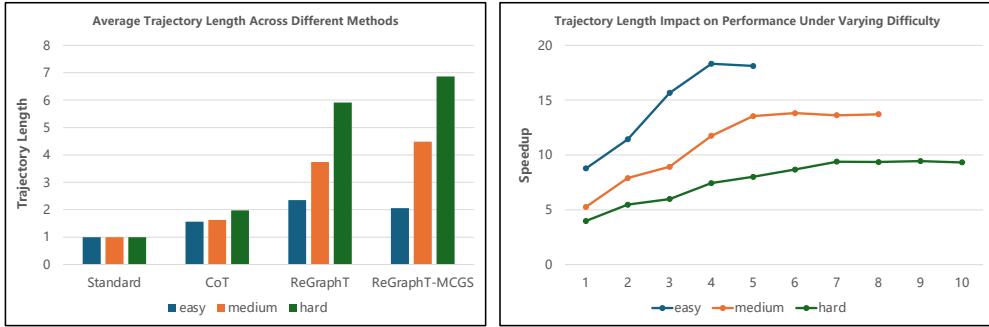


Figure 6: Normalized performance of the generated CUDA code under various difficulty levels

To further demonstrate ReGraphT's enhancement of SLMs' reasoning capabilities in CUDA generation tasks, we perform a deeper examination regarding the correlation between the complexity of reasoning trajectories and optimization performance. As observed in Figure 6, limited by the reasoning capacity of SLMs, the length of CoT reasoning trajectories exhibits minimal variation across difficulty levels, while for ReGraphT series, the difference in the average length of reasoning trajectories between the easy and hard difficulty levels can reach up to 4.8, thus demonstrating that ReGraph can boost SLMs reasoning in CUDA generation process. What's more, in comparison to ReGraphT, ReGraphT-MCGS exhibits longer average reasoning trajectories, highlighting its advantage in search efficiency. In addition to reasoning boosting, Figure 6 further demonstrates the role of reasoning in enhancing performance for CUDA optimization tasks. From the figure, we observe a positive correlation between CUDA generation performance and reasoning chain length across all difficulty levels, until the reasoning steps reach a certain threshold. Notably, different difficulty tasks exhibit distinct thresholds, which generally show positive correlation with task difficulty. Beyond the threshold, the performance gap becomes statistically insignificant.

486 **6 CONCLUSION**

487 In this paper, we propose ReGraphT, a training-free framework which transfers the CUDA opti-
 488 mization reasoning capability of LLMs to SLMs via Reasoning Graph. According to experiment
 489 results, ReGraphT has demonstrated significant effectiveness in enhancing SLM’s reasoning capa-
 490 bility for CUDA-generated content and improving generation quality. This work demonstrates that
 491 the proposed reasoning graph can transfer the reasoning capability of LLMs to SLMs effectively
 492 and ReGraphT can be potentially applied to more code generation scenarios that require complex or
 493 long reasoning procedures. We will investigate this approach in our future work.

494 **REFERENCES**

495 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
 496 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
 497 language models, 2021. URL <https://arxiv.org/abs/2108.07732>.

500 Carlo Baronio, Pietro Marsella, Ben Pan, Simon Guo, and Silas Alberti. Kevin: Multi-turn rl for
 501 generating cuda kernels, 2025. URL <https://arxiv.org/abs/2507.11948>.

502 Nathan Bell and Jared Hoberock. Chapter 26 - thrust: A productivity-oriented library for cuda. In
 503 Wen mei W. Hwu (ed.), *GPU Computing Gems Jade Edition*, Applications of GPU Computing
 504 Series, pp. 359–371. Morgan Kaufmann, Boston, 2012. ISBN 978-0-12-385963-1. doi: <https://doi.org/10.1016/B978-0-12-385963-1.00026-5>. URL <https://www.sciencedirect.com/science/article/pii/B9780123859631000265>.

505 Yannis Bendi-Ouis, Dan Dutartre, and Xavier Hinaut. Deploying open-source large language mod-
 506 els: A performance analysis, 2025. URL <https://arxiv.org/abs/2409.14887>.

507 Ajay Brahmakshatriya and Saman Amarasinghe. Graphit to cuda compiler in 2021 loc: A case for
 508 high-performance dsl implementation via staging with buildsl. In *2022 IEEE/ACM International
 509 Symposium on Code Generation and Optimization (CGO)*, pp. 53–65. IEEE, 2022.

510 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
 511 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
 512 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
 513 Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
 514 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
 515 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
 516 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
 517 ral Information Processing Systems*, volume 33, pp. 1877–1901. Curran Associates, Inc.,
 518 2020a. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfc4967418bfb8ac142f64a-Paper.pdf.

519 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
 520 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
 521 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
 522 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
 523 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
 524 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020b.
 525 URL <https://arxiv.org/abs/2005.14165>.

526 Aman Chaturvedi, Daniel Nichols, Siddharth Singh, and Abhinav Bhatele. Hpc-coder-v2: Studying
 527 code llms across low-resource parallel languages. In *Proceedings of the ISC High Performance
 528 Conference*, 2025.

529 Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, and Kevin Skadron. A
 530 performance study of general-purpose applications on graphics processors using cuda. *Journal of
 531 Parallel and Distributed Computing*, 68(10):1370–1380, 2008. ISSN 0743-7315. doi: <https://doi.org/10.1016/j.jpdc.2008.05.014>. URL <https://www.sciencedirect.com/science/article/pii/S0743731508000932>. General-Purpose Processing using Graphics Pro-
 532 cessing Units.

540 Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero:
 541 Process supervision without process. In A. Globerson, L. Mackey, D. Belgrave,
 542 A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural In-*
 543 *formation Processing Systems*, volume 37, pp. 27689–27724. Curran Associates, Inc.,
 544 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/30dfe47a3ccbee68cffa0c19ccb1bc00-Paper-Conference.pdf.

545

546 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
 547 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
 548 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
 549 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
 550 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
 551 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
 552 Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
 553 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
 554 Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
 555 Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
 556 language models trained on code. 2021.

557

558 Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen
 559 Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm: an
 560 automated end-to-end optimizing compiler for deep learning. In *Proceedings of the 13th USENIX*
 561 *Conference on Operating Systems Design and Implementation*, OSDI’18, pp. 579–594, USA,
 562 2018. USENIX Association. ISBN 9781931971478.

563

564 William J Dally, Stephen W Keckler, and David B Kirk. Evolution of the graphics processing unit
 (gpu). *IEEE Micro*, 41(6):42–51, 2021.

565

566 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

567

568 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 569 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 570 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 571 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 572 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 573 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 574 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 575 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
 576 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
 577 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
 578 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
 579 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 580 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
 581 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
 582 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
 583 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
 584 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
 585 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
 586 aosh Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
 587 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
 588 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
 589 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
 590 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
 591 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
 592 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
 593 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
 Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
 594 ment learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

594 Sorouralsadat Fatemi and Yuheng Hu. A comparative analysis of fine-tuned llms and few-shot
 595 learning of llms for financial sentiment analysis, 2023. URL <https://arxiv.org/abs/2312.08725>.

596

597 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
 598 Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey,
 599 2024. URL <https://arxiv.org/abs/2312.10997>.

600

601 Sreyan Ghosh, Chandra Kiran Reddy Evuru, Sonal Kumar, Ramaneswaran S, Deepali Aneja, Zeyu
 602 Jin, Ramani Duraiswami, and Dinesh Manocha. A closer look at the limitations of instruction
 603 tuning. In *Proceedings of the 41st International Conference on Machine Learning*, ICML'24.
 604 JMLR.org, 2024.

605

606 Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, and P. Sadayappan. Adaptive
 607 sparse tiling for sparse matrix multiplication. In *Proceedings of the 24th Symposium on Principles
 608 and Practice of Parallel Programming*, PPoPP '19, pp. 300–314, New York, NY, USA, 2019.
 609 Association for Computing Machinery. ISBN 9781450362252. doi: 10.1145/3293883.3295712.
 610 URL <https://doi.org/10.1145/3293883.3295712>.

611 Yunhai Hu, Yilun Zhao, Chen Zhao, and Arman Cohan. Mcts-rag: Enhancing retrieval-augmented
 612 generation with monte carlo tree search, 2025. URL <https://arxiv.org/abs/2503.20757>.

613

614 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 615 Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*,
 616 2024.

617

618 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 619 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 620 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
 621 Systems Principles*, 2023.

622

623 Qingyao Li, Wei Xia, Kounianhua Du, Xinyi Dai, Ruiming Tang, Yasheng Wang, Yong Yu, and
 624 Weinan Zhang. Rethinkmcts: Refining erroneous thoughts in monte carlo tree search for code
 625 generation, 2024. URL <https://arxiv.org/abs/2409.09584>.

626

627 Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
 628 Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
 629 Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
 630 Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-
 631 gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
 632 Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
 633 Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-
 634 cioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor,
 635 Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex
 636 Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
 637 Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes,
 638 Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source
 639 be with you!, 2023. URL <https://arxiv.org/abs/2305.06161>.

640

641 Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. Nvidia tesla: A unified graphics
 642 and computing architecture. *IEEE Micro*, 28(2):39–55, 2008. doi: 10.1109/MM.2008.31.

643

644 Database Mart LLC. Rtx4090 vllm benchmark: Best gpu for llms below 8b
 645 on hugging face. Blog post, 2025. URL https://www.databasemart.com/blog/vllm-gpu-benchmark-rtx4090?srsltid=AfmBoogHQbQ_GBTVuk9hkCgrwzy-xAqWdJckkS8mKP9_2-Tu-nIM00W7. Accessed: 2025-09-24.

646

647 Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
 648 Ma, Qingwei Lin, and Dixin Jiang. Wizardcoder: Empowering code large language models with
 649 evol-instruct, 2023. URL <https://arxiv.org/abs/2306.08568>.

648 Michele Miranda, Elena Sofia Ruzzetti, Andrea Santilli, Fabio Massimo Zanzotto, Sébastien
 649 Bratières, and Emanuele Rodolà. Preserving privacy in large language models: A survey on
 650 current threats and solutions, 2025. URL <https://arxiv.org/abs/2408.05212>.

651 Daniel Nichols, Joshua H. Davis, Zhaojun Xie, Arjun Rajaram, and Abhinav Bhatele. Can large
 652 language models write parallel code?, 2024a.

653 Daniel Nichols, Aniruddha Marathe, Harshitha Menon, Todd Gamblin, and Abhinav Bhatele. Hpc-
 654 coder: Modeling parallel programs using large language models. In *ISC High Performance 2024*
 655 *Research Paper Proceedings (39th International Conference)*, pp. 1–12, 2024b. doi: 10.23919/
 656 ISC.2024.10528929.

657 Daniel Nichols, Pranav Polasam, Harshitha Menon, Aniruddha Marathe, Todd Gamblin, and Abhi-
 658 nav Bhatele. Performance-aligned llms for generating fast code, 2024c.

659 John Nickolls and William J. Dally. The gpu computing era. *IEEE Micro*, 30(2):56–69, 2010. doi:
 660 10.1109/MM.2010.41.

661 NVIDIA Corporation. cuBLAS library. <https://docs.nvidia.com/cuda/cublas/index.html>, 2023a. Version X.X, Accessed: [Insert Date].

662 NVIDIA Corporation. cuDNN: Deep neural network library. <https://docs.nvidia.com/deeplearning/cudnn/>, 2023b. Version X.X, Accessed: [Insert Date].

663 NVIDIA Corporation. cuFFT library. <https://docs.nvidia.com/cuda/cufft/index.html>, 2023c. Version X.X, Accessed: [Insert Date].

664 NVIDIA Corporation. TensorRT: High performance deep learning inference. <https://developer.nvidia.com/tensorrt>, 2023d. Version X.X, Accessed: [Insert Date].

665 John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and James C. Phillips.
 666 Gpu computing. *Proceedings of the IEEE*, 96(5):879–899, 2008. doi: 10.1109/JPROC.2008.
 667 917757.

668 XiPeng Qiu, TianXiang Sun, YiGe Xu, YunFan Shao, Ning Dai, and XuanJing Huang. Pre-trained
 669 models for natural language processing: A survey. *Science China Technological Sciences*, 63
 670 (10):1872–1897, September 2020. ISSN 1869-1900. doi: 10.1007/s11431-020-1647-3. URL
 671 <http://dx.doi.org/10.1007/s11431-020-1647-3>.

672 Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman
 673 Amarasinghe. Halide: a language and compiler for optimizing parallelism, locality, and recom-
 674 putation in image processing pipelines. *SIGPLAN Not.*, 48(6):519–530, June 2013. ISSN 0362-
 675 1340. doi: 10.1145/2499370.2462176. URL <https://doi.org/10.1145/2499370.2462176>.

676 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
 677 Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémie Rapin, Artyom Kozhevnikov, Ivan Ev-
 678 timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
 679 Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
 680 Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
 681 URL <https://arxiv.org/abs/2308.12950>.

682 Hongjin Su, Shuyang Jiang, Yuhang Lai, Haoyuan Wu, Boao Shi, Che Liu, Qian Liu, and Tao
 683 Yu. Evor: Evolving retrieval for code generation, 2024. URL <https://arxiv.org/abs/2402.12317>.

684 Zhongxiang Sun, Xiaoxue Zang, Kai Zheng, Yang Song, Jun Xu, Xiao Zhang, Weijie Yu, Yang
 685 Song, and Han Li. Redep: Detecting hallucination in retrieval-augmented generation via mech-
 686 anistic interpretability, 2025. URL <https://arxiv.org/abs/2410.11414>.

687 Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate language and compiler for
 688 tiled neural network computations. In *Proceedings of the 3rd ACM SIGPLAN International*
 689 *Workshop on Machine Learning and Programming Languages*, MAPL 2019, pp. 10–19, New
 690 York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367196. doi:
 691 10.1145/3315508.3329973. URL <https://doi.org/10.1145/3315508.3329973>.

702 Haotian Wang, Han Zhao, Shuaiting Chen, Xiaoyu Tian, Sitong Zhao, Yunjie Ji, Yiping Peng, and
 703 Xiangang Li. Leveraging reasoning model answers to enhance non-reasoning model capability,
 704 2025. URL <https://arxiv.org/abs/2504.09639>.

705 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
 706 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
 707 2023. URL <https://arxiv.org/abs/2201.11903>.

708 Di Wu, Wasi Uddin Ahmad, Dejiao Zhang, Murali Krishna Ramanathan, and Xiaofei Ma. Re-
 709 porformer: selective retrieval for repository-level code completion. In *Proceedings of the 41st*
 710 *International Conference on Machine Learning*, ICML'24. JMLR.org, 2024.

711 Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi,
 712 and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
 713 *arXiv preprint arXiv:2405.00451*, 2024.

714 Biwei Yan, Kun Li, Minghui Xu, Yueyan Dong, Yue Zhang, Zhaochun Ren, and Xiuzhen Cheng.
 715 On protecting the data privacy of large language models (llms): A survey, 2024. URL <https://arxiv.org/abs/2403.05156>.

716 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 717 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 718 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 719 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang,
 720 Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 721 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint*
 722 *arXiv:2412.15115*, 2024.

723 Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao, Zi Gong, Hang Yu, Jianguo Li, and Rui
 724 Wang. Unifying the perspectives of NLP and software engineering: A survey on language models
 725 for code. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=hkNnGqZnpa>.

726 Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
 727 Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
 728 code generation with multilingual benchmarking on humaneval-x. In *Proceedings of the 29th*
 729 *ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 5673–5684, 2023.

730 Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham Neubig. Codebertscore: Evaluating code
 731 generation with pretrained models of code. 2023. URL <https://arxiv.org/abs/2302.05527>.

732 A CUDAeval CURATION

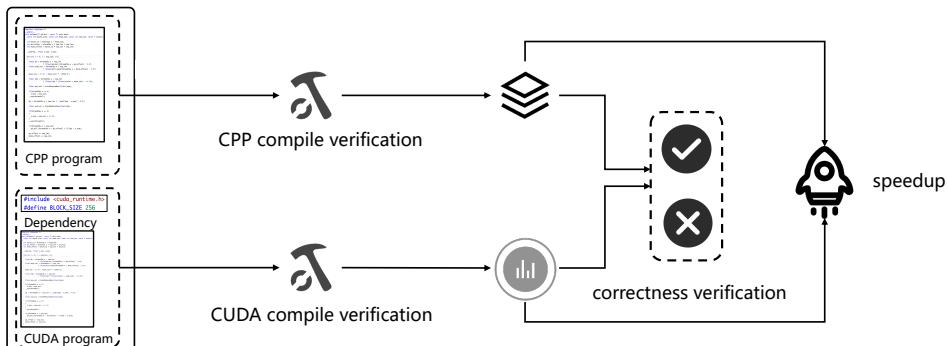


Figure 7: CUDAeval verification process.

756 **Rule-based Preprocessing** The main goal of our filtering rules is to reduce the cost of LLM api
 757 calling. To achieve this goal, we designed the following heuristic filtering rules:
 758

- 759 • Remove CUDA files that include local header files
- 760 • Retain only files where code functions contain between 50 to 500 lines.
- 761 • Filter out files containing dependencies on CUDA third-party libraries (including but not
 762 limited to cuDNN, cuBLAS).

764 **Kernel Extraction and Dependency Completion** After heuristic rule filtering, we employ prompts
 765 to instruct the LLM to extract CUDA kernels and their corresponding dependencies from the remain-
 766 ing files. Since these CUDA files were collected from repositories, the extracted kernels may still
 767 exhibit issues such as missing macro definitions, absent class definitions, and similar deficiencies.

768 To address the aforementioned issues, we employ the LLM to attempt dependency completion for
 769 these kernels. The specific prompt used for this purpose is illustrated in the accompanying figure.

770 **Sequential Code and Driver Generation** After kernel extraction and dependency completion, we
 771 generate their corresponding serial codes based on the parallel codes and construct the main func-
 772 tions to call them respectively in preparation for the subsequent verification phase.

774 **Verification Pipeline** To maintain data correctness and improve quality, we implemented com-
 775 prehensive validation, specifically examining both accuracy and performance metrics. First, we will
 776 compile and verify the two code segments separately. After confirming successful compilation, we
 777 execute both programs using the same test data and compare their outputs to validate correctness.
 778 Once correctness is ensured, we evaluate their runtime performance and select the code that demon-
 779 strates acceleration effects. The complete verification process is illustrated in Figure 7.

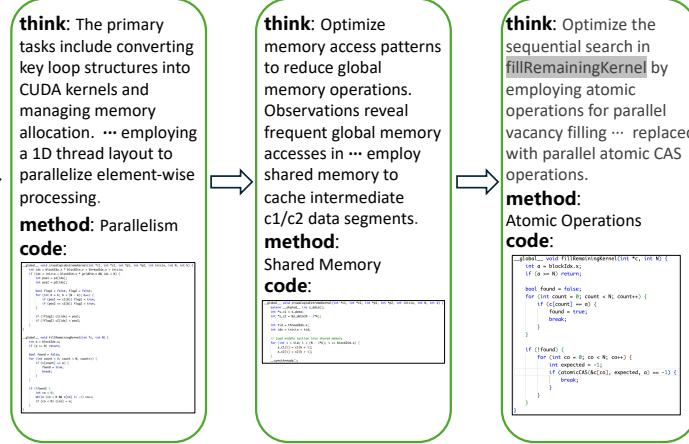
780 B REGRAPH CONSTRUCTION

783 **LLM reasoning for CUDA Optimization trajectory** As shown in Figure 8., We instruct LLM to
 784 carry out CUDA optimizations stepwise in order to derive optimization trajectories using prompt
 785 G.3. However, LLM lacks the ability to verify either the correctness or the effectiveness of its own
 786 CUDA optimizations. As a result, prior to merging the CUDA optimization trajectories into Re-
 787 Graph, we need to validate the results and performance of every optimization step. The verification
 788 approach follows the same methodology in Figure 7.

789 prompt:

790 You are an excellent high-
 791 performance computing engineer,
 792 skilled in optimizing CPP code
 793 using CUDA. Now, the user will
 794 provide you with CPP code, and
 795 you need to optimize it step by
 796 step using CUDA
 797 code:

```
void Crossover(int *parents, int *population, int N, int inicio, int fin)
{
    //...
    int *c1 = (int *)malloc(sizeof(int) * N);
    int *c2 = (int *)malloc(sizeof(int) * N);
    //...
    int *p1 = (int *)malloc(sizeof(int) * N);
    int *p2 = (int *)malloc(sizeof(int) * N);
    int *flag;
    int k = N / 2;
    int posse = fin;
    for (int n = inicio; (n + 1) < fin; n += 2)
    {
        flag = 0;
        initializeCrossover(c1, c2, p1, p2, k, (N - k));
        crossoverMutate(c1, c2, p1, p2, k, (N - k));
        crossoverXtreme(c1, c2, p1, p2, k, (N - k), N, N, k, (N - k));
        crossoverXtreme(c1, c2, p1, p2, (N - k), N, N, k, (N - k));
    }
}
```



806 **Figure 8: Process of LLM reasoning for CUDA optimization.**

808 **Optimization trajectory relabel** Following verification, it remains necessary to employ the LLM
 809 to re-annotate every step in the optimization trajectory according to established CUDA optimization
 techniques. Specifically, using the prompt illustrated in G.4, we instruct the LLM to determine

whether each optimization method employed in the current trajectory aligns with existing CUDA optimization methods. When a match is found, the corresponding optimization method is renamed accordingly.

C ANALYSIS OF REGRAPH DISTRIBUTION

Figure 9 illustrates the relationship between the distribution of ReGraph and the number of samples used for its construction. Our experiments show that the reasoning graph converges after approximately 500 samples. This is reasonable given that the space of effective CUDA optimization strategies is inherently limited. Therefore, ReGraph is able to capture most of the commonly used optimizations using only a limited number of samples.

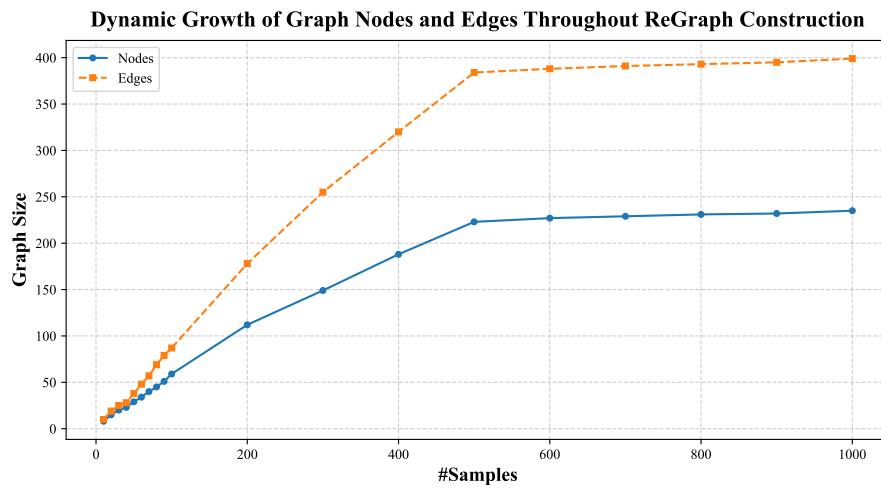


Figure 9: ReGraph Distribution Across Different Sample Numbers.

Moreover, we further investigated the impact of ReGraph size on code generation quality by integrating different ReGraphs into Qwen2.5-Coder-7B-Instruct, with 200 search budgets and rollout 10. According to Table 3, we observe that the performance continues to improve with increasing ReGraph size before convergence, demonstrating the effectiveness of the CUDA optimization search space exposed by ReGraph. However, once ReGraph has converged, its size no longer has a significant impact on performance.

Table 3: Ablation study on the impact of ReGraph size on code generation performance.

ReGraph ID	0	1	2	3	4	5	6
<i>Graph Statistics</i>							
#Samples	30	50	100	300	500	600	1000
#Nodes	20	29	59	149	223	227	235
#Edges	25	38	87	225	384	388	399
<i>Performance Metrics</i>							
pass@10	61.3	60.1	63.9	64.9	70.0	68.4	71.2
speedup@10	9.43	9.74	11.29	12.63	14.15	14.09	14.21

D ANALYSIS OF OVERHEAD FOR REGRAPHT

We provide both a theoretical analysis and empirical wall-time measurements for the overhead of the ReGraphT framework, encompassing ReGraph construction as well as the MCGS process. While

864 ReGraph construction incurs LLM-related costs, we break down its three main stages, assuming N
 865 samples:
 866

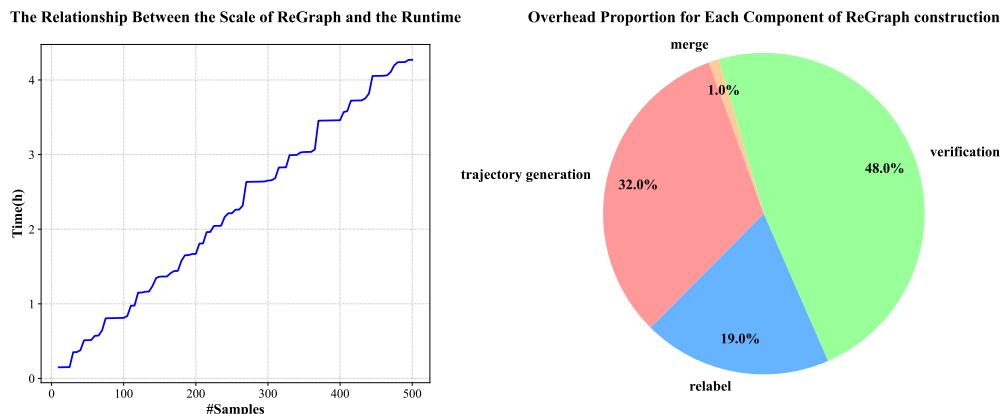
867 **LLM Reasoning for Trajectories:** Each sample requires a single LLM invocation, resulting in a
 868 total of N calls. With a parallelism degree of C , the time complexity is $O(N/C)$.
 869

870 **Relabeling Optimization Methods:** This stage also involves N LLM calls, but they must be exe-
 871 cuted sequentially, yielding a complexity of $O(N)$.
 872

873 **Merging into ReGraph:** Each merge operation has complexity $O(M)$, where M denotes the aver-
 874 age trajectory length, resulting in an overall complexity of $O(NM)$.
 875

876 When accounting for parallelism, the dominant cost becomes $O(NM/C)$. Importantly, this repre-
 877 sents a one-time overhead, as the ReGraph can be preconstructed and reused. As illustrated in Figure
 878 9, ReGraph typically converges with approximately 500 samples, further enhancing cost efficiency.
 879

880 In addition to the asymptotical complexity analysis of ReGraph construction, we also provide em-
 881 pirical measurements of the time overhead for ReGraph construction under different sample scales.
 882 Figure 10 illustrates the runtime required to construct a ReGraph with 500 samples, as well as the
 883 overhead distribution across different components of the construction process. The tests were con-
 884 ducted with a parallelism level of 5, meaning that five parallel threads were used to extract CUDA
 885 optimization trajectories. The results show that the time consumption scales approximately linearly
 886 with the size of ReGraph. On the other hand, analyzing the overhead distribution across compo-
 887 nents reveals that the main bottleneck in ReGraph construction lies in verifying the correctness of
 888 generated results, which accounts for 48% of the total runtime. In addition, the trajectory generation
 889 and relabeling steps, which require model-based generation, contribute 32% and 19% of the total
 890 overhead, respectively. In contrast, the cost associated with merging is negligible.
 891



902 **Figure 10: ReGraph Overhead.**
 903

904 ReGraphT models optimization as state transitions, making the search space grow linearly with
 905 the number of edges rather than nodes. A naive enumeration explores every edge with multiple
 906 attempts, yielding a time complexity of $O(CE)$, where E is the number of edges and C is the
 907 number of attempts per node. Since a converged ReGraph typically has hundreds of edges, this
 908 approach may require thousands of attempts. In contrast, MCGS distributes trials during the rollout
 909 phase, avoiding repeated edge attempts. Its time complexity is $O(Nb(d+l))$, where N is the number
 910 of iterations, b is branching factor and d, l represents the depth of selection and rollout respectively.
 911 Thus MCGS offers more efficient exploration of ReGraph search space.
 912

913 Furthermore, we provide empirical data on the code generation overhead of ReGraphT. Inference
 914 tests were conducted on a single A100-80GB GPU paired with an Intel(R) Xeon(R) Platinum 8358P
 915 CPU @ 2.60 GHz, utilizing the Qwen2.5-Coder-7B-Instruct model, with a search budget of 100 and
 916 a batch size of 16. Under these conditions, generating results for the 80 CUDAEval samples takes
 917 approximately 6.02 hours. Moreover, based on benchmark tests of various sub-8B models running
 918 on a single RTX 4090 LLC (2025), comparable results can be achieved on consumer-grade hardware
 919 in about 7.53 hours.
 920

918 E ABLATIONS ON MCGS TRAVERSAL
919

920 We conduct an ablation study on the varying number of rollouts and different reward strategies to
921 explore the impact of during MCGS traversal. For ReGraphT-MCGS, max attempts is the same as
922 max rollouts. As show in Table 4, under fixed search budgets and varying configurations, ReGraph-
923 MCGS outperforms traversal-based methods, demonstrating both higher search efficiency and ef-
924 fectiveness. What’s more, as the maximum number of rollouts increases, ReGraphT-MCGS demon-
925 strates sustained performance gains.

926
927 Table 4: Performance of Different Search Methods under Varying Budgets
928

929 Search Budgets	930 Search Methods	931 Max Attempts	932 Avg. Trajectory Length	933 pass@n	934 speedup@n
930 100	931 ReGraphT	932 5	933 3.1	934 64.9	935 7.91
		936 10	937 2.3	938 63.9	939 7.76
	940 ReGraphT- 941 MCGS	942 5	943 2.5	944 64.9	945 8.13
		946 10	947 2.9	948 64.9	949 8.46
940 200	941 ReGraphT	942 20	943 3.6	944 65.5	945 8.91
		946 5	947 4.9	948 70.0	949 11.62
	950 ReGraphT- 951 MCGS	952 10	953 4.6	954 68.7	955 11.30
		956 5	957 5.2	958 66.1	959 11.99
956 300	957 ReGraphT	958 10	959 5.5	960 70.0	961 12.88
		962 20	963 6.3	964 71.2	965 13.43
	966 ReGraphT- 967 MCGS	968 5	969 7.4	970 68.7	971 12.89
		972 10	973 6.8	974 70.0	975 12.45
975 300	976 ReGraphT	977 5	978 7.8	979 69.6	980 13.01
		981 10	982 8.7	983 72.5	984 14.76
	985 ReGraphT- 986 MCGS	987 20	988 9.1	989 74.1	990 14.98

946 To investigate the effect of reward formulation, we considered three different reward strategies:
947

948 **strict reward** The reward is defined as the average performance speedup of designs that pass all
949 unit tests:

$$950 R_{\text{strict}} = \frac{1}{|\mathcal{D}_{\text{pass-all}}|} \sum_{d \in \mathcal{D}} p(d) \cdot \mathbb{1} \left[\bigwedge_{t \in \mathcal{T}} \text{pass}(d, t) \right],$$

952 where $\mathcal{D}_{\text{pass-all}}$ denotes the subset of designs that successfully pass every test in \mathcal{T} .
953

954 **partial-credit reward** Compared to strict reward, partial-credit reward does not require all unit
955 tests to be passed. Instead, it allocates rewards proportionally to the fraction of unit tests that are
956 successfully passed:

$$957 R_{\text{partial}} = \frac{1}{m} \sum_{t \in \mathcal{T}} \frac{1}{|\mathcal{D}_t|} \sum_{d \in \mathcal{D}} p(d) \cdot \mathbb{1}[\text{pass}(d, t)],$$

959 where \mathcal{D}_t is the set of designs passing test t .
960

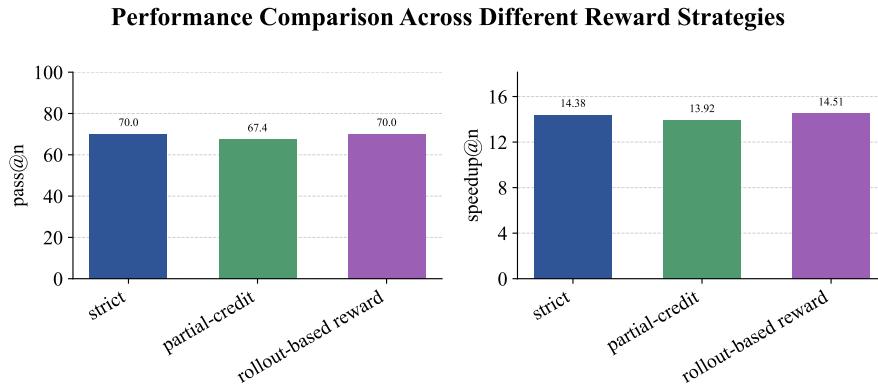
961 **rollout-based reward** Similar to Baronio et al. (2025), rollout-based reward models the reward as
962 a Markov decision process (MDP), setting the reward of a given response as the discounted sum
963 of scores of the current kernel and all subsequent ones and provides fine-grained feedback during
964 generation:

$$965 R_{\text{rollout}} = \mathbb{E} \left[\sum_{t=0}^T \gamma^t r(s_t, a_t) \right],$$

967 where $r(s_t, a_t)$ denotes the performance gain associated with the design choice at step t , and $\gamma \in$
968 $[0, 1]$ is the discount factor.
969

970 Under different reward strategies, We conduct experiments using Qwen2.5-Coder-7B-Instruct as the
971 SLM and a ReGraph built from 500 samples in Figure 9. The search budgets and varying rollout
972 configurations are fixed to 200 and 10. As show in Figure 11, we observe that strict reward and

972 rollout-based reward have similar performance, while partial-credit reward leads to a slightly lower
 973 pass rate and speedup performance.
 974



988 **Figure 11: Ablation Study on Different Reward Strategies.**

989

991 F LIMITATIONS

992

993 During the construction of CUDAEval, we employed a multi-stage pipeline to carefully filter and
 994 select high-quality CUDA samples. While this process ensured the reliability and consistency of
 995 the benchmark, it resulted in the exclusion of a substantial portion of the original dataset. Con-
 996 sequently, CUDAEval may not fully capture the diversity and complexity of real-world CUDA
 997 programs, particularly those with uncommon patterns, intricate dependency structures, or uncon-
 998 ventional optimization strategies. This selective filtering could limit the evaluation of models on
 999 edge cases or rare optimization scenarios, potentially underrepresenting certain challenging aspects
 1000 of CUDA code generation and optimization. Future work may focus on incorporating a broader
 1001 variety of samples to create a more comprehensive and representative benchmark.

1002 G PROMPTS

1003

1004 G.1 PROMPT FOR KERNEL EXTRACTION

1005

1006 (a) Prompt for CUDA Kernel Extraction

1007

```
1008 **CUDA kernel process prompt**  

1009  

1010 **Role**:  

1011 You are a professional high performance computing (HPC) engineer,  

1012 skilled in optimizing C++ serial code using CUDA.  

1013  

1014 **Responsibility**:  

1015 You are supposed to extract the CUDA kernels from the given CUDA code  

1016 file and identify the optimization techniques used in them.  

1017 If the provided CUDA code file contains multiple CUDA kernels, you  

1018 should extract all of them and for each of them analyze all  

1019 optimizations used and corresponding code snippet.  

1020  

1021 **Response Format**:  

1022 ````json  

1023 {  

1024     "kernels": [  

1025         {  

1026             "name": <extracted cuda kernel name>,  

1027             "content": <extracted cuda kernel content>
```

```

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
    }
  ],
  "optimizations": [
    [
      {
        "optimization": <the optimization method used>,
        "snippet": <corresponding code snippet>
      },
    ],
  ],
},
```
Precautions
1. You must only return the kernels that exist within this file, not those imported from other files and merely called here.
2. For each kernel, you must include its complete content without any omissions or abbreviated formatting.
3. Ensure that in the returned JSON content, the length of kernels matches the length of optimizations, meaning each kernel corresponds to a list of optimizations.

```

## G.2 PROMPT FOR DEPENDENCY

### (a) Prompt for CUDA Kernel Dependency Completion

You are an HPC engineer proficient in using CUDA. The CUDA kernel is extracted from the code file, so it may lack some relevant dependencies.

Now for the CUDA kernel provided by the user, you need to determine whether this CUDA kernel lacks relevant dependencies.

1. If it lacks standard library dependencies, please supplement them.
2. If it lacks user file dependencies, for example, user-defined classes, user-defined functions, user-defined macros, etc., attempt to rewrite it in a simple manner to resolve the dependency issues.

Please return whether the rewrite was successful. If the rewrite is successful, return the rewritten code. If you are unable to rewrite the required user dependencies, return None for this item.

Note: that the user's code where this kernel resides is unavailable. Therefore, if you think some definitions are likely defined in the user's code, you are also supposed to attempt to supplement them as part of the rewritten code.

# Prompt format

The user will provide you a JSON dictionary in the following format:

```

```json
{
  "kernel" : <The CUDA kernel provided by user>
}
```

```

# Response format

You will respond with a JSON dictionary in the following format:

```

```json
{

```

```

1080
1081     "success": "<yes/no>",
1082     "reason": "<Your reasoning process>",
1083     "rewrite": "<The rewritten code that doesn't lack relevant
1084     dependencies/None>"
1085   }
1086   ...

```

1092 G.3 PROMPT FOR CUDA REASONING

1096 (a) Prompt for CUDA Optimization Reasoning

```

1098 You are an excellent high-performance computing engineer,
1099 skilled in optimizing CPP code using CUDA.
1100 Now, the user will provide you with CPP code,
1101 and you need to optimize it step by step using CUDA.

1102 # Notes
1103 1. Please optimize CUDA step by step. In each step of the optimization
1104 process, you need to provide the reasoning behind the optimization,
1105 explain the optimization methods used, and describe how these methods
1106 are applied. Finally, provide the optimized code. Optimization methods
1107 refer to CUDA optimization techniques such as shared memory, warp
1108 divergence elimination etc. 'How the optimization methods are used'
1109 refers to how these CUDA optimization techniques are applied to
1110 optimize the code.
1111 2. The optimization process should be returned as a JSON list.
1112 3. The function name must remain the same as the initial function
1113 after each optimization step.

1114 # Prompt Format

1115 The user will provide a JSON dictionary in the following format:

1116     ...
1117     {
1118         "kernel": "<The CPP code provided by user>",
1119     }
1120     ...

1121 # Response Format

1123 You should respond in the following JSON format:
1124
1125     ...
1126     [
1127         {
1128             "think": "<The thought process for this optimization step>",
1129             "method": "<The optimization method used>",
1130             "detail": "<How the optimization methods are used>",
1131             "code": "<The optimized code obtained in this step>"
1132         }
1133     ...

```

1134 G.4 PROMPT FOR RELABEL
 1135
 1136
 1137
 1138
 1139

1140 (a) Prompt for CUDA Optimization Relabel
 1141

1142 You are an excellent high-performance computing engineer, skilled in
 1143 optimizing CPP code using CUDA. Now, the user will provide you with a
 1144 step-by-step optimization process for CPP code along with some
 1145 existing CUDA optimization methods. You need to determine whether each
 1146 CUDA optimization method used in this step-by-step process falls
 1147 within the scope of the existing CUDA optimization methods.

1148 If the method used is part of the existing methods, rename it to the
 1149 corresponding method name from the existing ones; otherwise, keep the
 1150 optimization method's name unchanged.

1151 # Notes
 1152 1. The user input is a json dict incluing 2 lists, 'methods'
 1153 represents the existing CUDA optimization methods, and 'process'
 1154 represents the optimization process, where each item represents one
 1155 optimization step.
 1156 2. For each optimization step, you need to make a judgment.
 1157 3. The CUDA optimization method used in each step is indicated in the
 1158 'method' field.
 1159 4. You should return a list in JSON format, with the same length as
 1160 the input list.

1161 # Prompt Format

1162 The user will provide a JSON dictionary in the following format:

1163
 1164 ```json
 1165 {
 1166 "methods": [<CUDA optimization methods existed>],
 1167 "process": [
 1168 {
 1169 "think": "<The thought process for this optimization
 1170 step>",
 1171 "method": "<The optimization method used>",
 1172 "detail": "<How the optimization methods are used>",
 1173 "code": "<The optimized code obtained in this step>"
 1174 }
 1175]
 1176 }
 1177 ````

1178 # Response Format

1179 You should respond in the following JSON format:

1180 ```json
 1181 [
 1182 {
 1183 "existed": "<yes/no>",
 1184 "method": "<If yes, the corresponding method name from the
 1185 existing methods; if no, keep the original method name>"
 1186 }
 1187]
 1188 ````

1188 G.5 PROMPT FOR STANDARD
11891190 (a) Prompt for Standard
11911192 You are an excellent high-performance computing engineer, skilled in
1193 optimizing CPP code using CUDA. Now, the user will provide you with
1194 CPP code, and you need to optimize it using CUDA.1195 # Notes
1196 1. You need to use CUDA to optimize the CPP code provided by user.
1197 2. The optimized function name needs to remain consistent with the
1198 original function. You need to handle the data transfer between host
1199 (CPU) memory and device (GPU) memory, as well as the invocation of
1200 CUDA kernels, within the function.
1201 3. You must provide the complete code without any omissions.1202 # Prompt Format
1203

1204 The user will provide a JSON dictionary in the following format:

1205 ```json
1206 {
1207 "kernel": "<The CPP code provided by user>,"
1208 }
1209 ````1210 # Response Format
1211

1212 You should respond in the following JSON format:

1213 ```json
1214 {
1215 "think": "<The thought process for this optimization>,"
1216 "code": "<The optimized code using CUDA>"
1217 }
1218 ````1219
1220 G.6 PROMPT FOR CoT
12211222 (a) Prompt for CoT
12231224 You are an excellent high-performance computing engineer, skilled in
1225 optimizing CPP code using CUDA. Now, the user will provide you with
1226 CPP code, and you need to optimize it step by step using CUDA.1227 # Notes
1228 1. Please optimize CUDA step by step. In each step of the optimization
1229 process, you need to provide the reasoning behind the optimization,
1230 explain the optimization methods used, and describe how these methods
1231 are applied. Finally, provide the optimized code. Optimization methods
1232 refer to CUDA optimization techniques such as shared memory, warp
1233 divergence elimination etc. 'How the optimization methods are used'
1234 refers to how these CUDA optimization
1235 techniques are applied to optimize the code.
1236 2. The optimization process should be returned as a JSON list.
1237 3. The function name must remain the same as the initial function
1238 after each optimization step. You need
1239 to handle the data transfer between host (CPU) memory and device (GPU)
1240 memory, as well as the invocation of CUDA kernels, within the function.
1241 4. You must provide the complete code without any omissions.

```

1242
1243     # Prompt Format
1244
1245     The user will provide a JSON dictionary in the following format:
1246
1247     '''json
1248     {
1249         "kernel": "<The CPP code provided by user>",
1250     }'''
1251
1252     # Response Format
1253
1254     You should respond in the following JSON format:
1255
1256     '''json
1257     [
1258         {
1259             "think": "<The thought process for this optimization step>",
1260             "method": "<The optimization method used>",
1261             "detail": "<How the optimization methods are used>",
1262             "code": "<The optimized code obtained in this step>"
1263         }
1264     ]'''
1265

```

G.7 PROMPT FOR CODERAG

(a) Prompt for CodeRAG

```

1266
1267
1268     You are a coding expert that writes very fast code. You write parallel
1269     C and C++ code using CUDA and always strive to make the code as fast
1270     as possible. The user will give you code and you will provide a
1271     modified version of the user's code that is as fast as possible using
1272     CUDA. At the same time, the user will also provide an optimization
1273     example, including the original program and the optimized program
1274     using CUDA. You can refer to this optimization example for your own
1275     optimization.
1276
1277     # Prompt format
1278
1279     The user will provide you a JSON dictionary in the following format:
1280
1281     '''json
1282     {
1283         "source_code" : <Initial code>,
1284         "example_original" : <Example original program>,
1285         "example_optimized": <Example optimized program>
1286     }'''
1287
1288     # Response format
1289
1290     You will respond with a JSON dictionary in the following format:
1291
1292     '''json
1293     {
1294         "updated_code" : <Optimized code>
1295     }'''

```

```
1296
1297
1298
1299
```

1300 G.8 PROMPT FOR REGRAPHT

1302 (a) Prompt for ReGraphT

1304 You are a coding expert that writes very fast code. You write parallel
 1305 C and C++ code using CUDA and always strive to make the code as fast
 1306 as possible. The user will give you code and you will provide a
 1307 modified version of the user's code that is as fast as possible using
 1308 CUDA.

1309 At the same time, the user will also provide an optimization example,
 1310 including an optimization example consisted of the original program
 1311 and the optimized program using CUDA, and the CUDA optimization method
 1312 used.

1313 This optimization example may not necessarily apply to the current
 1314 code to be optimized, so you also need to determine whether the
 1315 provided optimization method
 1316 is suitable.

1317 # Prompt format

1318 The user will provide you a JSON dictionary in the following format:

```
1319
1320     '''json
1321     {
1322         "source_code" : <Initial code>,
1323         "example": {
1324             "origin": <The original program in the optimization example>,
1325             "optimized": <The optimized program using CUDA in the
1326             optimization example>,
1327             "method": <The CUDA optimization method used in the
1328             optimization example>
1329         },
1330     }``
```

1331 # Response format

1332 You will respond with a JSON dictionary in the following format:

```
1333
1334     '''json
1335     {
1336         "suitable": <If the provided optimization method is suitable,
1337         yes/no>,
1338         "optimization": <The optimized code using CUDA>
1339     }``
```

1343 H LLM USAGE

1344 In preparing this manuscript, we employed a large language model (LLM) solely for grammar
 1345 correction and stylistic polishing of the text. The LLM was not used for developing research ideas,
 1346 designing methodologies, conducting experiments, or analyzing results. All scientific contributions,
 1347 including problem formulation, theoretical analysis, experimental design, implementation, and eval-
 1348 uation, were carried out entirely by the authors.