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Abstract: Recent advances in large language models (LLMs) have inspired re-
search on their potential for robots in real-world tasks. This study investigates
whether the architecture of the vision-language model (VLM) Flamingo can help
ground the knowledge of a pretrained causal LLM within an agent’s experience
when following instructions in long-horizon tasks within partially observable en-
vironments. To achieve this, we propose the VLM-based hierarchical reinforce-
ment learning (HRL) agent that uses Flamingo’s Perceiver Resampler and Cross-
Attention mechanism with a causal LLM to capture mission status and suggest
promising subgoals. We assess the impact of two design factors, namely the train-
ing mode of the pretrained LLM and history representation, through the evalua-
tion of three training modes (RandomInit, TuneAll, and FrozenAll) and two history
representations (Full History and Abstract History). The experiments conducted
on the BabyAI platform demonstrate: 1) the VLM-HRL agent outperforms the
baseline agent; 2) LLM pretraining is unhelpful for the VLM-HRL agent in envi-
ronments with less-natural instructions and finetuning serves to undo pretraining;
3) history abstraction enhances learning efficiency and stability.
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1 Introduction

Language serves as the cornerstone of human learning, reasoning, and communication. In many
real-world applications, for example, personal assistants, robots are required to process language
by design. The advent of large language models (LLMs), like GPT-3 [1] and BERT [2], and their
emergent capabilities [3], such as providing solutions via a reasoning process for mathematical prob-
lems [4], has motivated researchers to apply pretrained LLMs’ knowledge to planning and interac-
tions in robotics for long-horizon tasks specified by high-level natural language instructions. The
challenge of effectively grounding the knowledge in pretrained LLMs within an agent’s decision-
making experience remains an open question, particularly in environments with less-natural lan-
guage descriptions and less-natural visual observations, like logistics and circuit design.

To ground the knowledge in a pretrained LLM within the agent’s experience, the agent must initially
gather raw perception data from its available sensors to accurately represent its experiences. A crit-
ical aspect of perception is the agent’s vision, which can capture essential information about both
the agent’s behavior and environmental dynamics through a sequence of images. The utilization of
an image sequence to portray the agent’s behavior and environmental dynamics over time offers two
distinct advantages. First, it accommodates partially observable environments by consolidating par-
tial observations, thereby providing the robot with a more comprehensive view of its surroundings.
Second, a series of frames effectively represents the execution of a skill related to a subgoal, making
it well-suited for hierarchical reinforcement learning settings that capture the semantics of high-
level action executions. This inspires us to investigate how to enable the agent to reason subgoals
for completing long-horizon tasks specified in natural language, by grounding the knowledge in a
pretrained LLM within the agent’s experience, i.e., a sequence of subgoals where each comprises its
language description and its execution represented by a series of visual observations.
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Flamingo [5], a vision-language model (VLM) architecture that connects pretrained vision and lan-
guage models to handle sequences of arbitrarily interleaved visual and textual data, suits our needs.
The Perceiver Resampler and Cross-Attention mechanism in Flamingo allow for the association of
a sequence of images with a sentence, which we hypothesize could facilitate the grounding process
under investigation. This leads us to propose the VLM-HRL agent design that adopts Flamingo with
a causal LLM inside to serve as the high-level policy in an HRL framework. Our research explores
the impact of two design options on learning: Flamingo’s LLM training modes, including Rando-
mInit (using a randomly-initialized LLM), TuneAll (fine-tuning the pretrained LLM), and FrozenAll
(freezing the pretrained LLM), as well as two history representations, Full History (using the entire
visual observations) and Abstract History (utilizing key observations).

We focus on the BabyAI platform [6] for conducting experiments, which can generate instruction-
following tasks in a lightweight partially observable 2-D grid environment but with less-natural
language description for a task and less-natural visual observation. From the experiment results, we
observe that the VLM-HRL agent (RandomInit, Full History) can solve tasks much more efficiently
than the baseline agent from the BabyAI platform. The baseline agent uses a FiLM-LSTM-based
actor-critic model [7] to output a primitive action at each low-level time step. We also discover
that the RandomInit variant of the VLM-HRL agent outperforms the other two in terms of learn-
ing efficiency and stability. Furthermore, history abstraction in VLM-HRL, tailored for resource-
constrained, long-horizon tasks, improves learning efficiency and stability.

In summary, the main contributions of this paper are summarized as follows:

• The use of the Flamingo-based VLM-HRL agent design to study the grounding of knowledge
in pretrained LLMs within an agent’s experience that comprises a list of subgoals, each con-
taining a language description and a sequence of visual observations depicting its execution.

• The findings regarding the training mode of the LLM in Flamingo indicate that LLM pretrain-
ing is not helpful for the VLM-HRL agent in long-horizon instruction-following tasks within
a partially observable environment featuring less-natural instructions and observations.

• The discovery of the benefits of history abstraction in the VLM-HRL learning.

2 Background

2.1 Goal-conditioned Reinforcement Learning

A goal-conditioned RL problem is formulated by a goal-augmented Markov decision processMg =
⟨S,G,A, P,R, γ⟩where S,A, P , and γ are standard. Reward function R : S×A×G → [rmin, rmax]
is bounded and gives the reward of a state-action pair given some goal g ∈ G. Under full observabil-
ity, i.e., the state s ∈ S is observable, we aim to find some goal-conditioned policy π : S × G → A
that, given a goal, maximizes the expected discounted cumulative reward across discrete timesteps
t ∈ {0, 1, ...}. Under partial observability,Mg will be further augmented with two elements, Ω and
O, such that, at the time t, the agent receives an observation ot ∈ Ω with probabilityO(st, at) where
Ω and O are a set of observations and a set of conditional observation probabilities respectively.

2.2 Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning addresses the challenge of the exploding exploration space
long-horizon tasks. The horizon of a task is the average number of actions needed by an agent to
solve the task. HRL is based on Semi-Markov Decision Process [8], which is similar to an MDP
but with action execution time. HRL breaks down a long-horizon reinforcement learning task into
a hierarchy of subtasks, resulting in a shorter task horizon and more structured exploration during
the HRL agent’s training. The hierarchy of subtasks corresponds to a hierarchy of policies. In this
work, a two-level hierarchy is employed: the high-level policy handles task-solving through optimal
subtask selection, while the low-level policies are pre-trained to achieve specific subtask goals. We
will use subtasks and subgoals interchangeably.
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3 Problem Statement

We consider learning a goal-conditioned policy in a partially observable environment. Each goal
g ∈ G is assumed to be uniquely identified by its language description. Similar to prior work [9], we
assume a set of low-level subgoals Gl such that every task specified by an initial state-goal pair, i.e.,
(s0, g), can be optimally accomplished by completing a sequence of subgoals. Further, we assume
access to a function, Ψ : S × Gl → {“Success”, “Failure”}, that indicates if a subgoal is completed.

The structure of subgoals justifies the HRL approach that consists of a high-level policy and a low-
level policy. In existing work, the high-level policy either takes as input the state assuming full
observability, or encodes the entire history using a sequence encoder like Transformers [10]. In
this work, we consider using Flamingo as the high-level policy, and, crucially, our VLM can takes
as input an abstract of the entire history. Instead of considering one low-level policy, we assume
access to a library of pretrained low-level policies, each of which serves to complete basic tasks (or
subgoals) in the environment. In the following sections, we refer to each low-level policy as a skill.

We define the ith subgoal’s history sh(i) =
(
sg(i), st(i), et(i), {ot}et

(i)

t=st(i)+1
, status(i), sr(i)

)
where

sg(i), st(i), et(i), status(i), and sr(i) are the ith subgoal’s description, starting timestep, ending
timestep, final status and the reward received when it is done respectively. status(i) and sr(i) are
defined as Ψ(st=et(i) |sg(i)) and rt=et(i) respectively.

We then define the full history when the ith subgoal is done as h(i) =
(
g, o0, {sh(τ)}iτ=1

)
where

g, o0 and sh(τ) are the goal description of the intended task, the initial observation and the τth
subgoal’s history respectively. Then, we define history abstraction as a function h(·) that maps a full
history h(i) to an abstract h(h(i)) that is usually shorter, only keeping critical timesteps such as the
initial timestep and the timesteps where a subgoal is completed/failed.

Given a goal g, a subgoal set Gl and a skill library, we aim to train a high-level policy π(sg(i+1)|h(i))
such that the expected discounted future reward

∑
i≥0 Esg(i+1)∼π(·|h(i))[γ

isr(i+1)] is maximized.

4 Approach

To leverage existing skills (pretrained policies for simple tasks) in tackling new tasks, we propose the
VLM-HRL agent design, as shown in Figure 1a, that consists of a hierarchy of two levels of policies
together with two auxiliary modules, History Maintenance and Subgoal Progress Monitoring. The
high-level policy proposes the next subgoal and selects a skill for it. In contrast, the low-level policy
applies the chosen skill to generate the agent’s primitive actions until the subgoal is done.

ENV

Goal: History
Maintenance

High-level
Policy

Low-level
Policy

Subgoal
Progress
Monitoring

Subgoal
Done

Subgoal
Continue

Agent

(a) The agent with a hierarchy of high-level
and low-level policy modules.

Image Encoder

Perceiver
Resampler

Gated XATTN-DENSE

LM Transformer Block

Critic Actor

Subgoal Suggestion Subgoal Set

subgoal id
 description
 skill id

subgoal

id
Skill Library

skill id
 description
 policy

Skill Selection

High-level Policy

 Layers

(b) The high-level policy module that uses a Flamingo-based
Actor-Critic model to determine the next subgoal sg(i+1).

Figure 1: VLM-HRL Agent. Note: h(i) is the history up to the time step when the ith sugboal is
done, and sg(i+1) and sk(i+1) are the (i + 1)th suggested subgoal and skill. The LM Transformer
Block highlighted in blue indicates it is frozen during the training with the FrozenAll LLM mode.
h
(i)
img refers to the sequence of all visual observations in h(i) and h

(i)
txt is a representation of h(i) in

text sequence (more details can be found in Appendix A).
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4.1 Subgoal Progress Monitoring and History Maintenance

Subgoal Progress Monitoring dispatches high-level/low-level action requests based on the current
subgoal’s status. It considers the subgoal as done when the step budget is exhausted or when an or-
acle determines its status based on the current observation and subgoal description. When a subgoal
is done, it requests History Maintenance to update history and inform the high-level policy to gener-
ate the next subgoal. Otherwise, it instructs low-level policy to use the current skill and observation
to generate a primitive action for progressing towards the subgoal.

History Maintenance, as shown Figure 5 in Appendix A, updates the current history with the sum-
marization of the current subgoal history and sends it to high-level policy for proposing the next
subgoal. In this work, for simplicity, we adopted a rule-based summarization that selects the first
and the last observations of a subgoal’s history. We believe that this summarization can capture
essential information about a subgoal and effectively reduce redundant observations, particularly
when the agent repeats ineffective primitive actions.

4.2 High-level and Low-level Policy Modules

High-level policy, as shown in Figure 1b, takes as the input the agent’s current history h(i) and feeds
it into Subgoal Suggestion, primarily consisting of a Flamingo model, to suggest the next subgoal
id. It is then used to choose the next subgoal sg(i+1) and skill sk(i+1) from Subgoal Set and Skill
Library respectively. The Flamingo model, housing a causal LLM within, facilitates the capture of
the mission status: 1) Perceiver Resampler in Flamingo extracts visual semantics of the agent be-
havior during the execution of each subgoal; 2) Cross-Attention layer in Flamingo fuses a subgoal’s
description and the visual semantics of the agent’s behavior to describe a subgoal execution; 3) the
causal LLM combines all subgoals’ execution semantics as the current mission status.

We design skills to incorporate a memory processing component that uses an LSTM layer to aggre-
gate partial observations. Meanwhile, we have the VLM-HRL agent maintain the memory for the
currently selected skill. When the high-level policy module suggests the next subgoal sg(i+1) and
skill sk(i+1), the low-level policy module first clear the skill memory sm if sg(i+1) and sg(i) are dif-
ferent. After that, when the Subgoal Continue message is received, the current skill sk(i+1) is used
to determine a primitive action and update the skill memory by plugging the current observation ot
and skill memory smt−1 into the equation at, smt = sk(i+1)(ot, smt−1, sg

(i+1)).

4.3 Hierarchical Reinforcement Learning

We used Proximal Policy Optimization (PPO) [11] algorithm, as shown in Algorithm 1, to train
the agent in a HRL framework. In each iteration, the experience collection collects N episodes
instead of a fixed number of steps. The number of subgoals Num SGSj(j ∈ [1, N ]) proposed
in one of these N episodes could be different from that in others. The experience collected from
one episode, e.g., episode j(j ∈ [1, N ]), contains the agent’s history hj , each high-level action, the
state value after executing each high-level action, and each reward sr(i), where i ∈ [1, Num SGSj ].
During the model update, the batch of N episodes is randomly split into multiple mini-batches of M
episodes. Each mini-batch is then used to calculate a loss for updating the model using Equation 1

loss =
1

MNS

MNS∑
i=1

∑M
j=1 loss

(i)
j∑M

j=1,loss
(i)
j ̸=0

1
(1)

where MNS = max([Num SGSj ]), j ∈ [1,M ] is the maximum number of proposed subgoals of
an episode in the mini-batch and loss

(i)
j is the PPO loss associated with the ith subgoal of the jth

episode if it exists in the mini-batch otherwise 0.
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Algorithm 1 VLM-HRL Learning Using PPO

Require: max epochs K, the high-level policy πθ with the parameter θ
1: for iteration=1,2,... do
2: Collect experiences of N episodes using policy πθold .
3: Compute advantage estimates for each subgoal and add to experiences.
4: for epoch=1,2,...,K do
5: Shuffle the batch of N experiences
6: Split the batch into mini-batches
7: for each mini-batch do
8: Minimize loss (Equation 1) wrt θ
9: θold ← θ

10: end for
11: end for
12: end for

5 Experiment Setting

For the proposed agent design, we hypothesize that it could improve sample efficiency when com-
pared to the baseline agent in BabyAI 1.1 [7]. We conduct experiments on the BabyAI platform [6]
to test our hypothesis and study the impact of two factors on the sample efficiency, including the
training mode of the LLM in the Flamingo model and the history representation.

5.1 BabyAI Platform

The BabyAI platform was designed to facilitate research on grounded language learning in a
partially-observable 2-D gridworld. The platform originally comes with 19 levels, each of which
represents a distribution of tasks at a certain difficulty level. The agent can navigate in the environ-
ment and move objects to complete a given task that is described in a natural-looking instruction,
e.g., ”put the blue ball next to the yellow box”. The platform provides a utility function to deter-
mine if the instructed task is completed based on the current observation. It can play the role of the
function Ψ we assumed to access for checking if a subgoal has been accomplished.

5.2 Skill Library, Subgoals and Basic Levels

Considering the agent’s interaction with objects on BabyAI platform, we design 6 basic levels for
the agent to acquire 6 basic skills (GoTo, Pickup, DropNextTo, OpenBox, OpenDoor and PassDoor).
Each skill can accomplish a set of subgoals tied to valid objects. For example, the OpenBox skill
targets boxes of any color. The total subgoals covered by these skills is 102. Task examples of basic
levels and each skill’s training configuration and performance can be found in Appendix B.

We designed three levels of varying complexity for the study, assessed by: 1) the number of objects
in the environment, 2) the minimum subgoals required, and 3) the necessity of examining adjacent
rooms for task completion. In Table 1, the levels—DiscoverHiddenBallBlueBoxR2, GoToBallNeigh-
borOpenRoomR2, and MoveToNeighborClosedRoomR2—are categorized as low, medium, and high
complexity. The relative complexities of designed levels are affirmed by baseline agent performance
as illustrated in Figure 2b. Example tasks of these levels are shown in Figure 2a, with detailed de-
scriptions in Appendix C. For each level, we assume domain knowledge access to specialize the 102
subgoals into a reduced set, as listed in Table 3 in Appendix D.

Table 1: Characteristics of three testing levels

Level Name Complexity
Degree

Number
of Objects

Adjacent Room
Exploration

Minimum Number
of Needed Subgoals

DiscoverHiddenBallBlueBoxR2 low 3 No 2
GoToBallNeighborOpenRoomR2 medium 4 Yes 2
MoveToNeighborClosedRoomR2 high 5 Yes 4
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a. DiscoverHiddenBallBlueBoxR2 level:

pick up the green ball

b. GoToBallNeighborOpenRoomR2 level:

go to the blue ball

c. MoveToNeighborClosedRoomR2 level:

put the red ball next to the blue box

(a) Example tasks.
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(b) Baseline performance.

Figure 2: Testing levels: example tasks and performance of baseline agent.

5.3 Implementation of Subgoal Suggestion

We implemented Subgoal Suggestion using flamingo-pytorch [12] and DistilGPT2 [13]. We con-
figured the Flamingo model with one gated cross-attention layer for every three transformer blocks.
For the policy headers, we adopted the same architecture as that used in the baseline agent.

5.4 Training Configuration for The VLM-HRL Agent

In all testing levels, the training configuration for VLM-HRL agent uses an entropy coefficient of
0.002, a PPO clipping threshold of 0.1, and a maximum number of 1 million primitive steps. While
the learning rate may be selected from the list, [1e−4, 3e−5, 1e−5]. For each proposed subgoal, the
agent applies the selected skill with a step budget of 16. For one training configuration, we trained
the VLM-HRL agent in 5 runs of randomly picked unique seeds and reported the mean and standard
error of the Average Return over 100 evaluation episodes. To study the impact of the knowledge
of the pretrained LLM on learning efficiency, we investigated three training modes for the LLM in
Flamingo during agent learning: 1) FrozenAll freezes the pretrained LLM (as shown in Figure 1b);
2) RandomInit trains a randomly initialized LLM; 3) TuneAll finetunes the pretrained LLM.

6 Experiment Results

6.1 Sample Efficiency: VLM-HRL Agent vs Baseline Agent

To validate the hypothesis introduced in Section 5, we investigated the VLM-HRL agent with a
randomly initialized DistilGPT2 and a full history as a stepping stone. To compare with the baseline
agent, we decided to report the Average Return of VLM-HRL agent versus the number of consumed
frames. Since the algorithm 1 collects experiences of a fixed number of episodes every iteration, the
logging timesteps can not be pre-set to a fixed number of frames. To mimic the reporting convention
in RL literature, we decided to report the mean and standard error of Average Return of runs with M
different seeds by using the Average-of-Polylines approach in Appendix E. The first row in Figure 9
in Appendix F shows that the VLM-HRL agent outperforms the baseline agent in all testing levels,
indicating the effectiveness of the VLM-HRL learning.

6.2 The Impact of Training Mode of LLM and History Representation

We pick the best-performing agents in each LLM-training-mode group and compare them in Fig-
ure 3. The comparison between FrozenAll and TuneAll agents highlights that freezing the pretrained
LLM does not prove beneficial for the decision-making of the VLM-HRL agent. Moreover, the
TuneAll agent’s underperformance in relation to the RandomInit agent indicates the role of fine-
tuning in undoing the LLM pretraining, while also suggesting the limited utility of LLM pretraining
for the VLM-HRL agent in long-horizon instruction-following tasks within environments featur-
ing less natural instructions and observations, such as BabyAI. We hypothesize that the VLM-HRL
agent may be able to utilize the knowledge in the pretraining LLM when working in environments
with natural instructions and observations. We leave the investigation as future work.
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DiscoverHiddenBallBlueBoxR2 GoToBallNeighborOpenRoomR2 MoveToNeighborClosedRoomR2

Figure 3: Average Return of the best-performing VLM-HRL agent variants in every testing level.

Using a full history will inevitably pose a challenge for the agent when facing long-horizon tasks
where storing the full history is impossible or the cost (time and energy consumption) of proposing
the next subgoal by processing the full history is not acceptable. This motivates us to study the
impact of history representation on the learning capability of the VLM-HRL agent. We first pick
the best-performing RandomInit agent and TuneAll agent in each testing level, and then train the
counterpart agents with an abstract history. The poor performance of FrozenAll agent excludes
itself from this study. As seen in Figure 4, history abstraction is beneficial for both RandomInit and
TuneAll agents in terms of learning speed and learning stability respectively. We hypothesize that the
advantages stem from eliminating redundant visual observations through history abstraction, thereby
directing the agent’s attention to crucial visual data. While the basic rule-based history abstraction
has some benefits in accelerating the learning of TuneAll agents during early learning stages in
the GoToNeighborOpenRoomR2 and MoveToNeighborClosedRoomR2 levels, it doesn’t sustain the
learning speed throughout the entire learning process. This suggests that a more sophisticated history
abstraction method could be helpful for the agent to keep a fast and consistent learning pace.
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GoToBallNeighborOpenRoomR2 MoveToNeighborClosedRoomR2DiscoverHiddenBallBlueBoxR2

Figure 4: Performance comparison between VLM-HRL agents with full history and abstract history.

7 Related Work

7.1 Language-Informed HRL for Partially Observable Environment

Seeing the advance of representation learning of language, researchers seek to enhance reinforce-
ment learning by incorporating natural language [14], harnessing its compositional, relational, and
hierarchical qualities. Multiple works have exploited language for state representation [15, 16],
reward shaping [9, 17], action generation [18], and goal representation [19].
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Hierarchical Reinforcement Learning addresses long-horizon complex tasks by exploiting the hier-
archical structure of tasks. [20] introduces the Hierarchical Deep Reinforcement Learning Network
architecture, surpassing the vanilla DQN [21]. [22] devises a meta-learning approach to learn hi-
erarchically structured policies. Both of them aim to jointly learn a set of low-level policies and a
high-level policy that optimally selects a low-level policy at each high-level timestep. In contrast,
our work assumes access to pretrained low-level policies, focusing on learning a high-level policy
for proposing subgoals to complete long-horizon tasks in partially observable environments.

Addressing Partially Observable Markov Decision Processes (POMDPs) entails handling scenarios
with only observations, concealing the underlying MDP state. [23] introduces the Deep Recur-
rent Q-Network, combining LSTM [24] with DQN to address partial observability. In contrast,
[25] presents the Deep Transformer Q-Network, replacing recurrent layers with a transformer de-
coder. Additionally, [26] introduces the History Compression via Language Models framework,
leveraging pretrained language models for history compression. All these works primarily address
memory components and history maintenance without incorporating language understanding. Our
work represents the agent’s history by associating each subgoal (high-level language description)
with corresponding visual observations using Flamingo.

7.2 Applications of LLMs and VLMs to Planning and Interactions for Robotics

Large language models have seen remarkable success in natural language processing and emerged
as valuable tools in robotics research. These pretrained LLMs (and vision models) are leveraged
for various applications, such as zero-shot planning [27, 28], semantic and structural exploration
with intrinsic rewards [29, 30, 31], building task-specific priors from the task’s metadata [32], and
grounding human language corrections to robot states and environment dynamics [33]. Additionally,
The optimized conversation capability of ChatGPT [34] can be utilized for the automatic generation
of deployable robotic code by smoothly incorporating human feedback on code quality and safety,
given task specifications and predefined behaviors [35]. SayCan [36] efficiently decomposes high-
level tasks into subtasks, using affordances to connect LLMs with the physical environment. In
contrast, our work assumes access to a predefined list of low-level policies and focuses on studying
if the Flamingo architecture is able to learn a good high-level policy, successfully grounding the
knowledge in a pretrained LLM within the agent’s experience in a partially observable environment.

8 Conclusion

In this study, we explore the utilization of the architecture of the Flamingo vision-language model
to enhance learning efficiency by proposing promising subgoals in HRL setting. With a predefined
subgoal set and skill library, our VLM-HRL agent aims to improve sample efficiency in partially
observable environments. Experimental results validate our hypothesis, demonstrating the superior
performance of the RandomInit VLM-HRL agent over the baseline agent across all testing levels.
Additionally, we investigate the impact of pretrained language model knowledge on the VLM-HRL
agent’s learning efficiency through three variants: RandomInit, TuneAll, and FrozenAll, employing
different LLM training modes in Flamingo. The findings suggest that LLM pretraining offers limited
benefits for the VLM-HRL agent in environments with less natural instructions and observations.
Considering resource limitations and time constraints in long-horizon tasks, we propose substituting
the full history with an abstract history to mitigate the storage and processing overhead of numer-
ous visual observations. Our study evaluates the effect of history representation on the learning
capability of VLM-HRL agents by comparing two groups, Full History and Abstract History. The
results highlight the advantages of history abstraction, enhancing both learning efficiency and sta-
bility. Based on these observations, our future work will include: 1) examining how a pretrained
LLM’s knowledge influences the VLM-HRL agent’s decision-making in environments with natural
instructions and observations; 2) pursuing a sophisticated history abstraction with the aim of out-
performing the simple one introduced in this work; 3) researching methods to allow the high-level
policy to generate descriptive subgoals directly instead of proposing subgoal IDs.

8



Acknowledgments

This work is supported in part by NSF IIS-2154904.

References
[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,

P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances
in neural information processing systems, 33:1877–1901, 2020.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[3] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma,
D. Zhou, D. Metzler, et al. Emergent abilities of large language models. arXiv preprint
arXiv:2206.07682, 2022.

[4] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. Chain of thought
prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022.

[5] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Mil-
lican, M. Reynolds, et al. Flamingo: a visual language model for few-shot learning. Advances
in Neural Information Processing Systems, 35:23716–23736, 2022.

[6] M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H. Nguyen, and
Y. Bengio. Babyai: A platform to study the sample efficiency of grounded language learning.
In International Conference on Learning Representations, 2019.

[7] D. Y.-T. Hui, M. Chevalier-Boisvert, D. Bahdanau, and Y. Bengio. Babyai 1.1. arXiv preprint
arXiv:2007.12770, 2020.

[8] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for tem-
poral abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

[9] S. Mirchandani, S. Karamcheti, and D. Sadigh. Ella: Exploration through learned language
abstraction. Advances in Neural Information Processing Systems, 34:29529–29540, 2021.

[10] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34:15084–15097, 2021.

[11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[12] P. Wang and M. Ryu. Implementation of flamingo, state-of-the-art few-shot visual question
answering attention net out of deepmind, in pytorch. https://github.com/lucidrains/

flamingo-pytorch, 2022.

[13] V. Sanh. Distilgpt2 is an english-language model pre-trained with the supervision of
the smallest version of generative pre-trained transformer 2. https://huggingface.co/

distilgpt2, 2019.

[14] J. Luketina, N. Nardelli, G. Farquhar, J. Foerster, J. Andreas, E. Grefenstette, S. Whiteson,
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Appendix A History Maintenance and Sequence Formatting

History Maintenance initializes the history h(0) = (g, o0) with the goal g and the initial observation
o0 when a mission starts. The inside of the History Maintenance is shown in Figure 5.

Subgoal
Done

Subgoal History
Summarization

History Update

History Maintenance

Figure 5: History Maintenance summarizes the history of the current subgoal, sh(i), when the
current subgoal sg(i) is done, and then applies the summarized subgoal history to update the agent’s
history from h(i−1) to h(i), which will be used for generating the next subgoal sg(i+1).

Since the Flamingo model (the high-level policy) takes as input a textual part and a visual
part, we first construct h

(i)
txt and h

(i)
img from the history h(i) and then feed them to the high-

level policy. h
(i)
img is the sequence of visual observations, encompassing all observations from

h(i); h
(i)
txt is a text sequence that serves as a representation of h(i) and follows the format as

”g|image|[Start]...sg(i)|image...image|[status(i)]”, where

• g is the language description of the goal g.

• image represents an observation. The first image string refers to the initial observation o0.

• [, ], | and Start are string literals.

• sg(i) is the language description of the ith subgoal.

• status(i) is the language description of the ith subgoal’s status.

Appendix B Basic Levels and Skill Library

Figure 6 shows an example task for each of the 6 basic levels. For each level, there are 5 objects
randomly positioned in the agent’s starting room and there are two rooms in the environment. All
levels except PassDoorLocalR2 can be completed inside the agent’s starting room. The DropNext-
ToLocalR2 level assumes the agent carries the object to drop at the beginning of a task.

To learn the skill for each basic level, we used PPO to train a policy by using the bag-of-word
encoding for observations and the model architecture from BabyAI 1.1 [7], which is shown in Fig-
ure 7a. The bag-of-wording encoding represents the partial observation of 7x7 grid into a 7x7x3
tensor where each cell on the 7x7 grid is converted into a 1-D tensor, (object type, object color, door
state). We used the same training configuration, as shown in Table 2 to learn a skill for each basic
level. For each basic level, we trained the agent to learn three policies, with each policy undergoing
training using a unique random seed, and then select the best policy as the skill representative and
put it into the skill library. The training performance for each skill is shown in Figure 7b.

Appendix C Three Testing Levels

Three designed testing levels of different complexity degrees as listed below:

• DiscoverHiddenBallBlueBoxR2: the environment features a closed door of any color, a blue
box, and red and green balls. The target ball, either red or green, is concealed within the box.
The goal is to locate and collect the target ball.
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a. GoToLocalR2 level:

go to the purple key

b. PickupLocalR2 level:

pick up the yellow box

c. DropNextToLocalR2 level:

drop the green ball next to the yellow ball

d. OpenBoxLocalR2 level:

open the blue box

e. OpenDoorLocalR2 level:

open the yellow door

f. PassDoorLocalR2 level:

pass the purple door

Figure 6: Example tasks of the 6 basic levels.

(a) The model architecture of skills.
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(b) Skills’ Performance.

Figure 7: Model architecture and performance of skills. Note: Bag-of-Words encoding converts
each cell of the raw partial observation (a 7x7 grid) to a triple, (object type, object color, door state).

• GoToBallNeighborOpenRoomR2: the environment contains one door and four uniquely col-
ored balls. The door is open and has a color of either red or green. The balls come in red,
green, blue, and purple colors. Two of the four balls are in the agent’s starting room, while
the remaining two are situated in the adjacent room.

• MoveToNeighborClosedRoomR2: the environment includes a closed yellow door, a red ball,
a green ball, a blue box, and a key of any color. One of the balls is the target object to be
moved. The key and the non-target ball serve as distractors. The balls are positioned in the
agent’s starting room, while the key and the box are placed in the adjacent room. The goal is
to locate the target ball and move it next to the blue box.

Appendix D Specialized Subgoal Set for Each Testing Level

For each testing level, its specialized subgoal set, as listed in Table 3, is crafted by selecting subgoals
from the entire subgoal set (102 subgoals) after answering the following two questions:

• what objects and doors could possibly exist?

• how could these objects and doors be related to tasks in the level?
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Table 2: Training configuration for learning a skill for each basic level

Model Architecture

arch: ’bow endpool res’
instr arch:’gru’
image dim:128
instr dim:128
memory dim:128

Experience Collection

procs: 16
frames per proc: 40
recurrence: 20
batch size: 640
max frames: 1e7

Model Update

lr: 1e-4
entropy coef: 0.01
value loss coef:0.5
max grad norm:0.5
clip eps:0.2

Table 3: Domain knowledge-based subgoal sets for 3 testing levels

Level Name Designed Subgoal Set

DiscoverHiddenBallBlueBoxR2
[1] open the blue box
[2] pick up the green ball
[3] pick up the red ball

GoToBallNeighborOpenRoomR2

[1] pass the red door
[2] pass the green door
[3] go to the red ball
[4] go to the green ball
[5] go to the blue ball
[6] go to the purple ball

MoveToNeighborClosedRoomR2

[1] open the yellow door
[2] pass the yellow door
[3] pick up the green ball
[4] pick up the red ball
[5] drop next to the blue box

Appendix E Average-of-Polylines for Performance Comparison

Average-of-Polylines approach intends to approximate the mean and standard error of an interested
performance using runs of the same experiment with M different seeds, where the logging points
(e.g., consumed steps in RL) of the performance during each run of the experiment are not prefixed.

• For the logged data points of each run i (i = 1, 2, ...,M), we fit them to a polyline by
connecting two consecutive data points whose x values are next to each other.

• Find out the smallest number of data points across all runs and use it as the number of
samples, N , to draw from the generated polylines above.

• Evenly draw from a given range [xmin, xmax], e.g. [0, 1e6], a list of N values, x =
[x1, ..., xN ], where x1 = xmin and xN = xmax.

• For each polyline i (i = 1, 2, ...,M), sample from it N points [(x1, y
(i)
1 ), ..., (xN , y

(i)
N )] using

x.

• Plot the representative curve using the mean and standard error of each aligned group of
points, ((xk, y

(1)
k ), (xk, y

(2)
k ), ..., (xk, y

(M)
k )) where k = 1, ..., N .

Figure 8 shows an example of applying the Average-of-Polylines approach to report the mean and
standard error of Average Return of runs with 5 different seeds by the VLM-HRL agent that uses a
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randomly-initialized language model, a full history and a fixed learning rate of 1e− 4 to solve tasks
in the level DiscoverHiddenBallBlueBoxR2. The light blue curve represents the mean and standard
error of Average Return of runs of five different seeds, where red, orange, pink, green, and purple
curves correspond to the original data of the five runs. As a reference, the baseline’s performance is
plotted in dark blue.
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DiscoverHiddenBallBlueBoxR2

Figure 8: Merge Average Return of VLM-HRL agents trained in five runs of different seeds.

Appendix F VLM-HRL Agents Trained Using Different LLM Training
Modes and Learning Rates

For each training mode of the LLM in Flamingo, we report the Average Return of agents in Figure 9:

• FrozenAll agents are not comparable to that of the other two groups. When compared to
the baseline agent in DiscoverHiddenBallBlueBoxR2, all three FrozenAll agents show a good
learning speed at start. But two of the three, which were trained with learning rates 3e − 5
and 1e − 5, have unstable learning processes, showing performances collapse later. The
third agent that was trained with the learning rate 1e − 5 has a stable learning process but
falls behind the baseline agent after the early stage. In MoveToNeighborClosedRoomR2, the
FrozenAll agent trained with a learning rate of 1e−4 learned a better policy than the baseline
agent but its performance tends to deteriorate during the later stage of the learning process.
For the rest two FrozenAll agents in MoveToNeighborClosedRoomR2 and all three FrozenAll
agents in GoToNeighborOpenRoomR2, they show a good starting point when compared to
the baseline agent, but were not able to learn more under the given learning budget of one mil-
lion frames. The results collectively indicate that freezing the pretrained LLM significantly
restricts the agent’s capability for solving downstream tasks.

• TuneAll agents have an unstable learning process in DiscoverHiddenBallBlueBoxR2 and fail
to compete with the baseline agent. But TuneAll agents are more capable than the baseline in
learning to solve tasks of the other two testing levels, GoToBallNeighborOpenRoomR2 and
MoveToNeighborClosedRoomR2.

• RandomInit agents can solve tasks of all three testing levels. And there is at least one variant
RandomInit agent that has a better learning speed than the baseline agent.
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Figure 9: Average Return of VLM-HRL agents trained with different LLM training mode and learn-
ing rate in every testing level.
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